
C Language Reference 

Q:; 
. 0 

crJ 

e u 



Microsoft® C/C++ 
Version 7.0 

C Language Reference 

For MS-DOS® and Windows™ Operating Systems 

Microsoft Corporation 



Information in this document is subject to change without notice and does not represent a commit­
ment on the part of Microsoft Corporation. The software and/or databases described in this document 
may be used or copied only in accordance with the terms of the agreement. It is against the law to 
copy the software on any medium except as specifically allowed in the license or nondisclosure agree­
ment. The licensee may make one copy of the software for backup purposes. No part of this manual 
and/or databases may be reproduced or transmitted in any form or by any means, electronic or me­
chanical, including photocopying, recording, or information storage and retrieval systems, for any pur­
pose other than the licensee's personal use, without the express written permission of Microsoft 
Corporation. 

© 1984-1991 Microsoft Corporation. All rights reserved. 
Printed in the United States of America. 

Microsoft, MS, MS-DOS, and XENIX are registered trademarks and Windows is a trademark of Mi­
crosoft Corporation. 

U.S. Patent No. 4955066 

Document No. LN2477 1-1191 

10 9 8 7 6 5 4 3 2 1 



Contents Overview 

Introduction ............................................................................................................ xi 

Chapter 1 
Chapter 2 
Chapter 3 
Chapter 4 
Chapter 5 
Chapter 6 
Chapter 7 

Appendixes 
Appendix A 
Appendix B 
Appendix C 

Elements of C................................................................................. 1 
Program Structure ......................................................................... 25 
Declarations and Types ................................................................. 41 
Expressions and Assignments ..................................................... 105 
Statements ................................................................................... 151 
Functions ..................................................................................... 165 
Preprocessor Directives and Pragmas ......................................... 189 

C Language Syntax Summary .................................................... 217 
Implementation-Defined Behavior ............................................. 233 
Differences Between C Versions 6.0 and 7.0 ............................. 257 

Index .................................................................................................................... 269 





Contents 

Introduction ............................................................................................................ xi 

ANSI Conformance ............................................................................................... xii 
Scope and Organization of This Manual... ............................................................ xii 
Document Conventions ........................................................................................ xiii 

Chapter 1 Elements of C .......................................................................................................... 1 
1.1 Tokens .......................................................................................................... 1 
1.2 Keywords ...................................................................................................... 4 
1.3 Identifiers ...................................................................................................... 5 
1.4 Constants ...................................................................................................... 9 

Floating-Point Constants ................................................................................... 10 
Integer Constants ............................................................................................... 13 
Character Constants .......................................................................................... 16 

1.5 String Literals ............................................................................................. 20 
1.6 Operators .................................................................................................... 22 
1.7 Punctuation and Special Characters ........................................................... 23 

Chapter 2 Program Structure ................................................................................................ 25 
2.1 Source Files and Source Programs ............................................................. 25 
2.2 The main Function and Program Execution .............................................. 30 

Argument Description ....................................................................................... 31 
Expanding Wildcard Arguments (Microsoft Specific) ..... ....... ........ ............ .... 31 
Parsing Command-Line Arguments (Microsoft Specific) ............................... 32 
Customizing Command-Line Processing ......................................................... 33 

2.3 Understanding Lifetime, Scope, Visibility, and Linkage .......................... 34 
Lifetime ........................................................................................................... 34 
Scope and Visibility .......................................................................................... 35 
Linkage ........................................................................................................... 36 
Summary ........................................................................................................... 37 

2.4 Name Spaces .............................................................................................. 39 

Chapter 3 Declarations and Types ....................................................................................... 41 
3.1 Overview of Declarations ........................................................................... 41 
3.2 Storage Classes ........................................................................................... 43 



vi Contents 

Storage-Class Specifiers for External-Level Declarations ............................... 44 
Storage-Class Specifiers for Internal-Level Declarations ................................ 47 
Storage-Class Specifiers with Function Declarations ........... ..... ............ ...... ... 50 

3.3 Type Specifiers ........................................................................................... 51 
3.4 Type Qualifiers ........................................................................................... 52 
3.5 Declarators and Variable Declarations ...................................................... 53 

Special Keywords in Declarators (Microsoft Specific) .................................... 55 
Simple Variable Declarations ........................................................................... 61 
Enumeration Declarations ................................................................................ 62 
Structure Declarations ....................................................................................... 65 
Union Declarations ............................................................................................ 71 
Array Declarations .................................. .-........................................................ 74 
Pointer Declarations .......................................................................................... 76 
Based Pointers (Microsoft Specific) ................................................................. 79 
Function Declarations ...................................................................................... 84 
Abstract Declarators ......................................................................................... 88 

3.6 Interpreting More Complex Declarators .................................................... 88 
3.7 Initialization ................................................................................................ 91 

Scalar Initialization ........................................................................................... 91 
Initializing Aggregate Types ............................................................................ 93 
Initializing Strings ............................................................................................ 97 

3.8 Storage of Basic Types ............................................................................... 98 
3.9 Incomplete Types ..................................................................................... 100 
3.10 TypedefDeclarations ............................................................................... 101 

Chapter 4 Expressions and ASSignments .......................................................................... 105 
4.1 Operands and Expressions....... .... ....... ..... .......... ....... ... .... ..... ..... ....... ..... ... 105 

Primary Expressions ....................................................................................... 106 
L-Value and R -Value Expressions....... ....... ....... .......... ........ ............... ...... ...... 107 
Constant Expressions ...................................................................................... 108 
Expression Evaluation ..................................................................................... 109 

4.2 Operators ................................................................................................... 111 
Precedence and Order of Evaluation... ............. ......... ................... ... ........ ........ 112 
Usual Arithmetic Conversions... ... .... ..... ....... ...... ........... ... .... .... ............ ..... ..... 115 
Postfix Operators............................................................................................. 116 
Unary Operators .............................................................................................. 122 
Cast Operators ................................................................................................. 126 
Multiplicative Operators ................................................................................. 126 
Additive Operators .......................................................................................... 128 
Bitwise Shift Operators ................................................................................... 130 



Contents vii 

Relational and Equality Operators .................................................................. 132 
Bitwise Operators .. : ......................................................................................... 134 
Logical Operators ........................................................................................... 135 
Conditional Operator ...................................................................................... 136 
Assignment Operators .................................................................................... 138 
Sequential-Evaluation Operator ..................................................................... 140 

4.3 Type Conversions ..................................................................................... 141 
Assignment Conversions ................................................................................ 141 
Type-Cast Conversions ................................................................................... 147 
Function-Call Conversions ............................................................................. 149 

Chapter 5 Statements .......................................................................................................... 151 
5.1 Overview .................................................................................................. 151 
5.2 The break Statement ................................................................................. 152 
5.3 The Compound Statement ....................................................................... 153 
5.4 The continue Statement ........................................................................... 154 
5.5 The do-while Statement ........................................................................... 154 
5.6 The Expression Statement ....................................................................... 155 
5.7 The for Statement .................................................................................... 156 
5.8 The goto and Labeled Statements ........................................................... 157 
5.9 The if Statement ....................................................................................... 158 
5.10 The Null Statement .................................................................................. 159 
5.11 The return Statement ........ ........ ........ ............ ...................................... ..... 160 
5.12 The switch Statement .............................................................................. 161 
5.13 The while Statement ................................................................................ 164 

Chapter 6 Functions ............................................................................................................. 165 
6.1 Overview .................................................................................................. 165 
6.2 Function Definitions ................................................................................ 166 

Function Attributes ......................................................................................... 168 
Storage Class ................................................................................................... 176 
Return Type ..................................................................................................... 177 
Parameters ....................................................................................................... 179 
Function Body ................................................................................................. 181 

6.3 Function Prototypes .................................................................................. 181 
6.4 Function Calls ........................................................................................... 183 

Arguments ....................................................................................................... 185 
Calls with a Variable Number of Arguments ................................................. 187 
Recursive Functions ....................................................................................... 187 



viii Contents 

Chapter 7 Preprocessor Directives and Pragmas ............................................................. 189 
7.1 Preprocessing ............................................................................................ 189 
7.2 Phases of Translation ................................................................................ 190 
7.3 Manifest Constants and Macros ..... ......... ....................... ....... ....... ............ 191 

Macro Expansion ............................................................................................ 192 
The #define Directive ...................................................................................... 193 
The #UndefDirective ....................................................................................... 198 
Predefined Macros .......................................................................................... 198 

7.4 Include Files ............................................................................................. 200 
7.5 Conditional Compilation .......................................................................... 202 

The #if, #elif, #else, and #endif Directives..................................................... 202 
The #ifdef and #ifndef Directives ................................................................... 206 

7.6 Line Control .............................................................................................. 207 
7.7 Error Directives ........................................................................................ 208 
7.8 Pragma Directives (Microsoft Specific) ................................................... 209 

Appendixes 

Appendix A C Language Syntax Summary..................................................... 217 
Definitions ....................................................................................................... 217 
Conventions ..................................................................................................... 217 
Syntax Categories ............................................................................................ 218 

A.l Language Syntax Summary ...................................................................... 219 
Lexical Grammar ............................................................................................ 219 
Phrase Structure Grammar .............................................................................. 223 

Appendix B Implementation-Defined Behavior............................................... 233 
B.l Translation ................................................................................................ 233 
B.2 Environment ............................................................................................. 234 
B.3 Identifiers .................................................................................................. 235 
B.4 Characters ................................................................................................. 236 
B.6 Floating-Point Math .................................................................................. 240 
B.7 Arrays and Pointers .................................................................................. 241 
B.8 Registers ................................................................................................... 242 
B.9 Structures, Unions, Enumerations, and Bit Fields ................................... 242 
B.I0 Qualifiers .................................................................................... : ............. 244 
B .11 Declarators ................................................................................................ 244 
B.12 Statements ................................................................................................. 245 
B .13 Preprocessing Directives .......................................................................... 245 



Contents ix 

Appendix C Differences Between eVersions 6.0 and 7.0 ................................... 257 
C.l New Features ............................................................................................ 257 
C.2 Changes and Deletions ............................................................................. 261 

Obsolete Functions ..................................................................................... 267 

Index ................................................................................................................................................... 269 



Tables 

Tables 
Table 1.1 
Table 1.2 
Table 1.3 
Table 1.4 
Table 1.5 
Table 2.1 
Table 3.1 
Table 3.2 
Table 4.1 
Table 4.2 
Table 4.3 
Table 4.4 
Table 4.5 
Table B.l 

Trigraph Sequences ........................................................................ 8 
Limits on Floating-Point Constants ............................................. 11 
Limits on Integer Constants ......................................................... 15 
Escape Sequences......... ...... ...... .......... ............ ..... .......... ......... ...... 18 
Precedence and Associativity of C Operators .............................. 23 
Summary of Lifetime and Visibility ............................................ 38 
Type Specifiers and Equivalents .................................................. 52 
Sizes of Fundamental Types....... ............. ............... .... ................. 98 
Precedence and Associativity of C Operators............................ 112 
Conversions from Signed Integral Types .................................. 142 
Conversions from Unsigned Integral Types .............................. 144 
Conversions from Floating-Point Types .................................... 145 
Legal Type Casts ...... ..... ................ ............ .............. ........ ........... 148 
Escape Sequences ....................................................................... 236 



Introduction 

The C language is a general-purpose programming language known for its effi­
ciency, economy, and portability. While these characteristics make it a good 
choice for almost any kind of programming, C has proven especially useful in sys­
tems programming because it facilitates writing fast, compact programs that are 
readily adaptable to other systems. Well-written C programs are often as fast as 
assembly-language programs, and they are typically easier for programmers to 
read and maintain. 

C is a flexible language that leaves many programming decisions up to you. In 
keeping with this philosophy, C imposes few restrictions in matters such as type 
conversion. Although this characteristic of the language can make your program­
ming job easier, you must know the language well to understand how programs 
will behave. This manual provides information on the C language components and 
the features of the Microsoft implementation. The syntax for the C language is 
from the ANSI standard, although it is not part of the ANSI standard. Appendix A 
provides the syntax and a description of how to read and use the syntax 
definitions. 

C was designed to combine efficiency and power in a relatively small language. C 
does not include built-in functions to perform tasks such as input and output, 
storage allocation, screen manipulation, and process control. To perform such 
tasks, C programmers rely on run-time libraries. You can use the run-time routines 
supplied, or tailor your own variations for special purposes. The design also helps 
to isolate language features from processor-specific features in a particular C im­
plementation, which makes it easier to write portable code. See the Microsoft C 
Run-Time Library Reference or the online Help for information about the library 
routines provided with Microsoft C version 7.0. 

This manual does not discuss programming with C++. See the C++ Tutorial and 
the C++ Language Reference for information about the C++ language. 

Other tools required for programming with the Microsoft C compiler, such as 
LINK, LIB, CodeView, and the integrated programming environment called Pro­
grammer's WorkBench (PWB) are discussed in Environment and Tools. 

To find information on a particular topic in the documentation, see the Comprehen­
sive Index and Errors Reference. 



xii C Language Reference 

ANSI Conformance 
Microsoft C version 7.0 conforms to the standard for the C language as set forth in 
the American National Standard (hereinafter referred to as the ANSI C standard). 
Microsoft extensions to the ANSI C standard are noted in the text and syntax of 
this manual as well as in the online reference. Because the extensions are not a 
part of the ANSI C standard, their use may restrict portability of programs be­
tween systems. By default, the Microsoft extensions are enabled. To disable the 
extensions, specify /Za on the command line. With /Za, all non-ANSI code 
generates errors or warnings. 

Scope and Organization of This Manual 
The C Language Reference defines the C language as implemented by Microsoft 
Corporation. It is intended as a reference for programmers experienced in C or 
other programming languages. Knowledge of programming fundamentals is 
assumed. This manual is organized as follows: 

Chapter 1, "Elements of C," describes the letters, numbers, and symbols that can 
be used in C programs and the combinations of characters that have special mean­
ings to the C compiler. 

Chapter 2, "Program Structure," discusses the components and structure of C pro­
grams and explains how C source files are organized. 

Chapter 3, "Declarations and Types," describes how to specify the attributes of C 
variables, functions, and user-defined types. C provides a number of predefined 
data types and allows the programmer to declare "aggregate" types and pointers. 
Function prototypes are discussed in this chapter, as well as in Chapter 6, 
"Functions. " 

Chapter 4, "Expressions and Assignments," describes the operands and operators 
that form C expressions and assignments. The chapter also discusses the type con­
versions and side effects that may occur when expressions are evaluated. 

Chapter 5, "Statements," describes C statements, which control the flow of pro­
gram execution. 

Chapter 6, "Functions," discusses C functions. In particular, this chapter explains 
function prototypes, parameters, and return values, as well as how to define, de­
clare, and call functions. 

Chapter 7, "Preprocessor Directives and Pragmas," describes the instructions rec­
ognized by the C preprocessor, a text processor that is automatically invoked 
before compilation. This chapter also introduces "pragmas," special Microsoft­
specific instructions to the compiler that you may place in source files. 



Introduction xiii 

Appendix A, "C Language Syntax Summary," is the complete listing of the ANSI 
syntax as discussed in the rest of the manual. The Microsoft-specific features are 
noted. This appendix also begins with a description of how to read and use the 
ANSI C syntax. 

NOTE The ANSI syntax in Appendix A is provided for information only. It is not 
part of the ANSI standard. 

Appendix B, "Implementation-Defined Behavior," describes Microsoft's im­
plementation of the areas that ANSI leaves open to each particular implementa­
tion. These items are listed in Appendix F, "Portability Issues," Section F.3, of the 
ANSI standard. 

Appendix C, "Differences Between Microsoft C Versions 6.0 and 7.0," lists the 
new and changed features of the C compiler since Microsoft C version 6.0. This 
appendix does not include information about features of the c++ compiler. 

Document Conventions 
This book uses the following typographic conventions: 

Example 

STDIO.H 

char, _setcolor, 
__ far 

expression 

[option] 

Description 

Uppercase letters indicate filenames, segment names, 
registers, and terms used at the operating-system 
command level. 

Bold type indicates keywords, operators, language­
specific characters, and library routines. Within 
discussions of syntax, bold type indicates that the text 
must be entered exactly as shown. 

Many functions and constants begin with either a 
single or double underscore. These are part of the 
name and are mandatory. For example, to have the 
__ cplusplus manifest constant be recognized by the 
compiler, you must enter the leading double 
underscore. 

Words in italics indicate placeholders for information 
you must supply, such as a filename. 

Items inside double square brackets are optional. 



xiv C Language Reference 

Example 

#pragma pack {11 2} 

ffinclude <io.h> 

CL [option ... ]file ... 

while() 
{ 

CTRL+ENTER 

"argument" 

"C string" 

Color Graphics 
Adapter (CGA) 

• 

Description 

Braces and a vertical bar indicate a choice among two 
or more items. You must choose one ofthese items 
unless double square brackets ([ ]) surround the 
braces. 

This font is used for examples, user input, program 
output, and error messages in text. 

Three dots (an ellipsis) following an item indicate that 
more items having the same form may appear. 

A column or row of three dots tells you that part of an 
example program has been intentionally omitted. 

Small capital letters are used to indicate the names of 
keys on the keyboard. When you see a plus sign (+) 
between two key names, you should hold down the 
first key while pressing the second. 

The carriage-return key, sometimes marked as a bent 
arrow on the keyboard, is called ENTER. 

Quotation marks enclose a new term the first time it is 
defined in text. 

Some C constructs, such as strings, require quotation 
marks. Quotation marks required by the language 
have the form " " and ' , rather than" " and ' '. 

The first time an acronym is used, it is usually 
spelled out. 

This symbol denotes the end of a section of 
"Microsoft Specific" or "32-Bit Specific" information. 



Elements of C 

1.1 Tokens 

This chapter describes the elements of the C programming language, including the 
names, numbers, and characters used to construct a C program. The ANSI C syn­
tax labels these components "tokens." This chapter explains how to define these 
tokens and how the compiler evaluates them. The following topics are discussed in 
this chapter: 

• Tokens 

• Comments 

• Keywords 

• Identifiers 

• Constants 

• String literals 

• Operators 

• Punctuation 

This chapter also includes reference tables for the C and Microsoft-specific key­
words, trigraphs, escape sequences, and operator precedence, as well as the range 
for floating-point and integer constants. 

In a C source program, the basic element recognized by the compiler is the 
"token." A token is source-program text that the compiler does not break down 
into component elements. 



2 C Language Reference 

Syntax token: 
keyword 
identifier 
constant 
string-literal 
operator 
punctuator 

Note See the introduction to Appendix B for an explanation of the ANSI grammar 
conventions. 

The keywords, identifiers, constants, string literals, and operators described in this 
chapter are examples of tokens. Punctuation characters such as brackets ([ D, 
braces ({ }), parentheses ( () ), and commas(,) are also tokens. 

White-Space Characters 
Space, tab, linefeed, carriage-return, formfeed, vertical-tab, and newline characters 
are called "white-space characters" because they serve the same purpose as the 
spaces between words and lines on a printed page-they make reading easier. 
Tokens are delimited (bounded) by white-space characters and by other tokens, 
such as operators and punctuation. When parsing code, the C compiler ignores 
white-space characters unless you use them as separators or as components of 
character constants or string literals. Use white-space characters to make a pro­
gram more readable. Note that the compiler also treats comments as white space. 

Comments 
A "comment" is a sequence of characters beginning with a forward slash/asterisk 
combination (/*) that is treated as a single white-space character by the compiler 
and is otherwise ignored. A comment can include any combination of characters 
from the representable character set, including newline characters, but excluding 
the "end comment" delimiter (*/). Comments can occupy more than one line but 
cannot be nested. 

Comments can appear anywhere a white-space character is allowed. Since the 
compiler treats a comment as a single white-space character, you cannot include 
comments within tokens. The compiler ignores the characters in the comment. 

Use comments to document your code. This example is a comment accepted by 
the compiler: 

/* Comments can contain keywords such as 
for and while without generating errors. */ 

Comments can also appear on the same line as a code statement: 



Microsoft Specific 

Elements of C 3 

printf( "Hello\n"); 1* Comments can go here *1 

You may choose to precede functions with a descriptive comment block: 

1* MATHERR.C illustrates writing an error routine 
* for math functions. 
* The error function must be: 
* matherr 

* * To use matherr, you must turn on the No Extended Dictionary in 
* Library flag within the PWB environment (LINK Options from the 
* Options menu)or use the INOE linker option outside the environment. 
* For example: 
* CL matherr.c Ilink INOE 
*1 

Since comments cannot contain nested comments, this example causes an error: 

1* Comment out this routine for testing 

1* Open file *1 
fh = _open( "myfile.c", 0 RDONLY ); 

*1 

The error occurs because the compiler recognizes the first * I, after the words 
Open fi 1 e, as the end of the comment. It tries to process the remaining text and 
produces an error when it finds the * I outside a comment. 

While you can use comments to render certain lines of code inactive for test pur­
poses, the preprocessor directives #if and #endif and conditional compilation are a 
useful alternative for this task. For more information, see "Conditional Compila­
tion" on page 202. 

The Microsoft compiler also supports single-line comments preceded by two for­
ward slashes (II). If you compile with /Za (ANSI standard), these comments 
generate errors. These comments cannot extend to a second line. 

II This is a valid comment in C 7.0 

Comments beginning with two forward slashes (II) are terminated by the next new­
line character that is not preceded by an escape character. In the next example, the 
newline character is preceded by a backslash (\), creating an "escape sequence." 
This escape sequence causes the compiler to treat the next line as part of the pre­
vious line. (For information on escape sequences, see page 18.) 

II my comment \ 
i++; 



4 C language Reference 

Microsoft Specific 

Therefore, the i ++; statement is commented out. 

The default for Microsoft C is that the Microsoft extensions are enabled. Use the 
/Za command-line option to disable these extensions .• 

Evaluation of Tokens 
When the compiler interprets tokens, it includes as many characters as possible in 
a single token before moving on to the next token. Because of this behavior, the 
compiler may not interpret tokens as you intended if they are not properly sepa­
rated by white space. Consider the following expression: 

i+++j 

In this example, the compiler first makes the longest possible operator ( ++ ) from 
the three plus signs, then processes the remaining plus sign as an addition operator 
( + ). Thus, the expression is interpreted as (i ++) + (j), not (i) + (++ j ). In 
this and similar cases, use white space and parentheses to avoid ambiguity and en­
sure proper expression evaluation. 

The C compiler treats a CTL+Z character as an end-of-file indicator. It ignores any 
text after CTRL+Z .• 

1.2 Keywords 

Microsoft Specific 

"Keywords" are words that have special meaning to the C compiler. In translation 
phases 7 and 8, an identifier cannot have the same spelling and case as a C key­
word. (For a description of translation phases, see page 190; for information on 
identifiers, see page 5.) The C language uses the following keywords: 

auto double int struct 
break else long switch 
case enum register typedef 
char extern return union 
const float short unsigned 
continue for signed void 
default goto sizeof volatile 
do if static while 

You cannot redefine keywords. However, you can specify text to be substituted 
for keywords before compilation by using C preprocessor directives (see Chapter 
7, "Preprocessor Directives and Pragmas"). 

The ANSI specification allows identifiers with two leading underscores to be re­
served for compiler implementations. Therefore, the Microsoft convention is to 



Elements of C 5 

precede Microsoft-specific keyword names with double underscores. For a descrip­
tion ofthe ANSI rules for naming identifiers, including the use of double under­
scores, see the next section. 

The Microsoft C version 7.0 compiler also recognizes the following keywords. 
These words cannot be used as identifier names. Note that there is a double under­
score preceding each keyword. 

__ asm __ fastcall __ loadds __ self 
__ based __ finally __ near __ stdcall 
__ cdecl __ fortran __ pascal __ try 
__ except __ huge __ saveregs 
__ export __ inline __ segment 
__ far __ interrupt __ segname 

Limited 32-bit support is available for __ based. Seven of the above Microsoft­
specific keywords are not supported in 32-bit compilations: __ far, __ fortran, 
__ huge, __ near, __ segment, __ segname, and __ self. The __ except and __ fi­
nally keywords are not supported in 16-bit compilations. 

For the Microsoft C compiler, extensions are enabled by default. You can make 
sure your program is fully portable by disabling the Microsoft extensions with the 
/Za command-line option. From within the Programmer's WorkBench, select Lan­
guage Options and then C Compiler Options from the Options menu. Then select 
Additional Global Options from the C Compiler Options dialog box. Choose 
ANSI C in the Languages box; this disables the Microsoft extensions .• 

1.3 Identifiers 
"Identifiers" or "symbols" are the names you supply for variables, types, func­
tions, and labels in your program. Identifier names must differ in spelling and case 
from any keywords. You cannot use keywords (either C or Microsoft) as identifi­
ers; they are reserved for special use. You create an identifier by specifying it in 
the declaration of a variable, type, or function. In this example, resul t is an 
identifier for an integer variable, and rna i n and p r i n t f are identifier names for 
functions. 

void rnain() 
{ 

int result; 

if ( result != 0 ) 
printf( "Bad file handle\n" ); 

Once declared, you can use the identifier in later program statements to refer to the 
associated value. 



6 C Language Reference 

Syntax 

A special kind of identifier, called a statement label, can be used in goto state­
ments. (Declarations are described in Chapter 3. Statement labels are described in 
"The goto and Labeled Statements" on page 157.) 

identifier: 
nondigit 
identifier nondigit 
identifier digit 

nondigit: one of 
_ abc d e fg h ij kim n 0 p q r stu v w x y z 
AB CDEFGHIJKLMN OPQRS TUVWXY Z 

digit: one of 
0123456789 

The first character of an identifier name must be a nondigit (that is, the first charac­
ter must be an underscore or an uppercase or lowercase letter). ANSI allows six 
significant characters in an external identifier's name and 31 for names of internal 
(within a function) identifiers. External identifiers (ones declared at global scope 
or declared with storage class extern) may be subject to additional naming restric­
tions because these identifiers have to be processed by other software such as 
linkers. 

Microsoft Specific The Microsoft C compiler allows 32 characters in an external identifier's name 
and 247 for internal identifier names. Compiling with the 1W4 command-line op­
tion or selecting warning level 4 from the Compiler Options dialog box (which is 
accessed from selecting Language Options on the Option menu in PWB) generates 
warnings on any names that exceed the ANSI -specified length. If you are not con­
cerned with ANSI compatibility, you can modify this default to a smaller number 
using the IH (restrict length of external names) option .• 

The C compiler considers uppercase and lowercase letters to be distinct characters. 
This feature, called "case sensitivity," enables you to create distinct identifiers that 
have the same spelling but different cases for one or more of the letters. 

Since uppercase and lowercase letters are considered distinct characters, each of 
the following identifiers is unique: 

add 
ADD 
Add 
aDD 

Microsoft Specific Do not select names for identifiers that begin with two underscores or with an un­
derscore followed by an uppercase letter. The ANSI specification allows identifier 
names that begin with these character combinations to be reserved for compiler 



Microsoft Specific 

Elements of C 7 

use. Identifiers with file-level scope should also not be named with an underscore 
and a lowercase letter as the first two letters. Identifier names that begin with these 
characters are also reserved. By convention, Microsoft uses an underscore and an 
uppercase letter to begin macro names and double underscores for Microsoft­
specific keyword names. To avoid any naming conflicts, always select identifier 
names that do not begin with one or two underscores, or names that begin with an 
underscore followed by an uppercase letter. • 

The following are examples of valid identifiers that conform to either ANSI or 
Microsoft naming restrictions: 

j 
count 
tempi 
top_oCpage 
skip12 
LastNum 

Although identifiers in source files are case sensitive by default, symbols in object 
files are not. The /Zc command-line option tells the compiler to ignore case for 
any identifier name declared with the __ pascal keyword. The /Gc command-line 
option specifies the FORTRANlPascal calling convention, causing all function 
names to be translated to uppercase. (The __ pascal and __ fortran keywords per­
form the same operation on a function-by-function basis.) For information on the 
command-line options, see Chapter 13 in the Environment and Tools manual. 

Externally linked identifiers mayor may not be case sensitive, depending on 
whether you use the INOIGNORECASE option when you invoke the linker. The 
default for the Microsoft linker is to ignore case, making externally linked identifi­
ers case insensitive. Note that the external name of an identifier may be different 
from its internal name. This is only an issue when you link C object files with non­
C object files. For more information about linking, see Chapter 14 in the Environ­
ment and Tools manual. 

The "source character set" is the set of legal characters that can appear in source 
files. For Microsoft C, the source set is the standard ASCII character set. The 
source character set and execution character set include the ANSI ASCII charac­
ters used as escape sequences. See "Character Constants" on page 16 for informa­
tion about the execution character set.. 

An identifier has "scope," which is the region of the program in which it is known, 
and "linkage," which determines whether the same name in another scope refers to 
the same identifier. These topics are explained in "Understanding Lifetime, Scope, 
Visibility, and Linkage" on page 34. 



8 C Language Reference 

Multibyte and Wide Characters 
A multibyte character is a character composed of sequences of one or more bytes. 
Each byte sequence represents a single character in the extended character set. 
Multibyte characters are used in character sets such as Kanji. 

Wide characters are multilingual character codes that are always 16 bits wide. The 
type for character constants is char; for wide characters, the type is wchaL t. 
Since wide characters are always a fixed size, using wide characters simplifies pro­
gramming with international character sets. 

The wide-character-string literal L"hello" becomes an array of six integers of 
type wchaL t. 

{L'h', L'e', L'l', L'l', L'a', el} 

The Unicode specification is the developing specification for wide characters. The 
run-time library routines for translating between multibyte and wide multibyte 
characters include mblen, mbstowcs, mbtowc, wcstombs, and wctomb. 

Trigraphs 
The source character set of C source programs is contained within the 7 -bit ASCII 
character set but is a superset of the ISO 646-1983 Invariant Code Set. Trigraph 
sequences allow C programs to be written using only the ISO (International Stand­
ards Organization) Invariant Code Set. Trigraphs are sequences of three characters 
(introduced by two consecutive question marks) that the compiler replaces with 
their corresponding punctuation characters. You can use trigraphs in C source files 
with a character set that does not contain convenient graphic representations for 
some punctuation characters. 

Table 1.1 shows the nine trigraph sequences. All occurrences in a source file of the 
punctuation characters in the first column are replaced with the corresponding 
character in the second column. 

Table 1.1 Trigraph Sequences 

Trigraph 

??= 

??( 

??/ 

??) 

??' 

??< 

Punctuation 
Character 

# 

[ 

A 



Table 1.1 Trigraph Sequences (continued) 

Trigraph 

??! 

??> 

??-

Punctuation 
Character 

I 

} 

Elements of C 9 

A trigraph is always treated as a single source character. The translation of tri­
graphs takes place in the first translation phase, before the recognition of escape 
characters in string literals and character constants. (See page 190 for information 
about translation phases.) Only the nine trigraphs shown in Table 1.1 are recog­
nized. All other character sequences are left untranslated. 

The character escape sequence, \?, prevents the misinterpretation oftrigraph-like 
character sequences. (See page 18 for information about escape sequences.) For 
example, if you attempt to print the string W hat??! with this printf statement 

printf( "What??!\n" 1; 

the string printed is What I because ??! is a trigraph sequence that is replaced 
with the I character. You need to write the statement as follows to correctly print 
the string: 

printf( "What?\?!\n" 1; 

In this printf statement, a backslash escape character in front of the second ques­
tion mark prevents the misinterpretation of ??! as a trigraph. 

1.4 Constants 

Syntax 

A "constant" is a number, character, or character string that can be used as a value 
in a program. Use constants to represent floating-point, integer, enumeration, or 
character values that cannot be modified. 

constant: 
floating-point-constant 
integer-constant 
enumeration-constant 
character-constant 

Constants are characterized by having a value and a type. This section discusses 
floating-point, integer, and character constants. Enumeration constants are de­
scribed in "Enumeration Declarations" on page 62. 



10 C language Reference 

Floating-Point Constants 

Syntax 

A "floating-point constant" is a decimal number that represents a signed real num­
ber. The representation of a signed real number includes an integer portion, a frac­
tional portion, and an exponent. Use floating-point constants to represent 
floating-point values that cannot be changed. 

floating-point-constant: 
fractional-constant exponent-part optfloating-suffix opt 

digit-sequence exponent-part floating-suffix opt 

fractional-constant: 
digit-sequence opt • digit-sequence 
digit-sequence • 

exponent-part: 
e sign opt digit-sequence 
E sign opt digit-sequence 

sign: one of 
+-

digit-sequence: 
digit 
digit-sequence digit 

floating-suffix: one of 
elF L 

You can omit either the digits before the decimal point (the integer portion of the 
value) or the digits after the decimal point (the fractional portion), but not both. 
You can leave out the decimal point only if you include an exponent. No white­
space characters can separate the digits or characters of the constant. 

The following examples illustrate some forms of floating-point constants and 
expressions: 

15.75 
1.575E1 1* 15.75 *1 
1575e-2 1* 15.75 *1 
-2.5e-3 1* -0.0025 *1 
25E-4 1* 0.0025 *1 

Floating-point constants are positive unless they are preceded by a minus sign (-). 
In such case, the minus sign is treated as a unary arithmetic negation operator. 

Floating-point constants have type float, double, or long. A floating-point con­
stant without an C, F, I, or L suffix has type double. If the letter C or F is the suffix, 



Elements of C 11 

the constant has type float. If suffixed by the letter I or L, it has type long double. 
For example: 

100L /* Has type long */ 
100F /* Has type float */ 
100D /* Has type double */ 

See "Storage of Basic Types" on page 98 for information about type double, float, 
and long. 

You can omit the integer portion of the floating-point constant, as shown in the fol­
lowing examples. The number .75 can be expressed in many ways, including the 
following: 

.0075e2 
0.075el 
.075el 
75e-2 

Microsoft Specific Limits on the values of floating-point constants are given in the Table 1.2. The 
header file FLOAT.H that the setup program for Microsoft C/C++ version 7.0 
installs in your \C700\INCLUDE directory contains this information. 

Table 1.2 Limits on Floating-Point Constants 

Constant 

FLT_DIG 
DBL_DIG 
LDBL_DIG 

FLT_EPSILON 
DBL_EPSILON 
LDBL_EPSILON 

FLT_MANT _DIG 
DBL_MANT _DIG 
LDBLMANLDIG 

Meaning 

Number of digits, q, 
such that a floating­
point number with q 
decimal digits can be 
rounded into a 
floating-point 
representation and 
back without loss of 
precision. 

Smallest positive 
number x, such that 
xl.O+x 

Number of digits in 
the radix specified by 
FLT_RADIXin the 
floating-point 
significand. In 
Microsoft C++, the 
radix is 2; hence these 
values specify bits. 

Value 

6 
15 
18 

1. 192092896e-07F 
2.2204460492503131 e-O 16 
1.0842022172485504434e-0 19L 

24 
53 
64 



12 C Language Reference 

Table 1.2 Limits on Floating-Point Constants (continued) 

Constant Meaning Value 

FLLMAX Maximum 3 .402823466e+ 3 8F 
DBL_MAX representable 1.7976931348623158e+30 
LDBL_MAX floating-point 1.189731495357231765e+4932L 

number. 

FLLMAX_IO_EXP Maximum integer 38 
DBL_MALIO_EXP such that 10 raised 308 
LDBL_MALIO_EXP to that number is a 4932 

representable 
floating-point 
number. 

FLLMAX_EXP Maximum integer 128 
DBL_MAX_EXP such that 1024 
LDBLMAL EXP FLT_RADIX 16384 

raised to that 
number is a 
representable 
floating-point 
number. 

FLT_MIN Minimum positive 1.175494351e-38F 
DBLMIN value. 2.2250738585072014e-308 
LDBL_MIN 3.3621031431120935063e-4932L 

FLLMIN_IO_EXP Minimum negative -37 
DBL_MIN_IO_EXP integer such that 10 -307 
LDBL_MIN_IO_EXP raised to that -4931 

number is a 
representable 
floating-point 
number. 

FLLMIN_EXP Minimum negative -125 
DBLMIN_EXP integer such that -1021 
LDBL_MIN_EXP FLLRADIX -16381 

raised to that 
number is a 
representable 
floating-point 
number. 

FLLRADIX Radix of exponent 2 
DBL_RADIX representation. 2 
LDBL_RADIX 2 

FLT_ROUNDS Rounding mode for I (near) 
DBL_ROUNDS floating-point 1 (near) 
LDBL_ROUNDS addition. 1 (near) 



Elements of C 13 

Note that the information in Table 1.2 may differ in future implementations .• 

Integer Constants 

Syntax 

An "integer constant" is a decimal (base 10), octal (base 8), or hexadecimal (base 
16) number that represents an integral value. Use integer constants to represent 
integer values that cannot be changed. 

integer-constant: 
decimal-constant integer-suffix opt 

octal-constant integer-suffix opt 

hexadecimal-constant integer-suffix opt 

decimal-constant: 
nonzero-digit 
decimal-constant digit 

octal-constant: 
o 
octal-constant octal-digit 

hexadecimal-constant: 
Ox hexadecimal-digit 
OX hexadecimal-digit 
hexadecimal-constant hexadecimal-digit 

nonzero-digit: one of 
123456789 

octal-digit: one of 
01234567 

hexadecimal-digit: one of 
0123456789 
abcdef 
ABCDEF 

integer-suffix: 
unsigned-suffix long-suffix opt 

long-suffix unsigned-suffix opt 

unsigned-suffIX: one of 
uU 

long-suffix: one of 
IL 



14 C Language Reference 

Integer constants are positive unless they are preceded by a minus sign (-). The 
minus sign is interpreted as the unary arithmetic negation operator. (See "Unary 
Operators" on page 122 for information about this operator.) 

If an integer constant begins with the letters Ox or OX, it is hexadecimal. If it 
begins with the digit 0, it is octal. Otherwise, it is assumed to be decimal. 

The following lines are equivalent: 

0x1C 1* Hexadecimal representation for decimal 28 *1 
034 1* = Octal representation for decimal 28 *1 

No white-space characters can separate the digits of an integer constant. These 
examples show valid decimal, octal, and hexadecimal constants. 

1* Decimal Constants *1 
10 
132 
32179 

1* Octal Constants *1 
012 
0204 
076663 

1* Hexadecimal Constants *1 
0xa or 0xA 
0x84 
0x7dB3 or 0X7DB3 

Integer Types 
Every integer constant is given a type based on its value and the way it is ex­
pressed. You can force any integer constant to type long by appending the letter I 
or L to the end of the constant; you can force it to be type unsigned by appending 
u or U to the value. The lowercase letter I can be confused with the digit 1 and 
should be avoided. Some forms of long integer constants follow: 

1* Long decimal constants *1 
10L 
79L 

1* Long octal constants *1 
012L 
0115L 

1* Long hexadecimal constants *1 
0xaL or 0xAL 
0X4fL or 0x4FL 



Microsoft Specific 

/* Unsigned long decimal constant */ 
776745UL 
778866LU 

Elements of C 15 

The type you assign to a constant depends on the value the constant represents. A 
constant's value must be in the range of representable values for its type. A con­
stant's type determines which conversions are performed when the constant is 
used in an expression or when the minus sign (-) is applied. This list summarizes 
the conversion rules for integer constants. 

• The type for a decimal constant without a suffix is either int, long int, or 
unsigned long into The first of these three types in which the constant's value 
can be represented is the type assigned to the constant. 

• The type assigned to octal and hexadecimal constants without suffixes is int, 
unsigned int, long int, or unsigned long int depending on the size of the 
constant. 

• The type assigned to constants with a u or U suffix is unsigned int or unsigned 
long int depending on their size. 

• The type assigned to constants with an I or L suffix is long int or unsigned 
long int depending on their size. 

• The type assigned to constants with a u or U and an I or L suffix is unsigned 
long into 

Integer Limits 

The limits for integer types are listed in Table 1.3. These limits are also defined in 
the standard header file LIMITS.H. 

Table 1.3 Limits on Integer Constants 

Constant 

CHAR-BIT 

SCHAR-MIN 

SCHAR-MAX 

UCHAR-MAX 

CHAR-MIN 

CHAR-MAX 

Meaning 

Number of bits in the smallest 
variable that is not a bit field. 

Minimum value for a variable of 
type signed char. 
Maximum value for a variable of 
type signed char. 

Maximum value for a variable of 
type unsigned char. 
Minimum value for a variable of 
type char. 

Maximum value for a variable of 
type char. 

Value 

8 

-127 

127 

255 (Oxff) 

Same as -127; 0 if /J 
option used. 

Same as 127; 255 if /J 
option used. 



16 C Language Reference 

Table 1.3 Limits on Integer Constants (continued) 

Constant Meaning Value 

MB_LEN_MAX Maximum number of bytes in a 2 
multicharacter constant. 

SORT_MIN Minimum value for a variable of -32767 
type short. 

SORT_MAX Maximum value for a variable of 32767 
type short. 

USORLMAX Maximum value for a variable of 65535 (Oxffff) 

1 
type unsigned short. 

INLMIN Minimum value for a variable of -32767 

2 
type int. 

INLMAX Maximum value for a variable of 32767 

3 
type int. 

UINT_MAX Maximum value for a variable of 65535 (Oxffff) 
type unsigned int. 

LONG_MIN Minimum value for a variable of -2147483647 
type long. 

LONG_MAX Maximum value for a variable of 2147483647 
type long. 

ULONG_MAX Maximum value for a variable of 4294967295 
type unsigned long. (Oxffffffff) 

1 
2 The value for INT_MIN is-2147483648 for 32-bit target compilations. 

3 The value for INT_MAX is 2147483647 for 32-bit target compilations. 

The value for UINT_MAX is 4294967295 (Oxffffffff)for 32-bit target compilations. 

If a value exceeds the largest integer representation, the Microsoft compiler gener­
ates an error .• 

Character Constants 

Syntax 

A "character constant" is formed by enclosing a single character from the repre­
sentable character set within single quotation marks (' '). Character constants are 
used to represent characters in the execution character set. 

character-constant: 
'c-char-sequence' 
L' c-char-sequence' 

c-char-sequence : 
c-char 
c-char-sequence c-char 



c-char: 
Any member of the source character set except 
the single quotation mark ('), backslash (\), or 
newline character 

escape-sequence 

escape-sequence: 
simple-escape-sequence 
octal-escape-sequence 
hexadecimal-escape-sequence 

simple-escape-sequence: one of 
\a \b \f \0 \r \t \v 
\' \" \\ \? 

octal-escape-sequence : 
\ octal-digit 
\ octal-digit octal-digit 
\ octal-digit octal-digit octal-digit 

hexadecimal-escape-sequence : 
\x hexadecimal-digit 
hexadecimal-escape-sequence hexadecimal-digit 

Character Types 

Elements of C 17 

An integer character constant not preceded by the letter L has type int. The value 
of an integer character constant containing a single character is the numerical 
value of the character interpreted as an integer. For example, the numerical value 
of the character a is 97 in decimal and 61 in hexadecimal. 

Syntactically, a "wide-character constant" is a character constant prefixed by the 
letter L. A wide-character constant has type wchaL t, an integer type defined in 
the STDDEF.H header file. For example: 

char schar IX' ; /* A character constant */ 
wchar_t wchar = L'x'; /* A wide-character constant for 

the same character 

Wide-character constants are 16 bits wide and specify members of the extended ex­
ecution character set. They allow you to express characters in alphabets that are 
too large to be represented by type char. See "Multibyte and Wide Characters" on 
page 8 for more information about wide characters. 



