WIND RIVER

Wind River Compiler
for M32R

USER’'S GUIDE

5.4

Copyright © 2006 Wind River Systems, Inc.

All rights reserved. No part of this publication may be reproduced or transmitted in any
form or by any means without the prior written permission of Wind River Systems, Inc.

Wind River, the Wind River logo, Tornado, and VxWorks are registered trademarks of
Wind River Systems, Inc. Any third-party trademarks referenced are the property of their
respective owners. For further information regarding Wind River trademarks, please see:

http://www.windriver.com/company/terms/trademark.html

This product may include software licensed to Wind River by third parties. Relevant
notices (if any) are provided in your product installation at the following location:
installDirlproduct_namel/3rd_party_licensor_notice.pdf.

Wind River may refer to third-party documentation by listing publications or providing
links to third-party Web sites for informational purposes. Wind River accepts no
responsibility for the information provided in such third-party documentation.

Corporate Headquarters
Wind River Systems, Inc.
500 Wind River Way
Alameda, CA 94501-1153
US.A.

toll free (U.S.): (800) 545-WIND
telephone: (510) 748-4100
facsimile: (510) 749-2010

For additional contact information, please visit the Wind River URL:
http://www.windriver.com
For information on how to contact Customer Support, please visit the following URL:

http://www.windriver.com/support

Wind River Compiler for M32R User’s Guide, 5.4

26 Apr 06
Part #: DOC-15792-ND-00

http://www.windriver.com/company/terms/trademark.html
http://www.windriver.com
http://www.windriver.com/support

Contents

PART I: INTRODUCTION
1 [0 3= V=

1.1 Introduction

1.2 Overview of the Tools

Important Compiler Features and Extensionscccccoeceviiiinnnne
High Performance Optimizationsccccovvveiiiiiiiiiien
Portabilityccooviiiiiiiiiiicc

1.3 Documentation

This USEr’s GUIAEvveeeeviiieeiieeee ettt e s
Additional Documentationocoueeveuieeeieeeieeeceie et

2 Configuration and Directory Structureccccciiiiemirnicemennsssennnnnns

21 Components and Directories

2.2 Accessing Current and Other Versions of the Tools

2.3 Environment Variables

231 Environment Variables Recognized by the Compilercccceue..e.

fii

N W

N

Wind River Compiler for M32R
User’s Guide, 5.4

Drivers and Subprogram FIOW ... e e ee e e e s e 17
Selecting a Target and Its Componentscccccceeciicccemmnnnnnsssssssnseenns 21
41 Selecting a Target 21
4.2 Selected Startup Module and Libraries 24
4.3 Alternatives for Selecting a Target Configuration 25

PART II: WIND RIVER COMPILER

5

Invoking the COMPIIETcoiiieiiiieir s 29
51 The Command Line 29
5.2 Rules for Writing Command-Line Options 30
Same Option More Than ONcecccccccvvieviiiiininniicccicccee 30
Command-Line Options are Case-Sensitiveccccccceeiviccueirrincnne 31

Spaces In Command-Line Optionsc..cccccvvvevnciniicniicciniceicnnn, 31

QuOting ValUescoooviiieiiiicc e 31

Unrecognized Options, Passing Options to the Assembler or Linker 32

Length LImitcoviiiieiieecce s 32

5.3 Compiler Command-Line Options 33
5.3.1 Show Information About Compiler Options (-?, -?..., -h, -h..., -help) 34

532 Ignore Predefined Macros and Assertions (-A-)cccecevvniininnnnnes 34

5.3.3 Define Assertion (-A asSertion)c..ccceceverereerirerieeeenieriereesesensereenens 34

534 Pass Along Comments (-C)cccceiiviiininiiiniiiiiiiiinicecccccccne 34

535 Stop After Assembly, Produce Object (-C)ccoevvverrriiniicniiciciiinnens 35

53.6 Define Preprocessor Macro Name (-D name=definition) 35

5.3.7 Stop After Preprocessor, Write Source to Standard Output (-E) 35

5.3.8 Change Diagnostic Severity Level (-€)cccccooiiiiivnnniiiciiinaes 36

539 Generate Symbolic Debugger Information (-g)cccoevvvvrriruerrennnnes 37

5.3.10 Print Pathnames of Header Files (-H)cccccoveoinniinniiniicce, 38

53.11
5.3.12
5.3.13
53.14
5.3.15
5.3.16
5.3.17
5.3.18
5.3.19
5.3.20
5.3.21
5.3.22
5.3.23
5.3.24
5.3.25

5.3.26
5.3.27
5.3.28
5.3.29
5.3.30
5.3.31
5.3.32
5.3.33
5.3.34
5.3.35
5.3.36
5.3.37
5.3.38

Contents

Specify Directory for Header Files (-I dir)ccccooeioeccvnnnicccnennes 38
Control Search for User-Defined Header Files (-I@)ccccceevruennnee 39
Modify Header File Processing (-i filel=file2)ccccccoevvrrniccncnee. 39
Specify Directory For -1 Search List (-L dir)ccccoeoveieivinniiccines 40
Specify Library or Process File (-l name)ccccccoecceiiiniccnnnnes 40
Specify Pathname of Target-Spec File (-M target-spec)ccccoc..... 40
Optimize Code (ZO) ...ccoviiiiiiiiiiiciiiiicc 40
Specify Output File (-0 file)ccccoviiiviiiiiiiiiiiiiiccc 40
Stop After Preprocessor, Produce Source (-P)cccccooovvviiiiinninnnnnn 41
Stop After Compilation, Produce Assembly (-S)cccccooviiiiiininnes 41
Select the Target Processor (-t tof:environ) ..o 41
Undefine Preprocessor Macro Name (-U name)ccccocevvvvernnnennnes 42
Display Current Version Number (-V, -VV) ... 42
Run Driver in Verbose Mode (-V) ..c.oeevieieineeiinecinieeneneenerecneeeens 42
Pass Arguments to the Assembler (-W a,arguments,

-W :1a5:,argUMENtS)oocviiiiiiiiiiiiciicc s 42
Define Configuration Variable (-W Dname=value)ccccccceeueee. 42
Pass Arguments to Linker (-W l,arguments, -W :1d:,arguments) 43
Specify Linker Command File (-W mfile)ccccccovviiiiinincnnne 43
Specify Startup Module (-W sfile) ..o 43
Substitute Program or File for Default (-W xfile)cccooviiiiiinine 44
Pass Arguments to Subprogram (-W x,arguments)cccccoceeuevunee 45
Associate Source File Extension (-W X.€Xt) ...ccccecveivenieinenienenenieneenenns 46
Suppress All Compiler Warnings (-w)cccoevvvvivinnciiicinennn 47
Set Detailed Compiler Control Options (-X option)cccceveeuruennne 47
Specify Default Header File Search Path (-Y Ldir)cccccccovvvuiinnnnaee. 47
Specify Search Directories for -1 (-Y L, -Y P, -Y U) oo 47
Specify Search Directory for crt0.0 (-Y S,dir)cccccovvvviviiiiininninnn 47
Print Subprograms With Arguments (-#, -##, -##H) ... 47

5.4

Wind River Compiler for M32R
User’s Guide, 5.4

5.3.39 Read Command-Line Options from File or Variable (-@name,

“@@NATINE) ..ottt ettt ettt bttt ettt
5340 Redirect Output (-@E=file, -@E+file, -@O=file, -@O+file)

Compiler -X Options

541 Option Defaults ...
542 Compiler -X Options by FUnctioncccccooevrnivcnnicninccininnn
5.4.3 Prefix Function Identifiers With Underscore (-Xadd-underscore)
544 Set Addressing Mode for Sections (-Xaddr-...)ccccceiiiininnncn.

545 Align Functions On n-byte Boundaries (-Xalign-functions=n)

54.6 Specify Minimum Alignment for Single Memory Access to

Multi-byte Values (-Xalign-min=n)c.cccccoevvinnnninnninnnns

547 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased)

54.8 Specify Minimum Array Alignment (-Xarray-align-min)

549 Change bit-field type to reduce structure size

(-XDbit-fields-COmMPIESS-...) oot

54.10 Specify Sign of Plain Bit-field (-Xbit-fields-signed,

-Xbit-fields-unsigned)ccccooeviiiiiiiii e
5.4.11 Insert Profiling Code (-Xblock-count)ccccccoecurivnniicicicunnnnnnn.
5412 Set Type for Bool (-XboOl-is-...) ...coovvreriiiieiiriiicciceccecee
5.4.13 Control Use of Bool, True, and False Keywords (-Xbool-...)
54.14 Parse Initial Values Bottom-up (-Xbottom-up-init)c...ccceueee.

5.4.15 Control Allocation of Uninitialized Variables in “COMMON"

and bss Sections (-Xbss-off, -Xbss-common-off)c.ccecevueerenene
5.4.16 Use Abridged C++ Libraries (-Xc++-abr)cccccoovviviiiiiiiinnnen.
5.4.17 Use Old C++ Compiler (-Xc++-01d) .ccoovviviiiiiiiiice,
5.4.18 Optimize Global Assignments in Conditionals (-Xcga-min-use) .
5.4.19 Generate Code Using ASCII Character Set (-Xcharset-ascii)
5420 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned)
5421 Use Old for Scope Rules (-Xclass-type-name-visible)
54.22 Disregard ANSI C Library Functions (-Xclib-optim-off)

Vi

..... 59

5.4.23
5.4.24
5.4.25
5.4.26
5.4.27
5.4.28
5.4.29

5.4.30

5.4.31

5.4.32
5.4.33
5.4.34
5.4.35
5.4.36
5.4.37

5.4.38

5.4.39
5.4.40
5.4.41
5.4.42
5.4.43
5.4.44
5.4.45
5.4.46
5.4.47

Contents

Enable Cross-module Optimization (-Xcmo-...) «.c.ccocoeveeiiiicicncinnnes 65
Use the ‘new” Compiler Frontend (-Xcnew) ..o, 65
Use Absolute Addressing for Code (-Xcode-absolute...)c........... 66
Generate Position-independent Code (PIC) (-Xcode-relative...) 66
Mark Sections as COMDAT for Linker Collapse (-Xcomdat) 67
Maintain Project-wide COMDAT List (-Xcomdat-info-file) 68
Optimize Static and Global Variable Access Conservatively
(-Xconservative-statiC-live)cocovreerrereneerneeeccneeseee s 68
Locate Constants With “text” or “data” (-Xconst-in-text,
=XCONSEAN-AATA) veveeviriiiiieiieieeeeteeee ettt e 68
Dump Symbol Information for Macros or Assertions
(-Xepp-dump-symbols)cccoeviiiiiiiiiiiiii 69
Suppress Preprocessor Spacing (-Xcpp-No-space)ccccceevevuruennen 69
Use Absolute Addressing for Code (-Xdata-absolute...)c........... 69
Generate Position-independent Data (PID) (-Xdata-relative...) 69
Align .debug Sections (-Xdebug-align=n)c.ccceceovrvriiiiininnnnnan. 70
Select DWARF Format (-Xdebug-dwarf...) ..o 70
Generate Debug Information for Inlined Functions

(-Xdebug-inliNe-0n)cccccviriiiiiiiiiiircceerece e 71
Emit Debug Information for Unused Local Variables

(-Xdebug-local-all)cccoooiiiiiiiiiniiiiiiiiie 71
Generate Local CIE for Each Unit (-Xdebug-local-cie)cccc.c...... 71
Disable debugging information Extensions (-Xdebug-mode=mask) 71
Disable Debug Information Optimization (-Xdebug-struct-...) 72
Specify C Dialect (-Xdialect-...) «.cccocorviviiiiiiiiiiiiiicc 72
Disable Digraphs (-Xdigraphs-...)cccccoviniiiiiiiiiiiicccceees 73
Allow Dollar Signs in Identifiers (-Xdollar-in-ident)c.ccccccceueencee 74
Control Use of Type “double” (-Xdouble...)cccocovviccennniccnnnes 74
Generate Initializers for Static Variables (-Xdynamic-init) 74
Specify enum Type (-Xenum-is-...) ..o 75

vii

Wind River Compiler for M32R
User’s Guide, 5.4

5.4.48
5.4.49
5.4.50
5.4.51

5.4.52
5.4.53

5.4.54
5.4.55

5.4.56
5.4.57

5.4.58
5.4.59
5.4.60
5.4.61
5.4.62
5.4.63
5.4.64

5.4.65
5.4.66
5.4.67
5.4.68
5.4.69

5.4.70

54.71

viii

Enable Exceptions (-XeXceptions-...)ccccvvvirinciiriiciiiniiiniiinennens
Control Inlining Expansion (-Xexplicit-inline-factor)cccccceueeu.e.
Force Precision of Real Arguments (-Xextend-args)cccoceceveeuenee.

Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic)ccccocoerriiriiniicc

Optimize Using Profile Data (-Xfeedback=file)ccccccccoevercrrurunenre.

Set Optimization Parameters Used With Profile Data
(-Xfeedback-frequent, -Xfeedback-seldom)ccccocevuviiiiiiiinnnnnnen

Use Old for Scope Rules (-Xfor-init-scope-...)ccovviviiiinnncninnnn

Generate Warnings on Undeclared Functions
(-Xforce-declarations, -Xforce-prototypes)ccccoveeeiiiviviinnnnnnnns

Suppress Assembler and Linker Parameters (-Xforeign-as-ld)

Convert Double and Long Double (-Xfp-long-double-off,
SXEP-float-0nly) ..ovcviiiiic s

Specify Minimum Floating Point Precision (-Xfp-min-prec...)
Generate .frame_info for C functions (-Xframe-info)c.c.cecovurueneeee
Include Filename Path in Debug Information (-Xfull-pathname)
Control GNU Option Translator (-Xgcc-options-...)ccccccvveecrrinnne.
Treat All Global Variables as Volatile (-Xglobals-volatile)
Do Not Pass #ident Strings (-Xident-off)ccccccoovviiviiiinnnnnn.

Enable Strict implementation of IEEE754 Floating Point Standard
(-Xieee754-pedantiC) ...

Control Template Instantiation (-Ximplicit-templates...)cc.c.c.......
Treat #include As #import (-Ximport)ccccoeviiiiniiicie,
Ignore Missing Include Files (-Xincfile-missing-ignore)
Initialize Local Variables (-Xinit-locals=mask)c..ccccceverenernenennne

Control Generation of Initialization and Finalization Sections
(-XANIE-SECHION) .erviuvenieiiiiteieiteete ettt

Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri)cccooevvvnireiiciicc,

Define Initial Value for -Xinit-locals (-Xinit-value=n)c.cccecuue..

76

81

82

83

5.4.72
5.4.73
5.4.74
5.4.75
5.4.76

5.4.77
54.78

5.4.79
5.4.80

5.4.81

5.4.82

5.4.83
5.4.84
5.4.85

5.4.86
5.4.87
5.4.88
5.4.89

5.4.90
5491
5.4.92
5.4.93
5.4.94
5.4.95

Contents

Inline Functions with Fewer Than n Nodes (-Xinline=n) 86

Allow Inlining of Recursive Function Calls (-Xinline-explicit-force) 86

Enable Intrinsic Functions (-Xintrinsic-mask)c.cccceveeeinevinnecnnns 87
Set longjmp Buffer Size (-Xjmpbuf-size=n)cccccccoovvvrrirrrrnnnn. 87
Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-Xkeep-object-file) ... 87
Enable Extended Keywords (-Xkeywords=mask)c.cccccceurrununnen. 88
Disable Individual Optimizations (-Xkill-opt=mask,
-Xkill-reorder=mask)ccccccoveirineiniiineicece e 88
Wait For License (-XliceNnsSe-Wait)ccceeveerrireirerieieinenieieenieneeeenens 89

Generate Warnings On Suspicious/Non-portable Code

(-XHNEZMASK) ettt 89
Allocate Static and Global Variables to Local Data Area
(-Xlocal-data-area=n)c.cccccceirereirienienieieeret e 91
Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only)ccccoevvvinniiiiiiiiiniccccce 91
Do Not Assign Locals to Registers (-Xlocals-on-stack)ccccc...... 92
Expand Macros in Pragmas (-Xmacro-in-pragma)c..cccceeevuevnneee. 92
Warn On Undefined Macro In #if Statement

(-Xmacro-undefined-Warn)c..c.cocoeerererenererinieenineeneeeeeeseereee 92
Show Make Rules (-Xmake-dependency)ccccooeeeueeiruniiccinirininnnn 92

Specify Dependency Name or Output File (-Xmake-dependency-...) 94
Set Template Instantiation Recursion Limit (-Xmax-inst-level=n) 94

Set Maximum Structure Member Alignment
(-Xmember-max-align=n)cccccoevrrrnniniiiiiiien 94

Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile) 95

Warn On Type and Argument Mismatch (-Xmismatch-warning) 95
Specify Section Name (-Xname-...)c.cccoovuvmrinininicniicciceceeenes 96
Disable C++ Keywords namespace and Using (-Xnamespace-...) 97
Enable Extra Optimizations (-XO)cccccceevriniiciiinniiccene 97
Use Old Inline Assembly Casting(-Xold-inline-asm-casting) 98

Wind River Compiler for M32R
User’s Guide, 5.4

5.4.96
5.4.97
5.4.98
5.4.99
5.4.100
5.4.101
5.4.102
5.4.103

5.4.104
5.4.105

5.4.106
5.4.107

5.4.108
5.4.109
5.4.110
54.111
5.4.112
5.4.113
5.4.114
5.4.115

5.4.116
5.4.117

5.4.118
5.4.119
5.4.120

Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n) 98

Disable Most Optimizations With -g (-Xoptimized-debug-...) 98
Specify Optimization Buffer Size (-Xparse-size)c.ccccoeeecccreueenenne 99
Output Source as Comments (-Xpass-SOUICE)coceurueuemruriricrernnnn 99
Use Precompiled Headers (-Xpch-...) oo, 99
Generate Position-Independent Code for Shared Libraries (-Xpic) .. 100
Treat All Pointer Accesses As Volatile (-Xpointers-volatile) 100
Control Interpretation of Multiple Section Pragmas
(-XPpragma-section-...)ccoceiimriniminiiec s 100
Preprocess Assembly Files (-Xpreprocess-assembly)cccceeeneee. 101
Suppress Line Numbers in Preprocessor Output
(-Xpreprocessor-lineno-off) ..o 101
Use Old Preprocessor (-Xpreprocessor-old) ..., 101
Generate Profiling Code for the RTA Run-Time Analysis

TOOL Suite (-XPIof-...) coveieiecieieirreccce e 101
Select Target Executable for Use by -Xprof-feedback (-Xprof-exec) . 103
Optimize Using RTA Profile Data (-Xprof-feedback)ccccc........ 103
Select Snapshot for Use by -Xprof-feedback (-Xprof-snapshot) 104
Restart Optimization From Scratch (-Xrestart)ccccocccoccvrnnnne 104
Generate Code for the Run-Time Error Checker (-Xrtc=mask) 105
Enable Run-time Type Information (-Xrtti, -Xrtti-off)c...cccoceee... 105
Pad Sections for Optimized Loading (-Xsection-pad)cccoceuue... 105
Generate Each Function in a Separate CODE Section Class
(-XSeCtiON-SPLit) ..oeeveviviviiiiiiiiiciiicc 106
Disable Generation of Priority Section Names (-Xsect-pri-...) 106
Control Listing of -X Options in Assembly Output
(-XShow-configuratioN=n)cccccceeurururermruruemerrreecceeeneeeseeecnenenes 107
Print Instantiations (-XShOW-INSt)cccoeveireeinieniciecnecneens 107
Show Target (-Xshow-target)cccccocvvereinicniiceicececs 107
Optimize for Size Rather Than Speed (-Xsize-0pt)cccccovvvvrurricnnnee. 107

5.4.121
5.4.122
5.4.123
5.4.124
5.4.125
5.4.126
5.4.127
5.4.128
5.4.129

5.4.130
5.4.131
5.4.132

5.4.133
5.4.134
5.4.135
5.4.136
5.4.137
5.4.138
5.4.139
5.4.140
5.4.141
5.4.142
5.4.143
5.4.144
5.4.145
5.4.146

Contents

Set Size Limit for “small const” Variables (-Xsmall-const=n) 107
Set Size Limit for “small data” Variables (-Xsmall-data=n) 108
Enable Stack Checking (-Xstack-probe)cccccoevvviviciicncnnne. 108
Diagnose Static Initialization Using Address (-Xstatic-addr-...) 108
Treat All Static Variables as Volatile (-Xstatics-volatile)ccc.c.... 109
Buffer stderr (-Xstderr-fully-buffered) ..o 109
Terminate Compilation on Warning (-Xstop-on-warning) 109
Compile C/C++ in Pedantic Mode (-Xstrict-ansi)cccccovieviinnnnes 109
Ignore Sign When Promoting Bit-fields

(-Xstrict-bitfield-promotions) ... 109
Align Strings on n-byte Boundaries (-Xstring-align=n)c.......... 110
Warn on Large Structure (-Xstruct-arg-warning=n)cccceceeevuee. 110

Control Optimization of Structure Member Assignments

(-Xstruct-assign-split-...)cccccvviiiiiiiiiie 110
Set Minimum Structure Member Alignment (-Xstruct-min-align=n) 111
Suppress Warnings (-Xsuppress-warnings)cceceeeeeuerevevrecenennns 111
Swap ‘\n” and ‘\r” in Constants (-Xswap-cr-nl)cccccocovvverricrnrnnnee. 111
Set Threshold for a Switch Statement Table (-Xswitch-table...) 112
Disable Certain Syntax Warnings (-Xsyntax-warning-...)cc......... 112
Select Target Processor (-Xtarget)ccooeeveueeciniiccinicniiececeenes 112
Specify Loop Test Location (-Xtest-at-...)ccccovrervicniirniiicinicenne 112
Truncate All Identifiers After m Characters (-Xtruncate)c......... 113
Append Underscore to Identifier (-Xunderscore-...)cccccoevvnnnnnnn 113
Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n) 114
Runtime Declarations in Standard Namespace (-Xusing-std-...) 114
Void Pointer Arithmetic (-Xvoid-ptr-arith-ok)ccccceniinnnnnnne. 115
Define Type for wchar (-Xwchar=n) ..., 115
Control Use of wchar_t Keyword (-Xwchar_t-...) ..ccococevnniccncnnes 115

Xi

Wind River Compiler for M32R
User’s Guide, 5.4

5.5 Examples of Processing Source Files

55.1 Compile and Link ...
5.5.2 Separate Compilation ..o
553 Assembly OULPUL ...ooviiiiiiiciccec s
554 Precompiled Headers ...
Additions to ANSI C and C4+ ..iieeeemeeeiiirrirrrreeecesssssrs e ersssssssssssnes

6.1 Preprocessor Predefined Macros

6.2 Preprocessor Directives

#assert and #unassert Preprocessor Directivescccccccouuee..
#error Preprocessor Directive ...,
#ident Preprocessor Directive (C only)ccccooevviviiiiiiininnes
#import Preprocessor Directive ...,

#info, #inform, and #informing Preprocessor Directives

#warn and #warning Preprocessor Directivesc.ccccoeeueee.

6.3 Pragmas

align Pragma ..o
€ITOr Pragmaooooiiiiiiiiiiic
global_register Pragmac.ccccccovveuninniicniniccicccces
hdrstop Pragmacccoeviiiiiiniiccccec e
ident Pragmaccccovoeeinicieiicicec e
INfO Pragmacooouoiieiicicicc e
inline Pragmaccccooviiiiiiiiiiccc
interrupt Pragmaoooeeeciiiiiccc
no_alias Pragma ...
NO_PCh Pragma ...
no_return Pragma ...
no_side_effects Pragmac.cccocoeeennnncccennnncccceereneane
OPption Pragmacccccoueviiiiiiiic
PACKk Pragma ..o
pure_function Pragmaccccoovrviiininicnicecc
section Pragmaooooeiiiiiiiiiii
use_section Pragmacc.cocccoeuvieiniicciniceicences
warning Pragma ...
weak Pragma ..o

Xii

119

122

122
123
123
124
124
124

7

Contents

6.4 Keywords 137
__asm and asm Keywordsccoviiniiiiiiiiiccc 137
__attribute_ Keywordcccoceiiiiiiiniiiiii 137
extended Keyword (C only) ..o 137
__inline__ and inline Keywordsc.cccccccvinniiiininiiiccs 137
__interrupt__ and interrupt Keywords (C only)cccooovvvrvirnriinnne. 138
long long Keyword ..o 139
__packed__ and packed Keywordsc.cccccoouoreiiiriniiininicincicn, 139
pascal Keyword (C only) ..o 140
__typeof__ Keyword (C only)ccccoemmiiiniiiiiiccceecns 140
6.5 Attribute Specifiers 141
absolute Attribute (C only) ..o 142
aligned(n) Attribute ... 143
constructor, constructor(n) Attributeccoevereninnininee, 143
deprecated, deprecated(string) Attribute (C only)cccccoveveviinnnni 144
destructor, destructor(n) Attributecccvevnnciniiciniiens 144
noreturn, NO_return Attributeccovoveiiiieiiieeeceeeeeeeeeeee e, 144
no_side_effects AHTIDULE ..c..ooviviiiiiiieceeeeeeceeeeeeeeee e 145
packed AHTIDULEcooveiiiic 145
pure, pure_function Attribute ... 145
section(name) AtriDULEoveeeiiieieieceeeee e 145
6.6 Intrinsic Functions 146
6.7 Other Additions 147
C++ Comments Permittedcoecerveiniccnnioneeinecneccneecnenens 147
Dynamic Memory Allocation with allocaccccooeviiiiiiiiiin 147
Binary Representation of Datacccccocoeuviiiniiiniiiiiciiccccne 148
Assigning Global Variables to Registerscccccoeoeeiiiiicicnennnn 148
_ ERROR__FUNCHON .oiiviiieiiieeie et 148
SIZEOF EXEENSION. ..ttt 149
Vararg Macrosccooeueieiiiiiiii s 150
Embedding Assembly Codecccvimmnimmnnnnmnnennnnssss s 153
71 Introduction 153
7.2 asm Macros 155
Comments in asm MaCIOScccoueueirrueirieiecinieiineenteeeneeeeesreneesenens 158
Examples of asm Macroscccceevviiiiiiiiiniiiiiiiecces 159

Xiii

Wind River Compiler for M32R
User’s Guide, 5.4

7.3 asm String Statements 160
74 Reordering in asm Code 162
7.5 Direct Functions 163
Internal Data Representationcccccovvmmmiiiininiimsnese s 165
8.1 Basic Data Types 165
8.2 Byte Ordering 167
8.3 Arrays 168
8.4 Bit-fields 168
8.5 Classes, Structures, and Unions 169
8.6 C++ Classes 169

Pointers to Members ..o 172

Virtual Function Table Generation—Key Functionsc.cc.cc....... 173
8.7 Linkage and Storage Allocation 174
Calling ConVeNtioNscccceiiiimmmriirsmnr s 177
91 Introduction 177
9.2 Stack Layout 177
9.3 Argument Passing 178
94 C++ Argument Passing 179

Pointer to Member as Arguments and Return Typesccoccee.... 180

Member FUNCHONcooiiiiiiiiiiiiiiciicicicces 180

Constructors and Destructors ..., 180
9.5 Returning Results 181

Class, Struct, and Union Return Types ..o, 181

Xiv

10

Contents

9.6 Register Use 182
OPtMIZAtION ... ————— 183
10.1 Optimization Hints 183
What to Do From the Command Linecooeeueeucreicccinnnnnnenenen 184
What to Do With Programs ..o 186
10.2 Cross-Module Optimization 190
10.3 Target-Independent Optimizations 192
Tail Recursion (0X2) .c..c.ceveerireeenrieinieieinieicirieeteee st enens 192
INHNINEG (0X4) wvviiieiiii s 193
Argument Address Optimization (0X8) ..o 194
Structure Members to Registers (0x10)ccocevviviiiiiiiiiiiiieennne 195
Assignment Optimization (0X80) ..o 196
Tail Call Optimization (0X100)ccccoeuruemiiiininiiiiiiiiicicciereees 196
Common Tail Optimization (0X200)ccccevvviriiiiiiiiiiiiriceines 196
Variable Live Range Optimization (0x400)cccccoevemniviviciceieieinen. 197
Constant and Variable Propagation (0x800)cccccocovurvirnriicuninennnnes 198
Complex Branch Optimization (0x1000)cccccovverrviirrricnriicniiennnn 198
Loop strength reduction (0x2000)cccoeveurimeinininiicsceeceeenes 198
Loop Count-Down Optimization (0x4000)c.cccccrverrrrimueriiciniinnnnnns 199
Loop Unrolling (0X8000)cccceuivrmriirieicieiniceieeceeece s 199
Global Common Subexpression Elimination (0x10000) 199
Undefined variable propagation (0x20000)ccccccevviiinimniniiininnnnes 200
Unused assignment deletion (0x40000)ccccoorriiiiniiiiiinieinns 200
Minor Transformations to Simplify Code Generation (0x80000) 200
Register Coloring (0x200000)cccceeuiuemiriinininiiiiieieciiciieieiceeenenees 200
Interprocedural Optimizations (0x400000)cccccceeurviviciniriiinieninennns 201
Remove Entry and Exit Code (0x800000)c.ccccoveverereiiiiccrenererennes 201
Use Scratch Registers for Variables (0x1000000)c.ccccoeeueurururiinnne 201
Extend Optimization (0x2000000)cccceeuririiireieiniririiiceeeeeens 202
Loop Statics Optimization (0x4000000)cccoevevieiiciniiininiiieiecnnes 202
Loop Invariant Code Motion (0x8000000)cccocevuvvviiniiiineiiiiinnes 203
Static Function Optimization (0x20000000)cccecvveviiviriimiinieiiiiinnnns 203
Live-Variable Analysis (0x40000000)ccccccouvimimieniiiiniiiieeiiins 203
Local Data Area Optimization (0x80000000)c.ccceevevrvririmrrenererinnnes 203
Feedback Optimization ... 204

XV

11

12

13

Wind River Compiler for M32R
User’s Guide, 5.4

10.4 Target-Dependent Optimizations 204
Basic Reordering (0X1)cccovviiiiiiiiiiiiiiiiiiininicicicccccccenes 205
General Peephole Optimization (0X8)cccoeveeiininininiiccceieiine. 205
Peephole Reaching Analysis (0X20)cccocoeeerrirenineeiniicninicieeceienen, 206
Merge Common Block Entry or Exit Code (0x200)cccccoeueueururunnee 206
Additional Loop Optimizations (0x400)c.cccccovurirnriicniiccrnicennne. 206
Simple Scheduling Optimization (0x1000)cccccceueeurvriinrniieniricnenne. 206
10.5 Example of Optimizations 206
The Lint FaCilityccccvveiiiiii e eesree s s ee s e s s ss s s se s s sesss s s s e s s e s s 211
11.1 Introduction 211
11.2 Examples 212
Converting Existing Codecccciirimrinnimnnnnse s 215
12.1 Introduction 215
12.2 Compilation Issues 215
Older C COAE ...uvimiiriririeieieccettrtree ettt 216
Older Versions of the Compilerccovreviiiiiciinccce, 216
12.3 Execution Issues 218
124 GNU Command-Line Options 220
C++ Features and Compatibilityccccoceeeecesmmmmcmemmeecceecceec s 221
13.1 Header Files 221
13.2 C++ Standard Libraries 222
Nonstandard FUNCHONSccccociiiviiiiiiiiiiiiiceccccce 223
13.3 Migration From C to C++ 223

Xvi

14

Contents

13.4 Implementation-Specific C++ Features 224
Construction and Destruction of C++ Static Objectscccoccvuvvueee. 224
TeMPIALES ...ooviiiiiiicicc s 225
EXCEPHIONS oottt 226
Array New and Deletecccoveirniiiniiiccccce s 226
Type Identificationcccccovveviiiieiiiiiccc e 227
Dynamic Casts in CH+ .o 227
NamMeSPACESoovuieiiirieiiicie s 227
Undefined Virtual FUNCHONSc.ccooviiniiniiiciciciciiieccccces 227
13.5 C++ Name Mangling 227
Demangling Utilityccccocoviiiiiiiiiiii 230
13.6 Avoid setjmp and longjmp 231
13.7 Precompiled Headers 231
PCH FILES ..ot 232
Limitations and Trade-0ffsc.ccccceverrrnniniererercciiinnneeerereereenes 233
DIagnostiCs ...oovvviiiiiiiiiiiiiicc s 233
Locating Code and Data, Addressing, ACCESScccvrrrmmmmrrrssssssannes 235
14.1 Controlling Access to Code and Data 235
section and use_section Pragmascccoouirviiniiniiininn, 235
Section Classes and Their Default Attributesccccooeviiviinnnne. 239
14.2 Addressing Mode — Functions, Variables, Strings 241
14.3 Access Mode — Read, Write, Execute 244
14.4 Local Data Area (-Xlocal-data-area) 251
14.5 Position-Independent Code and Data (PIC and PID) 252

Generating Initializers for Static Variables With
Position-Independent Codec.c.coovovviiiiiiii 254
Relationship Between Position-Independence and “Small” Areas .. 254

XVii

15

Wind River Compiler for M32R
User’s Guide, 5.4

Use in an Embedded Environment ...

15.1 Introduction

15.2 Compiler Options for Embedded Development

15.3 User Modifications

15.4 Startup and Termination Code
15.4.1 Location of Startup and Termination Sources and Objects
15.4.2 NOtes fOr Crt0.5 ..c.cveviiiiiiiiiiciciiicccce e
15.4.3 Notes for crtlibso.c and ctordtor.cccccevvvivicciiiniiccice
15.4.4 NOtes fOr INIE.C .ouuiiiiiiiiiiiicici e
15.4.5 Notes for Exit FUNCHONSccccoviiviiiiiiiiiiiiiccccccccccccee
15.4.6 Stack Initialization and Checkingccccocoovvivniiiiiiniiniccc
15.4.7 Dynamic Memory Allocation - the heap, malloc(), sbrk()
15.4.8 Run-time Initialization and Terminationccccccccevvniiiinnnnnnn.

15.5 Hardware Exception Handling

15.6 Library Exception Handling

15.7 Linker Command File

15.8 Operating System Calls
15.8.1 Character I/ O .ottt et
15.8.2 FIle I/ i e
15.8.3 Miscellaneous FUNCHONSccccccvuiiriiiiiciiiiiiiccceccccccceee

159 Communicating with the Hardware
159.1 Mixing C and Assembler FUNCHONScccvviirivicniiiciccce,
15.9.2 Embedding Assembler Codec.cooeuiimriiininiiiciiiccce
15.9.3 Accessing Variables and Functions at Specific Addresses

15.10 Reentrant and “Thread-Safe” Library Functions

XViii

258

258

260

263
264
265
265

267

267

268

273
273
273

275

Contents

15.11 Target Program Arguments, Environment Variables, and Predefined Files

15.12 Profiling in An Embedded Environment

PART IIl: WIND RIVER ASSEMBLER

16

The WInd River ASSEMDIEKcoveireireireirenireniresrnnssenssesssenssenssenssenns

16.1 Selecting the Target

16.2 The das Command

16.3 Assembler Command-Line Options

Show Option SUMMATY (-?) ..o
Define Symbol Name (-Dname=value)ccccccevviicieininicnnnnes
Generate Debugging Information (-g)cccoeeevvirniicieniicniiccinnens
Include Header in Listing (-H)cccoovvviiniiiiiiiiiiccccncceee
Set Header Files Directory (-I path)ccccoooeiiiiiiiicce
Generate Listing File (-, -L) .ocoooviiiiiiiiiiiiicccccccc
Set outpUt File (-0 file)cccovviiiiiiiiiiiiiiiiciciiic
Remove the Input File on Termination (-R)cccccovvviiiiiinnnnn
Specify Assembler Description (.ad) File (-T ad-file)ccccceeue..
Select Target (-ttof:environ) ...
Print Version NUMDET (-V) .c.ccoeoiriiiiieiircirciieceeeeeeeeeeeeeveeenee
Define Configuration Variable (-WDname=value)cccccceceeeuennne
Select Object Format and Mnemonic Type
(-WDDOBJECT=o0bject-format)ccccceeuvururiniccucrnrncnenne
Select Target Processor ((WDDTARGET=target)ccccoeevurerununnnen
Discard All Local Symbols (-X) ...c.ccevviiiiirieiriiriiicceeseccceeeens
Discard All Symbols Starting With .L (-X) .cccovovrviiiiiiicee
Print Command-Line Options on Standard Output (#)cccco.......
Read Command-Line Options from File or Variable (-@name,
“@@NAIINE) ..ovenvenivieieieieteetetee ettt ettt ettt sttt sttt ns
Redirect Output (-@E=file, -@E+file, -@O=file, -@0+file)

16.4 Assembler -X Options

Specify Value to Fill Gaps Left by .align or .alignn Directive
(-XaligN-fll-EEXE) ..vvveeerericiereirire e

Interpret .align Directive (-Xalign-value, -Xalign-power2)

Generate Debugging Information (-Xasm-debug-...) ..o

Xix

276

278

17

Wind River Compiler for M32R
User’s Guide, 5.4

Align Program Data Automatically Based on Size (-Xauto-align) 289

Set Instruction Type (-XCPU-...) ooeviririeiiiiiininiciccccces 290
Set Default Value for Section Alignment (-Xdefault-align) 290
Enable Local GNU Labels (-Xgnu-locals-...)cccccoovviicccnnnniinnne 290
Include Header in Listing (-Xheader...) ..o 290
Set Header Format (-Xheader-format="string")cccccoccoovverrrrvruu.. 291
Set Label Definition Syntax (-Xlabel-colon...)cccccccoovvviiiinnnnnnn. 291
Set Format of Assembly Line in Listing (-Xline-format="string") 292
Generate a Listing File (-XList-...) ..ccooiiiiiiiiiiiiiiicccn, 293
Specify File Extension for Assembly Listing
(-Xlist-file-extension="string")ccccoeevrrriiirreirrennnn. 293
Set Line Length of Listing File (-Xllen=n)ccccccececvnvniinnnninnnn. 293
Enable Blanks in Macro Arguments (-Xmacro-arg-space-...) 293
Output Aligning no-ops Before Debug Line Directives (-Xpad16) ... 294
Set Page Break Margin (-Xpage-skip=n)ccccccoevuenninniicnnnreinnnn. 294
Set Lines Per Page (-Xplen=n)cccccoeviviicninninciiiiiiinennens 294
Limit Length of Conditional Branch (-Xprepare-compress=n) 294
Enable Spaces Between Operands (-Xspace-...)ccccoevvrrirurinunnnnnee. 294
Delete Local Symbols (-Xstrip-locals..., -Xstrip-temps...)cccccooec... 295
Set Subtitle (-Xsubtitle="String")cccccooevvnniiiiniiiii 295
Set Tab Size (-Xtab-S1ZE=11)cccccecerirriririeriinieenrcereee e 295
Set Title (-Xtitle="String")cccocoviiiiiiiiiiis 295
Syntax RUIESccceeecrcrrccrrrrrscsss s s smnmmmnmmnnmmn e nnnes 297
17.1 Format of an Assembly Language Line 297
LabelS .. 298
OPCOAE ... 299
Operand Field ... 299
COMMENT ..o 299
17.2 Symbols 300
17.3 Direct Assignment Statements 300
17.4 External Symbols 301
17.5 Local Symbols 302
Generic Style Locals ..o 302
GNU-5Style Localsccoovimiiiiiiiiiiiiiiiiciicc s 303

XX

Contents

17.6 Constants 303
Integral ConStants ..o 303
Floating Point Constantscccccvvniiniiniiiiiciinccccccnes 305
String Constants ..o 305
Sections and Location Counterscccccmrrvsmmrmnnsssssnnssssssssssssesnnnes 307
18.1 Program Sections 307
18.2 Location Counters 308
Assembler EXPresSsionscccccccicssnssmmnnnes 311
Assembler Directives ... 317
20.1 Introduction 317
20.2 List of Directives 318
SYMbOI[:] = @XPIESSIONovieieiiiciiricccer s 318
SYyMbOI[:] =1 @XPIESSIONeuviiieiiiiciririeciccee s 318
2DV o 318
ADYEE oo 318
AAligN eXPIeSSIONccvviiciiciicc e 319
AligNN eXPression ...t 319
AASCIL "SEINE" o 320
AASCIZ "SEINE" oo 320
Dbalign eXpression ... 320
DbIKD @XPIESSIONcevviiiiiiiiiiic 320
DDSS ettt 320
DISECL ettt ettt b e b e saeene s nnas 320
byte eXPpression ;... ... 321
.comm symbol, size [,alignment]cccccceovrrinicciinnniccceenes 321
de.b eXPIeSSIONoceciieciiicic s 322
dC] @XPIESSION ...vovveiiiiicicc s 322
ACW @XPIESSION ..ot 322
AS.D SIZE et 322
ATA e 322
.double float-CONSLANTcccocviviieriiiiiieiieeceeeee e 322
ASECL ettt 322
€JECE 1ot 322
BLSE ettt 323

XXi

Wind River Compiler for M32R
User’s Guide, 5.4

XXii

lSEIf EXPIESSIONvuvuieeiiiirccce e 323
LIS e 323
EIUA. ettt sttt 323
EIUALC ittt ettt bttt es 323
EIUALL -ttt 323
EIUAIN .ttt es 324
LNETY SYMDOL .. e 324
symbol[:] .equ eXPression ...t 324
TTOT "SETING" (oot 324
LBVETL ottt ettt bbbttt 324
EXIEIIL ot 324
eXtern SYMbOLo 325
XPOIt SYMDOL ... o 325
A1 "1™ e 325
i1l count, [size[,value]] ..ooeeeeeeireeeeeee e 325
float float-CONSTANTocveoeeeieeeeeeeeeeeee e 325
.global symbolo 325
.ZlODL SYMDOL ... oeceiiiic e 326
ddent "StrNG" .o 326
Af @XPIeSSION .evieiiic 326
JFENAIAN 1.t 326
Afeq eXPIeSSIONcuvieieiiicic e 327
dfc "string1","String2" ... 327
Afdef SymbOL ..o 327
Afge eXPIeSSIONcvcviiiiiiiiicici e 327
Jf@ @XPIESSION ..ot 327
Afle @XPIESSIONuiiiiiiiiiiiicc s 327
AfIE @XPIESSION .o 328
Afnc "string 1", "String2" ..o 328
Afndef Symbol ..o 328
AfNe eXPIESSIONcvviiciiciicc e 328
AMPOTt SYMDbOL ... oo 328
.Ancbin "file"[,offset[,SiZe]] ...ccverirvirerieieeree e 328
ANCIUAE "fILE" oo 329
dent eXPIession ... 329
Jcomm symbol, size [,alignment]cccooeviiiiiniiii 329
JEST ettt 329
Jlen eXPIesSiON ... 329
JIONE eXPIESSION ... vt 330
JONE EXPIESSION ... wovviiiiiiiiic s 330
.macro name [parameter ,...] ..o 330
JNIEXAE ettt et et 330
NAME "fIIE" .o 330

Contents

NOLISE o 330
LOTZ EXPTESSION .vveeiriniiiniiietesceiet sttt r st 331
Pp2align eXPIESSIONcuvuiiiiiiiiciiici e 331
TPAZE it 331
Pagelen eXPIeSSION ..o 331
Plen eXPression ... 331
JPIEVIOUS ittt 331
JPSECL ettt 332
.psize page-length [line-length]cccoovvimniiiiii 332
TAAtA oo 332
TOAALA e 332
.sbss [symbol, size [alignment]]cccooeeiniiiiiii 332
S "SEHANG" oo 333
SAALA s 333
SAALAZ e 333
.section name, [alignment], [type]ccoeviiiiiiiii, 333
SECHOM T 1ttt 334
.sectionlink section-Namecccccoeeiiininiinccnc 334
ST OPHON i 335
.set SymMbol, eXPIession ..ot 335
symbol[:] .set eXPressionccccceiicniieiniiciecc 335
.ShOTt @XPIeSSioN ;... c.cvvecviecieiiciicicc e 336
.8iZe Symbol, eXPression ... 336
SKIP SIZ@ v 336
SPACE EXPTIESSION. ...vovvieieiriiiiietete et 336
SEING "SEING" oo 336
SEZ "STINE" o 336
subtitle "StrNG"coiiiiiii e 337
BEXE e s 337
Aitle "SENG" v 337
AL SEANG oo 337
type symbol, tyPe ..o 337
half s 338
ULONG oo 338
USNOTT Lo 338
UWOTA o 338
warning "String" ... 338
Weak Symbol ... oo 338
Width eXPIeSSion ... 339
WOTd EXPTIESSION, .. wveiiiiiiiiiciccc e 339
XAef SYMDOL ... o 339
XTef SYMDOL ... oo 339
XOPE o 339

XXiii

21

22

Wind River Compiler for M32R
User’s Guide, 5.4

Assembler Macrosccccccciiirceririrecess s rsncssss e s s s e rnm s e s nmasssssnnmnssnees 341
21.1 Introduction 341
21.2 Macro Definition 342

Separating Parameter Names From Textccccccooeiniviciiinne, 343

Generating Unique Labels ..., 343

NARG Symbol ..o 344
21.3 Invoking a Macro 344
21.4 Macros to “Define” Structures 345
21.5 push and pop Macro Instructions 346
Example Assembler LiStingcccccovviiiiemmmmmmnnnnissssssssrnnssssss s 349

PART IV: WIND RIVER LINKER

23

The Wind River Linkeriiiiinsssnsssnisssnsssssssnsens 353
23.1 The Linking Process 354

Linking Example ... 355
23.2 Symbols Created By the Linker 358
23.3 .abs Sections 360
234 COMMON Sections 361
23.5 COMDAT Sections 362
23.6 Sorted Sections 362
23.7 Warning Sections 363
23.8 .frame_info sections 364

XXiv

24

Contents

The did CommaNnd ... 365
241 The dld Command 365
Linker Command Structurec.cccccocevvvinieiicciiniiireeeecenes 366
24.2 Defaults 368
24.3 Order on the Command Line 369
244 Linker Command-Line Options 369
Show Option Summary (-2, -?X) ..ccoevirvicniceieicecce s 370
Read Options From an Environment Variable or File (-@name,
“@@NIATINIE) ..ottt ettt sttt ettt 370
Redirect Output (-@E=file, -@E+file, -@0=file, -@0+file) 370
Link Files From an Archive (-A name, -A...) ..cccooeovnerenncrneerenneens 370
Allocate Memory for Common Variables When Using -r (-a) 371
Set Address for Data and tExt (-Bd=address, -Bt=address) 371
Bind Function Calls to Shared Library (-Bsymbolic)cccccceeuennne 372
Define a Symbol At An Address (-Dsymbol=address)ccco........ 372
Define a Default Entry Point Address (-e symbol)c.cccccocevurunnnn 372
Specify “fill” Value (-f value, size, alignment)ccccoceeverecrcrenennnee 372
Specify Directory for -1 search List (-L dir)ccccooveviviiiiiiinninnen 373
Specify Library or File to Process (-Iname, -l:filename) 373
Generate link map (-m, -m2, -M4)coooiiiiiiiiieeees 373
Allocate .data Section Immediately After .text Section (-N) 374
Change the Default Output File (-0 file)ccccooevviriiiiciiine 374
Perform Incremental Link (-1, -2, -3, -14, -T5) .cooevveirieieeeeeeeeeene 374
Rename Symbols (-R symboll=symbol2)ccccccovrvrirnirerrinnrnnen 375
Search for Shared Libraries on Specified Path (-rpath) 375
Do Not Output Symbol Table and Line Number Entries (-s, -ss) 375
Specify Name for Shared Library (-soname)cccocoeoviiviiiiinnnnnnns 375
Select Target Processor and Environment (-t tof:environ) 376
Define a Symbol (-u Symbol)cccccccviiiiiininiiiiiicce 376
Print version NUMDbET (-V)cccciniiiiiniiiniciieectneee e 376
Do Not Output Some Symbols (-X)cccoeriiviiiiiiiic 376
Specify Search Directories for -1 (-Y L, -Y P, -Y U) ..cocoiuviiiiiiiine 376
24.5 Linker -X options 377
Use Late Binding for Shared Libraries (-X)cccccccoeevvninicccnnnenne 377
Check Input Patterns (-Xcheck-input-patterns)cccccccoevvevuerennnnnes 377
Check for Overlapping Output Sections (-Xcheck-overlapping) 378
Force Linker to Continue After Errors (-Xdont-die)c.cccecevennenne 378

XXV

25

Wind River Compiler for M32R
User’s Guide, 5.4

Do Not Create Output File (-Xdont-link)ccccccceiiiiinininennne. 378
Use Shared Libraries (-Xdynamic)c.ccccoeeiiiiininnniiiiciciine 378
Use ELF Format for Output File (-Xelf)ccocovviviiinnniiiine. 379
ELF Format Relocation Information (-Xelf-rela-...)ccccceveeinncnnnnnne 379
Do Not Export Symbols from Specified Libraries (-Xexclude-libs) .. 379
Do Not Export Specified Symbols (-Xexclude-symbols) 379
Write Explicit Instantiations File (-Xexpl-instantiations) 379
Store Segment Address in Program Header (-Xgenerate-paddr) 380
Generate RTA Information (-Xgenerate-vmap)cccocoeevveverurrcnnnnn. 380
Do Not Align Output Section (-Xold-align)cccccooevvviiniininnnnn. 380
Pad Input Sections to Match Existing Executable File
(-Xoptimized-load) ..o 380
Add Leading Underscore “_" to All Symbols (-Xprefix-underscore) 381
Remove Unused Sections (-Xremove-unused-sections) 381
Re-scan Libraries (-Xrescan-libraries...)c.ccocecevvereenenenineneneninennens 381
Re-scan Libraries Restart (-Xrescan-restart...)cccccecevvereevenenenenennens 382
Align Sections (-Xsection-aligN=n)cccccccoeurirrrirniienncniccicnen. 382
Build Shared Libraries (-Xshared)cccoeoivreinncinneeceees 382
Sort .frame_info Section (-Xsort-frame-info)c.ccceceeevreereecennnnne. 382
Link to Static Libraries (-XStatiC)cocecevveerreinrieineieinieeineeeeneenes 383
Stop on Redeclaration (-Xstop-on-redeclaration)cccccoovurveuennee. 383
Stop on Warning (-Xstop-on-warning)ccceeceeueeecerneecneiicciencennnn. 383
Suppress Leading Dots “.” (-Xsuppress-dot)cccccovveeiiniiccnnnnn. 383
Suppress Section Names (-Xsuppress-section-names) 383
Suppress Paths in Symbol Table (-Xsuppress-path)ccccccceevennee. 383
Suppress Leading Underscores ‘" (-Xsuppress-underscore) 384
Remove/Keep Unused Sections (-Xunused-sections...)cc......... 384
Linker Command Languageccccceerrirsmmmisssmssmsssssssssssnssssssssnssssnsas 385
251 Example “bubble.dld” 386
25.2 Syntax Notation 388
25.3 Numbers 388
254 Symbols 389
25.5 Expressions 389
25.6 Command File Structure 391
25.7 MEMORY Command 391

XXVi

Contents

25.8 SECTIONS Command 392
SectioN-DEfINItiONc.cccovvireriririiieieicciiiinre et 392
GROUP DEfiNitionc.c.cceverirereriniriereieieieineninenineeseseereseeteseseseesesesesesenenes 400
25.9 Assignment Command 401
25.10 Examples 402

PART V: WIND RIVER COMPILER UTILITIES

26 ULIlIties ... s 417
26.1 Common Command-Line Options 417
Show Option SUMMATY (-7) ..cevierriiiieicec s 417

Read Command-Line Options from File or Variable
(-@name, - @@NAME)cceeovemerrereeieiirienieeetre ettt 417
Redirect Output (-@E=file, -@E+file, -@O=file, -@0+file) 418
27 D-AR ArCRIVEF ... s s e 419
27.1 Synopsis 419
27.2 Syntax 419
27.3 Description 420
27.3.1 dar CommaANndScccoceeuirirueirieieirieeieteeseeeete ettt 420
27.4 Examples 423
28 D-BCNT Profiling Basic Block Counterccccevivemmrnnssmnsnsnssnnsnnnnns 425
28.1 Synopsis 425
28.2 Syntax 425
28.3 Description 426
28.3.1 dbcnt OPHONS ..o 426

XXVil

29

30

31

Wind River Compiler for M32R
User’s Guide, 5.4

28.4 Files 427

28.4.1 Output File for Profile Datacccocoeeueurnininiiccerrrccceeereeenes 427
28.5 Examples 427
28.6 Coverage 428
28.7 Notes 428
D-DUMP File DUMPETuuuuununmnnnnnnnnnnnennmeeenneenneee s ssnssns s snssssssnnssannennns 429
29.1 Synopsis 429
29.2 Syntax 429
29.3 Description 430

29.3.1 ddump commandscccooeiiiiiiiiii e 430
29.4 Examples 435
dmake Makefile ULilityccccoiiiiismmmmininisismss e 437
30.1 Introduction 437
30.2 Installation 437
30.3 Using dmake 438
WindISS Simulator and Disassemblerccocoovremrercnrcensennnnnn, 439
31.1 Synopsis 439
312 Simulator Mode 440

31.2.1 Compiling for the WindISS Simulator ... 441

31.2.2 Simulator Mode Command and Options ..o, 441

XXViii

Contents

31.3 Batch Disassembler Mode 445
31.3.1 Syntax (Disassembler Mode)cccccciiiiiiiinininiiiciiiiiiicene, 445
31.3.2 DeSCrIPHON ...ocviiiiiiiiiiiiiiicieicc 445
31.4 Interactive Disassembler Mode 446
31.41 Syntax (Interactive Disassembler Mode)cccoocoeiiinnniniicnnnnn. 446
31.4.2 DeSCIIPON .uovieieiiiiiieictcict s 446
31.5 Examples 447

PART VI: C LIBRARY

32 Library Structure, Rebuildingcccccoiiimiiiiceniccee s 453
32.1 Introduction 453

32.2 Library Structure 454
32.2.1 Libraries Supplied ... 454

32.2.2 Library Directory Structure ..., 457

3223 BDC i 459

32.2.4 Library Search Pathscccccoooiiiiiiniic 460

32.3 Library Sources, Rebuilding the Libraries 463
32.3.1 SOUICES ..ovvviiiiiiiiiiieieieict s 463

32.3.2 Rebuilding the Libraries ..o, 464

32.3.3 CA4 LIDIATIeS ..oceeveuiieeeiiieiciieieeeeeiteeeet ettt 465

33 Header Files ... 467
33.1 Files 467
33.1.1 Standard Header Filesccccccociiiiiiiiiiiccicccccccceces 467

XXIX

34

33.2

Wind River Compiler for M32R
User’s Guide, 5.4

Defined Variables, Types, and Constants

1535 5 1 Lo X1 o NSO
el 111 10 o WO
L0 Y21 21 o NPT

SEHMP.N s
SIGNALN Lo
ST o
Stddef.h oo

C Library FUNCHIONS ... e

34.1

34.2

34.3

Format of Descriptions

34.1.1

Operating System Callscccooiiiiiiiiiiiicccceee

34.1.2 RELEICIICES .uvveveeeeieeeeeeeeeee ettt ettt ettt e e e e eaeeasereenaeenaeens

Reentrant Versions

Function Listing

XXX

ASITI() ettt ettt ettt ettt ettt ettt
ASIIE() vttt
ASSEIT() werevererteteietetet ettt ettt ettt ettt ettt
AEAN() cevereieeietete ettt ettt ettt ettt b e bt beebe st neesesbenene
AEANE() ceeereieieee ettt sttt ettt be e
AEANZ(1) wervererirriiet ettt ettt ettt sttt ettt n e be st et et benaene
ALANZE() ettt ettt ettt benaen
AEEXAL() werveneererretee ettt ettt ettt sttt st

473
474
474

475

Contents

............................... 480
QUOMY v -
AUOI) Y
UOIL) s s
DSEAIER() P
00 e
O -
GO v -
SCRBEIB() v -
CIOAEN) v -
COK) v -
COSEL) v -
COMPIEL) v -
“COPYSIBN) s -
L -
COSI) v -
COS) -
COSI() v -
LA) s i
CHIE() v s
IIC() v i
V) s i
QAN o o
QUPE) s oo
BV s oo
S oo
L) oo i
CEICL) i
CEICH) v pid
) o i
XU v -
exp() -
S P
FADS() -
ADSH() -
FEIOSE() -
) v -
EVHL) -
AOPEN() v -
O) v o
FOIKOT() o
ISIC) s o
BEIC() s e
£EEPOS() wvvereerieieiee

XXXi

Wind River Compiler for M32R
User’s Guide, 5.4

XXXii

EEEES() cererereecieiete et 491
FILETIO() ettt ettt 491
510111 () U SUS ST 491
FLOOT() vttt ettt 492
FLOOTE() ettt ettt 492
FINOA() ceeneetettee ettt 492
FNOAL() ettt 492
FOPEIN() o 493
EPTINEE() oo 493
FPULC() v 494
FPULS() v 494
FIEAC() vveveeerirtiie ettt ettt sttt sttt s be e 494
VY=Y (RSO USTPRTTPUSTR 494
ETEOPEIL() weveeeeieieirirer et 495
ETEXP () vttt 495
ETEXPE() e 495
FSCANIE() ettt 496
FSEEK() ceeeetenietet ettt ettt ettt 496
£SEEPOS() ceveeeieieieier e 496
FSEAL() woveneeerereet ettt ettt 497
FEEIL() vttt 497
FIWTIEE() coeeeeeeete ettt ettt 497
GAIMINA() wevvivivinieieiiiic e 497
GAMMAL() eoviiiiiiicii s 498
GOVE() v s 498
EEC() e 498
EECRAT() ceoiiiiiccc s 499
GELEIIV() ot 499
GEEOPL() v 499
GEPIA() v s 499
EES() cerriii s 500
GEEW () oo 500
GINEIME() ovvviiiiiiiiii s 500
NCIEALE() ettt 501
RAESIOY () wovovviiciciiciic s 501
NSEATCI() ettt 501
RYPOL() oo 501
RYPOLE() oo 502
ATANAAE() weneererriieeetertete ettt sttt ettt sbe e 502
ISAINMUIM()ttt sttt st 502
ISAIPRA() v e 502
ISASCII() weververremerierteieriert ettt ettt et ettt et b et eb e sb et sbe bttt benaea 503
ISALEY () o 503

Contents

.............................. 503
T L B
N o
ISBTAPR() o o
SIOWER() s o
IS o
isprint() s
ISPUICH) ot
ISPACE) o
ISUPPEI() o
ISXBI() v o
) .
JOD v o
P o o
JUO o e
() o o
JH() o i
AAI() v i
) o
krand48() o
AON) v o
O o
D) B
MOOMGAF() o B
AP o B
o N P
W) o B
ESSGIERIEN() o e
ARAC) o e
PKC) s o
OCIECOMY() o o
localtime() o
10BL) o o
LJOBB() v o
JOBH() e o
OB o
OB s o
ORBIIP() o o
ANGISL) i
RN i
K] v i
HOI() v o
T o
MATTOC() oot

XXXl

Wind River Compiler for M32R
User’s Guide, 5.4

XXXiV

__malloc_set_block_SIiZe() ..ccvereririreieieinieieeree e 514
MAllOPL() oo 514
MARETT() ceeotiieieierteee ettt sttt s 514
INATNETTE() vttt 515
INDLEI()ttt ettt 515
INDSTOWES() wevevtietenirieieiriet ettt ettt ettt b eae e enas 516
INDEOWEC() ettt ettt 516
INEMCCPY() crrvrrvrrrrrieicneiiieie ettt 516
IMEMICAT() vttt ettt 516
MEMCINP() cervrvrriiiiiiiiiee s 517
MNEIMCPY () wervrvrrrreririiiiieieeie s 517
IMEIMIMOVE() tevirventeririeieieteetestesteteetesteeebestestesestesteneesessesseseesessessensesessensens 517
IMEMISEL() vvirerenireteiieeeteietet ettt ettt ettt a e 517
INKEEIMP() cevriiiiiiiiiiciiii s 518
INKEIME() ettt 518
00 To T 1 () ST TRUTRPTSTPRT 518
INOALE()ttt ettt 518
INTANAELS() ettt ettt 519
_NEXEAFEET() vt 519
NFANAEA8() eveviteieirie ettt ettt 519
OFFSEEOL() vttt 520
OPEI() vt 520
PEITOT() woviiriiiiiiieiciic s 520
POW() ot 521
POWE() i 521
PIINEE() oo 521
PULC() o 524
PULCRAT() oo 524
PULENIV() i 525
PUES() o 525
PUEW() i 525
SOTE() vt 525
TAISE() woveveeeremeetetitetetent et ettt ettt st et st b et eb bbbt b et st b et st b et 526
FANA() woverieetertet ettt ettt ettt 526
TEAA () tvereerietiieiet ettt ettt ettt sttt sttt sttt ettt ettt et besbenene 526
TEALIOC() veueerietiieitetertet ettt ettt sttt sttt sttt sa et s benaene 526
TEIMOVE() tvtrrinienieueeteienteitetesteteseetestete st stestentesesteteneesesseteneesessenseneesessensane 527
TENAINE() wvreririnientetetetettete st ete et e ste st st et es bt ste st eneebe st et eseebesbenseseebesbennene 527
TEWITIA() wevtetitiieiertet ettt sttt ettt sttt sbe et 527
SDIK() et 528
ZSCAID() e 528
SCANE() teeteiteete ettt ettt ettt 528
SEEAAB() ettt ettt 530

Contents

............................... 530
SOOI) oo s
SOUIMP) v o
SOHOCIEL) v e
setvbuf() e
SBNAL() -
I o
I) o
BN) v i
B e
SR v o
B e o
S o o
BTANE) o
SANAIS) s o
O i
SIOPL) e
SUCALL) s o
BICRI) o o
SETCIL) v oo
SUCOU) o o0
SHICPY() o o0
SETCSPI) o
SIAUP() v e
SUIBITOT) v i
AL i
SUEN() v o
A e o
A R
SEEPY() o
SHPDIK() oo o
strrchr() e
BIISPI) o B
SIS) v B
SHOA() v B
SUHOK) o o)
SO) v o
Y o
strxfrm() B
swab() B
FAN() B
(AR) oo B
FAD() B
FANNE() e

XXXV

Wind River Compiler for M32R
User’s Guide, 5.4

EAELELE() oottt 543
BEIL() ettt ettt ettt 543
EEMPNAMI() cooiiiiiii s 543
B) vttt 544
FIIMNE() ettt sttt ettt 544
EMPHLE() oo 544
EMPNAIN() ceovieiiiiiiiiii e 544
BOASCII() weveveneerereietetertetetrtet ettt ettt ettt bttt 545
EOLOWET() ettt ettt 545
_EOLOWET (1) oottt ettt be st 545
EOUPPET() oorerviiiiiiii s 545
_EOUPPET() coviiiicc s 546
ESEATCI() vttt 546
EWALK() ettt 546
EZSEE() weveeeeeieeete ettt 547
UNZEEC() oo 547
UNHNK() ettt 547
_UNOTAETEA() wveeinirieiiieie ettt 547
VEPTINEE() o 548
VESCANE() ettt 548
VPIINEE()t 548
VSCANE() vttt ettt sttt 549
VSPIINEE() cooviiiiiie s 549
VSSCANE() eevieuiteieiirtesietet ettt ettt et et b ettt ettt eseebe b et enesbeneen 549
WESTOIDS() ettt ettt ettt ettt ebe b 550
WCEOIMID() ettt sttt be e 550
WWIEEE() woveeeiereiertetee ettt 550
VO() oo 551
FOE() e 551
FL() e 551
FLE() e 551
PIU) ot 552
PIUE() o 552

PART VII: APPENDICES
A Configuration Files ... 555

A1 Configuration Files 555

XXXVi

Contents

A.2 How Commands, Environment Variables, and Configuration Files Relate 556
A21 Configuration Variables and Precedencec.ccccccocvnniniicrcnnnnnee 556
A22 SEATEUP coiiiiieccccc e 557
A.3 Standard Configuration Files 558
A3.1 DENVIRON Configuration Variablecccccccoooiniiiiniiccieennes 559
A.32 UFLAGSI, UFLAGS2, DFLAGS Configuration Variables 561

A.33 UAFLAGS1, UAFLAGS2, ULFLAGS1, ULFLAGS2
Configuration Variables ..o 562
A4 The Configuration Language 562
A41 Statements and OPHONScccovvereiiieiniiciciicc e 563
Ad2 COMIMENES ..ooviiiieiieiiieieeete ettt sttt ettt ettt ese b e e esesbensens 563
A43 String Constants ..o 564
A4 VariabIes ..ot e 564
A45 Assignment Statementccooviiiiiiiiiiiiiie 565
A4.6 Error StatemMentcocceeieiierieeieieienieee ettt e eas 566
AA7 EXit STAt@MENtcocveiiiieiieieceeeeetee et 566
A48 T STAtEIMENT covioviieeieiiieieeeteeteeeee ettt ns 566
AA49 Include StateMENTcc.cveieieeieieieiesieeee ettt ne 567
A410 Print StatemMentocooeeieierieieieeseeee e 567
ATl SWitch StatemMentccocvevieieiiieieieeeee e 567
Compatibility Modes: ANSI, PCC, and K&R C ... 569
(00T 13101 =1 gl T 1 41 € 575
Compiler Implementation Defined Behaviorcccccvvivemrrniinnnnnnes 577
D.1 Introduction 577
D.2 Translation 578

XXXVii

Wind River Compiler for M32R
User’s Guide, 5.4

D.3 Environment 580

D.4 Library functions 581

E Assembler Coding NOtescccciiiemiiiiisminnissmsn s 585
E.1 Instruction Mnemonics 585

E.2 Operand Addressing Modes 586

E21 REGISTETS ... 586

E2.2 EXPIESSIONS ..ovviiiiiiiicicictccc s 586

F Object and Executable File Formatcccccceiiiiiie e sccsec e 587
F1 Executable and Linking Format (ELF) 587

F1.1 OVETAll STIUCEUTE .ottt e enne s 587

F1.2 ELEF HEAAET ..ceeieeieeeeeee ettt ettt enees 588

E1.3 Program Header ... 590

ELF Program Header Fieldsccccoooiiiiiiiiiniiiiiiciiiie 590

F14 [STsten [0) a1 i [<Y=Te [<) o< RSOSSN 591

E1.5 Special SECHONScucvviiiiiiiiiciiiccc e 593

F1.6 ELF Relocation INfOrmationccc.eeeeeeeieeeieeieeeeeeeeeeeeeceeeenee e 594

ELF Relocation Entry Fields ..o 595

E1.7 Line Number INformationccooveeveiviiieieeieeceeeceteeeeeeeeeeee e 597

E1.8 Symbol Tablec.ccoooiiiiiiiiiciicicc s 597

ELF Symbol Table Fieldscccccooiiiiimniiiiieccc 597

F1.9 String Table ... 598

G Compiler -X Options NUmeric Listcccciirriecmminiismnnnnssesssssens s 599
H MESSAQESceeriririiiiiisnmmnnsirriissssssssss s s snsssssssssss s s s ssmsns s s s e e s s sammnnnnnnes 603
H.1 Introduction 603

XXXViii

Contents

H.2 Compiler Messages 604

H21 Compiler Message Formatcccocooeiiiiiiiinnniiiiccccninee 604

H.2.2 Errorsin asm Macros and asm Stringscccccceeeeiccnninnnninncnenenee, 605

H23 C Compiler Message Detailccccoouoiiiiiininiiiinincccccce 605

H.2:4 CHt MESSALES ..oviiiiiiciciicccit i 659

H.3 Assembler Messages 660

H.4 Linker Messages 660

H.4.1 Linker Message Formatcccccooovviiiiiiinniniiincccccccns 660

H.42 Linker Message Detailcccooviiiiiminiiiiiiccccc 661

Lo 1= S 675

XXXiX

Wind River Compiler for M32R
User’s Guide, 5.4

x/

PART |
Introduction

OVEIVIEWcoicceemenrrinissses s s e 3
Configuration and Directory Structure 9
Drivers and Subprogram Flowcccec..... 17
Selecting a Target and Its Components 21

Wind River Compiler for M32R
User’s Guide, 5.4

Overview

1.1 Introduction 3
1.2 Overview of the Tools 3

1.3 Documentation 7

1.1 Introduction

This manual describes all tools in the Wind River Compiler toolkit (formerly
known as the Diab Compiler) for the M32R family of RISC microprocessors. It
includes detailed information about each tool, optimization hints, and guidelines
for porting existing code to the compilers and assembler.

