
I •

I

I

ATRAN PROGRAMMING · SYSTEM
Users Manual

PBC 1020

pb 250

LP-l>J Packard Bell Computer

ATRAN PROGRAMMING SYSTEM
;

Users Manual

PBC 1020

i:pbJ Packard Bell Ce>mpu~er
A DIVISION Of PICUIO HU ILICTIDMIU ·

1905 ARMACOST AVENUE • LOS ANGELES 25, CALIFORNIA

June 30, 1962

NOTICE

This document involves confidential PROPRIETARY
information of Packard Bell Computer Corporation
and all design, manufacturing, reproductions, use,
and sale rights regarding the same are expressly
reserved. It is submitted under a confidential rela
tionship for a specified purpose, and the recipient,
by accepting this document assumes custody and
control and agrees that (a) this document will not be
copied or reproduced in whole or in part, nor its
contents revealed in any manner or to any person
except to meet the purpose for which it was delivered,
and (b) any special features peculiar to this design
will not be incorporated in other projects.

When this document is not further required for the
specific purposes for which it was submitted, the
recipient agrees to return it.

TABLE OF CONTENTS

Page Number

I. Introduction 1

II. The ATRAN Language and its Use 2

III. Detailed Description of the Language 6

IV. Restrictions 18

v. Summary of A TRAN Statements 20

VI. Sample Problems 23

VII. Operating Instructions for ATRAN 29

Appendix 1 A Brief Description of the ATRAN Compiler 36

Appendix 2 Modifications to CINCH 38

Appendix 3 Instructions for Loading ATRAN CINCH 40

Appendix 4 Execution of ATRAN Programs with CINCH 42

References

-1-

I. INTRODUCTION

ATRAN (Algebraic Translator) is a programming system which allows

PB-2 50 users to write programs in a language that resembles the familiar

algebraic notation associated with engineering calculations. It accepts a
;

source program written in the ATRAN language and produces an object

program in the CINCH language. When the ATRAN program is finished,

the object program compiled by it is left in memory, ready to be executed

by the CINCH interpreter.

Before presenting the reader with a mass of detailed rules, it is the

plan of this manual to present in a general way, by means of examples,

what the ATRAN language is and its relationship to familiar algebraic

expressions. We will then give detailed rules governing the use of the

various elements of the language. The manual will be concluded with a

summary of the ATRAN language, some illustrations of ATRAN programs,

and operating instructions for running the ATRAN system.

-2-

II. THE ATRAN LANGUAGE AND ITS USE·

Example 1

The algebraic equation,
3 \ "'2..

Lj:: ~)(+ c X + C)(- I(.

is a string of constants and two kinds of symbols, which denote

(1) operators, and (2) data (i. e. parameters, variables). As an equation,

it means, "y is equivalent to the expression on the right of = ''. As a pro

cedural statement, it means, "Compute y by evaluating the expression on

the right for given values of x, a, b, and c 11 • It is this meaning with which

we are concerned here.

The following ATRAN p:r:ocedural statements will instruct the PB-250 to

evaluate the equation using the values 5. 25, 3. -3, and. 5 for A, B, C, and

X, respectively, and print out the result. Notice that all statements must

end with$.

A = 5. 25$ (1)

B = 3$ (2)

c = - 3. $ (3)

x = 0.5$ (4)

Y = A*Xft.3+B*XIt2+C*X-10-1/X+3. 5*,\"X$ (5)
•

PRA:Y = $ (6)

PRV:(5. 3C)Y$ (7)

The first five statements are Arithmetic Statements. The first four of

these are the simplest possible type; their purpose is to set the variables

on the left of = to the values ("constants") on the right. The fift.h state

ment evaluates the expression on the right of = and replaces y with the

result, using the previously set values of A, B, C, and X. This state

ment uses all seven ATRAN operators. The order of operations is left to

right within this hierarchy:

-3-

1. Exponentiation and square root, ..fl , N

2. Multiply and divide, ;:<, I

3. Plus and minus, +, -

Parentheses, (), and brackets, C. J, may be used to help control the

sequence of calculation; this will be discussed later.

The last two statements are Output Statements. Line 6 causes "Y ="
I

to be typed. "Y =" is called a "Literal". Line 7 ca us es the value of Y to

be typed. The information in (5. 3C) is for format control; five digits will

be printed to the left of the decimal point and three will be printed to the

right. "C" causes a carriage return after typing.

Example 2 - Introducing Decision Statements

'l. b"· I -•o '1 : Q)(. .' + ' /' - x ' .
Evaluate this equation for progressive values of x, from x = . 5 to

x = 10. 0, in increments of x = • 5. Type out x and y. Use a = 5. 25,

b = 3.

ATRAN Statements

A = 5. 2 5$ B = 3$

x = • 5$

PNT:1$

Y = A*X~<X+B*X-1/X-10$

PRA:X = $ PRV:(2. 2T)$

PRV:Y = $ PRV:(5. 3C)$

X = X+. 5$

FL= X-10. 5$

TST:FL$

MJP:1$

HLT:99$

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

-4-

Comment

Line 9 sets up the quantity FL for testing. Line 10 is a con

ditional jump statement; .if FL is negative, a jump to jump point number 1

will be executed; otherwise the next statement in sequence will be executed.

Line 4, PNT: 1, establishes the immediately following statement as

Jump-Point #1. ("PNT:" is not a procedural statement; its function is

labeling or identification.) Thus, a decision actually involves three

ATRAN statements: (1) TST:--, which is immediately followed by (2) a

conditional jump or skip statement, and (3) a PNT:-- statement, which

identifies the destination of the conditional jump. There are six condi

tional jump and skip commands in ATRAN.