18 C Language Reference 

Execution Character Set 
This manual often refers to the "execution character set." The execution character 
set is not necessarily the same as the source character set used for writing C pro­
grams. The execution character set includes all characters in the source character 
set as well as the null character, newline character, backspace, horizontal tab, verti­
cal tab, carriage return, and escape sequences. The source and execution character 
sets may differ in other implementations. 

Escape Sequences 
Character combinations consisting of a backslash (\) followed by a letter or by a 
combination of digits are called "escape sequences." To represent a newline char­
acter, single quotation mark, or certain other characters in a character constant, 
you must use escape sequences. An escape sequence is regarded as a single charac­
ter and is therefore valid as a character constant. 

Escape sequences are typically used to specify actions such as carriage returns and 
tab movements on terminals and printers. They are also used to provide literal rep­
resentations of nonprinting characters and characters that usually have special 
meanings, such as the double quotation mark (t1). Table 1.4 lists the ANSI escape 
sequences and what they represent. 

Table 1.4 Escape Sequences 

Escape 
Sequence Represents 

\a Bell (alert) 

\b Backspace 

\f Formfeed 

\n New line 

\r Carriage return 

\t Horizontal tab 

\v Vertical tab 
\, Single quotation mark 

\" Double quotation mark 
\\ Backslash 

\? Literal question mark 

\000 ASCII character in octal notation 

\xhhh ASCII character in hexadecimal notation 

Note that the question mark preceded by a backslash (\?) specifies a literal ques­
tion mark in cases where the character sequence would be misinterpreted as a tri­
graph. See "Trigraphs" on page 8 for more information. 



Elements of C 19 

Microsoft Specific If a backslash precedes a character that does not appear in Table 1.4, the compiler 
handles the undefined character as the character itself. For example, \x is treated 
as an x .• 

Escape sequences allow you to send nongraphic control characters to a display 
device. For example, the ESC character (\033) is often used as the first character 
of a control command for a terminal or printer. Some escape sequences are device­
specific. For instance, the vertical-tab and formfeed escape sequences (\v and \1) 
do not affect screen output, but they do perform appropriate printer operations. 

You can also use the backslash (\) as a continuation character. When a newline 
character (equivalent to pressing the RETURN key) immediately follows the 
backslash, the compiler ignores the backslash and the newline character and treats 
the next line as part of the previous line. This is useful primarily for preprocessor 
definitions longer than a single line. For example: 

#define assert(exp) \ 
( (exp)? (void) 0:_assert( #exp. __ FILE __ • __ LINE __ ) ) 

In previous versions of the compiler, this feature was also used to create strings 
longer than one line. However, the string-concatenation feature (see "String Liter­
als" on page 20) is now preferable when creating long string literals. 

Octal and Hexadecimal Character Specifications 
The sequence \000 means you can specify any character in the ASCII character set 
as a three-digit octal character code. The numerical value of the octal integer speci­
fies the value of the desired character or wide character. 

Similarly, the sequence \xhhh allows you to specify any ASCII character as a hex­
adecimal character code. For example, you can give the ASCII backspace charac­
ter as the normal C escape sequence (\b), or you can code it as \010 (octal) or 
\xOOS (hexadecimal). 

You can use only the digits 0 through 7 in an octal escape sequence. Octal escape 
sequences can never be longer than three digits and are terminated by the first char­
acter that is not an octal digit. Although you do not need to use all three digits, you 
must use at least one. For example, the octal representation is \10 for the ASCII 
backspace character and \101 for the letter A, as given in an ASCII chart. 

Similarly, you must use at least one digit for a hexadecimal escape sequence, but 
you can omit the second and third digits. Therefore you could specify the hexadeci­
mal escape sequence for the backspace character as either \xS, \xOS, or \xOOS. 

The value of the octal or hexadecimal escape sequence must be in the range of 
representable values for type unsigned char for a character constant and type 



20 C Language Reference 

wchar_t for a wide-character constant. See "Multibyte and Wide Characters" on 
page 8 for information on wide-character constants. 

Unlike octal escape constants, there is no limit on the number of hexadecimal 
digits in an escape sequence. A hexadecimal escape sequence terminates at the 
first character that is not a hexadecimal digit. Because hexadecimal digits include 
the letters a through f, care must be exercised to make sure the escape sequence 
terminates at the intended digit. To avoid confusion, you can place octal or hex­
adecimal character definitions in a macro definition: 

Ifdefi ne Bell' \x07' 

For hexadecimal values, you can break the string to show the correct value clearly: 

"\xabc" 1* one character *1 
"\xab" "c" 1* two characters *1 

1.5 String Literals 

Syntax 

A "string literal" is a sequence of characters from the source character set enclosed 
in double quotation marks (" "). String literals are used to represent a sequence of 
characters, which, taken together, form a null-terminated string. You must always 
prefix wide-string literals with the letter L. 

string-literal: 
"s-char-sequence opt" 

L"s-char-sequence opt" 

s-char-sequence : 
s-char 
s-char-sequence s-char 

s-char: 
any member of the source character set except the double 
quotation mark ("), backslash (\), or newline character 
escape-sequence 

The example below is a simple string literal: 

char amessage = "This is a string literal." 

All escape codes listed in Table 1.4 are valid in string literals. To represent a 
double quotation mark in a string literal, use the escape sequence \". The single 
quotation mark (') can be represented without an escape sequence. The backslash 
(\) must be followed with a second backslash (\ \) when it appears within a string. 



Elements of C 21 

When a backslash appears at the end of a line, it is always interpreted as a line­
continuation character. 

Type for String Literals 
String literals have type array of char (that is, char[ D. (Wide-character strings 
have type array ofwchact (that is, wchact[ D.) This means that a string is an 
array with elements of type char. The number of elements in the array is equal to 
the number of characters in the string plus one for the terminating null character. 

Storage of String Literals 
The characters of a literal string are stored in order at contiguous memory loca­
tions. An escape sequence (such as \\ or \It) within a string literal counts as a 
single character. A null character (represented by the \0 escape sequence) is auto­
matically appended to, and marks the end of, each string literal. (This occurs 
during translation phase 7, which is described on page 190.) Note also that the 
compiler may not store two identical strings at two different addresses. 

String Literal Concatenation 
To form string literals that take up more than one line, you can concatenate the 
two strings. To do this, type a backslash, then press the RETURN key. The backslash 
causes the compiler to ignore the following newline character. For example, the 
string literal 

"Long strings can be bro\ 
ken into two or more pieces." 

is identical to the string 

"Long strings can be broken into two or more pieces." 

String concatenation can be used anywhere you might previously have used a 
backslash followed by a newline character to enter strings longer than one line. Be­
cause strings can start in any column of the source code without affecting their on­
screen representation, you can position strings to enhance source-code readability. 

To force a new line within a string literal, enter the newline escape sequence (\n) 
at the point in the string where you want the line broken, as follows: 

"Enter a number between 1 and 100\nOr press Return" 

Long strings can be continued in any column of a succeeding line without affect­
ing their appearance when output. For example: 



22 C Language Reference 

Microsoft Specific 

Microsoft Specific 

printf ( "This is the first half of the string," 
" this is the second half" ) ; 

As long as each part of the string is enclosed in double quotation marks, the parts 
are concatenated and output as a single string. This concatenation occurs 
according to the sequence of events during compilation specified by translation 
phases. See page 190 for information on translation phases. 

This is the first half of the string, this is the second half 

A string pointer, initialized as two distinct string literals separated only by white 
space, is stored as a single string (pointers are discussed in "Pointer Declarations" 
on page 76). When properly referenced, as in the following example, the result is 
identical to the previous example: 

char .string = "This is the first half of the string," 
" this is the second half"; 

printf( "%s" , string) 

In translation phase 6, the multibyte-character sequences specified by any 
sequence of adjacent string literals or adjacent wide-string literals are concatenated 
into a single multibyte-character sequence. Therefore, do not design programs to 
allow modification of string literals during execution. The ANSI standard specifies 
that the result of modifying a string is undefined. 

Storage Class for Strings 

Strings have static storage duration. See "Storage Classes" on page 43 for informa­
tion about storage duration .• 

Maximum String Length 

ANSI compatibility requires a compiler to accept up to 509 characters in a string 
literal after concatenation. The maximum length of a string literal allowed with 
Microsoft C is 4,096 bytes .• 

1.6 Operators 
"Operators" are symbols (both single characters and character combinations) that 
specify how values are to be manipulated. Each symbol is interpreted as a single 
unit, called a token. See page 1 for information on tokens. 



Elements of C 23 

Table 1.5 gives the precedence order for the C operators. For a complete descrip­
tion and the ANSI grammar for each operator, see "Operators" on page 111. 

Table 1.5 Precedence and Associativity of C Operators 

Symbol! Type of Operation Associativity 

[] () . -> Expression Left to right 
postfix ++ and postfix - -
:> 
Prefix ++ and prefix - - Unary Right to left 
sizeof & * +--! 
typecasts Unary Right to left 

* / % Multiplicative Left to right 

+- Additive Left to right 

« » Bitwise shift Left to right 

< > <= >= Relational Left to right 

-- != Equality Left to right 

& Bitwise AND Left to right 
A Bitwise-exclusive OR Left to right 

Bitwise-inclusive OR Left to right 

&& Logical-AND Left to right 

" Logical-OR Left to right 

? : Conditional Right to left 

= *= 1= %= Simple and compound Right to left 
+= -= «= »= assignment2 

&= 1= "= 
Sequential evaluation Left to right 

1 Operators are listed in descending order of precedence. If several operators appear in the same line or in a 
group. they have equal precedence. 

2 All simple- and compound-assignment operators have equal precedence. 

1.7 Punctuation and Special Characters 

Syntax 

The punctuation and special characters in the C character set have various uses, 
from organizing program text to defining the tasks that the compiler or the com­
piled program carries out. They do not specify an operation to be performed. Some 
punctuation symbols are also operators (see the previous section). The compiler de­
termines their use from context. 

punctuator: one of 
[] () {} * , = ..• # 



24 C language Reference 

These characters have special meanings in C. Their uses are described throughout 
this manual. The pound sign (#) can occur only in preprocessing directives. See 
"Manifest Constants and Macros" on page 191 for information about prepro­
cessing directives. 



Program Structure 

This chapter gives an overview of C programs and program execution. Terms and 
features important to understanding C programs and components are also intro­
duced. After a brief look at program components, this chapter describes the main 
function and its arguments. Topics discussed include: 

• Source files and translation units. 

• The main function and command-line arguments. 

• Lifetime and storage duration. 

• Scope and visibility. 

• Linkage. 

• Name spaces. 

Because this chapter is an overview, the topics discussed contain introductory 
material only. See the cross-referenced information for more detailed explanations. 

2.1 Source Files and Source Programs 

Syntax 

A source program can be divided into one or more "source files," or "translation 
units." The input to the compiler is called a "translation unit." 

translation-unit : 
external-declaration 
translation-unit external-declaration 

external-declaration: 
function-definition 
declaration 

"Overview of Declarations" on page 41 gives the syntax for the declaration non­
terminal, and "Phases of Translation" on page 190 explains how the translation 
unit is processed. 



26 C Language Reference 

Note See the introduction to Appendix B for an explanation of the ANSI grammar 
conventions. 

The components of a translation unit are external declarations that include func­
tion definitions and identifier declarations. These declarations and definitions can 
be in source files, header files, libraries, and other files the program needs. You 
must compile each translation unit and link the resulting object files to make a 
program. 

A C "source program" is a collection of directives, pragmas, declarations, defini­
tions, statement blocks, and functions. To be valid components of a Microsoft C 
program, each must have the syntax described in this manual, although they can 
appear in any order in the program (subject to the rules outlined throughout this 
manual). However, the location of these components in a program does affect how 
variables and functions can be used in a program. (See "Understanding Lifetime, 
Scope, Visibility, and Linkage" on page 34 for more information.) 

Source files need not contain executable statements. For example, you may find it 
useful to place definitions of variables in one source file and then declare refer­
ences to these variables in other source files that use them. This technique makes 
the definitions easy to find and update when necessary. For the same reason, con­
stants and macros are often organized into separate files called "include files" or 
"header files" that can be referenced in source files as required. ("Manifest Con­
stants and Macros" on page 191 explains macros. See page 200 for information 
about include files.) 

Preprocessor Directives 
A "directive" instructs the C preprocessor to perform a specific action on the text 
of the program before compilation. Preprocessor directives are fully described in 
Chapter 7, "Preprocessor Directives and Pragmas." This example uses the pre­
processor directive #define: 

ffdefi ne MAX 100 

This statement tells the compiler to replace each occurrence of MAX by 100 prior 
to compilation. The C compiler preprocessor directives are 

#define 
#elif 
#else 

Pragmas 

#endif 
#error 
#if 

#ifdef 
#ifndef 
#include 

#line 
#pragma 
#undef 

A "pragma" instructs the compiler to perform a particular action at compile time. 
Pragmas vary from compiler to complier. For example, you can use the optimize 
pragma to set the optimizations to be performed on your program. 



Microsoft Specific The Microsoft C pragmas are 

alloc_text 
auto_inline 
check_ pointer 
check_ stack 
code_seg 
comment 

dabLseg 
function 
hdrstop 
inline_ depth 
inline_ recursion 
intrinsic 

linesize 
message 
native_ caller 
optimize 
pack 
page 

Program Structure 27 

pagesize 
skip 
subtitle 
title 
warning 

These pragmas are described in "Pragma Directives" on page 209. 

Declarations and Definitions 
A "declaration" establishes an association between a particular variable, function, 
or type and its attributes. "Overview of Declarations" on page 41 gives the ANSI 
syntax for the declaration nonterminal. A declaration also specifies where and 
when an identifier can be accessed (the "linkage" of an identifier). See "Under­
standing Lifetime, Scope, Visibility, and Linkage" on page 34 for information 
about linkage. 

A "definition" of a variable establishes the same associations as a declaration but 
also causes storage to be allocated for the variable. 

For example, the main, find, and count functions and the var and val varia­
bles are defined in one source file, in this order: 

ma in () 
{ 
} 

int var = 0; 
double val[MAXVAL]; 

char find( fileptr ) 
{ 

} 

int count( double f ) 
{ 
} 

The variables va r and val can be used in the fin d and co u n t functions; no 
further declarations are needed. But these names are not visible (cannot be 
accessed) in ma in. 



28 C language Reference 

Function Declarations and Definitions 
Function prototypes establish the name of the function, its return type, and the 
type and number of its formal parameters. A function definition includes the func­
tion body. 

Both function and variable declarations can appear inside or outside a function 
definition. Any declaration within a function definition is said to appear at the 
"internal" or "local" level. A declaration outside all function definitions is said to 
appear at the "external," "global," or "file scope" level. Variable definitions, like 
declarations, can appear at the internal level (within a function definition) or at the 
external level (outside all function definitions). Function definitions always occur 
at the external level. Function definitions are discussed further in "Function Defini­
tions" on page 166. Function prototypes are covered in "Function Declarations" 
on page 84 and in "Function Prototypes" on page 181. 

Blocks 
A sequence of declarations, definitions, and statements enclosed within curly 
braces ({ }) is called a "block." There are two types of blocks in C. The "com­
pound statement," a statement composed of one or more statements (discussed 
more fully on page 153), is one type of block. The other, the "function definition," 
consists of a compound statement (the body of the function) plus the function's 
associated "header" (the function name, return type, and formal parameters). A 
block within other blocks is said to be "nested." 

Note that while all compound statements are enclosed within curly braces, not 
everything enclosed within curly braces constitutes a compound statement. For 
example, although the specifications of array, structure, or enumeration elements 
may appear within curly braces, they are not compound statements. 

Example Program 
The following C source program consists of two source files. It gives an overview 
of some of the various declarations and definitions possible in a C program. Later 
sections in this manual describe how to write these declarations, definitions, and 
initializations, and how to use C keywords such as static and extern. The printf 
function is declared in the C header file STDIO.H. 

The rna in and max functions are assumed to be in separate files, and execution of 
the program begins with the rna in function. No explicit user functions are ex­
ecuted before rna in. 

/***************************************************************** 
FILEl.C - main function 

*****************************************************************/ 



#define ONE 1 
#define TWO 2 
#define THREE 3 
#include <stdio.h> 

int a 
int b 

l' , 
2 . , 

Program Structure 29 

1* Oefining declarations 
1* of external variables 

extern int max( int a, int b); 1* Function prototype *1 

int main() 1* Function definition *1 
{ 1* for main function *1 

} 

int c; 1* Definitions for *1 
int d; 1* two uninitialized *1 

extern int u; 

static int v; 

int w = ONE, x = TWO, y 
int z = 0; 
z = max( x, Y ); 
w=max( z, w); 
printf( "%d %d\n", z, w ); 

1* local variables 

1* Referencing declaration *1 
1* of external variable *1 
1* defined elsewhere *1 
1* Definition of variable *1 
/* with continuous lifetime */ 

THREE ; 

1* Executable statements *1 

1**************************************************************** 
FILE2.C - definition of max function 

****************************************************************/ 

int max( int a, int b ) 1* Note formal parameters are *1 
1* included in function header *1 

if( a > b ) 
return( a ); 

else 
return( b ); 

FlLE1.C contains the prototype for the max function. This kind of declaration is 
sometimes called a "forward declaration" because the function is declared before 
it is used. The definition for the ma in function includes calls to max. 

The lines beginning with Ildefi ne are preprocessor directives. These directives 
tell the preprocessor to replace the identifiers ONE, TWO, and THREE with the num­
bers 1, 2, and 3, respectively, throughout FILE1.C. However, the directives do 
not apply to FlLE2.C, which is compiled separately and then linked with FlLE1.C. 
The line beginning with IIi ncl ude tells the compiler to include the file STDIO.H, 



30 C Language Reference 

which contains the prototype for the printf function. Preprocessor directives are 
explained in Chapter 7. 

FILEl.C uses defining declarations to initialize the global variables a and b. The 
local variables c and d are declared but not initialized. Storage is allocated for all 
these variables. The static and external variables, u and v, are automatically 
initialized to O. Therefore only a, b, u, and v contain meaningful values when 
declared because they are initialized, either explicitly or implicitly. FILE2.C con­
tains the function definition for max. This definition satisfies the calls to max in 
FILEl.C. 

The lifetime and visibility of identifiers are discussed in "Understanding Lifetime, 
Scope, Visibility, and Linkage" on page 34. For more information on functions, 
see Chapter 6. 

2.2 The main Function and Program Execution 
Every C program has a primary (main) function that must be named main. The 
main function serves as the starting point for program execution. It usually con­
trols program execution by directing the calls to other functions in the program. A 
program usually stops executing at the end of main, although it can terminate at 
other points in the program for a variety of reasons. At times, perhaps when a cer­
tain error is detected, you may want to force the termination of a program. To do 
so, use the exit function. See the Run-Time Library Reference manual for informa­
tion on and an example using the exit function. 

Functions within the source program perform one or more specific tasks. The 
main function can call these functions to perform their respective tasks. When 
main calls another function, it passes execution control to the function, so that ex­
ecution begins at the first statement in the function. A function returns control to 
main when a return statement is executed or when the end of the function is 
reached. 

Microsoft Specific For the Microsoft C compiler, the convention is that successful termination is 
equivalent to a return of EXIT_SUCCESS, which is O. 

You can declare any function, including main, to have parameters. The term "para­
meter" or "formal parameter" refers to the identifier that receives a value passed to 
a function. See "Parameters" on page 179 for information on passing arguments to 
parameters. When one function calls another, the called function receives values 
for its parameters from the calling function. These values are called "arguments." 
You can declare formal parameters to main so that it can receive arguments from 
the command line using this format: 

main ( int argc, char *argv[ ], char *envp[ ] ) 



Program Structure 31 

When you want to pass information to the main function, the parameters are tradi­
tionally named argc and argv, although the C compiler does not require these 
names. The types for argc and argv are defined by the C language. Traditionally, 
if a third parameter is passed to main, that parameter is named envp. The type for 
the envp parameter is mandated by ANSI, but the name is not. Examples later in 
this chapter show how to use these three parameters to access command-line argu­
ments. The following sections explain these parameters. 

Argument Description 
The argc parameter in the main function is an integer specifying how many argu­
ments are passed to the program from the command line. Since the program name 
is considered an argument, the value of argc is at least one. 

The argv parameter is an array of pointers to null-terminated strings representing 
the program arguments. Each element of the array points to a string representation 
of an argument passed to main. (See page 74 for information about arrays.) The 
argv parameter can be declared as an array of pointers to type char ( c h a r 
*a rgv [] ) or as a pointer to pointers to type char ( cha r **a rgv ). The first string 
( argv[0] ) is the program name. The last pointer ( argv[argc] ) is NULL. (See 
getenv in the Run-Time Library Reference manual for an alternative method for 
getting environment variable information.) 

The envp parameter is a pointer to an array of null-terminated strings that repre­
sent the values set in the user's environment variables. The envp parameter can be 
declared as an array of pointers to char ( cha r *envp[] ) or as a pointer to point­
ers to char ( cha r **envp ). The end ofthe array is indicated by a NULL pointer. 

Expanding Wildcard Arguments (Microsoft Specific) 
When running a C program, you can use either of the two DOS wildcards-the 
question mark (?) and the asterisk (*)-to specify filename and pathname argu­
ments on the command line. 

Command-line arguments are handled by a routine called _setargv, which by de­
fault does not expand wildcards into separate strings in the argv string array. You 
can replace the normal_setargv routine with a more powerful version of 
_setargv that does handle wildcards by linking with the SETARGV.OBJ file. 

You can link with SETARGV.OBJ from within PWB by adding SETARGV.OBJ 
to the program list for your program. You must specify the complete path or put 
SETARGV.OBJ in the current directory. You must also disable the Extended Dic­
tionary option by turning off No Extended Dictionary in Library in the Link Op­
tions dialog box. To link with SETARGV.OBJ outside PWB, use the INOE linker 
option. For example: 



32 C Language Reference 

el typeit.e setargv Ilink INOE 

The wildcards are expanded in the same manner as in DOS commands. (See your 
DOS user's guide if you are unfamiliar with wildcards.) Enclosing an argument in 
double quotation marks (" ") suppresses the wildcard expansion. Within quoted ar­
guments, you can represent quotation marks literally by preceding the double-quo­
tation-mark character with a backslash (\). If no matches are found for the 
wildcard argument, the argument is passed literally. 

Parsing Command-Line Arguments (Microsoft Specific) 
Microsoft C startup code uses the following rules when interpreting arguments 
given on the DOS command line: 

• Arguments are delimited by white space, which is either a space or a tab. 

• A string surrounded by double quotation marks is interpreted as a single argu­
ment, regardless of white space contained within. A quoted string can be 
embedded in an argument. Note that the caret (A) is not recognized as an escape 
character or delimiter. 

• A double quotation mark preceded by a backslash, \", is interpreted as a literal 
double quotation mark ("). 

• Backslashes are interpreted literally, unless they immediately precede a double 
quotation mark. 

• If an even number of backslashes is followed by a double quotation mark, then 
one backslash (\) is placed in the argv array for every pair of backslashes (\ \), 
and the double quotation mark (") is interpreted as a string delimiter. 

• If an odd number of backslashes is followed by a double quotation mark, then 
one backslash (\) is placed in the argv array for every pair of backslashes (\ \) 
and the double quotation mark is interpreted as an escape sequence by the re­
maining backslash, causing a literal double quotation mark (") to be placed in 
argv. 

This list illustrates the rules above by showing the interpreted result passed to 
argv for several examples of command-line arguments. The output listed in the 
second, third, and fourth columns is from the ARGS.C program that follows the 
table. 

Command-Line Input argv[l] argv[2] argv[3] 

"a b e" d e abe d e 
"ab\e" "\\" d ab"e \ d 
a\\\b d"e f"g h a\\\b de fg h 

a\\\"b e d a\"b e d 
a\\\\"b e" d e a\\b e d e 



Program Structure 33 

/* ARGS.C illustrates the following variables used for accessing 
* command-line arguments and environment variables: 
* argc argv envp 
*/ 

#include <stdio.h> 

void main( int 
char *argv[], 
char **envp ) 

{ 

argc, /* Number of strings in array argv */ 

int count; 

/* Array of command-line argument strings */ 
/* Array of environment variable strings */ 

/* Display each command-line argument. */ 
printf( "\nCommand-line arguments:\n" ); 
for( count = 0; count < argc; count++ ) 

printf(" argv[%d] %s\n", count, argv[count] ); 

/* Display each environment variable. */ 
printf( "\nEnvironment variables:\n" ); 
while( *envp != NULL) 

printf(" %s\n", *(envp++)); 

return; 

One example of output from this program is: 

Command-line arguments: 
argv[0] C:\C700\TEST.EXE 

Environment variables: 
COMSPEC=C:\DOS\COMMAND.COM 

PATH=c:\dos;c:\binb;c:\binr;c:\win3;c:\word;c:\help;c:\; 
PROMPT=[$p] 
TERM=vt52 
TEMP=c:\tmp 
TMP=c:\tmp 
EDITORS=c: \bi nr 
HOME=c:\lm.dos\netprog 

Environment variables are set in your AUTOEXEC.BAT file. 

Customizing Command-Line Processing 
If your program does not take command-line arguments, you can save a small 
amount of space by suppressing use of the library routine that performs command­
line processing. This routine is called _setargv, as described in "Expanding Wild­
card Arguments" on page 31. To suppress its use, define a routine that does 



34 C Language Reference 

nothing in the file containing the main function and name it _setargv. The call to 
_setargv is then satisfied by your definition of _setargv, and the library version is 
not loaded. 

Similarly, if you never access the environment table through the envp argument, 
you can provide your own empty routine to be used in place of _setenvp, the 
environment-processing routine. 

If your program makes calls to the _ spawn or _ exec family of routines in the C 
run-time library, you should not suppress the environment-processing routine, 
since this routine is used to pass an environment from the parent process to the 
child process. 

2.3 Understanding Lifetime, Scope, Visibility, and Linkage 

Lifetime 

To understand how a C program works, you must understand the rules that deter­
mine how variables and functions can be used in the program. Several concepts 
are crucial to understanding these rules: 

• Lifetime 

• Scope 

• Visibility 

• Linkage 

"Lifetime" is the period during execution of a program in which a variable or func­
tion exists. The storage duration of the identifier determines its lifetime. 

An identifier declared with the storage-class-specifierstatic has static storage du­
ration. Identifiers with static storage duration (also called "global") have storage 
and a defined value for the duration of a program. Storage is reserved and the iden­
tifier's stored value is initialized only once, prior to program startup. An identifier 
declared with external or internal linkage also has static storage duration (see 
"Linkage" on page 36). 

An identifier declared without the storage-class-specifierstatic has automatic 
storage duration if it is declared inside a function. An identifier with automatic 
storage duration (a "local identifier") has storage and a defined value only within 
the block where the identifier is defined or declared. An automatic identifier is 
allocated new storage each time the program enters that block, and it loses its 
storage (and its value) when the program exits the block. Identifiers declared in a 
function with no linkage also have automatic storage duration. 

-- ----~------



Program Structure 35 

The following rules specify whether an identifier has global (static) or local (auto­
matic) lifetime: 

• All functions have static lifetime. Therefore they exist at all times during pro­
gram execution. Identifiers declared at the external level (that is, outside all 
blocks in the program at the same level of function definitions) always have 
global (static) lifetimes. 

• If a local variable has an initializer, the variable is initialized each time it is 
created (unless it is declared as static). Function parameters also have local life­
time. You can specify global lifetime for an identifier within a block by includ­
ing the static storage-class-speciJierin its declaration. Once declared static, the 
variable retains its value from one entry of the block to the next. 

Although an identifier with a global lifetime exists throughout the execution of the 
source program (for example, an externally declared variable or a local variable de­
clared with the static keyword), it may not be visible in all parts of the program. 
See the next section for information about visibility, and see page 43 for a discus­
sion of the storage-class-specifier nonterminal. 

Memory can be allocated as needed (dynamic) if created through the use of special 
library routines such as malloc. Since dynamic memory allocation uses library 
routines, it is not considered part of the language. See the malloc function in the 
Run-Time Library Reference. 

Scope and Visibility 
An identifier's "visibility" determines the portions of the program in which it can 
be referenced-its "scope." An identifier is visible (i.e., can be used) only in por­
tions of a program encompassed by its "scope," which may be limited (in order of 
increasing restrictiveness) to the file, function, block, or function prototype in 
which it appears. The scope of an identifier is the part of the program in which the 
name can be used. This is sometimes called "lexical scope." There are four kinds 
of scope: function, file, block, and function prototype. 

All identifiers except labels have their scope determined by the level at which the 
declaration occurs. The following rules for each kind of scope govern the visibility 
of identifiers within a program: 

File scope 
The declarator or type specifier for an identifier with file scope appears outside 
any block or list of parameters and is accessible from any place in the trans­
lation unit after its declaration. Identifier names with file scope are often called 
"global" or "external." The scope of a global identifier begins at the point of its 
definition or declaration and terminates at the end of the translation unit. 



36 C Language Reference 

Linkage 

Function scope 
A label is the only kind of identifier that has function scope. A label is declared 
implicitly by its use in a statement. Label names must be unique within a func­
tion. (See page 157 for more information about labels and label names.) 

Block scope 
The declarator or type specifier for an identifier with block scope appears inside 
a block or within the list of formal parameter declarations in a function defini­
tion. It is visible only from the point of its declaration or definition to the end of 
the block containing its declaration or definition. Its scope is limited to that 
block and to any blocks nested in that block and ends at the curly brace that 
closes the associated block. Such identifiers are sometimes called "local 
variables." 

Function-prototype scope 
The declarator or type specifier for an identifier with function-prototype scope 
appears within the list of parameter declarations in a function prototype (not 
part of the function declaration). Its scope terminates at the end of the function 
declarator. 

The appropriate declarations for making variables visible in other source files are 
described in "Storage Classes" on page 43. However, variables and functions de­
clared at the external level with the static storage-class-specifier are visible only 
within the source file in which they are defined. All other functions are globally 
visible. 

Identifier names can refer to different identifiers in different scopes. An identifier 
declared in different scopes or in the same scope more than once can be made to 
refer to the same identifier or function by a process called "linkage." Linkage de­
termines the portions of the program in which an identifier can be referenced (its 
"visibility"). There are three kinds of linkage: internal, external, and none. 

Internal Linkage 
If the declaration of a file-scope identifier for an object or a function contains the 
storage-class-specifier static, the identifier has internal linkage. Otherwise, the 
identifier has external linkage. See page 43 for a discussion of the storage-cLass­
specifier nonterminal. 

Within one translation unit, each instance of an identifier with internal linkage de­
notes the same identifier or function. Internally linked identifiers are unique to a 
translation unit. 



Summary 

Program Structure 37 

External linkage 
If the first declaration at file-scope level for an identifier does not use the static 
storage-class specifier, the object has external linkage. 

If the declaration of an identifier for a function has no storage-class-specifier, its 
linkage is determined exactly as if it were declared with the storage-class-specifier 
extern. If the declaration of an identifier for an object has file scope and no 
storage-class-specifier, its linkage is external. 

An identifier's name with external linkage designates the same function or data ob­
ject as does any other declaration for the same name with external linkage. The 
two declarations can be in the same translation unit or in different translation units. 
If the object or function also has global lifetime, the object or function is shared by 
the entire program. 

No linkage 
If a declaration for an identifier within a block does not include the extern storage­
class specifier, the identifier has no linkage and is unique to the function. 

The following identifiers have no linkage: 

• An identifier declared to be anything other than an object or a function 

• An identifier declared to be a function parameter 

• A block-scope identifier for an object declared without storage-class-specifier 
extern 

If an identifier has no linkage, declaring the same name again (in a declarator or 
type specifier) in the same scope level generates a symbol redefinition error. 

Table 2.1 is a summary of lifetime and visibility characteristics for most identifi­
ers. The first three columns give the attributes that define lifetime and visibility. 
An identifier with the attributes given by the first three columns has the lifetime 
and visibility shown in the fourth and fifth columns. However, the table does not 
cover all possible cases. Refer to the discussion "Storage Classes" on page 43 for 
more information. 



38 C Language Reference 

Table 2.1 Summary of Lifetime and Visibility 
Attributes: Result: 

-----------------------

Level 

File scope 

Block scope 

Item 

Variable 
definition 

Variable 
declaration 

Function 
prototype or 
definition 

Function 
prototype 

Variable 
declaration 

Variable 
definition 

Variable 
definition 

Storage-Class 
Specifier 

static 

extern 

static 

extern 

extern 

static 

auto or 
register 

Lifetime 

Global 

Global 

Global 

Global 

Global 

Global 

Local 

Visibility 

Restricted to 
remainder of 
source file in 
which it 
occurs 

Remainder of 
source file 

Restricted to 
single source 
file 

Remainder of 
source file 

Block 

Block 

Block 

The following program example illustrates blocks, nesting, and visibility of 
variables: 

#include <stdio.h> 

int i = 1; 1* i defined at external level 

int main() 
{ 

1* main function defined at external level 

} 

printf( "%d\n", i ); 1* 
{ 

int i = 2, j = 3; 
printf( "%d\n%d\n", 
{ 

Prints 1 (value of external level i) 

1* Begin first nested block 
1* i and j defined at internal 

i, j ); 1* Prints 2,3 
1* Begin second nested block 

int i = 0; 1* i is redefined: 
printf( "%d\n%d\n", i, j ); 1* Prints 0, 3: 

} 
printf( "%d\n", i ); 

} 
printf( "%d\n", ) ; 

return 0; 

1* End of second nested block 
1* Prints 2 (outer definition 

restored) : 
1* End of first nested block 
1* Prints 1 (external level 
1* definition restored): 

1 evel 

*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 
*1 



Program Structure 39 

In this example, there are four levels of visibility: the external level and three 
block levels. The values are printed to the screen as noted in the comments follow­
ing each statement. 

2.4 Name Spaces 
The compiler sets up "name spaces" to distinguish between the identifiers used for 
different kinds of items. The names within each name space must be unique to 
avoid conflict, but an identical name can appear in more than one name space. 
This means that you can use the same identifier for two or more different items, 
provided that the items are in different name spaces. The compiler can resolve ref­
erences based on the syntactic context of the identifier in the program. 

This list describes the name spaces used in C. 

Statement labels 
Named statement labels are part of statements. Definitions of statement labels 
are always followed by a colon but are not part of case labels. Uses of state­
ment labels always immediately follow the keyword goto. Statement labels do 
not have to be distinct from other names or from label names in other functions. 

Structure, union, and enumeration tags 
These tags are part of structure, union, and enumeration type specifiers and, if 
present, always immediately follow the reserved words struct, union, or enUill. 
The tag names must be distinct from all other structure, enumeration, or union 
tags with the same visibility. 

Members of structures or unions 
Member names are allocated in name spaces associated with each structure and 
union type. That is, the same identifier can be a component name in any num­
ber of structures or unions at the same time. Definitions of component names al­
ways occur within structure or union type specifiers. Uses of component names 
always immediately follow the member-selection operators (-> and .). The 
name of a member must be unique within the structure or union, but it does not 
have to be distinct from other names in the program, including the names of 
members of different structures and unions, or the name of the structure itself. 

Ordinary identifiers 
All other names fall into a name space that includes variables, functions (includ­
ing formal parameters and local variables), and enumeration constants. Identi­
fier names have nested visibility, so you can redefine them within blocks. 

Typedef names 
Typedef names cannot be used as identifiers in the same scope. 

For example, since structure tags, structure members, and variable names are in 
three different name spaces, the three items named student in this example do 



40 C language Reference 

not conflict. The context of each item allows correct interpretation of each occur­
rence of student in the program. (See page 65 for information about structures.) 

struct student { 
char student[20]; 
int class; 
int id; 
} student; 

When student appears after the struct keyword, the compiler recognizes it as a 
structure tag. When student appears after a member-selection operator (-> or .), 
the name refers to the structure member. In other contexts, student refers to the 
structure variable. However, overloading the tag name space is not recommended 
since it obscures meaning. 



Declarations and Types 

This chapter describes the declaration and initialization of variables, functions, and 
types. The C language includes a standard set of basic data types. You can also 
add your own data types, called "derived types," by declaring new ones based on 
types already defined. Topics discussed include 

• Storage-class specifiers 

• Type specifiers 

• Type qualifiers 

• Declarators and variable declarations 

• Initializers 

• Enumeration, structure, union, and array declarations 

• Pointers and based pointers 

• Storage of basic types 

• Typedef declarations 

3.1 Overview of Declarations 
A "declaration" specifies the interpretation and attributes of a set of identifiers. A 
declaration that also causes storage to be reserved for the object or function named 
by the identifier is called a "definition." C declarations for variables, functions, 
and types have this syntax. 



42 C Language Reference 

Syntax declaration: 
declaration-specifiers init-declarator-list opt; 

declaration-specifiers: 
storage-class-specifier declaration-specifiers opt 

type-specifier declaration-specifiers opt 
type-qualifier declaration-specifiers opt 

init-declarator-list : 
init-declarator 
init-declarator-list, in it-declarator 

init-declarator : 
declarator 
declarator = initializer 

Note This syntax for declaration is not repeated in the following sections. Syntax 
in the following sections usually begin with the declarator nonterminal. 

The declarations in the init-declarator-list contain the identifiers being named; init 
is an abbreviation for initializer. The init-declarator-listis a comma-separated 
sequence of declarators, each of which can have additional type information, or an 
initializer, or both. The declarator contains the identifiers, if any, being declared. 
The declaration-specifiers nonterminal consists of a sequence of type and storage­
class specifiers that indicate the linkage, storage duration, and at least part of the 
type of the entities that the declarators denote. Therefore, declarations are made up 
of some combination of storage-class specifiers, type specifiers, type qualifiers, 
declarators, and initializers. 

In the general form of a variable declaration, type-specifier gives the data type of 
the variable. The type-specifier can be a compound, as when the type is modified 
by const, volatile, or one of the special keywords described in "Special Keywords 
in Declarations" on page 55. The declarator gives the name of the variable, 
possibly modified to declare an array or a pointer type. For example, 

int canst __ far *fp; 

declares a variable named fp as a far pointer to a nonmodifiable (const) int value. 
You can define more than one variable in a declaration by using multiple declara­
tors, separated by commas. 

A declaration must have at least one declarator, or its type specifier must declare a 
structure tag, union tag, or members of an enumeration. Declarators provide any 
remaining information about an identifier. A declarator is an identifier that can be 
modified with brackets ([]), asterisks (*), or parentheses ( () ) to declare an array, 
pointer, or function type, respectively. When you declare simple variables (such as 
character, integer, and floating-point items), or structures and unions of simple 



Declarations and Types 43 

variables, the declarator is just an identifier. "Declarators and Variable 
Declarations" on page 53 discusses declarators. 

All definitions are implicitly declarations, but not all declarations are definitions. 
For example, variable declarations that begin with the extern storage-class speci­
fier are "referencing," rather than "defining" declarations. If an external variable is 
to be referred to before it is defined, or if it is defined in another source file from 
the one where it is used, an extern declaration is necessary. Storage is not allo­
cated by "referencing" declarations, nor can variables be initialized in 
declarations. 

A storage class or a type (or both) is required in variable declarations. Only one 
storage-class specifier is allowed in a declaration and not all storage-class specifi­
ers are permitted in every context. The storage-class specifier of a declaration af­
fects how the declared item is stored and initialized, and which parts of a program 
can reference the item. The storage-class-specifier nonterminals defined in C in­
clude: auto, extern, register, static, and typedef. All the storage-class-specifier 
nonterminals except typedef are discussed in "Storage Classes" on page 43. See 
"Typedef Declarations" on page 101 for information about typedef. 

The location of the declaration within the source program and the presence or ab­
sence of other declarations of the variable are important factors in determining the 
lifetime of variables. There can be multiple redeclarations but only one definition. 
However, a definition can appear in more than one translation unit. For objects 
with internal linkage, this rule applies separately to each translation unit, because 
internally linked objects are unique to a translation unit. For objects with external 
linkage, this rule applies to the entire program. See "Understanding Lifetime, 
Scope, Visibility, and Linkage" on page 34 for more information about visibility. 

Type specifiers provide some information about the data types of identifiers. The 
default type specifier is int. Type specifiers are discussed in "Type Specifiers" on 
page 51. Type specifiers may also define type tags, structure and union component 
names, and enumeration constants. Enumerations, structures, and unions are dis­
cussed later in this chapter beginning on page 62. 

There are two type-qualifier nonterminals: const and volatile. These qualifiers 
specify additional properties of types that are relevant only when accessing objects 
of that type through I-values. For more information on const and volatile, see 
"Type Qualifiers" on page 52. For a definition ofl-values, see page 107. 

3.2 Storage Classes 
The "storage class" of a variable determines whether the item has a "global" or 
"local" lifetime. C calls these two lifetimes "static" and "automatic." An item with 
a global lifetime exists and has a value throughout the execution of the program. 
All functions have global lifetimes. 



44 C language Reference 

Syntax 

Automatic variables, or variables with local lifetimes, are allocated new storage 
each time execution control passes to the block in which they are defined. When 
execution returns, the variables no longer have meaningful values. 

C provides the following storage-class specifiers: 

storage-class-specifier: 
auto 
register 
static 
extern 
typedef 

At most one storage-class-specifiermay be given in the declaration-specifier in a 
declaration. If no storage-class specification is made, declarations within a block 
create automatic objects. 

Items declared with the auto or register specifier have local lifetimes. Items de­
clared with the static or extern specifier have global lifetimes. 

Since typedef is semantically different from the other four storage-class-specifier 
nonterminals, it is discussed separately in "TypedefDeclarations" on page 101. 

The placement of variable and function declarations within source files also 
affects storage class and visibility. Declarations outside all function definitions 
are said to appear at the "external level." Declarations within function definitions 
appear at the "internal level." 

The exact meaning of each storage-class specifier depends on two factors: 

• Whether the declaration appears at the external or internal level 

• Whether the item being declared is a variable or a function 

"Storage-Class Specifiers for External-Level Declarations" on page 44 and 
"Storage-Class Specifiers for Internal-Level Declarations" on page 47 describe the 
storage-class-specifiernonterminals in each kind of declaration and explain the de­
fault behavior when the storage-class-specifzernonterminal is omitted from a vari­
able. "Storage-Class Specifiers with Function Declarations" on page 50 discusses 
storage-class specifiers used with functions. 

Storage-Class Specifiers for External-Level Declarations 
External variables are variables at file scope. They are defined outside any func­
tion, and they are potentially available to many functions. Functions may only be 
defined at the external level and, therefore, cannot be nested. By default, all refer­
ences to external variables and functions of the same name are references to the 
same object, which means they have "external linkage." (You can use the static 



Declarations and Types 45 

keyword to override this. See information later in this section for more details on 
static.) 

Variable declarations at the external level are either definitions of variables ("de­
fining declarations"), or references to variables defined elsewhere ("referencing 
declarations"). 

An external variable declaration that also initializes the variable (implicitly or ex­
plicitly) is a defining declaration of the variable. A definition at the external level 
can take several forms: 

• A variable that you declare with the static storage-class specifier. You can ex­
plicitly initialize the static variable with a constant expression, as described in 
"Initialization" on page 9l. If you omit the initializer, the variable is initialized 
to 0 by default. For example, these two statements are both considered defini­
tions of the variable k. 

static int k = 16; 
static int k; 

• A variable that you explicitly initialize at the external level. For example, i nt 
j = 3; is a definition of the variable j. 

In variable declarations at the external level (that is, outside all functions), you can 
use the static or extern storage-class specifier or omit the storage-class specifier 
entirely. You cannot use the auto and register storage-class-specifiernontermi­
nals at the external level. 