For introductory information, including an example program, see the Getting
Started manual.

1.2 Overview of the Tools

The compiler suite includes high-performance C and C++ tools designed for
professional programmers. Besides the benefits of state-of-the-art optimization,

Wind River Compiler for M32R
User’s Guide, 5.4

they reduce time spent creating reliable code because the compilers and other tools
are themselves fast, and they include built-in, customizable checking features that
will help you find problems earlier.

With hundreds of command-line options and special pragmas, and a powerful
linker command language for arranging code and data in memory, the tools can be
customized to meet the needs of any device software project. Special options are
provided for compatibility with other tools and to facilitate porting of existing
code.

Important Compiler Features and Extensions

* Many compiler controls and options for greater flexibility over compiler
operation and code generation.

= Many features and extensions targeted for the device programmer. See 15. Use
in an Embedded Environment.

* Optimizations and features tailored individually for each processor type
within the M32R microprocessor family. See 4.3 Alternatives for Selecting a
Target Configuration, p.25 for information on how to specify the target
processor.

» Extensive compile-time checking to detect suspicious and nonportable
constructs. See 11. The Lint Facility.

» Powerful profiling capabilities to locate bottlenecks in the code. The profiling
information can also automatically be used as feedback to the compiler,
enabling even more aggressive optimizations. See 10. Optimization, and the
discussion of D-BCNT in 28. D-BCNT Profiling Basic Block Counter.

» C++ templates, exceptions, and run-time type information.

High Performance Optimizations

A wide range of optimizations, some of which are unique to the Wind River
Compiler, produce fast and compact code as measured by independent
benchmarks. Special optimizations include superior interprocedural register
allocations, inlining, and reaching analysis.

Optimizations fall into three categories: local, function-level, and program-level, as
listed next. See 10. Optimization.

1 Overview
1.2 Overview of the Tools

Local optimizations within a block of code:

Constant folding

Integer divide optimization

Local common sub-expression elimination
Local strength reduction

Minor transformations

Peep-hole optimizations

Switch optimizations

Function global optimizations within each function:

Auto increment/decrement optimizations
Automatic register allocation

Complex branch optimization

Condition code optimization

Constant propagation

Dead code elimination

Delayed branches optimization

Delayed register saving

Entry/exit code removal

Extend optimization

Global common sub-expression elimination
Global variable store delay

Lifetime analysis (coloring)

Link register optimization

Loop count-down optimization

Loop invariant code motion

Loop statics optimization

Loop strength reduction

Loop unrolling

Memory read /write optimizations
Reordering code scheduling

Restart optimization

Branch-chain optimization

Space optimization

Split optimization

Structure and bit-field member to registers
Tail recursion

Tail jump optimization

Undefined variable propagation

Unused assignment deletion

Portability

Wind River Compiler for M32R
User’s Guide, 5.4

Variable location optimization
Variable propagation

» Program global optimizations across multiple functions:

Argument address optimization
Function inlining

Glue function optimization
Interprocedural optimizations
Literal synthesis optimization
Local data area optimization
Profiling feedback optimization
Static function optimization

The compiler implements the ANSI C++ standard (ISO/IEC FDIS 14882) as
described in 13. C++ Features and Compatibility. Exceptions, templates, and
run-time type Information (RTTI) are fully implemented.

For C modules, the compiler conforms fully to the ANSI X3.159-1989 standard
(called ANSI C), with extensions for compatibility with other compilers to simplify
porting of legacy code.

Standard C programs can be compiled with a strict ANSI option that turns off the
extensions and reduces the language to the standard core. Alternatively, such
programs can be gradually upgraded by using the extensions as desired. See
BCompatibility Modes: ANSI, PCC, and K&R C, p.569 for operational details when
compiling in different modes.

Wind River tools produce identical binary output regardless of the host platform
on which they run. The only exceptions occur when symbolic debugger
information is generated (that is, when -g options are enabled), since path
information differs from one build environment to another.

1.3 Documentation

This User’s Guide

Table 1-1

1 Overview
1.3 Documentation

This guide contains all information necessary to use the tools effectively. Please see
the table of contents for a detailed overview.

User’s Guide Parts

Part

Contents

Part 1. Introduction

Part II. Wind River Compiler

Part III. Wind River Assembler

Part IV. Wind River Linker
Part V. Wind River Compiler
Ultilities

Part VI. C Library

Part VII. Appendices

Overview, configuration, directory structure,
subprograms, selecting a target for compilation.

The compilers, including invocation, options,
additions to C and C++ for device
programming, internal data representation,
calling conventions, and optimizations.

The assembler, including invocation, options,
syntax rules, expression syntax, and all
assembler directives. See manufacturer’s
manuals for details on M32R instructions.

The linker, including invocation, options, the
linker command language, and object module
format.

The D-AR library archiver; the D-DUMP utility
for converting and examining object,
executable, and archive files; and others.

The structure of the C libraries provided with
the compiler for use in different environments,
and the details of the functions in the libraries.

Configuration files, limits, implementation-
defined behavior, assembler coding notes, object
modules format details, -X options by number,
and messages.

This manual does not explain the C or C++ language. SeeAdditional Documentation,
p-8 below, for references to standard works.

Wind River Compiler for M32R
User’s Guide, 5.4

Additional Documentation

Changes made for this release and information developed after publication of this
manual may be found in the release notes.

The following C++ references are recommended: the ANSI C++ standard
(ISO/IEC FDIS 14882), The C++ Programming Language by Bjarne Stroustrup, The
Annotated C++ Reference Manual by Margaret A. Ellis and Bjarne Stroustrup, and
The C++ Standard Template Library by PJ. Plauger et al.

For C, see the ANSI C standard X3.159-1989 and The C Programming Language by
Brian Kernighan and Dennis Ritchie (K&R).

The following manual from Renesas (Mitsubishi) may be consulted for details
about microprocessor architecture and instructions:

» MB32R Family Software Manual

Configuration and Directory
Structure

2.1 Components and Directories 9
2.2 Accessing Current and Other Versions of the Tools 14

2.3 Environment Variables 14

2.1 Components and Directories

All files are located in subdirectories of a single root directory. The following
terminology is used throughout this manual to refer to that root and related
subdirectories:

» install_path represents the full pathname of the root directory. The root
directory contains version_path subdirectories, each acting as a sub-root for all
files related to a single version of the compiler. This allows multiple versions
of the tools to reside on the same file system.

» version_path is the name of the complete path for a single version of the
compiler.

» host_dir is the name of a subdirectory under version_path containing directories
specific to a single type of host, e.g. Win32 or SUNS (Sun Solaris). This permits
tools for different types of systems to reside on a single networked file system

These names for a default installation depend on the host file system. The
following table assumes that the version number is 5.3.x and shows examples for

Wind River Compiler for M32R
User’s Guide, 5.4

common installations. For other systems, see the installation procedures shipped
with the media.

Table 2-1 Example Default Installation Pathnames

System Default version_path Default with host_dir

UNIX flusr/lib/diab/5.3.x fusr/lib/diab/5.3.x/host
HP-UX fusr/lib/diab/5.3.x/HPUX
Solaris /usr/lib/diab/5.3.x/SUNS
Linux fusr/lib/diab/5.3.x/LINUX386

PCs C:\diab\5.3.x C:\diab\5.3.x\op-sys
Windows C:\diab\5.3.x\WIN32

NOTE: In this manual, instructions and examples for Windows apply to all
supported versions of Microsoft Windows.

Also, in cases where the Windows and UNIX pathnames are identical except for
the path separator character, only one pathname is shown using the UNIX
separator “/”.

The following table lists the subdirectories of version_path and important files
contained in them.

Table 2-2 Version_path Subdirectories and Important Files

Subdirectory or File Contents or Use
Programs:
host_dir/bin/ Programs intended for direct use by the user:
dcc Main driver—assumes C libraries and headers.
dplus Main driver—assumes C++ libraries and headers.
das The assembler. A separate M32R-specific description file

controls assembly.

did The linker. Generates executable files from one or more object
files and object libraries (archives).

10

2 Configuration and Directory Structure
2.1 Components and Directories

Table 2-2 Version_path Subdirectories and Important Files (cont'd)

Subdirectory or File

dar

dbcnt

dctrl

ddump

dmake

flexIm*
Im*

reorder

host_dir/lib/

ctoa
etoa, dtoa

Contents or Use

D-AR archiver. Creates an object library (archive) from one or
more object files.

D-BCNT basic block counter. Generates profiling information
from files compiled with -Xblock-count.

Utility to set default target for compiler, assembler, and linker.

D-DUMP object file utility. Examines or converts object files, e.g.
ELF to Motorola S-Records.

“make” utility; extended features are required to re-build the
libraries. Not for use with VxWorks development tools.

Programs and files for the license manager used by all Wind
River tools.

This program is started by the driver. It reschedules the
instruction sequence to avoid stalls in the processor pipeline
and does some peephole optimizations. See 10. Optimization.

Programs and files used by programs in bin.

C and C++ compilers. A separate M32R-specific description file
directs code generation. (The preferred C++ compiler is etoa;
dtoa is an older version.)

Configuration, header, and source files

conf/

dtools.conf
default.conf
user.conf

default.dld

dmake/

example/

Configuration files for compilers, assembler, and linker.

Configuration files read by the compiler drivers at startup,
primarily to supply command-line options. See A. Configuration
Files for details. Other .conf files for particular boards or
operating systems may also be present.

Default linker command file. Other sample .dld linker
command files are also found here. See 24.2 Defaults, p.368 in
the Linker section of this manual.

dmake startup files. See 30. dmake Makefile Utility.

Example files used in the Getting Started manual and elsewhere.

11

Table 2-2

Wind River Compiler for M32R
User’s Guide, 5.4

Version_path Subdirectories and Important Files (cont'd)

Subdirectory or File

Contents or Use

include/

libraries/

pdf/
relhist/

src/

Standard and other header files for use in user programs, plus
HP/SGI STL library header files.

Library sources and build files. See 32.3 Library Sources, Rebuilding
the Libraries, p.463 for details.

PDF form for all manuals.
Older Release Notes.

Source code for replacement routines for system calls. These
functions must be modified before they can be used in an embedded
environment. See 15. Use in an Embedded Environment.

M32R startup module and libraries

M32RE/

crt0.0

libc.a
cross/libc.a

simple/libc.a

libchar.a

libram.a

ELF library and startup code directories .

Start up code to initialize the environment and then call main.
The source for crt0.0 is src/crtm32r/crt0.s.

ELF standard C libraries. Each libc.a is actually a short text file
of -1 options listing other libraries to be included. A libc.a file is
selected based on the library search path (See 4.2 Selected Startup
Module and Libraries, p.24).

M32RE/libc.a is a generic C library with no input/output
support. It includes sublibraries libi.a, libcfp.a, libimpl.a,
libimpfp.a, all described below.

M32RE/simple/libc.a includes the above four sublibraries plus
libchar.a providing basic character I/O.

M32RE/cross/libc.a includes the above four sublibraries plus
libram.a, which adds RAM-disk-based file I/O.

For details, see 32.2 Library Structure, p.454.

Basic character input/output support for stdin and stdout
(stderr and named files are not supported); an alternative to
libram.a.

Adds to libchar.a RAM-disk-based fileI/O for stdin and stdout
only; an alternative to libchar.a.

12

2 Configuration and Directory Structure
2.1 Components and Directories

Table 2-2 Version_path Subdirectories and Important Files (cont'd)

Subdirectory or File Contents or Use
libi.a General library containing standard ANSI C functions.
libimpl.a Utility functions called by compiler generated or runtime code,

typically for constructs not implemented in hardware, e.g.,
low-level software floating point support, multiple register save
and restore, and 64-bit integer support.

libd.a Additional standard library functions for C++ (libc.a is also
required).

libg.a Functions to generate debug information for some debug
targets.

windiss/libwindiss.a Support library for Wind ISS instruction-set simulator when

supplied. Note: implicitly also uses cross/libc.a.

Floating point-specific libraries and sub-libraries

M32REN ELF floating point stubs for floating point support of “None”.
libcfp.a Stubs to avoid undefined externals.
libimpfp.a Empty file required by different versions of libc.a.
libstl.a, libstlstd.a Support library for C++. Includes iostream and complex math
classes.
M32RES/ ELF software floating point libraries:
libcfp.a Floating point functions called by user code.
libcomplex.a C++ complex math class library.
libimpfp.a Conversions between floating point and other types.
libios.a C++ iostream class library.
libm.a Math library.
libpthread.a Unsupported implementation of POSIX threads for use with
the example programs. Text file which includes sub-libraries
libdk*.a.
M32REV/ ELF vector floating point libraries:

13

Wind River Compiler for M32R
User’s Guide, 5.4

2.2 Accessing Current and Other Versions of the Tools

The driver (dcc or dplus) automatically finds the subprograms it calls (it is
modified with the directory selected during installation). Thus, running the
compiler requires only that driver be accessed in any of the usual ways:

» Add version_path/host_dir/bin to your path for UNIX or
version_path\host_dir\bin for Windows.

= Create an alias or batch file that includes the complete path directly.
» Copy dccor dplus to an existing directory in your path, e.g., /ust/bin on UNIX.

If the tools are installed on a remote server, Windows users should map a drive
letter to the remote directory where they reside and use that drive letter when
setting their path variable.

You can invoke an older copy of a driver as follows:

* Rename the main driver for the older version. For example, to execute version
4.4a of the C++ driver, rename dplus in the bin directory for version 4.4a
dplus44a. Then access dplus44a in any of the usual ways described above.

* Modify your path to put the directory containing the desired version before
the directory containing any other version. The driver command will then
access the desired version.

= Create an alias or batch file that includes the complete path of the desired
version.

2.3 Environment Variables

NOTE: This section is for unusual cases. It is usually sufficient to override the
default setting by using the -t option on a command line when invoking a tool, or
to use one of the other methods, all as described under 4.3 Alternatives for Selecting
a Target Configuration, p.25.

The configuration information which controls default operation of the tools is
usually stored as configuration variables in default.conf in the conf subdirectory of
the version_path directory by the dctrl program. These configuration variables

14

Table 2-3

2 Configuration and Directory Structure
2.3 Environment Variables

include DTARGET, DFP, DOBJECT, and DENVIRON. However, if an environment
variable having the same name as a configuration variable is set, the value of the
environment variable will override the value stored in default.conf. (This can in
turn be overridden by using a -t or -WD option on the command line when
invoking a tool.)

The method used to set environment variables depends on the operating system as
shown in the following table.

Setting Environment Variables

System Command
UNIX variable=value ; export variable
Windows set variable=value

2.3.1 Environment Variables Recognized by the Compiler

This section describes the environment variables recognized by the compiler.

DCONFIG
Specifies the configuration file used to define the default behavior of the tools.
documents the configuration file. If neither DCONFIG nor the -WC option is
used (see A.2.2 Startup, p.557), the drivers use:

version_path/conf /dtools .conf (UNIX)
%version_path%\conf\dtools.conf (Windows)
DTARGET
DOBJECT
DFP
DENVIRON

These four environment variables specify, respectively, the target processor,
object file format and mnemonic type, floating point method, and execution
environment. They may be used to override the values set in default.conf (and
will in turn be overridden by a -t option on the command line). DENVIRON
may also refer to an additional configuration file, for example to set options for
a particular target operating system. For details, see:

» 4.3 Alternatives for Selecting a Target Configuration, p.25.
» 4.1 Selecting a Target, p.21 for valid settings for the four variables.
» A.3.1 DENVIRON Configuration Variable, p.559 regarding DENVIRON.

15

Wind River Compiler for M32R
User’s Guide, 5.4

DFLAGS

Specifies extra options for the drivers and is a convenient way to specify -XO,
-0 or other options with an environment variable (e.g., to avoid changing
several makefiles or to override options given in a configuration file). The
options in DFLAGS are evaluated before the options given on the command
line. See A.3 Standard Configuration Files, p.558, especially Figure A-2 for
details.

DIABLIB

Formerly used to tell the compiler and drivers where to look for the tools. If
DIABLIB is defined, it should be set to the version_path selected during
installation. If DIABLIB is not defined, the compiler and drivers are found on
the user’s path variable or from an absolute directory path specified on the
command line.

NOTE: DIABLIB is deprecated and is maintained for backward compatibility
only.

DIABTMPDIR

Specifies the directory for all temporary files generated by all tools in the tool
suite.

DCXXOLD

16

If set to YES, tells the compiler to use the old C++ parser (-Xc++-o0ld option) by
default.

Drivers and Subprogram Flow

The Wind River tools are most easily invoked using the dcc and dplus driver
programs. Depending on the input files and options on the command line, the
driver may run up to five subprograms: the C preprocessor, either or both
compilers, the assembler, and the linker.

The following figure shows the subprogram flow graphically for a C file. A C++
file is processed similarly except dplus invokes the C++ etoa compiler instead of
ctoa. The subprograms and the stopping options are described following the figure.

17

Figure 3-1

Wind River Compiler for M32R
User’s Guide, 5.4

Subprogram Flow and Intermediate Files

Stopping
C sources Preprocessor Option
file.c cpp
. \J P
C Compiler A/
ctoa
_) -S
Assembler "\ Assembler A/
sources
\/ das
i
Libraries \ Linker
aa |~ &

Driver command lines are described in detail in 5. Invoking the Compiler. The
general form is:

dce [options] [input-files] Assumes Wind River C libraries.

dplus [options] [input-files] Assumes Wind River C++ libraries.

The driver determines the starting subprogram to be applied to each input-file
based on the file’s extension suffix; for example, by default a file with extension .s
is assembled and linked but not preprocessed or compiled. Command-line options
may be used to stop processing early. The subprograms and stopping options are
as follows.

18

3 Drivers and Subprogram Flow

Table 3-1 Driver Subprograms, Default Input and Output Extensions, and Stopping Options

Default Default
Sub- Input Stopping Output
program Extension Option Extension Function and Stopping Option
cpp -P . The preprocessor; takes a C or C++
module as input and processes all #
directives. This program is included in
the main compiler program. The -P
option halts the driver after this phase,
producing a file with the .i suffix. (The
. file is not produced unless -P is used.)
ctoa .c -s .s The C-to-assembly compiler; consists of
several internal stages (parser,
optimizer, and code generator), and
generates assembly source from
preprocessed C source.
etoa -cpp -s -s The C++-to-assembly compiler;
z’c‘x generates assembly source from
.c (capital, UNIX) preprocessed C++ source.
das .s -c .0 The assembler; generates linkable
object code from assembly source.
did -0 (object) a.out The linker; generates an executable file
. from one or more object files and object
. h (default) M C _) d obj
: (archive) libraries, as directed by a .dld linker
command file (obsolete: .Ink). The
"]i_zll: (commands) default output name is a.out if the -o

outputfile option is not given.

19

Wind River Compiler for M32R
User’s Guide, 5.4

20

Selecting a Target and Its
Components

4.1 Selecting a Target 21
4.2 Selected Startup Module and Libraries 24
4.3 Alternatives for Selecting a Target Configuration 25

4.1 Selecting a Target

The compiler, assembler, and linker all require specification of a target configuration.

A complete target configuration specifies the target processor, the type of floating
point support, the object module format (ELF), and the execution environment
(default libraries for input/output and target operating system support). To
determine the current default, execute the command:

dcc -Xshow-target

or print the file default.conf in the version_path/conf subdirectory.

The easiest methods for selecting a target configuration are as follows. The first
method is preferred. For special cases or more details, see 4.3 Alternatives for
Selecting a Target Configuration, p.25.

21

Table 4-1

Wind River Compiler for M32R
User’s Guide, 5.4

Use the -ttof or -ttof:environ option when invoking the compiler, assembler, or
linker. The table below describes this option.

Invoke the dctrl command with the -t option to set the defaults used when no
-t option is present on the compiler, assembler, or linker command line. Note
that this sets the default for all users.

The tof:environ string given with the -t option has four parts, as follows. See
4.2 Selected Startup Module and Libraries, p.24 for examples.

-t Option Values

t

Target processor, a several-character code — see the Notes following the
table (sets DTARGET):

M32RX* M32RX
M32R* M32R family

Object format (sets DOBJECT): E for ELF

Floating point support — one character (sets DFP):

S for Software floating point emulation provided with the
compiler — default on targets without internal floating point.

N for No floating point support (minimizes the required runtime).

22

4 Selecting a Target and Its Components
4.1 Selecting a Target

Table 4-1 -t Option Values (cont'd)

environ Execution environment (sets DENVIRON). Determines paths searched

for libraries (see 4.2 Selected Startup Module and Libraries, p.24). Two
standard values used with the libraries delivered with the tools are:

cross to include libram.a for RAM-disk input/output
simple to include libchar.a for basic character input/output

environ may also be the name of a target operating system supported
by Wind River. In this case, in addition to specifying the library search
path, the value will be used to include a special configuration file,
environ.conf in the conf subdirectory, to set options required by the
target operating system. For further details, see A.3.1 DENVIRON
Configuration Variable, p.559, VxWorks Application Development, p.24,
and the release notes and available application notes for particular
target operating systems.

environ is optional. If not given by -t, a -WDDENVIRON option, or a
DENVIRON environment variable, the value set by dctrl is used.

Notes for the Target Processor Component of the -t Option

”t”

In the -tfof option, “t” is the part not including the final two parts, each of
which is always a single character (the 0 and f parts).

“__r

Each target in the table which is not preceded by an sign causes the
invoked tool to operate in a manner unique to that target. The unique
operating characteristics are selected via the options used to invoke the tool
plus the options which the tool extracts from the built-in configuration files.

To see the options associated with a particular -t option, invoke a compiler
driver with the -t option, the -# option (causes the driver to show the
command line used to invoke each tool), and the -Wa, -# option (causes the
assembler, when invoked by the driver, to show options which it extracts from
the configuration files).

“ t” VEY

may end with a “*” character. This matches any string of zero or more
characters, and is intended to provide generic support for new processors in a
family.

“ t"

The order in the table is significant: the first “t” matching that is given on the
command line will be selected. When entering a target processor name on the command
line with the -t option, use the actual processor name, not a “*”. Then, if the tools have

23

Wind River Compiler for M32R
User’s Guide, 5.4

special support specifically for that processor, it will be selected; if not, the first
matching “generic” processor will be used.

= This table may not be up-to-date. Invoke dctrl -t to construct any valid -t
option supported by the tools as installed, or look in M32R.conf for a complete
list of target processor codes.

VxWorks Application Development

To build VxWorks applications, specify the appropriate execution environment
with the -t option. Usually this will be :rtp for user (real-time process) mode or
:vxworksx.x for kernel mode. For example, -tM32R*EN:rtp selects user mode,
while -tM32REN:vxworks6.2 selects VxWorks 6.2 kernel mode. For more
information, see the documentation that accompanied your VxWorks
development tools.

NOTE: If you specify a VxWorks execution environment (:rtp or :vxworksx.x), the
standard C libraries linked to your application will be different from the
compiler’s native C libraries documented in this manual.

Specifying a VxWorks execution environment turns on -Xieee754-pedantic by
default.

4.2 Selected Startup Module and Libraries

The parts of -ttof:environ option (or its equivalents as described in 4.1 Selecting a
Target, p.21) are used to construct a directory name and to select the desired startup
module and libraries per Table 4-1.

Examples:

-t Option Startup Module, Libraries

—tM32REN:simple M32RE/crt0.0
M32RE/simple/libc.a with M32REN/libcfp.a and
M32RE/libchar.a

M32R, ELF objects, no floating point, character
input/output

24

4 Selecting a Target and Its Components
4.3 Alternatives for Selecting a Target Configuration

-t Option Startup Module, Libraries
-tM32RES:cross M32RE/crt0.0
M32RE/cross/libc.a with M32RES/libcfp.a and
M32RE/libram.a

M32R, ELF objects, software floating point,
RAM-disk input/output

The library archive files themselves, and the detailed mechanics for selection of the
appropriate subdirectories and libraries, are fully described in 32.2 Library
Structure, p.454.

Briefly, the main driver programs select the startup module and libraries by
invoking the linker with the following partial command line, using UNIX path
notation, written on multiple lines and spaced for readability, and where f is as
described above:

dld -Y P,uversion_path/M32REE/environ : version_path/M32REf :

version_path/M32RE/environ : version_path/M32RE . ..

-l:crt0.o0 ... -lc
The -Y P option sets a list of directories. Then the -l:crt0.0 option causes the linker
to look in those directories for file crt0.0, the startup file, without modification,
while the -1c option causes the linker to construct filename libc.a and look in those
directories for it.

4.3 Alternatives for Selecting a Target Configuration

There are five ways to change the target configuration. As noted at the beginning of
this chapter, the first method is preferred, especially when multiple engineers work with
multiple targets. This section is provided for backward compatibility and special
cases.

Using -t sets four configuration variables: DTARGET for the processor, DOBJECT for
the object module format, DFP for the type of floating point support, and
DENVIRON for the target execution environment.

These configuration variables are stored in version_path/conf/default.conf. A
configuration variable may be overridden by an environment variable of the same
name, or by a -t or -WD wvariable option on the command used to invoke the

25

Wind River Compiler for M32R
User’s Guide, 5.4

compiler, assembler, or linker. The environment variable is checked first and then
the command line; the last instance found is used.

Change the target for a single invocation of a tool by using the -t option on the
command line; this applies to dec, dplus, das, and dld. The -t option takes one of
the fof or tof:environ codes described in 4.1 Selecting a Target, p.21 and displayed by
the dctrl -t program (see below).

Example:
dplus -ttof -c¢ file.cpp
Other methods involve changing or overriding four configuration variables stored
in the configuration file default.conf. (See A.3 Standard Configuration Files, p.558.)
» The default target configuration is set and may be changed any time by using
the dctrl program with the -t option:
dctrl -t

This interactive program prompts you for the desired target processor, object
format, floating point support, and target execution environment. If you
already know the exact target configuration you want, you can skip the
interactive program by specifying the target after -t on the command line:

dctrl -ttofenviron

Upon success, dctrl displays the new default target and modifies default.conf.

* Manually edit the default.conf configuration file to change the default settings
for any of the DTARGET (the processor), DOBJECT (object module format),
DFP (floating point support), and DENVIRON (target execution environment)
configuration variables.

» Set any of the DTARGET, DFP, DOBJECT, and DENVIRON environment
variables. This overrides the values of the configuration variables having these
names in default.conf.

» Use the command-line option -WD environment_variable (see 5.3.26 Define
Configuration Variable (-W Dname=value), p.42). This overrides both the values
of the variables in default.conf and any environment variables. Example:

dplus -WDDTARGET=newtarget -c file.cpp

NOTE: For additional explanation, and order of precedence when more than one
of these methods is used, See A. Configuration Files, and especially
A.2.1 Configuration Variables and Precedence, p.556.

26

10

11

12

13

14

15

PART Il

Wind River Compiler

Invoking the Compilerccccovoemriiiiiiccennninne 29
Additions to ANSI C and C++cccocmeriiiinenennnns 119
Embedding Assembly Codeccoocmrrriiiinnnnes 153
Internal Data Representationcccceeviiienne 165
Calling Conventionscccccviiiiemmmenrnnsssnnennnns 177
Optimization ... 183
The Lint Facility ... 211
Converting Existing Codeccooccmmrriiiiineennnne 215
C++ Features and Compatibility 221

Locating Code and Data, Addressing, Access 235

Use in an Embedded Environment 257

27

Wind River Compiler for M32R
User’s Guide, 5.4

28

Invoking the Compiler

5.1 The Command Line 29

5.2 Rules for Writing Command-Line Options 30
5.3 Compiler Command-Line Options 33

5.4 Compiler -X Options 48

5.5 [Examples of Processing Source Files 115

5.1 The Command Line

Asnoted in 3. Drivers and Subprogram Flow, the compiler is best executed via one of
the driver programs as follows:

decc [options] [input-files] Assumes Wind River C libraries.
dplus [options] [input-files] Assumes Wind River C++ libraries.
where:

dcc

dplus

Invokes the main driver program for the compiler suite. See 2.2 Accessing
Current and Other Versions of the Tools, p.14 for details on how the driver
program is found.

29

Wind River Compiler for M32R
User’s Guide, 5.4

Both the dcc and dplus drivers are used in examples this manual. Please
substitute dcc for dplus if you are using only the C compiler.

options
Command-line options which change the behavior of the tools. See the
remainder of this chapter for details. Options and filenames may occur in any
order.

input-files
A list of pathnames, each specifying a file, separated by whitespace. The suffix
of each filename indicates to the driver which actions to take. See Table 3-1 for
details.

For example, process a single C++ file, stopping after compilation, with standard
optimization:
dplus -0 -c file.cpp

The form -@name can also be used for either options or input-files. The name must
be that of an environment variable or file (a path is allowed), the contents of which
replace -@name. See A.2 How Commands, Environment Variables, and Configuration
Files Relate, p.556 for details.

5.2 Rules for Writing Command-Line Options

Same Option More Than Once

Options can come from several sources: the command line, environment variables,
configuration files, and so forth as described in A.2 How Commands, Environment
Variables, and Configuration Files Relate, p.556.

If an option appears more than once from whatever source, the final instance is
taken unless noted otherwise in the individual option descriptions in the next
sections.

30

5 Invoking the Compiler
5.2 Rules for Writing Command-Line Options

Command-Line Options are Case-sensitive

Command-line options are case-sensitive. For example, -c and -C are two
unrelated options. This is true even on Windows; however filenames on Windows
remain case-insensitive as usual.

Spaces In Command-Line Options

Quoting Values

For easier reading, command-line options may be shown with embedded spaces
in documentation, although they are not typically written this way in use. In
writing options on the command line, space is allowed only following the option
letter, not elsewhere. For example:

-D DEBUG=2

is valid, and is exactly equivalent to:
-DDEBUG=2

However,
-D DEBUG = 2

“_n

is not valid because of the spaces around the “=

When a command-line option can take a string as a value, it does not require
quotes. For example:

-prof-feedback=rta-db -Xname-code=.code
Enclosing the value in quotes has no effect. Thus,
-DSTRING="test"
is equivalent to:
-DSTRING=test

Using “\” to escape the quotes will pass the quotes into the compiler. Given file
test.c containing:

void main() {
printf (STRING) ;
}

compiling with:

dcc test.c -DSTRING="test"

31

Wind River Compiler for M32R
User’s Guide, 5.4

the printf statement becomes:
printf(test);

(and will fail because test is undefined). But compiled with:
dcc test.c -DSTRING=\"test\"

the printf statement becomes:

printf("test");

Unrecognized Options, Passing Options to the Assembler or Linker

Length Limit

Ordinary options beginning with a letter other than “X” and which are not listed
in this section are automatically passed by the driver to the linker. All -X options
are processed first by the compiler.

When invoking the dcc or dplus driver program, it is sometimes important to pass
an option explicitly to the assembler or linker—for example, a -X option or an
option identified by the same letter as a driver or compiler option. The driver
options -W a,arguments and -W Larquments pass arguments to the assembler and
linker respectively.

The length of the command line is limited by the drivers’ 1000-byte internal buffer.
To pass longer commands to the tools, see 5.3.39 Read Command-Line Options from
File or Variable (-@name, -@@name), p.48.

The following example is written on several lines for clarity. The individual
options shown are fully documented in this chapter or in the 16.4 Assembler -X
Options, p.289 and in 24.5 Linker -X options, p.377.

dcc -D DEBUG=2 -XO
-Wa , -DDEBUG=3
-Wl, -Xdont-die
-Llibs
-WA.asm
f.c a.asm

-D DEBUG=2 -XO
The driver invokes the compiler with these options. A space is allowed after
the option letter -D.

32

5 Invoking the Compiler
5.3 Compiler Command-Line Options

-Wa., ~DDEBUG=3
The driver invokes the assembler with the option -DDEBUG=3, perhaps for use
in the a.asm file. Without the -Wa, the driver would have passed this option to
the compiler, resetting DEBUG to 3.

No space is allowed after the -D because it would have ended the -Wa option;
-W a, -DDEBUG=3 would also have been valid.
-Wl, -Xdont-die
The driver invokes the linker with the option -Xdont-die. Without the -W1, the
driver would have passed this linker option -Xdont-die to the compiler.

-Llibs
This option is not recognized by the driver as a driver or compiler option, so it
is passed to the linker.

-WA.asm
Instructs the driver that files having the extension .asm are to be preprocessed
and then assembled. If this extension is a project standard, it can more
conveniently be set in user configuration file user.conf as follows (see
A.3.2 UFLAGS1, UFLAGS2, DFLAGS Configuration Variables, p.561):

UFLAGS1=-WA.asm

f.c a.asm
An input file to be compiled (f.c) and, because of the -WaA.asm option, an

input file to be preprocessed and assembled (a.asm).

The next sections document the command-line options recognized by the driver
and compiler.

5.3 Compiler Command-Line Options

This section shows all general command-line options. New options added after
publication may also be in the most recent release notes.

33

Wind River Compiler for M32R
User’s Guide, 5.4

5.3.1 Show Information About Compiler Options (-?, -?..., -h, -h..., --help)

-h

--help
Show synopsis of commonly used compiler options. Available for other tools
(assembler, linker) as well.

n?
Show synopsis of less frequently used options.

-?W
-hw

Show synopsis of -W options (see 5.3.25 Pass Arguments to the Assembler
(-W a,arquments, -W :as:,arquments), p.42).

-?X

-hx
Show synopsis of -X options (see 5.4 Compiler -X Options, p.48).

-?Xstring
Show synopsis of -X options whose names contain the specified string. For
example, entering dcc -?Xbss returns information about -Xbss-off and
-Xbss-common-off.

5.3.2 Ignore Predefined Macros and Assertions (-A-)
-A-
Cause the preprocessor to ignore all predefined macros and assertions.
5.3.3 Define Assertion (-A assertion)
-A pred (ident1) (ident2)
Cause the assertion pred(ident) to be defined. See #assert and #unassert
Preprocessor Directives, p.122.
5.3.4 Pass Along Comments (-C)
-c

Cause the C processor to pass along all comments. Useful only in conjunction
with -E or -P.

34

5 Invoking the Compiler
5.3 Compiler Command-Line Options

NOTE: The preprocessor may be used with any language supported by Wind
River.

-C is not necessary when -Xpass-source is used to output source as comments
when generating assembly output because in that case the source code is taken

before preprocessing.

5.3.5 Stop After Assembly, Produce Object (-c)

-c
Stop after the assembly step and produce an object file with default file
extension .o (unless modified by -o, see 5.3.18 Specify Output File (-o file), p.40).

5.3.6 Define Preprocessor Macro Name (-D name=definition)

-D name [=definition]
Define the preprocessor macro name as if by the #define directive. If no
definition is given, the value 1 is used.

Macros may be either function-like macros or object-like macros. Function-like
macros take arguments; this sample macro converts inches to centimeters:

dcc -DIN_TO_CM(x)=((x)*2.54) foo.c

Note that, to prevent unexpected results, both the argument and the entire
macro expression should be enclosed in parentheses.

Object macros do not take arguments:
dcc -DYEAR_LENGTH=366 bar.c

See 5.2 Rules for Writing Command-Line Options, p.30, for rules about using
spaces, quotations, and the like on the command line.

5.3.7 Stop After Preprocessor, Write Source to Standard Output (-E)

-E
Run only the preprocessor on the named files and send the output to the
standard output. All preprocessor directives are removed except for
line-number directives used by the compiler to generate line-number
information. (To suppress line-number information, use

35

Wind River Compiler for M32R
User’s Guide, 5.4

-Xpreprocessor-lineno-off.) The source files do not require any particular
suffix.

When -E is invoked, the preprocessor implicitly includes the Ipragma.h file. To
suppress inclusion of lpragma.h, use -Xclib-optim-off. For more on
Ipragma.h, see 5.4.22 Disregard ANSI C Library Functions (-Xclib-optim-off),
p-64.

See also 5.3.19 Stop After Preprocessor, Produce Source (-P), p.41.

5.3.8 Change Diagnostic Severity Level (-e)

-esn[n...]
For each of one or more diagnostic message numbers 7 in the
comma-separated list, change the severity level of the message to s where s is
one of:

i
Information, equivalent to ignore.
Warning.

Error (continue compilation).

Fatal error (terminate immediately).
Each diagnostic message has the form:
“filer, line #: severity-level (compiler:error#) : message
Example:
"errl.c", line 2: warning (dcc:1025): division by zero

To raise the severity level of this message from “warning” to “error”, invoke the
compiler with the option -ee1025. To reduce the level to “ignore”, use -ei1025.

NOTE: Some messages have a minimum severity level. The severity level of a
message may be raised above its minimum but not lowered below it. Attempting
to do so will generate warning 1641.

36

5 Invoking the Compiler
5.3 Compiler Command-Line Options

NOTE: -Xmismatch-warning and -Xmismatch-warning=2 override the -e option.
If either form of -Xmismatch-warning is used, mismatched types will only
produce a warning, even if -e is used to increase the severity level of the diagnostic.
See 5.4.91 Warn On Type and Argument Mismatch (-Xmismatch-warning), p.95.

5.3.9 Generate Symbolic Debugger Information (-g)

The several -gn options enable generation of varying levels of debugging
information. If optimization options are also present (-O or -X0O), optimization will
be affected as described.

-g

-g0

Same as -g2.

Do not generate symbolic debugger information. This is the default. No effect
on optimization.

Generate symbolic debugger information, but leave out line number
information. No effect on optimization.

Generate symbolic debugger information.

Do most target-independent optimizations, but do not do the following
optimizations, since most object formats have no way to describe them.
Hexadecimal numbers indicate the mask for -Xkill-opt (5.4.78 Disable
Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask), p.88).

* Function inlining (Inlining (0x4), p.193)

» Structure member optimization (Structure Members to Registers (0x10),
p-195)

= Split optimization (Variable Live Range Optimization (0x400), p.197)

» Complex Branch Optimization (0x1000), p.198

» Loop Count-Down Optimization (0x4000), p.199

» Minor Transformations to Simplify Code Generation (0x80000), p.200

» Static function optimization (0x20000000) (Static Function Optimization
(0x20000000), p.203)

= Live-Variable Analysis (0x40000000), p.203

Also, disable most target-dependent optimizations: option -g2 also disables
basic reordering and all peephole optimizations (see 205).

37

Wind River Compiler for M32R
User’s Guide, 5.4

See 10. Optimization for details on these optimizations (the optimizations are
ordered by the hex values in that chapter).

See also -Xoptimized-debug-off (5.4.97 Disable Most Optimizations With -g
(-Xoptimized-debug-...), p.98) on how to disable optimizations which interfere
with debugging.

g3
Generate symbolic debugger information and do all optimizations. Highly
optimized code can be difficult to debug. For example, there is no way to break
on inlined functions (except at the assembly level). Hence, when debugging is
required, -g2 is usually a better choice.

NOTE: The -gn options may also be specified at the beginning of a source files
using:

#pragma option -gn

5.3.10 Print Pathnames of Header Files (-H)

-H
Print the pathnames of all header files to the standard error output.

5.3.11 Specify Directory for Header Files (-1 dir)

-I dir
Add dir to the list of directories to be searched for header files. A full pathname
is allowed. More than one -I option can be given.

For an #include “file” directive, search for the file in the following locations:

» First, the directory of the file containing the include directive. Thus, if an
#include directive includes a path, that path defines the current directory
for #include directives in the included file. Example (using UNIX
notation):

Assume file f1.c contains:

#include "pl/hl.h"
#include "h3.h"

and file h1.h contains:

#include "h2.h"

38

5 Invoking the Compiler
5.3 Compiler Command-Line Options

The search for h2.h will begin in directory p1; the search for h3.h will begin
in the directory containing fl.c.

» Second, directories given by the -I dir option, in the order encountered.
= Third, the directory given by either:
any -Y I option appearing prior to the -I option

version_path/include (untx)
version_path\include (Windows)

(The -Y I option effectively replaces the version_path directory.)

For an #include <file> directive, search only the second and third locations.

5.3.12 Control Search for User-Defined Header Files (-1@)

-1e
C only. Search for user-defined header files (those enclosed in double quotes
(") in the order specified only by -I options (modified by -Y I options if any).
That is, do not search the current directory by default; search the current
directory only when an -I@ option is encountered. Example:

dcc -Iabc -I@ -Idef file.c

will result in a search order of:

the directory abc
the current directory
the directory def

5.3.13 Modify Header File Processing (-i file1=file2)
-i filel=file2
Substitute file2 for filel in an #include directive.

-i filel=
Ignore any #include directive for filel.

-i =file2
Include file2 before processing any other source file.

The -i option is disabled by -P.

39

Wind River Compiler for M32R
User’s Guide, 5.4

5.3.14 Specify Directory For -l Search List (-L dir)

This is a linker option. See Specify Directory for -l search List (-L dir), p.373.

5.3.15 Specify Library or Process File (- name)

This is a linker option. See Specify Library or File to Process (-Iname, -I:filename), p.373.

5.3.16 Specify Pathname of Target-Spec File (-M target-spec)

-M target-spec

NOTE: This option is primarily for use by Wind River.

Specify the pathname of the target-spec file to the compiler (see target.cd in
Table 2-2). This file contains the target description and is read by the compiler
at startup. If the -M option is set more than once, the final setting is used.

5.3.17 Optimize Code (-O)

-0
Optimize code. Either this or -XO must be present to enable optimization and
to invoke the reorder program. See the -XO option in 5.4.94 Enable Extra
Optimizations (-XO), p.97 for the difference between these options and
10. Optimization for more information about optimizations.

This option can also be specified at the beginning of a source file using:

#pragma option -0

5.3.18 Specify Output File (-o file)

-o file
Output to the given file instead of the default. This option works with the -P,
-S and -c options as well as when none of these are specified. When compiling
file.ext the following filenames are used by default if the -0 option is not given:

-P file.i
-s file.s
-c file.o

40

5 Invoking the Compiler
5.3 Compiler Command-Line Options

not -P, -S, or -c a.out

5.3.19 Stop After Preprocessor, Produce Source (-P)

-P

Stop after the preprocessor step and produce a source file with default file
extension .i (unless modified by -o).

Unlike with the -E option, the output will not contain any preprocessing
directives, and the output does not go to standard out (see -o for the output
filename). The source files do not require any particular suffix.

When this option is used, the compiler driver does not invoke the assembler
or linker. Thus, any switches intended for the assembler or linker must be
given separately on command lines which invoke them. The -P option also
disables -i.

When -P is invoked, the preprocessor implicitly includes the Ipragma.h file. To
suppress inclusion of lpragma.h, use -Xclib-optim-off. For more on
Ipragma.h, see 5.4.22 Disregard ANSI C Library Functions (-Xclib-optim-off),
p-64.

5.3.20 Stop After Compilation, Produce Assembly (-S)

-S

Stop after the compilation step and produce an assembly source code file with
the default file extension .s (unless modified by -o). If
-Xshow-configuration=1 is enabled, the assembly file contains a list of options
in effect during compilation.

5.3.21 Select the Target Processor (-t tof:environ)

-t tofienviron

Select the target processor with ¢ (a several character code), the object format
with o (a one letter code), the floating point support with f (H for hardware, S
for software, and N for none), and libraries suitable for the target environment
with environ.

To determine the proper tof, execute dctrl -t to interactively display all valid
combinations. See also 4.2 Selected Startup Module and Libraries, p.24.

41

Wind River Compiler for M32R
User’s Guide, 5.4

5.3.22 Undefine Preprocessor Macro Name (-U name)

-U name
Undefine the preprocessor macro name as if by the #undef directive.

5.3.23 Display Current Version Number (-V, -VV)

-v
Display the current version number of the driver.

-vv
Display the current version number of the driver and the version number of all
subprograms. Do not complete the compilation.

5.3.24 Run Driver in Verbose Mode (-v)

-V
Run the main drive program in verbose mode, printing a message as each
subprogram is started.

5.3.25 Pass Arguments to the Assembler (-W a,arguments, -W :as:,arguments)

-W a,argl[,arg2...]
-W :as:, argl[, argZ...]
Pass the arguments to the assembler. Example:

-Wa,-1 or -W:as:,-1

Pass the option “-1” (lower case letter L) to the assembler to get an assembler
listing file.

5.3.26 Define Configuration Variable (-W Dname=value)

-W Dname=value
Set a configuration variable equal to a value for use during configuration file
processing.

More than one -WD option can be used to set several variables. The effect is as
if an assignment statement for each such -WD variable had been added to the
beginning of the main configuration file.

42

5 Invoking the Compiler
5.3 Compiler Command-Line Options

5.3.27 Pass Arguments to Linker (-W l,arguments, -W :ld:,arguments)

-W 1,arg1[,arg2...]
-W :1d4:, argl[,argz...]

Pass the arguments to the linker.

Any option which is not recognized by the driver or compiler is automatically

passed to the linker. -W1 may be used to pass options to third-party linkers in
cases where such an option resembles a driver or compiler option. See

5.4.56 Suppress Assembler and Linker Parameters (-Xforeign-as-Id), p.80. Example:

-Wl,-m or -W:1d:,-m

Pass the option -m to the linker to get a link map.

5.3.28 Specify Linker Command File (-W mfile)

-W nfile

Use the given linker command file instead of the default
version_path/conf/default.dld.

NOTE: To suppress use of the default.Ink file, specify just -Wm with no file on
the command line.

5.3.29 Specify Startup Module (-W sfile)

-W sfile

Use the given object file instead of the default startup file (crt0.0). Additional
object files to be loaded along with the startup file and before any other files
can be given separated by commas.

NOTE: To provide a crt0.s file or substitute to be assembled on the command
line, or to use an existing non-default crt0.o file or substitute, specify just -Ws
with no name to suppress use of the default.

43

Wind River Compiler for M32R
User’s Guide, 5.4

5.3.30 Substitute Program or File for Default (-W xfile)

NOTE: Except for the common cases -W m and -W s documented above, this
option is primarily for use by Wind River.

-W xfile
Use the given program or file instead of the default program or file for the case
indicated by x. Some cases take the form -W xname=value. x is one of the
following:

:as:, a
The assembler.

The configuration file to be used. The default is dtools.conf
(DTOOLS.CON for Windows) in the version_path/conf subdirectory.

:cpp:, P
The C preprocessor. The preprocessor is incorporated in the compiler, so
this becomes a synonym for 0.

H =
The C compiler.
tC++:

The C++ compiler.

Pass the string following the -Wc exactly as is as an option to the linker.
More than one option can be given following -Wc, separated by commas.
For example, -We-Ic,-1proj would cause the linker to search for missing
symbols in libraries libc.a and libproj.a.

The linker -1 option is the more usual way to specify libraries.
See 5.3.26 Define Configuration Variable (-W Dname=value), p.42.
The C++ library. The default is -1d. See “c” for the meaning of -1d and
additional rules.
:1d:, 1
The linker.

The object converter; will execute after the linker.

See 5.3.28 Specify Linker Command File (-W mfile), p.43.

44

5 Invoking the Compiler
5.3 Compiler Command-Line Options

See 5.3.29 Specify Startup Module (-W sfile), p.43.
The compiler implied by the extension of the source file.

The reorder program. Specifying -W1 with no substitute program name
will disable the reorder program.

6

Other filter programs. -W1 and -W2 execute if -O or -XO is given and
process the output from the compiler. -W3 and -W4 also process the output
from the compiler. -W5 and -W6 process the input to the assembler.
Example:

-W:1d:/usr/1lib/dcc/3.6e/bin/dld

Use an old version of the linker.

5.3.31 Pass Arguments to Subprogram (-W x,arguments)

-W x,argl[,arg2...]
Pass the arguments to the subprogram designated by x. x is one of the

following:

:Cpp: p

:C

tCH+:

The preprocessor. The preprocessor is incorporated in the compiler, so this
becomes a synonym for 0.

The compiler implied by the extension of the source file.
" TheC compiler.
The C++ compiler.
tas:

The assembler. See 5.3.25 Pass Arguments to the Assembler (-W a,arguments,
-W was:,arguments), p.42.

:1ld:
The linker. See 5.3.27 Pass Arguments to Linker (-W Larquments, -W
:Ad:,arquments), p.43.

The object converter. Usually not implemented. If given, it will execute
after the linker.

45

Wind River Compiler for M32R
User’s Guide, 5.4

The reorder program.

2 -6
Other filter programs; usually not implemented. -W1 and -W2 are only
executed if -O or -XO is given. They process the output from the compiler.
-W3 and -W4 are always executed if given and process the output from the
compiler. -W5 and -Wé process the input to the assembler.

Example:
-W:as:,-1 or -Wa,-1

Pass the option “-1” (lower case letter L) to the assembler to get an assembler
listing file.

5.3.32 Associate Source File Extension (-W x.ext)

-W x.ext
Associate a source file extension with a tool; that is, indicate to the main driver

program dcc or dplus which tool should be invoked for an input file with a
particular extension. ext specifies the extension and x specifies a tool, as
follows:

0
The compiler implied by the extension of the source file.

:C

" TheC compiler.

1CH+:
The C++ compiler.

tas: a
The assembler.

tpas:, A
Preprocessor and assembler: both the preprocessor and assembler will be

applied to the source. Allows use of preprocessor directives with assembly
language.

Example:

-W:as:.asm

Specify that file.asm is an assembly source file.

46

5 Invoking the Compiler
5.3 Compiler Command-Line Options

5.3.33 Suppress All Compiler Warnings (-w)

Suppress all compiler warnings. (Does not apply to assembler or linker.)

5.3.34 Set Detailed Compiler Control Options (-X option)

See 5.4 Compiler -X Options, p.48.

5.3.35 Specify Default Header File Search Path (-Y I,dir)

-Y I, dir

Use dir as the default directory to search for header files specified with the -1

option. A full pathname is allowed. Must occur prior to a -I option to be
effective for that option.

5.3.36 Specify Search Directories for -l (-Y L, -Y P, -Y U)

These are linker options. See Specify Search Directories for -1 (-Y L, -Y P, -Y U), p.376.

5.3.37 Specify Search Directory for crt0.o (-Y S,dir)

Use dir as the default directory to search for crt0.0. This option is provided as a
convenience for older makefiles; users should use the -W sfile option instead, as it
enables you to specify both the search directory and the name of the startup file.

See 5.3.29 Specify Startup Module (-W sfile), p.43.

5.3.38 Print Subprograms With Arguments (-#, -##, -###)

-
Print subprogram command lines with arguments as executed.

-##

Print subprogram command line with arguments without actually executing

them.

47

Wind River Compiler for M32R
User’s Guide, 5.4

—#ik#
Print subprogram command lines with arguments inside quotes without
executing them.

5.3.39 Read Command-Line Options from File or Variable (-@name, -@ @name)

-@name
Read command-line options from either a file or an environment variable.
When -@name is encountered on the command line, the driver first looks for an
environment variable with the given name and substitutes its value. If an
environment variable is not found then the driver tries to open a file with
given name and substitutes the contents of the file. If neither an environment
variable or a file can be found, an error message is issued and the driver
terminates.

-@@name
Same as -@name; also prints all command-line options on standard output.

5.3.40 Redirect Output (-@E-=file, -@E-+file, -@O=file, -@O+file)

-@E=file
Redirect any output to standard error to the given file.

-@o=file
Redirect any output to standard output to the given file.
Use of “+” instead of “=" will append the output to the file.

5.4 Compiler -X Options

Compiler command-line -X options provide fine control over many aspects of the
compilation process when behavior other than the default is needed.

Most -X options can be set either by name (-Xname) or by number (-Xn). Options
can be set to a value m, given in decimal, octal (leading 0), or hexadecimal (leading
0x), by using an equal sign: -Xname=m or -Xn=m. Some options can be set to an
unquoted string, e.g. -Xfeedback=file.

48

5 Invoking the Compiler
5.4 Compiler -X Options

Many options have multiple names corresponding to different values. For
example, -Xchar-signed is equivalent to -X23=0, and -Xchar-unsigned is
equivalent to -X23=1. Please note that if a value is provided, it is always dominant,
regardless of which name is used. Thus, -Xchar-signed=1 is equivalent -X23=1,
which is equivalent to -Xchar-unsigned. Internally, the name is translated to its
number (23 in this case), and then the value is assigned regardless of which name

was used.

5.4.1 Option Defaults

If an option is not provided, it defaults to a value of 0 unless otherwise stated. If an
option which takes a value is provided without one, then the value 1 is used unless
otherwise stated. Therefore, the following three forms are all equivalent:

-Xtest-at-top -X6 -X6=1

However, if neither option -Xtest-at-top nor -X6 had been given, the value of option
-X6 would default to 0, which is equivalent to -Xtest-at-bottom.

To turn off an option which is on by default, or which was set using an
environment variable or -@ option, and for which there is no name for the “=0"
case, set it to zero: -Xname=0.

To determine the default for an option, compile a test module without the option
using the -S and -Xshow-configuration=1 options and examine the resulting .s
assembly language file. All -X options used are given in numeric form near the
beginning of the file. An option not present defaults to 0.