Example 3 - Introducing Use of Subscripts and Data Input

Evaluate y for the following group of x values, successively, and type

X and yo X : 1, 3 I 7 I 0 I - 1, - o 5 I + o 5 o

ATRAN Statements

DIM:X(7)$

LOD:X$

I= 1$

PNT:22$

Y = X(I)*X(I)+5*X(I)+3. 4$

PRA:X = $ PRV:(2. 2T)X(I)$

PRA:Y = $ PRV:(2. 2C)Y$

I = I+1$

TST:I$

XGR:7$

JMP:22$

HLT:99$

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

-5-

General Comments

Up to now, each symbol denoting a variable has referred to a

single quantity. In this example~ however, we have one variable, X,

·which refers to a group of seven different numbers. This group is usually

called a list or a vector; a group of vectors may be called an array or a

matrix. In order to ref er to a particular value within the list or array, a

subscript is added to the name of the' variable. In the ATRAN language, a
I

subscript is denoted by writing it in parentheses, (), e.g. Xi is written

X(I). Previous examples have had their data built into the program in the

form of constants; this one has been designed to read its data from paper

tape at execution time.

Specific Comments

Line 1 is not a procedural statement; it is a dimension statement.

Its purpose is to cause seven locations to be reserved for the list X.

Dimension statements must be at the head of the program.

Line 2 is an input statement; it will cause the list X to be filled

with seven numbers from a data tape.

Line 3: The subscript I is set to 1. The first element of any

variable which refers to subscript I will now be ref er enc ed.

Line 8: The subscript I is increased by 1.

Lines 9 and 10: I is tested. If I is greater than 7, the next

sequential statement is skipped; otherwise, the one following it will be

executed.

-6-

III. DETAILED DESCRIPTION OF THE LANGUAGE

A. Constants

Constants used in ATRAN statements consist of numbers of up to five

digits to the left and to the right of the deci~al point. Negative numbers

must be written with a minus sign to the left of the number. Positive num

bers may be written either with a plus sign or with no sign. If the number

is an integer, the decimal point may be omitted. An integer written in

this manner may have no more than five digits.

Examples:

12345. 12345 0 467.

-54321. 54321 o. 467.

+24.62 -. 5 456. 0

-.00005 o. 5

The largest constant allowed is 99999. 99999; the smallest is

-99999. 99999; the smallest fraction is . 00001 (in magnitude).

Examples of incorrect constants:

B. Variables

12. 123456

123456

72. 4E-7

There are two kinds of variables in the ATRAN language: undimen

sioned variables. which refer to single quantities, and dimensioned

variables. which refer to lists or arrays of quantities. In addition, there

is a third type of variable, called a subscript variable, or simply a sub

script, which behaves like an undimensioned variable but also has another

use.

-7-

1. Undimensioned Variables

Undimensioned variables may be expressed by either one or two

alphabetic characters, the first (or only) character being any letter except

I, J, K, L, M, or N. Examples of undimensioned variables are:

·2. Subscript Variables

c
HI

PK

x
AA

Subscripts are represented by either one or two alphabetic

characters, the first (or only) character being I, J, K, L, M, or N.

Examples of subscript variables are:

I

IA

KZ

K

Subscripts may be used~ the same context as undimensioned

variables to refer to a single quantity, such as in:

I= I+l

'KA= 3*J

However, once the value of a subscript variable has been defined by a pre

vious ATRAN statement, it may be used truly as a subscript, as in:

A(I) = B(I)+C(I)

A(I, J) = B(I, K)*C(K, J)

When used in such a manner, its value must be an integer from 1 to 99.

If two subscripts are necessary to refer to a quantity, the indi

vidual subscripts must be separated by a comma, and the result is called a

-8-

subscript combination. Examples of subscript combinations are:

3. Dimensioned Variables

I, J

KZ,LL

M,NF

NE,K

i

ATRAN accepts only two types of dimensioned variables: one-

dimensioned subscripted variables. (called lists or vectors). and two

dimensioned subscripted variables (called arrays or matrices).

An item in a list is ref erred to by the name of the list and a sub

script. The name of a list is expressed by either one or two alphabetic

characters. the first (or -only) character of which is any letter except I, J.

K, L, M, or N.. The subscript follows the name of the list and is

enclosed in parentheses. Examples are:

A(I)

CK(M)

QL(K)

An element of an array is. ref erred to by the name of the array arid

a subscript combination. The name of an array is expressed by either one . .

or two alphabetic characters, the first (or only) character of which is any

letter except I, J, K, L, M, or N. The subscript combination follows the

. name of the array and is enclosed in parentheses. Examples are:

D(K,J)

FI(KA, MN)

HL(LN, N)

SN(M,JI)

Examples of incorrect variable exp:ressions are:

B(A)

I(J)

Z(2, 3)

-9-

C. Operators

There are seven operators in ATRAN:

+

*
I
.r
.IL

=

Add

Subtract

Multiply

Divide

Square root

Exponentiation

Is replaced by

ATRAN operators are placed between constants or variables to indi

cate arithmetic operation. For instance, in the ATRAN statement

I = !+2, the "+" is the arithmetic operator placed between the variable "I"

and the constant 11 211 • . It causes 2 to be added to the value of the variable

designated by I, and causes this sum to replace the previous value of I.

Remember to insert the multiply operator between two operands to be

multiplied.

D. Non-Procedural Statements

1.. Dimension Statement - DIM:(xx)$ or DIM:(~, yy)$

The purpose of the dimension statement is to define the size of a

list or an array, and to instruct the compiler to reserve the proper num

ber of memory locations for such variables. All DIM statements must be

written at the beginning of the ATRAN program, and there must be one

DIM statement for each dimensioned variable used in the program. No

list may be dimensioned to contain more than 99 items, nor may any array

contain more than 99 rows or 99 columns.

Examples:

DIM:A(7)$

DIM:ZI(14)$

DIM:C(4, 3)$

DIM:XI(9, 3).$

7 items in list A

14 items in list ZI

An array with 4 rows and 3 columns

An array with 9 rows and 3 columns

-10-

2. Control Point Statement - PNT :xx$

This statement causes the statement immediately following it to

be given a label enabling that statement to be referred to by a jump or

conditional jump statement. Every statement to which a transfer of

control is to be made must be labeled by a PNT statement. Control

points may be numbered 1 through 99, but not necessarily in any order

or sequence. A PNT statement may not preceed the first executable

statement in a program, since the compUer unconditionally labels ·the

first executable statement as PNT zero.