Once a variable is defined at the external level, it is visible throughout the rest of 
the translation unit. The variable is not visible prior to its declaration in the same 
source file. Also, it is not visible in other source files of the program, unless a ref­
erencing declaration makes it visible, as described below. 

The rules relating to static include: 

• Variables declared outside all blocks without the static keyword always retain 
their values throughout the program. To restrict their access to a particular trans­
lation unit, you must use the static keyword. This gives them "internal link­
age." To make them global to an entire program, omit the explicit storage class 
or use the keyword extern (see the rules in the next list). This gives them "ex­
ternallinkage." Internal and external linkage are also discussed in "Linkage" on 
page 36. 

• You can define a variable at the external level only once within a program. You 
can define another variable with the same name and the static storage-class 
specifier in a different translation unit. Since each static definition is visible 
only within its own translation unit, no conflict occurs. This provides a useful 
way to hide identifier names that must be shared among functions of a single 
translation unit, but not visible to other translation units. 



46 C language Reference 

• The static storage-class specifier can apply to functions as well. If you declare 
a function static, its name is invisible outside of the file in which it is declared. 

The rules for using extern are 

• The extern storage-class specifier declares a reference to a variable defined 
elsewhere. You can use an extern declaration to make a definition in another 
source file visible, or to make a variable visible prior to its definition in the 
same source file. Once you have declared a reference to the variable at the exter­
nallevel, the variable is visible throughout the remainder of the translation unit 
in which the declared reference occurs. 

• For an extern reference to be valid, the variable it refers to must be defined 
once, and only once, at the external level. This definition (without the extern 
storage class) can be in any of the translation units that make up the program. 

The example below illustrates external declarations: 

1****************************************************************** 
SOURCE FILE ONE 

*******************************************************************1 

extern int i . , 
void next( void ) ; 

rna i n () 
{ 

i++; 
printf( "%d\n", 
next(); 

int i = 3; 

void next( void ) 

{ 

i++; 
pri ntf( "%d\n", 
other(); 

} 

) ; 

) ; 

1* Reference to i, defined below *1 
1* Function prototype *1 

1* equals 4 *1 

1* Definition of *1 

1* equals 5 *1 

1****************************************************************** 
SOURCE FILE TWO 

*******************************************************************1 

extern i nt i; 

void other( void 
{ 

i++; 
printf( "%d\n", ) ; 

1* Reference to i in *1 
1* first source file *1 

1* equals 6 *1 



Declarations and Types 47 

The two source files in this example contain a total of three external declarations 
of i. Only one declaration is a "defining declaration." That declaration, 

int i = 3 

defines the global variable i and initializes it with initial value 3. The "refer­
encing" declaration of i at the top of the first source file using extern makes the 
global variable visible prior to its defining declaration in the file. The referencing 
declaration of i in the second source file also makes the variable visible in that 
source file. If a defining instance for a variable is not provided in the translation 
unit, the compiler assumes there is an 

extern int x; 

referencing declaration and that a defining reference 

int x = 0; 

appears in another translation unit of the program. 

All three functions, mai n, next, and other, perform the same task: they increase 
i and print it. The values 4, 5, and 6 are printed. 

If the variable i had not been initialized, it would have been set to 0 automat­
ically. In this case, the values 1,2, and 3 would have been printed. See "Initializa­
tion" on page 91 for information about variable initialization. 

Storage-Class Specifiers for Internal-Level Declarations 
You can use any ofthe four storage-class-specifiernonterminals for variable dec­
larations at the internal level. When you omit the storage-class-specifier from 
such a declaration, the default storage class is auto. Therefore, the keyword auto 
is rarely seen in a C program. 

The auto Storage-Class Specifier 
The auto storage-class specifier declares an automatic variable, a variable with a 
local lifetime. An auto variable is visible only in the block in which it is declared. 
Declarations of auto variables can include initializers, as discussed in "Initializa­
tion" on page 91. Since variables with auto storage class are not initialized auto­
matically, you should either explicitly initialize them when you declare them, or 
assign them initial values in statements within the block. The values of uninitial­
ized auto variables are undefined. (A local variable of auto or register storage 
class is initialized each time it comes in scope if an initializer is given.) 



48 C Language Reference 

A internal static variable (a static variable with local or block scope) can be initial­
ized with the address of any external or static item, but not with the address of 
another auto item, because the address of an auto item is not a constant. 

The register Storage-Class Specifier 
The register storage-class-specifiertells the compiler to give an automatic varia­
ble storage in a register, if possible. Register storage usually speeds access time 
and reduces code size. Variables declared with register storage class have the 
same visibility as auto variables. You cannot apply the unary address-of operator 
(&) to a register object (see page 111 for information about operators). 

The number of registers that can be used for variable storage is machine­
dependent. If no registers are available when the compiler encounters a register 
declaration, the variable is given auto storage class and stored in memory. Regis­
ter storage, if available, is only guaranteed for int and pointer types that are the 
same size as an int. (An initialized local variable of automatic or register storage 
class is initialized each time it comes in scope if an initializer is given.) 

Microsoft Specific The Microsoft C/C++ version 7.0 16-bit compiler uses the SI and DI registers for 
register variables. 

32-Bit Specific 

The default for Microsoft C is that the Microsoft extensions are enabled. Use the 
/Za command-line option to disable these extensions .• 

The 32-bit compiler uses the ESI, EDI, and EBX registers .• 

The static Storage-Class Specifier 
A variable declared at the internal level with the static storage-class specifier has a 
global lifetime but is visible only within the block in which it is declared. For con­
stant strings, using static is useful because it alleviates the overhead of frequent in­
itialization in often-called functions. 

If you do not explicitly initialize a static variable, it is initialized to 0 by default. 
Inside a function, static causes storage to be allocated and serves as a definition. 
Internal static variables provide private, permanent storage visible to only a single 
function. 

The extern Storage-Class Specifier 
A variable declared with the extern storage-class specifier is a reference to a varia­
ble with the same name defined at the external level in any of the source files of 
the program. The internal extern declaration is used to make the external-level 
variable definition visible within the block. Unless otherwise declared at the 



Declarations and Types 49 

external level, a variable declared with the extern keyword is visible only in the 
block in which it is declared. This example illustrates internal- and external-level 
declarations: 

#include <stdio.h> 

int i = 1; 

void other( void ); 

ma i n ( ) 
{ 1* Reference to i, defined above: *1 

extern i nt i; 

1* Initial value is zero; a is visible only within main: *1 
static int a; 

1* b is stored in a register, if possible: *1 
register int b = 0; 

1* Default storage class is auto: *1 
int c = 0; 

1* Values printed are 1, 0, 0, 0: *1 
pri ntf( "%d\n%d\n%d\n%d\n", i, a, b, c ); 
other(); 
return; 

void other( void) 
{ 

1* Address of global 
static int *external 

assigned to pointer variable *1 
= &i; 

1* i is redefined; global i no longer visible: *1 
int i = 16; 

1* This a is visible only within the other function: *1 
static int a = 2; 

a += 2; 
1* Values printed are 16, 4, and I: *1 
printf( "%d\n%d\n%d\n", i, a, *external ); 

In this example, the variable i is defined at the external level with initial value 1. 
An extern declaration in the ma in function is used to declare a reference to the 
external-level i. The static variable a is initialized to ° by default, since the in­
itializer is omitted. The call to pri ntf prints the values 1,0,0, and 0. 



50 C Language Reference 

In the at her function, the address of the global variable i is used to initialize 
the static pointer variable externa 1_ i. This works because the global variable has 
static lifetime, meaning its address does not change during program execution. 
Next, the variable i is redefined as a local variable with initial value 16. This re­
definition does not affect the value of the external-level i, which is hidden by the 
use of its name for the local variable. The value of the global i is now accessible 
only indirectly within this block, tht;:ough the pointer externa1_ i. Attempting to 
assign the address of the auto variable i to a pointer does not work, since it may 
be different each time the block is entered. The variable a is declared as a static 
variable and initialized to 2. This a does not conflict with the a in rna i n, since 
static variables at the internal level are visible only within the block in which they 
are declared. 

The variable a is increased by 2, giving 4 as the result. If the other function 
were called again in the same program, the initial value of a would be 4, since in­
ternal static variables keep their values when the program exits and then reenters 
the block in which they are declared. 

Storage-Class Specifiers with Function Declarations 

Microsoft Specific 

Microsoft Specific 

You can use either the static or the extern storage-class specifier in function decla­
rations. Functions always have global lifetimes. 

Function declarations at the internal level have the same meaning as function dec­
larations at the external level. This means that a function is visible from its point 
of declaration throughout the rest of the translation unit even if it is declared at 
local scope .• 

The visibility rules for functions vary slightly from the rules for variables, as 
follows: 

• A function declared to be static is visible only within the source file in which it 
is defined. Functions in the same source file can call the static function, but 
functions in other source files cannot access it directly by name. You can de­
clare another static function with the same name in a different source file 
without conflict. 

• Functions declared as extern are visible throughout all the source files that 
make up the program (unless you later redeclare such a function as static). Any 
function can call an extern function. 

• Function declarations that omit the storage-class specifier are extern by default. 

Microsoft allows redefinition of an extern identifier as static .• 



Declarations and Types 51 

3.3 Type Specifiers 

Syntax 

Type specifiers in declarations define the type of a variable or function 
declaration. 

type-specifier: 
void 
char 
short 
int 
long 
float 
double 
signed 
unsigned 
struct-or-union-specifier 
enum-specifier 
typedef-name 

The signed char, signed int, signed short int, and signed long int types, together 
with their unsigned counterparts and enum, are called "integral" types. The float, 
double, and long double type specifiers are referred to as "floating" or "floating­
point" types. You can use any integral or floating-point type specifier in a variable 
or function declaration. If a type-specifier is not provided in a declaration, it is 
taken to be int. 

The optional keywords signed and unsigned can precede or follow any of the inte­
gral types, except enum, and can also be used alone as type specifiers, in which 
case they are understood as signed int and unsigned int, respectively. When used 
alone, the keyword int is assumed to be signed. When used alone, the keywords 
long and short are understood as long int and short int. 

Enumeration types are considered basic types. Type specifiers for enumeration 
types are discussed in "Enumeration Declarations" on page 62. 

The keyword void has three uses: to specify a function return type, to specify an 
argument-type list for a function that takes no arguments, and to specify a pointer 
to an unspecified type. You can use the void type to declare functions that return 
no value or to declare a pointer to an unspecified type. See "Arguments" on page 
185 for information on void when it appears alone within the parentheses follow­
ing a function name. 

Type void expressions are evaluated for side effects. You cannot use the (nonex­
istent) value of an expression that has type void in any way, nor can you convert a 
void expression (by implicit or explicit conversion) to any type except void. If you 
do use an expression of any other type in a context where a void expression is re­
quired, its value is discarded. 



52 C Language Reference 

Microsoft Specific 

You can create additional type specifiers with typedef declarations, as described 
in "Typedef Declarations" on page 1 0 1. See page 98 for information on the size of 
each type. 

This manual generally uses the forms of the type specifiers listed in Table 3.1 
rather than the long forms, and it assumes that the char type is signed by default. 
Therefore, throughout this manual, char is equivalent to signed char. 

Table 3.1 Type Specifiers and Equivalents 

Type Specifier 

signed char I 

signed int 

signed short int 

signed long int 
unsigned charI 

unsigned int 
unsigned short int 

unsigned long int 
float 

longdouhle 

Equivalent(s) 

char 

signed, int 
short, signed short 

long, signed long 

unsigned 

unsigned short 

unsigned long 

1 When you make the char type unsigned by default (by specifying the IJ compiler option), you cannot 
abbreviate signed char or unsigned char as char. 

You can specify the /J compiler option to change the default char type from 
signed to unsigned. When this option is in effect, char means the same as 
unsigned char, and you must use the signed keyword to declare a signed charac­
ter value. The /J command-line option does not effect a char value that is expli­
citly declared signed. The char type is zero-extended, not sign-extended, when /J 
is specified. • 

3.4 Type Qualifiers 
Type qualifiers give one of two properties to an identifier. The const type qualifier 
declares an object to be nonmodifiable. The volatile type qualifier declares an 
item whose value can legitimately be changed by something beyond the control of 
the program in which it appears, such as a concurrently executing thread. The two 
type qualifiers, const and volatile, can appear only once in a declaration and must 
be placed after the type they qualify. Type qualifiers can appear with any type 
specifier. They are relevant only when accessing identifiers as I-values in expres­
sions. See "L-Value and R -Value Expressions" on page 107 for information about 
I-values and expressions. 



Syntax type-qualifier: 
const 
volatile 

Declarations and Types 53 

The following are legal const and volatile declarations: 

int const *p_ ci ; 1* Pointer to constant int *1 
int const (*p_ci); 1* Pointer to constant int *1 
int *const cp_ i ; 1* Constant pointer to int *1 
int (*const c p_ i ) ; 1* Constant pointer to int *1 
int volatile vint; 1* Volatile integer *1 

If the specification of an array type includes type qualifiers, the element is qual­
ified, not the array type. If the specification of the function type includes qualifi­
ers, the behavior is undefined. Neither volatile nor const affect the range of values 
or arithmetic properties of the object. 

This list describes how to use const and volatile. 

• The const keyword can be used to modify any fundamental or aggregate type, a 
pointer to an object of any type, or a typedef. If an item is declared with only 
the const type qualifier, its type is taken to be const int. A const variable can 
be initialized. A const object can be placed in a read-only region of storage. 
The const keyword is useful for declaring pointers to const since this requires 
the function not to change the pointer in any way. 

• The compiler assumes that, at any point in the program, a volatile variable can 
be accessed by an unknown process that uses or modifies its value. Therefore, 
regardless of the optimizations specified on the command line, the code for 
each assignment to or reference of a volatile variable must be generated even if 
it appears to have no effect. 

If volatile is used alone, int is assumed. The volatile type specifier can be used 
to provide reliable access to special memory locations. Use volatile with data 
objects that may be accessed or altered by signal handlers, by concurrently ex­
ecuting programs, or by special hardware such as memory-mapped 110 control 
registers. You can declare a variable as volatile for its lifetime, or you can cast 
a single reference to be volatile. 

• An item can be both const and volatile, in which case the item could not be 
legitimately modified by its own program, but could be modified by some asyn­
chronous process. 

3.5 Declarators and Variable Declarations 
The rest of this chapter describes the form and meaning of declarations for varia­
ble types summarized in this list. In particular, the remaining sections explain how 
to declare the following: 



54 C Language Reference 

Microsoft Specific 

Syntax 

Type of Variable 

Simple variables 

Arrays 

Pointers 

Enumeration variables 

Structures 

Unions 

Description 

Single-value variables with integral or floating-point type 

Variables composed of a collection of elements with the 
same type 

Variables that point to other variables and contain variable 
locations (in the form of addresses) instead of values 

Simple variables with integral type that hold one value from 
a set of named integer constants 

Variables composed of a collection of values that can have 
different types 

Variables composed of several values of different types that 
occupy the same storage space 

A declarator is the part of a declaration that specifies the name that is to be intro­
duced into the program. It can include modifiers such as * (pointer-to) and any of 
the Microsoft calling-convention and memory-model keywords. 

In the declarator 

char * __ far *var; 

char is the type specifier, * far and * are the modifiers, and var istheidenti­
fier's name .• 

You use declarators to declare arrays of values, pointers to values, and functions 
returning values of a specified type. Declarators appear in the pointer, array, and 
function declarations described later in this chapter. 

declarator: 
pointer opt direct-declarator 

direct-declarator: 
identifier 
( declarator) 
direct-declarator [ constant-expression opJ 
direct-declarator (parameter-type-list) 
direct-declarator ( identifier-list opt) 

pointer: 
* type-qualifier-list opt 
* type-qualifier-list opt pointer 

type-qualifier-list: 
type-qualifier 
type-qualifier-list type-qualifier 



Declarations and Types 55 

Note See the syntax for declaration in "Overview of Declarations" on page 41, or 
look in Appendix A for the syntax that references a declarator. 

When a declarator consists of an unmodified identifier, the item being declared 
has a base type. If an asterisk (*) appears to the left of an identifier, the type is 
modified to a pointer type. If the identifier is followed by brackets ([ ]), the type is 
modified to an array type. If the identifier is followed by parentheses, the type is 
modified to a function type. See page 88 for more information about interpreting 
precedence within declarations. 

Each declarator declares at least one identifier. A declarator must include a type 
specifier to be a complete declaration. The type specifier gives the type of the ele­
ments of an array type, the type of object addressed by a pointer type, or the return 
type of a function. 

Microsoft Specific Up to 12 pointer, array, and function declarators in any valid combination are 
allowed to modify an arithmetic, structure, union, or incomplete type either 
directly or with typedef declarations .• 

Array, pointer, and function declarations are discussed in more detail later in this 
chapter. The following examples illustrate a few simple forms of declarators: 

int list[20]; 1* Declares an array of int values named list *1 

char *cp; 1* Declares a pointer named cp to a char value *1 

daub 1 e func( void ); 1* Declares a function named func, with no 
arguments, that returns a double value *1 

int *aptr[1] 1* Declares an array of 10 pointers *1 

Microsoft Specific The Microsoft C compiler does not limit the number of declarators that can mod­
ify an arithmetic, structure, or union type. The number is limited only by available 
memory .• 

Special Keywords in Declarations (Microsoft Specific) 
The following special keywords can also be used in declarations. Since these key­
words are not used in all C compilers, code using these keywords may not be 
portable. 

• The special keywords related to addressing are __ near, __ far, __ huge, and 
__ based. 

• The special keywords related to calling conventions are __ cdecl, __ fortran, 
__ pascal, __ stdcall, and __ fastcall. 



56 C Language Reference 

32-Bit Specific 

These keywords modify the meaning of variable and function declarations. When 
a special keyword appears in a declarator, it modifies the item immediately to the 
right of the keyword. 

You can apply more than one special keyword to the same item. For example, you 
might modify a function identifier with both the __ far keyword and the __ pascal 
keyword. In this case, the order of the keywords does not matter (that is, __ far 
__ pascal myvar and __ pascal __ far myvar have the same effect). Thus the 
"binding" characteristics of the special keywords are the same as those of the type 
specifiers const and volatile except that const and volatile bind to the left and the 
keywords such as __ far bind to the right. ("Type Qualifiers" on page 52 contains 
descriptions of the const and volatile keywords.) 

Using Address-Related Keywords 
The __ near, __ far, __ huge, and __ based keywords modify either objects or 
pointers to objects. If an object identifier is to the right of the keyword, the key­
word determines if the object will be allocated in the default data segment or in a 
separate data segment. If a pointer is to the right of the keyword, the keyword de­
termines whether the pointer will hold a near, based, far, or huge address. 
Examples using these keywords appear in "Using the Special Keywords" on 
page 59. 

You can override the default addressing convention for a given function, function 
call, or data reference by declaring code or data items as near, far, huge, or based. 
You don't need to change the addressing conventions for the program as a whole 
if you use the __ near, __ far, __ huge, or __ based keyword. 

The following list summarizes the characteristics of data defined with these key­
words. See "Function Attributes" on page 168 for additional information on using 
these keywords in function declarations. 

__ near 
Data resides in the default data segment, _DATA. It is referenced with 16-bit 
addresses (near pointers to data are 16 bits), so data addressed can be in the 
default segment only. Variables declared with the __ near keyword use 16-bit 
pointer arithmetic. 

The 32-bit compiler does not allow the use of the __ near keyword .• 

__ far 
Data can be anywhere in memory. It is not assumed to reside in the current data 
segment. Data items are referenced with 32-bit addresses (far pointers to data 
are 32 bits). Data objects declared as far must reside within the segment in 
which they start. Therefore, they must be smaller than 64K. Variables declared 
with the __ far keyword use 16-bit pointer arithmetic. 



32-Bit Specific 

32-Bit Specific 

32-Bit Specific 

32-Bit Specific 

Declarations and Types 57 

The 32-bit compiler does not allow the use of the __ far keyword .• 

__ huge 
Data can be anywhere in memory. It is not assumed to reside in the current data 
segment. Individual arrays can exceed 64K in size. Data is referenced with 32-
bit addresses (huge pointers to data are 32 bits). The __ huge keyword is not 
applicable to functions. Variables declared with the __ huge keyword use 32-
bit pointer arithmetic for data (same restrictions as for arrays specified with the 
__ huge keyword). Objects declared as huge trade efficiency in pointer arith­
metic for relaxed limits on array and object size. Objects with automatic storage 
class cannot be declared as huge. 

The 32-bit compiler does not allow the use of the __ huge keyword .• 

__ based 
Data can be anywhere in memory. It is not assumed to reside in the current data 
segment. The range of 32-bit addresses is provided by 16-bit addresses plus a 
programmer-provided base. A based pointer is a 16-bit value interpreted as an 
offset from a supplied base. Variables declared with the __ based keyword use 
16-bit pointer arithmetic for data. See "Based Pointers" on page 79 for more in­
formation on __ based. 

The __ based keyword is recommended instead of the alloc text pragma for 
specifying the location of a function. However, the alloc text pragma is still 
supported. 

For 32-bit targets, __ based specifies that a pointer is a 32-bit offset from a 32-
bit base .• 

Using Calling-Convention-Related Keywords 
These modifiers are placed before the function name and can appear before or 
after the __ near, __ far, __ huge, or __ based modifiers. This list explains each 
of the keywords used to specify calling conventions. These keywords begin with 
two underscores. See "Identifiers" on page 5 for information about this ANSI 
naming convention. 

__ pascal, __ fortran 
Specifies that the associated function is to be called using the Pascal or FOR­
TRAN calling convention (arguments are pushed from left to right). The 
__ fortran and __ pascal modifiers are synonyms. 

The __ fortran and __ pascal keywords are not accepted for 32-bit targets .• 

__ cdecl 
Specifies that the associated function is to be called using the normal C calling 
convention (arguments are pushed from right to left). Use this specifier with in­
dividual functions if the /Gc compiler option may have been set to make the 



58 C Language Reference 

32-Bit Specific 

32-Bit Specific 

32-Bit Specific 

PascallFORTRAN calling convention the default. This is the default for 16-bit 
targets. 

The __ cdecl calling convention is the default for 32-bit targets .• 

__ fastcall 
Specifies that the function uses a calling convention that passes arguments in 
registers rather than on the stack, resulting in faster code. The __ fastcall cal­
ling convention cannot be used with functions having variable-length parameter 
lists, or functions having any of the following attributes: __ export, 
__ interrupt, __ saveregs. The 16-bit compiler uses the AX, BX, and DX regis­
ters, but Microsoft reserves the right to change the registers and implementation 
of the __ fastcall calling convention between releases of the compiler. 

The 32-bit compiler uses the ECX and EDX registers, but Microsoft reserves 
the right to change the registers and implementation of the __ fastcall calling 
convention between releases of the compiler .• 

__ stdcall 
Specifies that the arguments of the designated function are pushed right to left, 
that an underscore is prepended to the name, and that an at -sign character (@) 
followed by the number of bytes in the argument list is appended to the name 
(called "name decoration"). The __ stdcall calling convention is only available 
for 32-bit targets .• 

__ export 
Specifies that the compiler should place information in the object file to show 
that the symbol is exported from a dynamic-link library (DLL) to Microsoft 
Windows™. 

Nonstatic variables defined with the __ pascal keyword cannot be distinguished 
by case. For example, the following two variables have external linkage and the 
compiler resolves them to one variable: 

int __ pascal A; 
int __ pascal a; 

However, the following two definitions have internal linkage and the compiler re­
solves them to two distinct variables: 

static int __ pascal A; 
static int __ pascal a; 

See "Function Attributes" on page 168 for more information on function calling 
conventions. 



32-Bit Specific 

Declarations and Types 59 

Data Declarations with the __ based Keyword 
Static and external objects can be declared using the __ based keyword. In this 
context, the __ based specification causes the object to be allocated in the 
specified segment. See Chapter 4 of Programming Techniques for more 
information. 

To specify the segment for storing data, you can use the built-in function 
__ segname. This function accepts a string literal and returns a value of type 
__ segment. The code looks like this: 

__ segname( string-literal) 

This declares a based variable by giving a segment constant as a base. The string­
literal can be the name of one of four predefined segments CCODE, _CaNST, 
_DATA, or _STACK), or it can be the name of a new segment you define. 

External data based on seg_expr, a segment variable of type __ segment, has the 
form 

extern type __ based( seg_expr ) 

Data declared this way resides in a location determined at run time. You can re­
locate a segment in memory, set seg_expr to the new location of that segment, and 
access a variable stored in that segment without using pointers. 

Data based on the address of another variable has the form 

__ based( ( __ segment)&var) 

The var specified must itself be based on a named segment. This declaration 
places both variables in the same segment. 

The __ segment and __ segname keywords are not available with the 32-bit 
compiler.. 

Using the Special Keywords 
This section provides examples of how to use the special keywords. You can use 
two or more special keywords in different parts of a declaration to modify the 
meaning of the declaration. For example, the following declaration contains occur­
rences of the __ far and __ near keywords: 

int ___ far * __ pascal __ near func( void ); 

In this example, the __ pascal and __ near keywords modify the function identi­
fier func. The return value of func is declared to be a far pointer to an int 
value. 



60 C Language Reference 

As in any C declaration, you can use parentheses to override the default interpreta­
tion of the declaration. The rules governing complex declarators (discussed in "In­
terpreting More Complex Declarators" on page 88) also apply to declarations that 
use the special keywords. The memory model determines the default size for point­
ers. This can be specified with the command-line options IAL, lAS, lAM, and 
IAR, or (within PWB) by selecting the memory model in the C Compiler Options 
dialog box. 

int __ huge database[65000]; 

This example declares a huge array named database with 65,000 int elements. 
The __ huge keyword modifies the array declarator. 

char * __ far * x; 
char * ( __ far *x); 

In these statements, the __ far keyword modifies the asterisk to its right, making 
x a far pointer to a pointer to char. The second statement is an alternative way to 
write this declaration that can make your code easier to read. 

double near cdecl calc{ double, double ); 

double cdecl near calc{ double, double ); 

Since the special keywords can be used in any order, these two declarations are 
equivalent. Both declare ca 1 c as a function with the __ near and __ cdecl 
attributes. 

char __ far __ fortran initlist[INITSIZE]; 

char __ far *nextchar, __ far *prevchar, __ far *currentchar; 

In the two declarations above, the first declares a __ far __ fortran array of char­
acters named i nit 1 i s t, and the second declares three far pointers named 

nextchar, prevchar, and currentchar. These pointers might be used to store the 
addresses of characters in the i ni tl i st array. Note that the __ far keyword must 
be repeated before each declarator. 

char far *( far *getint){ int far * ); 

6 5 2 1 3 4 

This example shows a more complex declaration with several occurrences of the 
__ far keyword. The numbers indicate the order in which the declaration is inter­
preted in the following procedure: 

1. The identifier get i nt is declared as a 

2. __ far pointer to 

3. a function taking 



Declarations and Types 61 

4. a single argument, that is, a __ far pointer to an int value 

5. and returning a __ far pointer to a 

6. char value. 

Note that the __ far keyword always modifies the item immediately to its right. 
"Interpreting More Complex Declarators" on page 88 provides more information 
about interpreting complex declarators. 

Simple Variable Declarations 

Syntax 

The declaration of a simple variable, the simplest form of a direct declarator, speci­
fies the variable's name and type. It also specifies the variable's storage class and 
data type. 

Storage classes or types (or both) are required on variable declarations. Untyped 
variables (such as a; ) generate warnings. 

declarator: 
pointer opt direct-declarator 

direct-declarator: 
identifier 

identifier: 
nondigit 
identifier nondigit 
identifier digit 

For arithmetic, structure, union, enumerations, and void types, and for types repre­
sented by typedef names, simple declarators may be used in a declaration since 
the type specifier supplies all the typing information. Pointer, array, and function 
types require more complicated declarators. 

You can use a list of identifiers separated by commas (,) to specify several varia­
bles in the same declaration. All variables defined in the declaration have the same 
base type. For example: 

int x, y; /* Declares two simple variables of type int */ 
int const z = 1; /* Declares a constant value of type int */ 

The variables x and y can hold any value in the set defined by the int type for a 
particular implementation. The simple object z is initialized to the value 1 and is 
not modifiable. 

If the declaration of z was for an uninitialized static variable or was at file scope, 
it would receive an initial value of 0, and that value would be unmodifiable. 



62 C language Reference 

unsigned long reply. flag; /* Declares two variables 
named reply and flag */ 

In this example, both the variables, reply and fl ag, have unsigned long type 
and hold unsigned integral values. 

Enumeration Declarations 

Syntax 

An enumeration consists of a set of named integer constants. An enumeration type 
declaration gives the name of the (optional) enumeration tag and defines the set of 
named integer identifiers (called the "enumeration set," "enumerator constants," 
"enumerators," or "members"). A variable with enumeration type stores one of the 
values of the enumeration set defined by that type. 

Variables of enum type may be used in indexing expressions and as operands of 
all arithmetic and relational operators. Enumerations provide an alternative to the 
#define preprocessor directive with the advantages that the values can be 
generated for you and obey normal scoping rules. 

In ANSI C, the expressions that define the value of an enumerator constant always 
have int type; thus, the storage associated with an enumeration variable is the 
storage required for a single int value. An enumeration constant or a value of 
enumerated type can be used anywhere the C language permits an integer 
expression. 

enum-specifier : 
enum identifier opt { enumerator-list} 
enum identifier 

The optional identifier names the enumeration type defined by enumerator-list. 
This identifier is often called the "tag" of the enumeration specified by the list. A 
type specifier of the form 

enum identifier { enumerator-list} 

declares identifier to be the tag of the enumeration specified b~ the enumerator-list 
nonterminal. The enumerator-list defines the "enumerator content." The 
enumerator-list is described in detail below. 

If the declaration of a tag is visible, subsequent declarations that use the tag but 
omit enumerator-list specify the previously declared enumerated type. The tag 
must refer to a defined enumeration type, and that enumeration type must be in 
current scope. Since the enumeration type is defined elsewhere, the enumerator­
list does not appear in this declaration. Declarations of types derived from 
enumerations and typedef declarations for enumeration types can use the enumera­
tion tag before the enumeration type is defined. 



Syntax enumerator-list: 
enumerator 
enumerator-list, enumerator 

enumerator: 
enumeration-constant 
enumeration-constant = constant-expression 

enumeration-constant: 
identifier 

Declarations and Types 63 

Each enumeration-constant in an enumeration-list names a value of the enumera­
tion set. By default, the first enumeration-constant is associated ,with the value O. 
The next enumeration-constant in the list is associated with the value of ( constant­
expression + I ), unless you explicitly associate it with another value. The name of 
an enumeration-constant is equivalent to its value. 

You can use enumeration-constant = constant-expression to override the default 
sequence of values. Thus, if enumeration-constant = constant-expression appears 
in the enumerator-list, the enumeration-constant is associated with the value given 
by constant-expression. The constant-expression must have int type and can be 
negative. 

The following rules apply to the members of an enumeration set: 

• An enumeration set can contain duplicate constant values. For example, you 
could associate the value 0 with two different identifiers, perhaps named null 
and zero, in the same set. 

• The identifiers in the enumeration list must be distinct from other identifiers in 
the same scope with the same visibility, including ordinary variable names and 
identifiers in other enumeration lists. 

• Enumeration tags obey the normal scoping rules. They must be distinct from 
other enumeration, structure, and union tags with the same visibility. 

These examples illustrate enumeration declarations: 

enum DAY 
{ 

saturday, 
sunday = 0, 
monday, 
tuesday, 
wednesday, 
thursday, 
friday 

} workday; 

1* 

1* 
1* 
1* 

1* 

Defines an enumeration type 

names day and declares a 
variable named workday with 
that type 

wednesday is associated with 3 

*1 

*1 
*1 
*1 

*1 



64 C Language Reference 

The value 0 is associated with saturday by default. The identifier sunday is ex­
plicitly set to O. The remaining identifiers are given the values 1 through 5 by 
default. 

In this example, a value from the set DAY is assigned to the variable today. 

enum DAY today = wednesday; 

Note that the name of the enumeration constant is used to assign the value. Since 
the DAY enumeration type was previously declared, only the enumeration tag DAY 
is necessary. 

To explicitly assign an integer value to a variable of an enumerated data type, use 
a type cast: 

workday = ( enum DAY) ( day_value - 1 ); 

This cast is recommended in C but is not required. 

enum BOOLEAN 1* Declares an enumeration data type called BOOLEAN *1 
{ 

false, 1* false = 0, true = 1 *1 
true 

} ; 

enum BOOLEAN end_flag, match_flag; 1* Two variables of type BOOLEAN *1 

This declaration can also be specified as 

enum BOOLEAN { false, true} end_flag, match_flag; 

or as 

enum BOOLEAN { false, true} end_flag; 
enum BOOLEAN match_flag; 

An example that uses these variables might look like this: 

if ( match_flag == false) 
{ 

1* statement *1 

} 

end_flag = true; 

Unnamed enumerator data types can also be declared. The name of the data type is 
omitted, but variables can be declared. The variable response is a variable ofthe 
type defined: 

enum { yes, no } response; 



Declarations and Types 65 

Structure Declarations 

Syntax 

A "structure declaration" names a type and specifies a sequence of variable values 
(called "members" or "fields" of the structure) that can have different types. An 
optional identifier, called a "tag," gives the name of the structure type and can be 
used in subsequent references to the structure type. A variable of that structure 
type holds the entire sequence defined by that type. Structures in C are similar to 
the types known as "records" in other languages. 

struct-or-union-specifier : 
struct-or-union identifier opt { struct-declaration-list} 
struct-or-union identifier 

struct-or-union : 
struct 
union 

struct-declaration-list: 
struct-declaration 
struct-declaration-list struct-declaration 

The structure content is defined to be 

struct-declaration : 
specifier-qualifier-list struct-declarator-list ; 

specifier-qualifier-list: 
type-specifier specifier-qualifier-list opt 

type-qualifier specifier-qualifier-list opt 

struct-declarator-list: 
struct-declarator 
struct-declarator-list, struct-declarator 

struct-declarator : 
declarator 

The declaration of a structure type does not set aside space for a structure. It is 
only a template for later declarations of structure variables. 

A previously defined identifier (tag) can be used to refer to a structure type de­
fined elsewhere. In this case, struct-declaration-listcannot be repeated as long as 
the definition is visible. Declarations of pointers to structures and typedefs for 
structure types can use the structure tag before the structure type is defined. How­
ever, the structure definition must be encountered prior to any actual use of the 
size of the fields. This is an incomplete definition of the type and the type tag. For 



66 C Language Reference 

this definition to be completed, a type definition must appear later in the same 
scope. 

The struct-declaration-list specifies the types and names of the structure members. 
A struct-declaration-list argument contains one or more variable or bit-field 
declarations. 

Each variable declared in struct-declaration-list is defined as a member of the 
structure type. Variable declarations within struct-declaration-list have the same 
form as other variable declarations discussed in this chapter, except that the decla­
rations cannot contain storage-class specifiers or initializers. The structure mem­
bers can have any variable types except type void, an incomplete type, or a 
function type. 

A member cannot be declared to have the type of the structure in which it appears. 
However, a member can be declared as a pointer to the structure type in which it 
appears as long as the structure type has a tag. This allows you to create linked 
lists of structures. 

Structures follow the same scoping as other identifiers. Structure identifiers must 
be distinct from other structure, union, and enumeration tags with the same 
visibility. 

Each struct-declaration in a struct-declaration-listmust be unique within the list. 
However, identifier names in a struct-declaration-list do not have to be distinct 
from ordinary variable names or from identifiers in other structure declaration lists. 

Nested structures can also be accessed as though they were declared at the file­
scope level. For example, given this declaration: 

struct a 
} 

int x; 
struct b 
{ 

int y; 
} var2; 

} varl; 

these declarations are both legal: 

struct a var3; 
struct b var4; 

These examples illustrate structure declarations: 

struct employee 1* Defines a structure variable named temp *1 
{ 

char name[20]; 
i nt i d; 



long class; 
temp; 

Declarations and Types 67 

The employee structure has three members: name, i d, and cl ass. The name 
member is a 20-element array, and i d and c 1 ass are simple members with int 
and long type, respectively. The identifier employee is the structure identifier. 

struct employee student, faculty, staff; 

This example defines three structure variables: student, facul ty, and staff. 
Each structure has the same list of three members. The members are declared to 
have the structure type emp 1 oyee, defined in the previous example. 

struct 
{ 

float x, y; 
complex; 

1* Defines an anonymous struct and a 
structure variable named complex *1 

The comp 1 ex structure has two members with float type, x and y. The structure 
type has no tag and is therefore unnamed or anonymous. 

struct sample 
{ 

char c; 
fl oat *pf; 

1* Defines a structure named x *1 

struct sample *next; 
x' , 

The first two members of the structure are a char variable and a pointer to a float 
value. The third member, next, is declared as a pointer to the structure type being 
defined ( sampl e ). 

Anonymous structures can be useful when the tag named is not needed. This is the 
case when one declaration defines all structure instances. For example: 

struct 
{ 

int x; 
int y; 

mystruct; 

Embedded structures are often anonymous. 

struct somestruct 
{ 

W' , 

struct 
{ 

1* Anonymous structure *1 

int x, y; 
point; 

int type; 



68 C Language Reference 

Microsoft Specific 

Syntax 

The compiler allows an unsized or zero-sized array as the last member of a struc­
ture. This can be useful if the size of a constant array differs when used in various 
situations. The declaration of such a structure looks like this: 

struct identifier 
{ 

set-oj-declarations 
type array_name[]; 

} ; 

Unsized arrays can appear only as the last member of a structure. Structures con­
taining unsized array declarations can be nested within other structures as long as 
no further members are declared in any enclosing structures. Arrays of such struc­
tures are not allowed. The sizeof operator, when applied to a variable of this type 
or to the type itself, assumes 0 for the size of the array. 

Structure declarations can also be specified without a declarator when they are 
members of another structure or union. The field names are promoted into the en­
closing structure. For example, a nameless structure looks like this: 

struct s 
{ 

float y; 
struct 
{ 

int a, b, C; 
} ; 
char str[10]; 

} *p_ s; 

p_s->b = 100; /* A reference to a field in the s structure */ 

See "Structure and Union Members" on page 119 for information about structure 
references .• 

Bit Fields 
In addition to declarators for members of a structure or union, a structure declara­
tor can also be a specified number of bits, called a "bit field." Its length is set off 
from the declarator for the field name by a colon. A bit field is intepreted as an in­
tegral type. 

struct-declarator: 
declarator 
type-specifier declarator opt: constant-expression 



Microsoft Specific 

Declarations and Types 69 

The constant-expression specifies the width of the field in bits. The type-specifier 
for the declarator must be unsigned int, signed int, or int, and the constant­
expression must be a nonnegative integer value. If the value is zero, the declara­
tion has no declarator. Arrays of bit fields, pointers to bit fields, and functions 
returning bit fields are not allowed. The optional declarator names the bit field. 
Bit fields can only be declared as part of a structure. The address-of operator (&) 
cannot be applied to bit-field components. 

Unnamed bit fields cannot be referenced, and their contents at run time are 
unpredictable. Unnamed bit fields can be used as "dummy" fields, for alignment 
purposes. An unnamed bit field whose width is specified as 0 guarantees that 
storage for the member following it in the struct-declaration list begins on an int 
boundary. 

Bit fields must also be long enough to contain the bit pattern. For example, these 
two statements are not legal: 

short a:17; 
int long y:33; 

/* Illegal! */ 
/* Illegal! */ 

This example defines a two-dimensional array of structures named screen. 

struct 
{ 

unsigned short icon: 8; 
unsigned short color: 4; 
unsigned short underline: 1; 
unsigned short blink: 1; 

} screen[25][80]; 

The array contains 2,000 elements. Each element is an individual structure contain­
ingfourbit-fieldmembers: icon, color, underline, and blink. The size of each 
structure is two bytes. 

Bit fields defined as int are treated as signed. A Microsoft extension to the ANSI 
C standard allows char and long types (both signed and unsigned) for bit fields. 
Unnamed bit fields with base type long, short, or char (signed or unsigned) force 
alignment to a boundary appropriate to the base type. 

Bit fields are allocated within an integer from least-significant to most-significant 
bit. In the following code 

struct mybitfields 
{ 

unsigned short a 
unsigned short b 
unsigned short c 

test; 

4; 
5 . , 
7 . , 



70 C language Reference 

32-Bit Specific 

Microsoft SpeCific 

void main( void ) ; 
{ 

test. a 2' , 
test.b 31; 
test. c 0' , 

} 

the bits would be arranged as follows: 

00000001 11110010 
cccccccb bbbbaaaa 

Since the 8086 family of processors stores the low byte of integer values before 
the high byte, the integer 0x01 F2 above would be stored in physical memory as 
0xF2 followed by 0x01.. 

Storage and Alignment of Structures 
Structure members are stored sequentially in the order in which they are declared: 
the first member has the lowest memory address and the last member the highest. 
Storage for each member begins on a memory boundary appropriate to its type. 
Therefore, unnamed spaces ("holes" or "padding") can appear between structure 
members in memory. The bit patterns appearing in such holes are unpredictable 
and can differ from structure to structure, or over time within a single structure. 

Structure members are aligned to the minimum of their own size or the current 
packing size. For I6-bit targets, the default packing size is 2. This default corre­
sponds to the /Zp2 command-line option. 

The default packing size is 4 for 32-bit targets .• 

To conserve space, or to conform to existing data structures, you may want to 
store structures more or less compactly. The /Zp compiler option or the pack 
pragma controls how structure data is "packed" into memory. For more informa­
tion on pragmas, see "Pragma Directives" on page 209. 

Use the /Zp option to specify the same packing for all structures in a module. 
When you give the /Zp[n] option, where n is 1,2, or 4, each structure member 
after the first is stored on n-byte boundaries, depending on the option you choose. 
If you use the /Zp option without an argument, structure members are packed on 
I-byte boundaries. 

On some processors, the /Zp option can result in slower program execution be­
cause of the time required to unpack structure members when they are accessed. 
For example, on an 8086 processor, this option can reduce efficiency if members 
with int or long type are packed in such a way that they begin on odd-byte 
boundaries. 



32-Bit Specific 

Declarations and Types 71 

To use the pack pragma to specify packing other than the packing specified on the 
command line for particular structures, give the pack( n ) pragma, where n is 1,2, 
or 4, before structures that you want to pack differently. To reinstate the packing 
given on the command line, specify the following with no arguments. 

#pragma pack( ) 1* Enables packing specified on command line *1 

See Chapter 12 in Programming Techniques for more information on packing. 

For 16-bit targets, bit fields default to size short, which can cross a byte boundary 
but not a 16-bit or 32-bit boundary. If the size and location of a bit field would 
cause it to overflow the current integer, the field is moved to the beginning of the 
next available integer. If a bit field is declared as a long, it can hold up to 32 bits. 
In either case, an individual field cannot cross a 16- or 32-bit boundary .• 

Bit fields default to size long for the 32-bit compiler .• 

Union Declarations 

Syntax 

A "union declaration" specifies a set of variable values and, optionally, a tag 
naming the union. The variable values are called "members" of the union and can 
have different types. Unions are similar to "variant records" in other languages. 

struct-or-union-specifier: 
struct-or-union identifier opt{ struct-declaration-list} 
struct-or-union identifier 

struct-or-union : 
struct 
union 

struct-declaration-list: 
struct-declaration 
struct-declaration-list struct-declaration 

The union content is defined to be 

struct-declaration : 
specifier-qualifier-list struct-declarator-list ; 

specifier-qualifier-list: 
type-specifier specifier-qualifier-list opt 

type-qualifier specifier-qualifier-list opt 



72 C language Reference 

struct-declarator-list: 
struct-declarator 
struct-declarator-list, struct-declarator 

A variable with union type stores one of the values defined by that type. The same 
rules govern structure and union declarations. Unions can also have bit fields. 