G. Compiler -X Options Numeric List lists all options having numeric equivalents in
numeric order.
-X options can also be specified at the beginning of a source file using:

#pragma option -X...
The remainder of this section shows all general -X options in both forms (name and
number).

As noted above, the -X options used for a compilation are given as comments in
the assembly listing in numeric form. These include both options specified by the
user and also some options generated by the compiler. Some of the latter may be
undocumented and are present for use by Customer Support.

49

Wind River Compiler for M32R

User’s Guide, 5.4

5.4.2 Compiler -X Options by Function

Below is a list of functional groups of -X options. This is followed by the -X options
in each functional group.

C++, p.56

Checking and Profiling, p.50
Debugging, p.50

Diagnostic and Lint, p.51
Driver, p.51

Instruction, p.52

Memory, p.52

Optimization, p.52

Output, p.53
Position-independent Code and Data, p.54
Precompiled Headers, p.54
Sections, p.54

Syntax, p.55

Type, p.55

Checking and Profiling

Debugging

50

5.4.11 Insert Profiling Code (-Xblock-count), p.61
5.4.52 Optimize Using Profile Data (-Xfeedback=file), p.78

5.4.53 Set Optimization Parameters Used With Profile Data (-Xfeedback-frequent,
-Xfeedback-seldom), p.78

5.4.112 Generate Code for the Run-Time Error Checker (-Xrtc=mask), p.105

5.4.35 Align .debug Sections (-Xdebug-align=n), p.70

5.4.36 Select DWARF Format (-Xdebug-dwatf...), p.70

5.4.37 Generate Debug Information for Inlined Functions (-Xdebug-inline-on), p.71
5.4.38 Emit Debug Information for Unused Local Variables (-Xdebug-local-all), p.71
5.4.39 Generate Local CIE for Each Unit (-Xdebug-local-cie), p.71

5.4.40 Disable debugging information Extensions (-Xdebug-mode=mask), p.71
5.4.41 Disable Debug Information Optimization (-Xdebug-struct-...), p.72

5.4.60 Include Filename Path in Debug Information (-Xfull-pathname), p.82

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.68 Initialize Local Variables (-Xinit-locals=mask), p.84

5.4.71 Define Initial Value for -Xinit-locals (-Xinit-value=n), p.86

5.4.97 Disable Most Optimizations With -g (-Xoptimized-debug-...), p.98
5.4.123 Enable Stack Checking (-Xstack-probe), p.108

Diagnostic and Lint

Driver

5.4.45 Control Use of Type “double” (-Xdouble...), p.74

5.4.55 Generate Warnings on Undeclared Functions
(-Xforce-declarations, -Xforce-prototypes), p.80

5.4.80 Generate Warnings On Suspicious/Non-portable Code (-Xlint=mask), p.89
5.4.85 Warn On Undefined Macro In #if Statement (-Xmacro-undefined-warn), p.92
5.4.91 Warn On Type and Argument Mismatch (-Xmismatch-warning), p.95
5.4.124 Diagnose Static Initialization Using Address (-Xstatic-addr-...), p.108
5.4.126 Buffer stderr (-Xstderr-fully-buffered), p.109

5.4.127 Terminate Compilation on Warning (-Xstop-on-warning), p.109

5.4.131 Warn on Large Structure (-Xstruct-arg-warning=n), p.110

5.4.134 Suppress Warnings (-Xsuppress-warnings), p.111

5.4.17 Use Old C++ Compiler (-Xc++-old), p.63

5.4.56 Suppress Assembler and Linker Parameters (-Xforeign-as-Id), p.80
5.4.61 Control GNU Option Translator (-Xgcc-options-...), p.82

5.4.67 Ignore Missing Include Files (-Xincfile-missing-ignore), p.84

5.4.76 Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-Xkeep-object-file), p.87

5.4.86 Show Make Rules (-Xmake-dependency), p.92

5.4.87 Specify Dependency Name or Output File (-Xmake-dependency-...), p.94
5.4.99 Output Source as Comments (-Xpass-source), p.99

5.4.104 Preprocess Assembly Files (-Xpreprocess-assembly), p.101

5.4.106 Use Old Preprocessor (-Xpreprocessor-old), p.101

51

Wind River Compiler for M32R
User’s Guide, 5.4

= 5.4.119 Show Target (-Xshow-target), p.107

Instruction
= 5.4.3 Prefix Function Identifiers With Underscore (-Xadd-underscore), p.57
= 5.4.74 Enable Intrinsic Functions (-Xintrinsic-mask), p.87

Memory
= 5.4.5 Align Functions On n-byte Boundaries (-Xalign-functions=n), p.58

= 5.4.6 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n), p.58

= 5.4.8 Specify Minimum Array Alignment (-Xarray-align-min), p.59

= 5.4.35 Align .debug Sections (-Xdebug-align=n), p.70

= 5.4.46 Generate Initializers for Static Variables (-Xdynamic-init), p.74
= 5.4.62 Treat All Global Variables as Volatile (-Xglobals-volatile), p.82

= 5.4.69 Control Generation of Initialization and Finalization Sections (-Xinit-section),
p-85

= 5.4.70 Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri), p.85

= 5.4.89 Set Maximum Structure Member Alignment (-Xmember-max-align=n), p.94
= 5.4.90 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.95

= 5.4.125 Treat All Static Variables as Volatile (-Xstatics-volatile), p.109

= 5.4.102 Treat All Pointer Accesses As Volatile (-Xpointers-volatile), p.100

= 5.4.130 Align Strings on n-byte Boundaries (-Xstring-align=n), p.110

= 5.4.133 Set Minimum Structure Member Alignment (-Xstruct-min-align=n), p.111

Optimization
= 5.4.7 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased), p.59
= 5.4.18 Optimize Global Assignments in Conditionals (-Xcga-min-use), p.63
= 5.4.22 Disregard ANSI C Library Functions (-Xclib-optim-off), p.64

5.4.23 Enable Cross-module Optimization (-Xcmo-...), p.65

5.4.49 Control Inlining Expansion (-Xexplicit-inline-factor), p.76

52

Output

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.72 Inline Functions with Fewer Than n Nodes (-Xinline=n), p.86
5.4.73 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force), p.86

5.4.78 Disable Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask),
p-88

5.4.83 Do Not Assign Locals to Registers (-Xlocals-on-stack), p.92

5.4.94 Enable Extra Optimizations (-XO), p.97

5.4.96 Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n), p.98
5.4.98 Specify Optimization Buffer Size (-Xparse-size), p.99

5.4.111 Restart Optimization From Scratch (-Xrestart), p.104

5.4.120 Optimize for Size Rather Than Speed (-Xsize-opt), p.107

5.4.132 Control Optimization of Structure Member Assignments
(-Xstruct-assign-split-...), p.110

5.4.139 Specify Loop Test Location (-Xtest-at-...), p.112
5.4.142 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.114

5.4.15 Control Allocation of Uninitialized Variables in “COMMON" and bss
Sections (-Xbss-off, -Xbss-common-off), p.62

5.4.31 Dump Symbol Information for Macros or Assertions (-Xcpp-dump-symbols),
p-69

5.4.59 Generate .frame_info for C functions (-Xframe-info), p.81

5.4.63 Do Not Pass #ident Strings (-Xident-off), p.82

5.4.67 Ignore Missing Include Files (-Xincfile-missing-ignore), p.84

5.4.86 Show Make Rules (-Xmake-dependency), p.92

5.4.87 Specify Dependency Name or Output File (-Xmake-dependency-...), p.94
5.4.99 Output Source as Comments (-Xpass-source), p.99

5.4.105 Suppress Line Numbers in Preprocessor Output (-Xpreprocessor-lineno-off),
p-101

5.4.116 Disable Generation of Priority Section Names (-Xsect-pri-...), p.106

5.4.115 Generate Each Function in a Separate CODE Section Class (-Xsection-split),
p-106

53

Wind River Compiler for M32R

User’s Guide, 5.4

5.4.117 Control Listing of -X Options in Assembly Output
(-Xshow-configuration=n), p.107

5.4.141 Append Underscore to Identifier (-Xunderscore-...), p.113

Position-independent Code and Data

5.4.26 Generate Position-independent Code (PIC) (-Xcode-relative...), p.66
5.4.34 Generate Position-independent Data (PID) (-Xdata-relative...), p.69
5.4.101 Generate Position-Independent Code for Shared Libraries (-Xpic), p.100

Precompiled Headers

Sections

54

5.4.100 Use Precompiled Headers (-Xpch-...), p.99

5.4.4 Set Addressing Mode for Sections (-Xaddr-...), p.57

5.4.15 Control Allocation of Uninitialized Variables in “COMMON" and bss
Sections (-Xbss-off, -Xbss-common-off), p.62

5.4.25 Use Absolute Addressing for Code (-Xcode-absolute...), p.66

5.4.30 Locate Constants With “text” or “data” (-Xconst-in-text, -Xconst-in-data),
p-68

5.4.33 Use Absolute Addressing for Code (-Xdata-absolute...), p.69
5.4.35 Align .debug Sections (-Xdebug-align=n), p.70

5.4.81 Allocate Static and Global Variables to Local Data Area (-Xlocal-data-area=n),
p-91

5.4.82 Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only), p.91

5.4.92 Specify Section Name (-Xname-...), p.96

5.4.103 Control Interpretation of Multiple Section Pragmas (-Xpragma-section-...),
p-100

5.4.114 Pad Sections for Optimized Loading (-Xsection-pad), p.105
5.4.121 Set Size Limit for “small const” Variables (-Xsmall-const=n), p.107
5.4.122 Set Size Limit for “small data” Variables (-Xsmall-data=n), p.108

5 Invoking the Compiler
5.4 Compiler -X Options

Syntax
= 5.4.14 Parse Initial Values Bottom-up (-Xbottom-up-init), p.61
= 5.4.32 Suppress Preprocessor Spacing (-Xcpp-no-space), p.69
= 5.4.24 Use the ‘new’ Compiler Frontend (-Xcnew), p.65
= 5.4.42 Specify C Dialect (-Xdialect-...), p.72
= 5.4.43 Disable Digraphs (-Xdigraphs-...), p.73
= 5.4.44 Allow Dollar Signs in Identifiers (-Xdollar-in-ident), p.74
= 5.4.66 Treat #include As #import (-Ximport), p.84
= 5.4.74 Enable Intrinsic Functions (-Xintrinsic-mask), p.87
= 5.4.77 Enable Extended Keywords (-Xkeywords=mask), p.88
= 5.4.84 Expand Macros in Pragmas (-Xmacro-in-pragma), p.92
= 5.4.106 Use Old Preprocessor (-Xpreprocessor-old), p.101
= 5.4.128 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.109
= 5.4.135 Swap \n’ and ‘\r" in Constants (-Xswap-cr-nl), p.111
= 5.4.140 Truncate All Identifiers After m Characters (-Xtruncate), p.113
= 5.4.144 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok), p.115

Type
» 5.4.9 Change bit-field type to reduce structure size (-Xbit-fields-compress-...), p.59

= 5.4.10 Specify Sign of Plain Bit-field (-Xbit-fields-signed, -Xbit-fields-unsigned),
p-60

= 5.4.20 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned), p.64
» 5.4.19 Generate Code Using ASCII Character Set (-Xcharset-ascii), p.63
= 5.4.45 Control Use of Type “double” (-Xdouble...), p.74

= 5.4.47 Specify enum Type (-Xenum-is-...), p.75

= 5.4.50 Force Precision of Real Arquments (-Xextend-args), p.77

= 5.4.51 Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic), p.77

= 5.4.95 Use Old Inline Assembly Casting(-Xold-inline-asm-casting), p.98

55

Wind River Compiler for M32R
User’s Guide, 5.4

= 5.4.57 Convert Double and Long Double (-Xfp-long-double-off, -Xfp-float-only), p.80
= 5.4.58 Specify Minimum Floating Point Precision (-Xfp-min-prec...), p.81

= 5.4.64 Enable Strict implementation of IEEE754 Floating Point Standard
(-Xieee754-pedantic), p.83

= 5.4.129 Ignore Sign When Promoting Bit-fields (-Xstrict-bitfield-promotions), p.109
= 5.4.145 Define Type for wchar (-Xwchar=n), p.115
= 5.4.146 Control Use of wchar_t Keyword (-Xwchar_t-...), p.115

C++
= 5.4.12 Set Type for Bool (-Xbool-is-...), p.61
= 5.4.13 Control Use of Bool, True, and False Keywords (-Xbool-...), p.61
= 5.4.16 Use Abridged C++ Libraries (-Xc++-abr), p.62
= 5.4.17 Use Old C++ Compiler (-Xc++-o0ld), p.63
= 5.4.21 Use Old for Scope Rules (-Xclass-type-name-visible), p. 64
= 5.4.27 Mark Sections as COMDAT for Linker Collapse (-Xcomdat), p.67
= 5.4.28 Maintain Project-wide COMDAT List (-Xcomdat-info-file), p.68
= 5.4.43 Disable Digraphs (-Xdigraphs-...), p.73
» 5.4.48 Enable Exceptions (-Xexceptions-...), p.76
= 5.4.54 Use Old for Scope Rules (-Xfor-init-scope-...), p.79
= 5.4.59 Generate .frame_info for C functions (-Xframe-info), p.81
= 5.4.65 Control Template Instantiation (-Ximplicit-templates...), p.83
= 5.4.75 Set longjmp Buffer Size (-Xjmpbuf-size=n), p.87
= 5.4.88 Set Template Instantiation Recursion Limit (-Xmax-inst-level=n), p.94
= 5.4.93 Disable C++ Keywords namespace and Using (-Xnamespace-...), p.97
= 5.4.100 Use Precompiled Headers (-Xpch-...), p.99
= 5.4.113 Enable Run-time Type Information (-Xrtti, -Xrtti-off), p.105
= 5.4.118 Print Instantiations (-Xshow-inst), p.107
= 5.4.128 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.109
= 5.4.137 Disable Certain Syntax Warnings (-Xsyntax-warning-...), p.112

56

5 Invoking the Compiler
5.4 Compiler -X Options

» 5.4.143 Runtime Declarations in Standard Namespace (-Xusing-std-...), p.114
» 5.4.145 Define Type for wchar (-Xwchar=n), p.115
= 5.4.146 Control Use of wchar_t Keyword (-Xwchar_t-...), p.115

The sections that follow present -X options in alphabetic order.

5.4.3 Prefix Function Identifiers With Underscore (-Xadd-underscore)

-Xadd-underscore

-x34
Prefix an underscore to function names only. Concatenation of underscore is
useful when compiling libraries, to avoid using the same namespace as user
programs.

5.4.4 Set Addressing Mode for Sections (-Xaddr-...)

-Xaddr-code=n
-X105=n
Specify addressing for code.

-Xaddr-const=n
-X102=n
Specify addressing for constant static and global variables.

-Xaddr-data=n
-X100=n
Specify addressing for non-constant static and global variables.

-Xaddr-sconst=n

-X103=n
Specify addressing for constant static and global variables with size less than
or equal to -Xsmall-const.

-Xaddr-sdata=n
-X101=n
Specify addressing for non-constant static and global variables with size less
than or equal to -Xsmall-data in size.
-Xaddr-string=n
-X104=n
Specify addressing for strings.
-Xaddr-user=n
-X106=n
Specify addressing for user-defined sections.

57

Wind River Compiler for M32R

User’s Guide, 5.4

See the discussion of addr-mode in 14.2 Addressing Mode — Functions, Variables,
Strings, p.241 for more information.

5.4.5 Align Functions On n-byte Boundaries (-Xalignh-functions=n)

-Xalign-functions=n
-X54=n

Align each function on an address boundary divisible by n (which must be
greater than or equal to the default alignment for the target microprocessor). If
n is absent, the option has no effect. This option is designed for targets having
some type of burst-mode memory access, for example a target that can fetch
multiple instructions if aligned on a 32-byte boundary.

5.4.6 Specify Minimum Alignment for Single Memory Access to
Multi-byte Values (-Xalign-min=n)

-Xalign-min=n
-X93=n

58

Set the minimum alignment required by the target processor to access a
multi-byte value (e.g., short, long) in memory as an atomic unit, that is, in a
single memory access. This option is set automatically by the compiler based
on the target processor and should seldom be set by the user.

NOTE: This option does not change how data is aligned; it changes the
instructions which the compiler generates to access multi-byte unaligned
objects.

Technical details: if the target processor can access objects at any alignment
with a single instruction, n is set to 1. For a processor which requires that
multi-byte objects be aligned on even-byte boundaries for direct access, n is set
to 2. Unaligned objects on such a processor must be accessed byte-by-byte. For
a processor that requires 4-byte objects be on a 4-byte boundary, # is set to 4
(2-byte objects aligned on 2-byte boundaries can still be accessed with a single
instruction).

The default value of n equals the maximum alignment restriction as given in
the manufacturer’s documentation for the processor. Note that it may differ
among processors in a family. As of this writing, the default is 4.

5 Invoking the Compiler
5.4 Compiler -X Options

NOTE: Because -Xalign-min is > 1, in a packed structure (a) bit-fields members
are not allowed, (b) volatile members will not be accessed atomically, and (c)
compound operators (for example, “+=") cannot be used with volatile
members. See Restrictions and Additional Information, p.131 for details.

Synonym: -Xmin-align=n.

5.4.7 Assume No Aliasing of Pointer Arguments (-Xargs-not-aliased)

-Xargs-not-aliased

-X65
Assume that pointer arguments to a function are not aliased with each other,
nor with any global data. This enables greater optimization. Example:

int g;
func (int* al, int* a2);

{

void main

int i 1;
int j 2;
func (&i,&3) ; /* OK */
func (&1, &1) ; /* not OK */
func (&1, &9) ; /* not OK */

}
See also no_alias Pragma, p.128.

5.4.8 Specify Minimum Array Alignment (-Xarray-align-min)

-Xarray-align-min=n

-X161=n
Align arrays on the larger of n or the default alignment for the type of the array
elements. nn should be a power of 2. When this option is used, values given for
-Xstring-align are ignored.

5.4.9 Change bit-field type to reduce structure size (-Xbit-fields-compress-...)

-Xbit-fields-compress
-X135=1
-Xbit-fields-compress-off
-X135=0

59

Wind River Compiler for M32R

User’s Guide, 5.4

C only. Change the type of a bit-field if possible to generate more compact
storage. The default is off.

The algorithm is as follows:

Examine all structure members before assigning offsets. Record:
BitFieldMaxAlign = maximum alignment of any bit-field.
NonBitFieldMaxAlign = maximum alignment of any non bit-field.
WidthMaxBitField = number bits in largest bit-field.

IF BitFieldMaxAlign > NonBitFieldMaxAlign THEN

NewType = unsigned integer type having the same alignment as that of
the NonBitFieldMaxAlign.

IF WidthMaxBitField <= bits in NewType THEN

Change the type of each unsigned bit-field larger than NewType to
NewType and each signed bit-field larger than NewType to signed
NewType.

This option is intended for legacy code. The same effect may be achieved in
new code by using the smallest types having the required alignments.

Synonym: -Xbitfield-compress.

5.4.10 Specify Sign of Plain Bit-field (-Xbit-fields-signed, -Xbit-fields-unsigned)

-Xbit-fields-signed
-X12=0

C only. Handle bit-fields without the signed or unsigned keyword as signed
integers. This is the default setting.

Synonym: -Xsigned-bitfields.

-Xbit-fields-unsigned
-X12

60

C only. Treat bit-fields without the signed or unsigned keyword as unsigned
integers.

Synonym: -Xunsigned-bitfields.

See also 5.4.129 Ignore Sign When Promoting Bit-fields
(-Xstrict-bitfield-promotions), p.109.

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.11 Insert Profiling Code (-Xblock-count)

-Xblock-count
-X24

Insert code in the compiled program to keep track of the number of times each
basic block (the code between labels and branches) is executed. See

28. D-BCNT Profiling Basic Block Counter for details, and also 5.4.52 Optimize
Using Profile Data (-Xfeedback=file), p.78.

5.4.12 Set Type for Bool (-Xbool-is-...)

-Xbool-is-char
-X119=44

Implement type bool as a plain char. This is the default.
-Xbool-is-int
-X119=4

C++ only. Implement type bool as a signed int. This may produce less code on
some architectures but will require more data space.

5.4.13 Control Use of Bool, True, and False Keywords (-Xbool-...)

-Xbool-on
-X213=0

Enable the bool, true, and false keywords. This is the default.

-Xbool-off
-X213

C++ only. Disable the bool, true, and false keywords.

Synonym: -Xno-bool.

5.4.14 Parse Initial Values Bottom-up (-Xbottom-up-init)

-Xbottom-up-init
-X21

C only. Both K&R and ANSI C specify that structure and array initializations
with missing braces should be parsed top-down, however some C compilers
parse these bottom-up instead. Example:

61

Wind River Compiler for M32R
User’s Guide, 5.4

struct z { int a, b; };
struct x {
struct z z1[2];
struct z z2[2];
}x = { {1,2},{3,4} };

Should be parsed according to ANSI & K&R as:
¢ {{1,23,{0,0} ¥ , { {3,4},{0,0} } };
-Xbottom-up-init causes bottom-up parsing:
¢ {1,2},{3,4y » , { {0,0},{0,0} } };

This option is set when -Xdialect-pcc is set.

5.4.15 Control Allocation of Uninitialized Variables in “COMMON” and bss Sections
(-Xbss-off, -Xbss-common-off)

-Xbss-common-of £

-X83=3
Disable use of the “COMMON” feature so that the compiler or assembler will
allocate each uninitialized public variable in the .bss section for the module
defining it, and the linker will require exactly one definition of each public
variable. See 23.4 COMMON Sections, p.361.

Synonym: -Xno-common.

-Xbss-off

-X83=1
Put all variables in the .data section instead of allocating uninitialized
variables in the .bss section.

Synonym: -Xno-bss.

5.4.16 Use Abridged C++ Libraries (-Xc++-abr)

-Xc++-abr
Link to the abridged C++ libraries. Automatically disables exception-handling
(-Xexceptions=off). See 13.2 C++ Standard Libraries, p.222.

62

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.17 Use Old C++ Compiler (-Xc++-old)

-Xc++-old
Invoke the older C++ compiler that preceded version 5.0. Useful for compiling
legacy code that is not ANSI-compliant. See Older Versions of the Compiler,
p-216.

5.4.18 Optimize Global Assignments in Conditionals (-Xcga-min-use)

-Xcga-min-use=n
When a global variable is accessed repeatedly within a conditional statement,
the compiler can replace the global variable with a temporary local copy
(which can be stored in a register), then reassign the local variable to the global
variable when the conditional finishes execution.

If conditional global assignment is enabled, the compiler determines whether
to copy a global variable by estimating the number of times the global variable
is accessed within the conditional block at runtime. (The exact number of
accesses may depend on factors, such as the value of a loop counter, that
cannot be known at compile time.) If the global variable is accessed 1 or more
times, the compiler performs the optimization. The default value of # is 20.

Conditional global assignment is enabled by default (-Xcga-min-use=20)
whenever optimizations are enabled (-O or -XO). To disable conditional global
assignment, set 1 to 0 (-Xcga-min-use=0). Conditional global assignment is
never performed on variables declared or treated as volatile (see 5.4.90 Treat
All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.95) and should be
used with caution in multi threaded environments.

5.4.19 Generate Code Using ASCII Character Set (-Xcharset-ascii)

-Xcharset-ascii

-X60=1
Generate code using the ASCII character set. All strings and character
constants are converted to ASCII. The default is to use the same character
system as the host machine.

Synonym: -Xascii-charset.

63

Wind River Compiler for M32R
User’s Guide, 5.4

5.4.20 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned)

-Xchar-signed

-X23=0
Treat variables declared char without either of the keywords signed or
unsigned as signed characters.

Synonym: -Xsigned-char.
-Xchar-unsigned
-x23

Treat variables declared char without either of the keywords signed or
unsigned as unsigned characters.

Synonym: -Xunsigned-char.

The default setting is signed. See also Table 8-1 and _ SIGNED_CHARS__ in
6.1 Preprocessor Predefined Macros, p.119.

In C++, plain char, signed char and unsigned char are always treated as
different types, but this option defines how arithmetic with plain char is done.

5.4.21 Use Old for Scope Rules (-Xclass-type-name-visible)

-Xclass-type-name-visible

-x218=1
C only. Direct the compiler not to hide struct or union names when other
identifiers with the same names are declared in the same scope. For example,
consider the following statement:

struct S {...} S[10];

With or without this option, the form struct S may always be used later to
declare additional variables of type struct S. However, without the option,
sizeof(S) will refer to the size of the array, while with this option, sizeof(S) will
refer to the size of the structure.

5.4.22 Disregard ANSI C Library Functions (-Xclib-optim-off)

-Xclib-optim-off
-X66
Direct the compiler to disregard all knowledge of ANSI C library functions.

By default, the compiler automatically includes, before all other header files,
the file Ipragma.h, which contains pure_function, no_return, and

64

5 Invoking the Compiler
5.4 Compiler -X Options

no_side_effects pragmas and other statements that allow optimization of calls
to C library functions. (If the default include directory version_path/include
exists, the compiler looks for Ipragma.h only in this directory. If
version_path/include does not exist, the compiler searches for Ipragma.h in
other user-specified directories.)

The option disables use of Ipragma.h.
o
Synonym: -Xno-recognize-lib.

5.4.23 Enable Cross-module Optimization (-Xcmo-...)

-Xcmo-gen=name
Generate a database, in file name, for cross-module optimization.

-Xcmo-use=name
Compile with cross-module optimization using information in database name;
update database.

-Xcmo-exclude-inline=1list
Combined with -Xcmo-use, tells the compiler not to inline specified functions.
list is a comma-delimited list of functions which should not be inlined across
modules. For C++, use mangled function names.

-Xcmo-verbose
Combined with -Xcmo-gen or -Xcmo-use, lists all functions that are inlined
across modules. Useful for tracking dependencies.

These options enable cross-module optimization, which allows the compiler to
optimize calls between functions in different source files. See 10.2 Cross-Module
Optimization, p.190 for details. Cross-module optimization is disabled by default.

5.4.24 Use the ‘new’ Compiler Frontend (-Xcnew)

-Xcnew
Compile using a compiler frontend derived from one produced by the Edison
Design Groupd. By default, invoking -Xcnew also invokes -Xdialect-c99.
Supported only with the :rtp execution environment.

65

Wind River Compiler for M32R

User’s Guide, 5.4

5.4.25 Use Absolute Addressing for Code (-Xcode-absolute...)

-Xcode-absolute-far

-X58=6

Use 32-bit absolute addressing for code.

See 14.2 Addressing Mode — Functions, Variables, Strings, p.241.

-Xcode-absolute-near

-X58=5
Use 16-bit absolute addressing for code.

See 14.2 Addressing Mode — Functions, Variables, Strings, p.241.

5.4.26 Generate Position-independent Code (PIC) (-Xcode-relative...)

-Xcode-relative-far
-X58=2
Generate position-independent code (PIC) as follows:

Branches and function calls use -bit offsets from the PC, relative to r8.

By default, global const or static const variables and string constants are
included in the code section and are referenced relative to r8 using 32-bit
offsets. The default may be changed using option -Xconst-in-text which
controls whether const variables and string constants are in “text” (code)
or “data” sections. See it (68) and Moving initialized Data From “text” to
“data”, p.250, for details and refinements.

References to the small const area, if any, still use a 16-bit offset (see
Table 14-5 and following).

For global or static pointers to be position-independent, they must be
initialized dynamically and are therefore always stored in a “data” section
even if declared const. See option 5.4.46 Generate Initializers for Static
Variables (-Xdynamic-init), p.74).

-Xcode-relative-far-all

-X58=4

66

Equivalent to -Xcode-relative-far except that all global and static variables are
by default placed in the code section, not just those which are const.

Synonym: -Xall-far-code-relative.

5 Invoking the Compiler
5.4 Compiler -X Options

-Xcode-relative-near
-x58=1
Like -Xcode-relative-far except that offsets are 16-bit rather than 32-bit. See it

for details.

Synonym: -Xnear-code-relative.

-Xcode-relative-near-all

Extends -Xcode-relative-near to all global and static variables, not just those
declared const. See it for details.

Synonym: -Xall-near-code-relative.

5.4.27 Mark Sections as COMDAT for Linker Collapse (-Xcomdat)

-Xcomdat

-X120
C++ only. Mark all generated sections as COMDAT. The linker automatically
collapses identical COMDAT sections to a single section in memory. This is the

default.

By default, the compiler automatically generates a section for each
instantiation of each member function or static class variable in a template in
each module where the member function or variable is used. Given -Xcomdat,
the compiler marks all implicit template instantiations as COMDAT and the
linker collapses identical instances.

-Xcomdat-off
Generate all template instantiations and inline functions required as static
entities in the resulting object file. If a template is used in more than one
module, -Xcomdat-off results in multiple instances of static member function
variables or static class variables, instead of a single instance as is likely
intended; to avoid this, enable -Ximplicit-templates-off.

See 5.4.65 Control Template Instantiation (-Ximplicit-templates...), p.83 and
Templates, p.225 for details.

If a section is present in both COMDAT and non-COMDAT forms, the linker
will treat symbols in the COMDAT section as weak. See weak Pragma, p.136 for
details on weak symbols.

67

Wind River Compiler for M32R

User’s Guide, 5.4

5.4.28 Maintain Project-wide COMDAT List (-Xcomdat-info-file)

-Xcomdat -info-£file=filename

C++ only. When -Xcomdat is enabled, generate and maintain (in filename) a list
of COMDAT entries across modules. The list is automatically updated and
checked for consistency with each build. This option speeds up builds and
reduces object-file size in projects that make extensive use of templates. Since
COMDAT sections are ultimately collapsed by the linker, this option has no
effect on the final executable file.

5.4.29 Optimize Static and Global Variable Access Conservatively
(-Xconservative-static-live)

-Xconservative-static-live
-X139

Make optimizations of static and global variable accessing less aggressive; for
example, do not delete assignments to such variables in infinite loops from
which there is no apparent return.

5.4.30 Locate Constants With “text” or “data” (-Xconst-in-text, -Xconst-in-data)

-Xconst-in-text=mask
-X74=mask

-Xconst-in-data
-X74=0

68

Locate data in the CONST (mask bit 0x1), SCONST (mask bit 0x2), and STRING
(mask bit 0x4) section classes according to the given mask bit: if 1, locate in a
“text” section (the default), else if 0, locate in a “data” section.

mask may be given in hex, and mask bits may be OR-ed to select more than one,
e.g., -Xconst-in-text=0x5. Undefined mask bits are ignored.

The default value of this option is given in Moving initialized Data From “text”
to “data”, p.250.

-Xconst-in-data and -Xstrings-in-text are historical shortcuts for locating all
“constants” (CONST, SCONST, and STRING classes, not just “const” or string
data) in “data” sections (mask=0) or “text” sections (mask=0x{f) respectively.

The exact name of the “text” and “data” sections depends on the target. See the
discussion in 14. Locating Code and Data, Addressing, Access for exact section

5 Invoking the Compiler
5.4 Compiler -X Options

names and examples, as well as Moving initialized Data From “text” to “data”,
p-250.

When STRING is in a text section, identical string constants will be stored only
once. This is the default in version 3.6 and later.

5.4.31 Dump Symbol Information for Macros or Assertions (-Xcpp-dump-symbols)

-Xcpp-dump-symbols=rmask

-X158=mask
Dump symbol information for macros, assertions, or both. To show macros, set
bit 0 (the LSB) of mask to 1. To show assertions, set bit 1 to 1. To show line
numbers, set bit 2 to 0. The default mask is 7 (show macros and assertions, no
line numbers).

5.4.32 Suppress Preprocessor Spacing (-Xcpp-no-space)

-Xcpp-no-space
-X117
C only. Do not insert spaces around macro names and arguments during

preprocessing.

5.4.33 Use Absolute Addressing for Code (-Xdata-absolute...)

-Xdata-absolute-far
-X59=6
Use 32-bit absolute addressing for data.

See 14.2 Addressing Mode — Functions, Variables, Strings, p.241.

-Xdata-absolute-near
-X59=5
Use 16-bit absolute addressing for data.

See 14.2 Addressing Mode — Functions, Variables, Strings, p.241.
5.4.34 Generate Position-independent Data (PID) (-Xdata-relative...)

-Xdata-relative-far
-x59=2Generate position-independent data (PID) references to all global or

69

Wind River Compiler for M32R
User’s Guide, 5.4

static variables (except strings and const variables if the -Xconst-in-text=0xf
option is used).

Use 32-bit offsets from register 19 except for those global or static variables in
the Small Data Area (SDA), which will be accessed through fast 16-bit offsets
from r9, which means the SDA is limited to 64KB (to facilitate certain
optimizations, actually 64KB - 0x10—see 9.6 Register Use, p.182 for further
details).

Synonym: -Xfar-data-relative.

-Xdata-relative-near

-x59=1Generate position-independent data (PID) references to all global or
static variables (except strings and const variables if the -Xconst-in-text=0
option is used).

All references use a 16-bit offset from register r9, which means the combined
size of all sections to which this attribute applies is limited to 64KB (to facilitate
certain optimizations, actually 64KB - 0x10—see 9.6 Register Use, p.182 for
further details).

Synonym: -Xnear-data-relative.

NOTE: If option -Xconst-in-text=0xf (equivalent to older option
-Xstrings-in-text), strings and const variables will be placed in “text” sections
and addressed as code rather than as position-independent data. See Moving
initialized Data From “text” to “data”, p.250 for details.

5.4.35 Align .debug Sections (-Xdebug-align=n)

-xdebug-align[=n]
Align .debug sections on specified boundaries. # is a power of 2; e.g.,
-Xdebug-align=3 aligns .debug sections on 8-byte boundaries. If 7 is omitted,
alignment defaults to 4-byte boundaries.

Without this option, .debug sections are aligned on byte boundaries.

5.4.36 Select DWARF Format (-Xdebug-dwarf...)

-Xdebug-dwarfl
-X153=1
Generate DWAREF 1.1 debug information.

70

5 Invoking the Compiler
5.4 Compiler -X Options

-Xdebug-dwarf2
-X153=2
Generate DWAREF 2 debug information. This is the default.

-Xdebug-dwarf3
-X153=3
Generate DWAREF 3 debug information.

-Xdebug-dwarf2-extensions-off
Suppress vendor-specific extensions in DWARF 2 and DWARF 3 debug

information.

5.4.37 Generate Debug Information for Inlined Functions (-Xdebug-inline-on)

-Xdebug-inline-on
Generate debugging information for all inlined functions. Works with DWARF
2 and DWAREF 3 only. Can result in very large executables. This option is
disabled by default.

5.4.38 Emit Debug Information for Unused Local Variables (-Xdebug-local-all)

-Xdebug-local-all
Emit debugging information for all local variables, even variables that are
never used. This option is disabled by default.

5.4.39 Generate Local CIE for Each Unit (-Xdebug-local-cie)

-Xdebug-local-cie
Generate a local Common Information Entry (CIE) for each unit. This option,
which eliminates the dependency on the debug library libg.a, is applicable
only with DWARF 2 or DWARF 3 debug information.

5.4.40 Disable debugging information Extensions (-Xdebug-mode=mask)

-Xdebug-mode=r1ask

-X99=mask
Disable extensions to debugging information per bits in mask. May be
necessary for other vendors’ assemblers or for debuggers which cannot
process the extensions.

71

Wind River Compiler for M32R
User’s Guide, 5.4

mask may be given in hex, and mask bits may be OR-ed to select more than one,
e.g., -Xdebug-mode=0x6. Undefined mask bits are ignored.

0x2
Information regarding executable code in a header file (DWARF]I, ELF).

0x4
Use of .d1line assembler directive (DWARF1, ELF).

0x10
Line number information for asm statements (DWARF1, DWAREF2,
DWARES3).

0x40
Use of .d1_line_start and .d1_line_end assembler directives (DWARF1).

0x100
Column information (DWARF 2 and DWAREF 3, C++).

5.4.41 Disable Debug Information Optimization (-Xdebug-struct-...)

-Xdebug-struct-all

-X116=1
Force generation of type information for typedef, struct, and union, and class
types, even when such types are not referenced in a file.

-Xdebug-struct-compact

-X116=0
Do not output types which are not used in debug information. This is the
default, and it generates more compact but still complete version of debug
information.

5.4.42 Specify C Dialect (-Xdialect-...)

-Xdialect-c89
-X230=0
Follow the C89 standard for C. See Table B-1 for details.

-Xdialect-c99
-X230=1
Follow the C99 standard for C. See Table B-1 for details.

Only a subset of the C99 standard is supported.

72

5 Invoking the Compiler
5.4 Compiler -X Options

-Xdialect-k-and-r

-X7=0
Follow the “C standard” as defined by the original K&R C reference manual,
but with all the new ANSI C features added. Where K&R and ANSI differ,

-Xdialect-k-and-r follows K&R. See Table B-2 for details.
Synonyms: -Xk-and-r, -Xt.

-Xdialect-ansi

-X7=1
Follow the ANSI C standard with some additions. See Table B-2 for details.

This is the default.
Synonyms: -Xansi, -Xa.

-Xdialect-strict-ansi

-X7=2
Strictly follow the ANSI C and C++ standards. See Table B-2 for details. For
C++, see 5.4.128 Compile C/C++ in Pedantic Mode (-Xstrict-ansi), p.109.

Synonym: -Xstrict-ansi, -Xc.

-Xdialect-pcc

-x7=3
Follow the C standard as defined by the UNIX System V.3 C compiler. See
Table B-1 for details.

Synonym: -Xpcc.

5.4.43 Disable Digraphs (-Xdigraphs-...)

-Xdigraphs-on

-X202=0
C++ only. Enable digraphs. If digraphs are enabled, the compiler recognizes
the following keywords as digraphs: bitand, and, bitor, oz, xor, compl,
and_eq, or_eq, xor_eq, not, and not_eq. This is the default.

-Xdigraphs-off
-X202
Disable digraphs.

Synonym: -Xno-digraphs.

73

Wind River Compiler for M32R
User’s Guide, 5.4

5.4.44 Allow Dollar Signs in Identifiers (-Xdollar-in-ident)

-Xdollar-in-ident
-X67
Allow dollar sign characters, “$”, in identifiers.

5.4.45 Control Use of Type “double” (-Xdouble...)

-Xdouble-avoid

-X96=3
C only. Force all double constants to single precision and generation of only
single precision instructions.

-Xdouble-error

-X96=1
Generate an error if any double precision operation is used. It will also force
all double constants to single precision and generation of only single precision
instructions.

-Xdouble-warning

-X96=2
Generate a warning if any double precision operation is used. It will also force
all double constants to single precision and generation of only single precision
instructions.

5.4.46 Generate Initializers for Static Variables (-Xdynamic-init)

-Xdynamic-init=1

-x121=1
Cause the compiler to generate code in the initialization section to initialize
addresses in static initializers. This option can be applied to any code, but is
required for C++ virtual tables.

-Xdynamic-init=1

-x121=1
Cause the compiler to generate code in the initialization section to initialize
addresses in static initializers. This option can be applied to any code, but is
required for position-independent code and for C++ virtual tables. Example:

static int * address_p = & static_var;

Without this option, the above initializer would generate an error message if
the code is compiled to be position-independent.

74

5 Invoking the Compiler
5.4 Compiler -X Options

-Xdynamic-init=2
-X121=2
Extends the -Xdynamic-init=1 option to generate code in the initialization

section for all initializers, not just addresses.

5.4.47 Specify enum Type (-Xenum-is-...)

-Xenum-is-best

-x8=2
Use the smallest signed or unsigned integer type permitted by the range of
values for an enumeration, that is, the first of signed char, unsigned char,
short, unsigned short, int, unsigned int, long, or unsigned long sufficient to
represent the values of the enumeration constants. (long long is not available
for enumerated types.) Thus, an enumeration with values from 1 through 128
will have base type unsigned char and require one byte. (Using the packed
keyword on an enumerated type yields the same result as -Xenum-is-best.)

-Xenum-is-int

-x8
This is the default. For C modules, the enum type is always equivalent to int.
For C++, each enum type is equivalent to int if the range will fit, or unsigned
int if it will not; if the range will not fit into either, a warning is issued and

unsigned int is used.

-Xenum-is-short

-X8=3
Each enum type is always equivalent to signed short if the range will fit, or
unsigned short if it will not. If the range will not fit into either, a warning is

issued and unsigned short is used.

-Xenum-is-small

-X8=0
Use the smallest signed integer type permitted by the range of values for an
enumeration, that is, the first of signed char, short, int, or long sufficient to
represent the values of the enumeration constants. Thus, an enumeration with
values from 1 through 128 will have base type short and require two bytes.

-Xenum-is-unsigned

-x8=4
Use the smallest unsigned integer type permitted by the range of values for an
enumeration, that is, the first of unsigned char, unsigned short, unsigned int,
or unsigned long sufficient to represent the values of the enumeration
constants. Thus, an enumeration with values from 1 through 128 will have
base type unsigned char and require one byte.

75

Wind River Compiler for M32R

User’s Guide, 5.4

NOTE: If modules compiled with different -Xenum-is-... options are mixed in a
program, compatibility problems may result.

When an enumerated type occurs within a packed structure, the default behavior
is to use the smallest possible integer type for the enumeration constants
(-Xenum-is-best). To override this behavior, specify -Xenum-is-short or
-Xenum-is-unsigned.

5.4.48 Enable Exceptions (-Xexceptions-...)

-Xexceptions-off
-X200=0

C++ only. Disable exceptions. Compiling a program with any of the keywords
try, catch, or throw will cause a compilation error. (But throw() is still allowed
in function declarations to indicate that new or delete will not throw
exceptions.) Compiling with this option will reduce stack space and increase
execution speed when classes with destructors are used.

Synonym: -Xno-exception.

-Xexceptions
-X200

C++ only. Enable exceptions. This is the default.

For mixed C/C++ programs, see also 5.4.59 Generate .frame_info for C functions
(-Xframe-info), p.81.

Synonym: -Xexception.

5.4.49 Control Inlining Expansion (-Xexplicit-inline-factor)

-Xexplicit-inline-factor
-Xexplicit-inline-factor=n
-X136=n

76

Limits the inlining in a function (explicit and implicit) to an expansion of n
times (measured in nodes where, roughly, each operator or operand counts as
one node).

Given a function £, the compiler first inlines all functions explicitly declared

inline which f calls, as well as any other small functions which can be inlined
based on the other inlining optimization controls. It then divides the new size
of the function (number of nodes) by the size with no inlining. If the result is

5 Invoking the Compiler
5.4 Compiler -X Options

<=1, it looks for new inlining opportunities in the resulting code and repeats
the cycle. Once an expansion of n times is exceeded, inlining stops.

If -Xexplicit-inline-factor is specified with no value, n defaults to 3. If
-Xexplicit-inline-factor is not specified, the default value is 0 (which means no
limit) for C and 3 for C++.

See also 5.4.73 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force),
p-86.

5.4.50 Force Precision of Real Arguments (-Xextend-args)

-Xextend-args
-X77

Make all floating point arguments use the precision given by whichever of
-Xfp-min-prec-double, -Xfp-min-prec-long-double, or -Xfp-min-prec-float is
in force (all are settings of -X3), even if prototypes are used. (If none of the -X3
options are also given, the default is -Xfp-min-prec-double as that is
equivalent to -X3=0).

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid
missing any such functions.

5.4.51 Specify Degree of Conformance to the IEEE754 Standard (-Xfp-fast,
-Xfp-normal, -Xfp-pedantic)

-Xfp-fast

-x82=2
Favor floating-point performance over conformance to the IEEE754
floating-point standard.

-Xfp-normal

-X82=0
Use normal (relaxed) conformance to the IEEE754 floating-point standard.
This is the default.

-Xfp-pedantic

-x82=1
Use strict conformance to the IEEE754 floating-point standard. This option is
equivalent to using -Xieee754-pendatic. (See 5.4.64 Enable Strict implementation
of IEEE754 Floating Point Standard (-Xieee754-pedantic), p.83.)

77

Wind River Compiler for M32R
User’s Guide, 5.4

The -Xfp-fast option allows floating-point division by a constant to be optimized
into a multiply by the reciprocal of the constant. This optimization is inhibited for
-Xpf-normal and -Xfp-pedantic unless the constant is a power of two.

5.4.52 Optimize Using Profile Data (-Xfeedback=file)

-Xfeedback

-Xfeedback=file

(no numeric equivalent)
Use profiling information generated by the -Xblock-count (see 5.4.11 Insert
Profiling Code (-Xblock-count), p.61) option to optimize for faster code. file is the
name of the profiling file. The default is dbcent.out.

To use this option:
» Compile a program with -Xblock-count.

* Run the program, which now creates dbcent.out with profiling
information. (See 15.8.2 File 1/O, p.271 for file I/O in an embedded
environment.)

* Recompile, now with the -XO and -Xfeedback options to produce
high-level speed optimized code. Use -Xfeedback-frequent and
-Xfeedback-seldom described below to control how the feedback data
affects optimization.

5.4.53 Set Optimization Parameters Used With Profile Data (-Xfeedback-frequent,
-Xfeedback-seldom)

-Xfeedback-frequent

-X68=n

-Xfeedback-seldom

-X69=n
Change the parameters used to control optimization of basic blocks when
using profile data, for example, the amount of inlining, loop unrolling, and
reorganization to reduce branches actually taken, all to increase speed
(sometimes at the expense of space).

When using -Xprof-feedback (5.4.109 Optimize Using RTA Profile Data
(-Xprof-feedback), p.103) and -Xfeedback (5.4.52 Optimize Using Profile Data
(-Xfeedback=file), p.78), the compiler divides the basic blocks into three

v

categories: code executed “frequently”, “sometimes”, and “seldom”. More of

78

5 Invoking the Compiler
5.4 Compiler -X Options

the above optimizations are done for “frequent” code, while less or none is
done for code executed “seldom”.

The higher the thresholds, the more often code must be executed to get into the
“frequent” category.

The defaults are -Xfeedback-seldom=10 and -Xfeedback-frequent=50 and are

used as follows: each execution of a basic block recorded in the profile counts
as one “tick”. The low-mark and high-mark values are normalized on a basis

of 1,000 ticks, which means that the options have units of a tenth of a percent.

That is, the default values mean that, if exactly 1,000 ticks are recorded, blocks

executed fewer than 10 times (up to 1%) are marked “seldom”, those executed

from 10 to 50 times (1% to 5%) are marked “sometimes”, and those executed

50 or more times (5% of more) are marked “frequent”. Example:

-Xfeedback-frequent=30

means that blocks accounting for 3% or more of all ticks will go into the
“frequent” category, and the compiler will do more inlining of functions called
within these blocks, more loop unrolling, etc., to decrease their execution time.

Synonyms: -Xhi-mark for -Xfeedback-frequent, -Xlo-mark for
-Xfeedback-seldom.

5.4.54 Use Old for Scope Rules (-Xfor-init-scope-...)

-Xfor-init-scope-for

-X217=0
Use “new” scope rules for variables declared in the initialization part of a for
statement. With this option, the scope of a variable declared in the
initialization part extends to the end of the for statement.

-Xfor-init-scope-outer

-x217
C++ only. Use “old” scoping rules for variables declared in the initialization
part of a for statement. With this option, the scope extends to the end of the
scope enclosing the for statement.

Synonym: -Xold-scoping.

79

Wind River Compiler for M32R
User’s Guide, 5.4

5.4.55 Generate Warnings on Undeclared Functions
(-Xforce-declarations, -Xforce-prototypes)

-Xforce-declarations
-X9
Generate warnings if a function is used without a previous declaration.

-Xforce-prototypes

-X9=3
Generate warnings if a function is used without a previous prototype
declaration.

These options are useful to make C a more strongly typed language. This
option is ignored when compiling C++ modules.

5.4.56 Suppress Assembler and Linker Parameters (-Xforeign-as-id)

-Xforeign-as-14
(no numeric equivalent)
Cause the driver to call an assembler and linker without any implicit

parameters.

This allows third-party assemblers and linkers to be used with the Wind River
compiler. The -W xfile option may be used to specify a foreign assembler or
linker (5.3.30 Substitute Program or File for Default (-W xfile), p.44), the -W a
option to pass parameters to the assembler (5.3.25 Pass Arguments to the
Assembler (-W a,arquments, -W :as:,arguments), p.42), and the -W 1 option to pass
parameters to the linker (5.3.27 Pass Arguments to Linker (-W larquments, -W
Ad:,arguments), p.43).

5.4.57 Convert Double and Long Double (-Xfp-long-double-off, -Xfp-float-only)

-Xfp-float-only
-X70=2
Force double and long double to be the same as float.

Synonym: -Xno-double.

-Xfp-long-double-off
-X70
Force long double to be the same as double on machines where they differ.

Synonym: -Xno-long-double.

80

5 Invoking the Compiler
5.4 Compiler -X Options

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid missing
any such functions. Also, operation of library routines designed to process a
suppressed type is undefined.

5.4.58 Specify Minimum Floating Point Precision (-Xfp-min-prec...)

-Xfp-min-prec-double

-X3=0
Use double as the minimum precision in expressions and for floating point
arguments. Lesser precisions are used in expressions if the -Xdialect-ansi
option is used. If prototypes are used, use the declared precision for
arguments, unless the -Xextend-args option is used.

Synonym: -Xuse-double.

-Xfp-min-prec-£float
-X3=1
Use float as the minimum precision in expressions and for floating point

arguments.
Synonym: -Xuse-float.

-Xfp-min-prec-long-double

-X3=2
Use long double as the minimum precision in expressions and for floating
point arguments. Lesser precisions are used in expressions if the

-Xdialect-ansi option is used.

If prototypes are used, use the declared precision for arguments, unless the
-Xextend-args option is also given.

Synonym: -Xuse-long-double.

NOTE: If this option is used, libraries containing functions with floating point
parameters must be recompiled. For safety, recompile all libraries to avoid missing
any such functions. Also, operation of library routines designed to process a
suppressed type is undefined.

5.4.59 Generate .frame_info for C functions (-Xframe-info)

-Xframe-info

81

Wind River Compiler for M32R
User’s Guide, 5.4

Force the compiler to generate .frame_info sections for C funtions. Use this option
when compiling mixed C/C++ programs in which C++ exceptions may propagate
back through C functions. For more information, see 23.8 .frame_info sections, p.364.

5.4.60 Include Filename Path in Debug Information (-Xfull-pathname)

-Xfull-pathname
-X125
Include the path prefix in filenames in debug information (specifically, in the

file assembler directive). Without this option, only the filename is included.

5.4.61 Control GNU Option Translator (-Xgcc-options-...)

-Xgcc-options-on

Enable automatic translation of GNU compiler (GCC) options. This is the
default.

-Xgcc-options-off
Disable automatic translation of GCC options.

-Xgcc-options-verbose
Display all translations. Valid only if translation is enabled (-Xgcc-options-on).

When -Xgcc-options-on is enabled, GCC option flags from the command line or
makefile are parsed and, if possible, translated to equivalent Wind River Compiler
options. Translations are determined by the tables in the file gcc_parser.conf.

5.4.62 Treat All Global Variables as Volatile (-Xglobals-volatile)

See 5.4.90 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.95.

5.4.63 Do Not Pass #ident Strings (-Xident-off)

-Xident-on
-X63=0
Pass #ident strings to the assembler. This is the default.

-Xident-off
-X63
Do not pass #ident strings to the assembler.

82

5 Invoking the Compiler
5.4 Compiler -X Options

Synonym: -Xno-ident.

5.4.64 Enable Strict implementation of IEEE754 Floating Point Standard
(-Xieee754-pedantic)

-Xieee754-pedantic

-x82=1
Enable strict implementation of the IEEE754 floating point standard at some
cost in performance. Specifically,

* Do not optimize a divide by a constant to a multiply of its reciprocal.

* Donot use floating multiply-add instructions on architectures where more
bits are kept in intermediate results than is defined by the standard.

* Do not optimize x-x to zero so that possible NaN values are preserved.

* Do less equal and greater equal comparisons with behavior for NaN
values as defined by the standard.

This option is equivalent to -Xfp-pedantic. (See 5.4.51 Specify Degree of
Conformance to the IEEE754 Standard (-Xfp-fast, -Xfp-normal, -Xfp-pedantic),
p-77.)

5.4.65 Control Template Instantiation (-Ximplicit-templates...)

-Ximplicit-templates

-X207=0
Instantiate each template in each module where it is used or referenced. This
is the default.

-Ximplicit-templates-off
-X207=1
Instantiate templates only where explicit instantiation syntax is used.

Synonym: -Xno-implicit-template.

For further discussion, see 5.4.27 Mark Sections as COMDAT for Linker Collapse
(-Xcomdat), p.67 and Templates, p.225.

C++ only.

83

Wind River Compiler for M32R
User’s Guide, 5.4

5.4.66 Treat #include As #import (-Ximport)

-Ximport

-X75
Treat all #include directives as if they are #import directives. This means that
any include file is included only once.

5.4.67 Ignore Missing Include Files (-Xincfile-missing-ignore)

-Xincfile-missing-ignore

-X172
This option, which suppresses error reporting, is effective only when used
with -Xmake-dependency (5.4.86 Show Make Rules (-Xmake-dependency), p.92).
It causes preprocessing to continue even when a required header is not found.
If -Xincfile-missing-ignore is used with -Xmake-dependency=2 or
-Xmake-dependency=6, the preprocessor issues a warning (but not an error)
when a required system file (#include <filename>) is not found.

5.4.68 Initialize Local Variables (-Xinit-locals=mask)

-Xinit-locals=mask
-X87=mask

Initialize all local variables to zero or the value specified with -Xinit-value at
every function entry. mask is a bit mask specifying the kind of variables to be
initialized.

mask may be given in hex, e.g., -Xinit-locals=0x9. Mask bits may be OR-ed to
select more than one. Undefined mask bits are ignored.

0x1 integers
0x2 pointers
0x4 floats

0x8 aggregates

If n is not given, all local variables will be initialized.

This option is useful in finding “memory dependent” bugs.

84

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.69 Control Generation of Initialization and Finalization Sections (-Xinit-section)

This option controls generation of sections for run-time initialization and
finalization invocation, including constructor and destructor functions and global
class objects in C++. For more information, see 15.4.8 Run-time Initialization and
Termination, p.266.
-Xinit-section=0
-X91=0
Suppress generation of initialization and finalization sections. This option is
not recommended and may result in incorrect run-time behavior.
-Xinit-section
-Xinit-section=1
-x91
-x91=1
Create .ctors and .dtors sections containing pointers to initialization and
finalization functions, sorted by priority. This is the default.

Initialization and finalization functions are designated with attribute
specifiers. See constructor, constructor(n) Attribute, p.143 and destructor,
destructor(n) Attribute, p.144.

-Xinit-section=2

-X91=2
Create .init$nn and .fini$nn code sections containing calls to initialization and
finalization functions, sorted by priority. Provides compatibility with previous
versions of the compiler, including recognition of old-style function prefix
designations for initialization and finalization functions.

Synonym: -Xuse-.init.

5.4.70 Control Default Priority for Initialization and Finalization
Sections (-Xinit-section-default-pri)

-Xinit-section-default-pri=n

-X175=n
Assign the default priority for constructor and destructor functions and for
C++ global class objects. The specified priority n applies to functions
referenced in .ctors, .dtors, .init, and .fini sections. Functions with lower
priority numbers execute first.

85

Wind River Compiler for M32R

User’s Guide, 5.4

5.4.71 Define Initial Value for -Xinit-locals (-Xinit-value=n)

-Xinit-value=n
-X90=n

Define the initial value used by the -Xinit-locals option. This option can be
useful to identify uninitialized variables, since it can be used to initialize
variables to some invalid or recognizable value that might produce a memory
access error.

The value n is 32-bits, right-justified, zero-filled and may be specified as a
decimal or hexadecimal number (0x...).

5.4.72 Inline Functions with Fewer Than n Nodes (-Xinline=n)

-Xinline=n
-X19=n

Set the limit on the number of nodes for automatic inlining. Because the
compiler collects functions until -Xparse-size KBytes of memory is used, the
inlined function does not need to be defined before the function using it. See
__inline__ and inline Keywords, p.137 and Inlining (0x4), p.193 for a discussion
of inlining.

See 5.4.142 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.114 for a
definition of node count. (Assembly files saved with -S show the number of
nodes for each function.) For purposes of automatic inlining, nodes that do not
correspond to an operator or operand are not counted. Hence setting -Xinline
to 0 inlines no functions automatically, and setting -Xinline to 1 inlines only
“dummy” functions containing no code.

Defaults: -Xinline is 10 by default. -XO sets -Xinline to 40 by default.

NOTE: Inlining occurs only if optimization is selected by using the -XO or -O
option.

5.4.73 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force)

-Xinline-explicit-force
-Xinline-explicit-£force=n

86

5 Invoking the Compiler
5.4 Compiler -X Options

-X163
-X163=n
Inline recursive function calls up to n times. The default is 50. If this option is
not used, the compiler inlines a function at most once.

If this option is combined with -Xinline=0, the compiler inlines only functions
declared within a C++ class or with inline, __inline__, or #pragma inline.

This option is overridden by -Xexplicit-inline-factor. (See 5.4.49 Control
Inlining Expansion (-Xexplicit-inline-factor), p.76.) By default,
-Xexplicit-inline-factor=3 is in effect for C++ programs; C++ programmers
who want to use -Xinline-explicit-force should therefore specify
-Xexplicit-inline-factor=0.

5.4.74 Enable Intrinsic Functions (-Xintrinsic-mask)

-Xintrinsic-mask=n
-X154=n
Enable specified intrinsic functions. See 6.6 Intrinsic Functions, p.146 for

details.

5.4.75 Set longjmp Buffer Size (-Xjmpbuf-size=n)

-Xjmpbuf-size=n

-X201=n
C++ only. Set the size in bytes of the buffer allocated for setjmp and longjmp
when using exceptions. The default size as determined by the compiler should

usually be sufficient.

5.4.76 Create and Keep Assembly or Object File (-Xkeep-assembly-file,
-Xkeep-object-file)

-Xkeep-assembly-file
(no numeric equivalent)
Always create and keep a .s file without the need for a separate compilation

with the -S option. This option can be used with the -c option to create both
assembly and object files at once.

87

Wind River Compiler for M32R

User’s Guide, 5.4

-Xkeep-object-£file
(no numeric equivalent)

Always create and keep a .o file without the need for a separate compilation
with the -c option. This is needed only when a single file is compiled,
assembled, and linked in one step, because in this case the driver deletes
intermediate assembly and object files automatically.

5.4.77 Enable Extended Keywords (-Xkeywords=mask)

-Xkeywords=mask
-X78=mask

Recognize new keywords according to mask, a bit mask specifying which
keywords to add.

mask may be given in hex, e.g., -Xkeywords=0x9. Mask bits may be OR-ed to
select more than one. Undefined mask bits are ignored.

0x01 extended (C only)

0x02 pascal (C only)

0x04 inline (this keyword always available in C++)
0x08 packed

0x10 interrupt (C only)

See 6. Additions to ANSI C and C++ for more information on these keywords.

5.4.78 Disable Individual Optimizations (-Xkill-opt=mask, -Xkill-reorder=mask)

NOTE: These options are deprecated and should be used only on the advice
Customer Support.

-Xkill-opt=mask
-X27=mask

Disable individual target-independent optimizations.

-Xkill-reorder=mask
-X28=mask

88

Disable individual target-dependent optimizations in the reorder program.

mask is a bit mask with one bit for each optimization type. mask may be given
in hex, e.g., -Xkill-opt=0x12. Multiple optimizations can be disabled by
OR-ing their mask bits. Undefined mask bits are ignored.

5 Invoking the Compiler
5.4 Compiler -X Options

Both target-independent and target-dependent optimizations are described in
10. Optimization. The name of each optimization is followed by its mask bit in
parentheses, e.g. Tail recursion (0x2).

For mask bit values for -Xkill-opt, see 10.3 Target-Independent Optimizations,
p-192, and for -Xkill-reorder, 10.4 Target-Dependent Optimizations, p.204. mask
bit values are given in parentheses after the name of each optimization.

Either the -O or -XO option must be given to enable optimization before either -
of these -Xkill-... options can be used. To compile with almost no optimization,
do not specify -O or -XO.

Two minor optimizations required by the code generation algorithms cannot
be disabled: local strength reduction (e.g., multiply by power of 2 becomes
shift or add) and simple branch optimization (e.g., branches to branches).

5.4.79 Wait For License (-Xlicense-wait)

-Xlicense-wait

-x138
If a license is not available, request that the compiler wait and retry once a
minute, rather than returning with an error.