Example: PNT:46$

3. End Statement - END:~$.

The last statement of every ATRAN program must be an END

statement. The number xx indicates that execution of the object program

will begin with the ATRAN statement at PNT:xx. If, however, END:O$.

or END:OO$. is written, execution of .the object program begins with the

first ATRAN procedural statement, regardless of whether a PNT state.

ment precedes it or not. The $ terminating an END statement must always

be followed by a period.

Examples:

E. Procedural Statements

1. Arithmetic

END:5$.
END:O$.

ATRAN expressions are any sequence of constants or variables

(with or without subscripts) separated by operators, parentheses, and

brackets to form a mathematical expression. Parentheses and brackets

have the same meaning in ATRAN as in ordinary algebra. ATRAN ac

cepts one level of brackets and one level of parentheses within each

bracket. Further nesting of parentheses within a bracket is not permitted.

Parentheses may not enclose brackets. Brackets may not enclose brackets;

parentheses may not enclose parentheses, with the exception of those

parentheses which are used to enclose subscripts. Such parentheses are

not in the scope of these rules because they are not used to affect the

-11-

arrangement in which an expression is evaluated.

The only item permitted to the left of the equals sign is a variable,

such as "I = ", "X = ", or "A(J) = " Such things as "A.n .. z = "

or "Y+5 = ", or "16 = " are never permitted.

The expression to the right of the equals sign is evaluated from

left to right, while observing the rul~s of algebra concerning the inter

pretation of parentheses and brackets and the hierarchy of operators.

Square root and exponentiation will be performed first; then multiplication

and division; and, finally, addition and subtraction. Following are some

examples to illustrate this hierarchy:

a. The expression A+B~<C is evaluated as A+(B*C), since

multiplication takes precedence over addition.

b. The expression A>:<Bf"'LC is evaluated as A~.c(BJ".. .. C), since

exponentiation takes precedence over multiplication.

c. The expression A/B>:<c is evaluated as (A/B)~.cc, since

multiplication and division are ·Of equal hierarchy and the left to right rule

takes precedence.

Exponentiation (.fl) is a relational operator and must be preceded

and followed by a variable, constant, or expression in parentheses or

brackets; if the item to be exponentiated or the power is a complex

·expression (e. g. A~'B or B+C ID), the expression must be enclosed in

parentheses or brackets. For example, one would write X~l""l(A*B) or

XD.(B+C/D). If XftA*B would appear, it would be interpreted as

(X.0..A)~.cB.

Square root (~-) is a unitary operator and must not be preceded by

a variable, constant, or expression in parentheses or brackets; Ar Bis

not permitted; it must be written A>:<ir B. The operand of ,r-, if complex,

must be enclosed in parentheses or brackets; thus, N- (A+B). If one

wrote rr A+B it would be interpreted as (~A)+B.

-12-

Operations on subscripts should be written like any other arith

metic operations. The only caution to be made is to be sure that the

values of all subscripts will always be integers from 1 to 99. Examples of

arithmetic statements are:

I= 2

A = B(I)+37. 6

X = (c+(D(J)+2. 5)] I Z(I, JJ)

2. Functions

A function expression may contain one and only one function,

selected from the list of avail.able ATRAN functions. The function state

ment is of the form,

A= FUN:B

where A represents any dimensioned or undimensioned variable, but not a

subscript variable, and B represents any variable or constant. The nine

functions in ATRAN are:

SIN

cos
ASN

ACS

ATN

EXP

LOG

LGN

ABS

Sine

Cosine

Arc sine

Arc cosine

Arc tangent

Exponential

Logarithm, base 10

Logarithm, base e

Absolute value

Examples of function statements:

A= SIN:B$

A = SIN:B(I)$

A(J) = COS:X(K)$

A(l, J) = ATN: 1. 587

h1correct examples:

-13-

A= SIN:2*X$

A = SIN:(A+B)$

I= EXP:.J$

3. Decision and Control Statements

a. Unconditional Jump St9-tement - JMP :nn$

The JMP statement causes an unconditional transfer to be

taken to control point nn, where nn is defined by a PNT statement.

b. Test Statement - TST:xx$

Two procedural statements are required to make a decision.

The first is the TST statement. This statement obtains the specified

variable xx and saves it for testing by the one or more decision statements

that immediately follow. These statements may be any of the three con

ditional jump or three conditional skip statements. The conditional jump

or skip statements must always immediately follow either a TST state

ment or another jump or skip statement. Some examples of TST state

ments are:

TST:A$

TST:A(I)$

TST:A(I, J)$

TST:I$

c. Conditional Jump Statements

The conditional jump statements compare the tested variable

to zero and alter the sequence of control if a condition is met. They are:

PJP:nn$ Jump to control point nn if the variable specified by the

immediately preceding TST statement is positive. Otherwise,

execute the next statement in sequence (nn must be defined by

a PNT statement).

MJP:~$

examples:

-14-

Jump to control point nn if the variable specified by the

immediately preceding TST statement is zero. Ot~erwise,

execute the next statement in sequence (nn must be defined by

a PNT statement).

Jump to control point nn if the variable specified by the

immediately preceding TST statement is negative. Other

wise, execute the next statement in sequence (nn must be

defined by a PNT statement).

Conditional jump statements are illustrated by the following

TST:V$

ZJP:20$

PJP:30$

MJP:10$

d. Conditional Skip Statements

The conditional skip statements compare the tested variable

against an integer from 1 to 99, and alter the sequence of control if a con-·

dition is met. They are:

XGR:~$

XEQ:xx$

Skip the next statement if the variable specified by the

immediately preceding TST statement is greater than the

integer xx; otherwise execute the next statement in sequence.