Members of unions cannot have an incomplete type, type void, or function type. 
Therefore members cannot be an instance of the union but can be pointers to the 
union type being declared. 

A union type declaration is a template only. Memory is not reserved until the 
variable is declared. 

Note If a union of two types is declared and one value is stored, but the union is 
accessed with the other type, the results are unreliable. For example, a union of 
float and int is declared. A float value is stored, but the program later accesses the 
value as an int. In such a situation, the value would depend on the internal storage 
of float values. The integer value would not be reliable. 

The following are examples of unions: 

union sign /* A definition and a declaration */ 
{ 

int svar; 
unsigned uvar; 

} number; 

This example defines a union variable with s i g n type and declares a variable 
named number that has two members: svar,asignedinteger,and uvar,anun­
signed integer. This declaration allows the current value of number to be stored 
as either a signed or an unsigned value. The tag associated with this union type 
is sign. 

union /* Defines a two-dimensional */ 
/* array named screen */ { 

struct 
{ 

unsigned int icon: 8; 
unsigned color: 4; 

} windowl; 
int screenval; 

screen[25][80]; 

The screen array contains 2,000 elements. Each element of the array is an in­
dividual union with two members: wi ndowl and screenval. The wi ndowl mem­
ber is a structure with two bit-field members, i con and color. The screenval 
member is an int. At any given time, each union element holds either the int repre­
sented by screenva 1 or the structure represented by wi ndowl. 



Microsoft Specific 

Declarations and Types 73 

Nested unions can be declared anonymously when they are members of another 
structure or union. This is an example of a nameless union: 

struct str 
{ 

int a, b; 
union 
{ 

} ; 

char c[4]; 
long 1; 
float f; 

char c_array[10]; 
my_str; 

I * Unnamed union *1 

my_str.l == 0L; 1* A reference to a field in the my_str union *1 

Unions are often nested within a structure that includes a field giving the type of 
data contained in the union at any particular time. This is an example of a declara­
tion for such a union: 

struct x 
{ 

int type_tag; 
union 
{ 

} 

int x; 
float y; 

See "Structure and Union Members" on page 119 for information about refer­
encing unions .• 

Storage of Unions 
The storage associated with a union variable is the storage required for the largest 
member of the union. When a smaller member is stored, the union variable can 
contain unused memory space. All members are stored in the same memory space 
and start at the same address. The stored value is overwritten each time a value is 
assigned to a different member. For example: 

union 
{ 

1* Defines a union named jack *1 

char *a, b; 
fl oat f[20]; 

} jack; 



74 C Language Reference 

The members of the j a c k union are, in order of their declaration, a pointer to a 
char value, a char value, and an array of float values. The storage allocated for 
j a c k is the storage required for the 20-element array f, since f is the longest 
member of the union. Because there is no tag associated with the union, its type is 
unnamed or "anonymous." 

Array Declarations 

Syntax 

An "array declaration" names the array and specifies the type of its elements. It 
may also define the number of elements in the array. A variable with array type is 
considered a pointer to the type of the array elements. 

declaration : 
declaration-specifiers init-declarator-list opt; 

init-declarator-list : 
init-declarator 
init-declarator-list, init-declarator 

init-declarator : 
declarator 
declarator = initializer 

declarator: 
pointer opt direct-declarator 

direct-declarator: 
direct-declarator [ constant-expression opt] 

Because constant-expression is optional, the syntax has two forms: 

• The first form defines an array variable. The constant-expression argument 
within the brackets specifies the number of elements in the array. The constant­
expression, if present, must have integral type, and a value larger than zero. 
Each element has the type given by type-specifier, which can be any type ex­
cept void. An array element cannot be a function type. 

• The second form declares a variable that has been defined elsewhere. It omits 
the constant-expression argument in brackets, but not the brackets. You can use 
this form only if you previously have initialized the array, declared it as a para­
meter, or declared it as a reference to an array explicitly defined elsewhere in 
the program. 

In both forms, direct-declarator names the variable and may modify the variable's 
type. The brackets ([ ]) following direct-declarator modify the declarator to 
array type. 



Microsoft Specific 

Declarations and Types 75 

Type qualifiers can appear in the declaration of an object of array type, but the 
qualifiers apply to the elements rather than the array itself. 

You can declare an array of arrays (a "multidimensional" array) by following the 
array declarator with a list of bracketed constant expressions in this form: 

type-specifier declarator [constant-expression] [constant-expression] ... 

Each constant-expression in brackets defines the number of elements in a given di­
mension: two-dimensional arrays have two bracketed expressions, three­
dimensional arrays have three, and so on. You can omit the first constant 
expression if you have initialized the array, declared it as a parameter, or declared 
it as a reference to an array explicitly defined elsewhere in the program. 

You can define arrays of pointers to various types of objects by using complex dec­
larators, as described in "Interpreting More Complex Declarators" on page 88. 

Arrays are stored by row. For example, the following array consists of two rows 
with three columns each: 

char A[2] [3]; 

The three columns of the first row are stored first, followed by the three columns 
of the second row. This means that the last subscript varies most quickly. 

To refer to an individual element of an array, use a subscript expression, as de­
scribed in "Postfix Operators" on page 116. These examples illustrate array 
declarations: 

float matrix[10][15]; 

The two-dimensional array named ma t r i x has 150 elements, each having float 
type. 

struct { 
float x, y; 

} complex[l00]; 

This is a declaration of an array of structures. This array has 100 elements; each 
element is a structure containing two members. 

extern char *name[]; 

This statement declares the type and name of an array of pointers to char. The 
actual definition of name occurs elsewhere. 

The type of integer required to hold the maximum size of an array is the size of 
size_ t. The size_ t type definition for 16-bit targets is an unsigned short, with the 
range OxOOOO to OxFFFF hexadecimal. Huge arrays can exceed this limit if they 



76 C language Reference 

32-Bit Specific 

contain more than 65,535 elements or the size of the element multiplied by the 
number of elements is greater than 65K. Arithmetic operations on arrays specified 
with the __ huge keyword should therefore cast size_ t and the results of an arith­
metic operation on pointers to unsigned long .• 

For 32-bit targets, size_ t is unsigned long and the __ huge keyword is not 
required .• 

Storage of Arrays 
The storage associated with an array type is the storage required for all of its ele­
ments. The elements of an array are stored in contiguous and increasing memory 
locations, from the first element to the last. 

Pointer Declarations 

Syntax 

A "p~inter declaration" names a pointer variable and specifies the type of the ob­
ject to which the variable points. A variable declared as a pointer holds a memory 
address. 

declarator: 
pointer opt direct-declarator 

direct-declarator: 
identifier 
( declarator) 
direct-declarator [ constant-expression opt] 

direct-declarator (parameter-type-list ) 
direct-declarator ( identifier-list opt) 

pointer: 
* type-qualifier-list opt 

* type-qualifier-list opt pointer 

type-qualifier-list: 
type-qualifier 
type-qualifier-list type-qualifier 

The type-specifier gives the type of the object, which can be any basic, structure, 
or union type. Pointer variables can also point to functions, arrays, and other point­
ers. (For information on declaring and interpreting more complex pointer types, 
refer to "Interpreting More Complex Declarators" on page 88.) 

By making the type-specifier void, you can delay specification of the type to 
which the pointer refers. Such an item is referred to as a "pointer to void" and is 



Declarations and Types 77 

written as voi d *. A variable declared as a pointer to void can be used to point to 
an object of any type. However, to perform most operations on the pointer or on 
the object to which it points, the type to which it points must be explicitly 
specified for each operation. (Variables of type char * and type void * are 
assignment-compatible without a type cast.) Such conversion can be accomplished 
with a type cast (see "Type-Cast Conversions" on page 147). 

The type-qualifier can be either const or volatile, or both. These specify, respec­
tively, that the pointer cannot be modified by the program itself (const), or that the 
pointer can legitimately be modified by some process beyond the control of the 
program (volatile). (See "Type Qualifiers" on page 52 for more information on 
const and volatile.) 

The declarator names the variable and can include a type modifier. For example, 
if declarator represents an array, the type of the pointer is modified to be a pointer 
to an array. 

You can declare a pointer to a structure, union, or enumeration type before you de­
fine the structure, union, or enumeration type. You declare the pointer by using the 
structure or union tag as shown in the examples below. Such declarations are al­
lowed because the compiler does not need to know the size of the structure or 
union to allocate space for the pointer variable. 

The following examples illustrate pointer declarations. 

char *message; 1* Declares a pointer variable named message *1 

The message pointer points to a variable with char type. 

int *pointers[10]; 1* Declares an array of pointers *1 

The poi nters array has 10 elements; each element is a pointer to a variable with 
int type. 

int (*pointer)[10]; 1* Declares a pointer to an array of 10 elements *1 

The pointer variable points to an array with 10 elements. Each element in this 
array has int type. 

int canst *x; 1* Declares a pointer variable, x, 
to a constant value *1 

The pointer x can be modified to point to a different int value, but the value to 
which it points cannot be modified. 

canst int some_object = 5 ; 
int other_object = 37; 
int *const y = &fixed_object; 
canst volatile *const z = &some_object; 
int *const volatile w = &some_object; 



78 C Language Reference 

Microsoft Specific 

The variable y in these declarations is declared as a constant pointer to an int 
value. The value it points to can be modified, but the pointer itself must always 
point to the same location: the address of fi xed_ obj ect. Similarly, z is a constant 
pointer, but it is also declared to point to an int whose value cannot be modified 
by the program. The additional specifier vol ati 1 e indicates that although the 
value of the const int pointed to by z cannot be modified by the program, it could 
legitimately be modified by a process running concurrently with the program. The 
declaration of w specifies that the program cannot change the value pointed to and 
that the program cannot modify the pointer. 

struct list *next, *previous; /* Uses the tag for list */ 

This example declares two pointer variables, next and previ ous, that point to the 
structure type 1 i st. This declaration can appear before the definition of the 1 i s t 
structure type (see the next example), as long as the 1 i st type definition has the 
same visibility as the declaration. 

struct list 
{ 

char *token; 
int count; 
struct list *next; 

} 1 i ne; 

The variable 1 i ne has the structure type named 1 i st. The 1 i st structure type 
has three members: the first member is a pointer to a char value, the second is an 
int value, and the third is a pointer to another 1 i s t structure. 

struct id 
{ 

unsigned int id_no; 
struct name *pname; 

} record; 

The variable record has the structure type i d. Note that pname is declared as a 
pointer to another structure type named name. This declaration can appear before 
the name type is defined. 

Storage of Addresses 
The amount of storage required for an address and the meaning of the address de­
pend on the implementation ofthe compiler. Pointers to different types are not 
guaranteed to have the same length. Therefore, sizeof(char *) is not necessarily 
equal to sizeof(int *). 

For the Microsoft C compiler, sizeof(char *) is equal to sizeof(int *). You can 
also use the special keywords __ near, __ far, __ huge, and __ based for 16-bit 



Declarations and Types 79 

targets to modify and reference the size of a pointer. Declarations using special 
keywords are described in "Special Keywords in Declarations" on page 55.+ 

Based Pointers (Microsoft Specific) 
For the 16-bit compiler, a based pointer operates as a 16-bit offset from a base you 
specify. For the 32-bit compiler, a based pointer is a 32-bit offset from a 32-bit 
pointer base. In this respect, based addressing differs from near, far, or huge ad­
dressing because you are responsible for naming the base. 

Based addressing is useful for exercising control over segments where objects are 
allocated and for referencing far objects with 16-bit addresses, thereby decreasing 
the size of the executable file and increasing execution speed. 

The __ based keyword specifies that a pointer is a 16-bit value interpreted as an 
offset from a specified base, or that a data object resides in the segment given by a 
specified base. In general, the form for specifying a based pointer is 

type __ based( base) declarator 

The following code shows some examples of based pointer declarations: 

typedef struct tree BTree; 

struct tree 
{ 

1* Binary tree *1 

} ; 

char *szSymbolName; 
BTree *btLeft; 
BTree *btRight; 

1* Pointer to data that resides in segment SYM_DATA: *1 

BTree __ based( __ segname( "SYM_DATA" ) ) *btSymTabl el; 

1* Pointer to data that resides in same segment 
as the pointer btSymTable3: *1 

BTree __ based( ( __ segment) __ self) *btSymTable3; 

Based pointers can address any location in memory but are only two bytes in size 
for 16-bit targets (4 bytes for 32-bit targets), because they contain only the offset 
portion of an address. The segment portion of the address is stored separately and 
is combined with the offset when needed. Multiple based pointers can share the 
same segment value, so they require less memory than far pointers and allow the 
compiler to generate better code. 

You also can use the __ based keyword to specify the segment in which data 
resides. 



80 C Language Reference 

32-Bit Specific 

A based pointer can be based on a fixed segment, a variable segment, self, void, or 
a pointer. The following sections explain these topics. See Chapter 4 in Program­
ming Techniques for additional information on using based addressing. 

The __ segname and __ segment Keywords (Microsoft Specific) 
The built-in function __ segname accepts a quoted string and returns a value of 
type __ segment. This built-in function can be used to initialize variables of type 
__ segment or in declarations of based identifiers or pointers. A __ segname dec­
laration is not an I-value, and its address cannot be taken. The primary use for 
__ segname is in initializing identifiers of type __ segment or in declarations of 
pointers or identifiers of based type. It enables specification of a segment name in­
stead of a segment value when declaring a based type. 

The __ segment keyword is a type that contains a segment value. Variables of 
such type can contain a segment value. A variable or value of that type is used 
either at the point of declaration of a based type or at the point of a based derefer­
ence to specify the segment in which the based identifier resides. 

An identifier of type __ segment can be initialized with the following: 

• An expression that evaluates to an integral constant value. 

• The result of the built-in function __ segname. This allows specification of a 
segment by name, causing the linker to insert segment fixups in the executable 
file, to be resolved at load time. This kind of initialization can be performed 
only on static and external identifiers, not identifiers with block scope. 

• Another expression of type __ segment. For example: 

rna in () 
{ 

__ segment sgCustomerData = 0x7000; 
__ segment sgCurrent = sgCustomerData; 

} 

• Another expression explicitly cast to type __ segment. 

If specified at the point of declaration, the segment value is implicit and need not 
be respecified at the point of dereference (based pointers). Otherwise, the segment 
must be explicitly specified. 

The __ segment type and the built-in function __ segname are not supported by 
the 32-bit compiler .• 

Pointers Based on a Constant (Microsoft Specific) 
Pointers based on a constant are restricted to accessing one segment of memory. 
By making assignments to the based pointer, you change only the offset portion of 



Declarations and Types 81 

the address. To specify a pointer based on a fixed segment, you can use the 
__ segname built-in function or the __ segment keywords to supply the 
segment name. 

Pointers based on a named segment are specified as 

__ segname( string-literal) 

The string-literal can be the name of one of four predefined segments <-CODE, 
_CaNST, _DATA, or _STACK), or it can be the name of a new segment you de­
fine. A based pointer declared this way can address locations in only the specified 
segment. 

Pointers based on the segment of a variable are specified as 

( __ segment)&var 

A based pointer declared this way uses the segment of the address of var as its 
base. It can address locations only in the same segment as var. 

In the following example, sgCanst is explicitly declared as a constant. The 
pointer bpi, therefore, is based on a constant. 

canst __ segment sgCanst = 0x3000; 
char __ based( sgCanst ) *bpl; 

In the following example, the __ segname function returns a constant value of 
type __ segment. The pointer bp3, therefore, is based on a constant. 

char __ based( __ segname("INFO_STRINGS") ) *bp3; 

Pointers Based on a Segment Variable (Microsoft Specific) 
Pointers based on a nonfixed segment have access to locations in any segment 
simply by changing the value of the base. Changing a single segment value causes 
all pointers based on that segment to address new locations. You also can make 
assignments to the based pointers themselves to change their offset values. 

Pointers based on a segment variable require that a variable of type __ segment be 
declared. This variable determines what segment the based pointer refers to. The 
segment variable can be changed at run time. 

type __ based( __ segment) * ptr 

A based pointer declared this way uses the segment portion of ptr as its base. If ptr 
is a near pointer, the declared pointer uses the DS register as its base. If ptr is a far 
pointer, the declared pointer uses the segment of the ptr as its base. Changing the 
segment value of ptr causes the based pointer to address a new location. 



82 C Language Reference 

32-Bit Specific 

The base for pointers based on a segment variable is specified as 

__ segment segvar 

A based pointer declared this way uses segvar as its base. Assigning a new value 
to segvar causes the based pointer to address a different location. This type of 
based pointer can be used for dynamic allocation of based identifiers. 

The form of base of pointers based on another pointer is 

type * ptr 

A based pointer declared this way acts as an offset from ptr. Assigning a new 
value to ptr causes the based pointer to address a different location. 

Pointers Based on Pointers (Microsoft Specific) 
The "based on pointer" variant of based addressing enables specification of a 
pointer as a base. The based pointer, then, is an offset into the segment starting at 
the beginning of the pointer on which it is based. 

One use for pointers based on pointers is for persistent identifiers that contain 
pointers. A linked list that consists of pointers based on a pointer can be saved to 
disk, then reloaded to another place in memory, with the pointers remaining valid. 

The following example shows a pointer based on a pointer. 

void *vpBuffer; 

struct llist_t 
{ 

} ; 

void __ based( vpBuffer ) *vpData; 
llist_t __ based( vpBuffer ) *llNext; 

The pointer vpBuffer is assigned the address of memory allocated at some later 
point in the program. The linked list is relocated relative to the value of vpBuffer. 

Pointers based on pointers are the only form of the __ based keyword valid in 
32-bit compilations. In such compilations, they are 32-bit displacements from a 32-
bit base .• 

Pointers Based on void (Microsoft Specific) 
Pointers based on void defer actual address calculation until the pointer is derefer­
enced. A pointer based on void acts as an offset into any segment. The form of a 
pointer based on void is 



Declarations and Types 83 

type __ based( void) * ptr 

A pointer based on void has no implied segment as its base. The segment specified 
at the point of dereference can be a constant or a segment variable. The segment 
and offset are combined using the base operator (:» to form an address that can be 
dereferenced using the indirection operator (*). 

struct BiosEquipList 1* Structure for the BIOS Equipment List 
{ * that starts at 000:0410 (hex) 

*1 
1* structure fields *1 

} ; 

1* Declare ROM data as const and supply the offset, hex 410: *1 

const BiosEquipList __ based( void) *bpelROM = 0x410; 

int main() 
{ 

BiosEquipList elLocal; 1* Local copy of equipment list *1 

elLocal = *(0x000 :> bpelROM); 1* Segment and offset combined *1 

This example shows how to declare and dereference a pointer based on void. 

Pointers Based on the __ self keyword (Microsoft Specific) 
Pointers based on self can access data anywhere in the segment in which the 
pointer resides. They are declared using the __ self keyword cast to the 
__ segment type as the base. You can only base on ( __ segment) __ self; not on 
__ self only. Basing a pointer on ( __ segment) __ self can improve program per­
formance by requiring that the segment register be the same for addressing both 
the pointer and the data it addresses. Functions cannot return pointers based on 
self. 

The __ segment keyword must be used to cast to a segment value, as in the ex­
ample below: 

typedef struct tree TREE; 

struct tree 
{ 

} ; 

int name; 
TREE __ based( '-_segment) __ sel f 
TREE __ based( ( __ segment) __ self 

*left; 
*right; 

TREE __ based( __ segname( "MYSEGMENT" ) ) t1; 



84 C Language Reference 

32-Bit Specific 

The example above declares a structure called tree and then declares t1 to be 
such a structure. The pointers within the structure are self-based, meaning that 
they point within the segment in which the tree structure is located. 

Pointers based on ( __ segment) __ selfare particularly useful for optimizing 
access in self-referencing data structures such as linked-lists and trees. 

Any based declarations that are based on ( __ segment) __ selfmust apply to point­
ers only. Ordinary data identifiers cannot be self-based. 

Pointers based on __ self are not available for 32-bit targets .• 

Function Declarations 

Syntax 

A "function declaration" establishes the name and return type of a function and 
may specify the types, formal parameter names, and number of arguments to the 
function. A function declaration does not define the function body. It simply 
makes information about the function known to the compiler. This information 
enables the compiler to check the types of the actual arguments passed in calls to 
the function. Functions are declared with declarators: 

declarator: 
pointer opt direct-declarator 

direct-declarator: /* A function declarator */ 
direct-declarator (parameter-type-list ) /* New-style declarator */ 
direct-declarator ( identifier-list opt) /* Old-style declarator */ 

parameter-type-list : 
parameter-list 
parameter-list, .•• 

parameter-list: 
parameter-declaration 
parameter-list, parameter-declaration 

parameter-declaration: 
declaration-specifiers declarator /* Named declarator */ 
declaration-specifiers abstract-declarator opt /* Anonymous declarator */ 

identifier-list: /* For old-style declarator */ 
identifier 
identifier-list, identifier 

~~-----------



declaration-specifiers: 
storage-class-specifier declaration-specifiers opt 

type-specifier declaration-specifiers opt 

type-qualifier declaration-specifiers opt 

Declarations and Types 85 

abstract-declarator: /* Used with anonymous declarators */ 
pointer 
pointer opt direct-abstract-declarator 

direct-abstract-declarator: 
( abstract-declarator) 
direct-abstract-declarator opt [ constant-expression opt] 

direct-abstract-declarator opt ( parameter-type-list opt) 

If specified, storage-class-specifier can be either extern or static. Storage-class 
specifiers are discussed in "Storage Classes" on page 43. The type-specifier gives 
the function's return type, and declarator names the function. If you omit type­
specifier from a function declaration, the function is assumed to return a value of 
type int. The parameter-type-listis described below in "Parameters." 

Other declarators can appear in the same function declaration. These can be other 
functions returning values of the same type as the function, or declarations of any 
variables whose type is the same as the function's return type. Each such declara­
tion must be separated from its predecessors and successors by a comma. 

A function prototype gives information about the parameters, allowing the com­
piler to perform type checking and to convert arguments to the type expected by 
the parameter. The function definition defines the body of the function. 

Parameters 
"Parameters" (sometimes called "formal parameters") describe the actual argu­
ments that can be passed to a function. In a parameter-type list, the parameter dec­
larations establish the number and types of the actual arguments. They can also 
include identifiers of the formal parameters. 

Note Identifiers used to name the parameters in the prototype declaration are de­
scriptive only. They go out of scope at the end of the declaration. Therefore, they 
need not be identical to the identifiers used in the declaration portion of the func­
tion definition. Using the same names may enhance readability but has no other 
significance. 

Although the parameters may be omitted from a function declaration in the op­
tional identifier-list form of the syntax, their inclusion is recommended. The extent 
of the information in the declaration influences the argument checking done on 



86 C language Reference 

function calls that appear before the compiler has processed the function 
definition. 

If a function has no parameters, the parentheses should contain the keyword void 
to specify that no arguments are passed to the function. 

The only explicit storage-class-specijierpermitted in parameters is register. If 
register is not specified, the storage class is auto. The register specifier is ignored 
unless the function declarator has a function definition. If the parentheses contain 
only the register keyword, the parameter is considered to represent an unnamed 
int for which register storage is being requested. 

The declarator for a pointer, array, or function can be formed by combining a type 
specifier, plus the appropriate type qualifier, with an identifier. Alternatively, an 
abstract-declarator (that is, a declarator without a specified identifier) can be 
used. Complete declarators ( i nt a ) and abstract declarators ( i nt ) are per­
mitted in the same prototype. For example: 

int func( int a, int); /* Accepted */ 

In a parameter declaration, a single typedef name inside parentheses is assumed to 
be an abstract declarator specifying a function with a single parameter, not as re­
dundant parentheses around an identifier for the declarator. See page 88 for infor­
mation about abstract declarators. 

One other special construction permitted as a parameter is void *, representing a 
pointer to an identifier of unspecified type. Thus, in a call, the pointer can be used 
to pass any type of identifier after you convert the pointer (for example, with a 
cast) to a pointer to the desired type. Note that before operations can be performed 
on the pointer or the identifier it addresses, the pointer must be explicitly con­
verted. "Pointer Declarations" on page 76 provides further information on void *. 

The list of parameters can be empty, full, or partial. If the list contains at least one 
declarator, a variable number of parameters can be specified by ending the list 
with a comma followed by three periods (, ••• ), referred to as the "ellipsis nota­
tion." No information about the number or type of the parameters after the comma 
is supplied. See "Calls with a Variable Number of Arguments" on page 187 for in­
formation about functions with variable numbers of arguments. 

Microsoft Specific To maintain compatibility with previous versions of the Microsoft C compiler, the 
version 7.0 compiler accepts a comma without trailing periods at the end of a dec­
larator list to indicate a variable number of arguments. (Trailing periods without a 
comma are not allowed.) However, this is a Microsoft extension to the ANSI C 
standard. New code should use the comma followed by three periods. ANSI also 
requires at least one argument before the ellipsis. The STDARG.H file enforces 
this restriction for accessing arguments .• 



Declarations and Types 87 

Return Types 
Functions can return values of any type except arrays and functions. Therefore, the 
type-specifier argument of a function declaration can specify any basic, structure, 
or union type. You can modify the function identifier with one or more asterisks 
(*) to declare a pointer return type. Functions declared as float always return a 
value of type float. In earlier versions of the Microsoft C compiler, the return 
value of a function using the obsolete form of a function declaration and returning 
type float was converted to type double. The Microsoft C version 7.0 compiler 
conforms to the ANSI standard by not changing the return type. 

Although functions cannot return arrays and functions, they can return pointers to 
arrays and functions. You can declare a function that returns a pointer to an array 
or function type by modifying the function identifier with asterisks (*), brackets 
([ ]), and parentheses ( ( ) ). Such a function identifier is known as a "complex dec­
larator." Rules for forming and interpreting complex declarators are discussed in 
"Interpreting More Complex Declarators" on page 88. 

The following examples illustrate return types in function declarations: 

void draw( void ); 

The draw function returns a void type (returns no value). The void keyword also 
replaces the list of parameters so no arguments are allowed for this function. 

double ( *sum(double, double) )[3]; 

In this example, sum is declared as a function returning a pointer to an array of 
three double values. The sum function takes two double values as arguments. 

int ( *select(void) )( int number ); 

The function named sel ect takes no arguments and returns a pointer to a func­
tion. The pointer return value points to a function taking one int argument, repre­
sented by the identifier number, and returning an int value. 

int prt( void * ); 

The function prt takes a pointer argument of any type and returns an int value. A 
pointer to any type could be passed as an argument to prt without producing a 
type-mismatch warning. 

long ( *const rainbow[] ) ( int, ... ) ; 

This array, named ra i nbow, contains an unspecified number of constant pointers 
to functions. Each of these takes at least one parameter of type int, as well as an 
unspecified number of other parameters. Each of the functions pointed to returns a 
long value. 



88 C Language Reference 

Abstract Declarators 
An abstract declarator is a declarator without an identifier, consisting of one or 
more pointer, array, or function modifiers. The pointer modifier (*) always 
precedes the identifier in a declarator; array ([ ]) and function ( ( ) ) modifiers fol­
low the identifier. Knowing this, you can determine where the identifier would ap­
pear in an abstract declarator and interpret the declarator accordingly. See 
"Interpreting More Complex Declarators" on page 88 for additional information 
and examples of complex declarators. Generally typedef can be used to simplify 
declarators. See "Typedef Declarations" on page 101. 

Abstract declarators can be complex. Parentheses in a complex abstract declarator 
specify a particular interpretation, just as they do for the complex declarators in 
declarations. 

These examples illustrate abstract declarators: 

int * /* The type name for a pointer to type int: 

int *[3] /* An array of three pointers to int 

int (*) [5] /* A pointer to an array of five int 

int *() /* A function with no parameter specification 
/* returning a pointer to int 

/* A pointer to a function taking no arguments and 
* returning an int 
*/ 

int (*) ( void 

/* An array of an unspecified number of constant pointers to 

*/ 

*/ 

*/ 

*/ 
*/ 

* functions each with one parameter that has type unsigned int 
* and an unspecified number of other parameters returning an int 
*/ 

int (*const []) ( unsigned int, ... ) 

Note The abstract declarator consisting of a set of empty parentheses, ( ), is not al­
lowed because it is ambiguous. It is impossible to determine whether the implied 
identifier belongs inside the parentheses (in which case it is an unmodified type) 
or before the parentheses (in which case it is a function type). 

3.6 Interpreting More Complex Declarators 
You can enclose any declarator in parentheses to specify a particular interpretation 
of a "complex declarator." A complex declarator is an identifier qualified by more 



Declarations and Types 89 

than one array, pointer, or function modifier. You can apply various combinations 
of array, pointer, and function modifiers to a single identifier. Generally typedef 
may be used to simplify declarations. See "Typedef Declarations" on page 1 0 1. 

In interpreting complex declarators, brackets and parentheses (that is, modifiers to 
the right ofthe identifier) take precedence over asterisks (that is, modifiers to the 
left of the identifier). Brackets and parentheses have the same precedence and 
associate from left to right. After the declarator has been fully interpreted, the type 
specifier is applied as the last step. By using parentheses you can override the de­
fault association order and force a particular interpretation. Never use parentheses, 
however, around an identifier name by itself. This could be misinterpreted as a par­
ameter list. 

A simple way to interpret complex declarators is to read them "from the inside 
out," using the following four steps: 

1. Start with the identifier and look directly to the right for brackets or parentheses 
(if any). 

2. Interpret these brackets or parentheses, then look to the left for asterisks. 

3. If you encounter a right parenthesis at any stage, go back and apply rules 1 and 
2 to everything within the parentheses. 

4. Apply the type specifier. 

char *( *(*var)() )[10]; 

7 642 1 3 5 

In this example, the steps are numbered in order and can be interpreted as follows: 

1. The identifier va r is declared as 

2. a pointer to 

3. a function returning 

4. a pointer to 

5. an array of 10 elements, which are 

6. pointers to 

7. char values. 

The following examples illustrate other complex declarations and show how 
parentheses can affect the meaning of a declaration. 

int *var[5]; /* Array of pointers to int values */ 

The array modifier has higher priority than the pointer modifier, so va r is de­
clared to be an array. The pointer modifier applies to the type of the array ele­
ments; therefore, the array elements are pointers to int values. 



90 C Language Reference 

int (*var)[5]; 1* Pointer to array of int values *1 

In this declaration for va r, parentheses give the pointer modifier higher priority 
than the array modifier, and va r is declared to be a pointer to an array of five int 
values. 

long *var( long, long ); 1* Function returning pointer to long *1 

Function modifiers also have higher priority than pointer modifiers, so this declara­
tion for va r declares va r to be a function returning a pointer to a long value. The 
function is declared to take two long values as arguments. 

long (*var)( long, long ); 1* Pointer to function returning long *1 

This example is similar to the previous one. Parentheses give the pointer modifier 
higher priority than the function modifier, and va r is declared to be a pointer to a 
function that returns a long value. Again, the function takes two long arguments. 

struct both 
{ 

int a; 
char b; 

1* Array of pointers to functions *1 
1* returning structures *1 

} ( *var[5] )( struct both, struct both ); 

The elements of an array cannot be functions, but this declaration demonstrates 
how to declare an array of pointers to functions instead. In this example, va r is de­
clared to be an array of five pointers to functions that return structures with two 
members. The arguments to the functions are declared to be two structures with 
the same structure type, both. Note that the parentheses surrounding *var[5] are 
required. Without them, the declaration is an illegal attempt to declare an array of 
functions, as shown below: 

1* ILLEGAL *1 
struct both *var[5]( struct both, struct both ); 

The following statement declares an array of pointers. 

unsigned int *(* canst *name[5][10] ) ( void ); 

The name array has 50 elements organized in a multidimensional array. The ele­
ments are pointers to a pointer that is a constant. This constant pointer points to a 
function that has no parameters and returns a pointer to an unsigned type. 

This next example is a function returning a pointer to an array of three double 
values. 

double ( *var( double (*)[3] ) )[3]; 

In this declaration, a function returns a pointer to an array, since functions return­
ing arrays are illegal. Here va r is declared to be a function returning a pointer to 



Declarations and Types 91 

an array of three double values. The function va r takes one argument. The argu­
ment, like the return value, is a pointer to an array of three double values. The ar­
gument type is given by a complex abstract-declarator. The parentheses around 
the asterisk in the argument type are required; without them, the argument type 
would be an array of three pointers to double values. For a discussion and ex­
amples of abstract declarators, see page 88. 

union sign 
{ 

int x; 
unsigned y; 

} **var[5][5]; 

1* Array of arrays of pointers *1 
1* to pointers to unions *1 

As the above example shows, a pointer can point to another pointer, and an array 
can contain arrays as elements. Here va r is an array of five elements. Each ele­
ment is a five-element array of pointers to pointers to unions with two members. 

union sign *(*var[5])[5]; 1* Array of pointers to arrays 
of pointers to unions *1 

This example shows how the placement of parentheses changes the meaning of the 
declaration. In this example, var is a five-element array of pointers to five­
element arrays of pointers to unions. For examples of how to use typedef to avoid 
complex declarations, see "Typedef Declarations" on page 1 0 1. 

3.7 Initialization 
An "initializer" is a value or a sequence of values to be assigned to the variable 
being declared. You can set a variable to an initial value by applying an initializer 
to the declarator in the variable declaration. The value or values of the initializer 
are assigned to the variable. 

The following sections describe how to initialize variables of scalar, aggregate, 
and string types. "Scalar types" include all the arithmetic types, plus pointers. 
"Aggregate types" include arrays, structures, and unions. 

Scalar Initialization 
When initializing scalar types, the value of the assignment -expression is assigned 
to the variable. The conversion rules for assignment apply. (See"Type Conver­
sions" on page 141 for information on conversion rules.) 



92 C language Reference 

Syntax declaration : 
declaration-specifiers init-declarator-list opt; 

declaration-specifiers: 
storage-class-specifier declaration-specifiers opt 

type-specifier declaration-specifiers opt 
type-qualifier declaration-specifiers opt 

init-declarator-list : 
in it-declarator 
init-declarator-list , init-declarator 

init-declarator : 
declarator 
declarator = initializer /* For scalar initialization */ 

initializer : 
assignment-expression 

You can initialize variables of any type, provided that you obey the following 
rules: 

• Variables declared at the file-scope level can be initialized. If you do not expli­
citly initialize a variable at the external level, it is initialized to 0 by default. 

• A constant expression can be used to initialize any global variable declared 
with the static storage-class-specifier. Variables declared to be static are initial­
ized when program execution begins. If you do not explicitly initialize a global 
static variable, it is initialized to 0 by default, and every member that has 
pointer type is assigned a null pointer. 

• Variables declared with the auto or register storage-class specifier are initial­
ized each time execution control passes to the block in which they are declared. 
If you omit an initializer from the declaration of an auto or register variable, 
the initial value of the variable is undefined. For automatic and register values, 
the initializer is not restricted to being a constant; it can be any expression in­
volving previously defined values, even function calls. 

• The initial values for external variable declarations and for all static variables, 
whether external or internal, must be constant expressions. (Constant expres­
sions are described on page 108.) Since the address of any externally declared 
or static variable is constant, it can be used to initialize an internally declared 
static pointer variable. However, the address of an auto variable cannot be used 
as a static initializer because it may be different for each execution of the block. 
You can use either constant or variable values to initialize auto and register 
variables. 

• If the declaration of an identifier has block scope, and the identifier has external 
linkage, the declaration cannot have an initialization. 



Declarations and Types 93 

The following examples illustrate initializations: 

int x = 10; 

The integer variable x is initialized to the constant expression 10. 

register int *px = 0; 

The pointer px is initialized to 0, producing a "null" pointer. 

const int c = (3 * 1(24); 

This example uses a constant expression (3 * 1(24) to initialize c to a constant 
value that cannot be modified because of the const keyword. 

int *b = &x; 

This statement initializes the pointer b with the address of another variable, x. 

int *const a = &z; 

The pointer a is initialized with the address of a variable named z. However, 
since it is specified to be a const, the variable a can only be initialized, never 
modified. It always points to the same location. 

i nt GLOBAL ; 

int function( void 
{ 

int LOCAL 
static int *lp &LOCAL; /* Illegal initialization */ 
static int *gp &GLOBAL; /* Legal initialization */ 
register int *rp = &LOCAL; /* Legal initialization */ 

The global variable GLOBAL is declared at the external level, so it has global life­
time. The local variable LOCAL has auto storage class and only has an address 
during the execution of the function in which it is declared. Therefore, attempting 
to initialize the static pointer variable 1 p with the address of LOCAL is not per­
mitted. The static pointer variable gp can be initialized to the address of GLOBAL 
because that address is always the same. Similarly, *rp can be initialized because 
rp is a local variable and can have a nonconstant initializer. Each time the block is 
entered, LOCAL has a new address, which is then assigned to rp. 

Initializing Aggregate Types 
An "aggregate" type is a structure, union, or array type. If an aggregate type con­
tains members of aggregate types, the initialization rules apply recursively. 



94 C Language Reference 

Syntax initializer : 
{ initializer-list } /* For aggregate initialization */ 
{ initializer-list , } 

initializer-list: 
initialize r 
initializer-list, initializer 

The initializer-list is a list of initializers separated by commas. Each initializer in 
the list is either a constant expression or an initializer list. Therefore, initializer 
lists can be nested. This form is useful for initializing aggregate members of an 
aggregate type, as shown in the examples in this section. However, if the initializer 
for an automatic identifier is a single expression, it need not be a constant expres­
sion; it merely needs to have appropriate type for assignment to the identifier. 

For each initializer list, the values of the constant expressions are assigned, in 
order, to the corresponding members of the aggregate variable. 

If initializer-list has fewer values than an aggregate type, the remaining members 
or elements of the aggregate type are initialized to 0 for external and static varia­
bles. The initial value of an automatic identifier not explicitly initialized is unde­
fined. If initializer-list has more values than an aggregate type, an error results. 
These rules apply to each embedded initializer list, as well as to the aggregate as a 
whole. 

A structure's initializer is either an expression of the same type, or a list of initial­
izers for its members enclosed in curly braces ({ }). Unnamed bit-field members 
are not initialized. 

When a union is initialized, initializer-listmust be a single constant expression. 
The value of the constant expression is assigned to the first member of the union. 

If an array has unknown size, the number of initializers determines the size of the 
array, and its type becomes complete. There is no way to specify repetition of an 
initializer in C, or to initialize an element in the middle of an array without provid­
ing all preceding values as well. If you need this operation in your program, write 
the routine in assembly language. 

Note that the number of initializers can set the size of the array: 

int x[ ] = { 0, 1, 2 } 

If you specify the size and give the wrong number of initializers, however, the 
compiler generates an error. 

The maximum size for an array is defined by size_ t, an unsigned short on 16-bit 
computers, and has the range OxOOOO to OxFFFF hexadecimal. Huge arrays can 
exceed this limit ifthey contain more than 65,535 elements or if the size of the 



32-Bit Specific 

Declarations and Types 95 

element multiplied by the number of elements exceeds 65K. Arithmetic operations 
on huge arrays should therefore cast size_ t and the results of arithmetic operations 
to unsigned long. 

On 32-bit computers, sizeof is unsigned long .• 

This example shows initializers for an array. 

int P[4][3] 
{ 

{ 1, 1, 1 } , 
{ 2, 2, 2 }, 
{ 3, 3, 3,}, 
{ 4, 4, 4,}, 

} ; 

This statement declares P as a four-by-three array and initializes the elements of 
its first row to 1, the elements of its second row to 2, and so on through the fourth 
row. Note that the initializer list for the third and fourth rows contains commas 
after the last constant expression. The last initializer list ( {4, 4, 4,} ), is also fol­
lowed by a comma. These extra commas are permitted but are not required; only 
commas that separate constant expressions from one another, and those that sepa­
rate one initializer list from another, are required. 

If there is no embedded initializer list for an aggregate member, values are simply 
assigned, in order, to each member of the subaggregate. Therefore, the initializa­
tion in the previous example is equivalent to the following: 

int P[4][3] 
{ 

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4 
} ; 

Braces can also appear around individual initializers in the list and would help to 
clarify the example above. 

When you initialize an aggregate variable, you must be careful to use braces and 
initializer lists properly. The following example illustrates the compiler's inter­
pretation of braces in more detail: 

typedef struct 
{ 

int n1, n2, n3; 
} triplet; 

triplet nl i st[2][3] 
{ 

{ { 1, 2, 3 }, 
{ { 1O,11,12 }, 

} ; 

{ 4, 5, 6 
{ 13,14,15 

}, { 7, 8, 9 } }, /* Row 1 */ 
}, { 16,17,18 } } /* Row 2 */ 



96 C Language Reference 

In this example, nl i st is declared as a 2-by-3 array of structures, each structure 
having three members. Line 1 of the initialization assigns values to the first row 
of n 1 is t, as follows: 

1. The first left brace on line 1 signals the compiler that initialization of the first 
aggregate member of n 1 i s t (that is, n 1 i s t [0] ) is beginning. 

2. The second left brace indicates that initialization of the first aggregate member 
of nl i st[0] (that is, the structure at nl i st[0] [0] ) is beginning. 

3. The first right brace ends initialization of the structure n 1 is t [0][ 0]; the next 
left brace starts initialization of n 1 i s t [0] [1]. 

4. The process continues until the end of the line, where the closing right brace 
ends initialization of n 1 i s t [ 0 ] . 

Line 2 assigns values to the second row of nl i st in a similar way. Note that the 
outer sets of braces enclosing the initializers on lines 1 and 2 are required. The fol­
lowing construction, which omits the outer braces, would cause an error: 

triplet nlist[2][3] = 1* THIS CAUSES AN ERROR *1 
{ 

{ 1, 2, 3 },{ 4, 5, 6 },{ 7, 8, 9 }, 1* Line 1 *1 
{ 10,11,12 },{ 13,14,15 },{ 16,17,18 } 1* Line 2 *1 

} ; 

In this construction, the first left brace on line 1 starts the initialization of 
n 1 i s t [0], which is an array of three structures. The values 1, 2, and 3 are assigned 
to the three members of the first structure. When the next right brace is en­
countered (after the value 3), initialization of nl i st[0] is complete, and the two 
remaining structures in the three-structure array are automatically initialized to O. 
Similarly, { 4,5,6 } initializes the first structure in the second row of n 1 i st. 
The remaining two structures of n 1 i s t [1] are set to O. When the compiler en­
counters the next initializer list ( { 7,8,9 } ), it tries to initialize n 1 i s t [2]. 

Since n 1 i s t has only two rows, this attempt causes an error. 

In this next example, the three int members of x are initialized to 1,2, and 3, 
respectively. 

struct list 
{ 

int i, j, k; 
float m[2][3]; 

} x = { 
1, 
2, 
3, 

{4.0, 4.0, 4.0} 
} ; 



Declarations and Types 97 

In the 1 i s t structure above, the three elements in the first row of m are initialized 
to 4.0; the elements of the remaining row of m are initialized to 0.0 by default. 

union 
{ 

char x[2][3]; 
int i, j, k; 

} y = { { 

} 
} ; 

{'I' }, 
{' 4'} 

The union variable y, in this example, is initialized. The first element of the union 
is an array, so the initializer is an aggregate initializer. The initializer list {' 1 '} 
assigns values to the first row of the array. Since only one value appears in the list, 
the element in the first column is initialized to the character 1, and the remaining 
two elements in the row are initialized to the value 0 by default. Similarly, the first 
element of the second row of x is initialized to the character 4, and the remaining 
two elements in the row are initialized to the value O. 