5.4.80 Generate Warnings On Suspicious/Non-portable Code (-Xlint=mask)

-X1int[=mask]

-x84[=mask]
Generate warnings when suspicious and non-portable C code is encountered.
For C++ modules, see note below. The two usual cases are:

-Xlint enables all warnings (equivalent to -Xlint=1).

-Xlint=0xffffffff disables all present and future warnings (equivalent to
-Xlint=0 or the default of not using the option at all).

Individual warnings can be disabled by OR-ing the following values. In effect,
-Xlint=1is assumed, enabling all warnings, and then individual warnings are
disabled. mask may be given in hex, e.g., -Xlint=0x1a. Undefined bits are
ignored.

0x02
Variable used before being set.

0x04
Label not used.

89

Wind River Compiler for M32R
User’s Guide, 5.4

90

0x08
Condition always true/false, for example, i==i.

0x10
Variable/function not used.

020
Missing return expression.

0x40
Variable set but not used.

0x80
Statement not reached.

0x100
Conversion problems.

0x200
In non-ANSI mode, warn when the compiler selects an unsigned integral
type for an expression which would be signed under ANSI mode. For
example:
"a.c", line 3: warning (1671):
non-portable behavior: type of

‘>' operator is unsigned only
in non-ANSI mode

0x400
Possibly assignment (=) should be comparison (==).

0x1000
Missing function declaration (equivalent to -Xforce-declarations).

0x2000
Possible redundant expression. (Examples: x=x, x&x, x | x, x/x.)

11. The Lint Facility gives an example of a program which generates most of the
-Xlint warnings.

See also the __lint macro in 6.1 Preprocessor Predefined Macros, p.119 to avoid
use of non-ANSI extensions in header files.

NOTE: For C++, -Xlint is equivalent to -Xsyntax-warning-on. (See
5.4.137 Disable Certain Syntax Warnings (-Xsyntax-warning-...), p.112.)

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.81 Allocate Static and Global Variables to Local Data Area (-Xlocal-data-area=n)

-Xlocal-data-area=n
-X115=n
Allocate the static and global variables which are defined in a module and
referenced as least once in a contiguous block of memory, called the local data
area (LDA), and make fast, efficient references to those variables via a
temporary base register selected by the compiler.

n specifies the maximum of the LDA, and defaults to 32,767 bytes. (If n is
greater than the default, references to variables in the LDA will be less
efficient.)

The optimization does not apply to unreferenced variables or to variables
smaller than -Xsmall-data, which go in the .sdata or .sbss sections.
-Xlocal-data-area should be used with caution in multithreaded
environments. To restrict the optimization to static variables, use
-Xlocal-data-area-static-only; VxWorks developers are strongly advised to use
this option.

See 14.4 Local Data Area (-Xlocal-data-area), p.251 for additional information.

Synonym: -Xlocal-struct.

NOTE: If at least one variable in the LDA has an initial value, the LDA is in the
.data section; otherwise it is in the .bss section. Because -Xlocal-data-area is
nonzero by default, uninitialized static and global variables larger than
-Xsmall-data bytes in size which are referenced at least once are not stored in
a .bss section. To store such variables in .bss, use -Xlocal-data-area=0.

5.4.82 Restrict Local Data Area Optimization to Static Variables
(-Xlocal-data-area-static-only)

-Xlocal-data-area-static-only
-X166

Apply the local data area optimization only to static variables; do not optimize
global variables. See 14.4 Local Data Area (-Xlocal-data-area), p.251 for
information about this optimization.

91

Wind River Compiler for M32R
User’s Guide, 5.4

5.4.83 Do Not Assign Locals to Registers (-Xlocals-on-stack)

-Xlocals-on-stack

-X5
By default, the compiler attempts to assign all local variables to registers. If
-Xlocals-on-stack is given, only variables declared with the register keyword
are assigned to registers.

5.4.84 Expand Macros in Pragmas (-Xmacro-in-pragma)

-Xmacro-in-pragma
-X157
Expand preprocessor macros in #pragma directives.

5.4.85 Warn On Undefined Macro In #if Statement (-Xmacro-undefined-warn)

-Xmacro-undefined-warn
-X171

Generate a warning when an undefined macro name occurs in a #if
preprocessor directive.

5.4.86 Show Make Rules (-Xmake-dependency)

-Xmake-dependency
-Xmake-dependency=mask
-X156, -X156=mask

Generate a list of include files required to build each object file. Example:
main.o: main.c stdio.h
command list

This output means that main.c and stdio.h are required to build the target
main.o. A list of make commands follows the dependency.

mask, which defaults to 1, is a bit mask—always interpreted as
hexadecimal—of which the four least significant bits are meaningful: the
fourth (least significant) bit, if set to 1, means that all required files are shown;
this is the default. The third bit means that only files enclosed in double
quotation marks (#include "filename") are shown. (If both the third and the
fourth bits are set, the fourth overrides the third.) The second bit means that
compilation continues after the dependency list is generated (if this bit is 0, no
output is emitted other than the list of dependencies) and that the dependency

92

5 Invoking the Compiler
5.4 Compiler -X Options

list is sent to a file (instead of the standard output). The first bit creates a
“phony target” for each dependency other than the main file; this is a
work-around for errors caused by missing header files and is provided for
GNU compatibility. The -o option can be used to specify the output file, the
target name, or both. Hence:

-Xmake-dependency=1
Same as -Xmake-dependency. Show all required include files. If -0 is used, the
target is the name specified with -o. Results go to the standard output unless
-Xmake-dependency-savefile=filename is specified. No further output is
emitted.

-Xmake-dependency=2
Same as -Xmake-dependency=1, but show only files enclosed in double
quotation marks (#include "filename").

-Xmake-dependency=4
Same as -Xmake-dependency=1, but write the dependency list to a file and
then continue with normal compilation. The output file can be specified with
either -o or -Xmake-dependency-savefile=filename (which overrides -o);
otherwise it is called filename.d, where filename is the name of the main source
file, and is created in the directory where the compiler was invoked. If -0 is
used without -Xmake-dependency-savefile, the output file is the basename
specified by -o with .d appended.

-Xmake-dependency=8
Same as -Xmake-dependency=1, but output a phony target for each
dependency other than the main file.

The bits can be OR-ed to combine options. Example:

-Xmake-dependency=6
Show only files enclosed in double quotation marks (-Xmake-dependency=2);
write output to a file, then continue with normal compilation
(-Xmake-dependency=4).

-Xmake-dependency=a
Show only files in double quotation marks (-Xmake-dependency=2) and
output phony targets (-Xmake-dependency=8).

-Xmake-dependency=c
Output phony targets (-Xmake-dependency=8); write output to a file, then
continue with normal compilation (-Xmake-dependency=4).

93

Wind River Compiler for M32R
User’s Guide, 5.4

-Xmake-dependency=e
Show only files enclosed in double quotation marks (-Xmake-dependency=2);
output phony targets (-Xmake-dependency=8); write output to a file, then
continue with normal compilation (-Xmake-dependency=4).

Ordinarily, the preprocessor returns an error and stops when a required file is not
found. To continue preprocessing when files are missing, use -Xmake-dependency
with -Xincfile-missing-ignore (5.4.67 Ignore Missing Include Files
(-Xincfile-missing-ignore), p.84).

5.4.87 Specify Dependency Name or Output File (-Xmake-dependency-...)

This option is valid only when used with -Xmake-dependency.

—Xmake—dependency—target:string
Change the target name in the rule emitted by -Xmake-dependency to string
(instead of using the name of the object file). To specify multiple target names,
repeat the -Xmake-dependency-target option on the command line.

-Xmake-dependency-savef i1e=ﬁlename

Specify the output file for -Xmake-dependency.

5.4.88 Set Template Instantiation Recursion Limit (-Xmax-inst-level=n)

-Xmax- inst-leve1[=n]

-x216[=n]
C++ only. Set the maximum level for recursive instantiation of templates.
Without this option, an error is emitted when a default level of 50 is reached.

With this option, but without a value 7, the limit is 100.

5.4.89 Set Maximum Structure Member Alignment (-Xmember-max-align=n)

-Xmember-max-align=n

-X88=n
Set the maximum byte boundary to which structure members will be aligned.
If the natural alignment of a member is less than n, the natural alignment is
used for it. See pack Pragma, p.130 and the __packed__ and packed Keywords,
p-139 for details. See also 5.4.133 Set Minimum Structure Member Alignment
(-Xstruct-min-align=n), p.111.

The default value of 1 is dependent on the processor as described in 8. Internal
Data Representation.

94

5 Invoking the Compiler
5.4 Compiler -X Options

Synonym: -Xstruct-max-align.

5.4.90 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile)

-Xmemory-is-volatile

-X4
Treat all variables as volatile.

-Xglobals-volatile
-x4=1
Treat all global variables as volatile.

-Xstatics-volatile
-X4=2
Treat all static variables as volatile.

-Xpointers-volatile
-x4=4
Treat all pointer accesses as volatile.

These options tell the compiler not to perform optimizations that can cause device
drivers or other systems to fail. By default, the compiler keeps data in registers as
long as possible whenever it is safe. Difficulties can arise if a memory location
changes because it is mapped to an external hardware device and the compiler,
unaware of the change, continues to use the old value stored in a register. While
these situations can now be handled with the volatile keyword, the -X4 options
allow compilation of older programs.

To combine these options, use the sum of their values with a single occurrence of
the option flag. For example, use -X4=3 to treat all global and static variables as
volatile. -X4=7, equivalent to -X4 or -Xmemory-is-volatile, combines all of the
options.

5.4.91 Warn On Type and Argument Mismatch (-Xmismatch-warning)

-Xmismatch-warning

-x2

-Xmismatch-warning=2

-X2=2
Generate a warning only (instead of a fatal error) when either pointers of
different types, or pointers and integers, are mixed in expressions. Example:

long i1, 12 = &il;

95

Wind River Compiler for M32R
User’s Guide, 5.4

is invalid in ANSI C but is allowed in some non-ANSI dialects. This option is
set implicitly by -Xdialect-pcc (-X7=3).

If the option -Xmismatch-warning=2 is given, the compiler also generates a
warning instead of an error when identifiers are redeclared and when a
function call has the wrong number of arguments.

This option is ignored when compiling C++ modules.

NOTE: -Xmismatch-warning and -Xmismatch-warning=2 override the -e option.
If either form of -Xmismatch-warning is used, mismatched types will only
produce a warning, even if -e is used to increase the severity level of the diagnostic.
See 5.3.8 Change Diagnostic Severity Level (-e), p.36.

5.4.92 Specify Section Name (-Xname-...)

Use the following options to specify the name of a default section.

-Xname-code=nare
Set the section name for code.

-Xname-const=name
Set the section name for initialized constants.

-Xname-data=nare
Set the section name for initialized data.

-Xname-eh=name
C++ only.
Set the section name for all exception-handling tables.

-Xname-rtti=name
C++ only.
Set the section name for all RTTI tables.

-Xname-sconst=name
Set the section name for initialized small const.

-Xname-sdata=name
Set the section name for initialized small data.

-Xname-string=name
Set the section name for strings.

-Xname-uconst=name
Set the section name for uninitialized constants.

96

5 Invoking the Compiler
5.4 Compiler -X Options

-Xname-udata=name
Set the section name for uninitialized data.

-Xname-usconst=name
Set the section name for uninitialized small const.

-Xname-usdata=name
Set the section name for uninitialized small data.

5
-Xname-vtbl=name -

C++ only.
Set the section name for all virtual-function tables.

Section names can also be specified using the section pragma. For example, setting
-Xname-code=.code has the same effect as:

#pragma section CODE ".code"

For more information, see section Pragma, p.135.

5.4.93 Disable C++ Keywords namespace and Using (-Xnamespace-...)

-Xnamespace-on
-X219=0
Recognize the namespace and using keywords or constructs.

-Xnamespace-off
-X219
C++ only. Do not recognize the namespace and using keywords or constructs.

5.4.94 Enable Extra Optimizations (-XO)

-X0
-X26
Enable all standard optimizations plus the following;:

-0
(5.3.17 Optimize Code (-O), p.40)

-Xinline=40

(10 with -0O; 5.4.72 Inline Functions with Fewer Than n Nodes (-Xinline=n),
p-86)

-Xopt-count=2
(1 with -0O; 5.4.96 Execute the Compiler’s Optimizing Stage n Times

(-Xopt-count=n), p.98)

-Xparse-size=6000

97

Wind River Compiler for M32R
User’s Guide, 5.4

(3000 with -0O; 5.4.98 Specify Optimization Buffer Size (-Xparse-size), p.99)

-Xrestart

(off with -O; 5.4.111 Restart Optimization From Scratch (-Xrestart), p.104)

-Xtest-at-both
(-Xtest-at-bottom with -O; 5.4.139 Specify Loop Test Location (-Xtest-at-...),
p-112)

5.4.95 Use Old Inline Assembly Casting(-Xold-inline-asm-casting)

-Xold-inline-asm-casting

-X137
This option affects small arguments to asm macros (arguments with size less
than int).

By default, the compiler does not extend such arguments to int. Prior to
version 4.2, the compiler did extend such arguments to int. Use this option to
force the old behavior for compatibility with existing asm macros which
depend on it.

5.4.96 Execute the Compiler’s Optimizing Stage n Times (-Xopt-count=n)

-Xopt-count=n

-X25=n
Execute the compiler’s optimizing stage n times. The default is once. In most
cases this is enough. In rare instances, one stage of the optimizer will generate
an opportunity for a previous stage. Setting -Xopt-count=2 or more will cause
a somewhat longer compilation time but may produce slightly better code.
This option is set to 2 by -XO.

5.4.97 Disable Most Optimizations With -g (-Xoptimized-debug-...)

-Xoptimized-debug-on
-X89=0
Do not disable optimizations when using -g. This is the default.
-Xoptimized-debug-off
-X89
When using the -g option to generate debug information, disable most
optimizations and force line numbers in debug information to be in increasing
order — assists with debuggers that cannot handle optimized code. See also

98

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.40 Disable debugging information Extensions (-Xdebug-mode=mask), p.71, and
5.4.41 Disable Debug Information Optimization (-Xdebug-struct-...), p.72.

Synonym: -Xno-optimized-debug.

5.4.98 Specify Optimization Buffer Size (-Xparse-size)

-Xparse-size=n

-X20=n
Delay code generation of functions until n KBytes of main memory is used for
internal tables. By delaying generation, the compiler can perform
interprocedural optimizations such as inlining and register tracking.

The default is 3000 KB (6000 KB if option -XO is used). The highest useful value
for a module depends on many factors; it is not practical to calculate it (see the
discussion of “limitations related to memory size” in C. Compiler Limits for
some of the factors).

For very large and complex modules, experiment with larger values, e.g.
-Xparse-size=8000, to see if code size or execution time is reduced.

NOTE: That using a value larger than available physical memory will cause
excessive swapping and slow compilation.

5.4.99 Output Source as Comments (-Xpass-source)

-Xpass-source
-X11

Output the source as comments in the generated assembly language code.

5.4.100 Use Precompiled Headers (-Xpch-...)

C++ only. These options are disabled by default. At most one of -Xpch-automatic,
-Xpch-create, and -Xpch-use can be enabled; if more than one is specified, all but
the first are ignored. For more information, see 13.7 Precompiled Headers, p.231.

-Xpch-automatic
Generate and use precompiled headers.

-Xpch-create=filename
Generate a precompiled header (PCH) file with specified name.

99

Wind River Compiler for M32R
User’s Guide, 5.4

-Xpch-diagnostics
Generate an explanatory message for each PCH file that the compiler locates
but is unable to use.

-Xpch-directory=directory
Look for PCH file in specified directory.

-Xpch-messages
Generate a message each time a PCH file is created or used.

-Xpch-use=filename

Use specified PCH file.

5.4.101 Generate Position-Independent Code for Shared Libraries (-Xpic)

-Xpic

-X62
For VxWorks RTP application development. Allows a single copy of a shared
library, loaded in a single memory location, to be called by different programs.
RTP shared-library code must be compiled with this option.

5.4.102 Treat All Pointer Accesses As Volatile (-Xpointers-volatile)

See 5.4.90 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.95.

5.4.103 Control Interpretation of Multiple Section Pragmas (-Xpragma-section-...)

These options control the compiler’s behavior when multiple #pragma section
directives are used with different parameters for the same section class. The default
is -Xpragma-section-first.

For more information, see section and use_section Pragmas, p.235.

-Xpragma-section-first
If this option is in effect when a variable or function is defined, the compiler
uses the earliest currently-valid section pragma that specifies a non-default
location for the variable or function.

-Xpragma-section-last
If this option is in effect when a variable or function is defined, the compiler
uses the last currently-valid section pragma that specifies a non-default
location for the variable or function.

100

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.104 Preprocess Assembly Files (-Xpreprocess-assembly)

-Xpreprocess-assembly
Invoke C preprocessor on assembly files before running the assembler.

5.4.105 Suppress Line Numbers in Preprocessor Output
(-Xpreprocessor-lineno-off)

-Xpreprocessor-lineno-off
-X165

Suppress line-number information in the preprocessor output. Use this with
the -E option (send preprocessor output to standard output) when
line-number information is not needed.

5.4.106 Use Old Preprocessor (-Xpreprocessor-old)

-Xpreprocessor-old
-X155

Use the preprocessor from release 4.3. When -Xpreprocessor-old is specified,
vararg macros are not supported and the following options are not available:
-Xmake-dependency, -Xmake-dependency-..., -Xmacro-in-pragma, and
-Xcpp-dump-symbols.

This option is valid only when compiling C modules or when compiling C++
modules with the -Xc++-o0ld option.

5.4.107 Generate Profiling Code for the RTA Run-Time Analysis
Tool Suite (-Xprof-...)

-Xprof-all
-X123=3
Collect count and time data.

-Xprof-all-fast

-X123=6
Collect count and time data for each function, but not for pairs of functions, so
no hierarchical profile will be available.

101

Wind River Compiler for M32R
User’s Guide, 5.4

-Xprof-count

-X123=2
Collect count data only, incrementing a counter for line of code executed
(actually, for each basic block).

-Xprof-coverage

-X123=8
Like -Xprof-count, except just set the counter to one for each basic block
executed instead of counting the number of executions.

-Xprof-time

-X123=1
Collect time data only.

-Xprof-time-fast

-X123=4
Collect time data for each function, but not for pairs of functions, so no
hierarchical profile will be available.

These options cause the compiler to generate profiling code for the RTA. To be
profiled, a function must be instrumented. The compiler inserts instrumentation
code based on the following options. Every module to be profiled must be
compiled with one of these options.

NOTE: In addition to an -Xprof-type option, you must use the -g option to generate
debug information.

Besides interactively analyzing the profile information generated by these options
using the RTA, you may feed the collected data back to the compiler to improve
optimization based on the actual execution of the target program. See

5.4.109 Optimize Using RTA Profile Data (-Xprof-feedback), p.103.

Do not use these options with the older pair of profiling options -Xblock-count
(5.4.11 Insert Profiling Code (-Xblock-count), p.61) and -Xfeedback (5.4.52 Optimize
Using Profile Data (-Xfeedback=file), p.78).

A function, its parent, and its children must all be compiled with the same
-Xprof-type option or the results are undefined.

102

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.108 Select Target Executable for Use by -Xprof-feedback (-Xprof-exec)

-Xprof -exec=pathname
(no numeric equivalent)
pathname must be the full pathname of a target executable for which profile
data is present in the RTA database directory specified with -Xprof-feedback.
See 5.4.109 Optimize Using RTA Profile Data (-Xprof-feedback), p.103 for details.

5.4.109 Optimize Using RTA Profile Data (-Xprof-feedback)

-Xprof-£feedback=pathname

(no numeric equivalent)
pathname must specify an RTA database directory (not a file). Use the profiling
information in that database (the latest “snapshot”) to optimize for faster code.
See the 5.4.53 Set Optimization Parameters Used With Profile Data
(-Xfeedback-frequent, -Xfeedback-seldom), p.78, to control how the profile data
affects optimization.

The snapshot selected depends on -Xprof-snapshot (5.4.110 Select Snapshot for
Use by -Xprof-feedback (-Xprof-snapshot), p.104) and -Xprof-exec (5.4.108 Select
Target Executable for Use by -Xprof-feedback (-Xprof-exec), p.103) as follows:

-Xprof-exec -Xprof- snapshot Snapshot Selected

No No Use latest snapshot in the database.

No Yes Use snapshot named by -Xprof-snapshot. If a
snapshot with the given name is present for
more than one executable, use the latest.

Yes No Use latest snapshot for the executable
specified by -Xprof-exec.

Yes Yes Use snapshot named by -Xprof-snapshot.
Report an error if no snapshot with the given
name is present for the executable specified by
-Xprof-exec.

103

Wind River Compiler for M32R

User’s Guide, 5.4

NOTE: This option is used in conjunction with the -Xprof-... options
(5.4.107 Generate Profiling Code for the RTA Run-Time Analysis

Tool Suite (-Xprof-...), p.101). Do not use this option with the older pair of
profiling options -Xblock-count (5.4.11 Insert Profiling Code (-Xblock-count),
p-61) and -Xfeedback (5.4.52 Optimize Using Profile Data (-Xfeedback=file),
p-78).

Also, the selected snapshot must include basic block count data, that is, the
executed code must have been compiled with -Xprof-all, -Xprof-all, or
-Xprof-count. The options -Xprof-time, -Xprof-time-fast, and
-Xprof-coverage do not produce the data required for feedback-driven
optimization.

5.4.110 Select Snapshot for Use by -Xprof-feedback (-Xprof-snapshot)

-Xprof-snapshot=string

(no

numeric equivalent)

string must name a snapshot in the RTA database directory specified with
-Xprof-feedback. See -Xprof-feedback (5.4.109 Optimize Using RTA Profile
Data (-Xprof-feedback), p.103) for details.

5.4.111 Restart Optimization From Scratch (-Xrestart)

-Xrestart
-X29

104

Restart optimization from scratch if too many optimistic predictions were
made.

Compilers may have difficulty predicting the best way to perform specific
optimizations when the information needed is not available until a later
compiler stage. For example, better code may be produced by moving a loop
invariant expression outside the loop if the result can be placed in a register.
However, the compiler does not know if any register is available until after
register allocation, which is performed later in the compilation.

The compiler uses an optimistic approach which generates optimal code when
registers are available but not when all registers are taken. The -Xrestart option
will restart optimization and code generation if any optimistic prediction is
false. This will typically slow the compilation of large functions by a factor of
almost two while generating better code. This option is turned on by -XO.

5.4.112

5.4.113

54114

5 Invoking the Compiler
5.4 Compiler -X Options

Generate Code for the Run-Time Error Checker (-Xrtc=mask)

-Xrte=mask
-X64=mask
With no mask, this option directs the compiler to insert checking code for all
checks made by the Run-Time Error Checker. Use the mask to select specific
checks rather than all.

Enable Run-time Type Information (-Xrtti, -Xrtti-off)

-Xrtti
-X205=1
Enable run-time type information. This is the default.

There are two approaches to generating run-time type information for a class:

* Compile all modules with -Xrtti and also with -Xcomdat (5.4.27 Mark
Sections as COMDAT for Linker Collapse (-Xcomdat), p.67): the run-time type
information will be emitted for every module but will be marked
COMDAT and collapsed to a single instance by the linker. This is the
preferred method.

= For a class declaring one or more virtual functions, compile only the
module defining the key function for the class with -Xrtti. Key functions are
described in Virtual Function Table Generation—Key Functions, p.173.

-Xrtti-off

-X205=0
C++ only. Disable run-time type information. Using this option will save space
because the compiler does not need to create type tables.

Synonym: -Xno-rtti.

Pad Sections for Optimized Loading (-Xsection-pad)

-Xsection-pad
-X152

Allow the linker to pad loadable sections for optimized loading.

105

Wind River Compiler for M32R
User’s Guide, 5.4

5.4.115 Generate Each Function in a Separate CODE Section Class (-Xsection-split)

-Xsection-split

-x129

-Xsection-split-off

-X129=0
Generate a separate CODE section class for each function in the module. The
default is -Xsection-split-off; a single module generates only one CODE

section class containing the code for all functions for that module.

By default, with -Xsection-split enabled, the multiple CODE section classes
will all still be named .text (absent the use of .section pragmas). While linking,
a specific .text section for a given function may be singled out using the linker
command language syntax:

object-filespec (input-section-name[symbol] , ...)

(where the “[” and “]” characters are required and do not mean “optional” in
this case).

Example: if object file test.o contains functions f1 and £2, then the .text section
for f1 may be specified by:

test.o(. text[fl])

NOTE: This option is especially useful in combination with
-Xremove-unused-sections to reduce code size. See Remove Unused Sections
(-Xremove-unused-sections), p.381.

5.4.116 Disable Generation of Priority Section Names (-Xsect-pri-...)

-Xsect-pri-on

-X122=0
Enable section names of the form “...$n”. See 23.6 Sorted Sections, p.362 for use
of this form. This is the default.

-Xsect-pri-off
-X122

Disable generation of section names of the form “...$n” for use by third-party
assemblers or linkers unable to process this form of name.

106

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.117 Control Listing of -X Options in Assembly Output (-Xshow-configuration=n)

-Xshow-configuration=0
Compiler-generated assembly listings (saved with the -S option) do not show
-X options. This is the default.

-Xshow-configuration=1
Assembly listings contain -X options, but only user-configurable options are
shown; internal compiler flags are suppressed.

5.4.118 Print Instantiations (-Xshow-inst)

-Xshow-inst

-x212
C++ only. Print to stderr a list of all template instantiations made during
compilation. See also 5.4.65 Control Template Instantiation
(-Ximplicit-templates...), p.83 and Templates, p.225.

5.4.119 Show Target (-Xshow-target)

-Xshow-target
dcc C and dplus C++ driver option. Display the target processor “-t option” on
standard output, but do not compile any file.

5.4.120 Optimize for Size Rather Than Speed (-Xsize-opt)

-Xsize-opt

-X73
Optimize for size rather than speed when there is a choice. Optimizations
affected include inlining, loop unrolling, and branch to small code. For
character arrays, -Xstring-align=value will override -Xsize-opt. See the
description of array alignment in 8.3 Arrays, p.168.

5.4.121 Set Size Limit for “small const” Variables (-Xsmall-const=n)

-Xsmall-const=n
-X98=n
This option applies only to chips supporting SCONST.

107

Wind River Compiler for M32R
User’s Guide, 5.4

Place small const static and global variables with a size in bytes less than or
equal to n in the SCONST section class. See the description of #pragma section
in section and use_section Pragmas, p.235 for more information.

5.4.122 Set Size Limit for “small data” Variables (-Xsmall-data=n)

-Xsmall-data=n

-X97=n
Place small non-constant static and global variables with a size in bytes less
than or equal to 7 in the SDATA section class. See the description of #pragma
section in section Pragma, p.135 for more information.

5.4.123 Enable Stack Checking (-Xstack-probe)

-Xstack-probe
-X10

Enable stack checking (probing). For users of the Run-Time Error Checker, this
option is equivalent to -Xrtc=4.

NOTE: -Xstack-probe cannot be used with “interrupt” functions, that is, with
a function named in an interrupt pragma or declared using the interrupt or
__interrupt__ keywords

5.4.124 Diagnose Static Initialization Using Address (-Xstatic-addr-...)

-Xstatic-addr-error

-X81=2
Generate an error if the address of a variable, function, or string is used by a
static initializer. This is useful when generating position-independent code
(PIC).

-Xstatic-addr-warning

-x81=1
Generate a warning if the address of a variable, function, or string is used by a
static initializer. This is useful when generating position-independent code
(PIC). This option is on by default.

108

5 Invoking the Compiler
5.4 Compiler -X Options

5.4.125 Treat All Static Variables as Volatile (-Xstatics-volatile)

See 5.4.90 Treat All Variables As Volatile (-Xmemory-is-volatile, -X...-volatile), p.95.

5.4.126 Buffer stderr (-Xstderr-fully-buffered)

5
-Xstderr-fully-buffered -
-X173

Buffer stderr using 10KB buffer. Use this option to reduce network traffic;
stderr is unbuffered by default.

5.4.127 Terminate Compilation on Warning (-Xstop-on-warning)

-Xstop-on-warning

-X85
Terminate compilation on any warning. Without this option, only errors
terminate compilation. (For both errors and warnings, compilation terminates
after a small number of errors are output.)

5.4.128 Compile C/C++ in Pedantic Mode (-Xstrict-ansi)

-Xstrict-ansi
Compile in “pedantic” mode. This option is equivalent to -Xdialect-strict-ansi.
For C, see 5.4.42 Specify C Dialect (-Xdialect-...), p.72. For C++, -Xstrict-ansi
generates diagnostic messages when nonstandard features are used and
disables features that conflict with ANSI/ISO C++, including -Xusing-std-on
and -Xdollar-in-ident.

Disabled by default.

5.4.129 Ignore Sigh When Promoting Bit-fields (-Xstrict-bitfield-promotions)

-Xstrict-bitfield-promotions
Conform to the ANSI standard when promoting bit-fields. When a bit-field
occurs in an expression where an int is expected, the compiler promotes the
bit-field to a larger integral type. Unless this option is enabled, such
promotions preserve sign as well as value. If -Xstrict-bitfield-promotions is
specified, however, an object of an integral type all of whose values are

109

Wind River Compiler for M32R

User’s Guide, 5.4

representable by an int (that is, an object smaller than 4 bytes) is promoted to
an int, even if the original type is unsigned.

-Xstrict-ansi or -Xdialect-strict-ansi implicitly enables
-Xstrict-bitfield-promotions by default, but can be overridden with
-Xstrict-bitfield-promotions=0.

See also 5.4.10 Specify Sign of Plain Bit-field (-Xbit-fields-signed,
-Xbit-fields-unsigned), p.60.

5.4.130 Align Strings on n-byte Boundaries (-Xstring-align=n)

-Xstring-align=n
-X18=n

5.4.131 Warn on

Align each string on an address boundary divisible by 7. The default value is
4. See also 5.4.8 Specify Minimum Array Alignment (-Xarray-align-min), p.59.

Large Structure (-Xstruct-arg-warning=n)

-Xstruct-arg-warning=n
-X92=n

C only. Emit a warning if the size of a structure argument is larger than or equal
to n bytes.

5.4.132 Control Optimization of Structure Member Assignments
(-Xstruct-assign-split-...)

-Xstruct-assign-split-diff=n
-X147=n
-Xstruct-assign-split-max=n
-X146=n

110

These options control optimization of assignments of local struct variables.
The compiler uses a number of techniques to optimize structure members (it
uses registers, etc.). A structure can be assigned as a one or more blocks
(depending on a number of factors) or member-by-member. However, block
structure assignment disables member optimization, so options are available
to control the type of structures that will assigned as a block.

By default, the assignment is member-by-member if the structure has 6 or
fewer members and if the increase in assignments (over block assignments) is
3 or fewer. Otherwise, the structure is assigned as a block.

5.4.133

5.4.134

5.4.135

5 Invoking the Compiler
5.4 Compiler -X Options

Use -Xstruct-assign-split-max to set the maximum number of members in a
struct that may be assigned member-by-member.

Use -Xstruct-assign-split-diff to set the maximum number of additional
assignments allowed. If member-to-member assignment involves a higher
number of additional assignments than the number set by
-Xstruct-assign-split-diff, a block assignment is performed.

Set Minimum Structure Member Alignment (-Xstruct-min-align=n)

-Xstruct-min-align=n

-X76=n
Force structures to begin on at least an n byte boundary. If any member in a
structure has a greater alignment, the structure will be aligned on a boundary
divisible by the size in bytes of the largest member.

See pack Pragma, p.130 and __packed__ and packed Keywords, p.139 for details.
See also 5.4.89 Set Maximum Structure Member Alignment
(-Xmember-max-align=n), p.94.

The default value of 1 is dependent on the processor as described in 8. Internal
Data Representation.

Suppress Warnings (-Xsuppress-warnings)

-Xsuppress-warnings
-X14
Suppress compiler warnings. Same as the -w option.

Swap \n’ and ‘\r’ in Constants (-Xswap-cr-nl)

-Xswap-cr-nl

-X13
C only. Swap '"\n' and "\r' in character and string constants. Used on systems
where carriage return and line feed are reversed.

111

Wind River Compiler for M32R
User’s Guide, 5.4

5.4.136 Set Threshold for a Switch Statement Table (-Xswitch-table...)

-Xswitch-table=n

-X143=n
Implement a switch statement using compares if there are fewer than n case
labels in the switch, use a jump table if there are # or greater. This option is on

by default with a value of 7.

-Xswitch-table-off
Do not use a jump table to implement a switch statement under any

conditions.

5.4.137 Disable Certain Syntax Warnings (-Xsyntax-warning-...)

-Xsyntax-warning-on

-X215=0
Enable certain syntax warnings, for example, warning on a comma after the
last enumerator. This is the default.

-Xsyntax-warning-off

-x215
C++ only. Disable these warnings.

5.4.138 Select Target Processor (-Xtarget)

-Xtarget
-x39=nThis option is for internal use should usually not be set by the user. See
4. Selecting a Target and Its Components.

5.4.139 Specify Loop Test Location (-Xtest-at-...)

-Xtest-at-both

-X6=2
Force the compiler to always test loops both before the loop is started and at
the bottom of the loop. This option produces the fastest possible code but uses
more space. Even if -Xtest-at-both is not set, other optimizations may cause the
compiler to generate double tests. This option is turned on by -XO.

-Xtest-at-bottom
-X6=0
Use one loop test at the bottom of a loop.

112

5 Invoking the Compiler
5.4 Compiler -X Options

-Xtest-at-top
-X6=1
Use one loop test at the top of a loop.

5.4.140 Truncate All Identifiers After m Characters (-Xtruncate)

-Xtruncate=m

-X22=m
Truncate all identifiers after m characters. If m is zero, no truncation is done.
This is the default.

5.4.141 Append Underscore to Identifier (-Xunderscore-...)

-Xunderscore-leading

-X71=1
Prefix every externally visible identifier with an underscore in the symbol
table.

Synonym: -Xleading-underscore.

-Xunderscore-trailing

-X71=2
Suffix every externally visible identifier with an underscore in the symbol
table.

Synonym: -Xtrailing-underscore.

-Xunderscore-surround

-X71=3
Prefix and suffix every externally visible identifier with an underscore in the
symbol table.

Synonym: -Xsurround-underscore.

NOTE: The -Xunderscore... options are provided for use in linking code generated
by the compiler with third-party libraries or with other tools requiring generated
underscores.

The default value of this option is 0 (no extra underscore).

Because Wind River libraries are compiled with the default setting, setting this option to
anything but the default will require recompiling every library used.

113

Wind River Compiler for M32R
User’s Guide, 5.4

5.4.142 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n)

-Xunroll=n

-X15=n
Unroll small loops # times. Set to 2 by default. n must be a power of two. See
Loop Unrolling (0x8000), p.199.

NOTE: Some sufficiently small loops may be unrolled more than # times if total
code size and speed is better.

-Xunroll-size=n

-X16=n
Specify the maximum number of nodes a loop can contain to be considered for
loop unrolling. Each operator and each operand counts as one node, so the
expression

a=>b - c;

contains 5 nodes. (There is also a small number of additional nodes for each
function.) n is set to 20 by default. Assembly files saved with -S show the
number of nodes for each function.

NOTE: Unrolling is done only if option -O or -XO is given to enable optimization

5.4.143 Runtime Declarations in Standard Namespace (-Xusing-std-...)

-Xusing-std-on
C++ only. Automatically search for runtime library declarations in the std
namespace (as if “using namespace std;” had been specified in the source
code), not in global scope. This is the default behavior, but it is disabled by
-Xstrict-ansi; use -Xusing-std-on on the command line to override
-Xstrict-ansi.

This option allows you to use the newer C++ libraries, which are in the std

namespace, without adding using namespace std; to legacy code.
-Xusing-std-off

Search for runtime library declarations in global scope unless an explicit using

namespace std; is given.

114

5 Invoking the Compiler
5.5 Examples of Processing Source Files

5.4.144 Void Pointer Arithmetic (-Xvoid-ptr-arith-ok)

-Xvoid-ptr-arith-ok
-X167
Treat void pointers as char * for the purpose of arithmetic. For example:

some_void_ptr += 1; /* adds 1 to some_void_ptr */

5.4.145 Define Type for wchar (-Xwchar=n)

-Xwchar=n

-X86=n
Define the type to which wchar will correspond. The desired type is given by
specifying a value 1 equal to a value returned by the operator sizeof(fype, 2).
See sizeof Extension, p.149. The default type is long integer (32 bits), that is,
-Xwchar=4.

5.4.146 Control Use of wchar_t Keyword (-Xwchar_t-...)

-Xwchar_t-on
-X214=0
Enable the wchar_t keyword.

-Xwchar_ t-off
-X214

C++ only. Disable the wchar_t keyword.

Synonym: -Xno-wchar.

5.5 Examples of Processing Source Files

The following examples show typical ways of compiling.

The two files, filel.c and file2.cpp, contain the source code:

115

Wind River Compiler for M32R
User’s Guide, 5.4

/* filel.c */

void outarg(char *);

int main(int argc, char **argv)

{
while(--argc) outarg (*++argv) ;
return 0;

}

/* file2.cpp */
#include <stdio.h>

extern "C" void outarg(char *arg)

{

static int count;

printf ("arg #%d: %s\n",++count, arg) ;

5.5.1 Compile and Link

When compiling small programs such as this, the driver can be invoked to execute
all four stages of compilation in one command. For example:

dplus filel.c file2.cpp

The driver preprocesses, compiles, and assembles the two files (one C and one
C++), and links them together with the appropriate libraries to create a single
executable file, by default called a.out. When more than one file is compiled to
completion, object files are created and kept, in this case, filel.o and file2.0. When
only one file is compiled, assembled, and linked, the intermediate assembly and
object files are deleted automatically (see 5.4.76 Create and Keep Assembly or Object
File (-Xkeep-assembly-file, - Xkeep-object-file), p.87 to change this).

If the target system supports command-line execution, to execute this program
enter a.out with some arguments:

a.out abc def ghi

This will print:
arg #1: abc
arg #2: def
arg #3: ghi

(See 15. Use in an Embedded Environment for comments on executing programs in
embedded environments.)

To execute the program on the host system using the WindISS simulator, compile
the program with windiss specified on the command line—for example:

dplus -tM32RES:windiss filel.c file2.cpp

116

5 Invoking the Compiler
5.5 Examples of Processing Source Files

Then run the program with WindISS:
windiss a.out abc def ghi

To give the generated program a name other than a.out, use the -o option:
dplus filel.c file2.cpp -o progl

To also enable optimization, use the -O option:
dplus -0 filel.c file2.cpp -o progl

To convert the linked output to S records:

ddump -Rv a.out

will produce file srec.out by default. See 29. D-DUMP File Dumper for additional
options and details.

5.5.2 Separate Compilation

When compiling programs consisting of many source files, it is time-consuming
and impractical to recompile the whole program whenever a file is changed.
Separate compilation is a time-saving solution when recompiling larger programs.
The -c option creates an object file which corresponds to every source file, but does
not call the linker. These object files can then be linked together later into the final
executable program. When a change has been made, only the altered files need to
be recompiled. To create object files and then stop, use the following command:

dplus -0 -c filel.c file2.cpp

The files filel.o and file2.0 will be created.

Create the executable program as follows. Note that the driver is used to invoke
the linker; this is convenient because defaults will be supplied as required based
on the current target, for example, for libraries and crt0.o.

dplus filel.o file2.o -o prog2
If file2.cpp is altered, prog2 can be rebuilt with:

dplus -0 -c file2.cpp
dplus filel.o file2.o -o prog2

Usually, the compilation process is automated with utilities similar to make, which
finds the minimum command sequence to create an updated executable.

117

Wind River Compiler for M32R
User’s Guide, 5.4

5.5.3 Assembly Output

It is frequently desirable to look at the generated assembly code. Two options are
available for this purpose:

» The -S option stops compilation after generating the assembly and
automatically names the file basename.s, filel.s in this case:

dplus -0 -S filel.cpp

* When using a command which generates an object file, the
-Xkeep-assembly-file option will preserve the assembly file in addition to the
object, naming it basename.s.

The option -Xpass-source outputs the compiled source as comments in the
generated file and makes it easier to see which assembly instructions correspond
to each line of source:

dplus -O -S -Xpass-source file2.cpp

5.5.4 Precompiled Headers

In C++ projects with many header files, you can often speed up compilation by
using precompiled headers, enabled with the -Xpch-... options. See
13.7 Precompiled Headers, p.231.

118

Additions to ANSI C and C++

6.1 Preprocessor Predefined Macros 119
6.2 Preprocessor Directives 122

6.3 Pragmas 125

6.4 Keywords 137

6.5 Attribute Specifiers 141

6.6 Intrinsic Functions 146

6.7 Other Additions 147

6.1 Preprocessor Predefined Macros

The following preprocessor macros are predefined. The macros that do not start
with two underscores (“__") are not defined if option -Xdialect-strict-ansi is given.

_ _bool
The constant 1 if type bool is defined when compiling C++ code, otherwise
undefined. Option -Xbool-off disables the bool, true, and false keywords.
C++ only.

__CHAR_UNSIGNED__
Indicates that plain char characters are unsigned.

119

Wind River Compiler for M32R
User’s Guide, 5.4

__cplusplus
The constant 199711 when compiling C++ code, otherwise undefined.

_ _DATE_
The current date in “mm dd yyyy” format; it cannot be undefined.

__pcc__
The constant 1.

__DCPLUSPLUS__
The constant 1 when compiling C++ code, otherwise undefined.

_DIAB TOOL
Indicates the Wind River Compiler is being used.

__ETOA__
Indicates that full ANSI C++ is supported. Not defined when compiling C
code or when an older version of the compiler is invoked.

__ETOA_TMPLICIT USING_STD
Defined if -Xusing-std-on is enabled. Indicates that runtime library
declarations are automatically searched for in the std namespace (not in global
scope), regardless of whether using namespace std; is specified.

__ ETOA_NAMESPACES
Defined if the runtime library uses namespaces.

__EXCEPTIONS
Exceptions are enabled. C++ only.

__FILE_
The current filename; it cannot be undefined.

__FUNCTION__
__FUNCTION__ is not really a preprocessor macro, but a special predefined
identifier that returns the name of the current function (that is, the function in
which the identifier occurs).

__LITTLE ENDIAN__
Little-endian implementation.

_ LDBL___
The constant 1 if the type long double is different from double.

__LINE _
The current source line; it cannot be undefined.

_ lint
This macro is not predefined; instead, define this when compiling to select
pure-ANSI code in Wind River header files, avoiding use of any non-ANSI
extensions.

120

6 Additions to ANSI C and C++
6.1 Preprocessor Predefined Macros

__m32r
Target flag used by various tools.

_ m32r
Target flag used by various tools.

_ nofp
No floating point support.

__PRETTY FUNCTION_
_ PRETTY_FUNCTION__ is not really a preprocessor macro, but a special
predefined identifier that returns the name of the current function (that is, the
function in which the identifier occurs). In C modules,
_ PRETTY_FUNCTION__ always returns the same value as _ FUNCTION__.
For C++, _ PRETTY_FUNCTION__ may return additional information, such as
the class in which a method is defined.

__RTTI
C++ only. Run-time type information is enabled.

__SIGNED_CHARS__
C++ only. Defined as 1 if plain char is signed. See 5.4.20 Specify Sign of Plain
Char (-Xchar-signed, -Xchar-unsigned), p.64.

_ softfp
Software floating point support.

__SsTDC__
The constant 0 if -Xdialect-ansi and the constant 1 if -Xdialect-strict-ansi is
given. It cannot be undefined if -Xdialect-strict-ansi is set. For C++ modules it
is defined as 0 in all other cases.

__ STRICT ANSI_
The constant 1 if -Xdialect-strict-ansi or -Xstrict-ansi is enabled.

_ TIME_
The current time in “hh:mm:ss” format; it cannot be undefined.

__VERSION__
The version number of the compiler and tools, represented as a string.

__VERSION_NUMBER _
The version number of the compiler and tools, represented as an integer.

__wchar_ t
The constant 1 if type wchar_t is defined when compiling C++ code, otherwise
undefined. Option -X-wchar-off disables the wchar_t keyword.

121

Wind River Compiler for M32R
User’s Guide, 5.4

6.2 Preprocessor Directives

The preprocessor recognizes the following additional directives.

#assert and #unassert Preprocessor Directives

The #assert and #unassert directives allow definition of preprocessor variables
that do not conflict with names in the program namespace. These variables can be
used to direct conditional compilation. The C and C++ preprocessors recognize
slightly different syntax for #assert and #unassert.

Assertions can also be made on the command line through the -A option.

To display information about assertions at compile time, see 5.4.31 Dump Symbol
Information for Macros or Assertions (-Xcpp-dump-symbols), p.69.

To make an assertion with a preprocessor directive, use the syntax:

#assert name (value) Cor C++
#assert name C++ only

In the first form, name is given the value value. In the second form, name is defined
but not given a value. Whitespace is allowed only where shown.

Examples:

#assert system(unix)
#assert system

To make an assertion on the command line, use:

-A name (value)

Examples:
dcc -A "system (unix)" test.c UNIX
dcc -A system\ (unix\) test.c UNIX
dcc -A system (unix) test.c Windows

Assertions can be tested in an #if or #elif preprocessor directive with the syntax:

#if #name (value) C or C++

#if #name C only

122

6 Additions to ANSI C and C++
6.2 Preprocessor Directives

A statement of the first form evaluates to true if an assertion of that name with that
value has appeared and has not been removed. (A name can have more than one
value at the same time.) A statement of the second form evaluates to true if an
assertion of that name with any value has appeared.

Examples:

#if #system(unix)
#if #system

An assertion can be removed with the #unassert directive:

#unassert name C++ only
#unassert name (value) C++ only
#unassert #name (value) C only

The first form removes all definitions of name. The other forms remove only the
specified definition.

Examples:
#unassert system

#unassert system(unix)
#unassert #system(unix)

#error Preprocessor Directive

The #error preprocessor directive displays a string on standard error and halts
compilation. Its syntax is:

#error string
Example:
#error "Feature not yet implemented."

See also #info, #inform, and #informing Preprocessor Directives, p.124 and #warn and
#warning Preprocessor Directives, p.124.

#ident Preprocessor Directive (C only)

The #ident preprocessor directive inserts a comment into the generated object file.
The syntax is:

#ident string

123

Wind River Compiler for M32R
User’s Guide, 5.4

Example:
#ident "version 1.2"

The text string is forwarded to the assembler in an ident pseudo-operator and the
assembler outputs the text in the .comment section.

#import Preprocessor Directive

The #import preprocessor directive is equivalent to the #include directive, except
that if a file has already been included, it is not included again. The same effect can
be achieved by wrapping all header files with protective #ifdefs, but using
#import is much more efficient since the compiler does not have to open the file.
Using the -Ximport command-line option will cause all #include directives to
behave like #import.

#info, #inform, and #informing Preprocessor Directives

The #info, #inform, and #informing preprocessor directives display a string on
standard error and continue compilation. Their syntax is:

#info string
#inform string
#informing string

Example:
#info "Feature not yet implemented."

See also #error Preprocessor Directive, p.123 and #warn and #warning Preprocessor
Directives, p.124.

#warn and #warning Preprocessor Directives

The #warn and #warning preprocessor directives display a string on standard
error and continue compilation. Their syntax is:

#warn string
#warning string

Example:
#warn "Feature not yet implemented."

See also #error Preprocessor Directive, p.123 and #info, #inform, and #informing
Preprocessor Directives, p.124.

124

6 Additions to ANSI C and C++
6.3 Pragmas

6.3 Pragmas

align Pragma

error Pragma

This section describes the pragmas supported by the compiler. A warning is issued
for unrecognized pragmas.

Pragma directives are not preprocessed. Comments are allowed on pragmas.

In C++ modules, a pragma naming a function affects all functions with the same
name, independently of the types and number of parameters—that is,
independently of overloading.

#pragma align [([[max_member alignment], [min_structure_alignment] [, byte-swap]])]

The align pragma, provided for portability, is a synonym for pack Pragma, p.130.

#pragma error string

Display string on standard error as an error and halt compilation. See also info
Pragma, p.127 and warning Pragma, p.135.

global_register Pragma

#pragma global_register identifier=register ...

This pragma forces a global or static variable to be allocated to a specific register.
This can increase execution speed considerably when a global variable is used
frequently, for example, the “program counter” variable in an interpreter.

identifier gives the name of a variable. register gives the name of the selected register
in the target processor. See 9.6 Register Use, p.182 for a list of valid register names.

The following rules apply:

* Only registers which are preserved across function calls may be assigned to
global variables.

» When assigning several variables to registers, start by using the lowest
preserved register available. Some targets cannot use lower preserved
registers for automatic and register variables.

125

Wind River Compiler for M32R
User’s Guide, 5.4

= Do not mix modules using global registers with modules not using them.
Never call a function using global registers from a module compiled without
them.

* #pragma global_register can be used to force the compiler to avoid specific
registers in code generation by defining dummy variables as global registers
in all modules.

» The pragma must appear before the first definition or declaration of the
variable being assigned to a register.

NOTE: A convenient method of ensuring that all modules are compiled with the

same global register assignments is to put all #pragma global_register directives

in a header file, e.g. globregs.h, and then include that file with every compilation
from the command line with the -i option, e.g. -i=globregs.h.

Examples:

#pragma global_register counter:ng$m%nmne
char *counter; /* allocated to the named register */

/* Force the compiler to avoid a named register. */
#pragma global_register __dummy:ng$m%nmne

hdrstop Pragma

#pragma hdrstop

C++ only. Suppress generation of precompiled headers. Headers included after
#pragma hdrstop are not saved in a parsed state. See 13.7 Precompiled Headers,
p-231 for more information.

ident Pragma

#pragma ident string
Insert a comment into the generated object file.
Example:

#pragma ident "version 1.2"

The text string is forwarded to the assembler in an ident pseudo-operator and the
assembler outputs the text in the .comment section.

126

info Pragma

inline Pragma

6 Additions to ANSI C and C++
6.3 Pragmas

#pragma info string

Display string on standard error and continue compilation. See also error Pragma,
p-125 and warning Pragma, p.135.

#pragma inline func ,...

Inline the given function whenever possible. The pragma must appear before the
definition of the function. Unless cross-module optimization is enabled (-Xcmo-...),
a function can be inlined only in the module in which it is defined.

In C++ modules, the inline function specifier is normally used instead. This
specifier, however, also makes the function local to the file, without external
linkage. Conversely, the #pragma inline directive provides a hint to inline the code
directly to the code optimizer, without any effect on the linkage scope.

NOTE: The inline pragma has no effect unless optimization is selected (with the
-XO or -O options).

Example:
#pragma inline swap
void swap (int *a, int *b) {

int tmp;
tmp = *a; *a = *b; *b = tmp;

interrupt Pragma

#pragma interrupt function ,...

Designate function as an interrupt function. Code is generated to save all general
purpose scratch registers and to use a different return instruction.

Important interrupt Pragma Notes

» Floating point and other special registers, if present on the target, are not saved
because interrupt functions usually do not modify them. If such registers must
be saved in order to handle nested interrupts, use an asm macro to do so (see
7. Embedding Assembly Code). To determine which registers are saved for a

127

Wind River Compiler for M32R
User’s Guide, 5.4

particular target, compile the program with the -S option and examine the
resulting assembler file (it will have a .s extension by default).

» The compiler does not generate instructions to re-enable interrupts. If this is
required to allow for nested interrupts, use an asm macro.

» See 5.4.123 Enable Stack Checking (-Xstack-probe), p.108 for when this option
cannot be used with interrupt functions.

» This pragma must appear before the definition of the function. A convenient
method is to put it with a prototype declaration for the function, perhaps in a
header file.

Example:
#pragma interrupt trap
void trap () {

/* this is an interrupt function */

}

no_alias Pragma

#ipragma no_alias { varl | *var2 } Yo

Promise that the variable var1 is not accessed in any manner (through pointers etc.)
other than through the variable name; promise that the data at *var2 is only
accessed through the pointer var2. This allows the compiler to better optimize
references to such variables.

The pragma must appear after the definition of the variable and before its first use.
Example:

add (double *d, double *sl, double *s2, int n)

#pragma no_alias *d, *sl, *s2

{

int i;

for (1 = 0; 1 < n; i++) {
/* "sl + s2" will move outside the loop */
d[i] = *sl + *s2;

}

Without the pragma, either s1 or s2 might point into d and the assignment might
then set s1 or s2. See also 5.4.7 Assume No Aliasing of Pointer Arguments
(-Xargs-not-aliased), p.59.

128

6 Additions to ANSI C and C++
6.3 Pragmas

no_pch Pragma

#pragma no_pch

Suppress all generation of precompiled headers from the file where #pragma
no_pch occurs. See 13.7 Precompiled Headers, p.231, for more information.

no_return Pragma

#pragma no_return function s

Promise that each function never returns. Helps the compiler generate better code.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, perhaps in a header file.

Example:

#pragma no_return exit, abort, longjmp

no_side_effects Pragma

#pragma no_side_effects descriptor ,...
Where each descriptor has one of the following forms and meanings:

function
Promises that function does not modify any global variables (it may use global
variables).

function ({ global | n } e)
Promises that function does not modify any global variables except those
named or the data addressed by its nth parameter. At least one global or
parameter number must be given, and there may be more than one of either
kind in any order.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, for example, in a header
file.

Contrast with pure_function Pragma, p.134, which also promises that a function
does not use any global or static variables.

Example:

#pragma no_side_effects strcmp(l), sin(errno), \
my_func(l, 2, my_global)

129

option Pragma

pack Pragma

Wind River Compiler for M32R
User’s Guide, 5.4

#pragma option option [option ...]

Where option is any of the -g, -O, or -X options (including the leading ’-” character).
This option makes it possible to set these options from within a source file.

These options must be at the beginning of the source file before any other source
lines. The effect of other placement is undefined.

Note that some -X options are consumed by driver or compiler command-line
processing before a source file is read. If an -X option does not appear to hve the
intended effect, try it on the command line. If effective there, that option can not be
used as a pragma.

#pragma pack [([[max_member_alz’gnment], [min_structure_alignment][, byte—swup]])]

The pack directive specifies that all subsequent structures are to use the alignments
given by max_member_alignment and min_structure_alignment where:

max_member_alignment
Specifies the maximum alignment of any member in a structure. If the
natural alignment of a member is less than or equal to
max_member_alignment, the natural alignment is used. If the natural
alignment of a member is greater than max_member_alignment,
max_member_alignment will be used.

Thus, if max_member_alignment is 8, a 4-byte integer will be aligned on a
4-byte boundary.
While if max_member_alignment is 2, a 4-byte integer will be aligned on a
2-byte boundary.

min_structure_alignment
Specifies the minimum alignment of the entire structure itself, even if all
members have an alignment that is less than min_structure_alignment.
byte-swap
If 0 or absent, bytes are taken as is. If 1, bytes are swapped when the data
is transferred between byte-swapped members and registers or
non-byte-swapped memory. This enables access to little-endian data on a
big-endian machine and vice-versa.

It is not possible to take the address of a byte-swapped member.

130

6 Additions to ANSI C and C++
6.3 Pragmas

If neither max_member_alignment nor min_structure_alignment are given, they are
both set to 1. If either max_member_alignment or min_structure_alignment is zero, the
corresponding default alignment is used. If max_member_alignment is non-zero and
min_structure_alignment is not given it will default to 1.

The form #pragma pack is equivalent to #pragma pack(1,1,0). The form
#pragma pack() is equivalent to #pragma pack(0,0,0).

The align pragma, provided for portability, is an exact synonym for pack.

An alternative method of specifying structure padding is by using _ packed__ and
packed Keywords, p.139.

Default values for max_member_alignment and min_structure_alignment can be set
by using the -Xmember-max-align and the -Xstruct-min-align options. The order
of precedence is values -X options lowest, then the packed pragma, and
__packed__ or packed keyword highest.

Restrictions and Additional Information

Note that if a structure is not packed, the compiler will insert extra padding to assure
that no alignment exception occurs when accessing multi-byte members because
the processor requires that multi-byte variables be aligned on 4-byte boundaries;
seeb.4.6 Specify Minimum Alignment for Single Memory Access to

Multi-byte Values (-Xalign-min=n), p.58.

When a structure is packed, because the processor requires that multi-byte values
be aligned (-Xalign-min > 1), the following restrictions apply:

» Access to multi-byte members will require multiple instructions. (This is so
even if a member is aligned as would be required within the structure because
the structure may itself be placed in memory at a location such that the
member would be unaligned, and this cannot be determined at compile time.)

= volatile members cannot be accessed atomically. The compiler will warn and
generate multiple instructions to access the volatile member. Also,
“compound” assignment operators to volatile members, such as +=, | =, etc.,
are not supported. For example, assuming i is a volatile member of packed
structure structl, then the statement:

structl.i += 3;
must be recoded as:
structl.i = structl.i + 3;

In addition, for packed structures, an enum member will use the smallest type
sufficient to represent the range, see 5.4.47 Specify enum Type (-Xenum-is-...), p.75.

131

Wind River Compiler for M32R
User’s Guide, 5.4

Examples
Later examples depend on earlier examples in some cases.

#pragma pack (2,2)

struct sO0 {

char a; 1 byte at offset 0, 1 byte padding
short b; 2 bytes at offset 2
char c; 1 byte at offset 4
char d; 1 byte at offset 5
int e; 4 bytes at offset 6
char f; 1 byte at offset 10
)i total size 11, alignment 2

132

6 Additions to ANSI C and C++
6.3 Pragmas

If two such structures are in a section beginning at offset 0xF000, the layout would
be:

F000 a
FOO1 padding
F002 b
F004 c
F005 d
F006
- —_—— — e _____
FOOA f
FOOB padding
FooC a
FOOD paddlng
FOOE b
F010 ¢
FO11 d
FO12 |
e
FO16 f
FO17
#pragma pack (1) Same as #pragma pack(1,1), no padding.
struct S1 {
char cl 1 byte at offset 0
long il; 4 bytes at offset 1

133

Wind River Compiler for M32R
User’s Guide, 5.4

char di;

#pragma pack (8)
struct S2 {
char c2

long i2;
char d2;

#pragma pack (2,2)
struct S3 {
char c3;
long 1i3;
char d3;

struct S4 {
char c4;

#pragma pack (8)
struct S {
char el;
struct S1 sl;
struct S2 s2;
char e2;
struct S3 s3;

#pragma pack (0)

pure_function Pragma

#pragma pure_function function ,...

1 byte at offset 5
total size 6, alignment 1

Use “natural” packing for largest member.

1 byte at offset 0, 3 bytes padding
4 bytes at offset 4

1 byte at offset 8, 3 bytes padding
total size 12, alignment 4

Typical packing on machines which cannot
access multi-byte values on odd-bytes.

1 byte at offset 0, 1 byte padding

4 bytes at offset 2

1 byte at offset 6, byte padding

total size 8, alignment 2

Using pragma from prior example.

1 byte at offset 0, 1 byte padding

total size 2, alignment 2 since
min_member_alignment is 2 above

“Natural” packing since S3 is 8 bytes long.

1 byte at offset 0

6 bytes at offset 1, 1 byte padding
12 bytes at offset 8

1 byte at offset 20, 1 byte padding

8 bytes, at offset 22, 2 bytes padding
alignment 2

total size 32, alignment 4

Set to default packing.

Promises that each function does not modify or use any global or static data. Helps
the compiler generate better code, for example, in optimization of common
sub-expressions containing identical function calls. Contrast with no_side_effects

134

section Pragma

6 Additions to ANSI C and C++
6.3 Pragmas

Pragma, p.129, which only promises that a function does not modify global
variables.

This pragma must appear before the first use of the function. A convenient method
is to put it with a prototype declaration for the function, perhaps in a header file.

Example:

#pragma pure_function sum
int sum(int a, int b) {
return a+b;

}

#pragma section class_name [istring [ustring]] [addr_mode] [acc_mode] [address=x]

The #pragma section directive defines sections into which variables and code can
be placed. It also defines how objects in sections are addressed and accessed.

This pragma must appear before the declaration (for functions, before the
prototype if present) of all variables and all functions to which it is to apply.

The section pragma is discussed in detail in 14. Locating Code and Data, Addressing,
Access.

use_section Pragma

#pragma use_section class_name variable , ...
Selects the section class into which a variable or function is placed. A section class
is defined by #pragma section.

This pragma must appear before the declaration (for functions, before the
prototype if present) of all variables and all functions to which it is to apply.