Skip the next· statement if the variable specified by the

immediately preceding TST statement is equal to the integer

xx; otherwise execute the next statement in sequence.

Skip the next statement in sequence if the variable specified by

the immediately preceding TST statement is less than the

integer xx; otherwise execute the next statement in sequence.

-15-

Conditional skip statements are illustrated by the following

examples:

TST:AA(l, JB)$

XGH:50$

JMP: 1$

4. Input Statements

a. Paper Tape Input

LOD:D$

LOD:JZ$

TST:MA$

XEQ: 10$

JMP:2$

.

The above ATHAN statements will load the variables D and

J Z into the computer from paper tape. If a variable is defined by a dimen

sion statement as a list or array, then the entire list or array will be read

in, with the size being determined by the dimension statement. If the

variable is not dimensioned, then a single variable will be read in.

LOD:A(I)$

LOD: B(K, M)$

The above statements will allow one element of the list or

array.to be read into the computer from paper tape. In these examples,

the i-th word of A, or the k, m-th word of array B will be loaded with data

from the paper tape. A dimension statement for A and B must be at the

head of the program.

b. Flexowriter Keyboard Input

PUT:D$

PUT:JZ$

The above ATHAN statements will load the variables D or

J Z into the computer as they are typed on the keyboard. If a variable is

defined by a dimension statement as a list or array, then the entire list

or array will be read in with the size being determined by the dimension

- 16-

srnternent. If the variable is not dimensioned, then a single variable

1Nill be read in.

PUT:A(I)$

PUT:B(K, L)$

The above statements will load one element of the list or

array into the computer as they are typed on the keyboard. A dimension

statement for A or B must, of course, be at the head of the program.

Provisions are available in A TRAN to print or punch data in

either fixed point or floating point (CINCH format) form. Provisions are

also available for printing or punching of literal information.

Examples:

PRV:(n. mf)K.$

PRV: (n. mf)A(I)$

PRV:(n. mf)B(I, J)$

The first example will cause the single variable, K, to be

printed in the format indicated in the parentheses.

will cause the i-th element of list A to be printed.

The second example

The third example

will cause the i, j-th element of the array B to be printed. The "n''

represents the number of decimal digits to be printed to the left of the

decimal point; the 11 m" represents the number of digits to be printed to the

right of the decimal point. The "f" represents either a "C", for carriage

return, of "T11 , for tab. The tab or carriage return will be executed after

printing the number.

b. Floating Point Data Outpu~

Examples:

PRF:(af)X$

PRF: (af)A(I)$

PRF:(af)B(I, J)$

-17-

The first example will cause the single variable, K, to be

printed in the floatihg point format indicated in the parentheses. The

second example will cause the i-th element of list A to be printed. The

third example will cause the i, j-th element of the array B to be printed.

The "a" may be any digit 0 through 9, If a = 0, the mantissa of the floating

point variable will be printed to ten places and rounded; otherwise, the

mantissa will be truncated and printed to "a" places.

c. Printing Literals

Example:

PRA:PB 250$

This statement will cause the literal message "PB 250" to be

printed on the Flexowriter. When using literal statements, any

characters except semi-colon, colon, and dollar sign may be used within

the text of the literal.

6. Punched Output

A full complement of "Punch Output Statements" is provided.

These statements operate identically to the Print Output Statements

descr.ibed above. by changing a pr~nt statement, PR_: to a punch state

ment. PN . • That is.

7. HALT Statement

PRV becomes PNV

PRF becomes PNF

PRA becomes PNA

HLT: LITERAL$

This statement causes the computer to halt. Just before stopping.

the message "LITERAL" will be typed. Restarting. if desired, causes

the next sequential statement to be executed.

-18-

IV. RESTRICTIONS

Due to a finite machine size, there are several restrictions that must

be placed upon the size of ATRAN programs. .A list of the more

important ones follows:

A. Limit on Characters in a Statement
;

The number of characters in one A TRAN statement must not exceed

100. (This does not include tape feed, delete code, space, carriage

return, or tab.)

B. Limit on Statements in the Program

The total number of statements in an ATRAN program must not

exceed 254.

C. Limit on Variables

The combined total of undimensioned variables, subscript variables, -

and one-dimensioned lists in an ATRAN program must not exceed 175.

D. Limit on Constants

The combined total of constants and two-dimensioned lists in an

ATRAN program must not exceed 127.

E. Limit on Literals

The total number of characters contained in all literal messages

appearing in an ATRAN program must not exceed 240. Nor must the num

ber of messages exceed 64.

F. Limit on Control Points

The combined total of PNT statements and subscript variables which

appear on the left side of an equals sign must not exceed 125.

G. Limit on Subscripts

The number of subscripts and distinct subscript combinations appear-

-19-

ing in an ATRAN program must not exceed 31.

The number of subscripts appearing between PNT statements

also must not exceed 31. If more than 31 subscripts are required

between two PNT statements, the programmer may insert a "dummy

PNT statement" thereby satisfying this restriction.

H. Limit on Program Size

The total CINCH memory required by the compiled program

must not exceed 923 PB250 memory locations.

I. Limit on Type 1 Statements

The combined total of CFl type statements (defined to be all

jumps and literal output statements) must not exceed 63.

J. Limit on Type 2 Statements

The combined total of CINCH instructions generated by CF2 type

statements (defined to be all statements that are neither CFl type nor

arithmetic) must not exceed 125.

K. Limit on Arithmetic Statements

The number of CINCH instructions generated by arithmetic state

ments must not exceed 512.

-20-

V. ·SUMMARY OF ATRAN STATEMENTS

Constants

Use up to five digits to left. and to right C?f the decimal. Wr~te the

sign to the left; the plus sign is optional. Decimal point in integer is also
;

optional.