Initializing Strings 
You can initialize an array of characters (or wide characters) with a string literal 
(or wide string literal). For example: 

char code[ ] = "abc"; 

initializes code as a four-element array of characters. The fourth element is the 
null character, which terminates all string literals. 

An identifier list can only be as long as the number of identifiers to be initialized. 
If you specify an array size that is shorter than the string, the extra characters are 
ignored. For example, the following declaration initializes code as a three­
element character array: 

char code[3] = "abed"; 

Only the first three characters of the initializer are assigned to code. The charac­
ter d and the string-terminating null character are discarded. Note that this creates 
an unterrninated string (that is, one without a 0 value to mark its end) and gener­
ates a diagnostic message indicating this condition. 

The declaration 

char s[] = "abc", t[3] "abc"; 

is identical to 



98 C language Reference 

char s[] {'a', 'b', 'e', '\0'}, 
t[3] {'a', 'b', 'e' }; 

If the string is shorter than the specified array size, the remaining elements of the 
array are initialized to O. String literals can be up to 4K in length. 

3.8 Storage of Basic Types 
Table 3.2 summarizes the storage associated with each basic type. 

Table 3.2 Sizes of Fundamental Types 

Type 

char, unsigned char, signed char 
short, short int, signed short, unsigned short 

int, unsigned int, signed int 

long, unsigned long, signed long 

float 
double 

long double 

16-Bit Targets 

1 byte 

2 bytes 

2 bytes 

4 bytes 

4 bytes 

8 bytes 

10 bytes 

32-Bit Targets 

1 byte 

2 bytes 

4 bytes 

4 bytes 

4 bytes 

8 bytes 

10 bytes 

The C data types fall into general categories. The "integral types" include char, 
int, short, long, signed, unsigned, and enum. The "floating types" include float, 
double, and long double. The "arithmetic types" include all floating and integral 
types. 

Type char 
The char type is used to store the integer value of a member of the representable 
character set. That integer value is the ASCII code corresponding to the specified 
character. 

Microsoft Specific Character values of type unsigned char have a range from 0 to OxFFh. A signed 
char has range Ox80h to Ox7Fh. These ranges translate to 0 to 255 decimal, and 
-128 to +127, decimal, respectively. The /J command-line option changes the de­
fault from signed to unsigned .• 

Type int 
The size of a signed or unsigned int item is the standard size of an integer on a par­
ticular machine. For example, on a 16-bit computer, the int type is usually 16 bits, 
or 2 bytes. On a 32-bit machine, the int type is usually 32 bits, or 4 bytes. Thus, 
the int type is equivalent to either the short int or the long int type, and the 



Declarations and Types 99 

unsigned int type is equivalent to either the unsigned short or the unsigned long 
type, depending on the target environment. The int types all represent signed 
values unless specified otherwise. 

The type specifiers int and unsigned int (or simply unsigned) define certain fea­
tures of the C language (for instance, the enum type). In these cases, the defini­
tions of int and unsigned int for a particular implementation determine the actual 
storage. 

Microsoft SpeCific Signed integers are represented in two's-complement form. The most-significant 
bit holds the sign: 1 for negative, 0 for positive and zero. The range of values is 
given in Table 1.3, which is taken from the LIMITS.H header file .• 

Note The int and unsigned int type specifiers are widely used in C programs be­
cause they allow a particular machine to handle integer values in the most efficient 
way for that machine. However, since the sizes of the int and unsigned int types 
vary, programs that depend on a specific int size may not be portable to other ma­
chines. To make programs more portable, you can use expressions with the sizeof 
operator (as discussed in "The sizeof Operator" on page 125) instead of hard­
coded data sizes. 

Type float 
Floating-point numbers use the IEEE (Institute of Electrical and Electronics En­
gineers) format. Single-precision values with float type have 4 bytes, consisting of 
a sign bit, an 8-bit excess-l 27 binary exponent, and a 23-bit mantissa. The 
mantissa represents a number between 1.0 and 2.0. Since the high-order bit of the 
mantissa is always 1, it is not stored in the number. This representation gives a 
range of approximately 3.4E-38 to 3.4E+38 for type float. 

Microsoft Specific The float type contains 32 bits: 1 for the sign, 8 for the exponent, and 23 for the 
mantissa. Its range is +/-3.4E38 with at least 7 digits of precision .• 

Type double 
Double precision values with double type have 8 bytes. The format is similar to 
the float format except that it has an II-bit excess-I 023 exponent and a 52-bit 
mantissa, plus the implied high-order 1 bit. This format gives a range of approxi­
mately 1.7E-308 to 1.7E+308 for type double. 

Microsoft SpeCific The double type contains 64 bits: 1 for sign, 11 for the exponent, and 52 for the 
mantissa. Its range is +/-1.7E308 with at least 15 digits of precision .• 



100 C Language Reference 

Microsoft Specific 

Type long double 
The range of values for a variable is bounded by the minimum and maximum 
values that can be represented internally in a given number of bits. However, be­
cause of C' s conversion rules (discussed in detail in "Type Conversions" on page 
141) you cannot always use the maximum or minimum value for a constant of a 
particular type in an expression. 

For example, the constant expression -32768 consists of the arithmetic negation 
operator (-) applied to the constant value 32,768. Since 32,768 is too large to rep­
resent as a short int, it is given the long type. Consequently, the constant expres­
sion -32768 has long type. You can only represent -32,768 as a short int by 
type-casting it to the short type. No information is lost in the type cast, since 
-32,768 can be represented internally in 2 bytes. 

The value 65,000 in decimal notation is considered a signed constant. It is given 
the long type because 65,000 does not fit into a short. A value such as 65,000 can 
only be represented as an unsigned short by type-casting the value to unsigned 
short type, by giving the value in octal or hexadecimal notation, or by specifying 
it as 65000U. You can cast this long value to the unsigned short type without loss 
of information, since 65,000 can fit in 2 bytes when it is stored as an unsigned 
number. 

The long double contains 80 bits: 1 for sign, 15 for exponent, and 64 for mantissa. 
Its range is +/-1.2E4932 with at least 17 digits of precision .• 

3.9 Incomplete Types 
An incomplete type is a type that describes an identifier but lacks information 
needed to determine the size of the identifier. An "incomplete type" can be 

• A structure type whose members you have not yet specified 

• A union type whose members you have not yet specified 

• An array type whose dimension you have not yet specified 



Declarations and Types 101 

The void type is an incomplete type that cannot be completed. To complete an in­
complete type, specify the missing information. The following examples show 
how to create and complete the incomplete types. 

• To create an incomplete structure type, declare a structure type without specify­
ing its members. In this example, the ps pointer points to an incomplete struc­
ture type called student. 

struct student *ps; 

• To complete an incomplete structure type, declare the same structure type later 
in the same scope with its members specified, as in 

struct student 
{ 

int num; 
1* student structure now completed *1 

• To create an incomplete array type, declare an array type without specifying its 
repetition count. For example: 

char a[]; 1* a has incomplete type *1 

• To complete an incomplete array type, declare the same name later in the same 
scope with its repetition count specified, as in 

char a[25]; 1* a now has complete type *1 

3.10 Typedef Declarations 
A typedef declaration is a declaration with typedef as the storage class. The decla­
rator becomes a new type. You can use typedef declarations to construct shorter 
or more meaningful names for types already defined by C or for types that you 
have declared. Typedef names allow you to encapsulate implementation details 
that may change. 

A typedef declaration is interpreted in the same way as a variable or function dec­
laration, but the identifier, instead of assuming the type specified by the declara­
tion, becomes a synonym for the type. 



102 C language Reference 

Syntax declaration : 

----~- -~---- ---~ 

declaration-specifiers init-declarator-list opt; 

declaration-specifiers: 
storage-class-specifier declaration-specifiers opt 

type-specifier declaration-specifiers opt 
type-qualifier declaration-specifiers opt 

storage-class-specifier : 
typedef 

type-specifier: 
void 
char 
short 
int 
long 
float 
double 
signed 
unsigned 
struct-or-union-specifier 
enum-specifier 
typedef-name 

typedef-name: 
identifier 

Note that a typedef declaration does not create types. It creates synonyms for ex­
isting types, or names for types that could be specified in other ways. When a type­
defname is used as a type specifier, it can be combined with certain type 
specifiers, but not others. Acceptable modifiers include const and volatile, and the 
special keywords described in "Special Keywords in Declarations" on page 55.) 

Typedef names share the name space with ordinary identifiers (see "Name 
Spaces" on page 39 for more information). Therefore, a program can have a 
typedef name and a local scope identifier by the same name. For example: 

typedef char FlagType; 

int main() 
{ 
} 

int myproc( int ) 
{ 

int FlagType; 



Declarations and Types li13 

When declaring a local-scope identifier by the same name as a typedef, or when 
declaring a member of a structure or union in the same scope or in an inner scope, 
the type specifier must be specified. This example illustrates this constraint: 

typedef char FlagType; 
const FlagType x; 

To reuse the Fl agType name for an identifier, a structure member, or a union 
member, the type must be provided: 

const int FlagType; 1* Type specifier required *1 

It is not sufficient to say 

const FlagType; 1* Incomplete specification *1 

because the Fl a gType is taken to be part of the type, not an identifier that is being 
redeclared. This declaration is taken to be an illegal declaration like 

int; 1* Illegal declaration *1 

You can declare any type with typedef, including pointer, function, and array 
types. You can declare a typedef name for a pointer to a structure or union type 
before you define the structure or union type, as long as the definition has the 
same visibility as the declaration. 

Typedef names can be used to improve code readability. All three of the following 
declarations of signa 1 specify exactly the same type, the first without making use 
of any typedef names. 

typedef void fv( int ), (*pfv)( int); 1* typedef declarations *1 

void ( *signal ( int, void (*) (int» ) ( int ); 
fv *signal( int, fv *); 1* Uses typedef type *1 
pfv signal( int, pfv); 1* Uses typedef type *1 

The following examples illustrate typedef declarations: 

typedef int WHOLE; 1* Oeclares WHOLE to be a synonym for int *1 

Note that WHOLE could now be used in a variable declaration such as WHOLE i; or 
const WHOLE i;.However,thedeclaration long WHOLE i; would be illegal. 

typedef struct club 
{ 

char name[30]; 
int size, year; 

} GROUP; 



104 C language Reference 

This statement declares GROUP as a structure type with three members. Since a 
structure tag, cl ub, is also specified, either the typedef name ( GROUP) or the 
structure tag can be used in declarations. You must use the struct keyword with 
the tag, and you cannot use the struct keyword with the typedef name. 

typedef GROUP *PG; /* Uses the previous typedef name 
to declare a pointer */ 

The type PG is declared as a pointer to the GROUP type, which in turn is defined as 
a structure type. 

typedef void ORAWF( int, int l; 

This example provides the type DRAWF for a function returning no value and 
taking two int arguments. This means, for example, that the declaration 

DRAWF box; 

is equivalent to the declaration 

void box( int, int l; 



Expressions and Assignments 

This chapter describes how to form expressions and to assign values in the C lan­
guage. Constants, identifiers, strings, and function calls are all operands that are 
manipulated in expressions. The C language has all the usual language operators. 
This chapter covers those operators plus operators such as the conditional operator 
and base operator that are unique to C or Microsoft C. The topics discussed in this 
chapter include 

• L-value and r-value expressions 

• Constant expressions 

• Side effects 

• Sequence points 

• Expression evaluation 

• Operators and operator precedence 

• Type conversions 

• Type casts 

4.1 Operands and Expressions 
An "operand" is an entity on which an operator acts. An "expression" is a 
sequence of operators and operands that performs any combination of these 
actions: 

• Computes a value 

• Designates an object or function 

• Generates side effects 

Operands in C include constants, identifiers, strings, function calls, subscript ex­
pressions, member-selection expressions, and complex expressions formed by 
combining operands with operators or by enclosing operands in parentheses. 



106 C Language Reference 

These operands, often called "primary expressions," are discussed in the next 
section. 

Primary Expressions 

Syntax 

The operands in expressions are called "primary expressions." 

primary-expression: 
identifier 
constant 
string-literal 
( expression) 

expression: 
assignment-expression 
expression, assignment-expression 

Identifiers 
Identifiers can have integral, float, enum, struct, union, array, pointer, or func­
tion type. An identifier is a primary expression provided it has been declared as 
designating an object (in which case it is an I-value) or as a function (in which 
case it is a function designator). See the next section for a definition of I-value. 

The pointer value represented by an array identifier is not a variable, so an array 
identifier cannot form the left-hand operand of an assignment operation and there­
fore is not a modifiable I-value. 

An identifier declared as a function represents a pointer whose value is the address 
of the function. The pointer addresses a function returning a value of a specified 
type. Thus, function identifiers also cannot be I-values in assignment operations. 
See page 5 for more information about identifiers. 

Constants 
A constant operand has the value and type of the constant value it represents. A 
character constant has int type. An integer constant has int, long, unsigned int, or 
unsigned long type, depending on the integer's size and on the way the value is 
specified. See "Constants" on page 9 for more information. 

String Literals 
A "string literal" is a character, wide character, or sequence of adjacent characters 
enclosed in double quotation marks. Since they are not variables, neither string lit­
erals nor any of their elements can be the left-hand operand in an assignment 



Expressions and Assignments 107 

operation. The type of a string literal is an array of char (or an array of wchac t 
for wide string literals. Arrays in expressions are converted to pointers. See 
"String Literals" on page 20 for more information about strings. 

Expressions in Parentheses 
You can enclose any operand in parentheses without changing the type or value of 
the enclosed expression. For example, in the expression 

( 10 + 5 ) / 5 

the parentheses around 10 + 5 mean that the value of 10 + 5 is evaluated first 
and it becomes the left operand of the division (/) operator. The result of 
( 10 + 5 ) / 5 is 3. Without the parentheses, 10 + 5 / 5 would evaluate to 11. 

Although parentheses affect the way operands are grouped in an expression, they 
cannot guarantee a particular order of evaluation in all cases. For example, neither 
the parentheses nor the left -to-right grouping of the following expression 
guarantees what the value of i will be in either of the subexpressions: 

( i++ +1 ) * ( 2 + i ) 

The compiler is free to evaluate the two sides of the multiplication in any order. If 
the initial value of i is zero, the whole expression could be evaluated as either of 
these two statements: 

0+1 + 1 ) * 2 + 1 
( 0 + 1 + 1 ) * ( 2 + 0 

Exceptions resulting from side effects are discussed on page 109. 

L -Value and R-Value Expressions 
Expressions that refer to memory locations are called "I-value" expressions. An 
I-value represents a storage region's" locator" value, or a "left" value, implying 
that it can appear on the left ofthe equal sign (=). L-values are often identifiers. 

Expressions referring to modifiable locations are called "modifiable I-values." A 
modifiable I-value cannot have an array type, an incomplete type, or a type with 
the const attribute. For structures and unions to be modifiable I-values, they must 
not have any members with the const attribute. The name of the identifier denotes 
a storage location, while the value of the variable is the value stored at that 
location. 



108 C Language Reference 

An identifier is a modifiable I-value if it refers to a memory location and if its type 
is arithmetic, structure, union, or pointer. For example, if pt r is a pointer to a 
storage region, then *ptr is a modifiable I-value that designates the storage re­
gion to which ptr points. 

Any of the following C expressions can be I-value expressions: 

• An identifier of integral, floating, pointer, structure, or union type 

• A subscript ([ ]) expression that does not evaluate to an array 

• A member-selection expression (-> or.) 

• A unary-indirection (*) expression that does not refer to an array 

• An I-value expression in parentheses 

• A const object (a nonmodifiable I-value) 

The term "r-value" is sometimes used to describe the value of an expression and to 
distinguish it from an I-value. AlII-values are r-values but not all r-values are 
I-values. 

Microsoft Specific Microsoft C includes an extension to the ANSI C standard that allows casts of 
I-values to be used as I-values, as long as the size of the object does not change. 
(See "Type-Cast Conversions" on page 147 for more information.) The following 
example illustrates this feature: 

char *p ; 
short i; 
long 1; 

(long *) p &1 
(long) i 

1* Legal cast *1 
1* Illegal cast *1 

The default for Microsoft C is that the Microsoft extensions are enabled. Use the 
/Za command-line option to disable these extensions .• 

Constant Expressions 
A constant expression is evaluated at compile time, not run time, and can be used 
in any place that a constant may be used. The constant expression must evaluate to 
a constant that is in the range of representable values for that type. The operands 
of a constant expression can be integer constants, character constants, floating­
point constants, enumeration constants, type casts, sizeof expressions, and other 
constant expressions. 



Syntax constant-expression: 
conditional-expression 

conditional-expression: 
logical-OR-expression 

Expressions and Assignments 109 

logical-OR-expression ? expression: conditional-expression 

expression: 
assignment-expression 
expression, assignment-expression 

assignment-expression: 
conditional-expression 
unary-expression assignment-operator assignment-expression 

assignment-operator: one of 
= *= 1= %= += -= «= »= &= A= 1= 

The nonterminals for struct declarator, enumerator, direct declarator, direct-ab­
stract declarator, and labeled statement contain the constant-expression 
nonterminal. 

An integral constant expression must be used to specify the size of a bit-field mem­
ber of a structure, the value of an enumeration constant, the size of an array, or the 
value of a case constant. 

Constant expressions used in preprocessor directives are subject to additional re­
strictions. Consequently, they are known as "restricted constant expressions." A re­
stricted constant expression cannot contain sizeof expressions, enumeration 
constants, type casts to any type, or floating-type constants. It can, however, con­
tain the special constant expression defined(identifier). (See "The Restricted Con­
stant Expression" on page 204 for more information.) 

Expression Evaluation 
Expressions involving assignment, unary increment, unary decrement, or calling a 
function may have consequences incidental to their evaluation (side effects). 
When a "sequence point" is reached, everything preceding the sequence point, in­
cluding any side effects, is guaranteed to have been evaluated before evaluation 
begins on anything following the sequence point. 

"Side effects" are changes caused by the evaluation of an expression. Side effects 
occur whenever the value of a variable is changed by an expression evaluation. All 
assignment operations have side effects. Function calls can also have side effects 
if they change the value of an externally visible item, either by direct assignment 
or by indirect assignment through a pointer. 



110 C Language Reference 

Side Effects 
The order of evaluation of expressions is defined by the specific implementation, 
except when the language guarantees a particular order of evaluation (as outlined 
in "Precedence and Order of Evaluation" on page 112). For example, side effects 
occur in the following function calls: 

add( i + I, i = j + 2 ); 
myproc( getc(), getc() ); 

The arguments of a function call can be evaluated in any order. The expression 
i + 1 may be evaluated before i = j + 2, or i = j + 2 may be evaluated 
before i + 1. The result is different in each case. Likewise, it is not possible to 
guarantee what characters are actually passed to the myproc. Since unary incre­
ment and decrement operations involve assignments, such operations can cause 
side effects, as shown in the following example: 

x[i] = i++; 

In this example, the value of x that is modified is unpredictable. The value of the 
subscript could be either the new or the old value of i. The result can vary under 
different compilers or different optimization levels. 

Since C does not define the order of evaluation of side effects, both evaluation 
methods discussed above are correct and either may be implemented. To make 
sure that your code is portable and clear, avoid statements that depend on a particu­
lar order of evaluation for side effects. 

Sequence Points 
Between consecutive "sequence points" an object's value can be modified only 
once by an expression. The C language defines the following sequence points: 

• Left operand of the logical AND operator (&&). The left operand of the logical 
AND operator is completely evaluated and all side effects complete before con­
tinuing. If the left operand evaluates to false (0), the other operand is not 
evaluated. 

• Left operand of the logical OR operator (II). The left operand of the logical OR 
operator is completely evaluated and all side effects complete before continu­
ing. Ifthe left operand evaluates to true (nonzero), the other operand is not 
evaluated. 

• Left operand of the comma operator. The left operand of the comma operator is 
completely evaluated and all side effects complete before continuing. Both oper­
ands of the comma operator are always evaluated. Note that the comma separat­
ing arguments in a function call do not guarantee an order of evaluation. 



Expressions and Assignments 111 

• Function-call operator. All arguments to a function are evaluated and all side ef­
fects complete prior to entry to the function. No order of evaluation among the 
arguments is specified. 

• First operand of the conditional operator. The first operand of the conditional 
operator is completely evaluated and all side effects complete before 
continuing. 

• The end of a full initialization expression (that is, an expression that is not part 
of another expression). 

• The expression in an expression statement. Expression statements consist of an 
optional expression followed by a semicolon (;). The expression is evaluated 
for its side effects and there is a sequence point following this evaluation. 

• The controlling expression in a selection (if or switch) statement. The expres­
sion is completely evaluated and all side effects complete before the code de­
pendent on the selection is executed. 

• The controlling expression of a while or do statement. The expression is 
completely evaluated and all side effects complete before any statements in the 
next iteration of the while or do loop are executed. 

• Each of the three expressions of a for statement. The expressions are 
completely evaluated and all side effects complete before any statements in the 
next iteration of the for loop are executed. 

• The expression in a return statement. The expression is completely evaluated 
and all side effects complete before control returns to the calling function. 

4.2 Operators 
There are three types of operators. A unary expression consists of either a unary 
operator prepended to an operand, or the sizeof keyword followed by an expres­
sion. The expression can be either the name of a variable or a cast expression. If 
expression is a cast expression, it must be enclosed in parentheses. A binary ex­
pression consists of two operands joined by a binary operator. A ternary expres­
sion consists of three operands joined by the ternary operator. C includes the 
following unary operators: 

Symbol 

- - ! 

* & 
sizeof 

+ 
++ --

Name 

Negation and complement operators 

Indirection and address-of operators 

Size operator 

Unary plus operator 

Unary increment and decrement operators 



112 C Language Reference 

Binary operators associate from left to right. C provides the following binary 
operators: 

Symbol 

* I % 
+ -

« » 
< > <= >= -- != 
& I 1\ 

&& II 

:> 

Name 

Multiplicative operators 

Additive operators 

Shift operators 

Relational operators 

Bitwise operators 

Logical operators 

Sequential-evaluation operator 

Base operator 

Expressions with operators also include assignment expressions, which use unary 
or binary assignment operators. The unary assignment operators are the increment 
(++) and decrement (--) operators; the binary assignment operators are the simple­
assignment operator (=) and the compound-assignment operators. Each compound­
assignment operator is a combination of another binary operator with the 
simple-assignment operator. 

Precedence and Order of Evaluation 
The precedence and associativity of C operators affect the grouping and evaluation 
of operands in expressions. An operator's precedence is meaningful only if other 
operators with higher or lower precedence are present. Expressions with higher­
precedence operators are evaluated first. Precedence can also be described by the 
word "binding." Operators with a higher precedence are said to have tighter 
binding. 

Table 4.1 summarizes the precedence and associativity (the order in which the 
operands are evaluated) of C operators, listing them in order of precedence from 
highest to lowest. Where several operators appear together, they have equal prece­
dence and are evaluated according to their associativity. The operators in Table 4.1 
are described in the sections beginning with "Postfix Operators" on page 116. The 
rest of this section gives general information about precedence and associativity. 

Table 4.1 Precedence and Associativity of C Operators 

Symbol! 

[] () . -> 
postfix ++ and postfix - -
:> 

Type of Operation Associativity 

Expression Left to right 



Expressions and Assignments 113 

Table 4.1 Precedence and Associativity of C Operators (continued) 

Symbol l Type of Operation Associativity 

Prefix ++ and prefix - - Unary Right to left 
sizeof & * +--! 
typecasts Unary Right to left 

* / % Multiplicative Left to right 

+- Additive Left to right 

« » Bitwise shift Left to right 

<><=>= Relational Left to right 

-- != Equality Left to right 

& Bitwise AND Left to right 
A Bitwise-exclusive OR Left to right 

Bitwise-inclusive OR Left to right 

&& Logical-AND Left to right 

1/ Logical-OR Left to right 

? : Conditional Right to left 

= *= 1= %= Simple and compound Right to left 
+= -= «= »= assignment2 

&= 1= "= 
Sequential evaluation Left to right 

I Operators are listed in descending order of precedence. If several operators appear on the same line or in a 
group, they have equal precedence. 

2 All simple and compound-assignment operators have equal precedence. 

An expression can contain several operators with equal precedence. When several 
such operators appear at the same level in an expression, evaluation proceeds ac­
cording to the associativity of the operator, either from right to left or from left to 
right. The direction of evaluation does not affect the results of expressions that in­
clude more than one multiplication (*), addition (+), or binary-bitwise (& I 1\) oper­
ator at the same level. Order of operations is not defined by the language. The 
compiler is free to evalaute such expressions in any order, if the compiler can 
guarantee a consistent result. 

Only the sequential-evaluation (,), logical-AND (&&), logical-OR (II), ternary 
(? :), and function-call operators constitute sequence points and therefore 
guarantee a particular order of evaluation for their operands. The function-call 
operator is the set of parentheses following the function identifier. The sequential­
evaluation operator (,) is guaranteed to evaluate its operands from left to right. 
(Note that the comma separating arguments in a function call is not the same as 
the sequential-evaluation operator and does not provide any such guarantee.) 
Sequence points are discussed on page 110. 



114 C Language Reference 

Logical operators also guarantee evaluation of their operands from left to right. 
However, they evaluate the smallest number of operands needed to determine the 
result of the expression. This is called "short-circuit" evaluation. Thus, some oper­
ands of the expression may not be evaluated. For example, in the expression 

x && y++ 

the second operand, y++, is evaluated only if x is true (nonzero). Thus, y is not 
incremented if x is false (0). 

The following list shows how the compiler automatically binds several sample 
expressions: 

Expression 

a & b I I c 

a = b II c 
q && r II s --

Automatic Binding 

(a&b)llc 

a=(bllc) 

(q && r) II s-

In the first expression, the bitwise-AND operator ( & ) has higher precedence 
than the logical-OR operator ( II ), so a & b forms the first operand of the 
logical-OR operation. 

In the second expression, the logical-OR operator ( II ) has higher precedence 
than the simple-assignment operator ( = ), so b II c is grouped as the right-hand 
operand in the assignment. Note that the value assigned to a is either 0 or 1. 

The third expression shows a correctly formed expression that may produce an un­
expected result. The logical-AND operator ( && ) has higher precedence than the 
logical-OR operator ( II ), so q && r is grouped as an operand. Since the logi­
cal operators guarantee evaluation of operands from left to right, q && r is eval­
uated before s-- . However, if q && r evaluates to a nonzero value, s-- is not 
evaluated, and s is not decremented. If not decrementing s would cause a prob­
lem in your program, s - - should appear as the first operand of the expression, 
or s should be decremented in a separate operation. 

The following expression is illegal and produces a diagnostic message at compile 
time: 

Illegal Expression Default Grouping 

p == 0 ? P += 1: p += 2 ( p == 0 ? P += 1 : p ) += 2 

In this expression, the equality operator ( == ) has the highest precedence, so p 
== 0 is grouped as an operand. The ternary operator ( ? : ) has the next-highest 
precedence. Its first operand is p == 0, and its second operand is p += 1. How­
ever, the last operand of the ternary operator is considered to be p rather than p 
+= 2, since this occurrence of p binds more closely to the ternary operator than it 
does to the compound-assignment operator. A syntax error occurs because 



Expressions and Assignments 115 

+= 2 does not have a left-hand operand. You should use parentheses to prevent er­
rors of this kind and produce more readable code. For example, you could use 
parentheses as shown below to correct and clarify the preceding example: 

( p == 0 ) ? ( p += 1 ) : ( p += 2 ) 

Usual Arithmetic Conversions 
Most C operators perform type conversions to bring the operands of an expression 
to a common type or to extend short values to the integer size used in machine 
operations. The conversions performed by C operators depend on the specific oper­
ator and the type of the operand or operands. However, many operators perform 
similar conversions on operands of integral and floating types. These conversions 
are known as "arithmetic conversions." Conversion of an operand value to a com­
patible type causes no change to its value. 

The arithmetic conversions summarized below are called "usual arithmetic conver­
sions." These steps are applied only for binary operators that expect arithmetic 
type and only if the two operands do not have the same type. The purpose is to 
yield a common type which is also the type of the result. To determine which con­
versions actually take place, the compiler applies the following algorithm to binary 
operations in the expression. The steps below are not a precedence order. 

1. If either operand is of type long double, the other operand is converted to type 
long double. 

2. If the above condition is not met and either operand is of type double, the other 
operand is converted to type double. 

3. If the above two conditions are not met and either operand is of type float, the 
other operand is converted to type float. 

4. If the above three conditions are not met (none of the operands are of floating 
types), then integral conversions are performed on the operands as follows: 

a. If either operand is of type unsigned long, the other operand is converted to 
type unsigned long. 

b. If the above condition is not met and either operand is of type long and the 
other of type unsigned int, the operand of type unsigned int is converted to 
type long (in 16-bit compilations) or both operands are converted to type 
unsigned long (in 32-bit compilations). 

c. If the above two conditions are not met, and either operand is of type long, 
the other operand is converted to type long. 

d. If the above three conditions are not met, and either operand is of type 
unsigned int, the other operand is converted to type unsigned int. 

e. If none of the above conditions are met, both operands are converted to 
type int. 



116 C Language Reference 

The following code illustrates these conversion rules: 

float fVal; 
doubl e dVal; 
int iVal; 
unsigned long ulVal; 

dVal = iVal * ulVal; 1* iVal converted to unsigned long 
* Uses step 4.a. 
* Result of multiplication converted to double 
*1 

dVal ulVal + fVal; 1* ulVal converted to float 
* Uses step 3. 
* Result of addition converted to double 
*1 

PosHix Operators 

Syntax 

The postfix operators have the highest precedence (the tightest binding) in expres­
sion evaluation. 

postfix-expression: 
primary-expression 
postfix-expression [ expression] 
postfix-expression ( argument-expression-list opt) 

postfix-expression. identifier 
postfix-expression -> identifier 
postfix-expression ++ 
postfix-expression --
postfix-expression :> expression /* Microsoft-specific */ 

Operators in this precedence level are the array subscripts, function calls, structure 
and union members, and postfix increment and decrement operators. 

One-Dimensional Arrays 
A postfix expression followed by an expression in square brackets ([ ]) is a sub­
scripted representation of an element of an array object. A subscript expression 
represents the value at the address that is expression positions beyond postfix­
expression when expressed as 

postfix-expression [ expression] 

Usually, the value represented by postfix-expression is a pointer value, such as an 
array identifier, and expression is an integral value. However, all that is required 
syntactically is that one of the expressions be of pointer type and the other be of in­
tegral type. Thus the integral value could be in the postfix-expression position and 



Expressions and Assignments 117 

the pointer value could be in the brackets in the expression, or "subscript," posi­
tion. For example, this code is legal: 

int sum, *ptr, a[l0]; 

intmain() 
{ 

ptr a; 
sum 4[ptr]; 

Subscript expressions are generally used to refer to array elements, but you can 
apply a subscript to any pointer. Whatever the order of values, expression must be 
enclosed in brackets ([ D. 

The subscript expression is evaluated by adding the integral value to the pointer 
value, then applying the indirection operator (*) to the result. (See "Indirection and 
Address-of Operators" on page 122 for a discussion of the indirection operator.) In 
effect, for a one-dimensional array, the following four expressions are equivalent, 
assuming that a is a pointer and b is an integer: 

a[b] 
*(a + b) 
*(b + a) 

b[a] 

According to the conversion rules for the addition operator (given in "Additive 
Operators" on page 128), the integral value is converted to an address offset by 
multiplying it by the length of the type addressed by the pointer. 

For example, suppose the identifier 1 i ne refers to an array of int values. The fol­
lowing procedure is used to evaluate the subscript expression 1 i ne [ i ]: 

1. The integer value i is multiplied by the number of bytes defined as the length 
of an int item. The converted value of i represents i int positions. 

2. This converted value is added to the original pointer value ( 1 i ne ) to yield an 
address that is offset i int positions from 1 i ne. 

3. The indirection operator is applied to the new address. The result is the value of 
the array element at that position (intuitively, 1 i ne [ i D. 

The subscript expression 1 in e [0] represents the value of the first element of line, 
since the offset from the address represented by 1 i ne is O. Similarly, an expres­
sion such as 1 in e [5] refers to the element offset five positions from line, or the 
sixth element of the array. 

Multidimensional Arrays 
A subscript expression can also have multiple subscripts, as follows: 



118 C language Reference 

expressioni [expression2] [expression3]. .. 

Subscript expressions associate from left to right. The leftmost subscript expres­
sion, expressionl[expression2], is evaluated first. The address that results from 
adding expressionl and expression2 forms a pointer expression; then expression3 
is added to this pointer expression to form a new pointer expression, and so on 
until the last subscript expression has been added. The indirection operator (*) is 
applied after the last subscripted expression is evaluated, unless the final pointer 
value addresses an array type (see examples below). 

Expressions with multiple subscripts refer to elements of "multidimensional ar­
rays." A multidimensional array is an array whose elements are arrays. For ex­
ample, the first element of a three-dimensional array is an array with two 
dimensions. 

For the following examples, an array named prop is declared with three elements, 
each of which is a 4-by-6 array of int values. 

int prop[3][4][6]; 
int i, *ip, C*ipp)[6]; 

A reference to the prop array looks like this: 

i = prop[0][0][1]; 

The example above shows how to refer to the second individual int element of 
prop. Arrays are stored by row, so the last subscript varies most quickly; the ex­
pression prop[0] [0] [2] refers to the next (third) element of the array, and so on. 

i = prop[2][1][3]; 

This statement is a more complex reference to an individual element of prop. The 
expression is evaluated as follows: 

1. The first subscript, 2, is multiplied by the size of a 4-by-6 int array and added 
to the pointer value prop. The result points to the third 4-by-6 array of prop. 

2. The second subscript, 1, is multiplied by the size of the 6-element int array and 
added to the address represented by prop[2]. 

3. Each element of the 6-element array is an int value, so the final subscript, 3, is 
multiplied by the size of an int before it is added to pro p [2] [ 1 ]. The resulting 
pointer addresses the fourth element of the 6-element array. 

4. The indirection operator is applied to the pointer value. The result is the int ele­
ment at that address. 

These next two examples show cases where the indirection operator is not applied. 



Syntax 

Syntax 

Expressions and Assignments 119 

ip = prop[2][1]; 

ipp = prop[2]; 

In the first of these statements, the expression pro p [2] [1 ] is a valid reference to 
the three-dimensional array prop; it refers to a 6-element array (declared above). 
Since the pointer value addresses an array, the indirection operator is not applied. 

Similarly, the result of the expression prop[2] in the statement i pp = prop[2]; 
is a pointer value addressing a two-dimensional array. 

Function Calls 
A "function call" is an expression that includes the name of the function being 
called or the value of a function pointer and, optionally, the arguments being 
passed to the function. 

postfix-expression: 
postfix-expression ( argument-expression-list opt) 

argument-express ion-list : 
assignment-expression 
argument-expression-list , assignment-expression 

The postfix-expression must evaluate to a function address (for example, a func­
tion identifier or the value of a function pointer), and argument-express ion-list is a 
list of expressions (separated by commas) whose values (the "arguments") are 
passed to the function. The argument-expression-list argument can be empty. 

A function-call expression has the value and type of the function's return value. A 
function cannot return an object of array type. If the function's return type is void 
(that is, the function has been declared never to return a value), the function-call 
expression also has void type. (See "Function Calls" on page 183 for more 
information. ) 

Structure and Union Members 
A "member-selection expression" refers to members of structures and unions. 
Such an expression has the value and type of the selected member. 

postfix-expression. identifier 
postfix-expression -> identifier 

This list describes the two forms of the member-selection expressions: 

1. In the first form, postfix-expression represents a value of struct or union type, 
and identifier names a member of the specified structure or union. The value of 



120 C Language Reference 

the operation is that of identifier and is an I-value if postfix-expression is an 
I-value. See "L-Value and R-Value Expressions" on page 107 for more 
information. 

2. In the second form, postfix-expression represents a pointer to a structure or 
union, and identifier names a member of the specified structure or union. The 
value is that of identifier and is an I-value. 

The two forms of member-selection expressions have similar effects. 

In fact, an expression involving the member-selection operator (-» is a shorthand 
version of an expression using the period (.) if the expression before the period 
consists of the indirection operator (*) applied to a pointer value. Therefore, 

expression -> identifier 

is equivalent to 

(*expression) . identifier 

when expression is a pointer value. 

The following examples refer to this structure declaration. See page 122 for infor­
mation about the indirection operator (*) used in these examples. 

struct pair 
{ 

int a; 
int b; 
struct pair *sp; 

item, 1 i st[l0]; 

A member-selection expression for the i tern structure looks like this: 

item.sp = &item; 

In the example above, the address of the item structure is assigned to the sp 
member of the structure. This means that i tern contains a pointer to itself. 

(item.sp)->a = 24; 

In this example, the pointer expression item. s p is used with the member­
selection operator (-» to assign a value to the member a. 

list[8].b = 12; 

This statement shows how to select an individual structure member from an array 
of structures. 



Syntax 

32-Bit Specific 

Expressions and Assignments 121 

Postfix Increment and Decrement Operators 
Operands of the postfix increment and decrement operators are scalar types that 
are modifiable I-values. 

postfix-expression: 
postfix-expression ++ 
postfix-expression --

The result of the postfix increment or decrement operation is the value of the oper­
and. After the result is obtained, the value of the operand is incremented (or decre­
mented). The following code illustrates the postfix increment operator. 

if( var++ > 0 ) 
*P++ = *q++; 

In this example, the variable var is compared to 0, then incremented. If var was 
positive before being incremented, the next statement is executed. First, the value 
of the object pointed to by q is assigned to the object pointed to by p. Then, q 
and p are incremented. 

Base Operator (Microsoft Specific) 
The base operator (:» is a Microsoft extension added to support based addressing. 
The base operator combines a memory segment address with an address that can 
be dereferenced with the indirection (*) operator. It has the form 

segvar :> offset 

The segvar can be any expression that evaluates to a valid memory segment 
address. You can use a variable or expression of type __ segment, or create your 
own segments using the __ segname operator. The offset can be a pointer with the 
form 

type __ based( void) * 

or any 16-bit expression. 

You can use the base operator to create a pointer that can address any memory lo­
cation. See "Based Pointers" on page 79 for more information. 

The base operator is not supported for 32-bit targets .• 



122 C Language Reference 

Unary Operators 

Syntax 

Unary operators appear before their operand and associate from right to left. 

unary-expression: 
postfIX-expression 
++ unary-expression 
-- unary-expression 
unary-operator cast-expression 
sizeof unary-expression 
sizeof ( type-name) 

unary-operator: one of 
&*+--! 

Prefix Increment and Decrement Operators 
The unary operators (++ and --) are called "prefix" increment or decrement opera­
tors when the increment or decrement operators appear before the operand. Postfix 
increment and decrement has higher precedence than prefix increment and decre­
ment operators. The operand must have integral, floating, or pointer type and must 
be a modifiable I-value expression (an expression without the const attribute). The 
result is not an I-value. 

When the operator appears before its operand, the operand is incremented or decre­
mented and its new value is the result of the expression. 

An operand of integral or floating type is incremented or decremented by the in­
teger value 1. The type of the result is the same as the operand type. An operand of 
pointer type is incremented or decremented by the size of the object it addresses. 
An incremented pointer points to the next object; a decremented pointer points to 
the previous object. 

This example illustrates the unary decrement operator: 

if( line[--i] != '\n' ) 
return; 

In this example, the variable is decremented before it is used as a SUbscript to 
1 i ne. 

Indirection and Address-of Operators 
The indirection operator (*) accesses a value indirectly, through a pointer. The 
operand must be a pointer value. The result of the operation is the value addressed 
by the operand; that is, the value at the address to which its operand points. The 
type of the result is the type that the operand addresses. 



Expressions and Assignments 123 

If the operand points to a function, the result is a function designator. If it points to 
a storage location, the result is an I-value designating the storage location. 

If the pointer value is invalid, the result is undefined. The following list includes 
some of the most common conditions that invalidate a pointer value. 

• The pointer is a null pointer. 

• The pointer specifies the address of a local item that is not visible at the time of 
the reference. 

• The pointer specifies an address that is inappropriately aligned for the type of 
the object pointed to. 

• The pointer specifies an address not used by the executing program. 

The address-of operator (&) gives the address of its operand. The operand of the 
address-of operator can be either a function designator or an I-value that desig­
nates an object that is not a bit field and is not declared with the register storage­
class specifier. 

The result of the address operation is a pointer to the operand. The type addressed 
by the pointer is the type of the operand. 

The address-of operator can only be applied to variables with fundamental, struc­
ture, or union types that are declared at the file-scope level, or to subscripted array 
references. In these expressions, a constant expression that does not include the 
address-of operator can be added to or subtracted from the address expression. 

The following examples use these declarations: 

int *pa, x; 
int a[20]; 
double d; 

This statement uses the address-of operator. 

pa = &a[5]; 

The address-of operator (&) takes the address of the sixth element of the array a. 
The result is stored in the pointer variable pa. 

x = *pa; 

The indirection operator (*) is used in this example to access the int value at the 
address stored in pa. The value is assigned to the integer variable x. 

if( x == *&x ) 
printf( "True\n" ); 



124 C Language Reference 

This example prints the word True, demonstrating that the result of applying the 
indirection operator to the address of x is the same as x. 

int roundup( void ); /* Function declaration */ 

int *proundup 
int *pround 

roundup; 
&roundup; 

Once the function roundup is declared, two pointers to roundup are declared and 
initialized. The first pointer, proundup, is initialized using only the name of the 
function, while the second, pround, uses the address-of operator in the initializa­
tion. The initializations are equivalent. 

Unary Arithmetic Operators 
The C unary plus, arithmetic-negation, complement, and logical-negation opera­
tors are discussed in the following list: 

Operator 

+ 

Description 

The unary plus operator preceding an expression in parentheses forces 
the grouping of the enclosed operations. It is used with expressions 
involving more than one associative or commutative binary operator. 
The operand must have arithmetic type. The result is the value of the 
operand. An integral operand undergoes integral promotion. The type 
of the result is the type of the promoted operand. 

The arithmetic-negation operator produces the negative (two's 
complement) of its operand. The operand must be an integral or 
floating value. This operator performs the usual arithmetic 
conversions. 

The bitwise-complement (or bitwise-NOT) operator produces the 
bitwise complement of its operand. The operand must be of integral 
type. This operator performs usual arithmetic conversions; the result 
has the type of the operand after conversion. 

The logical-negation (logical-NOT) operator produces the value 0 if its 
operand is true (nonzero) and the value I if its operand is false (0). The 
result has int type. The operand must be an integral, floating, or 
pointer value. 

The following examples illustrate these operators: 

short x = 987; 
x -x; 

In the example above, the new value of x is the negative of 987, or -987. 

unsigned short y = 0xAAAA; 
y = ~y; 



Syntax 

Expressions and Assignments 125 

In this example, the new value assigned to y is the one's complement of the un­
signed value OxAAAA, or Ox5555. 

if( !(x<y)) 

If x is greater than or equal to y, the result of the expression is 1 (true). If x IS 

less than y, the result is 0 (false). 