The use_section pragma is discussed in detail in 14. Locating Code and Data,
Addressing, Access.

warning Pragma

#pragma warning string

Display string on standard error as a warning and continue compilation. See also
error Pragma, p.125, and info Pragma, p.127.

135

weak Pragma

Wind River Compiler for M32R
User’s Guide, 5.4

#pragma weak symbol
Mark symbol as weak.

When a #pragma weak for a symbol is given in the module defining the symbol, it
is a weak definition. When the #pragma weak is in a module using but not defining
it, it is a weak reference.

Because this pragma is ultimately processed by the assembler, it may appear
anywhere in the source file.

A weak symbol resembles a global symbol with two differences:

* When linking, a weak definition with the same name as a global or common
symbol is not considered a duplicate definition; the weak symbol is ignored.

» Ifnomodule is present to define a symbol, unresolved weak references to the
symbol have a value of zero and remain undefined in the symbol table after
linking, and no error is reported.

Note while a symbol may be defined in more than one module as long as at most
one of the definitions is global or common while the rest (or all) are weak, the
linker resolves references to the first instance of the symbol it encounters. Consider
the following scenario. Function foo() uses x, which is declared weak in library 1
and global in library 2. If library 1 is searched first, the weak version of x will be
used. On the other hand, if library 2 is subsequently linked (because, for example,
another function uses it), then the global version of x will replace the weak version.

#pragma weak is incompatible with local data area (LDA) allocation; using
#pragma weak with -Xlocal-data-area or -Xlocal-data-area-static-only enabled
will produce a warning and temporarily disable LDA. See 5.4.81 Allocate Static and
Global Variables to Local Data Area (-Xlocal-data-area=n), p.91, and 14.4 Local Data
Area (-Xlocal-data-area), p.251.

136

6 Additions to ANSI C and C++
6.4 Keywords

6.4 Keywords

The following additional keywords are recognized by the compiler.

__asm and asm Keywords

Used to embed assembly language (see 7. Embedding Assembly Code) and use the
information found in Assigning Global Variables to Registers, p.148.

__attribute__ Keyword

See 6.5 Attribute Specifiers, p.141.

extended Keyword (C only)

If the option -Xkeywords=x is used with the least significant bit set in x (e.g.,
-Xkeywords=0x1), the compiler recognizes the keyword extended as a synonym
for long double.

Example:

extended e; /* the same as long double e; */

__inline__ and inline Keywords

The __inline__ and inline keywords provide a way to replace a function call with
an inlined copy of the function body. The __inline__ keyword is intended for use
in C modules but is disabled in strict-ANSI mode. The inline keyword is normally
used in C++ modules but can also be used in C if the option -Xkeywords=0x4 is
given (5.4.77 Enable Extended Keywords (-Xkeywords=mask), p.88).

__inline__ and inline make the function local (static) to the file by default.
Conversely, the #pragma inline directive provides a hint to inline the code directly
to the code optimizer, without any effect on the linkage scope. Use extern to make
an inline function public.

137

Wind River Compiler for M32R
User’s Guide, 5.4

NOTE: Functions are not inlined, even with an explicit #pragma inline, or
__inline__ or inline keyword unless optimization is selected with the -XO or -O
options.

Note that using -O will automatically inline functions of up to 10 nodes (including
“empty” functions), and -XO will automatically inline functions of up to 40 nodes.
See how these values are controlled in 5.4.72 Inline Functions with Fewer Than n
Nodes (-Xinline=n), p.86. An explicit pragma or keyword can be used to force
inlining of a function larger than the value set with implicitly or explicitly with
-Xinline.

See Inlining (0x4), p.193, for a complete discussion of all inlining methods.

Example:
__inline_ void inc(int *p) {
*p = *p+l;
}
inc (&x) ;

The function call will be replaced with

X = x+1;

__interrupt__ and interrupt Keywords (C only)

The __interrupt__ keyword provides a way to define a function as an interrupt
function. The difference between an interrupt function and a normal function is
that all registers are saved, not just the those which are volatile, and a special return
instruction is used. __interrupt__ works like the interrupt Pragma, p.127. The
keyword interrupt can also be used; see 5.4.77 Enable Extended Keywords
(-Xkeywords=mask), p.88.

NOTE: See why this cannot be used with interrupt functions, 5.4.123 Enable Stack
Checking (-Xstack-probe), p.108).

Example:

__interrupt__ void trap() {
/* this is an interrupt function */

}

138

6 Additions to ANSI C and C++
6.4 Keywords

long long Keyword

The compiler supports 64-bit integers for all M32R microprocessors. A variable
declared long long or unsigned long long is an 8 byte integer. To specify a long
long constant, use the LL or ULL suffix. A suffix is required because constants are
of type int by default.

Example:

long long mask _nibbles (long long x)
{

return (x & OxfO0fO0f0f0f0f0f0£f0LL) ;
}

NOTE: Bit-fields are not permitted in variables of type long long.

__packed__ and packed Keywords

__packed__ ([[max_member_alignment], [min_structure_alignment] [, byte-swap]])

The __packed__ keyword defines how a structure should be padded between
members and at the end. The keyword packed can also be used if the option
-Xkeywords=0x8 is given. See pack Pragma, p.130 for treatment of O values,
defaults, and restrictions.

The max_member_alignment value specifies the maximum alignment of any
member in the structure. If the natural alignment of a member is less than
max_member_alignment, the natural alignment is used. See 8. Internal Data
Representation for more information about alignments and padding.

The min_structure_alignment value specifies the minimum alignment of the
structure. If any member has a greater alignment, the highest value is used.

Default values for max_member_alignment and min_structure_alignment can be set
by using the -Xmember-max-align and the -Xstruct-min-align options. The order
of precedence is values -X options lowest, then the packed pragma, and
__packed__ or packed keyword highest.

The byte-swapped option enables swapping of bytes in structure members as they
are accessed. If 0 or absent, bytes are taken as is; if 1, bytes are swapped as they are
transferred between byte-swapped structure members and registers or
non-byte-swapped memory.

See pack Pragma, p.130 for defaults for missing parameters and for additional
examples.

139

Wind River Compiler for M32R
User’s Guide, 5.4

Examples:
__packed__ struct sl { no padding between members
char c;
int i starts at offset 1
)i total size 5 bytes

_ packed__ (2,2) struct s2 { maximum alignment 2

char c;
int i; starts at offset 2
)i total size 6 bytes
_ packed__ (4) struct s3 { maximum alignment 4
char c;
int i; starts at offset 4
)i total size 8 bytes

packed__ (4,2) struct s4 { minimum alignmentZ
char c;

)i total size 2 bytes

For the C compiler only, constant expressions (in addition to simple constants) can
be specified as arguments to the __packed__ or packed keyword.

pascal Keyword (C only)

If the option -Xkeywords=x is used with bit 1 set in x (e.g., -Xkeywords=0x2), the
compiler recognizes the keyword pascal. This keyword is a type modifier that
affects functions in the following way:

» The argument list is reversed and the first argument is pushed first.

» On CISC processors (for example, MC68000), the called function clears the
argument stack space instead of the caller.

__typeof__ Keyword (C only)

__typeof__(arg), where arg is either an expression or a type, behaves like a defined
type. Examples:

__typeof_ (int *) x;
__typeof (x) vy:

140

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

The first statement declares a variable x whose type is the type of pointers to
integers, while the second declares a variable y of the same type as x. Note that
typeof (without underscores) is not supported.

6.5 Attribute Specifiers

Attribute specifiers, formed with the __attribute__ keyword, assign extra-language
properties to variables, functions, and types. They can specify packing, alignment,
memory placement, and execution options. When you have a choice between an
attribute specifier and an equivalent pragma, it is preferable to use the attribute
specifier.

Attribute specifiers have the form __attribute__((attribute-list)), where
attribute-list is a comma-delimited list of attributes. Supported attributes, some of
which include parameters in parentheses, are described in the sections that follow.

An attribute specifier can appear in a variable or function declaration, function
definition, or type definition; or following any variable within a list of variable
declarations. Multiple attribute specifiers should be separated by whitespace.

When an attribute specifier modifies a function, it can appear before or after the
return type. Examples:

__attribute_ ((pure)) int foo(int a, b);
int __attribute__ ((no_side_effects)) bar(int x);

When an attribute specifier modifies a struct, union, or enum, it can appear
immediately before or after the keyword, or after the closing brace. Example:

struct b {
char b;
int a;
} __attribute_ ((aligned(2))) stril;

For non-structure fields, the specifier can be placed anywhere before or
immediately following the identifier name:

__attribute_ ((aligned(2))) int foo;
int __attribute_ ((aligned(4))) bar;
int foobar __attribute_ ((aligned(8)));

Placement of a specifier determines how the attribute is applied. Example:

141

Wind River Compiler for M32R
User’s Guide, 5.4

// align a and b on 4-byte boundaries
__attribute_ ((aligned(4))) char a='a', b='b';

// force alignment only for c
char __attribute__ ((aligned(4))) c='c', 4 ='d"';

// force alignment only for f

char e='e', £ _ attribute_ ((aligned(4))) ='f';
If an attribute specifier modifies a typedef, it applies to all variables declared using
the new type:

typedef __attribute__ ((aligned(4))) char AlignedChar;

// a and b are aligned on 4-byte boundaries

AlignedChar a='a', b='b';
To eliminate naming conflicts between attributes and preprocessor macros, any
attribute name can be surrounded by double underscores. For example, aligned
and __aligned__ are synonyms; __attribute__((aligned(2))) is equivalent to
__attribute__((__aligned__(2))).

NOTE: The placement of attribute specifiers can be misleading. For example:
int last_func() {
i.;_attribute__((noreturn)) // modifies foo, not last_func
int foo() {

}

This example is confusing because in type definitions, the attribute specifier can
follow the closing brace. But in function definitions, the attribute specifier must
appear directly before or after the return type.

When an attribute takes a numeric parameter, the parameter can be a simple
constant or a constant expression. Example:

__attribute_ ((aligned(sizeof (double)))) int x[32];

In this example, the constant expression sizeof(double) is used as a parameter to
the aligned attribute.

absolute Attribute (C only)

__attribute__((absolute)) indicates that a const integer variable is an absolute
symbol. Example:

const int foo __attribute__ ((absolute)) = 7;

142

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

This declaration means that foo appears in the symbol table and always represents
the value 7; no memory is allocated to store foo.

aligned(n) Attribute

To specify byte alignment for a variable or data structure, use:
__attribute_ ((aligned(n)))
where 1 is a power of two. Example:

// align structure on 8-byte boundary
__attribute_ ((aligned(8))) struct a {
char b;
int a;
} strl;

This is often combined with the packed Attribute, p.145. Example:

struct b {
char b;
int a;
} __attribute_ ((aligned(2), packed)) str2;

You can force alignment for a specific element within a structure:
struct c {
int k;
__attribute__ ((aligned(8))) char m; // align m on 8 bytes
} str3;
But special alignment for members of a packed structure is ignored:

struct c {

int k;
__attribute_ ((aligned (8))) char m; // alignment ignored
} __attribute_ ((packed)) str4;

Nested alignment attributes are preserved within a struct or union.

constructor, constructor(n) Attribute

A constructor, or initialization, function is executed before the entry point of your
application—that is, before main(). To designate a function as a constructor with
default priority, use:

__attribute__ ((comnstructor))

143

Wind River Compiler for M32R
User’s Guide, 5.4

To designate a function as a constructor with a specified priority, use:
__attribute__ ((constructor(n)))

where 1 is a number between 0 and 65535. Specifying a priority level allows you to
control the order in which initialization functions execute; the lower the value of n,
the earlier the function executes. For more information, see 15.4.8 Run-time
Initialization and Termination, p.266.

deprecated, deprecated(string) Attribute (C only)

Causes the compiler to issue a warning when the marked function, variable, or
type is referenced.

__attribute__ ((deprecated))
__attribute_ ((deprecated(string)))

The optional string is included with the warning message.

destructor, destructor(n) Attribute

A destructor, or finalization, function is executed after the entry point of your
application or after exit(). To designate a function as a destructor with default
priority, use:

__attribute__ ((destructor))
To designate a function as a destructor with a specified priority, use:
__attribute__ ((destructor(n)))

where 1 is a number between 0 and 65535. Specifying a priority level allows you to
control the order in which finalization functions execute; the lower the value of 1,
the earlier the function executes. For more information, see 15.4.8 Run-time
Initialization and Termination, p.266.

noreturn, no_return Attribute

To indicate that a function will never return to the caller, use:
__attribute__ ((noreturn))

This allows the compiler to remove unnecessary code intended for returning
execution to the caller on exit. The no_return attribute is equivalent to no return.

144

6 Additions to ANSI C and C++
6.5 Attribute Specifiers

no_side_effects Attribute

This attribute is a less restrictive version of pure (see pure, pure_function Attribute,
p-145). __attribute__((no_side_effects)) indicates that a function does not modify
any global data.

packed Attribute

This attribute specifies alignment for types and data structures.
__attribute__((packed)) tells the compiler to use the smallest space possible for the
data to which it is applied. Example:

struct b {
char b;
int a ;
} __attribute__ ((packed)) strl;

When used with aligned, the packed attribute takes precedence as discussed in
aligned(n) Attribute, p.143.

pure, pure_function Attribute

This attribute indicates that a function does not modify or use any global or static
data and that it accesses only data passed to it as parameters. Using
__attribute__((pure)) allows the compiler to perform optimizations such as global
common subexpression elimination. The pure_function attribute is equivalent to
pure. If this attribute is applied to a function that has side effects, run-time
behavior may be indeterminate.

See also no_side_effects Attribute, p.145.

section(name) Attribute

To specify a linker section in which to place a function or variable, use:
__attribute_ ((section("name")))
This creates a section called name and places the designated code in it. Example:

// place funcl in a section called foo
void funcl(void) _ _attribute_ ((section("foo")));

For variables, the section is created as a read-write data segment. For functions, the
section is created as a read-execute code segment. There are no options to change

145

Wind River Compiler for M32R
User’s Guide, 5.4

the properties of the section. For greater control over sections, use #pragma section
(see 14. Locating Code and Data, Addressing, Access).

An attempt to mix types of information in a single section (for example, constant
data in a section reserved for code or variables) produces an error (dcc1793). In this
example, the compiler assumes from the first statement that the section .mydata is
intended to be of the DATA section class, whereas the second statement assumes
that .mydata will be a CONST section class:

) int var = 1;
) const int const_var = 2;

__attribute__ ((section(".mydata")
__attribute_ ((section(".mydata")

)
)

NOTE: In some cases, the compiler may not honor an attempt to use the section
attribute to place initialized data into a section intended for uninitialized data, and
vice-versa. For example, in the following code:

__attribute__ ((section(“.bss”))) int x = 3;

x will be assignedto the .data section, not .bss.

See Table 14-1 on page 240 for a list of sections and section classes.

There is no cross-module verification that section names are used consistently.
Incorrect usage, including typographical errors, cannot be detected until link time.

6.6 Intrinsic Functions

The compiler implements the following intrinsic functions to give access to specific
M32R instructions. See the processor manufacturer’s documentation for details on
machine instructions.

Intrinsic functions can be selectively disabled with the -Xintrinsic-mask=n
(-X154=n) option, where 7 is a bit mask that can be given in hex. n defaults to Oxf.

146

6 Additions to ANSI C and C++
6.7 Other Additions

Function Mask Description

alloca (integral) 0x800000 Allocates temporary local stack space for
an object of size integral. Returns a pointer
to the start of the object. The allocated
memory is released at return from the
current function.

__alloca (integral) Same as alloca(), but cannot be disabled.

6.7 Other Additions

C++ Comments Permitted

C++ style comments beginning with // are allowed by default. To disable this
feature, use -Xdialect-strict-ansi. Example:
int numberlbits (int i) // Count the number of 1 bits

{ // in "i".
int n = 0;

while (1 != 0) {
i&= (1 -1);
n ++;

}

return n;

Dynamic Memory Allocation with alloca

The alloca(size) and __alloca(size) functions are provided to dynamically allocate
temporary stack space inside a function. Example:

char *alloca();
char *p;

p = alloca(1000) ;

The pointer p points to an allocated area of 1000 bytes on the stack. This area is
valid only until the current function returns. The use of alloca() typically increases

147

Wind River Compiler for M32R
User’s Guide, 5.4

the entry/exit code needed in the function and turns off some optimizations such
as tail recursion.

See 6.6 Intrinsic Functions, p.146 for additional details.

Binary Representation of Data

The compiler recognizes variables and constants that are given in binary format.
For example, it will accept the following:

unsigned int x = 0b00001010;
Note that the compiler does not recognize the following format:
unsigned int x = 00001010b;

Use of binary representation in C may make your code non-portable.

Assigning Global Variables to Registers

You can assign a global variable to a preserved register by placing
asm(""register-name") or __asm("register-name") immediately after the variable name
in the declaration. Example:

int some_global_var asm("rll");

This assigns the variable some_global_var to r11. Local variables cannot be
assigned in this way.

_ _ERROR__ Function

The _ ERROR__() function produces a compile-time error or warning if it is seen
by the code generator. This is useful for making compile-time checks beyond those
possible with the preprocessor—e.g. ensuring that the sizes of two structures are
the same, as shown in the example below. If the _ ERROR__ () function is placed
after an if statement that is not executed unless the assertion fails, the optimizer
removes the _ ERROR__() function and no error is generated. (The optimizer must
be enabled (at any level) for this technique to work.)

The syntax of the _ ERROR__() function:

_ _ERROR__ (error-string [, value])

148

6 Additions to ANSI C and C++
6.7 Other Additions

where error-string is the error message to be generated and the optional value
defines whether the error should be:

0 warning - compilation will continue

1 error - compilation will continue but will stop after the entire file has been
processed

2 fatal error - compilation is aborted

If no value is given, the default value of 1 is used. Example:
extern void __ERROR__ (char *, ...);

#define CASSERT (test) \
if (! (test)) __ERROR__ ("C assertion failed: " #test)

éASSERT(sizeof(struct a) == sizeof (struct b));
When __ERROR__ () is used in C++ code, it must be declared like this:

extern "C" void __ERROR__ (char *, ...);

sizeof Extension

The sizeof operator has been extended to incorporate the following syntax:
sizeof (type, int-const)

where int-const is an integer constant between 0 and 2 with the following

semantics:

0 standard sizeof, returns size of type

1 returns alignment of type

2 returns an int constant depending on type as follows:

signed char 0
unsigned char 1
char C: 0 (char is signed by default)
C++:44
signed short 2
unsigned short 3
signed int 4
unsigned int 5

149

Wind River Compiler for M32R

User’s Guide, 5.4

signed long 6
unsigned long 7
long long 8
unsigned long long 9
float 14
double 15
long double 16
void 18

pointer to any type 19
array of any type 22

struct, union C:23
C++: same as class, 32
function 25
class C++:32
reference C++:33
enum C++:34
Examples:
i = sizeof(long ,2) /* type of long: i = 6 */
j = sizeof (short,1) /* alignment of short: j = 2 */

vararg Macros

The preprocessor supports several styles of variadic macro, including ANSI C
draft, C99, and GNU. Use of vararg macros is illustrated below:

150

va_arg.c:
// C draft
#define debug(...) fprintf (stderr, _ VA _ARGS_)
#define showlist(...) puts(#__VA_ARGS_)
#define report(test, ...) ((test)?puts(#test):\
printf (__VA_ARGS_))
// C99
#define foo(stringl, ...) printf(stringl, ## __VA_ARGS__, ":end")
// GNU
#define bar (string2, args...) printf(string2, ## args, ":end")

debug ("Flag") ;

debug ("X = %d\n", x);

showlist (The first, second, and third items.);
report (x>y, "x is %d but y is %d", x, Vy);
foo("start");

bar ("begin") ;

> dcc -E va_arg.c
1 "va_arg.c" 0

6 Additions to ANSI C and C++
6.7 Other Additions

fprintf (stderr, "Flag")
fprintf (stderr, "X = %d\n", x) ;
puts ("The first, second, and third items.")

((x>y) ?puts ("x>y") : printf("x is %d but y is %d", x, v)) ;
printf ("start", ":end") ;

printf ("begin", ":end") ;

>

151

Wind River Compiler for M32R
User’s Guide, 5.4

152

Embedding Assembly Code

7.1 Introduction 153

7.2 asm Macros 155

7.3 asm String Statements 160
7.4 Reordering in asm Code 162
7.5 Direct Functions 163

7.1 Introduction

There are three approaches to embedding assembly code in source files: flexible
asm macros, simple but less flexible asm strings, and direct functions for embedding
machine code.

A WARNING: When embedding assembly code with any method, you must use only
scratch registers. See 9.6 Register Use, p.182 to determine the scratch registers.

If optimization is enabled, even hand-inserted assembly language may be
optimized. See 7.4 Reordering in asm Code, p.162

153

Table 7-1

Wind River Compiler for M32R
User’s Guide, 5.4

NOTE: The compiler recognizes extended GNU inline syntax (e.g. register usage
specification) but does not translate it. When extended syntax is encountered, the
compiler issues an error message.

The asm and __asm keywords provide a way to embed assembly code within a
compiled program. Either keyword may be used to introduce an assembly string
or assembly macro as defined below, but asm is not defined in C modules if the
-Xdialect-strict-ansi option is used. In the text below, whenever asm is used,
__asm can be used instead.

There are two ways of using the asm keyword. The first is a simple way to pass a
string to the assembler, an asm string. The second is to define an asm macro that
inlines different assembly code sections, depending on the types of arguments
given. The following two sections discuss both methods. 7.5 Direct Functions, p.163
provide a third way to embed code by using integer values. The following table
contrasts the three method.

Methods for Embedding Assembly Code

Method Implementation Calling Conventions, Parameters
asm string Expanded inline where None — difficult to access
encountered. Functions source variables.
containing asm strings with
labels may not be inlined more
than once per function.
asm macro Expanded inline where called. ~ Parameters matched by type
Functions containing asm per storage mode lines. May
macros may be inlined without return a value.
restriction.
Direct Always inlined where called. All normal calling conventions
function are followed. May return a

value.

To confirm that embedded assembly code has been included as desired, compile
with the -S option and examine the resulting .s file.

The examples in this chapter apply to both C and C++.

154

7 Embedding Assembly Code
7.2 asm Macros

7.2 asm Macros

While asm strings (described in 7.3 asm String Statements, p.160) can be useful for
embedding simple assembly fragments, they are difficult to use with variables
inside the assembly code. asm macros provide a more flexible way to embed
assembly code in compiled programs.

asm Macro Syntax

An asm macro definition looks much like a function definition, including a return
type and parameter list, and function body.

The syntax is:

asm [volat:i.le] [retum—type] macro-name ([parameter-list])

% storage-mode-list (must start in column 1)

! ister-li i i

! register-list (“1” must be first non-whitespace)
asm-code

} (must start in column 1)

where:

volatile prevents instructions from being interspersed or moved before or
after the ones in the macro.

return-type is as in a standard C function. For a macro to return a value of the given
type, the assembly code must put the return value in an appropriate register as

determined by the calling conventions. See 9.5 Returning Results, p.181 for details.

macro-name is a standard C identifier.

parameter-list is as in a standard C function, using either old style C with just
names followed by separate type declarations, or prototype-style with both a
type and a name for each parameter. Parameters should not be modified
because the compiler has no way to detect this and some optimizations will fail
if a parameter is modified.

storage mode line begins with a “%” which must start in column 1. The
storage-mode-list is used mainly to describe parameters and is described below.
A macro with no parameters and no labels does not require a storage mode
line.

register-list is an optional list of scratch registers, each specified as a
double-quoted string, or the string “call” if the macro makes a call, separated

155

Wind River Compiler for M32R
User’s Guide, 5.4

by commas. Specifying this list enables the compiler to generate more efficient
code by invalidating only the named registers. Without a register-list, the
compiler assumes that all scratch registers are used by the asm macro. See
Register-List Line, p.158 for details.

= asm-code is the code to be generated by the macro.
= final right “}”closes the body; it must start in column 1.

The compiler treats an asm macro much like an ordinary function with unknown
properties:

* Any global or static variable can be modified.

» #pragma directives can be used to tell the compiler if the function has any side
effects, etc.

However, because the asm macro is by definition inlined, it is not possible to take
the address of an asm macro.

The compiler discards any invocation of an empty asm macro (one with no storage
mode line and no assembler code). This may be useful for macros used for
debugging purposes.

NOTE: An asm macro must be defined in the module where it is to be used before
its use. Otherwise the compiler will treat it as an external function and, assuming
no such function is defined elsewhere, the linker will issue an unresolved external
error.

In C++, forward declarations of asm macros are not permitted. Hence, while static
member functions can be asm macros, the asm keyword must occur in the function
definition, not in the class declaration.

Storage Mode Line — Describing Parameters and Labels
The storage mode line is not required if a macro has no parameters and no labels.

For a macro with parameters, a storage mode line is required to describe the
methods used to pass the parameters to the macro. Currently, for M32R targets, all
parameters are passed in registers for convenience. A storage mode line is also
required if the macro generates a label.

Every parameter name in the parameter-list must occur exactly once in a single
storage mode line. The form of the storage-mode-line is:

%[reg | con | lab] name, ...; [reg | con | la.b]name, R

156

7 Embedding Assembly Code
7.2 asm Macros

where:

reg
Introduces a list of one or more parameters. Every parameter name in the
parameter-list must occur exactly once in the single storage mode line.

Arguments to a macro are assigned to registers following the usual calling
conventions. For example, four int arguments will use registers r0, r1, r2, and
r3. Other scratch registers may be used freely in the macro. This limits the
maximum number of parameters to the number allowed by the registers used
for parameters (see 9.3 Argument Passing, p.178 and 9.6 Register Use, p.182).

NOTE: If the compiler has already moved an argument to a preserved register,
the compiler will use it from there in the macro rather than moving it to the
usual parameter register. Therefore, always use a parameter name rather than a
register name when coding a macro.

NOTE: Because arguments may be in preserved registers as just noted, macros
should avoid use of preserved registers, even if saved and restored.

con
The parameter is a constant.

lab
A new label is generated. lab is not actually a storage mode — the name

following lab is not a parameter (a lab identifier is not allowed as a parameter).
It is a label used in the assembly code body.

For each use of the macro, the compiler will generate a unique label to
substitute for the uses of the name in the macro.

Names of long long parameters must be appended with 'H or !L—e.g.
someParameter!H. This replaces the parameter with a register holding the most
('H) or least ('L) significant 32 bits. The register is chosen based on the
compilation’s endian mode.

“No Matching asm Pattern Exists”

The compiler error message “no matching asm pattern exists” indicates that no
suitable storage mode was found for some parameter, or that a label was used in
the macro but no lab storage mode parameter was present. For example, it would
be an error to pass a variable to a macro containing only a con storage mode
parameter.

157

Wind River Compiler for M32R
User’s Guide, 5.4

Register-List Line

An asm macro body may optionally contain a register-list line, consisting of the
character “!” in column 1 and an optional register-list. The register-list if present , is
a list of scratch registers, each specified as a double-quoted string, or the string
“call”, separated by commas. Specifying this list enables the compiler to generate
more efficient code by invalidating only the named registers. Without a register-list,
the compiler assumes that all scratch registers are used by the asm macro. Also, if
a register-list is specified and the assembly macro makes a call, the “call” string
must also be specified to cause the link register to be saved and restored.

g

The register-list line must begin with a “!” character, which must be the first
non-whitespace character on a line. The specification can occur anywhere in the
macro body, and any number of times, however it is recommended that a single
line be used at the beginning of the macro for clarity.

Supported scratch registers are r0-r6 (the compiler always invalidates 17, so an asm
macro can use 17 without declaring it). Also, if a register-list line is specified and the
assembly macro makes a call, then “call” must also be specified to cause the link
register to be saved and restore around the macro. See 9.6 Register Use, p.182 for
more information about registers.

If the “1” is present without any list, the compiler assumes that no scratch or link
registers are used by the macro.

NOTE: If supplied, the register-list must be complete, that is, must name all scratch
registers used by the macro and must include “call” if the macro makes a call.
Otherwise, the compiler will assume that registers which may in fact be used by
the macro contain the same value as before the macro.

Also, as noted below, any comment on the register-list line must be a C-style
comment (“/* ... */”) because this line is processed by the compiler, not the
assembler.

Comments in asm Macros

Any comment on the non-assembly language lines—that is, the asm macro
function-style header, the “{" or “}” lines, or a storage-mode or register-list line—
must be a C-style comment (“/* ... */”) because this line is processed by the
compiler, not the assembler.

Comments on the assembly language line may be either C style or assembler style.
If C style, they are discarded by the compiler and are not preserved in the

158

7 Embedding Assembly Code
7.2 asm Macros

generated .s assembly-language file. If assembler style, they are visible in the .s file
on every instance of the expanded macro.

Assembler-style comments in asm macros are read by the preprocessor when the
source file is processed. For this reason, apostrophes and quotation marks in
assembler-style comments may generate warning messages.

Examples of asm Macros

In this example, a macro loops until the value at the address given by its parameter
is non-zero and then returns the value at that address (int values are returned in
register r0).

asm int get_data (volatile unsigned int *address_p)

{
% reg address_p; lab loop;

! "rQ", "ré6" /* scratch registers used */
loop:

14 r6,@ (address_p)

beqgz r6,loop

mv r0,r6

}
extern volatile unsigned int device_in; /* input port */

int test (volatile unsigned int *device_in_p)
{

int data;

data = get_data (device_in_p);

return get_data (& device_in);

}
The above code was compiled with:
dcc -tM32REN -S -XO -Xpass-source asm_macro.cC
Extracts from the generated assembly code for the two macro calls follow.

; data = get_data (device_in_p);

L4
14 r6,@(r0)
beqgz r6,.L4
mv r0,r6
; return get_data (& device_in);
1424 r13,device_in
.L5:
14 r6,@(rl3)
beqgz r6, .L5
mv r0,r6

159

Wind River Compiler for M32R
User’s Guide, 5.4

NOTE:
» The uniquely generated loop labels.

» The macro argument is always forced to a register. Before the first expansion,
device_in_p was passed to test in r0. For the second expansion, the address of
device_in is loaded into r13.

» The optimizer removed an st instruction assigning the value to data at the end
of the first expansion because it was not used after that. It did not suppress the
whole expansion because the parameter was declared to be volatile.

7.3 asm String Statements

NOTE: asm string statements are primarily useful for manipulating data in static
variables and special registers, changing processor status, etc., and are subject to
several restrictions: no assumption can be made about register usage, non-scratch
registers must be preserved, values may not be returned, some optimizations are
disabled, and more. asm macro functions described above are recommended
instead. See Notes and Restrictions, p.161 below.

An asm string statement provides a simple way to embed instructions in the
assembly code generated by the compiler. Its syntax is:

asm[volatile] ("string"[1 register-ist]) ;

where string is an ordinary string constant following the usual rules (adjacent
strings are pasted together, a “\” at the end of the line is removed, and the next line
is concatenated) and register-list is a list of scratch registers (see Register-List Line,
p-158). The optional volatile keyword prevents instructions from being moved
before or after the string statement.

An asm string statement can be used wherever a statement or an external
declaration is allowed. string will be output as a line in the assembly code at the
point in a function at which the statement is encountered, and so must be a valid
assembly language statement.

If several assembly language statements are to be generated, they may either be
written as successive asm string statements, or by using “\n” within the string to

160

7 Embedding Assembly Code
7.3 asm String Statements

end each embedded assembly language statement. The compiler will not insert
any code between successive asm string statements.

If an asm string statement contains a label, and the function containing the asm
string is inlined more than once in some other function, a duplicate label error will
occur. Use an asm macro with a storage mode line containing a lab clause for this
case. See 7.2 asm Macros, p.155.

Notes and Restrictions

asm string statements are primarily useful for tasks like changing processor status
(as in the example above) and manipulating data in static variables and special
registers. When using asm string statements, consider the following notes and
restrictions:

No assumptions may be made regarding register values before and after an
asm string statement. For example, do not assume that parameters passed in
registers will still be there for an asm string statement.

The compiler does not expect an asm string statement to “return” a value.
Thus, using an asm string statement as the last line of a function to place a
value in a return register does not ensure that the function will return that
value.

The compiler assumes that non-scratch registers are preserved by asm string
statements. If used, these registers must be saved and restored by the asm
string statements.

The compiler assumes that scratch registers are changed by asm string
statements and so need not be preserved.

Some optimizations are turned off when an asm string statement is
encountered.

A function containing an asm string statement is never inlined.

Because the string contained in quotation marks is passed to the assembler
exactly as is (after any pasting of continued lines), it must be in the format
required for an assembly language line. Specifically, an instruction line must
begin with a space, a tab, or a label. Assembler directives may start in column
one but only if the assembler -Xlabel-colon option is enabled (see Set Label
Definition Syntax (-Xlabel-colon...), p.291).

When an asm string statement appears in global scope, the compiler adds it to
the output assembly module after all of the function definitions. For this
reason, global asm string statements should not use assembler directives—

161

Wind River Compiler for M32R
User’s Guide, 5.4

such as .set symbol—on which other asm statements (appearing in functions)
depend.

Example 7-1 Disable Interrupts

The following sequence of asm string statements disables hardware interrupts.
Note that a scratch register is used in the example.

asm(" mvic r0,cr0 ; copy processor status to r0");
asm(" xor3 r0,r0,0x40 ; clear bit 25 (interrupt enable)");
asm(" mvtc cr0,x0 ; set the status register");

7.4 Reordering in asm Code

If optimization is requested (options -O or -XO), after generating an assembly file,
the driver will run the reorder optimization program. reorder runs peephole
optimizations and schedules the assembly file before the assembler assembles it,
and does not distinguish assembly code generated by the compiler from assembly
code inserted by asm macros or asm strings. Thus, explicit assembly instructions
written in a particular order by the user may still be reordered by reorder.

In general this may improve even hand-coded assembly language. If it is necessary
to prevent this, write a .set noreorder directive in the asm string or asm macro at
the point at which such re-ordering should be disabled, and a .set reorder directive
where re-ordering can be re-enabled. Alternatively, define the string or macro as
volatile.

162

7 Embedding Assembly Code
7.5 Direct Functions

7.5 Direct Functions

Direct functions, available in C modules only, provide a way to inline machine
code in a function. In a direct function definition, the body of the function is a list
of integer constant expressions which represent the machine code. The form is:

returnﬁtype] function_name ([parameter_type parameter_name , ...]) =

integer-constant-expression ,
integer-constant-expression ,

}; B /* ;' required */
Rules:
» A direct function is signaled by the presence of an “=" character between the

parameter list and the body of the function.

» The expressions in the body are separated by commas and may be written one
or more per line (with a comma after the final expression on a line if additional
expression lines follow).

» The final “}” closing the function body must be followed by a “;”.

A direct function is always inlined when called. When called, what would be the
branch to the function is replaced by a .short assembler directive having as
operands the value of each expression as a hex constant. Otherwise, normal calling
conventions are followed (e.g., any parameters are set up in the usual manner).

Direct functions are supported primarily for compatibility reasons. asm macros
provide a more flexible method to do nearly the same thing. See Table 7-1 which
contrasts the differences.

163

Wind River Compiler for M32R
User’s Guide, 5.4

164

Internal Data Representation

8.1 Basic Data Types 165

8.2 Byte Ordering 167

8.3 Arrays 168

8.4 Bit-fields 168

8.5 Classes, Structures, and Unions 169
8.6 C++ Classes 169

8.7 Linkage and Storage Allocation 174

This chapter describes the alignments, sizes, and ranges of the C and C++ data
types for M32R microprocessors.

8.1 Basic Data Types

By default, the type plain char—that is, char without the keyword signed or
unsigned—is treated as signed.

The following table describes the basic C and C++ data types available in the
compiler. All sizes and alignments are given in bytes. An alignment of 2, for
example, means that data of this type must be allocated on an address divisible by
2.

165

Wind River Compiler for M32R
User’s Guide, 5.4

Table 8-1 C/C++ Data Types, Sizes, and Alignments

Data Type Bytes Align Notes

char 1 1 range (-128, 127), or (0, 255) with
-Xchar-unsigned (Note 1)

signed char 1 1 range (-128, 127)

unsigned char 1 1 range (0, 255)

short 2 2 range (-32768, 32767)

unsigned short 2 2 range (0, 65535)

int 4 4 range (-2147483648, 2147483647)

unsigned int 4 4 range (0, 4294967295)

long 4 4 range (-2147483648, 2147483647)

unsigned long 4 4 range (0, 4294967295)

long long 8 8 range (-2%%,2%3.1)

unsigned long long 8 8 range (0,2%4-1)

enum (Note 2) 4 4 sameas int

1 1 with-Xenum-is-small and fits in signed char
or -Xenum-is-best and fits in unsigned char
2 2 with -Xenum-is-small and fits in short or

-Xenum-is-best and fits in unsigned short

pointers 4 4 all pointer types; the NULL pointer has the
value zero

float 4 4 IEEE 754-1985 single precision

double 8 8 IEEE 754-1985 double precision

long double 8 8 IEEE 754-1985 double precision

reference 4 4 C++:same as pointer (Note 3)

ptr-to-member 8 4 C++: pointer to member

166

8 Internal Data Representation
8.2 Byte Ordering

Table 8-1 C/C++ Data Types, Sizes, and Alignments (cont'd)

Data Type Bytes Align Notes
ptr-to-member-fn 12 4 C++: pointer to member function
Notes:

1. If the option -Xchar-unsigned is given, the plain char type is unsigned. If the
option -Xchar-signed is given, the plain char type is signed.

2. If the option -Xenum-is-int is given, enumerations take four bytes. This is the
default for C.

If the option -Xenum-is-small is given, the smallest signed integer type
permitted by the range of values for the enumeration is used, that is, the first
of signed char, short, int, or long sufficient to represent the values of the
enumeration constants. Thus, an enumeration with values from 1 through 128
will have base type short and require two bytes.

If the option -Xenum-is-best is given, the smallest signed or unsigned integer
type permitted by the range of values for an enumeration is used, that is, the
first of signed char, unsigned char, short, unsigned short, int, unsigned int,
long, or unsigned long sufficient to represent the values of the enumeration
constants. Thus, an enumeration with values from 1 through 128 will have
base type unsigned char and require one byte. This is the default for C++.

3. Areference is implemented as a pointer to the variable to which it is initialized.

8.2 Byte Ordering

All data is stored in big-endian order. That is, with the most significant byte of any
multi-byte type at the lowest address. To access data in little-endian order, see the
byte-swapped parameter for the #pragma pack in pack Pragma, p.130 and __packed
and packed Keywords, p.139.

167

Wind River Compiler for M32R

User’s Guide, 5.4

8.3 Arrays

Arrays, excluding character arrays, have the same alignment as their element type.
The size of an array is equal to the size of the data type multiplied by the number
of elements. Character arrays have a default alignment of 4. -Xsize-opt sets the
alignment of character arrays to 1, and -Xstring-align overrides -Xsize-opt.
-Xarray-align-min, which overrides -Xstring-align, specifies a minimum
alignment for all arrays.

8.4 Bit-fields

Bit-fields can be of type char, short, int, long, or enum. Plain bit-fields are
unsigned by default. By using the -Xbit-fields-signed option (C only) or by using
the signed keyword, bit-fields become signed. The following rules apply to
bit-fields:

168

Allocation is from most significant bit to least.

A bit-field never crosses its type boundary. Thus a char bit-field is never
allocated across a byte boundary and can never be wider than 8 bits.

Bit-fields are allocated as closely as possible to the previous struct member
without crossing a type boundary.

A zero-length bit-field pads the structure to the next boundary specified by its
type.
Bit-fields may not be type long long.

The compiler accesses a bit-field by loads and stores appropriate to the
bit-field’s type. For example, an int bit-field is accessed using a word load or
store (or an equivalent set of smaller load/stores in the unaligned case), even
if the bit-field spans only one byte. To ensure that a bit-field is accessed using
byte (or half-word) load/stores, make the bit-field char or short, or use the
-Xcompress-bitfields option.

When a bit-field is promoted to a larger integral type, the comiler preserves
sign as well as value unless -Xstrict-bitfield-promotions, -Xdialect-strict-ansi,
or -Xstrict-ansi is enabled.

8 Internal Data Representation
8.5 Classes, Structures, and Unions

8.5 Classes, Structures, and Unions

The alignment of class, struct, and union aggregates is the same as that of the
member with the largest alignment.

The size of a structure is the sum of the size of all its members plus any necessary
padding. Padding is added so that all members are aligned to a boundary given by
their alignment and to make sure that the total size of the structure is divisible by
its alignment.

The size of a union is the size of its largest member plus any padding necessary to
make the total size divisible by the alignment.

To minimize the necessary padding, structure members can be declared in
descending order by alignment.

See pack Pragma, p.130 and __packed__ and packed Keywords, p.139 for more
information.

8.6 C++ Classes

C++ objects of type class, struct, or union can be divided into two groups,
aggregates and non-aggregates. An aggregate is a class, struct, or union with no
constructors, no private or protected members, no base classes, and no virtual
functions. All other classes are non-aggregates.

The internal data representation for aggregates is exactly the same as it is for C
structures and unions.

Static member functions and static class members, as well as non-virtual member
functions do not affect the representation of classes. Their relation to the classes are
only encoded in their names (name mangling). Pointers to static member functions
and static class members are ordinary pointers. Pointers to member functions are
of the type pointer-to-member-function as described later.

The internal data representation for non-aggregates has the following properties:
» The rules for alignment are equal to the rules of aggregates.

» The order that members appear in the object is the same as the order in the
declaration.

169

Wind River Compiler for M32R
User’s Guide, 5.4

Non-virtual base classes are inserted before any members, in the order that
they are declared.

A pointer to the virtual function table is added after the bases and members.

For virtual base classes, a pointer to the base class is added after non-virtual
bases, members, or the virtual function table. The virtual base class pointers
are added in the order that they are declared.

The storage for the virtual bases are placed last in the object, in the order they
are declared, that is, depth first, left to right.

Virtual base classes that declare virtual functions are preceded by a “magic”
integer used during construction and destruction of objects of the class.

Example:

struct V1 {};
struct V2 {};
struct V3 : virtual V2 {};
struct Bl : virtual V1 {};
struct B2 : virtual V3 {};
struct D : Bl, private virtual V2, protected B2 {
int di;
private:
int d2;
public:
virtual ~D() {};
int d3;
}i

The class hierarchy for this example is:

170

D is derived from B1, B1 is derived from V1
D is derived from B2, B2 is derived from V3, V3 is derived from V2

D is derived from V2 (which is virtual, thus there is only one copy of V2)

8 Internal Data Representation
8.6 C++ Classes

The internal data representation for D is as follows:

B1

B2

Body of D:
d1
d2
d3

Virtual function table pointer

Pointer to virtual base class V1

Pointer to virtual base class V2

Pointer to virtual base class V3

Vi1

V2

magic for V3

V3

Note:
= When the class D is used as a base class to another class, for example:
class E : D {};

only the base part of D will be inserted before the body of class E. The virtual
bases V1, V2, and V3 will be placed last in class E, in the fashion described
above. Class E would be laid out as follows:

171

Wind River Compiler for M32R

User’s Guide, 5.4

Base part of D

Body of E:

Vi

V2

magic for V3

V3

Pointers to Members

The virtual function table pointer is only added to the first base class that
declares virtual functions. A derived class will use the virtual function table
pointer of its base classes when possible. A virtual function table will be added
to a derived class when new virtual functions are declared, and none of its
non-virtual base classes has a virtual function table.

The virtual function table is an array of pointers to functions. The virtual
function table has one entry per virtual function, plus one entry for the null
pointer.

Virtual base class pointers are added to a derived class when none of its
non-virtual base classes have a virtual base class pointer for the corresponding
virtual base class.

Each virtual base class with virtual functions are preceded by an integer called
magic. This integer is used when virtual functions are called during
construction and destruction of objects of the class.

The pointer-to-member type (non-static) is represented by two objects. One for
pointers to member functions, and one for all other pointers to member types. The
offsets below are relative to the class instance origin.

172

8 Internal Data Representation
8.6 C++ Classes

An object for a pointer to non-virtual or virtual member functions has three parts:

voffset

index

vtbl-offset
or
Function Pointer

The voffset field is an integer that is used when the virtual function table is located
in a virtual base class. In this case it contains the offset to the virtual base class
pointer + 1. Otherwise it has a value of 0.

The index field is an integer with two meanings.

1. index <=0
The index field is a negative offset to the base class in which the non-virtual
function is declared. The third field is used as a function pointer

2. index >0
The index field is an index in the virtual function table. The third field,
vtbl-offset, is used as an offset to the virtual function table pointer of type
integer

A null pointer-to-member function has zero for the second and third fields.

An object for a pointer-to-member of a non-function type has two parts:

voffset
moffset

The voffset field is used in the same way as for pointer-to-member functions. The
moffset field is an integer that is the offset to the actual member + 1. A null pointer
to member has zero for the moffset field.

Virtual Function Table Generation—Key Functions

The virtual function table for a class will be generated only in the module which
defines (not declares) its key virtual function (and does not inline it). The key virtual
function is the virtual function declared lexically first in the class (or the only
virtual function in the class if there is only one).

173

Wind River Compiler for M32R
User’s Guide, 5.4

Consider, for example:

class C {
public:
virtual void f1(...);
virtual void f2(...);

}

Because f1 is the first virtual function declared in the class, it is the key virtual

function.

Then, the virtual function table will be emitted for the module which provides the
non-inlined definition of f1.

8.7 Linkage and Storage Allocation

Depending on whether a definition or declaration is performed inside or outside
the scope of a function, different storage classes are allowed and have slightly
different meanings. Notes are at the end of the section.

Outside Any Function and Outside Any Class

Specifier

none

static

extern

Linkage

external linkage,
program

file linkage

external linkage,
program

Inside a function, but outside any class

Specifier
none
register

auto

174

Linkage
current block
current block

current block

Allocation

Static allocation (Note 1).

Static allocation (Note 1).

None, if the object is not initialized in the
current file, otherwise same as “none”
above.

Allocation
In a register or on the stack (Note 2).
In a register or on the stack (Note 2).

In a register or on the stack (Note 2).

8 Internal Data Representation

8.7 Linkage and Storage Allocation

Specifier Linkage
static current block
extern current block

Allocation
Static allocation (Note 1).

None, this is not a definition (Note 3).

Outside any function, but inside a C++ class definition

Outside the class, a class member name must be qualified with the :: operator, the
. operator or the -> operator to be accessed. The private, protected, and public
keywords, class inheritance and friend declaration will affect the access rights.

Specifier Linkage

none external linkage,
(data) program

static external linkage,
(data) program

none external linkage,
(function) program

static external linkage,
(function) program

Within a Local C++ Class, Inside a Function

Notes

Allocation

None, this is only a declaration of the
member. Allocation depends on how the
object is defined.

None, this is not a definition. A static
member must be defined outside the class
definition.

(uses a this pointer.)

(no this pointer)

Alocal class cannot have static data members. The class is local to the current block
as described above and access to its members is through the class. All member

functions will have internal linkage.

1. Allocation of static variables is as per Table 14-1.

The compiler attempts to assign as many variables as possible to registers,

with variables declared with the register keyword having priority. Variables
which have their address taken are allocated on the stack. If the
-Xlocals-on-stack option is given, only register variables are allocated to

registers

Although an extern variable has a local scope, an error will be given if it is

redefined with a different storage class in a different scope.

175

Wind River Compiler for M32R
User’s Guide, 5.4

176

Calling Conventions

9.1 Introduction 177

9.2 Stack Layout 177

9.3 Argument Passing 178

9.4 C++ Argument Passing 179
9.5 Returning Results 181

9.6 Register Use 182

9.1 Introduction

This chapter describes the interface between a function caller and the called
function. Stack layout, argument passing, returning results, and register use are all
described in detail.

9.2 Stack Layout

The following figure shows the stack frame after completion of the prolog in the

177

Wind River Compiler for M32R
User’s Guide, 5.4

then “current” function (SP = stack pointer, r15).

high address

extra argument area
present if current function has more

than 16 bytes of arguments
Old SP —p

argument spill area
only present for varargs functions to
copy arguments passed in registers

return address register (r14)

temporary space area
local variables and
preserved registers

extra argument area for function
called by current function
present if current function calls a
function with more than 16 bytes
of arguments

SP—p

low address

Notes:

» The argument spill area is used to save the argument registers if the function
uses the variable argument list facility (stdarg/varargs) or takes the address of
a parameter.

» Leaf routines that do not use any stack space do not create a stack area at all.

9.3 Argument Passing

Arguments of size one and two bytes are extended to four bytes. Following the
expansion, the first sixteen bytes of arguments are passed in registers r0, r1, r2, and
r3 (with any eight-byte values in either r0-r1 or r2-r3). Additional arguments are

178

9 Calling Conventions
9.4 C++ Argument Passing

passed on the stack. Arguments with an alignment of 8 are aligned on 8, all other
arguments are aligned on 4. The stack is aligned on 4, except that for a function
with a variable argument list 1) sixteen bytes are reserved on the stack for a copy
of the arguments passed in the registers and 2) the stack is aligned on 8.

The stack layout is shown above. Examples of argument passing are shown below.

Table 9-1 Examples of M32R Argument Passing

Example Function Call r0O r1 r2 r3 Stack
f(char a, char b, char ¢, char d, char e) a b C d e
f(char a, int b, double c, double d) a b —c— d
f(char a, double b, char c) a - —b— C

9.4 C++ Argument Passing

In C++, the same lower-level conventions are used as in C, with the following
additions:

» References are passed as pointers.

* Function names are encoded (mangled) with the types of all arguments. A
member function has also the class name encoded in its name. See 13.5 C++
Name Mangling, p.227.

* Anargument of class, struct, or union type may, depending on the target
architecture and the size of the actual parameter, be passed as a pointer to the
object. (But this does not happen if the function is declared with extern "c".
For this reason, when a C++ function with class, struct, or union parameters
is called from a C module, it should always be assumed that the C++ compiler
expects a pointer argument. For example, suppose the following function is
defined in a C++ module:

int ff(struct S s);
To call this function from a C module, use code like this:

struct S xyz;
int 1 = ffmangledname (&xyz) ;

179

Wind River Compiler for M32R
User’s Guide, 5.4

where ffmangledname is the mangled form of ff. To find the mangled name of a
C++ function, see 13.5 C++ Name Mangling, p.227 and 29. D-DUMP File
Dumper.

Pointer to Member as Arguments and Return Types

Pointers to members are internally converted to structures. Therefore argument
passing and returning of pointer to members will follow the rules of class, struct,
and union.

Member Function

Non-static member functions have an extra argument for the this pointer. This
argument is passed as a pointer to the class in which the function is declared. The
argument is passed as the first argument, unless the function returns an object that
needs the hidden return argument pointer, in which case the return argument
pointer is the first argument and the this pointer is the second argument.

Constructors and Destructors

Constructors and destructors are treated like any other member function, with
some minor exceptions as follows.

Constructors for objects with one or more virtual base classes have one extra
argument added for each virtual base class. These arguments are added just after
the this pointer argument. The extra arguments are pointers to their respective
base classes.

Calling a constructor with the virtual base class pointers equal to the null pointer
indicates that the virtual base classes are not yet constructed. Calling a constructor
with the virtual base class pointers pointing to their respective virtual bases
indicates that they are already constructed.

All destructors have one extra integer argument added, after the this pointer. This
integer is used as a bit mask to control the behavior of the destructor. The definition

180

9 Calling Conventions
9.5 Returning Results

of each bit is as follows (bit 0 is the least significant bit of the extra integer
argument):

Bit 0
When this bit is set, the destructor will call the destructor of all sub-objects
except for virtual base classes. Otherwise, the destructor will call the
destructor for all sub-objects.

Bit 1
When this bit is set, the destructor will call the operator delete for the
object.

All other bits are reserved and should be cleared.

9.5 Returning Results

Characters and shorts are extended to 32-bits and returned in register r0. Integers,
pointers, and float values are returned in register r0. Double and long long values
are returned in r0/r1. Structures, unions, and classes with total size and alignment
described in the following table, are returned in r0/r1. All other types are returned
in the memory area pointed to by a hidden address argument passed in register r0.

Size Alignment Return Register
1 1 10
2 2 10
4 4 10
8 4or8 r0/r1

Class, Struct, and Union Return Types

With the exceptions mentioned above, a function with a return type of class, struct,
or union is called with a hidden argument of type pointer to function return type. The
called function copies the return argument to the object pointed at by the hidden
argument; the ordinary arguments are “bumped” one place to the right.

181

Wind River Compiler for M32R

User’s Guide, 5.4

9.6 Register Use

The following describes how registers are used by the compiler.

r0 -

r2 -

rd -

r8

r9

r10

r14

r15

182

rl
Scratch registers; not preserved by functions. Hold variables whenever
possible. Also used to pass parameters and return results.

r3
Scratch registers; not preserved by functions. Hold variables whenever
possible. Also used to pass parameters.

17
Scratch registers; not preserved by functions.

When producing position-independent code (PIC) or constant data (PID), for
example by using the -Xcode-relative-far option, r8 is used as a base register
pointing to the code and constant data section.

Otherwise 18 is a preserved register like r10 - r14. Note that mixing code
compiled for PIC with normal code produces a program that is not PIC.

When producing position-independent data (PID), for example by using the
-Xdata-relative-far option, r9 is used as a base register pointing to the data
section.

Otherwise 19 is a preserved register like 110 - r14. Note that mixing code
compiled for PID with normal code produces a program with data that is not
position-independent.

-rl3

Preserved registers; saved when used by functions. Hold variables which
cannot be put in r0 - 17.

Link register; contains the return address.

Stack pointer.

10

Optimization

10.1 Optimization Hints 183

10.2 Cross-Module Optimization 190

10.3 Target-Independent Optimizations 192
10.4 Target-Dependent Optimizations 204
10.5 Example of Optimizations 206

Optimizations have two purposes: to improve execution speed and to reduce the
size of the compiled program.

Most optimizations are activated by the -O option (5.3.17 Optimize Code (-O), p.40).
A few, such as inlining, are activated by the -XO option (5.4.94 Enable Extra
Optimizations (-XO), p.97). See also the discussion of optimization and debugging
under the -g option (5.3.9 Generate Symbolic Debugger Information (-g), p.37).

10.1 Optimization Hints

The compilers attempt to produce code as compact and efficient as possible.
However, some information about characteristics of the program only the user has.
This section describes various ways the user can enable the compiler to generate
the most optimal code.

183

Wind River Compiler for M32R
User’s Guide, 5.4

What to Do From the Command Line

The usual purpose of optimizations is to make a program run as fast as possible.
Most optimizations also make the program smaller; however the following
optimizations will increase program size, exchanging space for speed:

» Inlining: replaces a function call with its actual code.
» Loop unrolling: expands a loop with several copies of the loop body.

When a program expands it may have a negative effect on speed due to increased
cache-miss rate and extra paging in systems with virtual memory.

Because the compiler does not have enough information to balance these concerns,
several options are provided to let the user control the above mentioned
optimizations:

= -Xinline=n

Controls the maximum size of functions to be considered for inlining. 7 is the
number of internal nodes. See 5.4.72 Inline Functions with Fewer Than n Nodes
(-Xinline=n), p.86, for more details and 5.4.142 Control Loop Unrolling
(-Xunroll=n, -Xunroll-size=n), p.114, for a definition of internal nodes. Other
options that control inlining include -Xexplicit-inline-factor (5.4.49 Control
Inlining Expansion (-Xexplicit-inline-factor), p.76) and -Xinline-explicit-force
(6.4.73 Allow Inlining of Recursive Function Calls (-Xinline-explicit-force), p.86).

= -Xunroll-size=n

Controls the maximum size of a loop body to be unrolled. See also
5.4.142 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.114, for more
details.

There is also a trade-off between optimization and compilation speed. More
optimization requires more compile-time. The amount of main memory is also a
factor. In order to execute interprocedural optimizations (optimizations across
functions) the compiler keeps internal structures of every function in main
memory. This can slow compilation if not enough physical memory is available
and the process has to swap pages to disk. The -Xparse-size=m option, where m is
memory space in KByte, is set to suggest to the compiler how much memory it
should use for this optimization. (See 5.4.98 Specify Optimization Buffer Size
(-Xparse-size), p.99.)

With all the different optimization options, it is sometimes difficult to decide which
options will produce the best result. The -Xblock-count and -Xfeedback options
(56.4.11 Insert Profiling Code (-Xblock-count), p.61, 5.4.52 Optimize Using Profile Data
(-Xfeedback=file), p.78), which produce and use profiling information, provide

184

10 Optimization
10.1 Optimization Hints

powerful mechanisms to help with this. With profiling information available, the
compiler can make most optimization decisions by itself.

The following guidelines summarize which optimizations to use in varying
situations. The options used are found in 5. Invoking the Compiler.

» If execution speed is not important, but compilation speed is crucial (for
example while developing the program), do not use any optimizations at all:

dplus file.cpp -o file

» The-O option is a good compromise between compilation time and execution
speed:

dplus -0 file.cpp -o file

» Toproduce highly optimized code, without using the profiling feature, use the
-XO option:

dplus -XO file.cpp -o file

» To obtain the fastest code possible, use the profiling features referred to above.

» To produce the most compact code, use the -Xsize-opt option:
dplus -XO -Xsize-opt file.cpp -o file
= If the compiler complains about “end of memory” (usually only on systems

without virtual memory), try to recompile without using -O.

= When compiling large files on a host system with large memory, increase the
amount of memory the compiler can use to retain functions. This allows the
compiler to perform more interprocedural optimizations. Use the following
option to increase the available memory to 8,000 KByte:

-Xparse-size=8000

» If speed is very important and the resulting code is small compared to the
cache size of the target system, increase the values controlling inlining and
loop-unrolling:

-X0 -Xinline=80 -Xunroll-size=80

*= When it is difficult to change scripts and makefiles to add an option, set the
environment variable DFLAGS. Examples:

DFLAGS="-X0O -Xparse-size=8000 -Xinline=50" (UNIX)
export DFLAGS
set DFLAGS=-XO -Xparse-size=8000 -Xinline=50 (VVhldOVVS)

» If possible, disable exceptions and run-time type information
(-Xexceptions-off, -Xrtti-off). This can reduce code size significantly.

185

Wind River Compiler for M32R
User’s Guide, 5.4

What to Do With Programs

The following list describes coding techniques which will help the compiler
produce optimized code.

» Use local variables. The compiler can keep these variables in registers for
longer periods than global and static variables, since it can trace all possible
uses of local variables.

» Use plain int variables when size does not matter. Local variables of shorter
types must often be sign-extended on specific architectures before compares,
etc.

= Use the unsigned keyword for variables known to be positive.

* Ina structure, put larger members first. This minimizes padding between
members, saving space, and ensures optimal alignment, saving both space and
time. For example, change:

struct _pack {
char flag;

int number ;
char version;
int op;

to
struct good_pack {
int number ;
int op;
char flag;
char version;

}

» For target architectures which include a cache, declare variables which are
frequently used together, near each other to reduce cache misses. For example,

change:
struct bad {
int type;
struct bad *next;

}i
to
struct good {

int type;
struct good *next;

186

10 Optimization
10.1 Optimization Hints

Then both type and next will likely be in the cache together in constructs such
as:

while (p->type != 0) {

p = p->next;

}
Allocate variables to the small data and small const areas. See the descriptions
of the -Xsmall-data and -Xsmall-const options and the description of #pragma
section, all in 14. Locating Code and Data, Addressing, Access.

Use the const keyword to help the optimizer find common sub-expressions.
For example, *p can be kept in a register in the following:

void func(const int *p) {
f1(*p);
£2(*p);
}
Use the static keyword on functions and module-level variables that are not
used by any other file. Optimization can be much more effective if it is known
that no other module is using a function or variable. Example:

static int si;

void func (int *p) {
int i;
int j;

The compiler knows that *p = 0 does not modify variable si and so can order
the assignments optimally.

Use the volatile keyword only when necessary because it disables many
optimizations.

Avoid taking the address of variables. When the address of a variable is taken,
the compiler usually assumes that the variable is modified whenever a
function is called or a value is stored through a pointer. Also, such variables
cannot be assigned to registers. Use function return values instead of passing
addresses.

187

Wind River Compiler for M32R
User’s Guide, 5.4

188

Example: change

int func (int var) {
far_awayl (&var) ;
far_away?2 (var) ;
return var;

to

int func (int var) {
var = new_far_awayl (var) ;
far_away?2 (var) ;
return var;

}

Use the #pragma inline directive and the inline keyword for small, frequently
used functions. inline eliminates call overhead for small functions and
increases scheduling opportunities.