Variables

Use one or two alphabetic characters to denote variables; do not use

I, J, K, L, M, or N as the first or only character. Variables may have

one or two subscripts, in parentheses. Use one or two alpha characters

for subscripts; use only I, J, K, L, M, or N as the first or only

··character. Subscripts ·are variables themselves, may be operated on by

arithmetic statements, but must be integers from 1 to 99.

Operators

+. - • *· /, r ,!\.(exponentiation), =

Non- Procedural Statements·

DlM:(: ... ?! _ _)$ or DIM:(x, _!)$, where l~xS.99

PNT:_$

END:_$.

Procedural Statements

Arithmetic

I = 1+1$

X = (any algebraic expression)

Functions

Establishes a control point.

Ends program.

No functions are allowed.

SIN, COS, ASN, ACS, ATN, EXP, LOG, LGN, ABS

-21-

Decisions

Input

TST:xx$ -
PJP:~$

ZJP:~$

MJP:~$

XGR:n:$

XEQ:.n'.:$

XLS:n$

Follow logically by any of the following.

Positive jump to nn.

Zero jump to nn.

Minus jump to nn.

Skip if xx> yy

] Skip if xx =' yy
;

Skip if xx < yy

lS yy ~ 99

Paper Tape

LOD:x$ x may have a subscript. Without a

subscript, it will load entire list in

row-wise order, if xis mentioned in

DIM: statement.

Keyboard

Typed. Output

Same logic as LOO:, except data is

typed on-line.

Fixed Point - PRV: (n. mf)v$

n = number of places left of decimal

m = number of places right of decimal

f = T for Tab or C for Carriage Return

vis any variable, and may have a subscript

Floating Point - PRF:(af)v$

a = number of places in mantissa; O ~a~ 9. If a = 0, the mantissa

will have 1 O places. rounded. If a 'I: 0, the mantissa will have "a" places,_

truncated.

-22-

Literals - PR.A: LITERAL$

:, ;, $ may not be in text of literal

Punched Output

The same rules apply as for Typed Output, by changing PRV. to PNV.

PRF to PNF, and PRA to PNA.

Halt

HLT:LITERAL$ Restarting executes next statement.

-23-

Vl. SAMPLE PROBLEMS

We present three sample programs to illustrate the use of ATRAN.

The first example is a program for matrix multiplication. Find the pro

duct of two matrices, A and B, given that:

1. Matrix A consists of 5 rows and16 columns.

2. Matrix B consists of 6 rows and 8 colw;nns.

Read in the elements of A and B from paper tape, and print the

elements of the product matrix C = AB. where:

" C··-==~o..,,b · ., it._ ·~ ~j
•I K ... t

(\ ::: \ . .) · · · I b :, ~ ·.:. \' · · · •) S)

The ATRAN program follows on the next page.

-24-

ATRAN SAMPLE PROBLEM; MATRIX MULTIPLY$$

DIM:A(5, 6)$ DIM:B(6. 8)$ DIM:C(5. 8)$

LOD:A$

LOD:B$

I= 0$

PNT:05$ J = 0$

I = 1+1$

PNT:06$ K = 0$

J = J+1$

C(I, J) = O. 0$

PNT:07$ K = K+l$ ·

C(l, J) = C(I, J)+A(l, K)*B(K, J)$

TST:K$ XEQ:06$

JMP:07$

TST:J$ XEQ:08$

JMP:06$

TST:I$ XEQ:05$

JMP:05$

I= 0$

PNT:08$ J = 0$

I= 1+1$

PNT:09$ J = J+1$

PRV:(3. 2T)C(l,J)$

TST:J$ XEQ:07.$

JMP:09$

J = J+1$

PRV:(3. 2C)C(I, J)$

TST:l$ XEQ:05$

JMP:08$

HLT:DONE$ END:O$.

-25-

The second example is that of calculating data for plotting the curve of

the safe loading of a column as a fraction of slimness ratio. The safe

load (S) is given by two formulas, each of which holds over a different

range of the slimness ratio (R).

R ~I 20

S=
~2..

\ i· \~1 ooo

R z_ \ 20

Calculate S from R = 20 to R = 200, ·where R varies in steps of 5, and

print out the results.

The ATRAN program follows on the next page.

-26-

ATRAN TEST CASE

COLUMN DESIGN$$

R = 20$

PRA:

$

PNT:10$

TA= R-120$

TST:TA$

MJP:20$

JMP:30$

PNT:20$

S = 17000-. 485*R.tl.2$

JMP:40$

PNT:30$.

S = .18000/(l+Ril2/ 18000)$

PNT:40$

PRA:R = $

PRF:(8T)R$

PRA:S = $

PRF:(8C)S$

TA= R-200$

. TST:TA$

MJP:50$

JMP:60$

PNT:50$

R = R+5$

JMP:10$

PNT:60$

HL'l':01$

END:O$ •.

-27-

The last example is that of calculating the roots of a set of quadratic

equations. Read in the coefficients of four quadratics of the form

<>- i. '1-. l. + b;. >'- ~ c:.~ = 0 , and store them in. an array.

a., b, c,

O.:a, bi. C.i.

a.3 b3 c~

Clit- btt c ...

Then calculate the roots

X·:
A

c ., . --\, .· + ,._, \, -,. - \t. A I C ~
.\ ·- . _........_ __ ..,..... ________ _

/.. O.·
A

If the roots are imaginary, print a· message to that effect.

The ATRAN program follows on the next page.

QUADRATIC$$

DIM:GG(4. 3)$

LOD:GG$

I= 1$

PNT:1$

JK = 1$

JL = 2$

JM= 3$

-28-

'
Y = GG(I, JL)Il2-4*GG(I, JK)*GG(I, JM)$

TST:Y$

MJP:3$

XA = (-GG(l,JL)+YJl. 5)/(2*GG(I,JK))$

PRA:

Xl = .$

PRF:(8C)XA$

XB = (-GG(I, JL)-YJl. $) / (2*GG(I, JK))$

PRA:X2 = $

PRF:(8C)XB$

PNT:4$

TST:I$

XEQ:4$

JMP:2$

·HLT:END$

PNT:2$

I = 1+1$

JMP:1$

PNT:3$

PRA:

THE ROOTS ARE IMAGINARY

$

· JMP:4$ END:O$.