The sizeof Operator 
The sizeof operator gives the amount of storage, in bytes, required to store an 
object of the type of the operand. This operator allows you to avoid specifying 
machine-dependent data sizes in your programs. 

sizeof unary-expression 
sizeof ( type-name) 

The operand is either an identifier that is a unary-expression, or a type-cast expres­
sion (that is, a type specifier enclosed in parentheses). The unary-expression can­
not represent a bit-field object, an incomplete type, or a function designator. The 
result is an unsigned integral constant. The standard header STDDEF.H defines 
this type as SiZL t. 

When you apply the sizeof operator to an array identifier, the result is the size of 
the entire array rather than the size of the pointer represented by the array 
identifier. 

When you apply the sizeof operator to a structure or union type name, or to an 
identifier of structure or union type, the result is the number of bytes in the struc­
ture or union, including internal and trailing padding. This size may include inter­
nal and trailing padding used to align the members of the structure or union on 
memory boundaries. Thus, the result may not correspond to the size calculated by 
adding up the storage requirements of the individual members. 

If an unsized array is the last element of a structure, the sizeof operator returns the 
size of the structure without the array. 

buffer = calloc(100, sizeof (int) ); 

This example uses the sizeof operator to pass the size of an int, which varies 
among machines, as an argument to a run-time function named calloc. The value 
returned by the function is stored in buff e r. 



126 C language Reference 

Cast Operators 

Syntax 

static char *strings[] ={ 
"this is string one", 
"this is string two", 
"this is string three", 

} ; 
const int string_no = ( sizeof strings) / ( sizeof strings[0] ); 

In this example, s t r in g s is an array of pointers to char. The number of pointers 
is the number of elements in the array, but is not specified. It is easy to determine 
the number of pointers by using the sizeof operator to calculate the number of ele­
ments in the array. The const integer value s t r i n g_ no is initialized to this num­
ber. Because it is a const value, stri ng_no cannot be modified. 

A type cast provides a method for explicit conversion of the type of an object in a 
specific situation. 

cast-expression: 
unary-expression 
( type-name) cast-expression 

The compiler treats cast-expression as type type-name after a type cast has been 
made. Casts can be used to convert objects of any scalar type to or from any other 
scalar type. Explicit type casts are constrained by the same rules that determine the 
effects of implicit conversions, discussed in "Assignment Conversions" on page 
141. Additional restraints on casts may result from the actual sizes or repre­
sentation of specific types. See "Storage of Basic Types" on page 98 for informa­
tion on actual sizes of integral types. For more information on type casts, see 
"Type-Cast Conversions" on page 147. 

Multiplicative Operators 

Syntax 

The multiplicative operators perform multiplication (*), division (I), and re­
mainder (% ) operations. 

multiplicative-expression: 
cast-expression 
multiplicative-expression * cast-expression 
multiplicative-expression 1 cast-expression 
multiplicative-expression % cast-expression 

The operands of the remainder operator (% ) must be integral. The multiplication 
(*) and division (/) operators can take integral- or floating-type operands; the types 
of the operands can be different. 



Microsoft Specific 

Expressions and Assignments 127 

The multiplicative operators perform the usual arithmetic conversions on the oper­
ands. The type of the result is the type of the operands after conversion. 

Note Since the conversions performed by the multiplicative operators do not pro­
vide for overflow or underflow conditions, information may be lost if the result of 
a multiplicative operation cannot be represented in the type of the operands after 
conversion. 

The C multiplicative operators are described below: 

Operator 

* 

% 

Description 

The multiplication operator causes its two operands to be multiplied. 

The division operator causes the first operand to be divided by the 
second. If two integer operands are divided and the result is not an 
integer, it is truncated according to the following rules: 

• The result of division by 0 is undefined according to the ANSI 
standard. The Microsoft C compiler generates an error at compile­
or run-time. 

• If both operands are positive or unsigned, the result is truncated 
toward O. 

• If either operand is negative, whether the result of the operation is 
the largest integer less than or equal to the algebraic quotient or is 
the smallest integer greater than or equal to the algebraic quotient is 
implementation defined. (See the Microsoft Specific section below.) 

The result of the remainder operator is the remainder when the first 
operand is divided by the second. When the division is inexact, the 
result is determined by the following rules: 

• If the right operand is zero, the result is undefined. 

• If either or both operands are positive, the result is positive. 

• If either operand is negative and the result is inexact, the result is 
implementation defined. (See the Microsoft Specific section below.) 

In division where either operand is negative, the direction of truncation is toward O. 

If either operation is negative in division with the remainder operator, the result 
has the same sign as the dividend (the first operand in the expression) .• 

The declarations shown below are used for the following examples: 

int i = 10, j = 3, n; 
double x = 2.O, y; 

This statement uses the multiplication operator: 



128 C language Reference 

Microsoft Specific 

In this case, x is multiplied by to give the value 20.0. The result has double 
type. 

n = i / j; 

In this example, 10 is divided by 3. The result is truncated toward 0, yielding the 
integer value 3. 

n = i % j; 

This statement assigns n the integer remainder, 1, when 10 is divided by 3. 

The sign of the remainder is the same as the sign of the dividend. For example, 

50 % -6 2 
-50 % 6 = -2 

In each case, 50 and 2 have the same sign .• 

Additive Operators 

Syntax 

The additive operators perform addition (+) and subtraction (-). 

additive-expression: 
multiplicative-expression 
additive-expression + multiplicative-expression 
additive-expression - multiplicative-expression 

Note Although the syntax for additive-expression includes multiplicative­
expression, this does not imply that expressions using multiplication are required. 
See the syntax in Appendix A for multiplicative-expression, cast-expression, and 
unary-expression. 

The operands can be integral or floating values. Some additive operations can also 
be performed on pointer values, as outlined under the discussion of each operator. 

The additive operators perform the usual arithmetic conversions on integral and 
floating operands. The type of the result is the type of the operands after conver­
sion. Since the conversions performed by the additive operators do not provide for 
overflow or underflow conditions, information may be lost if the result of an addi­
tive operation cannot be represented in the type of the operands after conversion. 

Addition (+) 
The addition operator (+) causes its two operands to be added. Both operands can 
be either integral or floating types, or one operand can be a pointer and the other 
an integer. 



Expressions and Assignments 129 

When an integer is added to a pointer, the integer value (i) is converted by multi­
plying it by the size of the value that the pointer addresses. After conversion, the 
integer value represents i memory positions, where each position has the length 
specified by the pointer type. When the converted integer value is added to the 
pointer value, the result is a new pointer value representing the address i positions 
from the original address. The new pointer value addresses a value of the same 
type as the original pointer value and therefore is the same as array indexing (see 
"One-Dimensional Arrays" on page 116 and "Multidimensional Arrays" on page 
117). If the sum pointer points outside the array, except at the first location beyond 
the high end, the result is undefined. See "Pointer Arithmetic" later in this section 
for more information. 

Subtraction (-) 
The subtraction operator (-) subtracts the second operand from the first. Both oper­
ands can be either integral or floating types, or one operand can be a pointer and 
the other an integer. 

When two pointers are subtracted, the difference is converted to a signed integral 
value by dividing the difference by the size of a value of the type that the pointers 
address. The size of the integral value is defined by the type ptrdifL t in the stand­
ard include file STDDEF.H. The result represents the number of memory posi­
tions of that type between the two addresses. The result is only guaranteed to be 
meaningful for two elements of the same array, as discussed in "Pointer Arith­
metic" later in this section. 

When an integer value is subtracted from a pointer value, the subtraction operator 
converts the integer value (i) by multiplying it by the size of the value that the 
pointer addresses. After conversion, the integer value represents i memory posi­
tions, where each position has the length specified by the pointer type. When the 
converted integer value is subtracted from the pointer value, the result is the 
memory address i positions before the original address. The new pointer points to 
a value of the type addressed by the original pointer value. 

USing the Additive Operators 
The following examples, which illustrate the addition and subtraction operators, 
use these declarations: 

int i = 4, j; 
fl oat x[10]; 
float *px; 

These statements are equivalent: 

px &x[4 + i]; 
px = &x[4] + i; 



130 C Language Reference 

The value of i is multiplied by the length of a float and added to &x [4]. The re­
sulting pointer value is the address of x [8]. 

j = &x[i] - &x[i-2]; 

In this example, the address ofthe third element of x (given by x [i - 2] ) is sub­
tracted from the address of the fifth element of x (given by x [i] ). The differ­
ence is divided by the length of a float; the result is the integer value 2. 

Pointer Arithmetic 
Additive operations involving a pointer and an integer give meaningful results 
only if the pointer operand addresses an array member and the integer value pro­
duces an offset within the bounds of the same array. When the integer value is con­
verted to an address offset, the compiler assumes that only memory positions of 
the same size lie between the original address and the address plus the offset. 

This assumption is valid for array members. By definition, an array is a series of 
values of the same type; its elements reside in contiguous memory locations. How­
ever, storage for any types except array elements is not guaranteed to be filled by 
the same type of identifiers. That is, blanks may appear between memory posi­
tions, even positions of the same type. Therefore, the results of adding to or sub­
tracting from the addresses of any values but array elements are undefined. 

Similarly, when two pointer values are subtracted, the conversion assumes that 
only values of the same type, with no blanks, lie between the addresses given by 
the operands. 

On machines with segmented architecture (such as the 8086/8088), additive opera­
tions between pointer and integer values may not be valid in some cases. For ex­
ample, an operation may result in an address that is outside the bounds of an array. 
See the reference information on these processors or reference books on seg­
mented architecture for more information. 

Note The results of pointer subtraction when both operands are pointers to short 
may overflow the intermediate result. To avoid this, cast the pointers to pointers to 
long. For subtraction of __ huge operands, cast the difference to unsigned long to 
get the correct result. 

Bitwise Shift Operators 
The shift operators shift their first operand left «<) or right (») by the number of 
positions the second operand specifies. 



Syntax shift-expression: 
additive-expression 
shift-expression «additive-expression 
shift-expression »additive-expression 

Expressions and Assignments 131 

Both operands must be integral values. These operators perform the usual arith­
metic conversions; the type of the result is the type of the left operand after 
conversion. 

For leftward shifts, the vacated right bits are set to O. For rightward shifts, the 
vacated left bits are filled based on the type of the first operand after conversion. If 
the type is unsigned, they are set to O. Otherwise, they are filled with copies of the 
sign bit. For left-shift operators without overflow, the statement 

exprl « expr2 

is equivalent to multiplication by 2expr2. For right-shift operators, 

exprl » expr2 

is equivalent to division by 2expr2 if exprl is unsigned or has a nonnegative value. 

The result of a shift operation is undefined if the second operand is negative, or if 
the right operand is greater than or equal to the width in bits of the promoted left 
operand. 

Since the conversions performed by the shift operators do not provide for over­
flow or underflow conditions, information may be lost if the result of a shift opera­
tion cannot be represented in the type of the first operand after conversion. 

unsigned int x. y. z; 

x 0x00AA; 
y 0x5500; 

z (x« 8 ) + ( y » 8 ); 

In this example, x is shifted left eight positions and y is shifted right eight posi­
tions. The shifted values are added, giving OxAA55, and assigned to z. 

Shifting a negative value to the right yields the negative of half the absolute value, 
rounded down. For example, -253 (binary 1111111100000011) on a 16-bit com­
puter shifted right one bit produces -127 (binary 11111111 10000001). A positive 
253 shifts right to produce + 126. 

Right shifts preserve the sign of the number. When a signed integer shifts right, 
the most-significant bit remains set as it had been. When an unsigned integer shifts 
right, the most-significant bit is cleared. Thus if OxFOOO is signed, a right shift pro­
duces OxF800. If OxFOOO is unsigned, the result is Ox7800. 



132 C Language Reference 

Shifting a positive number right 16 times using the 16-bit computer produces 
OxOOOO. Shifting a negative number right 16 times produces OxFFFF. 

Relational and Equality Operators 

Syntax 

The binary relational and equality operators compare their first operand to their 
second operand to test the validity of the specified relationship. The result of a 
relational expression is 1 if the tested relationship is true and 0 if it is false. The 
type of the result is int. 

relational-expression: 
shift-expression 
relational-expression < shift-expression 
relational-expression> shift-expression 
relational-expression <= shift-expression 
relational-expression >= shift-expression 

equality-expression: 
relational-expression 
equality-expression == relational-expression 
equality-expression != relational-expression 

The relational and equality operators test the following relationships: 

Operator 

< 
> 
<= 
>= 

!= 

Relationship Tested 

First operand less than second operand 

First operand greater than second operand 

First operand less than or equal to second operand 

First operand greater than or equal to second operand 

First operand equal to second operand 

First operand not equal to second operand 

The first four operators in the list above have a higher precedence than the equality 
operators (== and !=). See the precedence information in Table 4.1. 

The operands can have integral, floating, or pointer type. The types of the oper­
ands can be different. Relational operators perform the usual arithmetic conver­
sions on integral and floating type operands. In addition, you can use the following 
combinations of operand types with the relational and equality operators: 

• Both operands of any relational or equality operator can be pointers to the same 
type. For the equality (==) and inequality (!=) operators, the result of the com­
parison indicates whether the two pointers address the same memory location. 
For the other relational operators «, >, <=, and >=), the result of the 



Expressions and Assignments 133 

comparison indicates the relative position of the two memory addresses of the 
objects pointed to. Relational operators compare only offsets. 

Pointer comparison is defined only for parts of the same object. If the pointers 
refer to members of an array, the comparison is equivalent to comparison of the 
corresponding subscripts. The address of the first array element is "less than" 
the address of the last element. In the case of structures, pointers to structure 
members declared later are "greater than" pointers to members declared earlier 
in the structure. Pointers to the members of the same union are equal. 

• A pointer value can be compared to the constant value ° for equality (= =) or in­
equality (!=) pointer. A pointer with a value of ° is called a "null" pointer; that 
is, it does not point to a valid memory location. 

• The equality operators follow the same rules as the relational operators, but per­
mit additional possibilities: a pointer may be compared to a constant integral ex­
pression with value 0, or to a pointer to void. If two pointers are both null 
pointers, they compare as equal. Equality operators compare both segment and 
offset. 

The examples below illustrate relational and equality operators. 

int x 0, y = 0; 
if( x < y 

Because x and y are equal, the expression in this example yields the value 0. 

char array[10]; 
char *p; 

for ( p = array; p < &array[10]; p++ ) 
*p='\0'; 

The fragment in this example sets each element of a r ray to a null character 
constant. 

enum color { red, white, green} col; 

if (col red) 

These statements declare an enumeration variable named col with the tag color. 
At any time, the variable may contain an integer value of 0, 1, or 2, which repre­
sents one ofthe elements ofthe enumeration set color: the color red, white, or 
green, respectively. If co 1 contains ° when the if statement is executed, any state­
ments depending on the if will be executed. 



134 C Language Reference 

Bitwise Operators 

Syntax 

The bitwise operators perform bitwise-AND (&), bitwise-exclusive-OR (1\), and 
bitwise-inclusive-OR ( I )uperations. 

AND-expression: 
equality-expression 
AND-expression & equality-expression 

exclusive-OR-expression: 
AND-expression 
exclusive-OR-expression 1\ AND-expression 

inclusive-OR-expression: 
exclusive-OR -expression 
inclusive-OR-expression I exclusive-OR-expression 

The operands of bitwise operators must have integral types, but their types can be 
different. These operators perform the usual arithmetic conversions; the type of 
the result is the type of the operands after conversion. 

The C bitwise operators are described below: 

Operator 

& 

1\ 

Description 

The bitwise-AND operator compares each bit of its first operand to the 
corresponding bit of its second operand. If both bits are 1, the 
corresponding result bit is set to 1. Otherwise, the corresponding result 
bit is set to O. 

The bitwise-exclusive-OR operator compares each bit of its first 
operand to the corresponding bit of its second operand. If one bit is 0 
and the other bit is 1, the corresponding result bit is set to 1. 
Otherwise, the corresponding result bit is set to O. 

The bitwise-inclusive-OR operator compares each bit of its first 
operand to the corresponding bit of its second operand. If either bit is 
1, the corresponding result bit is set to 1. Otherwise, the corresponding 
result bit is set to O. 

These declarations are used for the following three examples: 

short i = 0xAB00; 
short j = 0xABCD; 
short n· , 

n = i & j; 

The result assigned to n in this first example is the same as 
hexadecimal). 

(OxABOO 



Expressions and Assignments 135 

n j; 

n " j; 

The bitwise-inclusive OR in the second example results in the value OxABCD 
(hexadecimal), while the bitwise-exclusive OR in the third example produces 
OxCD (hexadecimal). 

Microsoft Specific The results of bitwise operation on signed integers is implementation-defined ac­
cording to the ANSI standard. For the Microsoft C compiler, bitwise operations on 
signed integers work the same as bitwise operations on unsigned integers. For ex­
ample -16 & 99 can be expressed in binary as 

11111111 11110000 
& 00000000 01100011 

00000000 01100000 

The result of the bitwise AND is 96 decimal. • 

Logical Operators 

Syntax 

The logical operators perform logical-AND (&&) and logical-OR ( II) operations. 

logical-AND-expression : 
inclusive-OR-expression 
logical-AND-expression && inclusive-OR-expression 

logical-OR-expression: 
logical-AND-expression 
logical-OR-expression IIlogical-AND-expression 

Logical operators do not perform the usual arithmetic conversions. Instead, they 
evaluate each operand in terms of its equivalence to O. The result of a logical 
operation is either 0 or 1. The result's type is int. 

The C logical operators are described below: 

Operator 

&& 

Description 

The logical-AND operator produces the value 1 if both operands have 
nonzero values. If either operand is equal to 0, the result is O. If the 
first operand of a logical-AND operation is equal to 0, the second 
operand is not evaluated. 



136 C Language Reference 

Operator 

II 

Description 

The logical-OR operator perfonns an inclusive-OR operation on its 
operands. The result is 0 if both operands have 0 values. If either 
operand has a nonzero value, the result is 1. If the first operand of a 
logical-OR operation has a nonzero value, the second operand is not 
evaluated. 

The operands of logical-AND and logical-OR expressions are evaluated from left 
to right. If the value of the first operand is sufficient to determine the result of the 
operation, the second operand is not evaluated. This is called "short-circuit evalua­
tion." There is a sequence point after the first operand. See "Sequence Points" on 
page 110 for more information. 

The following examples illustrate the logical operators: 

int w, x, y, z; 

if( x < y && y < z ) 
printf( "x is less than z\n" ); 

In this example, the pri ntf function is called to print a message if x is less than 
y and y is less than z. If x is greater than y, the second operand ( y < z ) is not 
evaluated and nothing is printed. Note that this could cause problems in cases 
where the second operand has side effects that are being relied on for some other 
reason. 

pri ntf( "%d" , (x == w II x == y II x == z) ); 

In this example, if x is equal to either w, y, or z, the second argument to the 
pri ntf function evaluates to true and the value 1 is printed. Otherwise, it evalu­
ates to false and the value 0 is printed. As soon as one of the conditions evaluates 
to true, evaluation ceases. 

Conditional Operator 

Syntax 

C has one ternary operator: the conditional operator (? :). 

conditional-expression: 
logical-OR-expression 
logical-OR-expression? expression: conditional-expression 

The logical-OR-expression must have integral, floating, or pointer type. It is eval­
uated in terms of its equivalence to O. A sequence point follows logical-OR­
expression. Evaluation of the operands proceeds as follows: 



Expressions and Assignments 137 

• If logical-OR-expression is not equal to 0, expression is evaluated. The result of 
evaluating the expression is given by the nonterminal expression. (This means 
expression is evaluated only if logical-OR-expression is true.) 

• If logical-OR-expression equals 0, conditional-expression is evaluated. The re­
sult of the expression is the value of conditional-expression. (This means 
conditional-expression is evaluated only if logical-OR-expression is false.) 

Note that either expression or conditional-expression is evaluated, but not both. 

The type of the result of a conditional operation depends on the type of the 
expression or conditional-expression operand, as follows: 

• If expression or conditional-expression has integral or floating type (their types 
can be different), the operator performs the usual arithmetic conversions. The 
type of the result is the type of the operands after conversion. 

• If both expression and conditional-expression have the same structure, union, 
or pointer type, the type of the result is the same structure, union, or pointer 
type. 

• If both operands have type void, the result has type void. 

• If either operand is a pointer to an object of any type, and the other operand is a 
pointer to void, the pointer to the object is converted to a pointer to void and 
the result is a pointer to void. 

• If either expression or conditional-expression is a pointer and the other operand 
is a constant expression with the value 0, the type of the result is the pointer 
type. 

In the type comparison for pointers, any type qualifiers (const or volatile) in the 
type to which the pointer points are insignificant, but the result type inherits the 
qualifiers from both components of the conditional. 

The following examples show uses of the conditional operator: 

j = ( i < 0 ) ? ( -i ) : ( i ); 

This example assigns the absolute value of i to j. If i is less than 0, - i is 
assigned to j. If i is greater than or equal to 0, i is assigned to j. 

void fI( void ); 
void f2( void ); 
int x; 
int y; 

( x y ) ? ( fI() ) ( f2() ); 



138 C Language Reference 

In this example, two functions, f1 and f2, and two variables, x and y, are de­
clared. Later in the program, if the two variables have the same value, the func­
tion f1 is called. Otherwise, f2 is called. 

Assignment Operators 

Syntax 

An assignment operation assigns the value of the right-hand operand to the storage 
location named by the left-hand operand. Therefore, the left-hand operand of an as­
signment operation must be a modifiable I-value. After the assignment, an assign­
ment expression has the value of the left operand but is not an I-value. 

assignment-expression: 
conditional-expression 
unary-expression assignment-operator assignment-expression 

assignment-operator: one of 
= *= 1= %= += -= «= »= &= A= 1= 

The assignment operators in C can both transform and assign values in a single 
operation. C provides the following assignment operators: 

Operator 

= 

*= 
1= 
%= 
+= 
-= 
«= 
»= 
&= 

1= 
A= 

Operation Performed 

Simple assignment 

Multiplication assignment 

Division assignment 

Remainder assignment 

Addition assignment 

Subtraction assignment 

Left-shift assignment 

Right-shift assignment 

Bitwise-AND assignment 

Bitwise-inclusive-OR assignment 

Bitwise-exclusive-OR assignment 

In assignment, the type of the right-hand value is converted to the type of the left­
hand value, and the value is stored in the left operand after the assignment has 
taken place. The left operand must not be an array, a function, or a constant. The 
specific conversion path, which depends on the two types, is outlined in detail in 
"Type Conversions" on page 141. 



Expressions and Assignments 139 

Simple Assignment 
The simple-assignment operator assigns its right operand to its left operand. The 
value of the right operand is converted to the type of the assignment expression 
and replaces the value stored in the object designated by the left operand. The con­
version rules for assignment apply (see "Assignment Conversions" on page 141). 

double x; 
int y; 

x = y; 

In this example, the value of y is converted to type double and assigned to x. 

Compound Assignment 
The compound-assignment operators combine the simple-assignment operator 
with another binary operator. Compound-assignment operators perform the opera­
tion specified by the additional operator, then assign the result to the left operand. 
For example, a compound-assignment expression such as 

expression1 += expression2 

can be understood as 

expression1 = expression1 + expression2 

However, the compound-assignment expression is not equivalent to the expanded 
version because the compound-assignment expression evaluates expression1 only 
once, while the expanded version evaluates expression! twice: in the addition 
operation and in the assignment operation. 

The operands of a compound-assignment operator must be of integral or floating 
type. Each compound-assignment operator performs the conversions that the corre­
sponding binary operator performs and restricts the types of its operands accord­
ingly. The addition-assignment (+=) and subtraction-assignment (-=) operators 
may also have a left operand of pointer type, in which case the right-hand operand 
must be of integral type. The result of a compound-assignment operation has the 
value and type of the left operand. 

#define MASK 0xff00 

n &= MASK; 

In this example, a bitwise-inclusive-AND operation is performed on n and MASK, 
and the result is assigned to n. The manifest constant MASK is defined with a 
#define preprocessor directive. (For more information, see "The #define Direc­
tive" on page 193.) 



140 C Language Reference 

Sequential-Evaluation Operator 

Syntax 

The sequential-evaluation operator, also called the "comma operator," evaluates 
its two operands sequentially from left to right. 

expression: 
assignment-expression 
expression, assignment-expression 

The left operand of the sequential-evaluation operator is evaluated as a void ex­
pression. The result of the operation has the same value and type as the right oper­
and. Each operand can be of any type. The sequential-evaluation operator does not 
perform type conversions between its operands, and it does not yield an 
I-value. There is a sequence point after the first operand, which means all side 
effects from the evaluation of the left operand are completed before beginning 
evaluation of the right operand. See page 110 for information on sequence points. 

The sequential-evaluation operator is typically used to evaluate two or more ex­
pressions in contexts where only one expression is allowed. 

Commas may be used as separators in some contexts. However, you must be care­
ful not to confuse the use of the comma as a separator with its use as an operator; 
the two uses are completely different. 

This example illustrates the sequential-evaluation operator: 

for ( i = j = 1; i + j < 20; i += i, j-- ); 

In this example, each operand of the for statement's third expression is evaluated 
independently. The left operand i += i is evaluated first; then the right operand, 
j - - ,is evaluated. 

func_one( x, Y + 2, Z ); 
func_two( (x--, y + 2), Z ); 

In the function call to func_one, three arguments, separated by commas, are 
passed: x, y + 2, and z. 

In the function call to func_ two, parentheses force the compiler to interpret the 
first comma as the sequential-evaluation operator. This function call passes two ar­
guments to func_ two. The first argument is the result of the sequential-evaluation 
operation (x - -, y + 2), which has the value and type of the expression y + 2; 
the second argument is z. 



Expressions and Assignments 141 

4.3 Type Conversions 
Type conversions depend on the specified operator and the type of the operand or 
operators. Type conversions are performed in the following cases: 

• When a value of one type is assigned to a variable of a different type or an oper­
ator converts the type of its operand or operands before performing an operation 

• When a value of one type is explicitly cast to a different type 

• When a value is passed as an argument to a function or when a type is returned 
from a function 

This section outlines the rules for each kind of conversion. 

A character, a short integer, or an integer bit field, all either signed or not, or an ob­
ject of enumeration type, can be used in an expression wherever an integer can be 
used. If an int can represent all the values of the original type, then the value is 
converted to int; otherwise, it is converted to unsigned int. This process is called 
"integral promotion." Integral promotions preserve value. That is, the value after 
promotion is guaranteed to be the same as prior to the promotion. See "Usual 
Arithmetic Conversions" on page 115 for more information. 

Assignment Conversions 
In assignment operations, the type of the value being assigned is converted to the 
type of the variable that receives the assignment. C allows conversions by assign­
ment between integral and floating types, even if information is lost in the conver­
sion. The conversion method used depends on the types involved in the 
assignment, as described in "Usual Arithmetic Conversion" on page 115 and in the 
following sections. 

Type qualifiers do not affect the allowability of the conversion although a const 
I-value cannot be used on the left side of the assignment. 

Conversions from Signed Integral Types 
When a signed integer is converted to an unsigned integer with equal or greater 
size and the value of the signed integer is not negative, the value is unchanged. 
The conversion is made by sign-extending the signed integer. A signed integer is 
converted to a shorter signed integer by truncating the high-order bits. The result is 
interpreted as an unsigned value, as shown in this example. 



142 C Language Reference 

int i = -3; 
unsigned u; 

u = i; 
printf( "%u\n", u l; 1* Prints 65533 on 16-bit computers *1 

No information is lost when a signed integer is converted to a floating value, ex­
cept that some precision may be lost when a long int or unsigned long int value is 
converted to a float value. 

Table 4.2 summarizes conversions from signed integral types. This table assumes 
that the char type is signed by default. If you use a compile-time option to change 
the default for the char type to unsigned, the conversions given in Table 4.3 for 
the unsigned char type apply instead of the conversions in Table 4.2. 

Table 4.2 Conversions from Signed Integral Types 

From To Method 

chari 

char 

char 
char 

char 
char 

char 
char 

short 
short 

short 
short 

short 
short 

short 
short 

long 

long 

long 
long 

long 

long 

short 
long 

unsigned char 
unsigned short 

unsigned long 
float 

double 
long double 

char 
long 

unsigned char 
unsigned short 

unsigned long 

float 

double 
long double 

char 

short 
unsigned char 
unsigned short 

unsigned long 

float 

Sign-extend 

Sign-extend 

Preserve pattern; high-order bit loses function as sign bit 

Sign-extend to short; convert short to unsigned short 

Sign-extend to long; convert long to unsigned long 
Sign-extend to long; convert long to float 

Sign-extend to long; convert long to double 
Sign-extend to long; convert long to double 

Preserve low-order byte 

Sign-extend 

Preserve low-order byte 

Preserve bit pattern; high-order bit loses function as sign bit 

Sign-extend to long; convert long to unsigned long 
Sign-extend to long; convert long to float 

Sign-extend to long; convert long to double 
Sign-extend to long; convert long to double 

Preserve low-order byte 

Preserve low-order word 

Preserve low-order byte 

Preserve low-order word 

Preserve bit pattern; high-order bit loses function as sign bit 

Represent as float. If long cannot be represented exactly, 
some precision is lost. 



Expressions and Assignments 143 

Table 4.2 Conversions from Signed Integral Types (continued) 

From To 

long double 

long long double 

Method 

Represent as double. If long cannot be represented exactly 
as a double, some precision is lost. 

Represent as double. If long cannot be represented exactly 
as a double, some precision is lost. 

I All char entries assume that the char type is signed by default. 

The int type is equivalent to either the short type or the long type, depending on 
the implementation. Conversion of an int value proceeds the same as for a short 
or a long, whichever is appropriate. For the Microsoft C compiler, an integer is the 
same as a short for 16-bit targets, and is equivalent to a long for 32-bit targets. 

Conversions from Unsigned Integral Types 
An unsigned integer is converted to a shorter unsigned or signed integer by truncat­
ing the high-order bits, or to a longer unsigned or signed integer by zero­
extending. 

When the value with integral type is demoted to a signed integer with smaller size, 
or an unsigned integer is converted to its corresponding signed integer, the value is 
unchanged if it can be represented in the new type. However, the value it repre­
sents changes if the sign bit is set. The results in the following example are true for 
16-bit computers. 

int j; 
unsigned k = 65533; 

j = k; 
printf( "%d\n", j 1; /* Prints -3 */ 

If it cannot be represented, the result is implementation-defined. See "Type-Cast 
Conversions" on page 147 for information on the Microsoft C compiler's handling 
of demotion of integers. The same behavior results from integer conversion or 
from type casting the integer. 

Unsigned values are converted in a way that preserves their value and is not repre­
sentable directly in C. The only exception is a conversion from unsigned long to 
float which loses at most the low-order bits. Otherwise value is preserved, signed 
or unsigned. When a value of integral type is converted to floating, and the value 
is outside the range representable, the result is undefined. (See "Storage of Basic 
Types" on page 98 for information about the range for integral and floating-point 
types.) 



144 C Language Reference 

Table 4.3 summarizes conversions from unsigned integral types. 

Table 4.3 Conversions from Unsigned Integral Types 

From To Method 

unsigned char char Preserve bit pattern; high-order bit becomes 
sign bit 

unsigned char short Zero-extend 

unsigned char long Zero-extend 

unsigned char unsigned short Zero-extend 

unsigned char unsigned long Zero-extend 

unsigned char float Convert to long; convert long to float 
unsigned char double Convert to long; convert long to double 
unsigned char long double Convert to long; convert long to double 
unsigned short char Preserve low-order byte 

unsigned short short Preserve bit pattern; high-order bit becomes 
sign bit 

unsigned short long Zero-extend 

unsigned short unsigned char Preserve low-order byte 

unsigned short unsigned long Zero-extend 

unsigned short float Convert to long; convert long to float 
unsigned short double Convert to long; convert long to double 
unsigned short long double Convert to long; convert long to double 
unsigned long char Preserve low-order byte 

unsigned long short Preserve low-order word 

unsigned long long Preserve bit pattern; high-order bit becomes 
sign bit 

unsigned long unsigned char Preserve low-order byte 

unsigned long unsigned short Preserve low-order word 

unsigned long float Convert to long; convert long to float 
unsigned long double Convert directly to double 
unsigned long long double Convert to long; convert long to double 

The unsigned int type is equivalent either to the unsigned short type or to the 
unsigned long type, depending on the target environment. Conversion of an 
unsigned int value proceeds in the same way as conversion of an unsigned short 
or an unsigned long, whichever is appropriate. For the Microsoft C compiler, an 
integer is the same as a short for 16-bit targets and is equivalent to a long for 32-
bit targets. Conversions from unsigned long values to float are not accurate if the 
value being converted is larger than the maximum positive signed long value. 



Microsoft Specific 

Expressions and Assignments 145 

Conversions from Floating-Point Types 
A float value converted to a double or long double, or a double converted to a 
long double, undergoes no change in value. A double value converted to a float 
value is represented exactly, if possible. Precision may be lost if the value cannot 
be represented exactly. If the result is out of range, the behavior is undefined. See 
"Floating-Point Constants" on page 10 for the range of floating-point types. 

A floating value is converted to an integral value by first converting to a long, then 
from the long value to the specific integral value, as described below in Table 4.4. 
The decimal portion of the floating value is discarded in the conversion to a long. 
If the result is still too large to fit into a long, the result of the conversion is 
undefined. 

When converting a double or long double floating-point number to a smaller 
floating-point number, the value of the floating-point variable is truncated toward 
zero when an underflow occurs. An overflow causes a run-time error .• 

Table 4.4 summarizes conversions from floating types. 

Table 4.4 Conversions from Floating-Point Types 

From To Method 

float char Convert to long; convert long to char 
float short Convert to long; convert long to short 
float long Truncate at decimal point. If result is too large to 

be represented as long, result is undefined. 
float unsigned short Convert to long; convert long to unsigned short 
float unsigned long Convert to long; convert long to unsigned long 
float double Change internal representation 
float long double Change internal representation 
double char Convert to float; convert float to char 
double short Convert to float; convert float to short 
double long Truncate at decimal point. If result is too large to 

be represented as long, result is undefined. 
double unsigned short Convert to long; convert long to unsigned short 
double unsigned long Convert to long; convert long to unsigned long 
double float Represent as a float. If double value cannot be 

represented exactly as float, loss of precision 
occurs. If value is too large to be represented as 
float, the result is undefined. 

long double char Convert to float; convert float to char 



146 C Language Reference 

Table 4.4 Conversions from Floating-Point Types (continued) 

From 

long double 

long double 

long double 

long double 
long double 

long double 

To 

short 

long 

unsigned short 

unsigned long 
float 

double 

Method 

Convert to float; convert float to short 

Truncate at decimal point. If result is too large to 
be represented as long, result is undefined. 

Convert to long; convert long to unsigned short 

Convert to long; convert long to unsigned long 
Represent as a float. If double value cannot be 
represented exactly as float, loss of precision 
occurs. If value is too large to be represented as 
float, the result is undefined. 

The long double value is treated as double. 

Note Conversions from float, double, or long double values to unsigned long are 
not accurate if the value being converted is larger than the maximum positive long 
value. 

Conversions to and from Pointer Types 
A pointer to one type of value can be converted to a pointer to a different type. 
However, the result may be undefined because of the alignment requirements and 
sizes of different types in storage. A pointer to an object may be converted to a 
pointer to an object whose type requires less or equally strict storage alignment, 
and back again without change. 

A pointer to void may be converted to or from a pointer to any type, without re­
striction or loss of information. If the result is converted back to the original type, 
the original pointer is recovered. 

If a pointer is converted to another pointer with the same type but having different 
or additional qualifiers, the new pointer is the same as the old except for restric­
tions imposed by the new qualifier. 

A pointer value can also be converted to an integral value. The conversion path de­
pends on the size of the pointer and the size of the integral type, according to the 
following rules: 

• If the size of the pointer is greater than or equal to the size of the integral type, 
the pointer behaves like an unsigned value in the conversion, except that it can­
not be converted to a floating value. 

• If the pointer is smaller than the integral type, the pointer is first converted to a 
pointer with the same size as the integral type, then converted to the integral 
type. 



Expressions and Assignments 147 

Conversely, an integral type can be converted to a pointer type according to the fol­
lowing rules: 

• If the integral type is the same size as the pointer type, the conversion simply 
causes the integral value to be treated as a pointer (an unsigned integer). 

• If the size of the integral type is different from the size of the pointer type, the 
integral type is first converted to the size of the pointer, using the conversion 
paths given in Tables 4.2 and 4.3. It is then treated as a pointer value. 

An integral constant expression with value 0 or such an expression cast to type 
void * may be converted by a type cast, by assignment, or by comparison to a 
pointer of any type. This produces a null pointer that is equal to another null 
pointer of the same type, but this null pointer is not equal to any pointer to a func­
tion or to an object. Integers other than the constant 0 may be converted to pointer 
type, but the result is not portable. 

See "Special Keywords in Declarators" on page 55 for information about conver­
sions on pointers made with the __ near, __ far, and __ huge keywords. 

Conversions from Other Types 
Since an enum value is an int value by definition, conversions to and from an 
enum value are the same as those for the int type. An int is equivalent to either a 
short or a long, depending on the target environment. 

Microsoft Specific For the Microsoft C compiler, an integer is the same as a short for 16-bit targets 
and is equivalent to a long for 32-bit targets. 

No conversions between structure or union types are allowed. 

Any value may be converted to type void, but the result of such a conversion can 
be used only in a context where an expression value is discarded, such as in an ex­
pression statement. 

The void type has no value, by definition. Therefore, it cannot be converted to any 
other type, and other types cannot be converted to void by assignment. However, 
you can explicitly cast a value to void type, as discussed in the next section .• 

Type-Cast Conversions 
You can use type casts to explicitly convert types. 



148 C language Reference 

Syntax cast-expression: 

Microsoft Specific 

unary expression 
( type-name) cast-expression 

type-name: 
specifier-qualifier-list abstract-declarator opt 

The type-name is a type and operand is a value to be converted to that type. An ex­
pression with a type cast is not an I-value. The operand is converted as though it 
had been assigned to a variable of type type-name. The conversion rules for assign­
ments (outlined in "Assignment Conversions" on page 141) apply to type casts as 
well. 

Any identifier may be cast to void type. However, if the type specified in a type­
cast expression is not void, then the identifier being cast to that type cannot be a 
void expression. Any expression can be cast to void, but an expression of type 
void cannot be cast to any other type. For example, a function with void return 
type cannot have its return cast to another type. 

Note that a void * expression has a type pointer to void, not type void. If an object 
is cast to void type, the resulting expression cannot be assigned to any item. Simi­
larly, a type-cast object is not an acceptable I-value, so no assignment can be made 
to a type-cast object. 

A type cast can be an I-value expression as long as the size of the identifier does 
not change. See page 107 for information on I-value expressions .• 

You can convert an expression to type void with a cast, but the resulting expres­
sion can be used only where a value is not required. An object pointer converted to 
void * and back to the original type will return to its original value. 

Table 4.5 shows the types that can be cast to any given type. 

Table 4.5 Legal Type Casts 

Destination Types 

Integral types 

Floating-point 

A pointer to an object, or (void *) 

Function pointer 

A structure, union, or array 

Void type 

Potential Sources 

Any integer type or floating-point type, or 
pointer to an object 

Any arithmetic type 

Any integer type, (void *), a pointer to an 
object, or a function pointer 

Any integral type, a pointer to an object, or a 
function pointer 

None 

Any type 



Expressions and Assignments 149 

Microsoft Specific When a long integer is cast to a short, or a short is cast to a char (demotion), the 
least-significant bytes are retained. 

For example, this statement 

short x = (short)x12345678L; 

assigns the value Ox5678 to x, and this statement 

char y = (char)0x1234; 

assigns the value Ox34 to y. 

On a 16-bit computer, near pointers are the same size as short integers; casting 
near pointers to short (or short to near pointers) has no effect on the value. Far 
pointers and huge pointers are the same size as long integers. Casting far or huge 
pointers to long (or long to far or huge pointers) has no effect on the value. 

When a near pointer on a 16-bit computer is cast to long, the 16-bit value is 
"normalized," which means the segment (usually DS) and offset are combined to 
produce a 32-bit memory location. When a far or huge pointer is cast to short, the 
value is truncated to a short. 

The compiler normalizes based pointers when necessary, unless the based pointer 
is a constant zero, in which case it is assumed to be a null pointer. See page 79 for 
more information on based pointers. 

When an integral number is cast to a floating-point value that cannot exactly repre­
sent the value, the value is rounded (up or down) to the nearest suitable value. 

For example, casting an unsigned long (with 32 bits of precision) to a float 
(whose mantissa has 23 bits of precision) rounds the number to the nearest multi­
ple of 256. The long values in the range of 4,294,966,913 to 4,294,967,167 are all 
rounded to the float value 4,294,967,040.+ 

Function-Call Conversions 
The type of conversion performed on the arguments in a function call depends on 
the presence of a function prototype (forward declaration) with declared argument 
types for the called function. 

If a function prototype is present and includes declared argument types, the com­
piler performs type checking (see Chapter 6, "Functions"). 

If no function prototype is present, only the usual arithmetic conversions are per­
formed on the arguments in the function call. These conversions are performed in­
dependently on each argument in the call. This means that a float value is 



150 C language Reference 

converted to a double; a char or short value is converted to an int; and an 
unsigned char or unsigned short is converted to an unsigned int. 

Microsoft Specific If the special keywords __ near, __ far, and __ huge are used, implicit conver­
sions may also be made on pointer values passed to functions. You can override 
these implicit conversions by providing function prototypes, which also allow the 
compiler to perform type checking. 



Statements 

The statements of a C program control the flow of program execution. In C, as in 
other programming languages, several kinds of statements are available to perform 
loops, to select other statements to be executed, and to transfer control. This chap­
ter describes the following C statements in alphabetical order: 

break statement 
compound statement 
continue statement 
do statement 
expression statement 
for statement 

goto and labeled statements 
if statement 
null statement 
return statement 
switch statement 
while statement 

5.1 Overview 

Syntax 

C statements consist of tokens, expressions, and other statements. A statement that 
forms a component of another statement is called the "body" of the enclosing state­
ment. Each of the statement types given by the following syntax is discussed later 
in this chapter. 

statement: 
labeled-statement 
compound-statement 
expression-statement 
selection-statement 
iteration-statement 
jump-statement 

Frequently the statement body is a "compound statement." A compound statement 
is made up of other statements that can include keywords. The compound state­
ment is delimited by braces ({ }). All other C statements end with a semicolon (;). 
The semicolon is a statement terminator. 



152 C language Reference 

The expression statement contains a C expression that can contain the arithmetic 
or logical operators introduced in Chapter 4. The null statement is an empty 
statement. 

Any C statement may begin with an identifying label consisting of a name and a 
colon. Since only the goto statement recognizes statement labels, statement labels 
are discussed with goto. For more information, see "The goto and Labeled State­
ments" on page 157. 

5.2 The break Statement 

Syntax 

The break statement terminates the execution of the nearest enclosing do, for, 
switch, or while statement in which it appears. Control passes to the statement that 
follows the terminated statement. 

jump-statement: 
break; 

The break statement is frequently used to terminate the processing of a particular 
case within a switch statement. An error is generated if there is no enclosing itera­
tive or switch statement. 

Within nested statements, the break statement terminates only the do, for, switch, 
or while statement that immediately encloses it. You can use a return or goto 
statement to transfer control elsewhere out of the nested structure. 