Use the #pragma no_alias directive to inform the compiler about aliases in
time critical loops. Example:

void add(double d[100][100], double s1[100], double s2[100])
#pragma no_alias *d, *sl, *s2
{

int i;

int j;

for (i = 0; 1 < 100; i++) {

for (3 = 0; j < 100; 3 ++) {

dlil[j] += s1[i] * s2[i];

}

}
}

Because it is known that there is no overlap between d and each of s1 and s2,
the expression s1[i]*s2[i] can be moved outside of the innermost loop.

Use #pragma no_side_effects and #pragma no_return on appropriate
functions. Example:
comm.h:

#pragma no_side_effects busy_wait (1)
#pragma no_return comm_err

file.c:

#include "comm.h"

a = *p;

busy_wait (&sem) ;

if (error) {

comm_err ("fatal error");
}
b = *p;

10 Optimization
10.1 Optimization Hints

Because busy_wait is known to have no side effects and comm_err is known
not to return, the compiler can assign *p to a register.

Use asm macros rather than separate assembly functions because it eliminates
call overhead. See 7. Embedding Assembly Code.

Avoid setjmp() and longjmp(). When the compiler finds setjmp() in a
function, a number of optimizations are turned off. For example, when the
-Xdialect-pcc option is specified, no variables declared without the register
keyword will be allocated to registers. This is done to be compatible with older
compilers that always allocate variables not declared register on the stack,
which means that if they are changed between the call to setjmp() and the call
to longjmp(), they will keep the changed value after the longjmp(). If the
variables were allocated to registers, they would have the values valid at the
time of the setjmp().

The following example demonstrates this difference:

#include <setjmp.h>
static jmp_buf label;

£1() {
int 1 = 0;
if (setjmp(label) != 0) {
/* returned from a longjmp() */
if (1 == 0) {

printf ("i has first value: allocated to "
"register.\n");
} else {
printf ("i has new value: allocated on stack\n");
}
return;

}

/* setjmp () returned 0: does not come from a longjmp*/
i=1;
£2();

}

£2() {
/* jump to the setjmp call, returning 1 */
longjmp (label, 1);

}

Note that both ways are valid according to ANSL

If possible, eliminate C++ exception-handling code (try, catch, or throw). This
allows you to compile with exceptions disabled (-Xexceptions-off), which
reduces stack space and increases execution speed.

189

Wind River Compiler for M32R
User’s Guide, 5.4

10.2 Cross-Module Optimization

Cross-module optimization, controlled with the -Xcmo-... options (see

5.4.23 Enable Cross-module Optimization (-Xcmo-...), p.65), allows the compiler to
optimize calls between functions in different source files. This feature can improve
execution efficiency but requires the developer to track intermodule dependencies
with care.

Currently, function inlining is the only implemented cross-module optimization.

The compiler implements cross-module optimization by constructing a database
of information about functions and variables. To use cross-module optimization,
compile your project twice—first with -Xcmo-gen to create a database, then with
-Xcmo-use to optimize using information from the database. You must specify a

name and location for the database file. Examples:

dcc -Xcmo-gen=C:\projects\MyProject\MyProject.db main.c (VVhidOVVS)
dcc -Xcmo-use=C:\projects\MyProject\MyProject.db main.c
dcc -Xcmo-gen=/projects/MyProject/MyProject.db main.c OJPJ[X)

dcc -Xcmo-use=/projects/MyProject/MyProject.db main.c

The -Xcmo-gen compiler pass is used only for building the database. All object
files created by this pass should be regenerated during the next build.

NOTE: Do not use the -Xcmo-... options to compile a project that contains two or
more source files (in different directories) with the same base name.

If there are functions that you do not want to have inlined across modules, you can
specify them by adding -Xcmo-exclude-inline to the command line with
-Xcmo-use. For example:

dcc -Xcmo-use=...\MyProject.db -Xcmo-exclude-inline=f1,f2 main.c

tells the compiler not to inline f1 or £2 across modules. Names of C++ functions
must be given in mangled form (see 13.5 C++ Name Mangling, p.227); to find the
mangled form of a function name, use the ddump utility (see 29. D-DUMP File
Dumper).

-Xcmo-verbose, combined with -Xcmo-use or -Xcmo-gen, outputs a list of inlined
(or inlinable) functions.

Before using cross-module optimization, please read the following additional
notes.

190

10 Optimization
10.2 Cross-Module Optimization

Database Location and Use

The database name should be specified with a full directory path. Otherwise, the
compiler uses the current working directory, which could result in fragmented
databases residing in multiple locations.

It is preferable to use a non-network directory for the database. Never share a
database among compiler installations, even when building from the same source
files.

Use With Other Optimizations and Build Options

The -Xcmo-... switches are affected by other build options. In general, you should
turn compiler optimizations off when building with -Xcmo-gen and on when
building with -Xcmo-use. More specifically:

» To save time, disable optimizations and skip the linking step when building
with -Xcmo-gen. (Executable output from the -Xcmo-gen compilation is
ultimately discarded.)

» -Xcmo-use is ignored unless other optimizations are enabled (-O or -XO).

» Optimization-related compiler switches, including -Xinline, apply to
cross-module optimization as well. If -Xinline is set to a very low value,
cross-module optimization is unlikely to be useful. (-Xinline has no effect on
the construction of the database itself.)

= If-Xinline is set to a high value, cross-module optimization can result in large
executables and long compilation time. You may want to compile specific
source files with cross-module optimization disabled.

Database Maintenance

Every time you compile with -Xcmo-use, the compiler updates the existing
database by adding to the list of functions that are candidates for inlining—but it
does not perform dependency analysis. Hence the database can easily become
unsynchronized after repeated incremental builds. (This occurs, for example,
when a source file containing a called function has changed, but the source file
containing the calling function is unchanged.) It is important to track
dependencies and recompile periodically with -Xcmo-gen. When in doubt,
manually delete the database file before recompiling.

After moving or copying files, always delete the database file and regenerate it
with -Xcmo-gen.

191

Wind River Compiler for M32R
User’s Guide, 5.4

Special Name Mangling

To enable cross-module optimization, the compiler assigns a unique mangled
name to each function and static variable. Mangled function names begin with
__STF followed by a line number, function name, mangled filename, and other
information. Mangled variable names begin with __ STV followed by a line
number, variable name, mangled filename, and other information. The
demangling utility does not demangle these names.

10.3 Target-Independent Optimizations

The following optimizations are performed by the compiler on all targets.

The numbers in parentheses after the name of each optimization are mask bits for
the -Xkill-opt option. Optimizations can be selectively disabled by specifying
-Xkill-opt=mask, where mask can be given in hex (e.g. -Xkill-opt=0x12). Multiple
optimizations can be disabled by OR-ing their bits; undefined mask bits are
ignored. -Xkill-opt=0xffffffff has the same effect as not using the -O option at all.

NOTE: Regardless of which options are specified, there is no way (short of
disabling optimizations completely) to guarantee that the compiler will or will not
perform a specific optimization on a given piece of code.

-Xkill-opt is deprecated and should be used only on the advice of Customer
Support.

Tail Recursion (0x2)

This optimization replaces calls to the current function, if located at the end of the
function, with a branch. Example:

NODEP find(NODEP ptr, int value)
{
if (ptr == NULL) return NULL;
if (value < ptr->val) {
ptr = find(ptr->left,value);

192

Inlining (0x4)

}

10 Optimization
10.3 Target-Independent Optimizations

} else if (value > ptr->val) {
ptr = find(ptr->right,value);
}

return ptr;

will be approximately translated to:

NODEP find(NODEP ptr, int value)

{
top:

if (ptr == NULL) return NULL;
if (value < ptr->val) {
ptr = ptr->left;
goto top;
} else if (value > ptr->val) {
ptr = ptr->right;
goto top;
}

return ptr;

Inlining optimization replaces calls to functions with fewer than the number of
nodes set by -Xinline with the actual code from the same functions to avoid
call-overhead and generate more opportunities for further optimizations. See
5.4.142 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.114, for the definition

of node; assembly files saved with -S show the number of nodes for each function.

To be inlined, the called function must be in the same file as the calling function.

Inlining can be triggered in three ways:

1.

In C++ use the inline keyword when defining the function, and in C use the
__inline__ keyword or the inline keyword if enabled by -Xkeywords=4.
Functions inlined by the use of keywords are local (static) by default, but can
be made public with extern. See __inline__ and inline Keywords, p.137.

Use

the #pragma inline function-name directive. The #pragma directive can be

used in C++ code to avoid the local static linkage forced by the __inline__ or
inline keywords. See inline Pragma, p.127.

Use

option -XO to automatically inline functions of up to the number of nodes

set by -Xinline (see 5.4.72 Inline Functions with Fewer Than n Nodes (-Xinline=n),
p-86). Option -XO sets this value to 40 nodes by default.

In addition to -Xinline, the options -Xexplicit-inline-factor,
-Xinline-explicit-force, and -Xcmo-... also control inlining of functions.

193

Wind River Compiler for M32R
User’s Guide, 5.4

NOTE: Code must be optimized by use of the -XO or -O option for inlining to occur.

Example:

#pragma inline swap
swap (int *pl, int *p2)
{

int tmp;
tmp = *pl;
*pl = *p2;
*p2 = tmp;
}
func ({

swap (&1,&3) ;

will be translated to:

func () {

Argument Address Optimization (0x8)

If the address of a local variable is used only when passing it to a function which
does not store that address, the variable can be allocated to a register and only
temporarily placed on the stack during the call to the function. Example:

extern int x;

int check(int *x)
{
if (*x > 569) {
return(999) ;
} else {
return(100) ;
}

194

10 Optimization
10.3 Target-Independent Optimizations

int foo(int y)
{

int 1, 3; // can be placed in registers

i=x*y;
3j check (&1i) ;
if (3 > 1) {
i = check(&3);
} else {
i = 365;

}

return j*i;

Structure Members to Registers (0x10)

This optimization places members of local structures and unions in registers
whenever it is possible. It also optimizes assignments to structure and union
members. Example:

int fpp(int);
int bar (int, int);
struct x{
int a;
int b;
}i
void goo();

foo ()
{

struct x X;

X.a = fpp(3);

X.b = fpp(5);

if (bar(X.a, X.b)) {
goo () ;

}

}

If the optimization is enabled, the compiler attempts place X.a and X.b in registers
rather than allocating memory for X.

195

Wind River Compiler for M32R
User’s Guide, 5.4

Assignment Optimization (0x80)

Multiple increments of the same variable are merged:

D++; ->
pl0] = 0; pll] = 0;
pH+; pl2] = 1;
pll] = 1; p += 2;

Pre- and post-increment/decrement addressing modes are used when available on
the target processor:

Dt++; ->
p[0] = 0; *++p = 0;
pt+;

pll] = 1; *++4p = 1;

Increments are moved from the end of a loop to the beginning in order to use
incrementing addressing modes when available on the target processor:

while(*s++) ; -> s--; while(*++s) ;

Tail Call Optimization (0x100)

In the following case, the call to printf is converted to a branch to printf and the
stack frame is undone before the branch.

int _myfunc(char *fmt, int wval)

{

return printf (fmt,val);

}

This optimization is performed even if no -O or -XO switch is used.

NOTE: In earlier releases (prior to version 4.3), the 0x100 mask was used to disable
simple branch optimization.

Common Tail Optimization (0x200)

Different paths with equal tails are rewritten. This optimization is most effective
when many case statements end the same way:

void bar(), foo(), gfoo(), hfool();

196

10 Optimization
10.3 Target-Independent Optimizations

lucky ()
{
switch (a) {
case 1:
foo(); bar();
break;
case 2:
gfoo(); bar();
break;
case 3:
hfoo(); bar();
break;
case 4:
foo(); bar();
break;
default:
bar () ;
break;

}

The call to bar() is removed from the individual case statements and executed
separately at the end of the switch statement.

This optimization cannot be disabled unless reorder is disabled. To disable reorder,
use -W1 with no argument (see 5.3.30 Substitute Program or File for Default (-W xfile),
p-44).

Variable Live Range Optimization (0x400)

Variables with more than one live range are rewritten to make it possible to allocate
them to different registers/stack locations:

m(int i, int j) { -> m(int i$1, int j) {
int k = £(i,3); int k = £(i$1,3);
i=£(k,3); is2 = £(k,J);
return i+k; return i$2+k;

} }

In the above example, only two registers are needed to hold the three variables
after split optimization, since i$1 and k can share one register and i$2 and j can
share the other one.

197

Wind River Compiler for M32R
User’s Guide, 5.4

Constant and Variable Propagation (0x800)

Constants and variables assigned to a variable are propagated to later references of
that variable. Lifetime analysis might later remove the variable:

a=1; b =2; -> a=1; b =2;
..; k(a+b); e kK(142);

Complex Branch Optimization (0x1000)

Branches and code that falls through to conditional branches where the outcome
can be computed are rewritten. This typically occurs after a loop with multiple
exits.

extern int x;
extern int bar (int x);

int foo(int a, int b)
{

int i, y, z = 0;

x = bar(a);

if (x > 44)
{
y = a + b;
if (x < 22) { // always false when evaluated

z = a * 365; // never executed

return (x + y + z);

Loop strength reduction (0x2000)

Multiplications with constants in loops are rewritten to use additions. Instead of
multiplying i with the size every time, the size is added to a pointer (arp++ in the
example below). The array reference

ar[il
is actually treated as

*(ar_type *) ((char *)ar + i*sizeof(ar[0]))

198

10 Optimization
10.3 Target-Independent Optimizations

Example:
for (i=0; 1i<10; i++){ -> arp = ar;
sum +=var[i]; for (i=0; i<10; i++){
} sum += *arp; arp++;

Loop Count-Down Optimization (0x4000)

Loop variable increments are reversed to decrement towards zero:

for (i=0; 1i<10; i++){ -> for (i=10; i>0; i--){
sum = *arp; arp++; sum += *arp; arp++;

} }

Also, empty loops are removed.

Loop Unrolling (0x8000)

Small loops are unrolled to reduce the loop overhead and increase opportunities

for rescheduling. Option -Xunroll option sets the number of times the loop should
be unrolled. Option -Xunroll-size defines the maximum size of loops allowed to

be unrolled (see 5.4.142 Control Loop Unrolling (-Xunroll=n, -Xunroll-size=n), p.114
for both options).

Note: some sufficiently small loops may be unrolled more than n times if total code
size and speed is better. Example:
for (i=10; 1i>0; i--){ -> for (i=10; 1i>0; 1-=2){
sum += *arp; sum += *arp;

arp++; sum += *(arp+l);
arp += 2;

Global Common Subexpression Elimination (0x10000)

Subexpressions, once computed, are held in registers and not re-computed the next
time the subexpressions occur. Memory references are also held in registers.
if (p->op == A) -> tmp = p->op;
A if (tmp == A)
else if (p->op == B) R
else if (tmp == B)

199

Wind River Compiler for M32R
User’s Guide, 5.4

Undefined variable propagation (0x20000)

Expressions containing undefined variables are removed.
int bar(int);

int foo()

{

int x, a, b, y;

X 365 * (a + b);
y = bar(x);
return y;

}
No memory is allocated for a or b. The operation a + b is not performed.

Unused assignment deletion (0x40000)

Assignments to variables that are not used are removed.

int foo(int x, int y)
{

int a, b;

a =x + 365; // removed
b=x-y;
return b;

}

This optimization cannot be disabled unless reorder is disabled. To disable reorder,
use -W1 with no argument (see 5.3.30 Substitute Program or File for Default (-W xfile),

p-44).
Minor Transformations to Simplify Code Generation (0x80000)

Some minor transformations are performed to ease recognition in the code
generator:

if (a) return 1; -> return a ? 1 : 0;
return 0;

Register Coloring (0x200000)

This optimization locates variables that can share a register.

200

10 Optimization
10.3 Target-Independent Optimizations

extern int a[100], b[100];

foo ()
{

int i, a, j, b;

for (1 = 0; 1 < 10; 1i++) {
a += bar(i) + 1i;

}

for (j = 0; j < 80; j-=6) {
b += bar(i) - i;
}
}

a and j use the same register.

Interprocedural Optimizations (0x400000)

Registers are allocated across functions. Inlining and argument address
optimizations are performed.

static int foo(int a, int b)
{
return ((a > b)? a: b);

}
bar (int i, int j)
{

printf ("larger value = %d\n", foo(i,j));

}

The foo function is inlined into bar.

Remove Entry and Exit Code (0x800000)

The prolog and epilog code at the beginning and end of a function which sets up
the stack-frame is not generated whenever possible.

Use Scratch Registers for Variables (0x1000000)

When allocating registers, the compiler attempts to put as many variables as
possible in scratch registers (registers not preserved by the function).

201

Wind River Compiler for M32R
User’s Guide, 5.4

NOTE: When this optimization is disabled, the compiler may still use registers to
store variables. To control register use, use #pragma global_register (global_register

Pragma, p.125).

Extend Optimization (0x2000000)

Sometimes the compiler must generate many extend instructions to extend smaller
integers to a larger one. The compiler attempts to avoid this by changing the type

of the variable. For example:

int c;

char *s;

c = *s;

if (¢ == 2) ¢ = 0;

On some targets, the ¢ = *s statement has an extend instruction. By changing int ¢
to char c this instruction is avoided.

Loop Statics Optimization (0x4000000)

Memory references that are updated inside loops are allocated to registers.

Example:
int ar([100], sum;

sum_ar () {
int i;

sum = 0;
for (i = 0; 1 < 100; i++)
sum += ar[il];
}
}

will be translated to:

sum_ar () {
int i;
register int tmp_sum

tmp_sum = 0;

for (i = 0; 1 < 100; i++)
tmp_sum += ar[i];

}

sum = tmp_sum;

202

{

10 Optimization
10.3 Target-Independent Optimizations

Loop Invariant Code Motion (0x8000000)

Expressions within loops that are not changed between iterations are moved
outside the loop.

int sum;

int c[10];

int bar(int);

foo(int a, int b)

{

int i;
for(i = 0; i < 10; i++) {
sum += a * b;

c[i] = bar(i);

}
The operation a*b is performed outside of the loop statement.

Static Function Optimization (0x20000000)

A static function that does not have its address taken can be optimized in various
ways; for example, if the function is not used, it can be removed.

Live-Variable Analysis (0x40000000)

Live variable analysis is done for global and static variables. This means that global
and static variables can be allocated into registers and any stores into them can be
postponed until the last store in a live range.

Local Data Area Optimization (0x80000000)

This optimization creates a Local Data Area (LDA) into which variables may be
placed for fast, efficient base-offset addressing. See 14.4 Local Data Area
(-Xlocal-data-area), p.251 for details.

This optimization can be disabled by setting -Xlocal-data-area=0 or restricted to
static variables by setting -Xlocal-data-area-static-only.

203

Wind River Compiler for M32R
User’s Guide, 5.4

Feedback Optimization

By utilizing profiling information from an actual execution of the target program,
the optimizer can make more intelligent decisions in various cases, including the
following:

» Register allocation can be based on the real number of times a variable is used.
» if-else clauses are swapped if first part is executed more often.

* Inlining and loop unrolling is not done on code seldom executed.

* More inlining and loop unrolling is done on code often executed.

= Partial inlining is done on functions beginning with if (expr) return;

» Branch prediction is performed.

The -Xblock-count and -Xfeedback options are available to collect and use
profiling data. See 15.12 Profiling in An Embedded Environment, p.278.

10.4 Target-Dependent Optimizations

The following target-dependent optimizations are specific to the M32R family and
are done by the reorder program.

The numbers in parentheses after the name of each optimization are mask bits for
the -Xkill-reorder option. Optimizations can be selectively disabled by specifying
-Xkill-reorder=mask, where mask can be given in hex (e.g. -Xkill-reorder=0x9).
Multiple optimizations can be disabled by OR-ing their bits; undefined mask bits
are ignored.

NOTE: Regardless of which options are specified, there is no way (short of
disabling optimizations completely) to guarantee that the compiler will or will not
perform a specific optimization on a given piece of code.

-Xkill-reorder is deprecated and should be used only on the advice of Customer
Support.

204

10 Optimization
10.4 Target-Dependent Optimizations

NOTE: The reorder program, which does target-dependent optimization, parses
the assembler output of the compiler. Because this output is assumed to be correct,
reorder may abort on assembly code errors, including errors in hand-written asm
macros and strings. If an error in reorder appears to be persistent, confirm that any
handwritten assembly code is correct, perhaps by removing it temporarily, before
reporting the difficulty to Customer Support.

Basic Reordering (0x1)

Instructions are reorganized to avoid stalls in the processor pipeline. For example,
when loading a value from memory, the processor has to wait for one cycle before
the next instruction uses the destination register. The compiler rearranges the code
so the processor can execute at full speed.

For M32RX, this phase will find opportunities to execute two instructions in
parallel.

General Peephole Optimization (0x8)

Peephole optimization makes final improvements within basic blocks, especially
to remove inefficiencies caused by interactions among other optimizations which
would be uneconomical to detect otherwise. Examples:

= A branch to a single instruction followed by another branch is rewritten by
inlining the instruction at the current address.

» Certain instructions which do not change any register are removed.
» Elimination of redundant load and stores.

» Register coalescing to eliminate moves.

NOTE: Disabling general peephole optimization implicitly disables finer-grained
peephole optimizations listed below, including peephole reaching analysis, merge
common block entry or exit code, and additional loop optimizations.

205

Wind River Compiler for M32R

User’s Guide, 5.4

Peephole Reaching Analysis (0x20)

Extends peephole optimization across basic blocks. See General Peephole
Optimization (0x8), p.205 for details of peephole optimization.

Merge Common Block Entry or Exit Code (0x200)

Merge common code at the entry or exit of blocks.

Additional Loop Optimizations (0x400)

Hoist loop invariant instructions. Eliminate redundant loads at the top of a loop
that are also done at the bottom of a loop.

Simple Scheduling Optimization (0x1000)

Attempt to optimize load instructions.

10.5 Example of Optimizations

The following C program demonstrates several of the optimizations available in
the compiler and how they interact with each other.

The numbers in parentheses are used to identify the optimizations in the generated code for
the example, shown following the table.

The target processor is M32R. The optimizations shown are:

ey
)
)
(4)
)

206

remove entry and exit code

use scratch registers for variables
unused assignment deletion
complex branch optimization

peephole optimization

(6)
(7)
(8)
©)
(10)

10 Optimization
10.5 Example of Optimizations

loop strength reduction

loop count-down optimization

global common subexpression elimination
inlining of functions

constant and variable propagation

bubble.c implements sorting of an array in ascending order.

swap2 (int *ip) /* swap two ints */

{

}

int tmp = ip[0];
ip[0] = ip[1];
ip[1] tmp;

/* "bubble" sorts the array pointed to by "base", containing

"count" elements, and returns the number of tests done */

int bubble(int *base, int count)

{

}

int change = 1;
int i;
int test_count = 0;

while (change) {
change = 0;
count--;
for (1 = 0; i1 < count; i++) {
test_count++;
if (basel[i] > basel[i+1]) {
swap?2 (&base[il]) ;
change = 1;

}
}

return test_count;

When bubble.c is compiled with the following line,

dcc -tM32REN -S -Xpass-source -XO bubble.c

the file bubble.s is generated as shown below (option -Xpass-source conveniently
causes the source to be included intermixed as comments with the generated

assembly code in bubble.s).

Only the bubble() function is shown; code will also be present for the swap()
function in bubble.s because it is not static and may therefore be called from

207

Wind River Compiler for M32R
User’s Guide, 5.4

another module. Comments have been added below to explain the optimizations

performed.
Table 10-1 lllustration of Optimizations for M32R
C Code Generated Assembly Code Explanation

{
int change = 1;
int i;

int test_count = 0;

while (change) {
change = 0;

count--;
for (i = 0;

i < count;
i++) {

bubble:

L4

.L8:

.text

.globl bubble
push rl2

mv rl2,rl
push rl3

mv rl3,r0
1di r2,0

1di rl,0
addi rl2,-1
blez rl2,.Ll6
mv r5,rl3
mv r2,rl2
14 r3,@(r5)
1d rd, (r5,4)

Start of function bubble. Minimal entry code is
necessary (1) since most variables are put in
scratch registers (2) and the return register r14
is not used. The assignment change =1 is
eliminated (3) since it is used only in the first
while test, which is known to be true and
removed (4).

test_count = 0;

Top of while (change) loop.

change = 0;

count--;

Top test of for loop. Loop strength reduction (6)
has replaced all references to base[i] with a
created pointer, $$2, placed in register r7. Since
no more references are made to i, loop
count-down optimization (7) decrements i from
count to 0.

Temporary pointer $$2 is set to base.

iis set to count.

Top label of for loop.

$$2[0] is loaded to r3. Since this value is used
later on, it is remembered in $$4 (8).

$$2[1] is remembered in $$3 (8).

208

10 Optimization
10.5 Example of Optimizations

Table 10-1 lllustration of Optimizations for M32R (cont'd)

C Code Generated Assembly Code Explanation
test_count++; addi r0,1 test_count++;
if (basel[i] > cmp rd,r3 if. See if a swap must take place.

base[i+1] {

bnc L7 If not branch to .L7.
swap2 ... The function swap2 is inlined (9). Variable
propagation (10) removes the use of variables
tmp and ip.
st rd,@(r5) ip[0] = ip[1] (= $$3);
st r3,e(r5,4) ip[1] = tmp (= $$4);
change = 1; 1di rl,1 change =1;
} L7 addi r5,4 $$2++ (6)
addi r2,-1 iis decremented (7).
} bnez r2,.L8 i tested with 0 (5). Bottom of for.
} bnez rl,.L4 Bottom test of while (change).
.L16: Now return. Return value is already in r0.
return test_count; pop rl3
pop rl2
} Jmp rl4
// Allocations for bubble Variable allocations are given in comments to

ease debugging.

// rl3 base count and test_count are placed in the register
mandated by the calling conventions (2).

// rl2 count

/7 rl change Other variables are put in scratch registers to
minimize entry/exit code.

// r0 test_count

// r2 i

// r5 $$2 Loop strength reduction (6) variable.

// rd $$3 Global common subexpression elimination (8)

for variable base[i+1].

209

Wind River Compiler for M32R
User’s Guide, 5.4

Table 10-1 lllustration of Optimizations for M32R (cont'd)
C Code Generated Assembly Code Explanation
// r3 $s4 Global common subexpression elimination (8)
for variable baselil.
// not allocated tmp Variables deleted by Variable propagation (10).
// not allocated ip

210

11

The Lint Facility

11.1 Introduction 211
11.2 Examples 212

11.1 Introduction

The lint facility is a powerful tool to find common C programming mistakes at
compile time. (For C++, see -Xsyntax-warning-on on 5.4.137 Disable Certain Syntax
Warnings (-Xsyntax-warning-...), p.112.) Lint has the following features:

It is activated through command-line option -Xlint.

-Xlint does all checking while compiling. Since it does not interfere with
optimizations, it can always be enabled.

-Xlint gives warnings when a suspicious construct is encountered. To stop the
compilation after a small number of warnings, use the -Xstop-on-warning
option to treat all warnings like errors.

Each individual check that -Xlint performs can be turned off by using a bit
mask. See the -Xlint option on 5.4.80 Generate Warnings On
Suspicious/Non-portable Code (-Xlint=mask), p. 89 for details.

-Xlint can be used with the -Xforce-prototypes option to warn of a function
used before its prototype.

211

Wind River Compiler for M32R
User’s Guide, 5.4

The comments in the following C program demonstrate probable defects that will
be detected by using -Xlint and -Xforce-prototypes. There are three types of errors
marked by different comment forms:

» Comments containing the form “(0xXX)” are on lines with suspicious
constructs detected by -Xlint; the hex value is the -Xlint bit mask which
disables the test.

» Comments of the form /* warning: ... */and /* error: ... */ are used on lines for
which the compiler reports a warning or error with or without -Xlint.

* Two lines are a result of option -Xforce-prototypes as noted.

Actual warnings from the compiler follow the code. Note that warnings are not
necessarily in line number order because the compiler detects the errors during
different internal passes.

11.2 Examples

Example 11-1 Program for -Xlint Demonstration

1: void f1(int);

2: void f£2();

3: /* (-Xlint mask bit disables) */

4: static int f4(int i) /* function never used (0x10) */
5: {

6: if (1 == 0)

7 return; /* missing return expression (0x20) */
8: return i+4;

9: }

10:

11: static int f5(int 1); /* error: function not found */
12

13: static int 1i1; /* variable never used (0x10) */
14:

15: int m(char j, int zl) /* parameter never used (0x10) */
16: {

17: int i, int4;

18: char cl;

19: unsigned u = 1; /* variable set but not used (0x40) */
20: int z2; /* variable never used (0x10) */
21:

22: cl = int4; /* narrowing type conversion (0x100) */
23:

24: if () {

25: u = 4294967295;

212

26:

27:

28:

29:
30:

31:

32:

33:
34:
35:
36:
37:
38:
39:
40:

11 The Lint Facility
11.2 Examples

i=20;
} else {
u = 4294967296; /* warning: constant out of range */
}
£1(1); /* variable might be used
before being set (0x02) */
switch(i) {
j = 2; /* statement not reached (0x80) */
break;
case 0: /* -X force prototype, not lint, warns: */
f2(1); /* function has no prototype */
£3(1); /* function not declared */
£5(1);
break;
Example 11-2 -Xlint example output

"lint.c", line 7: warning (dcc:1521): missing return expression
"lint.c", line 22: warning (dcc:1643): narrowing or signed-to-unsigned type
conversion found: int to unsigned char

"lint.c", line 28: warning (dcc:1243): constant out of range

"lint.c", line 37: warning (dcc:1500): function f2 has no prototype
"lint.c", line 38: warning (dcc:1500): function f3 has no prototype
"lint.c", line 42: warning (dcc:1583): overflow in constant expression
"lint.c", line 48: warning (dcc:1643): narrowing or signed-to-unsigned type

conversion found: short to unsigned char
"lint.c", line 48: warning (dcc:1244): constant out of range (=)
"lint.c", line 47: warning (dcc:1251): label deflaut not used

(

(
"lint.c", line 15: warning (dcc:1516): parameter zl is never used
"lint.c", line 20: warning (dcc:1518): variable z2 is never used
"lint.c", line 33: warning (dcc:1522): statement not reached
"lint.c", line 50: warning (dcc:1522): statement not reached
"lint.c", line 62: warning (dcc:1521): missing return expression
"lint.c", line 19: warning (dcc:1604): Useless assignment to variable u.

Assigned value not used.

"lint.c", line 22: warning (dcc:1604): Useless assignment to variable cl.
Assigned value not used.

"lint.c", line 43: warning (dcc:1604): Useless assignment to variable j.
Assigned value not used.

"lint.c", line 22: warning (dcc:1608): variable int4 might be used before set
"lint.c", line 30: warning (dcc:1608): variable i might be used before set
"lint.c", line 54: warning (dcc:1606): condition is always true/false
"lint.c", line 58: warning (dcc:1606): condition is always true/false
"lint.c", line 4: warning (dcc:1517): function f4 is never used

"lint.c", line 11: error (dcc:1378): function f5 is not found

"lint.c", line 13: warning (dcc:1518): variable il is never used

213

Wind River Compiler for M32R
User’s Guide, 5.4

214

12

Converting Existing Code

12.1 Introduction 215
12.2 Compilation Issues 215
12.3 Execution Issues 218

12.4 GNU Command-Line Options 220

12.1 Introduction

Compiling code originally developed for a different system or toolkit is usually
straightforward, especially given the extensive compatibility options supported by
the tools. This chapter gives pointers on working around the most common
differences among systems and compilers.

12.2 Compilation Issues

The following list includes hints on what to do when a program fails to compile
and you want to avoid changing the source code.

215

Wind River Compiler for M32R
User’s Guide, 5.4

Look for Missing Standard Header Files

Different systems have different standard header files and the declarations within
the header files may be different. Use the -i filel=file2 option to change the name of
a missing header file (see 5.3.13 Modify Header File Processing (-i filel=file2), p.39 for
details).

Older C Code

Look for Code Using Loose Typing Control

Some older C code is written for compilers that do not check the types of identifiers
thoroughly. Use the -Xmismatch-warning=2 option if you get error messages like
“illegal types: ...”.

Look for Code Written for PCC

C code written for older UNIX compilers, such as PCC (Portable C Compiler), may
not be compatible with the C standard. Use the -Xdialect-pcc option to enable
some older language constructs. See B. Compatibility Modes: ANSI, PCC, and K&R C
for more information.

Older Versions of the Compiler

C++ Coding Conventions

When exceptions and run-time type information are enabled (-Xrtti and
-Xexceptions), the current compiler supports the C++ standard. Source code
written for earlier versions of the Wind River (Diab) C++ compiler may require
modification before it can be compiled with version 5.0 or later. We strongly
recommend bringing all source code into compliance with the ANSI standard, but
if time does not permit this, you can use the -Xc++-old option to invoke the older
compiler.

216

12 Converting Existing Code
12.2 Compilation Issues

C++ Libraries

Older (pre-5.0) versions of the compiler require different C++ libraries:

Default library Old library

libd.a libdold.a

libstl.a libios.a, libcomplex.a
libstlstd.a libios.a, libcomplex.a
libstlabr.a (none)

See 32.2.1 Libraries Supplied, p.454 for more information.

When -Xc++-0ld is specified, the dplus driver automatically selects the
appropriate standard C++ library—that is, it invokes -ldold instead of -1d to link
libdold.a instead of libd.a. However, to link the older iostream and complex
libraries, you must use the -1 option (see Specify Library or File to Process (-Iname,
-Lifilename), p.373) explicitly. If you use the dcc driver or invoke dld directly, all the
old libraries must be specified explicitly. Examples:

dplus -Xc++-0ld hello.cpp
dplus -Xc++-0ld -lios -lcomplex hello.cpp
dcc -Xc++-0ld -1ldold -lios -lcomplex hello.cpp
dld -YP,search-path -1:windiss/crt0.o hello.o
-0 hello -1dold -lios -1lc wversion-path/conf/default.dld

In the first two examples, -1dold is invoked automatically because of -Xc++-old. In
the second two examples, all the older C++ libraries must be specified explicitly.

NOTE: The -Xc++-old option cannot be used selectively within a project. If this
option is used, all files must be compiled and linked with -Xc++-old to make the
output binary-compatible. Selective use of -Xc++-o0ld should produce linking
errors; if it does not, the resulting executable is still likely to be unstable.

VxWorks developers should not use -Xc++-old.

To select the old compiler and libraries by default (eliminating the need for
-Xc++-o0ld), create a user.conf file in which DCXXOLD is set to YES and ULFLAGS2
invokes the old libraries. For example:

Select old compiler

DCXXOLD=YES

Add these as default C++ libraries
ULFLAGS2="-1dold -liosold”

For more information, see A. Configuration Files and 2.3 Environment Variables, p.14.

217

Wind River Compiler for M32R
User’s Guide, 5.4

Startup and Termination Code

If you are compiling legacy projects that used old-style .init$nn and .fini$nn code
sections to invoke initialization and finalization functions, or if your code
designates initialization and finalization functions with old-style _STI__nn_and
_STD__nn_ prefixes, you may get compiler or linker errors. The -Xinit-section=2
option (see 5.4.69 Control Generation of Initialization and Finalization Sections
(-Xinit-section), p.85) allows you to continue using old-style startup and
termination. The recommended practice, however, is to adopt the new method of
creating startup and termination code—that is, using attributes to designate
initialization and finalization functions, and .ctors and .dtors sections to invoke
them at run-time. See 15.4.8 Run-time Initialization and Termination, p.266 for more
information.

12.3 Execution Issues

The following list includes hints on what to do when a program fails to execute
properly:
Compile With -Xlint
The -Xlint option enables compile-time checking that will detect many
non-portable and suspicious programming constructs. See 11. The Lint Facility.
Recompile Without -O

If a program executes correctly when compiling without optimizations it does not
necessarily mean something is wrong with the optimizer. Possible causes include:

» Use of memory references mapped to external hardware. Add the volatile
keyword or compile using the -Xmemory-is-volatile option. Note: option
-Xmemory-is-volatile disables some optimizations which may produce
slower code.

= Use of uninitialized variables exposed by the optimizer.
» Use of expressions with undefined order of evaluation.

Uninitialized local variables will behave differently on dissimilar systems,
depending how memory is initialized by the system. The compiler generates a

218

12 Converting Existing Code
12.3 Execution Issues

warning in many instances, but in certain cases it is impossible to detect these
discrepancies at compile time.
Look for Code Allocating Dynamic Memory in Invalid Ways

The following invalid uses of operator new() or malloc() may go undetected on
some systems:

* Assuming the allocated area is initialized with zeroes.
» Writing past the end of the allocated area.
» Freeing the same allocated area more than once.

Look for Expressions with Undefined Order of Execution
The evaluation order in expressions like x + inc(&x) is not well defined. Compilers
may choose to call inc(&x) before or after evaluating the first x.
Look for NULL Pointer Dereferences
On some machines the expression if (*p) will work even if p is the zero pointer.
Replace these expressions with a statement like if (p != NULL && *p).
Look for Code Which Makes Assumptions About Implementation Specific Issues

Some programs make assumptions about the following implementation specific
details:

» Alignment. Look for code like:
char *cp; double d; *(double *)cp = d;
» Size of data types.

» Byte ordering. See _ packed__ and packed Keywords, p.139 on methods for
accessing byte-swapped data.

» Floating point format.

» Sign of plain chars (those declared without either the signed or unsigned
keyword). By default plain charis signed. To force a convention opposite to the
default, see 5.4.20 Specify Sign of Plain Char (-Xchar-signed, -Xchar-unsigned),
p-64.

» Sign of plain int bit-fields. bit-fields of type int are unsigned by default. Use
the option -Xbit-fields-signed (C only) to be compatible with systems that
treat plain int bit-fields as signed.

219

Wind River Compiler for M32R
User’s Guide, 5.4

12.4 GNU Command-Line Options

By default, GCC option flags from the command line or makefile are parsed and,
if possible, translated to equivalent Wind River options. Translations are
determined by the tables in the file gcc_parser.conf. Use -Xgcc-options-off to
disable this feature. -Xgcc-options-verbose outputs a list of translated options.

220

13

C++ Features and Compatibility

13.1 Header Files 221

13.2 C++ Standard Libraries 222

13.3 Migration From C to C++ 223

13.4 Implementation-Specific C++ Features 224
13.5 C++ Name Mangling 227

13.6 Avoid setjmp and longjmp 231

13.7 Precompiled Headers 231

This chapter describes compiler’s implementation of the ANSI C++ standard. For
more information, see the references cited in Additional Documentation, p.8.

13.1 Header Files

The C++ compiler supports all ANSI-specified header files. Generally C++ uses
the same header files as C (see 33. Header Files), but the C++ standard imposes
additional requirements on standard C header files and the declarations need to be
adjusted to work in both environments. See 13.3 Migration From C to C++, p.223
below.

221

Wind River Compiler for M32R
User’s Guide, 5.4

13.2 C++ Standard Libraries

The Wind River Compiler includes two versions of the standard C++ library. The
complete version provides full support for exceptions. The abridged version does
not provide exception-handling functions, the type_info class for RTTI support, or
complete STL functionality.

The abridged version produces smaller, faster executables than the complete
version, but the difference in size and speed varies from project to project. In
general, the more an application uses the Standard Template Library, the greater
the benefit from switching to the abridged version.

To use the standard library, include one of the following linker options in your
project makefile:

Option Library

-Istl Link to the complete standard library.
-Istlstd Same as -1stl.

-Istlabr Link to the abridged standard library.

Projects that use any part of the standard library (including iostreams) must
specify one of these linker options. For more information about library modules,
see 32. Library Structure, Rebuilding.

NOTE: VxWorks developers should not specify any of the -Istl... options listed
above. To select a C++ library for VxWorks projects, see the documentation that
accompanied your VxWorks development tools.

To use the abridged library, you must also specify the -Xc++-abr compiler option.
For example:

dplus -Xc++-abr filel.cpp

-Xc++-abr automatically disables exception-handling (-Xexceptions=off).

For projects that use the complete C++ library, exception-handling must be enabled
(-Xexceptions, the default). For projects that use the abridged version,
exception-handling may be enabled as long as no exception propagates through
the library.

While the compiler supports the wchar_t type, in most environments the libraries
do not support locales, wide- or multibyte-character functions, or the long double
type. (Some VxWorks files may include stubs for unsupported wide-character

222

13 C++ Features and Compatibility
13.3 Migration From C to C++

functions.) For user-mode (RTP) VxWorks projects, the libraries support
wide-character functions.

Nonstandard Functions

The C++ libraries include definitions for certain traditional but nonstandard
Standard Template Library and iostream functions. You can omit these definitions
by editing the file version_path/include/cpp/yvals.h.

To omit the Standard Template Library extensions, change the definition of
_HAS_TRADITIONAL_STL to:

#define _HAS_TRADITIONAL_STL 0

To omit the iostream extensions, change the definition of
_HAS_TRADITIONAL_IOSTREAMS to:

#define _HAS TRADITIONAL_IOSTREAMS 0

To see which functions are nonstandard, look for the _"HAS_TRADITIONAL_STL
and _HAS_TRADITIONAL_IOSTREAMS macros in the library header files.

13.3 Migration From C to C++

When C functions are converted to C++ or called from a C++ program, minor
differences between the languages must be observed and the header files must be
written in C++ style. The standard predefined macro __cplusplus can be used with
#ifdef directives in the program and header files for code that will be used in both
C and C++ modules.

To call a C function from a C++ program, declare the prototype with extern "C" (to
avoid name mangling) and declare the arguments in C++-compatible format. The
extern "C" specification may apply to the single declaration that follows or to all
declarations in a block. For example:

extern "C" int f (char c);

extern "C"

{

#include "my c_lib.h"
}

223

Wind River Compiler for M32R
User’s Guide, 5.4

For information about calling C++ functions from C modules, see 9.4 C++
Arqument Passing, p.179.

A few general differences between C and C++ are listed below. For more
information, see Additional Documentation, p.8.

= A function declared func() has no argument in C++, but has any number of
arguments in C. Use the void keyword for compatibility, e.g. func(void), to
indicate a function with no arguments.

» A character constant in C++ has the size of a char, but in C has the size of an int.
= Anenum always has the size of an int in C, but can have another size in C++.
= The name scope of a struct or typedef differs slightly between C and C++.

* There are additional keywords in C++ (such as catch, class, delete, friend,
inline, new, operator, private, protected, public, template, throw, try, this,
and virtual) that could make it necessary to modify C programs in which these
keywords occur as declared identifiers.

= InC, a global const has external linkage by default. In C++, static or extern
must be used explicitly.

13.4 Implementation-Specific C++ Features

This subsection describes features of C++ that may behave differently in other
implementations of the language.

Construction and Destruction of C++ Static Objects

Before the first statement of the main() function in a C++ program can be
executed, all global and static variables must be constructed. Also, before the
program terminates, all global and static objects must be destructed.

These special constructor and destructor operations are carried out by code in the
initialization and finalization sections as described under 15.4 Startup and
Termination Code, p.260.

224

13 C++ Features and Compatibility
13.4 Implementation-Specific C++ Features

Templates
Function and class templates are implemented according to the standard.

Template Instantiation

There are two ways to control instantiation of templates. By default, templates are
instantiated implicitly—that is, they are instantiated by the compiler whenever a
template is used. For greater control of template instantiation, the
-Ximplicit-templates-off option tells the compiler to instantiate templates only
where explicitly called for in source code—for example:

template class A<int>; // Instantiate A<int> and all
// member functions.
template int f1(int); // Instantiate function int fl{int).

The compiler options summarized below control multiple instantiation of
templates.

Options Related to Template Instantiation in C++

-Ximplicit-templates (5.4.65 Control Template Instantiation (-Ximplicit-templates...),
p-83)
Instantiate each template wherever used. This is the default.

-Ximplicit-templates-off (5.4.65 Control Template Instantiation
(-Ximplicit-templates...), p.83)
Instantiate templates only when explicitly instantiated in code.

-Xcomdat (5.4.27 Mark Sections as COMDAT for Linker Collapse (-Xcomdat), p.67)
When templates are instantiated implicitly, mark each generated code or data
section as “comdat”. The linker collapses identical instances so marked into a
single instance in memory. This is the default.

-Xcomdat-off (5.4.27 Mark Sections as COMDAT for Linker Collapse (-Xcomdat), p.67)
Generate template instantiations and inline functions as static entities in the
resulting object file. Can result in multiple instances of static member-function
or class variables. This requires that -Ximplicit-templates-off be enabled.

-Xcomdat-info-file (5.4.28 Maintain Project-wide COMDAT List (-Xcomdat-info-file),
p.68)
Maintain a list of COMDAT entries across modules. Speeds up builds and
reduces object-file size, but has no effect on final executables.

225

Wind River Compiler for M32R
User’s Guide, 5.4

-Xexpl-instantiations (Write Explicit Instantiations File (-Xexpl-instantiations),
p-379)
This linker option writes a file of all instantiations to stdout. Can be used with
-Xcomdat-off to generate a complete list of template instantiations; source
code can then be edited to explicitly instantiate templates where needed and
then recompiled with -Ximplicit-templates-off.

This option is deprecated.

Using Export With Templates
There are two constraints on the use of the export keyword:

* An exported template must be declared exported in any translation unit in
which it is instantiated (not just in the translation unit in which it is defined).
In practice, this means that an exported template should be declared with
export in a header file.

= A translation unit containing the definition of an exported template must be
compiled before any translation unit which instantiates that template.
Exceptions

Exception handling provides a mechanism for responding to software-generated
errors and other exceptional events. It is implemented according to the standard.

NOTE: See 15. Use in an Embedded Environment for a notes on implementing
exceptions in a multitasking environment.

The generation of exception-handling code can be disabled using the
-Xexceptions=0 compiler option. When this option is enabled, the compiler also
flags the keywords try, catch, and throw as errors.

Array New and Delete

The two memory allocation/deallocation operators operator new[]() and
operator delete[]() are implemented as defined in the standard.

226

13 C++ Features and Compatibility
13.5 C++ Name Mangling

Type ldentification

The typeid expression returns an expression of type typeinfo&. The type_info
class definition can be found in the header file typeinfo.h.

Dynamic Casts in C++

Namespaces

Dynamic casts are made with dynamic_cast(expression) as described in the
standard.

Namespaces are implemented according to the standard. The compiler option
-Xnamespaces-off disables namespaces; -Xnamespaces-on (the default) enables
them.

Undefined Virtual Functions

The C++ standard requires that each virtual function, unless it is declared with the
pure-specifier (=0), be defined somewhere in the program; this rule applies even if
the function is never called. However, no diagnostic is required for programs that
violate the rule. Programs with undefined non-pure virtual functions compile and
run correctly in some cases, but in others generate “undefined symbol” linker
errors.

13.5 C++ Name Mangling

NOTE: To interpret a mangled name, see Demangling utility, p.230.

The compiler encodes every function name in a C++ program with information
about the types of its arguments and (if appropriate) its class or namespace. This
process, called name mangling, resolves scope conflicts, enables overloading,

227

Wind River Compiler for M32R
User’s Guide, 5.4

standardizes non-alphanumeric operator names, and helps the linker detect errors.
Some variable names are also mangled.

When C code is linked with C++ code, the C functions must be declared with the
extern "C" linkage specification, which tells the C++ compiler not to mangle their
names. (The main function, however, is never mangled.) See 13.3 Migration From C
to C++, p.223 for examples.

The scheme used for mangling follows the suggestions in The Annotated C++
Reference Manual (by Ellis and Stroustrup), which should be consulted for details.
In a mangled name, two underscore characters separate the original name from the
other encoded information. For this reason, the user should avoid double
underscores in class or function names.

A function name is encoded with the types of its arguments. A member function
also has the class name or namespace encoded with it. The names of classes and
other user-defined types are encoded as the length of the name in decimal followed
by the name itself; nested class names contain the names of all classes in the
hierarchy using the Q modifier (see the table below), and template class names
include the arguments of the template. When necessary, local class names and
other identifiers are encoded as the name itself followed by __L followed by an
arbitrary number. Simple type indicators are single characters.

A global function has a double underscore appended to its name, followed by the
indicator F and the types of its arguments. For example, void myFunc(int, float)
would be mangled as myFunc__Fif.

A member function has the encoded class name or namespace inserted before the
F indicator—for example, myFunc__7MyClassFif. An S preceding the F indicates
a static member function.

Static data members and variables that are members of namespaces are also
mangled. Their mangled form consists of a double underscore appended to the
variable name, followed by the encoded class name or namespace—for example,
myNumber__7MyClass.

Functions that instantiate or specialize templates have a template signature.
Template parameters are encoded as ZnZ, where n is the parameter’s position
(starting with 1); if a parameter’s depth is greater than 1, it is encoded as Zn_mZ,
where m is parameter depth. The return type is also included in the mangled name.
An__S after a template name indicates that the template is specialized; an __S after
the argument list indicates that the instance is specialized. The __S indicator is
similarly placed in the encoded names of parent classes of functions and static data
members generated from templates.

228

13 C++ Features and Compatibility
13.5 C++ Name Mangling

For constructors, destructors, operator class members, and certain other
constructs, a special string beginning with two underscores is prefixed to the class
name. For example, _ ct indicates a constructor and __pl indicates the + operator.
See The Annotated C++ Reference Manual for details.

Argument types are encoded as follows:

Type Encodings for Name Mangling in C++

An_
Array (followed by the simple type name), where 7 is the array size.
b
bool
a
double
c
char
e
Ellipses parameter (...)
Ftype-list
Function with parameters of types specified by the type-list.
£
float
i
int
L
long long
1
long
MTypelType2
Pointer to member in Typel of Type2. Typel is always of the form n name.
Mmn
Repeat m arguments with the same type as argument number 7. m is limited
to a single digit.
nName
User-defined type, with n giving the length of Name and Name giving the type
name.
Ptype

Pointer to type.

229

Wind River Compiler for M32R
User’s Guide, 5.4

Qm_nlnamel
n2name2...

Nested class name or namespace: m user-defined type names after Qm.
Rtype

Reference to type.

long double

short

T n
Same type as argument number 7.

void

wchar t

The following modifiers are inserted before the type indicator. If more than one
modifier is used, they appear in alphabetical order.

Modifiers for Type Encodings

c
const type
s
signed type
U
unsigned type
v

volatile type

Demangling utility

To interpret a mangled name, enter
ddump -F

and then interactively enter mangled names one per line. ddump displays the
demangled meaning of the name after each entry. If the entry is not a valid
mangled name, there will be no output.

230

13 C++ Features and Compatibility
13.6 Avoid setjmp and longjmp

Table 13-1 Examples of ddump -F

Entry to ddump Interpreted result
myfunc__Fv myfunc (void)
mymain__ FiPPc mymain (int , char *¥*)

13.6 Avoid setjmp and longjmp

It is difficult to safely use setjmp() and longjmp() in C++ code because jumps out
of a block may miss calls to destructors and jumps into a block may miss calls to
constructors.

Note that in addition to visible user-defined objects, the compiler may have created
temporary objects not visible in the source for use in optimized code.

Consider instead C++ exception handling in situations which might have used
setjmp and longjmp. It will still be necessary to account for allocations and
deallocations not performed through contructors and destructors of automatic
objects.

13.7 Precompiled Headers

In projects with many header files, a large part of the compilation time is spent
opening and parsing included headers. (To see how many header files are opened
during compilation, use the -H option.) You can speed up compilation by using
precompiled headers, enabled with the -Xpch-... options. The easiest option to use
is -Xpch-automatic. For example:

dplus -Xpch-automatic filel.cpp

compiles filel.cpp using precompiled headers. This means that a set of header files
is saved in a preparsed state and reused each time filel.cpp is compiled. The first

231

PCH Files

Wind River Compiler for M32R
User’s Guide, 5.4

time you compile a project with -Xpch-automatic you will probably not notice an
improvement in speed, but subsequent compilations should be faster.

Within a header file, use #pragma no_pch to suppress all generation of
precompiled headers from that file. To selectively suppress generation of
precompiled headers, use #pragma hdrstop; headers included after #pragma
hdrstop are not saved in a parsed state.

Precompiled headers are supported by the C++ compiler only.

Parsed headers are saved in PCH (precompiled header) files. The compiler
processes PCH files only if one of the following options is enabled:
-Xpch-automatic, -Xpch-create=filename, or -Xpch-use=filename. If more than one
of these options is given, only the first is considered.

When -Xpch-automatic is enabled, the compiler looks for a PCH file in the current
working directory (unless you use -Xpch-directory=directory to specify a different
location) and, if possible, uses the preparsed headers in that file. Otherwise a PCH
file is generated with the default name sourcefile.pch, where sourcefile is the name
of the primary source-code file. When the source file is recompiled, or when
another file is compiled in the same directory, sourcefile.pch is checked for
suitability and used if possible.

Before using a PCH file, the compiler always verifies that it was created in the
correct directory using the same compiler version, command-line options, and
header-file versions as the current compilation; this information is stored in each
PCH file. If more than one PCH file is applicable to a compilation, the compiler
uses the largest file available.

If you want to specify a name for the generated PCH file, use
-Xpch-create=filename instead of -Xpch-automatic:

dplus -Xpch-create=myPCH filel.cpp

Later, you can reuse myPCH—when compiling the same file or a different file—by
specifying -Xpch-use=filename:

dplus -Xpch-use=myPCH file2.cpp

The filename specified with -Xpch-create or -Xpch-use can include a full directory
path, or the option can be combined with -Xpch-directory:

dplus -Xpch-use=myPCH -Xpch-directory=/source/headers somefile.cpp

232

13 C++ Features and Compatibility
13.7 Precompiled Headers

Limitations and Trade-offs

Diagnostics

A generated PCH file includes a snapshot of all the code preceding the header stop
point—that is, #pragma hdrstop or the first token in the primary source file that
does not belong to a preprocessor directive. If the header stop point appears within
an #if block, the PCH file stops at the outermost enclosing #if.

A PCH file is not generated if the header stop point appears within:
» An #if block or #define started within a header file.

* A declaration started within a header file.

» Alinkage specification’s declaration list.

* Anunclosed scope, such as a class declaration, established by a header file. (In
other words, the header stop point must appear at file scope.)

Further, a PCH file is not generated if the header stop point is preceded by:
» A reference to the predefined macro _ DATE__or _ TIME__.
» The #line preprocessing directive.

A PCH file is generated only if the code preceding the header stop point has
produced no errors and has introduced a sufficient number of declarations to
justify the overhead associated with precompiled headers. Finally, a PCH file is
generated only if sufficient memory is available.

Efficient use of precompiled headers requires experimentation and, in most cases,
minor changes to source code. PCH files can become bulky; included files must be
organized so that headers are preparsed to as few shared PCH files as possible.

The -Xpch-messages option generates a message each time a PCH file is created or
used. The -Xpch-diagnostics option generates an explanatory message for each
PCH file that the compiler locates but is unable to use.

233

Wind River Compiler for M32R
User’s Guide, 5.4

234

14

Locating Code and Data,
Addressing, Access

14.1 Controlling Access to Code and Data 235

14.2 Addressing Mode — Functions, Variables, Strings 241
14.3 Access Mode — Read, Write, Execute 244

14.4 Local Data Area (-Xlocal-data-area) 251

14.5 Position-Independent Code and Data (PIC and PID) 252

14.1 Controlling Access to Code and Data

By default, the compiler generates architecture-specific code for locating and
accessing code and data in memory which will be suitable for many cases. In
addition, a number of options are available for exercising fine control over the
process, for locating code and data at specific locations in memory, and for
generating position-independent code. All are described in detail in this chapter.

section and use_section Pragmas
Code and data are generated in sections in an object file, combined by the linker into
an executable file, and ultimately located in target memory at specific locations.

Default sections are predefined and have certain attributes. To change the name of
a default section, use the -Xname-... option (see 5.4.92 Specify Section Name

235

Wind River Compiler for M32R
User’s Guide, 5.4

(-Xname-...), p.96). The section and use_section pragmas may be used to change
the default attributes, to define new sections, and to control the assignment of code
and variables to particular sections and, along with the linker command file, their
locations.

#pragma section class_name [istring [ustring] [addr-mode] [acc-mode] [address=x]
#pragma use_section class_name |variable function] S

class_name
Required. Symbolic name for a predefined or user-defined section class to
hold objects of a particular class, e.g., code, initialized variables, or
uninitialized variables.

istring
Name of the actual section to contain initialized data. For variables, this
means those declared with an initializer (e.g., int x=1;). Use empty quotes if
this section is not needed but the ustring is.

ustring
Name of actual section to contain uninitialized data. For variables, this

means those declared with no initializer (e.g., int x;). This name may be
omitted if not needed (the default value is used).

addr-mode
Form of addressing mode for access to variables or functions in the

section. See 14.2 Addressing Mode — Functions, Variables, Strings, p.241 for
details.

acc-mode
Accessibility to the section. See 14.3 Access Mode — Read, Write, Execute,
p-244 for details.

#pragma section defines a section class and, optionally, one or two sections in the
class. A section class controls the addressing and accessibility of variables and code
placed in an instance of the class.

For C++, #pragma section declarations apply to all global and namepace scope
variables, class static member variables, global and namespace scope functions,
and class member functions that follow the pragma.

#pragma use_section selects a section class for specific variables or functions after
the section class has been defined by #pragma section.
Notes for #pragma section and #pragma use_section

The C++ compiler has the following limitations for #pragma section and
#pragma use_section:

236

14 Locating Code and Data, Addressing, Access
14.1 Controlling Access to Code and Data

» Templates are not affected by #pragma section or #pragma use_section.
However, you can alter the placement of all the data or code in a file
(including templates) by using the command-line options -Xname-data
(and related options, such as -Xname-sdata or -Xname-const) or
-Xname-code. See 5.4.92 Specify Section Name (-Xname-...), p.96 for more
information on these options.

» #pragmasection STRING cannot be used to alter the placement of strings.
Instead, use the command-line option -Xname-string,.

» #pragma use_section must be followed by at least one declaration or
definition of an entity for it to apply to that entity, as in:
#pragma section MYCODE “.mycode”
void my_func ()
{
}
A section class_name (e.g., DATA) is the symbolic name of a section class and it
is used only in writing #pragma section and #pragma use_section directives.

At any given point in the source, there may be up to two physical sections
associated with a section class—an initialized section and an uninitialized
section as named by the istring and ustring attributes to #pragma section
respectively (e.g., “.data”). It is these physical sections which will appear in the
object file and which may be manipulated during linking.

istring is an optional quoted string giving a name for a particular section of the
given class which is to contain initialized data. The name is used in the
assembler .section directive to switch to the desired section for initialized data.
An empty string or no string at all indicates that the default value should be
used. Note that a section to contain code is “initialized” with the code.
Examples:

".text", ".data", ". init"

ustring is an optional quoted string giving a name for a particular section of the
given class which is to contain uninitialized data. The name is used in the
assembly .section directive to switch to the desired section for uninitialized
data. An empty string, or no string at all, indicates that the default value
should be used. The string “COMM” indicates that the .comm/.Icomm
assembler directives should be used. See 23.4 COMMON Sections, p.361
regarding allocation of common variables for full details; generally however,
COMM sections are gathered together by the linker an placed at the end of the
.bss output section. Examples:

".bss", ".data", "COMM"

237

Wind River Compiler for M32R
User’s Guide, 5.4

238

Predefined section classes: Except when a user-defined section class has been
specified, all variables and functions are categorized by default into one of
several predefined section classes depending on how they are defined and
how large they are. Each predefined section class is defined by default values
for all of its attributes. Table 14-1 gives the names and attributes of all
predefined section classes.

By using the #pragma use_section directive, any variable and function can be
individually assigned to any of the predefined section classes, or to a
user-defined section class.

If a section pragma for some class is given with no values for one or more of
the attributes, those attributes are always restored to their default values as
given in Table 14-1. This is true even for a user-defined class_name (the table
shows the default attributes in this case as well).

Multiple #pragma section directives with different attributes can be given for
the same class_name. Variables and functions use the earliest non-default
directive that is valid at the point of definition. (This behavior can be changed
with the -Xpragma-section-last directive; see 5.4.103 Control Interpretation of
Multiple Section Pragmas (-Xpragma-section-...), p.100.)

Pragmas are not seen across modules unless a common header file is included.

The compiler associates each function with a storage space at the pointin a
module where it is first declared or defined. Subsequent attempts within the
same module to assign a function to a storage space are ignored.

For functions that are declared multiple times, the first section binding applies,
unless the -Xpragma-section-last option has been specified. For example:

void my_func () ; /* binds to “text” */
#pragma section CODE “.mycode”

void my_func () /* does not override previous binding unless
-Xpragma_section-last has been used */

In this example, to force my_func to go into .mycode, you need to do one of
the following:

* Move the #pragma section before the initial declaration of my_func.
» Specify -Xpragma-section-last on the command line.