-29-

VII. OPERATING INSTRUCTIONS FOR ATRAN

There are two versions of A TRAN, one of which is designed to run on

a PB- 2 50 that is equipped wi~,h a high speed photo reader, and one which is

designed to run on a PB- 2 50 that has no photoreader attached. In the latter

case, the Flexowriter is the sole mode of input. We shall refer to the two

versions as PHOTOREADER ATRAN and FLEXOWRITER ATRAN. respec

tively. These two versions differ only in the manner in which the sections

of the program tape are read into the computer; they are identical in other

respects.

A. Operation of FLEXOWRITER ATRAN

1. Load the Octal Utility Package into memory (see Appendix C of

the PB-250 Programming Manual 1 for detailed instructions).

2. Mount Section 1 of ATRAN in the Flexowriter. When the tape is·

mounted, type an F. (This action initiates the reading of Section 1.)

3. The message "TYPE PORK" will be printed and the keyboard

light will come on.

a. If the source program is on tape. mount that tape in the

Flexowriter and type P.

b. If the source program is to be typed directly, type K and

when the keyboard light comes on, proceed to type the program.

When Section 1 is. complete, the keyboard light will come on again.

If there have been any diagnostic error messages at this time, do not con

tinue. (You will have to correct the errors, re-punch the source pro

gram tape, and start again.) However, if there are no diagnostics, pro

ceed to step 4.

4. Mount Section 2 of ATRAN in the Flexowriter. When the tape is

mounted, type an F. (This action initiates the reading of Section 2.)

-30-

5. After the entire ATRAN tape has been read and processing has

been completed, the computer will halt in line 5, displaying a line

address of 25.

6. Load CINCH into memory (see the PB250 CINCH Interpreter

Manual2 for detailed instructions). CINCH is then used in the standard

manner to print, punch, or execute the program compiled by AT RAN.

7. Error Procedure

A halt in line 1, displaying a line address of 37, indicates an

error in reading a portion of the ATRAN tape. If this condition occurs,

backspacethe ATRAN tape one binary line, depress the Enable and

Breakpoint switches, type I, and then raise the two switches. When

the Flexowriter light comes on, type an F to re-read the offending line.

The beginning of a binary line can be recognized by a blank

space on the tape, followed by a two-digit line number, a $ and a G, ·

in that order.

B. Operation of PHOTOREADER ATRAN

1. Load the ATRAN HSR ll tape into memory using the standard

bootstrap procedure. (See Appendix C of the PB250 Programming

Manual for detailed instructions·.)

2. When the keyboard light comes on, mount the ATRAN tape in

the photoreader. When the tape is mounted, type an F. (This action

initiates the reading of ATRAN.)

3. The message "TYPE P OR K" will be printed and the keyboard

light will come on.

a. If the source program is on tape, mount that tape in the

Flexowri ter and type P.

b. If the source program is to be typed directly, type Kand

when the keyboard light comes on, proceed to type the program.

<H-

After the source progra1n has been read anci processed, the

photoreader will be activated to read the next scclion of the ATRAN tape.

If there have been any diagnostic crro1· messages printed, stop the com

puter manually by depressing the Enable swilch. (You will have to

correct the errors, re-punch the source pr·ogram tape, and start again.)

However, if there are no diagnostics, do not disturb the operation of the

computer.

4,. After the entire A TRAN tape 'has been read and processing has

been completed, the computer will hall in line 5, displaying a line address

of 25.

5. Load CINCH into memory (see Appendix 3, Instructions for Load-

ing ATRAN CINCH, page 40). CINCH is then used in the standard

manner to print, punch, or execute the program compiled by A TRAN.

6. Error Procedures

a. A halt in line 1, displaying a line address of 37, indicates an

error in reading a portion of the ATRAN tape, before the input of the

source program. If this condition occurs, turn off the photoreader, back

space the ATRAN tape one binary line, depress the Enable and Breakpoint

switches, type I, and then raise the two switches. When the Flexowriter

light comes on, turn on the photoreader and type an F to re-load the

offending line.

b. A halt in line 3, displaying a line address of 37, indicates an

error in reading a portion of the ATRAN tape, after the input of the source

program. If this condition occurs, turn off the photoreader, backspace

the ATRAN tape one binary line, and depress the Enable and Breakpoint

switches. While the Enable and Breakpoint switches are still down, turn

on the photoreader. Upon raising the two switches, the tape will start to

read again.

c. If, for any reason, you should wish to re-start from the

beginning of ATRAN, rewind the ATRAN tape, mount it in the photoreader,

-32-

depress the Enable ~d Breakpoint switches. type I. and then raise the two

switches. When the Flexowriter light comes on. type an F as you would in

step 3 of the normal operating procedure.

The beginning of a binary line can be recognized by a blank space

on the tape. followed by a two digit line number. a$ and a G, in that order.

C. Source Program Input

A TRAN initially types out: ·

TYPE PORK

If the ATRAN source program is to be input on paper tape. first

mount the input tape and then type a lower-case P; Phase I will then be in

complete control. If the ATRAN source program is to be keyed in. type a

lower-case K; when the Flexowriter light goes on. begin typing in the pro

gram. As Phase I doe$.~ process input at maximum Flexowriter speed,

it is essential to be sure the light is on before typing each character.

D. Character Interpretation

In the ATRAN source program. upper and lower case are significant

according to the following rule: unless case is set when Phase I is not

acceptiµg input. a character will be properly interpreted if and only if it ·

prints on the carriage paper (or would print. in the case of paper tape) as

the character it is intended to be. Thus, alphabetie characters. comma

(,), period(.). and minus (-)may be in either upper or lower case.

(Since upper- case minus is really an underscoring. it is a minor exception.)