This example illustrates the break statement: 

for ( i = 0; i < LENGTH; i++) /* Execution returns here when */ 
{ /* break statement is executed */ 

for( j = 0; j < WIDTH; j++) 
{ 

} 
} 

if( lines[i][j] == '\0' 
{ 

} 

lengths[i] = j; 
break; 

The example processes an array of variable-length strings stored in 1 i nes. The 
break statement causes an exit from the interior for loop after the terminating null 
character ('\0') of each string is found and its position is stored in 1 engths [i]. 
The variable j is not incremented when break causes the exit from the interior 
loop. Control then returns to the outer for loop. The variable i is incremented and 
the process is repeated until i is greater than or equal to LENGTH. 



Statements 153 

5.3 The Compound Statement 

Syntax 

A compound statement (also called a "block") typically appears as the body of 
another statement, such as the if statement. Chapter 3, "Declarations and Types," 
describes the form and meaning of the declarations that can appear at the head of a 
compound statement. 

compound-statement: 
{ declaration-list opt statement-list opt} 

declaration-list: 
declaration 
declaration-list declaration 

statement-list: 
statement 
statement-list statement 

If there are declarations, they must come before any statements. The scope of each 
identifier declared at the beginning of a compound statement extends from its dec­
laration point to the end of the block. It is visible throughout the block unless a 
declaration of the same identifier exists in an inner block. 

Identifiers in a compound statement are presumed auto unless explicitly declared 
otherwise with register, static, or extern, except functions which can only be 
extern. You can leave off the extern specifier in function declarations and the 
function will still be extern. 

Storage is not allocated and initialization is not permitted if a variable or function 
is declared in a compound statement with storage class extern. The declaration re­
fers to an external variable or function defined elsewhere. 

Variables declared in a block with the auto or register keyword are reallocated 
and, if necessary, initialized each time the compound statement is entered. These 
variables are not defined after the compound statement is exited. If a variable de­
clared inside of a block has the static attribute, the variable is initialized when pro­
gram execution begins and keeps its value throughout the program. See "Storage 
Classes" on page 43 for information about static. 

This example illustrates a compound statement: 

if( i > 0 ) 
{ 

line[iJ X· , 
X++; 
i - - . , 



154 C language Reference 

In this example, if i is greater than 0, all of the statements inside the compound 
statement are executed in order. 

5.4 The continue Statement 

Syntax 

The continue statement passes control to the next iteration of the do, for, or while 
statement in which it appears, bypassing any remaining statements in the do, for, 
or while statement body. A typical use of the continue statement is to return to the 
start of a loop from within a deeply nested loop. 

jump-statement: 
continue; 

The next iteration of a do, for, or while statement is determined as follows: 

• Within a do or a while statement, the next iteration starts by reevaluating the ex­
pression of the do or while statement. 

• A continue statement in a for statement causes the first expression of the for 
statement to be evaluated. Then the compiler reevaluates the conditional expres­
sion and, depending on the result, either terminates or iterates the statement 
body. For more information on the for statement, including its nonterminals, 
see "The for Statement" on page 156.) 

This is an example of the continue statement: 

while( i-- > 0 ) 
{ 

x = f( ); 
if( x == 1 ) 

continue; 
y += X * x; 

In this example, the statement body is executed while i is greater than 0. First 
f( i) is assigned to x; then, if x is equal to 1, the continue statement is executed. 
The rest of the statements in the body are ignored, and execution resumes at the 
top of the loop with the evaluation ofthe loop's test. 

5.5 The do-while Statement 
The do-while statement lets you repeat a statement or compound statement until a 
specified expression becomes false. 



Syntax 

Statements 155 

iteration-statement: 
do statement while ( expression) 

The expression in a do-while statement is evaluated after the body of the loop is 
executed. Therefore, the body of the loop is always executed at least once. 

The expression must have arithmetic or pointer type. Execution proceeds as 
follows: 

1. The statement body is executed. 

2. Next, expression is evaluated. If expression is false, the do-while statement ter­
minates and control passes to the next statement in the program. If expression is 
true (nonzero), the process is repeated, beginning with step 1. 

The do-while statement may also terminate when a break, goto, or return state­
ment is executed within the statement body. 

This is an example of the do-while statement: 

do 
{ 

y=f(x); 
x--; 

whil e( x > (1 ); 

In this do-while statement, the two statements y = f(x); and x--; areex­
ecuted, regardless of the initial value of x. Then x > (1 is evaluated. If x is 
greater than 0, the statement body is executed again and x > (1 is reevaluated. The 
statement body is executed repeatedly as long as x remains greater than 0. Execu­
tion of the do-while statement terminates when x becomes ° or negative. The 
body of the loop is executed at least once. 

5.6 The Expression Statenlent 

Syntax 

When an expression statement is executed, the expression is evaluated according 
to the rules outlined in Chapter 4, "Expressions and Assignments." 

expression-statement: 
expression opt; 

All side effects from the expression evaluation are completed before the next state­
ment is executed. An empty expression statement is called a null statement. See 
"The Null Statement" on page 159. 

These examples demonstrate expression statements. 



156 C language Reference 

x = ( y + 3 ) ; 1* xis assigned the value of y + 3 *1 
x++; 1* x is incremented *1 
x = y 0' , 1* Both x and yare initialized to 0 *1 
proc( argl, arg2 ) ; 1* Function ca 11 returning void *1 
y = z = ( f( x ) + 3 ) ; 1* A functi on-call expression *1 

In the last statement, the function-call expression, the value of the expression, 
which includes any value returned by the function, is increased by 3 and then 
assigned to both the variables y and z. 

5.7 The for Statement 

Syntax 

The for statement lets you repeat a statement or compound statement a specified 
number of times. The body of a for statement is executed zero or more times until 
an optional condition becomes false. You can use optional expressions within the 
for statement to initialize and change values during the for statement's execution. 

iteration-statement: 
for ( init-expression opt; cond-expression opt; loop-expression opt) statement 

Execution of a for statement proceeds as follows: 

l. The in it-expression, if any, is evaluated. This specifies the initialization for the 
loop. There is no restriction on the type of in it-expression. 

2. The cond-expression, if any, is evaluated. This expression must have arithmetic 
or pointer type. It is evaluated before each iteration. Three results are possible: 

a. If cond-expression is true (nonzero), statement is executed; then loop­
expression, if any, is evaluated. The loop-expression is evaluated after each 
iteration. There is no restriction on its type. Side effects will execute in 
order. The process then begins again with the evaluation of cond-expression. 

b. If cond-expression is omitted, cond-expression is considered true, and execu­
tion proceeds exactly as described for case a. A for statement without a cond­
expression argument terminates only when a break or return statement 
within the statement body is executed, or when a goto (to a labeled statement 
outside the for statement body) is executed. 

c. If cond-expression is false (0), execution of the for statement terminates and 
control passes to the next statement in the program. 

A for statement also terminates when a break, goto, or return statement within 
the statement body is executed. A continue statement in a for loop causes loop­
expression to be evaluated. When a break statement is executed inside a for loop, 
loop-expression is not evaluted or executed. This statement 

fore ;; ); 



Statements 157 

is the customary way to produce an infinite loop which can only be exited with a 
break, goto, or return statement. 

This example illustrates the for statement: 

for ( i = space = tab = 0; i < MAX; i++ 
{ 

if( line[iJ -- . . ) 

space++; 
if( line[iJ • \t' ) 

{ 

tab++; 
line[iJ . . . . 

This example counts space ( . . ) and tab ( . \ t· ) characters in the array of char­
acters named 1 i ne and replaces each tab character with a space. First i, space, 
and tab are initialized to O. Then i is compared with the constant MAX; if i is 
less than MAX, the statement body is executed. Depending on the value of 
1 i n e [ i J. the body of one or neither of the if statements is executed. Then i is in­
cremented and tested against MAX; the statement body is executed repeatedly as 
long as i is less than MAX. 

5.8 The goto and Labeled Statements 

Syntax 

The goto statement transfers control to a label. The given label must reside in the 
same function and can appear before only one statement in the same function. 

statement: 
labeled-statement 
jump-statement 

jump-statement: 
goto identifier; 

labeled-statement: 
identifier: statement 

A statement label is meaningful only to a goto statement; in any other context, a 
labeled statement is executed without regard to the label. 

A jump-statement must reside in the same function and can appear before only one 
statement in the same function. The set of identifier names following a goto has its 
own name space so the names do not interfere with other identifiers. Labels cannot 
be redeclared. See "Name Spaces" on page 39 for information about name spaces. 



158 C Language Reference 

It is good programming style to use the break, continue, and return statement in 
preference to goto whenever possible. Since the break statement only exits from 
one level of the loop, a goto may be necessary for exiting a loop from within a 
deeply nested loop. 

This example demonstrates the goto statement: 

void main() 
{ 

i nt i, j; 

for ( i = 0; i < 10; i++ ) 
{ 

printf( "Outer loop executing. 
for ( j = 0; j < 3; j++ ) 
{ 

%d\n", ) ; 

printf( " Inner loop executing. j %d\n", j ); 
if ( i == 5 ) 

goto stop; 
} 

} 

/* This message does not print: */ 
printf( "Loop exited. i = %d\n", i); 
stop: printf( "Jumped to stop. i = %d\n", ); 

In this example, a goto statement transfers control to the point labeled stop when 
i equals 5. 

5.9 The if Statement 

Syntax 

The if statement controls conditional branching. The body of an if statement is ex­
ecuted if the value of the expression is nonzero. The syntax for the if statement has 
two forms. 

selection-statement: 
if ( expression) statement 
if ( expression) statementl else statement2 

In both forms of the if statement, the expressions, which may have any value ex­
cept a structure, are evaluated, including all side effects. 

In the first form of the syntax, if expression is true (nonzero), statement is ex­
ecuted. If expression is false, statement is ignored. In the second form of syntax, 
which uses else, statement2 is executed if expression is false. With both forms, 
control then passes from the if statement to the next statement in the program un­
less one of the statements contains a break, continue, or goto. 



Statements 159 

The following are examples of the if statement: 

if( i > 13 
y = x I i . , 

else 
{ 

x i ; 

Y f( x ) ; 

In this example, the statement y = xli; is executed if i is greater than 0. If i is 
less than or equal to 0, i is assigned to x and f (x) is assigned to y. Note that 
the statement forming the if clause ends with a semicolon. 

When nesting if statements and else clauses, use braces to group the statements 
and clauses into compound statements that clarify your intent. If no braces are pre­
sent, the compiler resolves ambiguities by pairing each else with the most recent if 
that lacks an else. 

if( i > 0 1* Without braces *1 
if( j > i ) 

x j; 
else 

x i· , 

The else clause is associated with the inner if statement in this example. If i is 
less than or equal to 0, no value is assigned to x. 

if( i > 13 
{ 1* With braces *1 

if( j > i ) 

x j; 

else 
x i • , 

The braces surrounding the inner if statement in this example make the else clause 
part of the outer if statement. If i is less than or equal to 0, i is assigned to x. 

5.10 The Null Statement 

Syntax 

A "null statement" is a statement containing only a semicolon; it may appear 
wherever a statement is expected. Nothing happens when a null statement is ex­
ecuted. The correct way to code a null statement is: 



160 C Language Reference 

Statements such as do, for, if, and while require that an executable statement ap­
pear as the statement body. The null statement satisfies the syntax requirement in 
cases that do not need a substantive statement body. 

As with any other C statement, you can include a label before a null statement. To 
label an item that is not a statement, such as the closing brace of a compound state­
ment, you can label a null statement and insert it immediately before the item to 
get the same effect. 

This example illustrates the null statement: 

for ( i = 0; i < 10; line[i++] = 0 l 

In this example, the loop expression of the for statement 1 i ne [i ++ ] =0 initializes 
the first 10 elements of 1 i ne to O. The statement body is a null statement, since no 
further statements are necessary. 

5.11 The return Statement 

Syntax 

The return statement terminates the execution of a function and returns control to 
the calling function. Execution resumes in the calling function at the point immedi­
ately following the call. A return statement can also return a value to the calling 
function. For more information see "Return Type" on page 177. 

jump-statement: 
return expression opt; 

The value of expression, if present, is returned to the calling function. If expres­
sion is omitted, the return value of the function is undefined. The expression, if 
present, is converted to the type returned by the function. If the function was de­
clared with return type void, a return statement containing an expression is not 
legal. 

If no return statement appears in a function definition, control automatically re­
turns to the calling function after the last statement of the called function is ex­
ecuted. In this case, the return value of the called function is undefined. If a return 
value is not required, declare the function to have void return type; otherwise the 
default return type is into 

Many programmers use parentheses to enclose the expression argument of the 
return statement. However, C does not require the parentheses. 

This example demonstrates the return statement: 

void draw( int I, long L l; 
long sq( int s l; 



int main() 
{ 

long y; 
int x; 

y = sq( x ); 
draw( x, y ); 
return() ; 

long sq ( i nt s 
{ 

return ( s * s ); 

void draw( int I, long L ) 
{ 

1* Statements defining the draw function here *1 
return; 

Statements 161 

In this example, the ma in function calls two functions: sq and draw. The sq 
function returns the value of x * x to ma in, where the return value is assigned to 
y. The draw function is declared as a void function and does not return a value. 
An attempt to assign the return value of draw would cause a diagnostic message 
to be issued. 

5.12 The switch Statement 

Syntax 

The switch and case statements help control complex conditional and branching 
operations. The switch statement transfers control to a statement within its 
body. 

selection-statement: 
switch ( expression) statement 

labeled-statement: 
case constant-expression: statement 
default: statement 

Control passes to the statement whose case constant-expression matches the value 
of switch ( expression ). The switch statement can include any number of case in­
stances, but no two case constants within the same switch statement can have the 
same value. Execution of the statement body begins at the selected statement and 
proceeds until the end of the body or until a break statement transfers control out 
of the body. 

Use of the switch statement usually looks something like this: 



162 C language Reference 

switch ( expression) 
{ 

declarations 

case constant-expression: 

statements executed if the expression equals the 
value of this constant-expression 

break; 
default : 

statements executed if expression does not equal 
any case constant-expression 

You can use the break statement to end processing of a particular case within the 
switch statement and to branch to the end of the switch statement. Without break, 
the program continues to the next case, executing the statements until a break or 
the end of the statement is reached. In some situations, this continuation may be 
desirable. 

The default statement is executed if no case constant-expression is equal to the 
value of switch ( expression ). If the default statement is omitted, and no case 
match is found, none of the statements in the switch body are executed. There can 
be at most one default statement. The default statement need not come at the end; 
it can appear anywhere in the body of the switch statement. In fact it is often more 
efficient if it appears at the beginning of the switch statement. A case or default 
bbel can only appear inside a switch statement. 

The type of switch expression and case constant-expression must be integral. The 
value of each case constant-expression must be unique within the statement body. 

The case and default labels of the switch statement body are significant only in 
the initial test that determines where execution starts in the statement body. Switch 
statements can be nested. Any static variables are initialized before executing into 
any switch statements. 

Note Declarations can appear at the head of the compound statement forming the 
switch body, but initializations included in the declarations are not performed. The 
switch statement transfers control directly to an executable statement within the 
body, bypassing the lines that contain initializations. 



The following examples illustrate switch statements: 

switch( c ) 
{ 

case 'A': 
capa++; 

case 'a': 
lettera++; 

default : 
total++; 

Statements 163 

All three statements of the switch body in this example are executed if c is equal 
to 'A' since a break statement does not appear before the following case. Execu­
tion control is transferred to the first statement ( capa++; ) and continues in order 
through the rest of the body. If c is equal to 'a', lettera and total areincre­
mented. Only total is incremented if c is not equal to 'A' or 'a'. 

switch( i ) 
{ 

case -1: 
n++; 
break; 

case '" : 
z++; 
break; 

case 1 : 
p++; 
break; 

In this example, a break statement follows each statement of the switch body. The 
break statement forces an exit from the statement body after one statement is ex­
ecuted. If i is equal to -1, only n is incremented. The break following the state­
ment n++; causes execution control to pass out of the statement body, bypassing 
the remaining statements. Similarly, if i is equal to 0, only z is incremented; if 
i is equal to 1, only p is incremented. The final break statement is not strictly 
necessary, since control passes out of the body at the end of the compound state­
ment, but it is included for consistency. 

A single statement may carry multiple case labels, as the following example 
shows: 

case 'a' 
case 'b' 
case 'c' 
case 'd' 
case 'e' 
case 'f' hexcvt(c); 



164 C Language Reference 

Microsoft Specific 

In this example, if constant-expression equals any letter between . a' and . f' , 
the hexcvt function is called. 

Microsoft C does not limit the number of case values in a switch statement. The 
number is limited only by the available memory. ANSI C requires at least 257 
case labels be allowed in a switch statement. 

The default for Microsoft C is that the Microsoft extensions are enabled. Use the 
/Za command-line option to disable these extensions .• 

5.13 The while Statement 

Syntax 

The while statement lets you repeat a statement until a specified expression be­
comes false. 

iteration-statement: 
while ( expression) statement 

The expression must have arithmetic or pointer type. Execution proceeds as 
follows: 

1. The expression is evaluated. 

2. If expression is initially false, the body of the while statement is never ex­
ecuted, and control passes from the while statement to the next statement in the 
program. 

If expression is true (nonzero), the body of the statement is executed and the 
process is repeated beginning at step 1. 

The while statement may also terminate when a break, goto, or return within the 
statement body is executed. Use the continue statement to terminate an iteration 
without exiting the while loop. The continue statement passes control to the next 
iteration of the while statement. 

This is an example of the while statement: 

wh il e ( i >= 0 ) 
{ 

stringl[i] string2[i]; 
i - _. , 

This example copies characters from s t r i n 9 2 to s t r i n 9 1. If i is greater than or 
equal to 0, s t r i n 9 2 [ i] is assigned to s t r i n 9 l[ i] and i is decremented. When 
i reaches or falls below 0, execution of the while statement terminates. 



Functions 

The function is the fundamental modular unit in C. A function is usually designed 
to perform a specific task, and its name often reflects that task. A function contains 
declarations and statements. This chapter describes how to declare, define, and call 
C functions. Other topics discussed are: 

• Function attributes such as __ near and __ far 

• Calling conventions such as __ cdecl, __ pascal, and __ fortran 

• Export, inline, and interrupt functions 

• Storage classes for functions 

• Return types 

• Function arguments and parameters 

Function declarations are also discussed in Chapter 3, "Declarations and Types." 

6.1 Overview 
Functions must have a definition and should have a declaration, although a defini­
tion can serve as a declaration if the declaration appears before the function is 
called. The function definition includes the function body-the code that executes 
when the function is called. 

A function declaration establishes the name, return type, and attributes of a func­
tion that is defined elsewhere in the program. A function declaration must precede 
the call to the function. This is why the header files containing the declarations for 
the run-time functions are included in your code prior to a call to a run-time func­
tion. If the declaration has information about the types and number of parameters, 
the declaration is a prototype. See "Function Prototypes" on page 181 for more 
information. 



166 C Language Reference 

The compiler uses the prototype to compare the types of arguments in subsequent 
calls to the function with the function's parameters and to convert the types of the 
arguments to the types of the parameters whenever necessary. 

A function call passes execution control from the calling function to the called 
function. The arguments, if any, are passed by value to the called function. Execu­
tion of a return statement in the called function returns control and possibly a 
value to the calling function. 

Obsolete Forms of Function Declarations and Definitions 
The old-style function declarations and definitions use slightly different rules for 
declaring parameters than the syntax recommended by the ANSI standard. First, 
the old-style declarations don't have a parameter list. Second, in the function defi­
nition, the parameters are listed, but their types are not declared in the parameter 
list. The type declarations precede the compound statement constituting the func­
tion body. The old-style syntax is obsolete and should not be used in new code. 
Code using the old-style syntax is still supported, however. This example 
illustrates the obsolete forms of declarations and definitions: 

double old_stylet); 1* Obsolete function declaration *1 

double alt_style( a , real) 1* Obsolete function definition *1 
doubl e *real; 
int a; 

return ( *real + a ) 

Functions returning an integer or pointer with the same size as an int are not re­
quired to have a declaration although the declaration is recommended. 

The next section shows the syntax for function definitions, including the old-style 
syntax. The nonterminal for the list of parameters in the old-style syntax is 
identifier-list. 

6.2 Function Definitions 

Syntax 

A function definition specifies the name of the function, the types and number of 
parameters it expects to receive, and its return type. A function definition also in­
cludes a function body with the declarations of its local variables, and the state­
ments that determine what the function does. 

translation-unit: 
external-declaration 
translation-unit external-declaration 



Functions 167 

external-declaration: 
function-definition 
declaration 

/* Allowed only at external (file) scope */ 

function-definition: /* Declarator here is the function declarator */ 
declaration-specifiers opt declarator declaration-list opt compound-statement 

Prototype parameters are: 

declaration-specifiers: 
storage-class-specifier declaration-specifiers opt 

type-specifier declaration-specifiers opt 

type-qualifier declaration-specifiers opt 

attributes opt declaration-specifiers opt /* Microsoft-specific */ 

declaration-list: 
declaration 
declaration-list declaration 

declarator: 
pointer opt direct-declarator 

direct-declarator: /* A function declarator */ 
direct-declarator (parameter-type-list) /* New-style declarator */ 
direct-declarator ( identifier-list opt) /* Obsolete-style declarator */ 

The parameter list in a definition uses this syntax: 

parameter-type-list: 
parameter-list 
parameter-list, ... 

parameter-list: 
parameter-declaration 
parameter-list, parameter-declaration 

parameter-declaration: 

/* The parameter list */ 

declaration-specifiers declarator 
declaration-specifiers abstract-declarator opt 

The parameter list in an old-style function definition uses this syntax: 

identifier-list: /* Used in obsolete-style function definitions and declarations */ 
identifier 
identifier-list, identifier 



168 C language Reference 

The syntax for the function body is 

compound-statement: /* The function body */ 
{ declaration-list opt statement-list opt} 

The only storage-class specifiers that can modify a function declaration are extern 
and static. The extern specifier signifies that the function can be referenced from 
other files; that is, the function name is exported to the linker. The static specifier 
signifies that the function cannot be referenced from other files; that is, the name 
is not exported by the linker. If no storage class appears in a function definition, 
extern is assumed. In any case, the function is always visible from the definition 
point to the end of the file. 

The optional declaration-specifier and mandatory declarator together specify the 
function's return type and name. The declarator is a combination of the identifier 
that names the function and the parentheses following the function name. The 
attributes nonterminal is a Microsoft-specific feature defined in the next section, 
"Function Attributes." 

The direct-declarator (in the declarator syntax) specifies the name of the function 
being defined and the identifiers of its parameters. If the direct-declarator in­
cludes a parameter-type-list, the list specifies the types of all the parameters. Such 
a declarator also serves as a function prototype for later calls to the function. 

A declaration in the declaration-list in function definitions cannot contain a 
storage-class-specifier other than register. The type-specifier in the declaration­
specifiers syntax can be omitted only if the register storage class is specified for a 
value of int type. 

The compound-statement is the function body containing local variable declara­
tions, references to externally declared items, and statements. 

The sections "Function Attributes" on page 168 through "Function Body" on page 
181 describe the components of the function definition in detail. 

Function Attributes 
The optional attributes non terminal allows you to override default addressing 
modes by specifying a different memory model, or to select a calling convention 
on a per-function basis to override the defaults. You can also specify functions as 
__ fastcall, __ export, __ inUne, __ based, inline assembler, or __ interrupt, and 
can specify register-handling with __ loadds and __ saveregs. 



32-Bit Specific 

32-Bit Specific 

Functions 169 

Specifying Function Addressing (Microsoft Specific) 
By using the special keywords __ near, __ far, __ huge, and __ based, you can 
override the addressing specified by the compile-time memory models. The fol­
lowing list summarizes use of these keywords in function attributes. 

__ near 
Functions are assumed to be in the default code segment CTEXT). The func­
tion is referenced with 16-bit addresses (pointers to functions are 16 bits) and 
can be called only by functions in the same code segment. Functions declared 
as __ near can be allocated in other segments by declaring them as __ based or 
using the INT compilation option. 

The use of the __ near keyword is not allowed for 32-bit targets. + 

__ far 
Functions are not assumed to be in the current code segment. Far objects are 
referenced with 32-bit addresses (pointers to functions are 32 bits) and can be 
called with a far call by functions anywhere in memory. Functions in the same 
compilation unit reside in the same segment unless the alloc_ text pragma is 
used, or unless the function is declared as based. 

The use of the __ far keyword is not allowed for 32-bit targets. + 

__ based 
Specifies that a function resides in a specified segment. More information on 
__ based appears later in this section. 

__ huge 
The __ huge keyword is not applicable to functions. 

This example uses the __ far keyword: 

void __ far handler( unsigned doserr, unsigned __ far *bdr ); 

The default for Microsoft C is that the Microsoft extensions are enabled. Use the 
IZa command-line option to disable these extensions. 

Specifying Calling Conventions (Microsoft Specific) 
The special keywords discussed in this section allow you to directly specify the 
calling convention for any function. This list summarizes these Microsoft-specific 
keywords. 

__ cdecl 
Specifies that the associated function is to be called using the normal C calling 
convention (arguments are pushed from right to left, the calling function adjusts 
the stack, and no case translation takes place). This modifier is placed before 



170 C Language Reference 

32-Bit Specific 

32-Bit Speci:ic 

the function name, and can appear before or after the __ near and __ far modi­
fiers. The fGd command-line option forces the __ cdecl calling convention. 

__ pascal, __ fortran 
Specifies that the associated function is to be called using the Pascal or FOR­
TRAN calling convention (arguments are pushed from left to right, the called 
function adjusts the stack, and identifier names are translated to uppercase). 
These modifiers are placed before the function name, and can appear before or 
after the __ near and __ far modifiers. The __ fortran and __ pascal modifiers 
are synonyms. The fGc command-line option forces the __ pascal or 
__ fortran calling convention. 

The __ fortran and __ pascal keywords are not supported for 32-bit targets .• 

__ fastcall 
Specifies that the function uses a calling convention that passes arguments in 
registers rather than on the stack, resulting in faster code for small functions. Ar­
guments are passed from left to right, the called function adjusts the stack, and 
no case translation takes place. Using fGr on the command line causes each 
function in the module to compile as fastcall unless the function is declared 
with a conflicting attribute, or the name of the function is ma in. See the next 
section, "Fastcall Functions," for more information. 

__ stdcall 
Specifies that the arguments of the designated function are pushed from right to 
left, that an underscore is prepended to the name, and @### is appended, where 
### is the number of bytes in the parameters of the function. This appended 
"name decoration" allows link-time argument checking to be done. The called 
function does its own stack adjustment when it returns to the caller. Functions 
declared with __ stdcall return values the same way as functions declared using 
__ cdecl. If a __ stdcall function has a variable number of arguments, it must 
have a prototype and it will be implemented as __ cdecl. The fGz command­
line option specifies __ stdcall for all functions that are not explicitly declared 
with a different calling convention. 

The __ stdcall calling convention is only available to 32-bit compilations .• 

This example declaration specifies the __ cdecl calling convention: 

int __ cdecl comparee unsigned *key ); 

Fastcall Functions (Microsoft Specific) 
A __ fastcall function in programs for 16-bit targets receives up to three 16-bit ar­
guments passed in registers rather than on the stack. The choice of registers for the 
__ fastcall calling convention depends on the type of arguments: 



Type 

char / unsigned char 

int / unsigned int 
long / unsigned long 

near pointer 

far or huge pointer 

Register Candidates 

AL,DL,BL 

AX,DX,BX 

DX:AX 

BX,AX,DX 

Passed on the stack 

Functions 171 

Arguments are allocated to suitable registers if available and are pushed onto the 
stack otherwise. Structures, unions, and all floating-point types are always pushed 
onto the stack. Return values of four bytes or smaller, including structures and 
unions, are placed in the registers as follows: 

Size 

1 byte 

2 bytes 

4 bytes 

Register 

AL 

AX 

DX:AX 

The implementation offastcall functions is processor-dependent. On the 8086 and 
80286, floating-point values are returned on the floating-point stack. To return 
structures or unions larger than four bytes, the calling program pushes a hidden 
last parameter, which is a near pointer to a buffer in which the value is to be re­
turned. A far pointer to the hidden-parameter must be returned in DX:AX. 

For the 80386 and 80486 processors, the first two arguments that have integer or 
pointer types are passed in the ECX and EDX registers, regardless of size. The rest 
of the arguments are passed on the stack from left to right. Regardless of length, 
structure returns are handled with a hidden parameter. 

The treatment of character arguments depends further on prototypes. If there is no 
prototype, the argument is promoted to short and the rules for short integers 
apply. Only if the argument is prototyped to type char do the character rules 
apply. 

The __ fastcall calling convention cannot be used with functions having variable­
length parameter lists, or functions having any of the following attributes: 
__ cdecl, __ export, __ fortran, __ interrupt, __ pascal, __ saveregs. 

Note Microsoft does not guarantee its implementation of the fastcall calling con­
vention between releases. 

Export Functions (Microsoft Specific) 
The __ export keyword allows you to specify that a function is to be exported 
from a dynamic-link library (DLL) to Windows. Use this form to specify an ex­
ported function: 



172 C Language Reference 

__ export declarator 

The declarator is the name of the exported function. When a function is declared 
as __ export, the compiler places information in the object file to show that the 
function is exported from a DLL. Functions, operators, and data can be declared as 
__ export. 

The main use for __ export is to export symbols that reside in a DLL. You also 
may need to export event-handler functions for Microsoft Windows programs, or 
for PWB extensions. 

The __ export keyword does not eliminate the need for a module-definition 
(.DEF) file when building a DLL. If you declare a symbol as __ export and no 
.DEF file entry exists for that symbol, the linker assumes that the symbol has the 
following characteristics: 

• No input/output (I/O) privilege 

• Shared data 

• Not resident 

• No alias name 

If these default characteristics are satisfactory, the symbol does not require an 
entry in a module-definition file. Otherwise, you must create an EXPORTS entry 
in the module-definition file for the symbol to specify these characteristics. 

The __ export keyword also causes the compiler to enter the size, in words, of the 
function's parameters into the export record of the object module. This size infor­
mation corresponds to the pwords field of an EXPORTS statement that is in a 
module-definition file. You cannot override the size information in the export re­
cord with an EXPORTS entry in the .DEF file. 

If you have an EXPORTS entry for a function, the pwords field in the .DEF file 
should be set either to 0 (which tells the linker to use the value given by the com­
piler) or to the same value given by the compiler. The pwords field is ignored un­
less you also request I/O privilege. For more information on creating .DEF files 
and import libraries, see Chapters 16 and 22, respectively, in the Environment and 
Tools manual. 

The following statement declares funcsamp 1 e as a far Pascal function that takes a 
single argument of any pointer type and does not return a value. 

void __ export __ far __ pascal funcsample( void *s ); 

The presence of __ export causes the function to be exported. A .DEF file is still 
required for the program. 



Functions 173 

Inline Functions (Microsoft Specific) 
The __ inUne keyword tells the compiler that it can substitute the code within the 
function definition for every instance of a function call. Substitution occurs at the 
discretion of the compiler. Use this form to specify an inline function: 

__ inUne type opt/unction_definition; 

The use of inline functions generates faster code and can sometimes generate 
smaller code than the equivalent function call generates for the following reasons: 

• It saves the time required to execute function calls. 

• Small inline functions, perhaps three lines or less, create less code than the 
equivalent function call because the compiler doesn't generate code to handle 
arguments and a return value. 

• Functions generated inline are subject to code optimizations not available to 
normal functions because the compiler does not perform interprocedural 
optimizations. 

Functions using __ inUne should not be confused with inline assembler code. See 
"Inline Assembler" on page 174 for more information. 

Function Addressing Using __ based (Microsoft Specific) 
If a function is to be allocated in a given segment, it can be declared as based on a 
segment constant. The base for a function can be specified as 

__ basedC __ segnameC string-literal)) 

A function declared as __ based resides in the code segment named by string-lit­
eral. The built-in function __ segname accepts a string enclosed in quotation 
marks and returns a value oftype __ segment. The __ segment type specifies the 
segment in which the based function resides. You can use the __ near or __ far 
keyword with the __ based keyword when declaring a function. 

In programs that use overlays, you can reduce swapping by using __ based to 
group functions that frequently call one another. You also can use __ based to en­
sure that near functions reside in the same segment as the functions that call them. 

Declaring functions as __ based replaces the alloL text pragma. However, the 
alloc_ text pragma is retained for backward compatibility. 

The base for a function based in a segment can also be specified as 

( __ based) __ self 



174 C Language Reference 

The __ self function ensures that the function's location is the segment in which 
the pointer itself is stored. Such pointers can save space in a linked list or tree if 
the entire data structure fits in a single segment. 

Inline Assembler (Microsoft Specific) 
The inline assembler lets you embed assembly-language instructions directly in 
your C source programs without extra assembly and link steps. The inline 
assembler is built into the compiler-you don't need a separate assembler such as 
the Microsoft Macro Assembler (MASM). 

Because the inline assembler doesn't require separate assembly and link steps, it is 
more convenient than a separate assembler. Inline assembly code can use any C 
variable or function name that is in scope, so it is easy to integrate it with your pro­
gram's C code. And because the assembly code can be mixed with C statements, it 
can do tasks that are cumbersome or impossible in C alone. 

The __ asm keyword invokes the inline assembler and can appear wherever a C 
statement is legal. It cannot appear by itself. It must be followed by an assembly 
instruction, a group of instructions enclosed in braces, or, at the very least, an 
empty pair of braces. The term " __ asm block" here refers to any instruction or 
group of instructions, whether or not in braces. 

Below is a simple __ asm block enclosed in braces. (The code prints the "beep" 
character, ASCII 7.) 

asm 

may ah, 2 
may d 1, 7 
int 21h 

Alternatively, you can put __ asm in front of each assembly instruction: 

asm may ah, 2 
asm may dl, 7 
asm int 21h 

Since the __ asm keyword is a statement separator, you can also put assembly in­
structions on the same line: 

__ asm may ah, 2 __ asm may dl, 7 asm int 21h 

For more information, see Chapter 6 of the Programming Techniques manual. 



Functions 175 

Interrupt Functions (Microsoft Specific) 
The __ interrupt keyword specifies that the function is an interrupt handler. The 
compiler generates appropriate entry and exit sequences for the handling function, 
including saving and restoring all registers and executing an lRET instruction to 
return. Use this form to specify an interrupt function: 

__ interrupt declarator 

where declarator is the name of the function to be called. An interrupt function 
must be __ far. If you are compiling with the small (default) or compact memory 
model, you must explicitly declare the function with the __ far attribute. An inter­
rupt function cannot be declared as an inline function. 

Interrupt functions must observe the C calling convention. If you use the IGc com­
piler option (forcing the __ pascal or __ fortran calling convention) or the IGr 
compiler option (forcing the __ fastcall calling convention), you must explicitly 
declare your interrupt-handling function with the __ cdecl attribute. 

You cannot declare an interrupt function with both the __ interrupt attribute and 
the __ saveregs attribute or the __ fastcall calling convention. 

This example statement declares a function pointer that can be used to point to an 
interrupt handler: 

void ( __ interrupt __ far *oldtime ) ( void ); 

The __ interrupt keyword is implemented for 32-bit targets. See Help for more in­
formation on writing interrupt functions. 

Using _Joadds and __ saveregs (Microsoft Specific) 
The __ loadds keyword causes the data-segment (DS) register to be loaded with a 
specified segment value upon entering the specified function. The previous DS 
value is restored when the function terminates. Use this form for __ loadds: 

__ loadds declarator 

The declarator specifies the function name of a function that must load DS as part 
of its entry sequence. Loading the DS register is essential for Windows callback 
functions and Windows entry points. The __ loadds keyword does not imply any 
change in calling convention. It can be specified with any calling-convention 
modifier. 

The compiler uses the segment name specified by the IND (name-data-segment) 
option, or, if no segment has been specified, the default group, DGROUP. The 
__ loadds attribute has the same effect as the I Au option, but on a function-by­
function basis. 



176 C Language Reference 

Storage Class 

Syntax 

The __ loadds keyword does not imply any change in the calling convention. It 
can be specified with any calling convention attribute that is supported for 16-bit 
targets. 

The __ saveregs keyword causes the compiler to generate code that saves all CPU 
registers when entering a function and also the code that restores the registers on 
exit. Note that __ saveregs does not restore registers used for a return value (the 
AX register, or AX and DX). The form for using __ saveregs is: 

__ saveregs declarator 

The declarator specifies the function name whose entry sequence must save the 
values of all registers. The __ saveregs keyword is useful when the register con­
ventions of the caller are unknown. It is illegal to declare a function with both the 
__ saveregs and __ interrupt attributes. 

The storage-class specifier in a function definition gives the function either extern 
or static storage class. 

function-definition: 
declaration-specifiers opt declarator declaration-list opt compound-statement 

declaration-specifiers: 
storage-class-specifier declaration-specifiers opt 

type-specifier declaration-specifiers opt 

type-qualifier declaration-specifiers opt 

storage-class-specifier : 
extern 
static 

/* For function definitions */ 

If a function definition does not include a storage-class-specifier, the storage class 
defaults to extern. You can explicitly declare a function as extern, but it is not 
required. 

If the declaration of a function contains the storage-class-specifier extern, the 
identifier has the same linkage as any visible declaration of the identifier with file 
scope. If there is no visible declaration with file scope, the identifier has external 
linkage. If an identifier has file scope and no storage-class-specifier, the identifier 
has external linkage. External linkage means that each instance of the identifier 
denotes the same object or function. See "Understanding Lifetime, Scope, 
Visibility, and Linkage" on page 34 for more information about linkage and file 
scope. 



Microsoft Specific 

Return Type 

Syntax 

Functions 171 

A function with static storage class is visible only in the source file in which it is 
defined. All other functions, whether they are given extern storage class explicitly 
or implicitly, are visible throughout all the source files that make up the program. 
If static storage class is desired, it must be declared on the first occurrence of a 
declaration (if any) of the function, and on the definition of the function. 

When the Microsoft extensions are enabled, a function originally declared without 
a storage class (or with extern storage class) is given static storage class if the 
function definition is in the same source file and if the definition explicitly speci­
fies static storage class .• 

The return type of a function establishes the size and type of the value returned by 
the function and corresponds to the type-specifier in the syntax below: 

function-definition: 
declaration-specifiers opt declarator declaration-list opt compound-statement 

declaration-specifiers: 
storage-class-specifier declaration-specifiers opt 

type-specifier declaration-specifiers opt 

type-qualifier declaration-specifiers opt 

type-specifier: 
void 
char 
short 
int 
long 
float 
double 
signed 
unsigned 
struct-or-union-specifier 
enum-specifier 
typedef-name 

The type-specifier can specify any fundamental, structure, or union type. If you do 
not include type-specifier, the return type int is assumed. 

The return type given in the function definition must match the return type in dec­
larations of the function elsewhere in the program. A function returns a value 
when a return statement containing an expression is executed. The expression is 
evaluated, converted to the return value type if necessary, and returned to the point 
at which the function was called. 



178 C language Reference 

Microsoft Specific 

The following examples illustrate function return values. 

typedef struct 
{ 

char name[20]; 
int id; 
long class; 

STUDENT; 

/* Return type is STUDENT: */ 

STUDENT sortstu( STUDENT a, STUDENT b 
{ 

return ( (a.id < b.id) ? a : b ); 

This example defines the STUDENT type with a typedef declaration and defines the 
function sortstu to have STUDENT return type. The function selects and returns 
one of its two structure arguments. In subsequent calls to the function, the com­
piler checks to make sure the argument types are STUDENT. 

Note Efficiency would be enhanced by passing pointers to the structure, rather 
than the entire structure. 

char *small str( char sl[], char s2[] ) 
{ 

i nt i; 

i = 0; 
while( s1[i] != '\0' && s2[i] != '\0' ) 

i++; 
if( s1[i] == '\0' ) 

return ( sl ); 
else 

return s2); 

This example defines a function returning a pointer to an array of characters. The 
function takes two character arrays (strings) as arguments and returns a pointer to 
the shorter of the two strings. A pointer to an array points to the first of the array 
elements and has its type; thus, the return type of the function is a pointer to 
type char. 

You need not declare functions with int return type before you call them, although 
prototypes are recommended so that correct type checking for arguments and re­
turn values is enabled .• 



Parameters 

Syntax 

Functions 179 

Arguments are names of values passed to a function by a function call. Parameters 
are the values the function expects to receive. In a function prototype, the 
parentheses following the function name contain a complete list of the function's 
parameters and their types. Parameter declarations specify the types, sizes, and 
identifiers of values stored in the parameters. 

function-definition: 
declaration-specifiers opt declarator declaration-list opt compound-statement 

declarator: 
pointer opt direct-declarator 

direct-declarator: /* A function declarator */ 
direct-declarator (parameter-type-list ) /* New-style declarator */ 

parameter-type-list: 
parameter-list 
parameter-list, ••• 

parameter-list: 
parameter-declaration 
parameter-list, parameter-declaration 

parameter-declaration: 

/* A parameter list */ 

declaration-specifiers declarator 
declaration-specifiers abstract-declarator opt 

The parameter-type-list is a sequence of parameter declarations separated by com­
mas. The form of each parameter in a parameter list looks like this: 

[register] type-specifier [declarator] 

The identifiers of the parameters are used in the function body to refer to the 
values passed to the function. You can name the parameters in a prototype, but the 
names go out of scope at the end of the declaration. Therefore parameter names 
can be assigned the same way or differently in the function definition. These iden­
tifiers cannot be redefined in the outermost block of the function body, but they 
can be redefined in inner, nested blocks as though the parameter list were an en­
closing block. 

Each identifier in parameter-type-list must be preceded by its appropriate type 
specifier, as shown in this example: 



180 C Language Reference 

Microsoft Specific 

void new( double x, double y, double z ) 
{ 

/* Function body here */ 

If at least one parameter occurs in the parameter list, the list can end with a comma 
followed by three periods (, ••• ). This construction, called the "ellipsis notation," 
indicates a variable number of arguments to the function. (See "Calls with a Varia­
ble Number of Arguments" on page 187.) However, a call to the function must 
have at least as many arguments as there are parameters before the last comma. 

If no arguments are to be passed to the function, the list of parameters is replaced 
by the keyword void. This use of void is distinct from its use as a type specifier. 

The order and type of parameters, including any use of the ellipsis notation, must 
be the same in all the function declarations (if any) and in the function definition. 
The types of the arguments after usual arithmetic conversions must be assignment­
compatible with the types ofthe corresponding parameters. (See "Usual Arith­
metic Conversions" on page 115 for information on arithmetic conversions.) 
Arguments following the ellipsis are not checked. A parameter can have any fun­
damental, structure, union, pointer, or array type. 

The compiler performs the usual arithmetic conversions independently on each 
parameter and on each argument, if necessary. After conversion, no parameter is 
shorter than an int, and no parameter has float type unless the parameter type is ex­
plicitly specified as float in the prototype. This means, for example, that declaring 
a parameter as a char has the same effect as declaring it as an int. 

When the __ near, __ far, and __ huge keywords appear in the declaration, the 
compiler may also convert pointer arguments to the function. The conversions per­
formed depend on the default size of pointers in the program and the presence or 
absence of a list of argument types for the function. See "Assignment Conver­
sions" on page 141 for more information on pointer conversions. 