» Use #pragma use_section:

14 Locating Code and Data, Addressing, Access
14.1 Controlling Access to Code and Data

void my_func () ;

#pragma section CODE “.mycode”
#pragma use_section CODE my_func

void my func()

{
}

Section Classes and Their Default Attributes

Table 14-1 below gives the predefined section classes and their default attributes,
and also the defaults for a user-defined section class.

239

Wind River Compiler for M32R
User’s Guide, 5.4

Table 14-1 Section Classes and Their Default Attributes

Default
section
class_name Description and Example istring ustring addr-mode acc-mode
CODE code generated in functions text n/a standard RX
and global asm statements:
int cube(int n)
{ return n*n*n; }
DATA static and global variables, .data COMM far-absolute RW
size in bytes > -Xsmall-data:
static int a[l10];
SDATA Variables, size in .sdata .sbss near-data RW
bytes <= -Xsmall-data: (r9-relative)
static int 1i;
CONST const variables, size in .rodata .rodata far-absolute R
bytes > -Xsmall-const:
const int af10] = {1, ..};
SCONST const variables, size in .sdata .sbss near-code R
bytes <= -Xsmall-const: (r8-relative)
const int ic = 53;
STRING string constants: rodata n/a far-absolute R
"hello\n"
user-defined #pragma section USERdata COMM far-absolute RW

Notes for Table 14-1:

* Small data and const: The -Xsmall-const and the -Xsmall-data options are set
to zero as a default. Thus, as noted above, “small” scalar variables may be
located in a “local data area” — see 14.4 Local Data Area (-Xlocal-data-area),
p-251 for details.

If the -Xsmall-data option is set to a non-zero value, register r9 will be used to
address data in this section. This will typically create faster and more compact
code. Be careful not to mix code generated with different settings for

240

14 Locating Code and Data, Addressing, Access
14.2 Addressing Mode — Functions, Variables, Strings

-Xsmall-data. Because the PC register is used for code relative addressing, it
does not make sense to use the SCONST section class. Therefore the
-Xconst-in-text=5 option is set as a default. This means that small const
variables will go into the SDATA section class.

* Local data area optimization: if -Xsmall-data or -Xsmall-const is zero, global
and static scalar variables may be placed in a local data area if -Xlocal-data-area,
which has a default value of 32,767 bytes, is non-zero and optimization is in
effect (either -O or -XO is present). The local data area will be placed in the .data
section for the module if any such variable in it has an initial value, or in the
.bss section for the module if none do. When uninitialized variables are placed
in the .data section in this way, it overrides the default COMM (common)
section name as given above. See 14.4 Local Data Area (-Xlocal-data-area), p.251
for further details and restrictions.

» The section names shown in the table assume the default value for option
-Xconst-in-text. See Moving initialized Data From “text” to “data”, p.250 if
-Xconst-in-text is set to a non-default value.

= Dynamically initialized C++ const variables are treated like uninitialized
non-const variables. For example:

int £();
const int x = £();

By default, x is placed in the .bss section.

14.2 Addressing Mode — Functions, Variables, Strings

The addr-mode for a section is the addressing mode to be used when referencing a
variable, function, or string in the section. It is one of the hex numbers given in the
“Code” column of the following table. For the relative addressing modes
constructed from a base register and offset, the table also shows the base register
and the number of bits in the offset. Notes follow the table. See Implementation,
p-248 for examples of code generated for each addressing mode.

241

Table 14-2

Wind River Compiler for M32R
User’s Guide, 5.4

addr-mode Definitions

addr-mode

Name Code Description Bits Base Register

standard 0x01 See Notes below.

near-absolute 0x10 absolute 16 not applicable

far-absolute 0x11 absolute 32 not applicable

near-data 0x20 data relative 16 9

far-data 0x21 data relative 32 r9

near-code 0x40 code relative 16 18 for data references, PC
for branches

far-code 0x41 code relative 32 18 for data references, PC
for branches

Notes:

* The “code” hexadecimal number is used for command-line options described
below.

» The addr-mode standard for the CODE section class means that a processor
specific method is being used, usually defined to minimize access time.

» Branches can be either PC-relative or absolute depending on processor
and branch distance.Function pointers are always absolute.

The addr-mode standard for data sections uses 24-bit addresses.

» Position-independent Code (PIC) can be achieved by using the code relative
addressing modes.

» Position-independent Data (PID) can be achieved by using the data relative
addressing modes.

See Generating Initializers for Static Variables With Position-Independent Code, p.254
for further discussion of PIC and PID code, especially regarding constraints and
limitations.

Default addr-mode values for the predefined section classes are shown in Table 14-1.

The following options change the default addr-mode:

242

14 Locating Code and Data, Addressing, Access
14.2 Addressing Mode — Functions, Variables, Strings

-Xaddr-data=mode
-Xaddr-string=mode
-Xaddr-sdata=mode
-Xaddr-code=mode
-Xaddr-const=mode
-Xaddr-user=mode
-Xaddr-sconst=mode

These options direct that the named section class, DATA, CONST, etc., be addressed
with the given addressing mode. mode is a hexadecimal number as given in the
“code” column in Table 14-2.

Example: address all variables in the DATA section class with far-data addressing:
-Xaddr-data=0x21

The following table describes other command-line options that will affect the

Table 14-3

default addr-mode:

-X Option Settings Implied by Other -X Options

Option

Sets All of

-Xcode-absolute-near

-Xaddr-const=0x10
-Xaddr-string=0x10

-Xaddr-sconst=0x10
-Xaddr-code=0x10

-Xcode-absolute-far

-Xaddr-const=0x11
-Xaddr-string=0x11

-Xaddr-sconst=0x10
-Xaddr-code=0x11

-Xcode-relative-near

-Xaddr-const=0x40
-Xaddr-string=0x40

-Xaddr-sconst=0x40
-Xaddr-code=0x40

-Xcode-relative-near-all

-Xaddr-const=0x40
-Xaddr-string=0x40
-Xaddr-data=0x40
-Xaddr-user=0x40

-Xaddr-sconst=0x40
-Xaddr-code=0x40
-Xaddr-sdata=0x40

-Xcode-relative-far

-Xaddr-const=0x41
-Xaddr-string=0x41

-Xaddr-sconst=0x40
-Xaddr-code=0x41

243

Wind River Compiler for M32R
User’s Guide, 5.4

Table 14-3 -X Option Settings Implied by Other -X Options (cont'd)

Option Sets All of

-Xcode-relative-far-all -Xaddr-const=0x41 -Xaddr-sconst=0x40
-Xaddr-string=0x41 -Xaddr-code=0x41
-Xaddr-data=0x41 -Xaddr-sdata=0x41

-Xaddr-user=0x41

-Xdata-absolute-near -Xaddr-data=0x10 -Xaddr-sdata=0x10
-Xaddr-user=0x10

-Xdata-absolute-far -Xaddr-data=0x11 Xaddr-sdata=0x10
-Xaddr-user=0x11

-Xdata-relative-near -Xaddr-data=0x20 -Xaddr-sdata=0x20
-Xaddr-user=0x20

-Xdata-relative-far -Xaddr-data=0x21 -Xaddr-sdata=0x20
-Xaddr-user=0x21

NOTE: The -Xcode-relative-far and -Xdata-relative-far options still use 16-bit
offsets for data in the small const area (called SDA2 in EABI) and small data area
(SDA) respectively.

14.3 Access Mode — Read, Write, Execute

acc-mode defines how the section can be accessed and is any combination of:

R

Read permission.
W

Write permission.
b

Execute permission.

244

14 Locating Code and Data, Addressing, Access
14.3 Access Mode — Read, Write, Execute

COMDAT — when the linker encounters multiple identical sections marked as
“comdat”, it collapses the sections into a single section to which all references
are made and deletes the remaining instances of the section.

This is used, for example, with templates in C++. If COMDAT sections are
disabled (-Xcomdat-off), the compiler generates a template instance for each
module that uses a template, which can result in duplicate template
instantiations. With the -Xcomdat option, the compiler uses “O” to mark
sections generated for templates as COMDAT; the linker then collapses
identical instantiations into a single instance. See 5.4.27 Mark Sections as
COMDAT for Linker Collapse (-Xcomdat), p.67.

“not allocatable” —the section is not to occupy space in target memory. This is
used, for example, with debug information sections such as .debug in ELF. N
must be used by itself; it is ignored when it is combined with other flags.

acc-mode is used by the assembler and loader. It does not affect type-checking
during compilation.

Default acc-mode values for the predefined section classes are shown in Table 14-1.
If -Xconst-in-text=0 then the CONST, SCONST, and STRING section classes have

will have access mode RW (read /write) rather than the default R (read only). See
Moving initialized Data From “text” to “data”, p.250 for further details.

Multiple instances of a constant allocated to a section with no write access (W) may
be collapsed by the compiler to a single instance.

Using #pragma section and #pragma use_section to Locate Variables and Functions at
Absolute Addresses

There are two ways to put a variable or function in a specific section.

= A variable or function can be placed in a specific section by redefining the
default section into which the variable or function would normally be placed.
Examples:

- Using the defaults, arl is placed in the DATA section class (.data) and
referenced using far-absolute addressing;:

int arl[100] = { 0 };

— ar2is placed in section .absdata and referenced using near-absolute
addressing:

#pragma section DATA ".absdata" near-absolute
int ar2[100] = { 0 };

245

Wind River Compiler for M32R
User’s Guide, 5.4

— ar3isagain placed in the default DATA section class (.data) —because no
istring, ustring, addr-mode, or acc-mode is given, the default values for these
attributes as given in Table 14-1 are used.

#pragma section DATA
int ar3[100] = { 0 };

— Avvariable or function can be placed by specifying a specific section in a

#pragma use_section. Example:

— ardis placed in section .absdata and referenced using near-absolute
addressing (see the next heading regarding the empty quotes in this
example):

#pragma section VECTOR "" ".absdata" near-absolute RW

#pragma use_section VECTOR ard
int ar4[100L

Placing Initialized vs. Uninitialized Variables

When defining a data section class to hold variables, the section pragma can name
two sections: one for initialized variables and one for uninitialized variables, or
either section by itself. Repeating from the definition above (section and use_section
Pragmas, p.235):

#pragma section class_name [istring] [ustring]

class_name
Required. Predefined or user-defined name to hold objects of a particular class,
e.g., code, initialized variables, or uninitialized variables.

istring
Name of actual section to contain initialized data. For variables, this means those
declared with an initializer (e.g., int x=1;). Use empty quotes if this section is not
needed but the ustring is.

ustring
Name of actual section to contain uninitialized data. For variables, this means
those declared with no initializer (e.g., int x;). This section may be omitted if not
needed (which will assign the default value).

Consider these examples:

#pragma section DATA ".inits" ".uninits"
int init=1;
int uninit;
Assuming no earlier pragmas for class DATA, the pragma changes the section for
initialized variables from .data to .inits, and changes the section for uninitialized
variables from COMMON (which the linker adds to .bss) to .uninits. As a result,

246

14 Locating Code and Data, Addressing, Access
14.3 Access Mode — Read, Write, Execute

variable init will be placed in the .inits section (because init has an initial value),
while variable uninit will be placed in the .uninits section because it has no initial
value.

The following shows a common error:

#pragma section DATA ".special" /* probably error */
init special;
The user presumably intends for variable special to be placed in section .special.
But the pragma defines .special as the section for initialized variables. Because
variable special is uninitialized, it will be placed in the default COMMON section.
Changing the above to
#pragma section DATA "" ".special"
int special;
achieves the intended result because .special is now the section for uninitialized
variables.

Using the Address Clause to Locate Variables and Functions at Absolute Addresses

The address=n clause provides a way to place variables and functions at a specific
absolute address in memory. With this form, the linker will put the designated
code or data in an absolute section named “.abs.nnnnnnnn” where nnnnnnnn is the
value in hexadecimal, zero-filled to eight digits, of the address given in the
address=n clause.

NOTE: When using the address=n clause, any section name given by istring or
ustring will be ignored.

Advantages of using absolute sections (see 15.9.3 Accessing Variables and Functions
at Specific Addresses, p.273):

» I/Oregisters, global system variables, and interrupt handlers, etc., can be
placed at the correct address from the compiled program without the need to
write a complex linker command file.

That is, if you know the address of an object at compile-time, the address
clause of the #pragma section directive can be used in your source. If the
location of the object is best left to link-time, use a #pragma section directive
with a named section which can then by located via a linker command file.

» A symbolic debugger will have all information necessary for full access to
absolute variables, including types. Variables defined in a linker command file
cannot be debugged at a high level. Examples:

247

Wind River Compiler for M32R
User’s Guide, 5.4

// define IOSECT:
// a user defined section containing I/0 registers

#pragma section IOSECT near-absolute RW address=0xffffff00
#pragma use_section IOSECT ioregl, ioreg2

// place ioregl at Oxffffff00 and ioreg2 at Oxffffff04
int ioregl, ioreg2;

// Put an interrupt function at address 0x700
#pragma interrupt ProgramException

#pragma section ProgSect RX address=0x700
#pragma use_section ProgSect ProgramException

void ProgramException() {
//
}

Prototypes and the Placement of Sections

If function prototypes are present, the compiler and linker select sections and their
attributes for functions and, in C++, static class variables, based on where the
prototypes of the functions appear in the source, rather than where the function
definitions appear.

The following example shows the wrong way to request the compiler and linker to
place the function fun() in the .myTEXT section.

int fun(); // Prototype determines "fun" section

#pragma section CODE ".myTEXT" // #pragma before definition has no
int fun() { // effect on placement of "fun"
}
In this example, the initial declaration of fun() determines where it will appear in

the executable; the subsequent #pragma is ignored. This is consistent with the
behavior of the C++ compiler.

Implementation

The compiler will generate the assembly code for the different addr-mode settings
as shown in Table 14-4. The corresponding code is as follows (the #pragma
use_section is present to ensure that the variable var is placed in DATA rather than
SDATA for simplicity).

#pragma use_section DATA var
int var=1; /* var in DATA or SDATA (not in .bss or .sbss) */

reg = var;
func () ; /* func in CODE */

248

14 Locating Code and Data, Addressing, Access
14.3 Access Mode — Read, Write, Execute

Notes for Table 14-4:

* The compiler may select a different register for the reg variable than is shown
in the table.

» To reproduce the code as shown, place the above code in a file, e.g. test.c, and
use -Xaddr-code and -Xaddr-data to set the addressing modes, and -g to turn
on debugging (this disables some minor optimizations which might otherwise
be present). For example, for standard addressing mode:

dcc -g -S -Xaddr-code=0x01 -Xaddr-data=0x01 -Xpass-source test.c

Table 14-4 Code Generated for Different Addressing Modes

Mode Reference to DATA: reg = var; Reference to CODE: func()
standard 1d24 rl3,var bl func
1d rl3,e(rl3)
near-absolute 1di rl3,var 1di r6, fun
14 rl3,@(rl3)
jl r6
far-absolute seth r6,var@ha seth r6, func@ha
1d rl3,@(var@l,r6) add3 r6,r6, funcel
jl r6
near-data 1d rl3,@(var@data, r9) add3 r6,r9, funcedata
jl r6
far-data seth r6,var@data@ha seth r6, func@datalha
add r6,r9 add r6,r9
1d rl3,@(var@data@l, r6) add3 r6,r6, funcedatall
jl r6
near-code 1d rl4,@(var@code, r8) bl func
far-code seth r6,var@code@ha bl func
add r6,r8
1d rl3,@(var@code@l, r6)
Notes:

» Registers r8 and r9 are only used for code/data-relative addressing for
position-independent when one of the code/data-relative addressing modes is
enabled through #pragma section or command-line options. Otherwise r8 and
19 are used as normal preserved registers.

» The assembler uses some special M32R relocation types for the operators used
in the table above. See F.1.6 ELF Relocation Information, p.594 for the complete
list of relocation types. See also include/elf_m32r.h.

249

Moving

Table 14-5

Wind River Compiler for M32R
User’s Guide, 5.4

initialized Data From “text” to “data”

Sections that hold setable variables are generically referred to as “data” sections
(and should be in RAM), while sections that hold code, constants like strings, and
unchangeable const variables are generically referred to as “text” sections (and can
be in ROM).

The -Xconst-in-text option provides a shortcut for controlling the default section
for initialized data (istring) for the CONST, SCONST, and STRING constant section
classes. Its form is:

-Xconst-in-text=mask

where mask bit 0x1 controls const variables in the CONST section class, 0x2 controls
small const variables in the SCONST section class, and 0x4 controls string data in
the STRING section class.

If a mask bit is set to 1, variables or strings belonging to the corresponding section
classes are placed in ROMable “text” sections; if set to 0, they are placed in “data”
sections.

By default, -Xconst-in-text=0xff. This gives the behavior shown in the following
table. (Note: the table shows section names for initialized sections. See notes
following the table for uninitialized sections.)

-Xconst-in-text mask bits

“text” Section With “data” Section With
Section Class Mask Bit Mask Bit Set to 1 Mask Bit Set to 0
CONST 0x1 .rodata (default) .data
SCONST 0x2 .sdata2 (default) .sdata
STRING 0x4 .rodata (default) .data

NOTE: Note that when a section is in “data” it will have access mode RW

(read /write), while in “text”, the access mode will be R (read only). See 14.3 Access
Mode — Read, Write, Execute, p.244. If a section is moved from its default by
-Xconst-in-text, this will be a change from its usual default access mode.

NOTE: The .sdata2 section is placed with the .text section by the default linker
command file (perhaps to be located in ROM), and so is considered to be a “text”
section.

250

14 Locating Code and Data, Addressing, Access
14.4 Local Data Area (-Xlocal-data-area)

For example, -Xconst-in-text=3 means that initialized const variables (including
small const variables if -Xsmall-const is non-zero) should be placed in their usual
default “text” sections, .rodata and .sdata2, respectively, while strings should be
placed in the .data section rather than their usual .rodata section.

While the option -Xconst-in-text is preferred, the older option -Xconst-in-data is
equivalent to -Xconst-in-text=0, and thus requests that data for all constant
sections, CONST, SCONST, and STRING be placed in their corresponding “data”
sections as given by the last column of the table above, and the older option
-Xstrings-in-text is equivalent to -Xconst-in-text=0xf, and thus requests that data
for all constant sections be placed in their default “text” sections.

The table above gives section names for initialized sections. There are no
uninitialized STRING sections. Uninitialized CONST sections, if moved from
“text” to “data”, go in the COMM (common) section (which the linker puts at the
end of the .bss section by default). Uninitialized SCONST sections, if moved from
“text” to “data”, go in the .sbss section.

14.4 Local Data Area (-Xlocal-data-area)

The compiler supports a local data area (LDA) optimization. This optimization
works as follows:

= The LDA optimization applies only to static and global variables of scalar
types—not arrays, structures, unions, or classes (for C++).

= Like all optimizations, LDA optimization is enabled only if option -O or -XO is
present. It can be disabled by setting -Xlocal-data-area=0.

» The LDA optimization applies only to scalar variables not assigned to the
small data or small const areas. Because -Xsmall-data and -Xsmall-const are 0
by default for M32R processors, the LDA optimization is used by default.
However, if -Xsmall-data or -Xsmall-const is set to a non-0 value, then the
LDA would be used only for scalar variables larger than those values if any.

» AnLDA is allocated for each module, and static and global scalar variables
which are referenced at least once are allocated to it except as noted above. To
restrict the optimization to static variables, use -Xlocal-data-area-static-only.
VxWorks developers are strongly advised to use -Xlocal-data-area-static-only

251

Wind River Compiler for M32R
User’s Guide, 5.4

so that asynchronous changes to global variables remain visible to the
generated code.

= The variables in the LDA are addressed using efficient base register-offset
addressing. The base register is chosen for the module by the compiler as part
of its normal register assignment algorithms and optimizations.

» If at least one variable in the LDA is initialized, the LDA will be in the .data
section for the module. If all are uninitialized, the LDA will be in the .bss
section for the module.

NOTE: Note that this can change the usual behavior for uninitialized variables —
without LDA optimization, uninitialized variables go into the .bss section (or .sbss
section for small uninitialized variables if -Xsmall-data is > 0). But with LDA
optimization, variables to be put into the LDA are put there whether initialized or
not; and if any LDA variables are uninitialized, the LDA is placed in the .data
section for the module, and in that case, any uninitialized variables in the LDA will
also be in the .data section.

» By default, the size of the LDA is 32,767 bytes. It may be set to a different size
with option -Xlocal-data-area=n. However, a value larger than the default will
be less efficient because the default was chosen based on the size of the most
efficient offset. If there are too many scalar variables to fit in the LDA, the
overflow will be allocated as usual.

14.5 Position-Independent Code and Data (PIC and PID)

By using the linker command language, it is easy to have complete control over
where different sections of the program should be allocated in memory. However,
in some cases there is no way of knowing where a program will reside in memory
until load time. For example:

* In a multi-process environment without virtual memory, new programs are
loaded wherever there is unallocated space.

» When more than one process executes the same code section, but uses different
data sections. In this case only the data has to be position-independent.

In general there are two ways to provide load-time allocation:

252

14 Locating Code and Data, Addressing, Access
14.5 Position-Independent Code and Data (PIC and PID)

» By patching the code with the correct address while loading. The -r and -1n
options to the linker keep the relocation data in the file and can be used by the
loader to change all memory references. See F.1.6 ELF Relocation Information,
p-594 for details about the -r options and relocation.

» By generating position-independent code (PIC) which can be executed from
any address. The compiler will only use addressing modes that are relative to
either the current address or a reserved register.

There are two types of position-independence: data position-independence (PID),
which allows data to be located anywhere in memory, and code
position-independence (PIC), which allows code to be executed from anywhere.
The compiler can generate both types, either separately or together.

Individual code or data sections may be made position-independent with the
addr-mode clause of the #pragma section directive (see pragma section and
use_section Pragmas, p.235), or for all code or data sections in a compilation with
command-line options.

For the M32R family, the following options provide position-independence:

* The -Xcode-relative-near and -Xcode-relative-far options implement code
position-independence by only using PC-relative branches and by using
r8-relative addressing modes when accessing addresses in the code section,
such as references to strings and const data. The -Xcode-relative-near option
can be used safely only if the code section is less than 64KB.

* The -Xdata-relative-near and -Xdata-relative-far options implement data
position-independence by using register r9 as a pointer to the data section and
making all references to it as offset from that register. The -Xdata-relative-near
option can be used only if the data section is less than 64KB.

* The -Xcode-relative-near-all and -Xcode-relative-far-all options implement
code and data position-independence by only using PC-relative branches and
by using r8-relative addressing modes when accessing all data. The
-Xcode-relative-near-all option can be used safely only if the size of the code
and data sections together is less than or equal to 64KB total.

Example:
The following command generates totally position-independent code.

dcc -Xcode-relative-far -Xdata-relative-far -0 c.c

NOTE: The libraries are compiled with default options and therefore do not use
position-independent code and data.

253

Wind River Compiler for M32R
User’s Guide, 5.4

Generating Initializers for Static Variables With Position-Independent Code

Position-independent addresses are not known at compile-time, so it is necessary
to dynamically set pointers having constant initial values whose position will not
be known until run-time, e.g., pointers to global variables, static local variables,
static class variables, functions or methods, whenever these are in
position-independent sections.

See 5.4.46 Generate Initializers for Static Variables (-Xdynamic-init), p.74 for
instructions on storing data in the initialization section when generating
position-independent code or data. Examples:

/* Always OK. */
int 1 = 1;

/* Following two statements, if compiled with -Xdata-relative-...,
* would also require -Xdynamic-init because variable i and the

* string "abc" would be position-independent data and have unknown
* addresses at compile-time

int *p = &i;
char *s = "abc";

/* Following two statements, if compiled with -Xcode-relative-...,
* would also require -Xdynamic-init because the address of
* function f would be unknown at compile-time.
*/
int £ (int a);
int (*f_p) (int) = £;

Relationship Between Position-Independence and “Small” Areas

The compiler supports both “position-independence” and “small” data and
constant areas (see 5.4.26 Generate Position-independent Code (PIC)
(-Xcode-relative...), p.66, 5.4.34 Generate Position-independent Data (PID)
(-Xdata-relative...), p.69, 5.4.122 Set Size Limit for “small data” Variables
(-Xsmall-data=n), p.108, and 5.4.122 Set Size Limit for “small data” Variables
(-Xsmall-data=n), p.108).

The implementation of both position-independence and “small” areas use
base-offset addressing. Further, position-independent code and the small “const”
area use the same base register (18), and position-independent data and the small
data areas (initialized and uninitialized) use the same base register (19).

254

14 Locating Code and Data, Addressing, Access
14.5 Position-Independent Code and Data (PIC and PID)

The compilers support both approaches for the following reasons:

» The “small” areas are limited in size to 64KB. But position-independence for
both code and data may be required for larger blocks of code or data.

» The compiler supports a range of microprocessors, and “small” areas have
been traditionally present for some of these even when position-independence
has not. Support for both approaches allows conversion, using familiar terms,
of legacy code developed with other tool sets.

255

Wind River Compiler for M32R
User’s Guide, 5.4

256

15

Use in an Embedded
Environment

15.1 Introduction 258

15.2 Compiler Options for Embedded Development 258
15.3 User Modifications 260

15.4 Startup and Termination Code 260

15.5 Hardware Exception Handling 267

15.6 Library Exception Handling 267

15.7 Linker Command File 268

15.8 Operating System Calls 269

15.9 Communicating with the Hardware 273

15.10 Reentrant and “Thread-Safe” Library Functions 275

15.11 Target Program Arguments, Environment Variables, and Predefined
Files 276

15.12 Profiling in An Embedded Environment 278

257

Wind River Compiler for M32R
User’s Guide, 5.4

15.1 Introduction

Device software development differs significantly from development for native
environments, in part because there is often no operating-system support for:

» injtialization of data

» inijtialization of argc, argv, and environment variables

* hardware exception handling (illegal memory access, divide by zero, etc.)

» file and device I/O

* memory allocation

» signal handling

= execution of instructions to enable caches

» virtual memory

Other features often needed in an embedded environment include:

= control over addressing to minimize code size and maximize execution speed
= complete control over allocation of code and data to specific addresses

= placement of initialized data in ROM and its movement on startup to RAM
» packed structures to map external hardware or data from other processors

* mixing of big- and little-endian data structures

15.2 Compiler Options for Embedded Development

The following compile-time options and pragmas control code generation in
various ways. All are documented in 5. Invoking the Compiler.

-Xaddr-x
Control addressing modes for data and code. See 14.2 Addressing Mode —
Functions, Variables, Strings, p.241.

-Xdollar-in-ident
Allow variable names containing “$”-signs.

258

15 Use in an Embedded Environment
15.2 Compiler Options for Embedded Development

-Xmemory-is-volatile
Treat all memory references as volatile, to avoid optimizing away accesses to
hardware ports. This option is not needed if the volatile keyword is used for
variables making accesses to volatile data. See 5.4.90 Treat All Variables As
Volatile (-Xmemory-is-volatile, -X...-volatile), p.95.

-Xsize-opt
Minimize the size of the executable code.

-Xsmall-data

-Xsmall-const
Specify by size what data is to go into the small data area (SDA) and the small
const area. See 5.4.121 Set Size Limit for “small const” Variables (-Xsmall-const=n),
p.107.

-Xconst-in-text=0xf
Put strings and const data in the .text section together with code. See Moving
initialized Data From “text” to “data”, p.250.

-Xmember-max-align

-Xstruct-min-align
Options to pack structures in different ways. See 5.4.89 Set Maximum Structure
Member Alignment (-Xmember-max-align=n), p.94 and 5.4.133 Set Minimum
Structure Member Alignment (-Xstruct-min-align=n), p.111.

-Xcode-relative...

-Xdata-relative...
Generate position-independent code and data (PIC and PID). See
5.4.26 Generate Position-independent Code (PIC) (-Xcode-relative...), p.66 and
5.4.34 Generate Position-independent Data (PID) (-Xdata-relative...), p.69, for
various forms of these options.

#pragma interrupt func

Specify that a function func is an exception handler. See interrupt Pragma, p.127.

#pragma pack
Control packing of structures and the byte order of members. See the pack
Pragma, p.130.

#pragma section ...
Control placement and addressing of variables and functions. See section and
use_section Pragmas, p.235.

259

Wind River Compiler for M32R
User’s Guide, 5.4

15.3 User Modifications

Since most embedded environments are unique, some things must be modified by
the user:

= Startup code must initialize the processor and run-time.
» Hardware exceptions must be handled.
» A linker command file must specify where to allocate code and data.

* It may be necessary to modify library functions to make user-supplied
operating system calls.

15.4 Startup and Termination Code

This section describes startup and termination for self-contained applications built
with the compiler. Applications that run under an operating system (such as
VxWorks or Linux) work differently.

As shipped, startup is carried out by four modules: crt0.s, crtlibso.c, ctordtor.c,
and init.c. Termination is carried out by five modules: exit.c, crt0.s, crtlibso.c,
ctordtor.c, and _exit.c. Read this section and examine these modules to determine
whether any modifications are required for your target environment.

An overall schematic for startup and termination is shown in Figure 15-1. This
figure applies to all supported targets and does not show some details. See the
referenced modules for complete details. Notes, including source locations and
modification hints, are in the sub-sections immediately following the figure.

260

Figure 15-1

15 Use in an Embedded Environment

Startup and Termination Program Flow

15.4 Startup and Termination Code

crt0.s

.section .text
start:

Initialize stack.

Call __init_main(). _—
Call exit()
(in case user main()
returns).

crtlibso.c /
__init: \

Call __exec_ctors()
(in ctordtor.c).

\

\
<module’s .ctors section > |
<old-style .init$nn sectiM
Return from __init. |

|

|

-

_fini: <——
Call __exec_dtors()
(in ctordtor.c).

<module’s .dtors section>
<old-style .fini$nn sections>
Return from __fini.

—>

init.c: __init_main()

Move data from “rom” to “ram” for
linker LOAD spec.

Clear .bss, etc.
Set up argc, etc. if present.
Call __init().

return main
(argc, argv, env);

TSa

exit.c: exit(int status)

Call function registered by at_exit()
calls.

Call __fini().

Call _EXIT(status);

v

_exit.c: _EXIT(int status)

Close files if present.
Halt.

User’s program

int main(...)

{

exit(0):

- }

261

Wind River Compiler for M32R
User’s Guide, 5.4

15.4.1 Location of Startup and Termination Sources and Objects

15.4.2 Notes

15.4.3 Notes

The source of crt0.s is located in the src/crtm32r directory. Objects are in the library
directories shown in Table 2-2.

init.c, crtlibso.c, exit.c, and _exit.c are in the src directory. Objects are in libc.a.

for crt0.s

crt0.s begins at label start. This is the entry point for the target application.

crt0.s is brief, with most initialization done in init.c. Its first action is to initialize
the stack to symbol __SP_INIT. This symbol is typically defined a linker command
file. See Figure 25-1 for an example.

Insert assembly code as required to initialize the processor before crt0.s calls
__init_main() described in 15. Use in an Embedded Environment. Refer to
manufacturer’s manuals for the target processor for information on initializing the
processor.

To replace crt0.0:
* Copy and modify it as required.
» Assemble it with:

das crt0.s

» Link it either by including it on a dld command line when invoking the linker,
or by using the -Ws option if using the compiler driver, e.g.,

dcc -Wsnew_crt0.o ... other parameters ...

The -Ws option can be added to the user.conf configuration file to make it
permanent.

for crtlibso.c and ctordtor.c

By default, compiled modules generate special .ctors and .dtors sections for
startup and termination code, including constructor functions, destructor
functions, and global constructors in C++. The .ctors and .dtors sections contain
pointers to initialization and finalization functions, sorted by priority. This code is
invoked during initialization and finalization through calls to __exec_ctors() and
__exec_dtors() from the __init() and __fini() functions in crtlibso.c. The source

262

15 Use in an Embedded Environment
15.4 Startup and Termination Code

code for __exec_ctors() and __exec_dtors(), along with symbols marking the top
and bottom of .ctors and .dtors, is in ctordtor.c. (See Figure 15-1.)

crtlibso.c includes “wrapper” sections .init$00, .init$99, .fini$00, and .fini$99.
These sections, which previous versions of the compiler used for startup and
termination code, exist for backward compatibility.

For more information, see 15.4.8 Run-time Initialization and Termination, p.266.

NOTE: The malloc() function supplied with the compiler must be initialized. This
is done automatically by code generated in the .ctors section. If you do not use the
standard crtlibso.c, then include comparable code in your own startup file. Other
library functions may also require initialization, so __init() should be called in all
cases.

See also 5.4.46 Generate Initializers for Static Variables (-Xdynamic-init), p.74.

15.4.4 Notes for init.c

Initialization code that can be written in C or C++ should be inserted in or called

from __init_main(), typically just before calling main(), so that all other

initialization done by __init_main()—copying initial values from “rom” to “ram”,
clearing .bss, and so forth—can be done first.

Copying Initial Values From “ROM” to “RAM”, Initializing .bss

In a typical embedded system, the initial values for non-const variables must be
stored in some form of read-only memory, “ROM” for simplicity, while the code
must refer to the variables themselves in writable memory, “RAM”. At startup, the
initial values must be copied from ROM to RAM. In addition, C and C++ require
that uninitialized static global memory be initialized to zero.

init.c requires five symbols to “copy constants from ROM to RAM” (the traditional
phrase) and to clear .bss. These five symbols, all typically defined in a linker
command file, are:

__DATA_ROM
Start of the physical image of the data section for variables with initial values,
including all initial values—the location in “ROM” as defined using the LOAD
specification in the linker command file.

263

Wind River Compiler for M32R
User’s Guide, 5.4

___DATA_RAM
Start of the logical image of the data section — the location in “RAM” where the
variables reside during execution as defined by an area specification (“>
area-name”) in the linker command file.

__DATA_END
End of the logical image of the data section. __DATA_END - _ DATA_RAM
gives the size in bytes of the memory to be copied.

__BSS_START
Start of the .bss section to be cleared to zero.

__BSS_END
End of the .bss section.

The code in init.c compares _ DATA_ROM to _ DATA_RAM; if they are different, it
copies the data section image from _ DATA_ROM to _ DATA_RAM. It then
compares _ BSS_START with _ BSS_END and if they are different sets the memory
so defined to zero.

As noted, these symbols are typically defined in a linker command file. See
25.6 Command File Structure, p.391 for an example.
Providing arguments to main and data for memory resident files

Examine the code in init.c to see how C-style main() function arguments and
environment variables can be set up. The variables used in this code, such as
__argv[] and __env][], are defined in src/memfile.c and src/memfile.h. These
variables, as well as data for memory resident files, can be created using the setup
program. See 15.11 Target Program Arquments, Environment Variables, and Predefined
Files, p.276 for details.

Replacing init.c
To replace init.c:

» Copy and modify it as required.
* Include it as a normal C module in your build.

15.4.5 Notes for Exit Functions

Because embedded systems are often designed to run continuously, exit() may not
be needed and will not be included in the target executable if not called.

264

15 Use in an Embedded Environment
15.4 Startup and Termination Code

To replace exit.c or _exit.c:

» Copy and modify as required.
= Include with normal C modules in your build.

15.4.6 Stack Initialization and Checking

Stack Initialization

The initial stack is initialized by crt0.s to symbol __ SP_INIT, typically defined in the
linker command file. See 15.4.2 Notes for crt(.s, p.262 and for an example see
25.6 Command File Structure, p.391.

Stack Checking

Stack checking is not implemented for M32R microprocessors.

15.4.7 Dynamic Memory Allocation - the heap, malloc(), sbrk()

malloc() allocates memory from a heap managed by function sbrk() in src/sbrk.c.
There are two ways to create the heap:

» Define _ HEAP_START and _ HEAP_END, typically in a linker command file.
See the files conf/default.dld, conf/sample.dld, and 25.6 Command File
Structure, p.391 for examples.

» Recompile sbrk.c as follows:
dcc -tfarget -c¢ -D SBRK_SIZE=n sbrk.c
where 7 is the size of the desired heap in bytes.

The malloc() function implements special features for initializing allocated
memory to a given value and for checking the free list on every call to malloc() and
free(). See malloc(), p.513.

NOTE: To avoid excess execution overhead, malloc() acquires heap space in 8KB
master blocks and sub-allocates within each block as required, re-using space
within each 8KB block when individual allocations are freed. The default 8KB
master block size may be too large on systems with small RAM. To change this, call

size_t _ malloc_set_block_size (size_t blocksz)

where blocksz is a power of two.

265

Wind River Compiler for M32R
User’s Guide, 5.4

NOTE: malloc() and related functions must be initialized by function __init() in
crtlibso.c. See the note at the end of the section 15.4.3 Notes for crtlibso.c and
ctordtor.c, p.262 for details.

15.4.8 Run-time Initialization and Termination

The compiler automatically generates calls to initialization and finalization
functions, including C++ global constructors, through pointers in each module’s
.ctors and .dtors sections. Initialization and finalization functions can appear in
any program module and are identified by the constructor and destructor
attributes, respectively. Functions identified with the constructor and destructor
attributes are executed when __init() and __ fini() are called, as shown in
Figure 15-1 and described in 15.4.3 Notes for crtlibso.c and ctordtor.c, p.262.

NOTE: An archived object file containing constructors or destructors will not be
pulled from its .a file and linked into the final executable unless it also contains at
least one function that is explicitly called by the application. To ensure execution
of startup and termination code, never create modules that contain only
constructor and destructor functions.

The priority of initialization and finalization functions can be set through
arguments to the constructor and destructor attributes; functions with lower
priority numbers execute first. For each priority level assigned, the compiler
creates a subsection called .ctors.nnnnn or .dtors.nnnnn, where nnnnn is a five-digit
numeral between 00000 and 65535; the higher the value of nnnnn, the earlier the
functions in that section are called. For example, a function declared with
__attribute__ ((constructor(12))) will be referenced in .ctors.65523 (because
65523=65535-12). All of the .ctors.nnnnn sections are grouped at link time into a
single section called .ctors, and all of the .dtors.nnnnn sections are grouped at link
time into a single section called .dtors. For an example linker map, see ctordtor.c.

By default, user-defined initialization and finalization functions (as well as global
class constructors) have the last priority, to ensure that compiler-defined
initialization and finalization occurs first.

For more information on constructor and destructor attributes, see constructor,
constructor(n) Attribute, p.143 and destructor, destructor(n) Attribute, p.144. To
change the default priority for initialization and finalization functions, see
5.4.70 Control Default Priority for Initialization and Finalization

Sections (-Xinit-section-default-pri), p.85.

266

15 Use in an Embedded Environment
15.5 Hardware Exception Handling

Old-style Initialization and Termination

For backward compatibility, the compiler supports an older style of run-time
initialization and termination that uses .init$nn and .fini$nn sections (instead of
.ctors and .dtors). To use old-style initialization and finalization, enable
-Xinit-section=2 (see 5.4.69 Control Generation of Initialization and Finalization
Sections (-Xinit-section), p.85). In this mode, the compiler also supports the use of
special _STI__nn_and _STD__nn_ prefixes (as well as constructor and destructor
attributes) to identify initialization and finalization functions and set their priority.
In cases where both .init$nn and .ctors sections are present, the default __init()
function executes the code in .ctors first; similarly, in cases where both .fini$nn and
.dtors sections are present, the default __fini() function executes the code in .dtors
first.

15.5 Hardware Exception Handling

» Pleaserefer to the M32R Family User’s Manual for a description of the exception
(interrupt) handling by the hardware.

The compiler provides the following support for interrupt routines:
* A #pragma interrupt which specifies that a function is an exception handler.

» The library function raise(), which can be called with an appropriate signal
from the interrupt routine to raise a signal.

* A #pragma section directive that can place exception vectors at an absolute
address.

15.6 Library Exception Handling

On error, many standard library functions set errno and return a null or undefined
value as described for each function in 34. C Library Functions. This is typical of, for
example, file system functions.

267

Wind River Compiler for M32R
User’s Guide, 5.4

Many math functions, malloc(), and some other library functions call a central
error reporting function (in addition to setting errno):

__diab_l1ib error (int fildes, char *buf, unsigned nbyte) ;
where:

fildes
File descriptor index: 1 for stdout, 2 for stderr (the usual value for error

reports).
buf

Buffer containing an ASCII string describing the error, e.g., “stack overflow”.

nbyte
Number of characters in buf (excluding any terminating null byte).

__diab_lib_error() is defined in src/lib_err.c and may be modified as required.
(The prototype for __diab_lib_error() is not included in any user accessible
header file; the prototype given above may be added to a user header file if it is
desirable to call __diab_lib_error() from user application code.) Unless the
message is intercepted by another program, __diab_lib_error() writes the
message to the file given by fildes and returns the number of bytes written. After
calling __diab_lib_error(), most functions continue execution (after setting errno
if required).

15.7 Linker Command File

A linker command file:

» Can specify input files and options, although usually these are on the
command line.

» Specifies how memory is configured.
» Specifies how to combine the input sections into output sections.
» Assigns addresses to symbols.

See 25. Linker Command Language for more information about the command
language, and 25.6 Command File Structure, p.391 for an example.

268

15 Use in an Embedded Environment
15.8 Operating System Calls

When invoking a compiler driver such as dcc, specify a non-default linker
command file using the -Wm option:

-Wmpathname

where pathname is the full name of the file. To use the same linker command file for
all compilations, specify this option in the user.conf configuration file.

If no -Wm option is used, the linker will use file version_path/conf/default.dld.
Documentary comments are included in this file; please see it for details. See
5.3.28 Specify Linker Command File (-W mfile), p.43 for additional details on the -W
m option.

Other linker command files written for some specific targets are also provided in
the conf directory. These and default.dld may serve as examples for creating your
own linker command file.

15.8 Operating System Calls

The source files available in the src directory implement or provide stubs for a
number of POSIX/UNIX functions for an embedded environment. A partial set is
documented in the subsections of this section. Examine the .c files to see the
complete set.

The modules in the src directory are typically stubs which must be modified for a
particular embedded environment. These modules have been compiled and the
objects collected into two libraries:

libchar.a — basic operating systems functions using simple character
input/output

libram.a — basic operating system functions using RAM-disk file
input/output.

Variants of these libraries for different object module formats are found in the
directories documented in Table 2-2.

To use these functions:

» Modify the above files or those such as chario.c discussed below. That is,
replace the stub code with code which implements each required function
using the facilities available in the embedded environment.

269

Wind River Compiler for M32R
User’s Guide, 5.4

» Compile the files; the script compile can be used as is or modified to do this.

= Use dar to modify either the original or a copy of libchar.a or libram.a as
appropriate, or simply include the modified object files in your link before the
libraries. See 27. D-AR Archiver for instructions.

» Ifacopyoflibchar.a or libram.a was modified, see 32.2 Library Structure, p.454
for a detailed description of how the libraries are structured and searched.

15.8.1 Character I/O

The predefined files stdin, stdout, and stderr use the __inchar()/__outchar()
functions in version_path/src/chario.c. These functions can be modified in order to
read/write to a serial interface on the user’s target. The files /dev/tty and /dev/lp
are also predefined and mapped to these character I/O functions.

chario.c can be compiled for supported boards and simulators by defining one of
several preprocessor macros when compiling chario.c. These macros are:

SingleStep debugger SINGLESTEP
[.D.P. M68ECO0x0 board IDP

SB306 board SBC306
EST Virtual Emulator EST
MBUG monitor for 68k boards MBUG

For example, all versions of chario.o in the supplied libraries are compiled for
SingleStep as follows:

dcc -c -DSINGLESTEP chario.c

These preprocessor macros typically cause the inclusion of code which reads from
or writes to devices on the board, or make system calls for doing so, or in the case
of SingleStep, supports input/output to the SingleStep command window.

chario.c has three higher level functions:

* inedit() corresponds to stdin; it reads a character by calling __inchar()
and calls outedit() to echo the character.

= outedit(...) corresponds to stdout; it writes a character by calling
__outchar().

= outerror(...) corresponds to stderr; it writes a character by calling
__outerrorchar(). This function is currently used only by SingleStep

270

15 Use in an Embedded Environment
15.8 Operating System Calls

(when compiling chario.c with -DSINGLESTEP); other implementations
write stderr output to stdout.

The lower level functions, __inchar(), __outchar(), and __outerrorchar()
implement the actual details of input/output for each of the boards for emulators
listed above. Examine the code for details.

See the makefiles in the example directories (version_pathlexample/...) for
suggestions on recompiling chario.c for the selected target board.

15.8.2 File I/O

A number of standard file I/O functions are implemented as a “RAM-disk”. These
functions are part of the standard libc.a library when cross is used as part of a
-ttof:cross option when linking (see Table 4-1).

For a convenient way to create RAM-disk files for use with these functions, see
15.11 Target Program Arguments, Environment Variables, and Predefined Files, p.276.

Space required by the file I/O functions is allocated by calls to malloc().

The following functions are supported. For details on any of these functions,
including header files containing their prototypes, lookup the function in 34. C
Library Functions.

access()
In access.c, checks if a file is accessible.

close()
In close.c, closes a file.

creat()
In creat.c, opens a new file by calling open().

fentl()
In fentl.c, checks the type of a file.

fstat()
In stat.c, gets some information about a file.

isatty()
In isatty.c, checks whether a file is connected to an interactive terminal. It is
used by the stdio functions to decide how a file should be buffered. If it is a
terminal, the stream will be flushed at every end-of-line, otherwise the stream
will be buffered and written in large blocks.

271

Wind River Compiler for M32R
User’s Guide, 5.4

link()
In link.c, causes two filenames to point to the same file.

Iseek()
In Iseek.c, positions the file pointer in a file.

open()
In open.c, opens a new or existing file.

read()
In read.c, reads a buffer from a file.

unlink()
In unlink.c, removes a file from the file system.

write()
In write.c, writes a buffer to a file.

15.8.3 Miscellaneous Functions

The following functions provide miscellaneous services.

clock()
In clock.c, is an ANSI C function returning the number of clock ticks elapsed
since program startup. It is not used by any other library function.

__diab_lib_err()
In lib_err.c, reports errors caught by library functions. See 15.6 Library
Exception Handling, p.267.

_exit()
In _exit.c, closes all open files and halts. See 15.4.5 Notes for Exit Functions,
p-264.

getpid()
In getpid.c, returns a process number. Modify this if you have a
multiprocessing system.

__init_main()
In init.c, is called from the startup code and performs some initializations. See
15.4.4 Notes for init.c, p.263.

kill()
In kill.c, sends a signal to a process. Only signals to the current process are
supported.

272

15 Use in an Embedded Environment
15.9 Communicating with the Hardware

signal()
In signal.c, changes the way a signal is handled.

time()
In time.c, returns the system time. Other functions in the library expect this to
be the number of seconds elapsed since 00:00 January 1st 1970.

15.9 Communicating with the Hardware

The following features facilitate access to the hardware in an embedded
environment.

15.9.1 Mixing C and Assembler Functions

The calling conventions of the compiler are well defined, and it is straightforward
to call C functions from assembler and vice versa. See 9. Calling Conventions for
details.

Note that the compiler sometimes prepends and/or appends an underscore
character to all identifiers. Use the -S option to examine how this works.

In C++, the extern "C" declaration can be used to avoid name mangled function
names for functions to be called from assembler.

15.9.2 Embedding Assembler Code
Use the asm keyword or direct functions to intermix assembler instructions in the
compiler function. See 7. Embedding Assembly Code for details.

15.9.3 Accessing Variables and Functions at Specific Addresses

There are four ways to place a variable or function at a specific absolute address:

1. At compile-time by using the #pragma section directive to specify that a
variable should be placed at an absolute address. See Using the Address Clause
to Locate Variables and Functions at Absolute Addresses, p.247.

273

Wind River Compiler for M32R
User’s Guide, 5.4

Advantages of using absolute sections:

» I/Oregisters, global system variables, and interrupt vectors and functions
can be placed at the correct address from the program without the need to
write a complex linker command file.

* Absolute variables will have all symbolic information needed by symbolic
debuggers. Variables defined using the linker command language cannot
be debugged at a high level.

Examples using absolute addressing at compile-time:

// define IOSECT:
// a user defined section containing I/0 registers

#pragma section IOSECT near-absolute RW address=0xffffff00
#pragma use_section IOSECT ioregl, ioreg2

// place ioregl at Oxffffff00 and ioreg2 at Oxffffff04
int ioregl, ioreg2;

// Put an interrupt function at address 0x700
#pragma interrupt programException

#pragma section ProgSect RX address=0x700
#pragma use_section ProgSect programException

void programException() {
//
}

2. At compile-time by using a macro. For example:

/* variable at address 0x100 */
#define mem port (*(volatile int *)0x100)

/* function at address 0x200 */
#define mem_func (*(int (*) ())0x200)

mem_port = mem_port + mem_func();
3. Atlink time by defining the address of an identifier. For example:
In the C file:

extern volatile int mem_port; /* variable */
extern int mem_func(); /* function */

mem_port = mem_port + mem_func() ;
In the linker command file add:

_mem_port = 0x100; /* Both with and without '_' */
mem_port = 0x100;

274

15 Use in an Embedded Environment
15.10 Reentrant and “Thread-Safe” Library Functions

_mem_func = 0x200;
mem_func = 0x200;

Note the use of the volatile keyword to specify that all accesses to this memory
must be executed in the order as given in the source program, without the
optimizer eliminating any of the accesses.

4. By placing the variables or functions in a special named section during
compilation and then locating the section via a linker command file.

See 25. Linker Command Language for additional details.

15.10 Reentrant and “Thread-Safe” Library Functions

Most library functions are reentrant, although in some cases this is impossible
because the functions are by definition not reentrant. In 34. C Library Functions, the
“Reference” portion of each function description includes “REENT” for
completely reentrant functions and “REERR” for functions which are reentrant
except that errno may be set. Functions not so marked are not reentrant. In some
cases, standard functions are supplied in special reentrant versions, and functions
that modify only errno can be made completely reentrant by modifying the
__errno_fn() function. See 34. C Library Functions, for more information.

The reentrant functions are “thread-safe”—that is, they work in a multi-threaded
or multitasking environment. Notable exceptions include malloc() and free().
Typically, real-time operating systems include thread-safe versions of these
functions. You can also create thread-safe versions of malloc() and free() by
implementing the functions __diab_alloc_mutex(), __diab_lock_mutex(), and
__diab_unlock_mutex(); these three functions are called by malloc() (see
malloc.c for their usage) but, as shipped, do nothing.

275

Wind River Compiler for M32R
User’s Guide, 5.4

15.11 Target Program Arguments, Environment Variables, and
Predefined Files

In a host-based execution environment, a program can be started with
command-line arguments and can access environment variables and a file system.

The setup feature brings the same capabilities to programs running in an
embedded environment without the need for an operating system or file devices.

Being able to pre-define arguments, environment variables, and files means:

= When porting an existing host-based program (e.g., a test program or
benchmark), it may be possible to compile and run the program with little or
no modification.

= A program canread large amounts of test or constant data from a “RAM-disk”
file using the input/output functions described in 15.8.2 File I/O, p.271.

The setup program provides initial values for arguments, environment variables,
and RAM-disk files as follows:

* Yourun setup on your host system, giving it options which provide values for
target-based “command-line options” and “environment variables” and
which name host files.

= setup writes a file on your host system called memfile.c. The data for the
arguments and environment variables and from the host files is included in
memfile.c.

* You then treat memfile.c as part of your application: include it as a normal .c
file in your makefile in order to compile and link it with your application.

= When you run your application on your target, the code in memfile.c and
associated library functions will provide the data for the argc and argv
arguments to main, for environment variables accessible through getenv calls,
and for RAM-disk files. (See 15.4 Startup and Termination Code, p.260 for related
details.)

setup is run as follows:
setup [-a arg] [-e evar[=valuel] [-b file1 [-t file] ...
where the options are:

-a arg
Increments arge by one and adds arg to the strings accessible through argv
passed to main in the usual way. The program name pointed to by argv[0] will
always be “a.out”.

276

15.11

15 Use in an Embedded Environment
Target Program Arguments, Environment Variables, and Predefined Files

-e evar[=value]
Creates an environment variable accessible through getenv() in the usual way:
getenv (“name”) will return a null-pointer if name does not match any evar
defined by -e, will return an empty string if there is a match but no value was
provided, or will return “value” as a string.

-b filename
The contents of the given host file will be a binary file accessible as a RAM-disk
file with the given name. (Any path prefix will be included in the filename
exactly as given.)

-t filename
The contents of the host file will be a text file accessible as a RAM-disk file with
the given name. (Any path prefix will be included in the filename exactly as
given.)

Any combination and number of the different options are allowed. Invoking setup
with no arguments will display a usage message.

Example

If you run setup as follows:
setup -a -f -a db.dat -e DEBUG=2 -b db.dat -t fl.asc
it will write memfile.c in the current directory.
When memfile.c is compiled and included in your application:

» The application’s main function will act as if the application had been started
with the command line:

a.out -f db.dat

* The environment variable DEBUG will be set to “2” so that getenv("DEBUG")
will return “2””.

* Binary file db.dat will be predefined and can be opened with fopen() or
open() library calls.

= ASCII text file f1.asc will be predefined and can be opened as above.

setup is an ANSI standard C program supplied in source form as setup.c in the src
directory. To use it, first compile and link it with any native ANSI C tools on your
host system. Typically, it will be sufficient to change to the tools’ src directory, enter
the following command (assuming cc invokes an ANSI C compiler):

cc -o setup setup.c

277

Wind River Compiler for M32R

User’s Guide, 5.4

and then move the executable file setup to your tools’ bin directory or some other
directory in your path.

15.12 Profiling in An Embedded Environment

Profiling collects information while your program executes. That information is
then fed back to the compiler for more optimal code generation based on what
your program actually does when it executes.

The compiler implements profiling through the -Xblock-count and -Xfeedback
options. There are three main steps:

Compile your code with -Xblock-count to insert counting code.

Run your program; count data will be written as your program runs. Transfer
the count data from the target to your host.

Re-compile your code with -Xfeedback — the compiler will optimize based on
the count data.

In more detail:

278

Compile all modules to be profiled with the -Xblock-count option, e.g.:
dcc -c -Xblock-count filel.c file2.c

This causes the compiler to insert minimal profiling code to track the number of
times each basic block is executed (a basic block is the code between labels and
branches).

This profile data is written by the profiling code to a target file named dbcnt.out.
Thus, you must either have an environment in which target files may be
connected to files on your host, or you may use the RAM-disk service (see
15.8.2 File I/O, p.271).

Copy library module version_path/src/_exit.c and modify it to write the
profiling data back to your host system. For example, if you used the
RAM-disk feature, copy the data in target file dbcnt.out to stdout and collect
the data into an ASCII file. The distributed _exit.c includes code to do this
conditioned by two macros: PROFILING and RAMDISK. To use this code
without further modification to _exit.c, recompile with:

dcc -c -DPROFILING -DRAMDISK Uersion_pafh/src/_exit.c

15 Use in an Embedded Environment
15.12 Profiling in An Embedded Environment

See _exit.c for additional details.
Compile the rest of your program and link as usual.

Execute your program on the target system. When it terminates, it will write
the profiling information back to the host system per your modification to
_exit.c.

If the profiling information was transferred back to the host in ASCII format,
use the ddump command to convert it to a binary file (the dbent.out output
filename is chosen because it is the default for the step after this).

ddump -B -o dbent.out your-file-of-collected-profile-data
Recompile the modules profiled with the -Xfeedback option:
dcc -c -Xfeedback -XO filel.c file2.c

(use -Xfeedback=profile-file, where profile-file is the name of file of collected
profile data in binary form if that file is not named dbcnt.out).

The compiler will optimize based on the profile data collected from the target.
Make sure to use the -XO option as well to get the best code (either -XO or -O
must be included or the profile data will be ignored).

279

Wind River Compiler for M32R
User’s Guide, 5.4

280

16

17

18

19

20

21

22

PART Ill
Wind River Assembler

The Wind River Assemblerccoooevieimmmmnnnnns 283
Syntax RUIES ... 297
Sections and Location Counters 307
Assembler EXPressionsccoevsssssnssnnnmmmnnnnnns 311
Assembler Directivescccocvviiiimmnrinnsscnennnnn 317
Assembler Macroscccccviiiiiiiiinnnnnnnnneeeennnn 341
Example Assembler Listingccccevvviiiiiiiinnnnes 349

281

Wind River Compiler for M32R
User’s Guide, 5.4

282

16

The Wind River Assembler

16.1 Selecting the Target 283

16.2 The das Command 284

16.3 Assembler Command-Line Options 284
16.4 Assembler -X Options 289

This chapter describes the assembler for M32R microprocessors. For in-depth
information on the M32R architecture and instructions, please refer to the
manufacturer’s documentation.

16.1 Selecting the Target

The target for the assembler is selected by the same methods as for the compiler.
See 4.1 Selecting a Target, p.21 for details. When using the compiler drivers dcc,
dplus, etc., the target for the assembler is selected automatically by the driver.

283

Wind River Compiler for M32R
User’s Guide, 5.4

16.2 The das Command

The command to execute the assembler is as follows:
das [options] [input-files]
where:

das
Invokes the assembler.

options
Command-line options; see the following subsection for details. Options
must precede the input files.

input-files
A list of filenames, paths permitted, separated by whitespace, naming the
file(s) to be assembled; the default suffix is .s.

The assembler assembles the input file and generates an object file as determined
by the selected target configuration. By default, the output file has the name of the
input file with an extension suffix of .0. The -o option can be used to change the
output filename.

The form -@name can also be used for either options or input-file. If found, the name
must be either that of an environment variable or file (a path is allowed), the
contents of which replace -@name.

Example: assemble test.s with a symbol named DEBUG equal to 2 for use in
conditional assembly statements:

das -D DEBUG=2 test.s

16.3 Assembler Command-Line Options

The following command-line options are available. Also see the next section,
16.4 Assembler -X Options, p.289.

284

16 The Wind River Assembler
16.3 Assembler Command-Line Options

NOTE: Command-line options are case-sensitive. For example, -c and -C are two
unrelated options. For easier reading, command-line options may be shown with
embedded spaces in the table. In writing options on the command line, space is
allowed only following the option letter, not elsewhere. For example,

“.D DEBUG=2" is valid; “-D DEBUG = 2” is not.

If the same option is given more than once, the last instance is used.

Show Option Summary (-?)

-2, -h,
--help
Show synopsis of command-line options.

Define Symbol Name (-Dname=value)

-D name [=value]
Define symbol name to have the given value. If value is not given, 1 is used. The
-D option can be used to set symbols used with conditional assembly. See the
.if expression, p.326 for more information.

Generate Debugging Information (-g)
-g
Generate debug line and file information. (ELF/DWARF format only).
Equivalent to -Xasm-debug-on.
Include Header in Listing (-H)
-H
Print a header on the first line of each page of the assembly listing. See Include

Header in Listing (-Xheader...), p.290 for additional details and 22. Example
Assembler Listing for an example of an assembly listing.

285

Wind River Compiler for M32R
User’s Guide, 5.4

Set Header Files Directory (-1 path)

-I path
Specify a directory where the assembler will look for header files. May be
given more than once. See the .include "file”, p.329 for more information.

Generate Listing File (-1, -L)

-1
Generate the listing file to input-file.Ist. (To change the default extension of the
output file, use -Xlist-file-extension="string”; for example,
-Xlist-file-extension=".L".)

Generate the listing file to standard output. See 22. Example Assembler Listing
for an example of an assembly listing.

Set outpUt File (-o file)

-o file
Write the object file to file instead of the default (input-file.s). Applies only to
the first file if a list of files is presented; remaining files in the list use the
default.

Remove the Input File on Termination (-R)

-R
May be used by tools to remove temporary files.

Specify Assembler Description (.ad) File (-T ad-file)

-T ad-file
Specify which assembler description (.ad) file to use. This is normally set
automatically by using the -t option, defining the DTARGET and the DOBJECT
environment variables, or using the -WDDTARGET and the -WDDOBJECT
command-line options. It is primarily for internal use by Wind River.

286

16 The Wind River Assembler
16.3 Assembler Command-Line Options

Select Target (-ttof:environ)
-ttof:environ
Specifies with one command the DTARGET (f), the DOBJECT (o), the DFP (f),
and the DENVIRON (environ) configuration variables. See 4. Selecting a Target
and Its Components for details.
Print Version Number (-V)
-v
Display the version number of the assembler on standard output.
Define Configuration Variable (-WDname=value)
-WDname=value
Set a configuration variable for use in the configuration files with the given
name to the given value. Overrides an environment variable of the same name.
Select Object Format and Mnemonic Type (-WDDOBJECT=object-format)
-WDDOBJECT=0bject
Specify the object format and mnemonic type. Overrides the environment
variable DOBJECT if it is also set.
Select Target Processor (-(WDDTARGET=target)
-WDDTARGET={arget
Specify the target processor. Overrides the environment variable DTARGET if
it is also set.