Nl,llllerals and all punctuatfon (except as noted above) must be in the proper

case. Delete and tape feed are always ignored. Tab. carriage return.

stop, and space are ignored, except in the text of a literal. Upper and

lower case do not increment the character count of a statement, except in

the text of a literal. Colon (:) and semi-colon (;) are forbidden in the text

of a literal, because of the way CINCH handles alpha-numeric text. bu~ will

not cause an error message .in Phase I.

-33-

Comments may be included in an ATRAN program if followed by $$.

It is essential to wait for the light to go on before typing the next statement.

Note also that some character must be typed (or punched on paper tape)

after the $ of an END statement; . a period would be satisfactory for this

purpose. but a carriage return. tab, etc. would be by-passed.

If an error is noticed in a statement as it is being typed, the state

ment may be deleted by typing two dollar signs ($$}. No provision has

been made for deleting a statement once it has been processed.

Particularly when input is on paper tape. however. it may be best to let

Phase I process the entire source program, regardless of the number of

error messages. Virtually all formal errors will be detected in Phase I.

E. Error Messages

All error messages are of the form.

C/R ERROR xx. STATEMENT XXX

where XX and XXX are numbers. Statement numbers are assigned by

Phase I to each statement sequentially, starting with 001; these numbers

have no relation to reference points assigned by PNT statements. State

ments deleted by $$ are not assigned numbers. Error numbers have the

meanings shown on page 34.

NOTE: One restriction (that of more than 31 subscripts between

PNT statements, see Page 19) is not detected in Phase I. However,

it will result in a HLT operating out of line 12 and displaying line 22

in Phase ill.

-34-

01 Statement. exceeds 100 characters.

02 Illegal operation.

03 CFl excess.

04 CF2 excess.

0 5 Other than floating variable in DIM statement.

06 Other format error in DIM statement.

07 In DIM statements: two lists have the same name, or two

arrays have the same name.

08 Illegal operand in XLS, XEQ, XGR.

09 Table A excess.

10 Table B or Table E excess.

11 Illegal subscripting format.

12 (Not used)

13 Other than variable in context requiring variable.

14 Subscripted variable, no DIM statement.

15 Table D excess.

16 Illegal reference point designation.

17 More than 5 integer digits or more than 5 fractional digits in

floating constant.

18 Format error in PRF, PNF, PRV, PNV.

19 Illegality in algebra not covered by other error numbers.

20 Algebra excess.

21 $ not at apparent end of statement.

22 Table C excess.

23 LITTEXT excess

In general, Phase I will process a statement up to the first formal

error. Excess data for Tables A, B, D, and E will inhibit entry of data in

the full table but will not terminate the statement scan. Error 14 will not

terminate the statement scan. All other errors will terminate the scan at

the point of occurrence. Dummy entries will be made in CFl or CF2 .for

erroneous CFl or CF2 statements, unless the appropriate table is full. In

case of premature termination of the scan, error message 21 will not be

.;. 35-

printed out.

At times, error messages may be difficult to interpret. For

example,

XLS:102$

is illegal because the operand is more than two digits. Phase I, however,

will process the statement as

XLS:l0$

and print out error message 21.

The statement

XLS:A$

is illegal because the operand is alphabetic. In this case Phase I will

print out error message 08 but not error message 21. In the first case,
-

the erroneous nature of the statement is detected after an apparently legal

operand has been scanned. In the second case, the actual error is

detected immediately after the colon.

In the case of a PNT statement preceeding the first executable

statement error message, 02 is. printed.

-36-

APPENDIX 1

A BRIEF DESCRIPTION OF THE A TRAN COMPILER

The following discussion is intended to give the user a little more in

sight into ATRAN. Basically, the ATRAN compiler is divided into four

phases, each of which performs a separate; task in the compiling process.

Phase I reads the source program into the computer, decodes it,

makes appropriate table entries for each variable, constant, literal, con

trol point, and subscript combination that it encounters, and expresses

each statement in one of several compact canonical forms. The END

statement of the source program indicates to Phase I that all statements of

the program have been entered.

Phase II of ATRAN reduces the previously stored canonical forms to

one form, called PREC;INCH. The canonical forms were characterized by

the fact that there was one entry per ATRAN statement; the PRECINCH

form has one entry corresponding to each CINCH instruction that is to be

developed. Section A of Phase Il transforms all ATRAN statements, with

the exception of arithmetic statements. Section B of Phase II transforms

arithmetic statements to the PRECINCH form.

Phase III of ATRAN scans the subscript appearances in the PRECINCH

form and assigns CINCH index registers. It generates the necessary cod

ing required to properly load and restore these index registers.

Phase IV of ATRAN transforms the PRECINCH entries into the final

CINCH instructions. It allocates memory, not only for the CINCH object

program, but also for constants, data, and variables, and converts the

constants into the CINCH floating point binary format. When Phase IV has

been completed, the object program is in memory, ready to be executed by

the CINCH interpreter .

.At this point, the CINCH tape is read into the computer, without

-37-

disturbing the object program. Then the CINCH program can be used to

read the data and execute the object program. The CINCH program can

also be used to list the object program and punch it out for later use.

A brief outline of the arithmetic scan may prove to clear up any

questions the user might have about the left to right and hierarchy rules in

ATRAN.

A left to right scan is made to locate any parentheses that appear in a
I

statement, excluding parentheses enclosing subscripts. Arithmetic opera

tions within the left-most (or only) pair of parentheses are evaluated first.

The contents of this pair of parentheses are scanned from left to right for

square root or exponentiation operators. When either operator is

encountered, A TRAN compiles a set of instructions to evaluate the opera

tion indicated. Having compiled instructions necessary for the evaluation

of these two types of operators, a left to right scan of the contents of the

parentheses is made for multiply and divide operators. Again, instruc- ·

tions are compiled to evaluate the results of these operations. Finally,

another left to right scan is made for addition and subtraction operations

and instructions are compiled to evaluate them.

After evaluating the contents ()f the left-most parentheses, a left to

right scan is made for another p;:tir of parentheses. Its contents are pro

cessed in the manner described above, and the scan continues until all

parentheses are exhausted. Then a similar left to right scan is made for

brackets and the contents of the brackets are processed in the same

manner. Finally, after all parentheses and brackets have been removed,

a similar left to right scan is made of the entire statement.

/

-:rn-

APPENDIX 2

MODIFICATIONS TO CINCH

The version of CINCH to be used with ATRAN is a modification of

CINCH II. which shall be referred to as ATRAN CINCH. The procedures

for using ATRAN CINCH are identical in every manner to those for

CINCH II. Therefore. the user can ref er t~ the CINCH Manual for any

question about using ATRAN CINCH.

The only difference between the two versions of CINCH is that A TRAN

CINCH has two extra commands, FIX (octal CINCH code 61) and FLO

(octal CINCH code 62). These two instructions are used to signal the out

put routines of CINCH to enable the handling of fixed point output. A

description follows:

FIX M Fixed Output Mode (61)

Set CINCH to the fixed point output mode. . All succeeding output com

mands will allow no more than M digits before the decimal point. CINCH

will remain in this mode until reset by a FLO command or another FIX

command.

FLO Floating Output Mode (62)

Set CINCH to the floating point output mode. All succeeding output

commands will function exactly as in CINCH II. CINCH will remain in

this mode until reset by a FIX command.

In addition. the SFL command takes on a different meaning in the

fixed point output mode. In the floating point output mode, it is ·unchanged.

SFL M Set Fraction Length (35)

If CINCH is in the floating point output mode, the SFL command will

function exactly as in CINCH ll.

If CINCH is in the fixed point output mode, the following output com-

-39-

mands will assume that M (15 M ~ 10) is the total number of digits to be

typed or punched, both before and after the decimal point. M is perma

nently fixed until changed by another SFL command.

For example, if we give the sequence of commands,

FIX 5

SFL 8

all succeeding output will be punched or typed with 5 digits to the left of

the decimal point and 3 digits to the right.

-40-

APPENDIX 3

INSTRUCTIONS FOR LOADING ATRAN CINCH

For loading ATRAN CINCH after compilation by FLEXOWRITER

ATRAN~ the standard procedure as detailed by the CINCH Interpreter

Manual is to be used. However, if PHOTOREADER ATRAN has been used,
;

the following procedure is recommended for,more expedient loading of

ATRAN CINCH.

The ATRAN CINCH tape is divided into two sections: the larger one

contains lines 2-13 of CINCH and the smaller one contains line 1, preceded

by a bootstrap.

1. Mount the larger section of ATRAN CINCH in the photoreader.

Depress the Enable and .:Breakpoint switches, type I, and raise the two

switches. When the Flexowriter light comes on, type an F (this will

initiate the reading of the tape).

2. After the tape has been read successfully, the computer will halt in

line 1, displaying a line address of 26. If there has been an error in read

ing, the halt will again be in line 1:. but the line address will be 37 (see

Error Procedure, below).

3. Mount the smaller section of A TRAN CINCH in the Flexowriter. With

the Enable and Breakpoint switches down, turn the FILL switch on the

Computer Control Panel to the ON position. After the tape starts moving,

be sure to raise at least one of the Enable and Breakpoint switches.

4. When tape movement stops, turn the FILL switch to the OFF position.

Depress Enable and Breakpoint, type I, and then raise these switches.

After the remainder of the tape has been read, the Flexowriter li~ht will

come on. At this point you will be under external control of CINCH.

Error Procedure

A halt in line 1, displaying a line address of 37, indicates an error in

-41-

reading a portion of the ATRAN CINCH tape through the photoreader. If

this condition occurs. turn off the photoreader. backspace the tape one

binary line, depress the Enable and Breakpoint switches. type I. and then

raise the two switches. When the Flexowriter light comes on. turn on

the photo reader and type an F to re- load the off ending line.

-42-

APPENDIX 4

EXECUTION OF ATRAN PROGRAMS WITH CINCH

In :running an ATRAN program with CINCH, the user must know the

location in CINCH memory at which the ATRAN program begins. This

location will always be CINCH location 65. Thus, to start execution, the

user should type:

$ 0065

G

If the user wishes to use CINCH to punch out a binary program tape, it

is suggested that he punch out all of CINCH memory, from location 0065 to

location 1023. If, however, th~ user knows th.at his program is small, he

can use a CINCH memory print out to determine where his commands and

data are located, if he is familiar with CINCH.

The commands begin at location 0065 and proceed sequentially up

wards in CINCH memory. The last two commands in the program will

always be:

46 xxxx
00 0000

no matter which ATRAN statements are in the user's program. These

commands can easily be recognized because of the fact that no other

commands follow. The address XXXX (of the 46 command) is the lowest

address of the literal messages. The constants immediately follow the

literals and the end of the constant area can be recognized because the

last five constants will always be 2, /2, 1, and O.

The commands, literals, and constants are the only portions of

CINCH memory that need 'be punched out. The contents of the remain~er

of memory, if not zero, are either read from a data tape or computed by

the program at execution time.

A simplified diagram of how CINCH memory is laid out follows.

1023

65

64

1
0

~
I
I

-43-

2- D arrays

l

I

1- D lists

and

single variables

---------~· ---"~--·---·--·-·-··- ·-·· ___ ,. . .,_, --~·---

constants
·---··

literals

---------·
temporaries

object program

used by CINCH

bootstrap

accum,ulator

REFERENCES

1. PB-250 Programming Manual, PBC1004, Revision 1

Packard Bell Computer Corporation, March 15, 1961

2. PB-250 CINCH Interpreter, PBC1006

Packard Bell Computer Corporation, March 15, 1961

3. A Guide to FORTRAN Programming

Daniel D. McCracken, Wiley, 1961

	000
	001
	002
	003
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44