Discard All Local Symbols (-x)

=X
Discard symbols not declared .extern or .comm.

287

Wind River Compiler for M32R
User’s Guide, 5.4

Discard All Symbols Starting With .L (-X)

-X
Discard all symbols starting with .L; supports compilers using this form for
automatically generated symbols, including the Wind River compiler.

Print Command-Line Options on Standard Output (-#)

-#
The output of this option can be directed to a file. This can be convenient when
contacting Technical Services. The -# should immediately follow the das
command (after a space).

Read Command-Line Options from File or Variable (-@name, -@ @name)

-@name
Read command-line options from either a file or an environment variable.
When -@name is encountered on the command line, the assembler first looks
for an environment variable with the given name and substitutes its value. If
an environment variable is not found then it tries to open a file with given
name and substitutes the contents of the file. If neither an environment
variable or a file can be found, an error message is issued and the assembler
terminates.

-@@name
Same as -@name; also prints all command-line options on standard output.

Redirect Output (-@E-=file, -@E+file, -@O=file, -@O+file)

-@E=file
-@E+file
Redirect any output to standard error to the given file.

-@o=file
-@o+file
Redirect any output to standard output to the given file.

In both cases, use of + instead of = appends the output to the file.

288

16 The Wind River Assembler
16.4 Assembler -X Options

16.4 Assembler -X Options

The following options provide more detailed control of the assembler. The -X
options are for use on the command line; -X options can also be set using the .xopt
assembler directive. See .xopt, p.339.

Specify Value to Fill Gaps Left by .align or .alignn Directive (-Xalign-fill-text)

-Xalign-fill-text=n
Fill gaps left by the .align or .alignn directive with the value n, overriding the
processor-specific default.

Interpret .align Directive (-Xalign-value, -Xalign-power2)

-Xalign-value
Interpret the value in an .align directive as the value to which the location
counter is to be aligned, which must be a power of 2. Example:
-Xalign-value=8 means .align is to align on an 8-byte boundary.

-Xalign-power2
Interpret the value in an .align directive as the power of 2 to which the location
counter is to be aligned. Example: -Xalign-power2=3 means .align is to align
on an 8-byte boundary

This is the default.

Generate Debugging Information (-Xasm-debug-...)

-Xasm-debug-off
Do not generate debug line and file information. This is the default.

-Xasm-debug-on

Generate debug line and file information. (ELF/DWARF format only).

Align Program Data Automatically Based on Size (-Xauto-align)

-Xauto-align-off
The assembler performs no data alignment. This is the default.

-Xauto-align
Align program data automatically based on size.

289

Wind River Compiler for M32R
User’s Guide, 5.4

Set Instruction Type (-Xcpu-...)

-Xcpu-target
Accept instructions only for the target processor designated by target. This
option is primarily for internal use and is set automatically by the driver in
response to the user-level -ttof:environ option. See Table 4-1 for details.

Set Default Value for Section Alignment (-Xdefault-align)

-Xdefault-align=value
Set the value use when calculating the default alignment for .comm, .lcomm,
and .sbss directives, and the alignment used by the .even directive.

The default value of -Xdefault-align is 8 if no value is given.

Absent this directive, the default alignment for ELF sections is the maximum
alignment of all objects in the section.

Note that for ELF modules, -Xdefault-align does not set the alignment of
sections — it sets the default for used by the .comm, .lcomm, .sbss, and .even
directives. Only if one of these directives is in fact used in a section will the
alignment be as set by -Xdefault-align rather than the maximum alignment of
all objects in the section.

Enable Local GNU Labels (-Xgnu-locals-...)

-Xgnu-locals-off
Disable local GNU labels. See GNU-Style Locals, p.303 for more information.
The default setting is -Xgnu-locals-on.

-Xgnu-locals-on

Enable local GNU labels. See GNU-Style Locals, p.303 for more information.
This is the default.

Include Header in Listing (-Xheader...)
-Xheader
Include a header in the listing. See the -1 and the -L options. This option is

turned off as a default. This option has the same effect as the -H option. See
also -Xheader-format below 31.

290

16 The Wind River Assembler
16.4 Assembler -X Options

-Xheader-off
Do not include a header in the listing file. This is the default.

See 22. Example Assembler Listing for an example of an assembly listing.

Set Header Format (-Xheader-format="string")

-Xheader-format="string"
Define the format of the header in the assembly listing. (The header is enabled
by options -H or -Xheader above). The header string can contain format
specifications in any order introduced by a “%”. Characters not preceded by
“%" are printed as is, including spaces and escapes such as “\t” for tab.

Valid format specifications are:

%IE
Use n columns to display the error count.

%NF
Use n columns to display the filename.

%N
Start a new line.

%NP
Use n columns to display the page number.

%NS

Use n columns to display the subtitle given with the -Xsubtitle option.

%N'T

Use n columns to display the title given with the -Xtitle option.

%W
Use 7 columns to display the warning count.

The default header string is:
"%$30T File: %10F Errors %4E"

See 22. Example Assembler Listing for an example of an assembly file listing.

Set Label Definition Syntax (-Xlabel-colon...)
-Xlabel-colon

Require that all label definitions have a colon “:”appended. When this option
is selected, some directives are allowed to start the line. This is the default.

291

Wind River Compiler for M32R
User’s Guide, 5.4

Note that this applies to all directives, including .equ and .set. Thus, with this

option:
TRUE: .set 1 valid
TRUE .set 1 invalid

-Xlabel-colon-off
Do not require label definitions to end with a colon “:”. When this option is

selected, directives are not allowed to start in column 1.

Set Format of Assembly Line in Listing (-Xline-format="string")

-Xline-format="string"
Define the format of each assembly line in a listing. The string can contain the
following format specifications, in any order, starting with a “%*. Characters
not preceded by “%” are printed as is, including spaces and escapes such as

“\t" for tab.
Valid format specifications are:

%A
Use n columns to display current address.

%11 . mC
Use n columns to display the generated code. A space is inserted at every

nth column.

Display a maximum of 1 generated bytes for each source line. n may have
a value from 1 through 32. More than one listing line might be used to
display lines that produce many bytes.

Use n columns to display the current source line number.

Use n columns to display the current Program Location Counter (PLC)
which corresponds to a section number.

The assembly source statement follows the above items on the listing line.
The default line format string is:

"%8A %2P %32D%15.2C%5L\t"

See 22. Example Assembler Listing for an example of an assembly listing.

292

16 The Wind River Assembler
16.4 Assembler -X Options

Generate a Listing File (-Xlist-...)
-Xlist-file
Generate a listing file to file input-file.1st. Same as the -1 option.

-Xlist-off
Generate no listing file. This is the default.

-Xlist-tty
Generate a listing file to standard output. Same as the -L option.

See 22. Example Assembler Listing for an example of an assembly listing.

Specify File Extension for Assembly Listing (-Xlist-file-extension="string")

-Xlist-file-extension="string"
Use this option to override the default extension (.Ist) of the listing file
generated by -1 or -Xlist-file. For example, -Xlist-file-extension=".L" specifies
the file extension .L.

Set Line Length of Listing File (-Xllen=n)

-Xllen=n
Define the number of printable character positions per line of the listing file.
The default is 132 characters. A value of 0 means unlimited line length. This
value may also be set or changed by the .1len (.Ilen expression, p.329) and .psize
(.psize page-length [line-length], p.332) directives.

See 22. Example Assembler Listing for an example of an assembly listing.

Enable Blanks in Macro Arguments (-Xmacro-arg-space-...)

-Xmacro-arg-space-off
Do not permit blanks in macro arguments. This is the default.

-Xmacro-arg-space-on
Permit blanks in macro arguments.

293

Wind River Compiler for M32R
User’s Guide, 5.4

Output Aligning no-ops Before Debug Line Directives (-Xpad16)

-Xpadlé
Output no-ops before debug line directives.

Set Page Break Margin (-Xpage-skip=n)

-Xpage-skip=n
If n is zero (the default), page breaks in the listing file will be created using
formfeed (ASCII 12). Otherwise each page will be padded with # blank lines,
and these n blank lines included in the count set by -Xplen option. See
22. Example Assembler Listing for an example of an assembly listing.

Set Lines Per Page (-Xplen=n)

-Xplen=n
Define the number of printable lines per page in the listing file. The default
value of n is 60. See also -Xpage-skip above. This value may also be set or
changed by the .lcnt (see .lcnt expression, p.329) and .psize (see .psize
page-length [line-length], p.332) directives. See 22. Example Assembler Listing for
an example of an assembly listing.

Limit Length of Conditional Branch (-Xprepare-compress=n)

-Xprepare-compress=il
Change the maximum length of a conditional branch from the default, which
is 32,766 bytes; if n is not specified, the length is set to 1024. If a conditional
branch exceeds this limit, the assembler inserts a reverse conditional around
an unconditional branch to the label.

Enable Spaces Between Operands (-Xspace-...)

-Xspace-off
Do not allow spaces between operands in an assembly instruction.

-Xspace-on
Allow spaces between operands in an assembly instruction. This is the default.

294

16 The Wind River Assembler
16.4 Assembler -X Options

Delete Local Symbols (-Xstrip-locals..., -Xstrip-temps...)

-Xstrip-locals
Do not include local symbols in the symbol table. This is the same as the -x
option. Local symbols are those not defined by .extern or .comm.

-Xstrip-locals-off
Include local symbols in the symbol table. This is the default.

-Xstrip-temps="string"
Do not include local labels starting with string in the symbol table. If no string
is specified, .L will be used. This is the same as the -X option. This option can
be used to suppress the temporary symbols generated by the compiler.

-Xstrip-temps-off
Include local symbols starting with .L in the symbol table. This is the default.
Set Subtitle (-Xsubtitle="string")
-Xsubtitle="string"
Define a subtitle that will be printed in the %S field of the header. See Set
Header Format (-Xheader-format="string"), p.291, for more information.
Set Tab Size (-Xtab-size=n)
-Xtab-size=n
Define the number of spaces between tab stops. The default is 8.
Set Title (-Xtitle="string")
-Xtitle="string"

Define a title that will be printed in the %T field of the header. See Set Header
Format (-Xheader-format="string”), p.291, for more information.

295

Wind River Compiler for M32R
User’s Guide, 5.4

296

17

Syntax Rules

17.1 Format of an Assembly Language Line 297
17.2 Symbols 300

17.3 Direct Assignment Statements 300

17.4 External Symbols 301

17.5 Local Symbols 302

17.6 Constants 303

17.1 Format of an Assembly Language Line

An assembly language file consists of a series of statements, one per line. The
maximum number of characters in an assembly line is 1024.

The format of an assembly language statement is:
[1abet :] [opcode] [operand field) [; comment]

Spaces and tabs may be used freely between fields and between operands (except
that -Xspace-off option prohibits spaces between operands. See Enable Spaces
Between Operands (-Xspace-...), p.294).

A comment starts with “;” as shown above. See Comment, p.299 for additional
comment details.

297

Labels

Wind River Compiler for M32R
User’s Guide, 5.4

All fields are optional depending on the circumstances. In particular:
» Blank lines are permitted.
= A statement may contain only a label.

» The opcode must be preceded by a label or whitespace (one or more blanks or
tabs). A statement may contain only an opcode. (Assembler directives may start
in column one but only if the -Xlabel-colon option is given.)

= A line may consist of only a comment beginning in any column.

An example of assembly language code follows:

// mv_word (dest, src, cnt)
// move cnt (r4) 4-byte words from src (r3) to dest (r2)

blez rd, . L2
L3:

1d r7,@r3+

st r7,Qr2+

addi rd,-1

bnez rd, .L3
L2:

Jjmp rld

A label is a user-defined symbol which is assigned the value of the current location
counter; both of which are entered into the assembler’s symbol table. The value of
the label is relocatable.

For the M32R, a label on an instruction (not data) in a text section automatically
aligns the program counter on a 4-byte boundary before defining the label.

Alabel is a symbolic means of referring to a specific location within a program. The
following govern labels:

» Alabelis a symbol; see 17.2 Symbols, p.300 for the rules on forming symbols.

= Alabel always occurs first in a statement; there may be multiple labels on one
line.

= A label may be optionally terminated with a colon, unless the -Xlabel-colon
option is used in which case the colon is required. Examples:

start:

genesis: restart: ; Multiple labels
7S ; A local label
4: ; A local label

(See 17.5 Local Symbols, p.302 for details on local labels.)

298

Opcode

Operand Field

Comment

17 Syntax Rules
17.1 Format of an Assembly Language Line

The opcode of an assembly language statement identifies the statement as either a
machine instruction or an assembler directive.

The opcode must be preceded by a label or whitespace (one or more blanks or
tabs). One or more blanks (or tabs) must separate the opcode from the operand
field in a statement. No blanks are necessary between a label ending with a colon
and an opcode. However, at least one blank is recommended to improve
readability.

A machine instruction is indicated by an instruction mnemonic.

An assembler directive (or just “directive”), performs some function during the
assembly process. It does not produce any executable code, although it may assign
space in a program for data. Assembler directives may start in column one but only
if the -Xlabel-colon option is given.

The assembler is case-insensitive regarding opcodes.

In general, an operand field consists of 0-3 operands separated by commas.

The format of the operand field for machine instruction statements is the same for
all instructions. The format of the operand field for assembler directives depends
on the directive itself.

n

The comment delimiters are semicolon “;”, pound sign “#”, and the C++ comment
marker “/”.

U1

An asterisk in column 1 is also treated as a comment delimiter.

The comment field consists of all characters in a source line including and
following the comment character through the end of the line (the next <Newline>
character). These characters are ignored by the assembler.

299

Wind River Compiler for M32R
User’s Guide, 5.4

17.2 Symbols

A symbol consists of a number of characters, with the following restrictions:

» Valid characters include A-Z, a-z, 0-9, period “.”, dollar sign “$“, and
underscore “_“

» The first character must not be a “$” dollar sign.

» The first character must not be numeric except for local symbols (17.5 Local
Symbols, p.302).

The only limit to the length of symbols is the amount of memory available to the
assembler. Upper and lower cases are distinct: “Alpha” and “alpha” are separate
symbols.

A symbol is said to be declared when the assembler recognizes it as a symbol of the
program. A symbol is said to be defined when a value is associated with it. A
symbol may not be redefined, unless it was initially defined with the directive
symbol .set expression (see symbol[:] .set expression, p.335).

There are several ways to define a symbol:

» As thelabel of a statement.

* Ina direct assignment statement.

» With the .equ/.set directives.

* Asalocal common symbol via the .lcomm directive.

The .comm directive will declare a symbol as a common symbol. If a common
symbol is not defined in any module, it will be allocated by the linker to the end of
the .bss section. See 23.4 COMMON Sections, p.361 for additional details.

17.3 Direct Assignment Statements

A direct assignment statement assigns the value of an arbitrary expression to a
specified symbol. The format of a direct assignment statement is one of the
following:

symbol[:] = expression

symbol[:] =: expression

300

17 Syntax Rules
17.4 External Symbols

The =: syntax has the side effect that symbol will be visible outside of the current
file. Examples of valid direct assignments are:

vect_size = 4

vectora = Oxfffe

vectorb = vectora-vect_size
CRLF: =: 0x0D0OA

17.4 External Symbols

A program may be assembled in separate modules, and linked together to form a
single program. By using external symbols, it is possible to define a label in one file
and use it in another. The linker will relocate the reference so that the same address
is used. There are two forms of external symbols:

* Ordinary external symbols declared with the .globl, .global, .xdef, or .export
directives.

» Common symbols declared with the .comm directive.

For example, the following statements define the array table and the routine two
to be external symbols:

.export table, two

.data
table:
.space 20 # twenty bytes long
.text
two:
1di r0,2 # return 2
Jjmp rld

External symbols are only declared to the assembler by the .globl, .global, .xdef,
or .export directives. They must be defined (i.e., given a value) in another
statement by one of the methods mentioned above. They need not be defined in the
current file; in that case they are flagged as “undefined” in the symbol table. If they
are undefined, they are considered to have a value of zero in expressions.

The following statements, which may be located in a different file, use the above

defined labels:
bl two
1d24 r3, table
st r4,@r3

301

Wind River Compiler for M32R
User’s Guide, 5.4

Note that whenever a symbol is used that is not defined in the same file, it is
considered to be a global undefined symbol by the assembler.

An external symbol is also declared by the .comm directive in one or more modules
(see .comm symbol, size [,alignment], p.321). For the rest of the assembly such a
symbol, called a common symbol, will be treated as though it is an undefined
global symbol. The assembler does not allocate storage for common symbols; this
task is left to the linker. The linker computes the maximum size of each common
symbol with the same name, allocates storage for it at the end of the final .bss
section, and resolves linkages to it (unless the -Xbss-common-off is used; see
5.4.15 Control Allocation of Uninitialized Variables in “COMMON" and bss Sections
(-Xbss-off, -Xbss-common-off), p.62).

17.5 Local Symbols

Local symbols provide a convenient way of generating labels for branch
instructions. Use of local symbols reduces the possibility of attempting to define a
symbol more than once in a program, and separates entry point symbols from local
references, such as the top of a loop. Local symbols cannot be referenced by other
object modules. The assembler implements two styles of local symbols.

Generic Style Locals

The generic style local symbols are of the form n$ where # is any integer.
Examples of valid local symbols:

18

27$

3948
Leading zeroes are significant, e.g., 2$ and 02$ are different symbols. A local
symbol is defined and referenced only within a single local symbol block. There is
no conflict between local symbols with the same name which appear in different
local symbol blocks. A new local symbol block is started when either:

* A non-local label is defined.
* A new program section is entered.

302

17 Syntax Rules
17.6 Constants

GNU-Style Locals

A GNU-style local symbol consists of one to five digits when defined. A GNU-style
local symbol is referenced by the digits followed by the character f or b. When the
digits are suffixed by an f, the nearest definition going forward (toward the end of
the source) is referenced. When suffixed with the character b, the nearest definition
going backward (toward the beginning of the file) is referenced. Example:
15:
.long 15f ; Reference definition below.
.long 15b ; Reference definition above.
15:
By default the GNU style local symbols are recognized by the assembler. This can
be disabled with the option -Xgnu-locals-off (see Enable Local GNU Labels
(-Xgnu-locals-...), p.290).

17.6 Constants

The assembler supports both integral and floating point constants. Integral
constants may be entered in decimal, octal, binary or hexadecimal form, or they
may be entered as character constants. Floating point constants can only be used
with the .float and .double directives.

Integral Constants

Internally, the assembler treats all integer constants as signed 32-bit binary two’s

complement quantities. Valid constant forms are listed below. The order of the list
is significant in that it is scanned from top to bottom, and the first matching form
is used.

10

c
character constant

Oxhex-digits
hexadecimal constant

Ooctal-digits
octal constant

303

Wind River Compiler for M32R
User’s Guide, 5.4

$hex-digits

hexadecimal constant
Thex-digits

hexadecimal constant
@octal-digits

octal constant
Y%binary-digits

binary constant
decimal-digits

decimal constant
octal-digitso

octal constant
octal-digitsq

octal constant
binary-digitsb

binary constant

Examples:
abc = 12 12 decimal
bcd = 012 12 octal (10 decimal)
cde = 0x12 12 hex (18 decimal)

To represent special character constants, use the following escape sequences:

Constant Value Meaning

"\b' 8 backspace

\t' 9 horizontal tab

"\n' 10 line feed (newline)
"\v' 11 vertical tab

\f' 12 form feed

\r' 13 return

" 39 single quote

\\! 92 backslash

304

17 Syntax Rules
17.6 Constants

By using a “\nnn” construct, where nnn is an octal value, any character can be

specified:
"\101" same as ‘A (65 decimal)
"\60" same as ‘0 (48 decimal)

Floating Point Constants

Floating point constants have the following format:
[+1-]iife |E}[+1-]i

where i is an integer. All parts are optional as long as the constant starts with a sign
or a digit and contains either a decimal point or an exponent (e or E and a following
digit). Also, +NAN and [+/-]INF are supported. Examples:

float 1.2, -3.14, 0.27172el
double -123e-45, .56, le23

String Constants

The form of a string is:
"characters"
where characters is one or more printable characters or escape codes.

Characters represented in the source text with internal values less than 128 are
stored with the high bit set to zero. Characters with source text values from 128
through 255, and characters represented by the “\nnn” construct are stored as is.

A Newline character must not appear within the character string. It can be
represented by the escape sequence \n as described below. The (") is a delimiter
character and must not appear in the string unless preceded by a backslash “\”.

The following escape sequences are also valid as single characters:

Constant Value Meaning

\b 8 Backspace

\t 9 Horizontal tab

\n 10 Line Feed (New Line)
\v 11 Vertical tab

\f 12 Form feed

305

Wind River Compiler for M32R
User’s Guide, 5.4

Constant Value Meaning

\r 13 Enter

\" 34 Double quote ““
N\ 92 Backslash “\”
\nnn nnn (octal) Octal value of nnn

Some examples follow. The final two are equivalent.

Statement Hex Code Generated

.ascii "hello there" 68 65 6C 6C 6F 20 74 68 65 72 65
.ascii "Warning-\007\007\n" 77 61 72 6E 69 6E 67 2D 07 07 0A
.ascii "Wwarning-",7,7,"\n" Same as previous line.

306

18

Sections and Location
Counters

18.1 Program Sections 307
18.2 Location Counters 308

18.1 Program Sections

Assembly language programs are usually divided into sections to separate
executable code from data, constant data from variable data, initialized data from
uninitialized data, etc. Some important predefined sections are described below,
with a reference to the assembler directive that switches output to each section.

.text, p.337
Instruction space.

.data, p.322
Initialized data.

.bss, p.320
Uninitialized data.

.sbss [symbol, size [alignment]], p.332
Short uninitialized data.

.rodata, p.332
Read-only data.

307

Wind River Compiler for M32R
User’s Guide, 5.4

.sdata, p.333
Short initialized data.

.sdata2, p.333
Constant short initialized data.

By invoking these directives, it is possible to switch among the sections of the
assembly language program. New sections can also be defined with the .section
directive (see .section name, [alignment], [typel, p.333).

The assembler maintains a separate location counter for each section. Thus for
assembly code such as:

.text
instruction-block-1
.data
data-block-1
.text
instruction-block-2
.data
data-block-2

In the object file, instruction-block-2 will immediately follow instruction-block-1, and
data-block-2 will immediately follow data-block-1.

ELF sections are aligned based on their contents or on a specified alighment in a
.section directive. ELF sections are not extended to any boundary whether aligned
or not.

Padding introduced into a code section (but not other types of sections) by means
of an .align or .alignn directive is filled with the nop instruction (0x7000 on 4-byte
boundaries, else 0xf000).

NOTE: See the -f linker option, 24. The dld Command, for filling of gaps between
input sections in an output section.

18.2 Location Counters

The assembly current location counter is represented by the character “.”. In the
operand field of any statement or assembly directive it represents the address of
the first byte of the statement.

308

18 Sections and Location Counters
18.2 Location Counters

NOTE: A currentlocation counter appearing as an operand in a .byte directive (see
.byte expression ,..., p.321) always has the value of the address at which the first byte
was loaded; it is not updated while evaluating the directive.

The assembler initializes the location counter to zero. Normally, consecutive
memory locations are assigned to each byte of the generated code. However, the
location where the code is stored may be changed by a direct assignment altering
the location counter:

. = expression

expression must not contain any forward references, must not change from one pass
to another, and must not have the effect of reducing the value of “.”. Note that the

"o

assembler supports absolute sections when using ELF, so setting “.” to an absolute
position is equivalent to using the .org directive and will produce a section named
.abs.xxxxxxxx, where xxxxxxxx is the hexadecimal address of the section, with
leading zeros to fill to eight digits. The linker will then place this section at the
specified address. For example:

. = 0xf£0000

will create a section named .abs.00£f0000 located at that address.

Storage area may also be reserved by advancing the “.”. For example, if the current
value of “.”is 0x1000:

.= . +0x100

would reserve 100 (hex) bytes of storage. The next instruction would be stored at
address 0x1100. Note that

.skip 0x100

is a more readable way of doing the same thing.

309

Wind River Compiler for M32R
User’s Guide, 5.4

310

19

Assembler Expressions

Expressions are combinations of terms joined together by unary or binary
operators. An expression is always evaluated to a 32-bit value. If the instruction
calls for only 8 or 16 bits, the least significant 8 or 16 bits are used.

A term is a component of an expression. A term may be one of the following:

A constant.
A symbol.

An expression or term enclosed in parentheses (). Any quantity enclosed in

parentheses is evaluated before the rest of the expression. This can be utilized
to alter the normal precedence of operators, e.g., differentiating between a*b+c
and a*(b+c), or to apply a unary operator to an entire expression, e.g., -(a*b+c).

Any expression, when evaluated, is either absolute or relocatable:

1.

An expression is absolute if its value is fixed. An expression whose terms are
constants, or symbols whose values are constants via a direct assignment
directive, is absolute. A relocatable expression minus a relocatable expression,
where both items belong to the same program section is also absolute.

An expression is relocatable if it contains a label whose value will not be defined
until link time. In this case the assembler will generate an entry in the

relocation table in the object file. This entry will point to the instruction or data
reference so that the linker can patch the correct value after memory allocation.
The allowed relocatable expressions are defined in F. Object and Executable File
Format together with the relocation type used. The following demonstrates the
use of relocatable expressions, where “alpha” and “beta” are symbols:

alpha
relocatable

311

Wind River Compiler for M32R
User’s Guide, 5.4

alpha+5
relocatable

alpha-0xa
relocatable

alpha*2
not relocatable (error)

2-alpha
not relocatable, since the expression cannot be linked by adding alpha’s
offset to it

alpha-beta
absolute, since the distance between alpha and beta is constant, as long as
they are defined in the same section

alpha@l
relocatable (the low 16 bits of alpha)

NOTE: In the following tables, the phrase “expr evaluates to ... offset from the ...
base register” (or similar) means that the assembler generates a constant which is
adjusted as necessary by the linker so that the final value in memory is an offset
from the designated base register. These constructs are used for
position-independent code or data, or for small data or constant areas (both
“position-independence” and “small” are implemented using the same
mechanisms and registers). To execute correctly, the designated base register must
be loaded with the base of the code or data area as appropriate. See the discussions
of these topics in 14. Locating Code and Data, Addressing, Access.

Unary Operators
The unary operators recognized by the assembler are:

%endof(section-name)
Address of the end of the given section. Evaluates to .endof.section_name,
a symbol created by the linker. (See 23.2 Symbols Created By the Linker,

p.358.)

expr@code
expr evaluates to a 32 bit offset from the code base register (r8), typically

initialized to __ SDA2_BASE _.

expr@data
expr evaluates to a 32 bit offset from the data base register (19), typically

initialized to _ SDA_BASE_.

312

19 Assembler Expressions

expr@h
%hi(expr)
The most significant 16 bits of expr are extracted.

expr@ha

%hiadj(expr)
High adjust: The most significant 16 bits of expr are extracted and adjusted
for the sign of the least significant 16 bits of expr. See High adjust operator,
p-313 below.

expr@l
%lo(expr)
The least significant 16 bits of expr are extracted.

%sizeof(section-name)

Size of the given section. Evaluates to .sizeof.section_name, a symbol
created by the linker (see 23.2 Symbols Created By the Linker, p.358).

%startof(section-name)

Address of the start of the given section. Evaluates to .startof.section_name,
a symbol created by the linker (see 23.2 Symbols Created By the Linker,
p-358).

Unary add.

Negate.

Complement.

High adjust operator

Sometimes the compiler (or a hand-coded assembly language program, if not the
compiler) uses two instructions to copy an address to or from a location in memory.
Each instruction can include 16 bits of the address as an immediate value, and the
two 16-bit parts of the address are added to form the full address.

For the purposes of this discussion:
= The first instruction has the higher 16 bits of the address.

= The second instruction has the lower 16 bits of the address.

313

Wind River Compiler for M32R
User’s Guide, 5.4

In some cases, the second instruction sign extends the low 16 bits (for example,
0x8000 is sign-extended to 0xffff8000). If so, the first instruction must compensate
so that the correct address is calculated when the two parts of the address are
added.

How the first instruction compensates depends on the most significant bit of the
lower 16 bits of the address:

= Ifitis zero, no adjustment is made.

= Ifitis 1, the first instruction adds 1 to the higher 16 bits of the address. The
second instruction adds Oxffff, which is equivalent to -1. Thus, the two
additions negate each other.

Binary Operators

The binary operators recognized by the assembler are:

Binary Operator Description
+ add

- subtract

* multiply

/ divide

| bitwise or
% modulo

& bitwise and
A bitwise exclusive or
<< shift left

>> shift right
== equal to

I= not equal to

<= less than or equal to

< less than

>= greater than or equal to
> greater than

314

19 Assembler Expressions

Operator Precedence

Expressions are evaluated with the following precedence in order from highest to
lowest. All operators in each row have the same precedence.

Table 19-1 Assembler Operator Precedence and Associativity

Operator Associativity

unary + — ~ right to left

@code @data
@h @ha %hi %hiadj

@l %lo left to right
%startof %endof %sizeof
* | % (modulo) left to right
binary + - left to right
<< >> left to right
< <= > >= left to right
== I= left to right
& left to right
A left to right
left to right

315

Wind River Compiler for M32R
User’s Guide, 5.4

316

20

Assembler Directives

20.1 Introduction 317
20.2 List of Directives 318

20.1 Introduction

All the assembler directives (or just “directives”) described here that are prefixed

with a period “.” are also available without the period. Most are shown with a “.
except for those traditionally written without it.

If the -Xlabel-colon option is given (see Set Label Definition Syntax (-Xlabel-colon...),
p-291), then directives which cannot take a label may start in column 1. A directive
which can take a label—that is, can produce data in the current section—may not
start in column 1. If -Xlabel-colon-off is in force (the default), then no directive
may start in column 1.

Spaces are optional between the operands of directives unless the -Xspace-off
option is in force (see Enable Spaces Between Operands (-Xspace-...), p.294).

In addition to the directives documented in this chapter, the assembler recognizes
the following directives generated by some compilers for symbolic debugging:

.d1_line_start, .d1_line_end, .d1file, .d1line, .def, .endef, .In, .dim, .line, .scl,
.size, .tag, .type, .val, .d2line, .d2file, .d2_line_start, .d2_line_end, .d2string,

317

Wind River Compiler for M32R
User’s Guide, 5.4

.d2_cfa_offset,.d2_cfa_register,.d2_cfa_offset_list,.d2_cfa_same_value_list,
.d2_cfa_same_value, .uleb128, .sleb128

The remainder of this chapter describes individual assembler directives.

20.2 List of Directives

symbol[:] = expression

See symbol[:] .equ expression, p.324. See -Xlabel-colon-... in Set Label Definition
Syntax (-Xlabel-colon...), p.291 regarding the initial colon.

symbol[:] =: expression

Equivalent to symbol = expression except that symbol will be made a global symbol.
See -Xlabel-colon-... in Set Label Definition Syntax (-Xlabel-colon...), p.291 regarding
the initial colon.

.2byte
This is a synonym for .short (.short expression ,..., p.336) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

.4byte

This is a synonym for .long (.long expression ,..., p.330) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

318

20 Assembler Directives
20.2 List of Directives

.align expression

Aligns the current location counter to the value given by expression (which must be
absolute). When the option -Xalign-value is set, expression is used as the alignment
value, and must be a power of 2. When the option -Xalign-power2 is set, the
alignment value is 2 to the power of expression.

The default is -Xalign-power2.
There is no effect if the current location is already aligned as required.

In a section of type TEXT, if a “hole” is created, it will be filled with the nop
instruction (0x7000 on 4-byte boundaries, else 0xf000) unless a different value is
specified with -Xalign-fill-text.

Example:

.align 4

With -Xalign-value, aligns on a 4-byte boundary; with -Xalign-power2, aligns on
a 24 = 16-byte boundary.

NOTE: For the M32R, a label in a text section automatically aligns the program
counter on a 4-byte boundary before defining the label.

.alignn expression
Aligns the current location counter to the value given by expression (which must be
absolute).
There is no effect if the current location is already aligned as required.

In a section of type TEXT, if a “hole” is created, it will be filled with the nop
instruction (0x7000 on 4-byte boundaries, else 0xf000) unless a different value is
specified with -Xalign-fill-text.

Example:
.alignn 4

Will align on 4 byte boundary.

319

Wind River Compiler for M32R
User’s Guide, 5.4

.ascii "string"

The .ascii directive stores the internal representation of each character in the string
starting at the current location. See String Constants, p.305 for rules for writing the
"string".

The .ascii directive is actually a synonym of the .byte directive — its operands may
be a list of expressions including non-strings. See .byte for details (.byte expression
your P-321).

.asciz "string"
The .asciz directive is equivalent to the .ascii directive with a zero (null) byte
automatically appended as the final character of the string. In the C language,
strings are null terminated. See String Constants, p.305 for rules for writing the
"string".

.balign expression

See .alignn expression, p.319.

.blkb expression

See .skip size, p.336.

.bss
Switches output to the .bss section. Note that .bss contains uninitialized data only,
which means that the .skip, .space, and ds.b directives are the only useful
directives inside the .bss section.

.bsect

See .bss, p.320 above.

320

20 Assembler Directives
20.2 List of Directives

.byte expression ,...

Reserves one byte for each expression in the operand field and initializes the value
of the byte to be the low-order byte of the corresponding expression. Multiple
expressions are separated by commas.

Any expression may be a string containing one or more characters. Each character
in the string will be allocated one byte. See String Constants, p.305 for the rules for
writing a string.

Example:
.byte 17,65,0101, 0x41 ; sets 4 bytes
.byte 0 ; sets a single byte to 0
.byte 7,7, "Warning",7,7,0 ; sets 12 bytes

.comm symbol, size [,alignment]

Define symbol as the address of a common block with length given by expression
size bytes and make it global. Contrast with .lcomm, (./comm symbol, size
[alignment], p.329) which does not make the symbol externally visible.

The size and alignment expressions must be absolute.

All common blocks with the same name in different files will refer to the same
block. The linker will collect and allocate space for all common blocks, and, by
default, place this space at the end of the .bss section; see 23.4 COMMON Sections,
p-361 for details.

Optional alignment

The optional alignment expression specifies the alignment of the common block. It
must be absolute. If not specified, the default value equals the greatest power of 2
which is less than or equal to the minimum of size and the value specified by
-Xdefault-align (Set Default Value for Section Alignment (-Xdefault-align), p.290),
which defaults to 8.

See Interpret .align Directive (-Xalign-value, -Xalign-power2), p.289 for options for
giving the alignment by power of 2 or the value specified. The default is to treat the
alignment value as a power of 2.

Examples (assume -Xdefault-align=8):

. comm al,100 ; 100 bytes aligned on an 8-byte boundary.
.comm a2,7,2 ; 7 bytes aligned on a 4-byte boundary.

321

Wind River Compiler for M32R
User’s Guide, 5.4

dc.b expression

See .byte expression ,..., p.321 above.

dc.l expression

See .long expression ,..., p.330.

dc.w expression

See .word expression, ..., p.339.

ds.b size

See .skip size, p.336.

.data

Switches output to the .data (initialized data) section.

.double float-constant ,...

Reserves space and initializes double 64-bit IEEE floating point values.

Example:

double 1.0, -123.45e-56

.dsect

See .data, p.322 above.
.eject

Forces a page break if a listing is produced by the -L or -1 options. See 22. Example
Assembler Listing for an example of an assembly listing.

322

.else

20 Assembler Directives
20.2 List of Directives

The .else directive is used with the .ifx directives to reverse the state of the
conditional assembly, i.e., if statements were skipped prior to the .else directive,
statements following the .else directive will be processed, and vice versa. See .if
expression, p.326 for an example.

.elseif expression

.elsec

.end

.endc

.endif

The .elseif directive must follow a .ifx or another .elseif directive in a conditional
assembly block. If all prior conditions (at the same nesting level) have been false,
then the expression will be tested and if non-zero, the statements following it
assembled, else statements will be skipped until the next .elseif, .else, or .endif
directive. The expression must be absolute. See .if expression, p.326 for an example.

See .else, p.323 above.

This directive indicates the end of the source program. All characters after the end
directive are ignored.

See .endif, p.323 below.

This directive indicates the end of a condition block; each .endif directive must be
paired with a .ifx directive. See .if expression, p.326 for an example.

323

Wind River Compiler for M32R
User’s Guide, 5.4

.endm
This directive indicates the end of a macro body definition. Each .endm directive
must be paired with a .macro directive. See 21. Assembler Macros for a detailed
description.

.entry symbol ,...

See .global symbol ,..., p.325.

symbol[:] .equ expression

The statement must be labeled with a symbol and sets the symbol to be equal to
expression. See -Xlabel-colon-... in Set Label Definition Syntax (-Xlabel-colon...), p.291,
regarding the initial colon. Example:

nine: .equ 9

NOTE: Symbols defined with .equ may not be redefined. Use the second form of
the .set directive in .set symbol, expression, p.335, instead of .equ if redefinition is
required.

.error "string"

Generate an error message showing the given string. See String Constants, p.305 for
rules for writing the "string".

.even
Aligns the location counter on the default alignment value, specified by the
-Xdefault-align option (Set Default Value for Section Alignment (-Xdefault-align),
P-290).

.exitm

Exit the current macro invocation.

324

20 Assembler Directives
20.2 List of Directives

.extern symbol ,...
Declare that each symbol in the symbol list is defined in a separate module. The

linker supplies the value from the defining module during linking. Multiple
.extern directives for the same symbol are permitted. Example:

.extern add, sub,mul,div
.export symbol ,...

See .global symbol ,..., p.325 below.

file "file"

Specifies the name of the source file for inclusion in the symbol table of the object
file. The default is the name of the file. This directive is used by compilers to pass
the name of the original source file to the symbol table. Example:

.file "test.c"
fill count,[size[,value]]
Reserves a block of data that is count*size bytes big and initialized to count copies

of value. The size must be a value between 1 and 4. The default size is 1 and the
default value is 0.

float float-constant ,...
Reserves space and initializes single 32-bit IEEE floating point values. Example:
.float 3.14159265, .089ed
.global symbol ,...
Declares each symbol in the symbol list to be visible outside the current module.

This makes each symbol available to the linker for use in resolving .extern
references to the symbol. Example:

.global add, sub,mul,div

325

Wind River Compiler for M32R
User’s Guide, 5.4

.globl symbol ,...

See .global symbol ,..., p.325 above.

.ident "string"

Appends the character string to a special section called .comment in the object file.
See String Constants, p.305 for rules for writing the "string". Example:

.ident "version 1.1"

.if expression

The .if construct provides for conditional assembly. The expression must be
absolute. If the expression evaluates to non-zero, all subsequent statements until the
next .elseif, .else, or .endif directive at the same nesting level are assembled. If the
terminating statement was .elseif or .else, then all statements following it up to the
next .endif at the same level are skipped.

If the expression is zero, all statements up to the next .elseif, .else, or .endif at the
same nesting level are skipped. An .elseif directive is evaluated and statements
following it are skipped or not in the same manner as for the initial .if directive. If
an .else directive is encountered, the statements following it up to the matching
.endif are assembled.

.if constructs may be nested. Example:

Lif long_file_names
maxname: .equ 1024

.elseif medium_file_names
maxname: .equ 128

.else
maxname: .equ 14

.endif

The following directives are equivalent: .else and .elsec, and .endif and .endc.

.ifendian

.ifendian big
Assemble the following block of code if the mode is big-endian.

.ifendian little
Assemble the following block of code if the mode is little-endian.

326

20 Assembler Directives
20.2 List of Directives

Note: the “endian” mode is set automatically from the target options and may
not be directly changed by the user.

.ifeq expression

.ifeq is an alias for .if expression == 0. See “.if expression” above for more details.

.ifc "string1","string2"
.ifc is effectively an alias for .if "string1"="string2" (.if does not allow string

expressions). See .if expression, p.326 for more details. See String Constants, p.305
for rules for writing each "string".

For compatibility with other assemblers, either string may be enclosed in single
quotes rather than double quotes. Within such a single-quoted string, two single
quotes will be replaced by one single quote.

.ifdef symbol
Assemble the following code if the symbol is defined. See also .ifndef symbol, p.328

below. See .if expression, p.326 for more details on .if constructs.

.ifge expression

The .ifge is an alias for .if expression >= 0. See .if expression, p.326 for more details.

.ifgt expression

The .ifgt is an alias for .if expression > 0. See .if expression, p.326 for more details.

.ifle expression

The .ifle is an alias for .if expression <= 0. See .if expression, p.326 for more details.

327

Wind River Compiler for M32R
User’s Guide, 5.4

.iflt expression

The .iflt is an alias for .if expression < 0. See .if expression, p.326 for more details.

.ifnc "string1","string2"
.ifnc is effectively an alias for .if "string1"!="string2" (.if does not allow string

expressions). See .if expression, p.326 for more details. See String Constants, p.305
for rules for writing each "string".

For compatibility with other assemblers, either string may be enclosed in single
quotes rather than double quotes. Within such a single-quoted string, two single
quotes will be replaced by one single quote.

.ifndef symbol

Assemble the following code if the symbol is not defined. See .ifdef symbol, p.327
above. See also .if expression, p.326 for more details on .if constructs.

.ifne expression

.ifne is an alias for .if expression != 0. See .if expression, p.326 for more details.

.import symbol ,...

See .extern symbol ,..., p.325.

.incbin "file"[,offset[,size]]

Insert the content of a specified file into the assembly output. The assembler
searches for the file in the current directory and all paths added using the -I option.
If offset is specified, offset bytes are skipped at the beginning of the file. If size is
specified, only size bytes are inserted into the assembly output.

328

.include "file"

Icnt expression

20 Assembler Directives
20.2 List of Directives

Inserts the contents of the named file after the .include directive. May be nested to
any level. Example:

.include "globals.h"

Set or change the number of lines on each page of the listing file. The default value
is 60. This count may be set initially by option -Xplen (Set Lines Per Page (-Xplen=n),
p-294), and it includes any margin set by option -Xpage-skip (Set Page Break Margin
(-Xpage-skip=n), p.294). See 22. Example Assembler Listing for an example of an
assembly listing. Example:

.lent 72

.Ilcomm symbol, size [,alignment]

Jdist

llen expression

Define a symbol as the address of a local common block of length size expression
bytes in the .bss section.

Note that the symbol is not made visible outside the current module. Contrast with
.comm .

The size and alignment expressions must be absolute. See Optional alignment, p.321
for a description of the alignment parameter and its default value. Example:

.lcomm local_array, 200 # 200 bytes aligned on 8 bytes by default

Turns on listing of lines following the .list directive if the option -L or -1 is specified.
Listing can be turned off with the .nolist directive. See 22. Example Assembler
Listing for an example of an assembly listing.

Set the number of printable character positions per line of the listing file. The
default value is 132. A value of 0 means unlimited line length. This count may be

329

Wind River Compiler for M32R
User’s Guide, 5.4

set initially by option -Xllen (Set Line Length of Listing File (-Xllen=n), p.293). See
22. Example Assembler Listing for an example of an assembly listing. Example:

.1llen 132

.llong expression ,...

Reserves 8 bytes (64 bits) for each expression in the operand field and initializes the
value of the word to the corresponding expression. Example:

.llong Oxfedcba9876543210,0123456,-75 ; 24 bytes

.long expression ,...

Reserves one long word (32 bits) for each expression in the operand field and
initializes the value of the word to the corresponding expression. Example:

.long Oxfedcbad98,0123456,-75 ; 12 bytes
.macro name [parameter ,...]
Start definition of macro name. All lines following the .macro directive until the

corresponding .endm directive are part of the macro body. See 21. Assembler Macros
for a detailed description.

.mexit

Exit the current macro invocation. Synonymous with .exitm, p.324.
.name "file"

See .file "file”, p.325.
.nolist

Turns off listing of lines following the .nolist directive if the option -L or -1 is
specified. Listing can be turned on with the .list directive. See 22. Example
Assembler Listing for an example of an assembly listing.

330

20 Assembler Directives
20.2 List of Directives

.org expression
Sets the current location counter to the value of expression. The value must either
be an absolute value or be relocatable and greater than or equal to the current
location. Using the .org directive with an absolute value in ELF mode will produce
a section named .abs.xxxxxxxx, where xxxxxxxx is the hexadecimal address of the

section (with leading zeros as required to fill to eight digits). The linker will then
place this section at the specified address. Example:

.org 0x££0000

will produce a section named .abs.00£f0000 located at that address.

.p2align expression
Aligns the current location counter to 2 to the power of expression. The .p2align
directive is equivalent to .align when the -Xalign-power2 option is enabled.
.page

See .¢ject, p.322.

.pagelen expression

See .Icnt expression, p.329.

.plen expression

See .Icnt expression, p.329.
.previous

Assembly output is directed to the program section selected prior to the last
.section, .text, .data, etc. directive.

331

.psect

Wind River Compiler for M32R
User’s Guide, 5.4

See .text, p.337.

.psize page-length [,line-length]

.rdata

.rodata

Set the number of lines per page and number of character positions per line of the
listing file. This directive is exactly equivalent to setting page-length with the .Icnt
expression, p.329 and setting line-length with the .llen expression, p.329; see them for
additional details. See 22. Example Assembler Listing for an example of an assembly
listing.

Example:

.psize 72,132

Switches output to the .rodata (read-only data) section.

Switches output to the .rodata (read-only data) section.

.sbss [symbol, size [,alignment]]

With no arguments, switch output to the .sbss section (short uninitialized data
space).

With arguments, define a symbol as the address of a block of length size expression
bytes in the .sbss section and make it global.

The size and alignment expressions must be absolute. See Optional alignment, p.321
for a description of the alignment parameter and its default value. Examples:

.sbss ; switch to .sbss section
.sbss local_array,200 ; reserve space in .sbss section

332

20 Assembler Directives
20.2 List of Directives

.sbttl "string"

See .subtitle "string”, p.337.
.sdata

Switches output to the .sdata (short data space) section.
.sdata2

Switches output to the .sdata2 (constant short data space) section.

.section name, [alignment], [type]

The assembly output is directed into the program section with the given name. The
section name may be quoted with the (") character or not quoted. The section is
created if it does not exist, with the attributes specified by type. type is one or more
of the following characters, written as either as a quoted "string" or without quotes.
If type is not specified, the default is d (data).

Table 20-1 Section Type

Type Linker Command File

Character Section Type? Description of Section Contents

b BSS zero-initialized data

c TEXT executable code

d DATA data

m TEXT DATA mixed code and data

n COMMENT not allocatable — the section is not to occupy
space in target memory; for example,
debugging information sections such as
.debug in ELF

o not applicableb COMDAT section (see 23.5 COMDAT Sections,
p-362)

333

Table 20-1

.section n

Wind River Compiler for M32R
User’s Guide, 5.4

Section Type (contd)

Type Linker Command File

Character Section Type? Description of Section Contents
T CONST readable data

w DATA writable data

X TEXT executable code

a. See Type Specification: ([=]BSS), ([=ICOMMENT), ([=]CONST), ([=]DATA), ([=ITEXT),
([=IBTEXT); OVERLAY, NOLOAD, p.396.

b. ‘0’, for COMDAT, is an additional attribute of a section and is usually used with
another type specification character. If “0” is used with another section type character,
the linker command file section type will be that of the other section type character; if
used by itself, the default will be COMMENT.

The alignment expression must evaluate to an integer and specifies the minimum
alignment that must be used for the section.

The compiler uses the b type with the #pragma section directive to specify an
uninitialized section. Example: direct assembly output to a section named “.rom”,
with four-byte alignment, containing read-only data and executable code:

.section ".rom",4,rx

The assembly output is directed into the program section named “_Sn”. Example:
direct assembly output to a section named “_S1":

.section 1

.sectionlink section-name

This directive will cause the current section to be linked as if it had the name
section-name. This directive is available only for ELF object output.

334

20 Assembler Directives
20.2 List of Directives

.set option

The following .set option directives are available:

reorder

noreorder
When processed by the reorder program before assembly, enable/disable
reorder optimizations (thus, the .set reorder and .set noreorder directives are
actually “reorder” directives rather than assembler directives). Code
generated for modules compiled with optimization includes a .set reorder
directive. Use .set noreorder in asm strings and asm macros in such code to
disable reordering changes to these hand-coded assembly inserts. Follow with
.set reorder to re-enable reordering optimization. See 7.4 Reordering in asm
Code, p.162.

.set symbol, expression

Defines symbol to be equal to the value of expression. This is an alternative to the
.equ directive. Example:

.set nine, 9

NOTE: Using this form of .set, the symbol may not be redefined later. Use the next
form of .set with the symbol first on the line if redefinition is required

symbol[:] .set expression

Defines symbol to be equal to the value of expression. This form of the .set is different
from the .equ directive or the form of the .set directive immediately above in that
it is possible to redefine the value of symbol later in the same module. See
-Xlabel-colon-... in Set Label Definition Syntax (-Xlabel-colon...), p.291, regarding the
initial colon.

expression may not refer to an external or undefined symbol. Example:

number: .set 9

number: .set number+1

335

Wind River Compiler for M32R
User’s Guide, 5.4

.short expression ,...

Reserves one 16 bit word for each expression in the operand field and initializes
the value of the word to the corresponding expression. Example:

.short 0xba98, 012345, -75, 17 ; reserves 8 bytes.
.size symbol, expression

Sets the size information for symbol to expression. Note that only the ELF object file
format uses the size information.

.skip size

The .skip directive reserves a block of data initialized to zero. size is an expression
giving the length of the block in bytes. Example:

name: .skip 8
is the same as:
name: .byte 0,0,0,0,0,0,0,0

.space expression

See .skip size, p.336 above.

.string "string"

See .ascii "string”, p.320.

.strz "string"

See .asciz "string”, p.320.

336

.subtitle "string"

text

itle "string"

Atl "string"

20 Assembler Directives
20.2 List of Directives

Sets the subtitle to the character string. This string replaces the %nS format
specification in the format the string defined by the -Xheader-format option (see
290). The subtitle may be set any number of times. The default subtitle is blank. See

String Constants, p.305 for rules for writing the "string".

.subtitle "string search function"

Switches output to the .text (instruction space) section.

Sets the title to character string. The title may be set any number of times. The
default title is blank. See String Constants, p.305 for rules for writing the "string".

Example:

.title "program.s"

See .title "string”, p.337 above.

.type symbol, type

Mark symbol as type. The type can be one of the following:

#object
@object
object
symbol names an object

#function
@function
function
symbol names a function

Note that only the ELF object file format uses type information.

337

.uhalf

.ulong

.ushort

.uword

warning "string"

.weak symbol ,...

Wind River Compiler for M32R
User’s Guide, 5.4

This is a synonym for .short (.short expression ,..., p.336) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

This is a synonym for .long (.long expression ,..., p.330) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

This is a synonym for .short (.short expression ,..., p.336) except that there are no
alignment restrictions and an unaligned relocation type will be generated if
required by the target.

See .ulong, p.338 above.

Generate a warning message showing the given string. See String Constants, p.305
for rules for writing the "string".

Declares each symbol as a weak external symbol that is visible outside the current
file. Global references are resolved by the linker. Note that only the ELF object file
format supports weak external symbols. Example:

.weak add, sub,mul,div

For a further description of weak symbols see weak Pragma, p.136.

338

20 Assembler Directives
20.2 List of Directives

.width expression

See .llen expression, p.329.

.word expression, ...

.xdef symbol ,...

.xref symbol ,...

.xopt

Reserves one word (32 bits) for each expression in the operand field and initializes
the value of the word to the corresponding expression. Example:

.word Oxfedcba98,0123456,-75 ; reserves 12 bytes.

See .global symbol ,..., p.325.

See .extern symbol ,..., p.325.

Pass -X options to the assembler using the format:
.xopt option name [=value]

Example:
.xopt align-value

has the same effect as using -Xalign-value on the command line. In case of a

conflict, .xopt overrides the command-line option. Also, some -X options are only
tested before the assembly starts; in that case, the .xopt directive will have no effect.
This option is primarily for internal use; the command-line options are preferred.

339

Wind River Compiler for M32R
User’s Guide, 5.4

340

21

Assembler Macros

21.1 Introduction 341

21.2 Macro Definition 342

21.3 Invoking a Macro 344

21.4 Macros to “Define” Structures 345

21.5 push and pop Macro Instructions 346

21.1 Introduction

Assembler macros enable the programmer to encapsulate a sequence of assembly
code in a macro definition, and then inline that code with a simple parameterized
macro invocation.

Example:
.macro movindirect regl,reg2 // macro definition
14 rl,@reg2
st rl,@regl
.endm
movindirect r2,r3 // macro invocation #1
movindirect r4,r5 // macro invocation #2

341

Wind River Compiler for M32R
User’s Guide, 5.4

This will produce the following code:

1d rl,@r3 // macro expansion #1
st rl,Q@Qr2
1d rl,@r5 // macro expansion #2
st rl,Qr4d

21.2 Macro Definition

A macro definition has the form:

.macro name [parameter,...]
macro body

.endm

The optional parameters can be referenced in the macro body in two different
ways. The following two examples show a macro which calculates

parl = par2 + par3
(where the parameters are assumed to be in registers).
1. By using the parameter name:

.macro add3 parl,par2,par3 // definition

mov parl,par2

add parl,par3

.endm

add3 rd,r5,r6 // invocation
produces

mov rd,r5

add rd,r6

2. By using \n syntax where \1, \2, ... \9, \A, ... \Z are the first, second, etc.,
actual parameters passed to the macro. When the \n syntax is used, formal
parameters are optional in the macro definition. If present, both the named and
numbered form may be freely mixed in the same macro body.

342

21 Assembler Macros
21.2 Macro Definition

.macro add3 // definition
mov \1,\2

add \1,\3

.endm

add3 rd,r5,r6 // invocation

produces
mov rd,r5
add rd,r6

The special parameter \0 denotes the actual parameter attached to the macro name

"o

with a “.” character in an invocation. Usually this is an instruction size.

.macro move dregp,sregp // definition
1d.\0 rl,@(sregp ,0)

st.\0 rl,@(dregp,0)

.endm

move.h rl0,rll // invocation
produces

1d.h rl,@(rll,0)
st.h rl,e(rl0,0)

Separating Parameter Names From Text

In the macro body, the characters “&é&” can optionally precede or follow a
parameter name to concatenate it with other text. This is useful when a parameter
is to be part of an identifier:

.macro xmov parl,hcnst // definition

1di parl, Ox&&hcnst

.endm

Xmov rd, f // invocation
produces

movi r4,0xf

Generating Unique Labels

The special parameter \@ is replaced with a unique string to make it possible to
create labels that are different for each macro invocation.

The following macro defines a string of up to four bytes in the .data section at a
uniquely generated label (however the length of the string is not checked), and

343

Wind River Compiler for M32R
User’s Guide, 5.4

then generates code to load the contents at that label (the string itself) into a

register.
.macro lstr reg,string // definition
data
.Lm\@:
.byte string, 0
.previous
1d24 reg, .Lm\@
.endm
lstr r2, "abc" // invocation
produces
.data
.Lm.0001:
.byte "abc", 0
.previous

1d24 r2,.Lm.0001

NARG Symbol

The special symbol NARG represents the actual number of non-blank parameters
passed to the macro (not including any \0 parameter):

.macro init value // definition

if NARG ==

.byte 0

.else

.byte value

.endc

.endm

init ; invocation #1

init 10 ; invocation #2
produces

.byte 0 ; expansion #1

.byte 10 ; expansion #2

21.3 Invoking a Macro

A macro is invoked by using the macro name anywhere an instruction can be used.
The macro body will be inserted at the place of invocation, and the formal

344

21 Assembler Macros
21.4 Macros to “Define” Structures

parameters in the macro definition will be replaced with the actual parameters, or
operands, given after the macro name.

Actual parameters are separated by commas. To pass an actual parameter that
includes special characters, such as blanks, commas and comment symbols, angle
brackets ”< >” may be used. Everything in between the brackets is regarded as one
parameter.

If the option -Xmacro-arg-space-on is given, blanks may be included in an actual
parameter without using brackets. Example:

.macro init command,list
.data

command list

.previous

.endm

init byte,<0,1,2,3>

produces
.data
.byte 0,1,2,3
.previous

21.4 Macros to “Define” Structures

Although struct is not part of the assembly language, the macros shown below

allow you to assign offsets to symbols so they can refer to structure members.

These macros do not allocate memory; they merely assign values to symbols. The

value of a structure “member” is its offset from the beginning of the structure. -
21

The macros use CURRENT_OFFSET_VALUE to set the offsets of structure members:
the STRUCT macro sets CURRENT_OFFSET_VALUE to 0; the MEMBER macro
defines a symbol named for the member and having as its value
CURRENT_OFFSET_VALUE, then increments CURRENT_OFFSET_VALUE by the
size of the member.

STRUCT .Macro
CURRENT_OFFSET_VALUE .set 0
.endm

345

Wind River Compiler for M32R
User’s Guide, 5.4

MEMBER .macro name, size

name = CURRENT_ OFFSET VALUE

CURRENT_OFFSET_ VALUE .set CURRENT_OFFSET VALUE + size
.endm

CURRENT_OFFSET_VALUE must be incremented with this form of the .set
directive because it allows the symbol so set to be set again later in the module. See
symbol[:] .set expression, p.335 for details.

Also, note that:
= The MEMBER macro cannot be labeled.

= These macros cannot be used to define nested structures because there is only
one CURRENT_OFFSET_VALUE used for all instances.

= A final MEMBER can be used to define the size of the structure.

Example

The macros define the symbols first_name, middle_initial, and last_name with
values 0, 20, and 21 respectively, and define name_size as the total size of the
“structure” with a value of 46.

STRUCT

MEMBER first_name, 20
MEMBER middle_initial, 1
MEMBER last_name, 25
MEMBER name_size, 0

One might use this, for example, as follows:

.data
recl:
.skip 20 ; reserve space for a first name
.skip 1 ; ... middle initial
.skip 25 ; ... and last name

Then an expression such as recl+last_name in an instruction would access the
last_name “member” of the recl “structure”.

21.5 push and pop Macro Instructions

The assembler supports the push and pop macros. They function as follows:

346

push r0
pop r0

7

7

21 Assembler Macros
21.5 push and pop Macro Instructions

is equivalent to st r0, @-rl5
is equivalent to 1d r0, @rl5+

347

Wind River Compiler for M32R
User’s Guide, 5.4

348

22

Example Assembler Listing

If the -1 or -L option is specified, a listing is produced. The -1 option produces a
listing file with the default extension .1st (or the extension specified with
-Xlist-file-extension="string"). The -L option sends the listing to standard output.

The listing contains the following:

Location
Hexadecimal value giving the relative address of the generated code within
the current section.

PI
“P1” stands for “Program Location counter number”. Maps one-to-one to the
section number in the object file (but not necessarily in the same order). When
the same section is used at several discontinuous places in the source, the same
section number will be used for all instances.

Code
Generated code in hexadecimal.

Line
Source line number.

Source Statement
Source code lines.

To change the format of the assembly line, see Set Format of Assembly Line in Listing
(-Xline-format="string"), p.292.

If the -H option is used, a header containing the source filename and the
cumulative number of errors is displayed at the top of each page. To change the
format of the header, see Set Header Format (-Xheader-format="string"), p.291.

349

Figure 22-1

Location P1

00000000
00000004
00000008
0000000c

00000010

01
01
01
01

01

Wind River Compiler for M32R
User’s Guide, 5.4

Errors are not included in the listing but are always written to stderr.

The following shows a listing produced by assembling an extract from file swap.s
with the command:

das -tM32REN -1 -H swap.s.

swap.s is used with the bubble sort example in the Getting Started manual.

Assembly Listing File Swap.Ist

File: swap.s Errors 0

Code Line Source Statement

1 .file "swap.s"

2 .section .text2,,c

3 .align 2

4 .export swap

5

6 swap:
24c0 7 14 rd,@r0
a5c0 0004 8 1d r5,@(4,r0)
2540 9 st r5,@r0
a440 0004 10 st r4,e(4,r0)

11
1fce 12 Jjmp rld

350

PART IV

Wind River Linker

23 The Wind River Linkercccooiiiiiiiiiissnnnmmennnnnns 353
24 The dild Commandcccccmriiriiiimnrrinieeenene 365
25 Linker Command Languagecccccurreiniianns 385

351

Wind River Compiler for M32R
User’s Guide, 5.4

352

23

The Wind River Linker

23.1 The Linking Process 354

23.2 Symbols Created By the Linker 358
23.3 .abs Sections 360

23.4 COMMON Sections 361

23.5 COMDAT Sections 362

23