Microsoft CIC++ version 7.0 allows you to mix complete parameter declarations 
( i nt a ) and abstract declarators ( i nt ) in the same declaration. For example, 
the following declaration is legal in Microsoft CIC++ version 7.0 but not in 
Microsoft C version 6.0: 

int add( int a, int ); 



Function Body 

Syntax 

Functions 181 

To maintain compatibility with Microsoft C version 6.0, a Microsoft extension to 
the ANSI C standard allows a comma without trailing periods (,) at the end of the 
list of parameters to indicate a variable number of arguments. However, it is rec­
ommended that code be changed to incorporate the ellipsis notation .• 

A "function body" is a compound statement containing the statements that specify 
what the function does. The syntax is: 

function-definition: 
declaration-specifiers opt declarator declaration-list opt compound-statement 

compound-statement: /* The function body */ 
{ declaration-list opt statement-list opt} 

Variables declared in a function body, "local variables," have auto storage class 
unless otherwise specified. When the function is called, storage is created for the 
local variables and local initializations are performed. Execution control passes to 
the first statement in compound-statement and continues until a return statement 
is executed or the end of the function body is encountered. Control then returns to 
the point at which the function was called. 

A return statement containing an expression must be executed if the function is to 
return a value. The return value of a function is undefined if no return statement 
is executed or if the return statement does not include an expression. 

6.3 Function Prototypes 
A function declaration precedes the function definition and specifies the name, re­
turn type, storage class, and other attributes of a function. To be a prototype, the 
function declaration must also establish types and identifiers for the function's 
arguments. 



182 C Language Reference 

Syntax declaration : 
declaration-specifiers init-declarator-list opt; 

declaration-specifiers: 
storage-class-specifier declaration-specifiers opt 

type-specifier declaration-specifiers opt 

type-qualifier declaration-specifiers opt 

init-declarator-list : 
in it-declarator 
init-declarator-list, init-declarator 

init-declarator : 
declarator 
declarator = initializer 

declarator: 
pointer opt direct-declarator 

direct-declarator: /* A function declarator */ 
direct-declarator (parameter-type-list) /* New-style declarator */ 
direct-declarator ( identifier-list opt) /* Obsolete-style declarator */ 

The prototype has the same form as the function definition, except that it is termi­
nated by a semicolon immediately following the closing parenthesis and therefore 
has no body. In either case, the return type must agree with the return type 
specified in the function definition. 

Function prototypes have the following important uses: 

• They establish the return type for functions that return types other than int. Al­
though functions that return int values do not require prototypes, prototypes are 
recommended. 

• Without complete prototypes, standard conversions are made, but no attempt is 
made to check the type or number of arguments with the number of parameters. 

• Prototypes are used to initialize pointers to functions before those functions are 
defined. 

• The parameter list is used for checking the correspondence of arguments in the 
function call with the parameters in the function definition. 

The converted type of each parameter determines the interpretation of the argu­
ments that the function call places on the stack. A type mismatch between an argu­
ment and a parameter may cause the arguments on the stack to be misinterpreted. 
For example, on a 16-bit computer, if a 16-bit pointer is passed as an argument, 
then declared as a long parameter, the first 32 bits on the stack are interpreted as a 
long parameter. This error creates problems not only with the long parameter, but 



Functions 183 

with any parameters that follow it. You can detect errors of this kind by declaring 
complete function prototypes for all functions. 

A prototype establishes the attributes of a function so that calls to the function that 
precede its definition (or occur in other source files) can be checked for argument­
type and return-type mismatches. For example, if you specify the static storage­
class specifier in a prototype, you must also specify the static storage class in the 
function definition. 

The prototype can include both the type of, and an identifier for, each expression 
that is passed as an argument. However, such identifiers have scope only until the 
end of the declaration. The prototype can also reflect the fact that the number of ar­
guments is variable, or that no arguments are passed. Without such a list, mis­
matches may not be revealed, so the compiler cannot generate diagnostic 
messages concerning them. For more information on type checking, see 
"Arguments" on page 185. 

6.4 Function Calls 
A function call is an expression that passes control and arguments (if any) to a 
function and has the form 

expression ( expression-list opt) 

where expression is a function name or evaluates to a function address and 
expression-list is a list of expressions (separated by commas). The values of these 
latter expressions are the arguments passed to the function. If the function does not 
return a value, then you declare it to be a function that returns void. 

If a declaration exists before the function call, but no information is given concern­
ing the parameters, any undeclared arguments simply undergo the usual arithmetic 
conversions. 

Note The expressions in the function argument list can be evaluated in any order, 
so arguments whose values may be changed by side effects from another argument 
have undefined values. The sequence point defined by the function-call operator 
guarantees only that all side effects in the argument list are evaluated before con­
trol passes to the called function. (Note that the order in which arguments are 
pushed on the stack is a separate matter.) See "Sequence Points" on page 110 for 
more information. 

The only requirement in any function call is that the expression before the 
parentheses must evaluate to a function address. This means that a function can be 
called through any function-pointer expression. 

This example illustrates function calls called from a switch statement: 



184 C Language Reference 

rna in () 
{ 

} 

/* Function prototypes */ 

long lift( int ), step( int ), drop( int ); 
void work( int number, long (*function)(int i) ); 

int select, count; 

select = 1; 
switch ( select 
{ 

case 1: work( count, lift ); 
break; 

case 2: work( count, step ); 
break; 

case 3: work( count, drop ); 
/* Fall through to next case */ 

default : 
break; 

/* Function definition */ 

void work( int number, long (*function)(int i) ) 
{ 

} 

i nt i; 
long j; 

for( j 0; i < number; i++ ) 
j += ( *function )( i ); 

In this example, the function call in rna in, 

work( count, lift ); 

passes an integer variable, count, and the address of the function 1 i ft to the 
function work. Note that the function address is passed simply by giving the func­
tion identifier, since a function identifier evaluates to a pointer expression. To use 
a function identifier in this way, the function must be declared or defined before 
the identifier is used; otherwise, the identifier is not recognized. In this case, a pro­
totype for wo r k is given at the beginning of the rna in function. 

The parameter functi on in work is declared to be a pointer to a function taking 
one int argument and returning a long value. The parentheses around the 



Arguments 

Functions 185 

parameter name are required; without them, the declaration would specify a func­
tion returning a pointer to a long value. 

The function work calls the selected function from inside the for loop by using 
the following function call: 

( *function )( i ); 

One argument, i, is passed to the called function. 

The arguments in a function call have this form: 

expression ( expression-list opt) 1* Function call *1 

In a function call, expression-list is a list of expressions (separated by commas). 
The values of these latter expressions are the arguments passed to the function. If 
the function takes no arguments, expression-list should contain the keyword void. 

An argument can be any value with fundamental, structure, union, or pointer type. 
All arguments are passed by value. This means a copy of the argument is assigned 
to the corresponding parameter. The function does not know the actual memory lo­
cation of the argument passed. The function uses this copy without affecting the 
variable from which it was originally derived. 

Although you cannot pass arrays or functions as arguments, you can pass pointers 
to these items. Pointers provide a way for a function to access a value by refer­
ence. Since a pointer to a variable holds the address of the variable, the function 
can use this address to access the value of the variable. Pointer arguments allow a 
function to access arrays and functions, even though arrays and functions cannot 
be passed as arguments. 

Compilers differ in the order they evaluate arguments. However, the arguments 
and any side effects are completely evaluated before the function is entered. See 
"Side Effects" on page 110 for information on side effects. 

The expression-list in a function call is evaluated and the usual arithmetic conver­
sions are performed on each argument in the function call. If a prototype is availa­
ble, the resulting argument type is compared to the prototype's corresponding 
parameter. If they do not match, either a conversion is performed, or a diagnostic 
message is issued. The parameters also undergo the usual arithmetic conversions. 

If the __ near, __ far, and __ huge keywords are used, conversions on pointer ar­
guments may also be performed. See "Assignment Conversions" on page 141 for 
more information. 



186 C Language Reference 

The number of expressions in expression-list must match the number of parame­
ters, unless the function's prototype or definition explicitly specifies a variable 
number of arguments. In this case, the compiler checks as many arguments as 
there are type names in the list of parameters and converts them, if necessary, as 
described above. See the following section, "Calls with a Variable Number of 
Arguments," for more information. 

If the prototype's parameter list contains only the keyword void, the compiler ex­
pects zero arguments in the function call and zero parameters in the definition. A 
diagnostic message is issued if it finds any arguments. 

This example uses pointers as arguments: 

ma in ( ) 
{ 

} 

/* Function prototype */ 

void swap( int *numl, int *num2 ); 
int x, y; 

s w a p ( &x, &y ); / * Fun c t ion call * / 

/* Function definition */ 

void swap( int *numl, int *num2 ) 
{ 

int t; 

t = *numl; 
*numl *num2; 
*num2 = t; 

In this example, the swa p function is declared in ma into have two arguments, 
represented respectively by identifiers numl and num2, both of which are point­
ers to int values. The parameters numl and num2 in the prototype-style definition 
are also declared as pointers to int type values. In the function call 

swap( &x, &y ) 

the address of x is stored in numl and the address of y is stored in num2. Now 
two names, or "aliases," exist for the same location. References to *numl and 
*num2 in swap are effectively references to x and y in ma in. The assignments 
within swap actually exchange the contents of x and y. Therefore, no return 
statement is necessary. 



Functions 187 

The compiler performs type checking on the arguments to swap because the pro­
totype of swa p includes argument types for each parameter. The identifiers within 
the parentheses of the prototype and definition can be the same or different. What 
is important is that the types of the arguments match those of the parameter lists in 
both the prototype and the definition. 

Calls with a Variable Number of Arguments 
A partial parameter list can be terminated by the ellipsis notation, a comma fol­
lowed by three periods (, ... ), to indicate that there may be more arguments passed 
to the function, but no more information is given about them. Type checking is not 
performed on such arguments. At least one parameter must precede the ellipsis no­
tation and the ellipsis notation must be the last token in the parameter list. Without 
the ellipsis notation, the behavior of a function is undefined if it receives parame­
ters in addition to those declared in the parameter list. 

To call a function with a variable number of arguments, simply specify any num­
ber of arguments in the function call. An example is the printf function from the 
C run-time library. The function call must include one argument for each type 
name declared in the parameter list or the list of argument types. 

All the arguments specified in the function call are placed on the stack unless the 
__ fastcall calling convention is specified. The number of parameters declared for 
the function determines how many of the arguments are taken from the stack and 
assigned to the parameters. You are responsible for retrieving any additional argu­
ments from the stack and for determining how many arguments are present. The 
STDARGS.H file contains ANSI-style macros for accessing arguments offunc­
tions which take a variable number of arguments. The XENIX®-style macros in 
V ARARGS.H are also still supported. 

This sample declaration is for a function that calls a variable number of argu­
ments: 

int average( int first, ... ); 

Microsoft Specific To maintain compatibility with Microsoft C version 6.0, a Microsoft extension to 
the ANSI C standard allows a comma without trailing periods (,) at the end of the 
list of parameters to indicate a variable number of arguments .• 

Recursive Functions 
Any function in a C program can be called recursively; that is, it can call itself. 
The number of recursive calls is limited to the size of the stack. See Chapter 14 in 
the Environment and Tools manual for information about linker options that set 
stack size. Each time the function is called, new storage is allocated for the para­
meters and for the auto and register variables so that their values in previous, un-



188 C Language Reference 

finished calls are not overwritten. Parameters are only directly accessible to the in­
stance of the function in which they are created. Previous parameters are not 
directly accessible to ensuing instances of the function. 

Note that variables declared with static storage do not require new storage with 
each recursive call. Their storage exists for the lifetime of the program. Each refer­
ence to such a variable accesses the same storage area. 

This example illustrates recursive calls: 

int factorial( int num ); 

void maine) 
{ 

int result, number; 

1* Function prototype *1 

result factorial( number ); 

int factorial( int num ) 
{ 

1* Function definition *1 

if( ( num > 0 ) I I ( num <= 10 ) ) 
return( num * factorial( num - 1 ) ); 



Preprocessor Directives and 
Pragmas 

A "preprocessor directive" is an instruction to the C preprocessor. Preprocessing 
takes place during the first phase of compilation. This chapter describes prepro­
cessing and explains the "phases of translation," which are the steps of the process 
by which source files (or translation units) are translated into executable files. 

This chapter also discusses 

• Macros 

• The #define and #undef directives 

• Preprocessing operators 

• Include files (also known as header files) 

• Conditional compilation 

• Line control directives 

• Error directives 

• Pragma directives 

A "pragma" is an instruction to the C compiler. Pragmas are allowed by ANSI as a 
way to implement vendor-specific behavior in the compiler. 

7.1 Preprocessing 
The C preprocessor manipulates the content of a source file as the first phase of 
compilation. The preprocessor does not parse the source text, but it does break it 
up into tokens for the purpose of locating macro calls. Although the compiler ordi­
narily invokes the preprocessor in its first pass, the preprocessor can also be in­
voked separately to process text without compiling. 

Preprocessor directives are typically used to facilitate portability and improve pro­
gram structure. Directives in the source file tell the preprocessor to perform 



190 C Language Reference 

specific actions. For example, the preprocessor can replace tokens in the text, in­
sert the contents of other files into the source file, or suppress compilation of part 
of the file by removing sections of text. Preprocessor statements are recognized 
and carried out before macro expansion. 

Preprocessor statements use the same character set as source file statements with 
the exception that escape sequences are not supported. (See "Character Constants" 
on page 16 for information on the execution character set.) 

The C preprocessor recognizes the following directives: 

#define 
#if 
#line 

#elif 
#ifdef 
#Undef 

#else 
#error 
#ifndef 

#endif 
#include 
#pragma 

The number sign (#) must be the first nonwhite-space character on the line contain­
ing the directive; white-space characters can appear between the number sign and 
the first letter of the directive. Some directives include arguments or values. Any 
text that follows a directive (except an argument or value that is part of the direc­
tive) must be enclosed in comment delimiters (/* */) or be preceded by two con­
secutive forward slashes (II). Lines containing preprocessor directives can be 
continued by preceding the end-of-the-line marker with a backslash (\). 

Preprocessor directives can appear anywhere in a source file, but they apply only 
to the remainder of the source file. 

7.2 Phases of Translation 
A C program consists of one or more source files, each of which contains some of 
the text of the program. A source file, together with all of its "include files," which 
are files that are inserted at the location of the #include preprocessor directive, is 
called a "translation unit." 

Source files are translated in a series of phases. Preprocessing treats a source file 
as a sequence of text lines. You can specify directives and macros to insert, delete, 
and alter source text. Once translated, the translation units can be kept either in 
separate object files or in object-code libraries. These separate translation units are 
then linked to form an executable program (.EXE or .COM file). 

Functions in different translation units can pass values through: 

• Calls to functions that have external linkage. 

• Direct modification of identifiers that have external linkage. 

• Direct modification of files. 

• Interprocess communication (Windows only). 



Preprocessor Directives and Pragmas 191 

• Modification of environment variables. 

The following list describes the phases in which the compiler translates files: 

Character mapping 
Characters in the source file are mapped to the internal source representation. 
Trigraph sequences are converted to single-character internal representation in 
this phase. See page 8 for information on trigraphs. 

Line splicing 
All lines ending in a backslash (\), immediately followed by a newline charac­
ter, are joined with the next line in the source file, forming logical lines from 
the physical lines. A non-empty source file must end in a newline character that 
is not preceded by a backslash. 

Tokenization 
The source file is broken into preprocessing tokens and White-space characters. 
Each comment in the source file is replaced with a space character. Newline 
characters are retained. 

Preprocessing 
Preprocessing directives are executed and macros are expanded into the source 
file. The #include statement invokes the preprocessing steps starting with the 
preceding three translation processes on any included text. 

Character set mapping 
All source-character-set members and escape sequences are converted to their 
equivalents in the execution character set. For Microsoft C/C++, both the 
source and the execution character sets are ASCII. 

String concatenation 
All adjacent string literals and wide-string literals are concatenated. For 
example, "String" "concatenation" becomes "String concatenation". 

Translation 
All tokens are analyzed syntactically and semantically; these tokens are con­
verted into object code. 

The linker resolves all external references and creates an executable program by 
combining one or more separately processed translation units along with standard 
libraries. 

7.3 Manifest Constants and Macros 
The #define directive is typically used to associate meaningful identifiers with 
constants, keywords, and commonly used statements or expressions. Identifiers 
defined with #define that represent constants are called "manifest constants" or 



192 C Language Reference 

"symbolic constants." Identifiers defined with #define that represent statements or 
expressions are called "macros." 

This section discusses the #define directive for defining manifest constants and 
macros, the preprocessing operators you can use in macros, the #Undef directive 
for removing macro and constant definitions, and the predefined macros provided 
in Microsoft C/C++ version 7.0. 

Macros have their own name space. See page 39 for infonnation on name spaces. 

Macro Expansion 

Microsoft Specific 

In practical tenns there are two types of macros. "Object-like" macros take no ar­
guments, while "function-like" macros can be defined to accept arguments so that 
they look and act like function calls. The next section gives the syntax for both 
kinds of macros. Because macros do not generate actual function calls, you can 
make programs faster by replacing function calls with macros. However, macros 
can create problems if you do not define and use them with care. You may have to 
use parentheses in macro definitions with arguments to preserve the proper prece­
dence in an expression. Also, macros may not handle expressions with side effects 
as a function would. See the examples on page 193, "The #define Directive" for 
more information. 

When the preprocessor encounters a macro, the macro is replaced by the macro 
body. If the macro accepts arguments, the arguments following the macro name 
are substituted for parameters in the macro body. The process of replacing a macro 
call with the processed copy of the body is called "expansion" of the macro call. 
Macros are not expanded recursively. 

Macro expansions of up to 6K are pennitted .• 

Preprocessing expands macros in all nondirective lines and in parts of some direc­
tives that are not skipped as part of a conditional compilation. Therefore, if a 
macro expands into something that looks like a preprocessor command, that com­
mand is not recognized by the preprocessor. (See page 202 for infonnation on con­
ditional compilation.) 

Once you have defined a manifest constant or a macro, you cannot redefine it to a 
different value without first removing the original definition. However, you can re­
define a manifest constant or a macro with exactly the same definition. This is use­
ful if you have the same macro in several include files. 

The #undef directive removes the definition of a manifest constant or a macro. 
Once you have removed the definition, you can redefine a manifest constant to a 
different value or a macro to a different statement without causing a compiler 
warning to be generated. 



Preprocessor Directives and Pragmas 193 

Using inline functions instead of function-like macros can be more reliable since 
parameters are type-checked, all expressions passed to a function are evaluated, 
and all side effects are complete prior to entry into the function. This is not neces­
sarily true for macros. See information on __ inline on page 173. 

The #define Directive 

Syntax 

You can use the #define directive to give a meaningful name to a constant or state­
ment in your program. The ways to specify a manifest constant or a macro are 
given by this syntax: 

control-line: 
#define identifier replacement-list new-line /* Macro without parameters */ 
#define identifier (identifier-list opt new-line) replacement-list new-line 

The #define directive substitutes replacement-list for all subsequent occurrences 
of identifier in the source file. The identifier is replaced only when it forms a 
token. For instance, identifier is not replaced if it appears in a comment, within a 
string, or as part of a longer identifier. 

The replacement-list argument consists of a series of tokens, such as keywords, 
constants, or complete statements. One or more white-space characters must sepa­
rate replacement-list from identifier. This initial white space is not considered part 
of the substituted text, nor is any white space following the last token of the text. 

If an identifier-list appears after identifier, the #define directive replaces each oc­
currence of identifier (identifier-list) with a version of the replacement-list argu­
ment that has arguments substituted for parameters. The identifier-list is a list of 
parameters for a macro. 

When a macro with parameters has been defined, subsequent textual instances fol­
lowed by an identifier-list constitute a macro call. The arguments following an in­
stance of identifier in the source file are matched to the corresponding parameters 
of identifier-list. Each parameter in replacement-list that is not preceded by a 
stringizing (#), charizing (#@), or token-pasting (##) operator, or followed by a 
token-pasting operator, is replaced by the corresponding argument. Any macros in 
the argument are expanded before the argument replaces the parameter. (The pre­
processor operators are described on page 195.) 

Parameter names appear in replacement-list to mark the places where actual 
values are substituted. A parameter name can appear more than once in replace­
ment-list, and the names can appear in any order. The number of arguments in the 
call must match the number of parameters in the macro definition. The liberal use 
of parentheses ensures that the precedence of complicated arguments is not misin­
terpreted. If the name of the macro being defined occurs in replacement-list (even 
as a result of another macro expansion), it is not expanded. 



194 C language Reference 

Microsoft Specific 

The parameters in the identifier-list are separated by commas. Each name must be 
unique. No spaces can separate identifier and the opening parenthesis. Use line 
concatenation (placing a backslash (\) before the newline character) for long 
directives on multiple source lines. The scope of a parameter name extends to the 
new line that ends replacement-list. 

This example illustrates the #define directive for manifest constants and macros: 

Ifodefine WIDTH 
1tdefi ne LENGTH 

80 1* Manifest constant *1 
( WIDTH + 10 ) 1* Macro *1 

The first statement defines the identifier WIDTH as the integer constant 80 
and defines LENGTH in terms of WIDTH and the integer constant 10. Each occur­
rence of LENGTH is replaced by ( WIDTH + 10 ). In turn, each occurrence of 
WIDTH + 10 is replaced by the expression ( 80 + 10 ). The parentheses around 
WIDTH + 10 are important because they control the interpretation in statements 
such as the following: 

var = LENGTH * 20; 

After the preprocessing stage the statement becomes 

var = ( 80 + 10 ) * 20; 

which evaluates to 1800. Without parentheses, the result is 

var = 80 + 10 * 20; 

which evaluates to 280. 

Arguments with side effects sometimes cause macros to produce unexpected re­
sults. A given parameter may appear more than once in replacement-list. If that 
parameter is replaced by an expression with side effects, the expression, with its 
side effects, may be evaluated more than once (see examples in "Token-Pasting 
Operator" on page 197). 

A #define without a replacement-list removes occurrences of identifier from the 
source file. The identifier is still considered defined, however, and yields the value 
1 when tested with the #if defined directive (discussed in "The defined Operator" 
on page 204). A second #define for the same identifier generates an error unless 
the second token sequence is identical to the first. 

The #Undef directive causes an identifier's preprocess definition to be removed. 
See "The #Undef Directive" on page 198. 

Microsoft eversion 6.0 allows a macro to be redefined provided it is lexically 
identical to the previous definition. ANSI e considers macro redefinition an error. 
e 7.0 allows this behavior but generates a warning. For example these macros are 
equivalent for e 7.0 but generate warnings since ANSI e considers this an error. 



Microsoft Specific 

#define test( fl, f2 
#define test( aI, a2 

f1 * f2 
al * a2 

Preprocessor Directives and Pragmas 195 

Defining macros and constants with the /D command-line option has the same ef­
fect as using a #define preprocessing directive at the beginning of your file. Up to 
30 macros can be defined with the /D option. See page 206, "The #ifdef and 
#ifndef Directives," for more information about defining constants from the com­
mand line .• 

Preprocessor Operators 
Four preprocessor-specific operators are used in the context of the #define direc­
tive. This list gives a summary of each. The first three preprocessor operators are 
discussed in the next three sections. The fourth, the defined operator, is discussed 
on page 204. 

Charizing operator (#@) 
Causes the corresponding argument to be enclosed in single quotation marks 
and to be treated as a character .• 

Stringizing operator (#) 
Causes the corresponding argument to be enclosed in double quotation marks. 

Token-pasting operator (##) 
Allows tokens used as arguments to be concatenated to form other tokens. 

defined operator 
Simplifies the writing of compound expressions in certain macro directives. 
U sed as part of a constant expression that can be tested in an #if block to deter­
mine if a particular identifier has been defined as a macro. 

Stringizing Operator (#) 
The number-sign or "stringizing" operator (#) converts macro parameters (after ex­
pansion) to string constants. It is used only with macros that take arguments. If it 
precedes a parameter in the macro definition, the argument passed by the macro in­
vocation is enclosed in quotation marks and treated as a string literal. The string lit­
eral then replaces each occurrence of a combination of the stringizing operator and 
parameter within the macro definition. 

White space preceding the first token of the argument and following the last token 
of the argument is ignored. Any white space between the tokens in the argument is 
reduced to a single white space in the resulting string literal. Thus, if a comment 
occurs between two tokens in the argument, it is reduced to a single white space. 
The resulting string literal is automatically concatenated with any adjacent string 
literals from which it is separated only by white space. 



196 C Language Reference 

Microsoft Specific 

Microsoft Specific 

Further, if a character contained in the argument usually requires an escape 
sequence when used in a string literal-for example, the quotation-mark (") or 
backslash (\) characters-the necessary escape backslash is automatically inserted 
before the character. 

The following example shows a macro definition that includes the stringizing oper­
ator and a main function that invokes the macro: 

'define stringer( x ) printf( 'x "\n" ) 

maine) 
{ 

} 

stringer( In quotes in the printf function call\n ); 
stringer( "In quotes when printed to the screen"\n ); 
stringer( "This: \" prints an escaped double quotation mark" ); 

Such invocations would be expanded during preprocessing, producing the follow­
ing code: 

mai n ( ) 
{ 

printf( "In quotes in the printf function call\n" "\n" l; 
printf( "\"In quotes when printed to the screen\"\n" "\n" ); 
printf( "\"This: \\\" prints an escaped double quotation mark\"" "\n" ); 
} 

When the program is run, screen output for each line would be as follows: 

In quotes in the printf function call 

"In quotes when printed to the screen" 

"This: \" prints an escaped double quotation mark" 

To debug macros, compile your program with the /P command-line option. This 
preprocesses the source file and sends the output to a file. 

The Microsoft extension to the ANSI C standard that allowed expanded formal 
macro arguments to appear inside of string literals and character constants is no 
longer supported. Code that relied on this extension should be rewritten using the 
stringizing (#) operator.. 

Charizing Operator (#@) 

The charizing operator can be used only with the arguments of macros. If a #@ 
precedes a parameter in the definition of the macro, the argument is enclosed in 



Preprocessor Directives and Pragmas 197 

single quotation marks and treated as a character when the macro is expanded. For 
example, 

#define makechar(x) #@x 

causes the statement 

a = makechar(b); 

to be expanded into 

a = 'b'; 

The single-quotation character cannot be used with the charizing operator. • 

Token-Pasting Operator (II) 
The double-number-sign or "token-pasting" operator (##) (sometimes called the 
"merging" operator) is used in both object-like and function-like macros. It per­
mits separate tokens to be joined into a single token, and therefore cannot be the 
first or last token in the macro definition. 

If a parameter in a macro definition is preceded or followed by the token-pasting 
operator, the parameter is immediately replaced by the unexpanded argument. 
Macro expansion is not performed on the argument prior to replacement. 

Then, each occurrence of the token-pasting operator in replacement-list is re­
moved, and the tokens preceding and following it are concatenated. The resulting 
token must be a valid token. If it is, the token is rescanned for possible replace­
ment if it represents a macro name. The identifier name following the #define pre­
processing directive represents the name by which the concatenated tokens will be 
known in the program before replacement. Each token represents a token defined 
elsewhere, either within the program or on the compiler command line. White 
space preceding or following the operator is optional. 

This example illustrates use of both the "stringizing" and "token-pasting" opera­
tors in specifying program output. 

ffdefi ne paster( n ) pri ntf( "token" ffn " = %d", tokenfNfn ) 
int token9; 

The macro is called with a numeric argument such as: 

paster( 9 ); 

The macro yields 

printf( "token" "9"" %d", token9 ); 



198 C language Reference 

which becomes 

printf( "token9 %d", token9 ); 

The #undef Directive 

Syntax 

The #undef directive removes (undefines) a macro name previously created with 
#define. 

control-line: 
#Undef identifier new-line 

The #Undef directive removes the current definition of identifier. Consequently, 
subsequent occurrences of identifier are ignored by the preprocessor. To remove a 
macro definition using #undef, give only the macro identifier, do not give a para­
meter list. 

You can also apply the #undef directive to an identifier that has no previous defini­
tion. This ensures that the identifier is undefined. Macro replacement is not per­
formed within #undef directives. 

The #Undef directive is typically paired with a #define directive to create a region 
in a source program in which an identifier has a special meaning. For example, a 
specific function of the source program can use manifest constants to define en­
vironment-specific values that do not affect the rest ofthe program. The #Undef 
directive also works with the #if directive (see "The #if, #elif, #else, and #endif 
Directives" on page 202) to control conditional compilation of the source program. 

#define WIDTH 80 
#define ADD( X, Y) (X) + (Y) 

#undef WIDTH 
#undef ADD 

In this example, the #undef directive removes definitions of a manifest constant 
and a macro. Note that only the identifier of the macro is given. 

Predefined Macros 
ANSI C recognizes five predefined macros, and the Microsoft C compiler exten­
sions provide several more. The names of the ANSI predefined macros begin and 
end with two underscores. These macros take no arguments, and cannot be 
redefined. 

The ANSI-recognized predefined macros are: 



Microsoft Specific 

Macro 

__ TIME __ 

Preprocessor Directives and Pragmas 199 

Description 

The translation date of the current source file. The date is a 
character string of the fonn Mmm dd yyyy. The month 
name Mmm is the same as for dates generated by the library 
function asctime declared in TIME.H. When the operating 
system does not provide the date, the default value for 
__ DATE __ is MAY 03 1957. 

The name of the current source file. __ FILE __ expands to 
a string surrounded by double quotation marks. 

The line number in the current source file. The line number 
is a decimal integer constant. It can be altered with a #line 
directive. 

Indicates full confonnance with the ANSI C standard. 
Defined as the integer constant I only if the IZa command­
line option is given. Not defined under IZe. 
The translation time of the current source file. The time is a 
character string of the fonn h h : mm : 5 s. When the operating 
system does not provide the time, the default value for 
__ TIME __ is 17:1313:1313. 

The Microsoft -specific predefined macros are described in the following list. Both 
forms of a predefined identifier (with and without an underscore) are defined if 
you specify the /Ze command line option (or, from within PWB, you must select 
Microsoft Extensions from the Additional Global Options dialog box from the C 
Compiler Options dialog box). 

Identifier 

MSDOS, _MSDOS 

~I286,_M_I286 

~I386, _M_I386 

~I86mM, 
_~I86mM 

_CHA~ UNSIGNED 

Function 

Always defined. Identifies target operating system as MS­
DOS. 

Always defined. Identifies target machine as a member of 
the 8086 family. 

Defined for 8086 and 8088 processors (default or IGO 
option). 

Defined for 80286 processor (/G2 option). 

Defined for 80386 processor (/G3 option). 

Always defined. Identifies memory model, where 'm' is 
either T (tiny model), S (small model), C (compact model), 
M (medium model), L (large model), or H (huge model). If 
huge model is used, both ~I86LM and M_I86HM are 
defined. Small model is the default. 

Defines the compiler version in the fonn: ddd. Defined as 
700 for Microsoft C/C++. 

Defined only when the 11 option is given to make char 
unsigned by default. 



200 C Language Reference 

Identifier 

__ TIMESTAMP __ 

Function 

The date and time of the last modification of the source file, 
expressed as a string literal in the form: "Ddd Mmm 
hh:mm:ss yyyy". 

Translated to pcode. Defined when /Oq is enabled. 

Supported for compatibility with Microsoft C version 6.0. 
The _FAST macro is the recommended alternative. 

Reserved by the Microsoft C/C++ version 7.0 compiler to 
assist in portability between ANSI C and C++. 

Supersedes _QC, which is still supported but not 
recommended. 

The /Ze command-line option, the default for Microsoft C, enables the Microsoft 
extensions. The IZa command-line option, compiling for ANSI compatibility, de­
fines only the identifier form that has a leading underscore .• 

7.4 Include Files 

Syntax 

The #include directive tells the preprocessor to treat the contents of the named file 
as if it appeared in the source program at the point where the directive appears. 
These files are called "header files." You can organize constant and macro defini­
tions into header files and then use #include directives to add these definitions to 
any source file. Include files are also useful for incorporating declarations of exter­
nal variables and complex data types. You only need to define and name the types 
once in an include file created for that purpose. 

control-line: 
#include "path-spec" new-line 
#include <path-spec> new-line 

1* Programmer-supplied header files *1 
1* Standard C header files *1 

Both forms cause replacement of the #include directive by the contents of the 
source file given. The first form is usually used for header files that you write. The 
second form is used for the standard C header files. 

The path-spec is a filename optionally preceded by a directory specification. The 
filename must name an existing file. The syntax of the path-spec depends on the 
operating system on which the program is compiled. 

Microsoft Specific The preprocessor stops searching as soon as it finds a file with the given name. If 
you specify a complete, unambiguous path specification for the include file, be­
tween two sets of double quotation marks (" "), the preprocessor searches only 
that path specification and ignores the standard directories. Unambiguous path 
specifications are called "fully qualified." A fully specified filename is a filename 
where the first character is a forward slash (I) or a backslash (\) or the second 



Preprocessor Directives and Pragmas 201 

character is a colon (:). For example, F:\C7\SPECIAL\INCL\TEST.H) is a fully 
qualified path specification. 

If the filename enclosed in double quotation marks is an incomplete (or "relative") 
path specification, the preprocessor first searches the "parent" file's directory. A 
parent file is the file containing the #include directive. For example, if you include 
a file named fi 1 e2 within a file named fi 1 el, fi 1 el is the parent file. 

Include files can be "nested"; that is, an #include directive can appear in a file 
named by another #include directive. For example, fi 1 e2 could include fi 1 e3. 
In this case, fi 1 el would still be the parent of fi 1 e2 but would also be the 
"grandparent" of fi 1 e3. 

For include files specified as #include "path-spec" , directory searching begins 
with the directories of the parent file, then proceeds through the directories of any 
grandparent files. Thus, searching begins relative to the directory containing the 
source file currently being processed. If there is no grandparent file and the file 
has not been found, the search continues as if the filename were enclosed in angle 
brackets. 

For file specifications enclosed in angle brackets, the preprocessor does not search 
directories of the parent files. Instead, it begins by searching for the file in the 
directories specified on the compiler command line following II. If the II option is 
not present or fails, the preprocessor uses the INCLUDE environment variable to 
find any include files within angle brackets. The INCLUDE environment variable 
can contain multiple paths separated by semicolons (;). If more than one directory 
appears as part of the II option or within the INCLUDE environment variable, the 
preprocessor searches them in the order they appear. 

Nesting of include files is limited by the available memory. Once the nested 
#include is processed, the preprocessor continues to insert the enclosing include 
file into the original source file. 

For example, the command 

CL IID:\MSC\INCLUDE MVPROG.C 

causes the preprocessor to search the directory D:\MSC\lNCLUDE for include 
files such as STOIO.H. The commands 

SET INCLUDE = D:\MSC\INCLUDE 
CL MVPROG.C 

have the same effect. If both sets of searches fail, a fatal error is generated. 

Note Programs containing references to fully specified include files may not com­
pile on other computers .• 



202 C language Reference 

7.5 Conditional Compilation 
This section describes the syntax and use of directives that control conditional 
compilation. These directives allow you to suppress compilation of parts of a 
source file by testing a constant expression or identifier to determine which text 
blocks are passed on to the compiler and which text blocks are removed from the 
source file during preprocessing. 

The #if, #elif, #else, and #endif Directives 

Syntax 

The #if directive, together with the #elif, #else, and #endif directives, controls 
compilation of portions of a source file. If the expression you write (after the #if) 
has a nonzero value, the statements immediately following the #if directive are re­
tained in the translation unit. 

preprocessing-file: 
group opt 

group: 
group-part 
group group-part 

group-part: 
pp-tokens opt new-line 
if-section 
control-line 

if-section: 
if-group elif-groups opt else-group opt endif-line 

if-group: 
#if restricted-constant-expression new-line group opt 

#ifdef identifier new-line group opt 

#ifndef identifier new-line group opt 

elif-groups : 
elif-group 
elif-groups elif-group 

elif-group : 
#elif restricted-constant-expression new-line group opt 

else-group: 
#else new-line group opt 



Preprocessor Directives and Pragmas 203 

endif-line : 
#endif new-line 

control-line: 
#include "path-spec" new-line /* Programmer-supplied header files */ 
#include <path-spec> new-line /* Standard C header files */ 
#define identifier replacement-list new-line /* Macro with arguments */ 
#define identifier (identifier-listopt new-line) replacement-list 
#undef identifier new-line 
#line digit-sequence new-line 
#line digit-sequence "filename" opt new-line 
#line digit-sequence preprocessing-tokens new-line 
#error preprocessor-tokens opt new-line 
#pragma pragma-directive opt new-line 
# new-line 

replacement-list: 
pp-tokens opt 

pp-tokens: 
preprocessing-token 
pp-tokens preprocessing-token 

preprocessing-token: 
header-name 
identifier 
pp-number 
character-constant 
string-literal 
operator 
punctuator 
each nonwhite-space character that cannot be one of the above 

new-line: 
the newline character 

Each #if directive in a source file must be matched by a closing #endif directive. 
Any number of #elif directives can appear between the #if and #endif directives, 
but at most one #else directive is allowed. The #else directive, if present, must be 
the last directive before #endif. 

The #if, #elif, #else, and #endif directives can nest in the text portions of other #if 
directives. Each nested #else, #elif, or #endif directive belongs to the closest un­
matched #if directive. 

The preprocessor selects a single group by evaluating the restricted constant ex­
pression following each #if or #elif directive until it finds a true (nonzero) 



204 C language Reference 

restricted constant expression. It selects all text (including other preprocessor 
directives beginning with #) up to its associated #elif, #else, or #endif. 

The constant expressions used with the #if directives are called restricted-constant­
expressions since some restrictions apply here that do not apply to all constant ex­
pressions. The preprocessor processes the selected group and passes it to the 
compiler. If group contains preprocessor directives, the preprocessor carries out 
those directives. Any text blocks not selected by the preprocessor are not compiled. 

If all occurrences of restricted-constant-expression are false, or if no #elif direc­
tives appear, the preprocessor selects the text block after the #else clause. If the 
#else clause is omitted, and all instances of restricted-constant-expression in the 
#if block are false, no text block is selected. 

The Restricted Constant Expression 
The restricted-constant-expression is an integer constant expression with these 
additional restrictions: 

• All expressions must have integral type and can only include integer constants 
and character constants. 

• The expression cannot use sizeof or a type cast operator, nor can assignment 
operators and the sequential evaluation operator (,) be used in the constant 
expression. 

• The translation represents type int the same as type long and unsigned int the 
same as unsigned long. 

• The compiler can translate character constants to a set of code values different 
from the set for the target environment. To determine the properties of the tar­
get environment, check values of macros from LIMITS.R in an application 
built for the target environment. The target environment may not be able to rep­
resent all ranges of integers. 

• The expression must not perform any environmental inquiries and must remain 
insulated from implementation details on the target computer. 

The defined Operator 
The restricted-constant-expression can contain the preprocessor operator defined 
as shown: 

defined(identifier) 
defined identifier /* Alternative equivalent form */ 

This constant expression is considered true (nonzero) if the identifieris currently 
defined as a macro; otherwise, the condition is false (0). An identifier defined as 



Preprocessor Directives and Pragmas 205 

empty text is considered defined. The defined directive can be used in a #if and a 
#elif, but nowhere else. 

In the following example, the #if and #endif directives control compilation of one 
of three function calls. 

#if defined(CREDIT) 
credit(); 

#elif defined(DEBIT) 
debit() ; 

fte 1 se 
printerror(); 

#endif 

The function call to credit is compiled ifthe macro CREDIT is defined. If the 
identifier DEBIT is defined, the function call to debit is compiled. If neither 
identifier is defined, the call to pri nterror is compiled. Note that CREDIT and 
credit are distinct identifiers in C because their cases are different. 

The following conditional compilation statements assume a constant named 
OLE VEL has already been defined. If an identifier used with #if has not been de­
fined, the identifier evalutes to O. 

#if DLEVEL > 5 /* First example */ 
#define SIGNAL 1 
#if STACKUSE == 1 

#define STACK 200 
#else 

#define STACK 100 
#endif 

#else 
#define SIGNAL 0 
#if STACKUSE == 1 

#define STACK 100 
fte 1 se 

#define STACK 50 
ffendif 

ftendif 

ftif DLEVEL == 0 
#define STACK 0 

#elif DLEVEL == 1 
#define STACK 100 

ftel if DLEVEL > 5 
display( debugptr ); 

fte 1 se 
#define STACK 200 

#endif 

/* Second example */ 



206 C Language Reference 

Microsoft Specific 

The #if block in the first example shows two sets of nested #if, #else, and #endif 
directives. The first set of directives is processed only if DLEVEL > 5 is true. 
Otherwise, the statements after the #else are processed. 

The #elif and #else directives in the second example are used to make one of four 
choices, based on the value of DLEVEL. The constant STACK is set to 0, 100, or 200, 
depending on the definition of DLEVEL. If DLEVEL is greater than 5, then the 
statement 

#elif DLEVEL > 5 
display(debugptr); 

is compiled and STACK is not defined. 

The identifier can be passed from the command line using the /D option. Up to 30 
macros can be specified with /D. 

This is useful for checking if a definition exists since a definition can be passed 
from the command line. For example, 

#if !defined test 
lldefi ne fi na 1 
llendif 

1* These three statements go in your source code *1 

CL IDtest 1* This is the command for compilation *1 

In this example, a macro named fi na 1 is defined if test has not been defined. 
You can enter either t est or fin a 1 from the command line at compilation time. 
The example above shows test being entered from the command line. Alterna­
tively, you can use PWB. From the PWB Options menu, choose Language Op­
tions. Then select Additional Global Options or Additional Debug Options and 
type the constants for your program. 

Conditional compilation expressions are treated as signed long values. For ex­
ample, this expression is true: 

#if 0xFFFFFFFFL > lUL 

These expressions are evaluated using the same rules as expressions in C .• 

The Hildel and Hilndel Directives 
The #ifdef and #ifndef directives perform the same task as the #if directive when 
it is used with defined(identifier). 



Syntax if-group: 
#ifdef identifier new-line group opt 

#ifndef identifier new-line group opt 

the syntax above is equivalent to 

#if defined identifier 
#if !defined identifier 

Preprocessor Directives and Pragmas 207 

You can use the #ifdef and #ifndef directives anywhere #if can be used. The 
#ifdef identifier statement is equivalent to Ifi f 1 when identifier has been defined 
and is equivalent to Ifi f 0 when identifier has not been defined, has been unde­
fined with the #Undef directive, or has been defined with the value zero. These 
directives check only for identifiers defined with #define (or #undefined), not for 
identifiers declared in the C source code. 

The #ifdef and #ifndef directives are provided mainly for compatibility with pre­
vious versions of the compiler. The preferred form is an #if directive and a 
defined identifier constant expression since more complex expressions can be 
used with #if defined. 

7.6 Line Control 

Syntax 

The #line directive changes the compiler's internally stored line number and 
filename to a given line number and filename. The compiler uses the line number 
and filename to refer to errors that it finds during compilation. The line number 
usually refers to the current input line, and the filename refers to the current input 
file. The line number is incremented after each line is processed. The syntax is 

control-line: 
#line digit-sequence new-line 
#line digit-sequence "filename" opt new-line 
#line digit-sequence preprocessing-tokens new-line 

The digit-sequence value in the #line directive can be any integer constant in the 
range 1 through 32,767. Thefilename can be any combination of characters and 
must be enclosed in double quotation marks (" "). Iffilename is omitted, the pre­
vious filename remains unchanged. In the third line of syntax above, macro re­
placement is performed on the preprocessing tokens and the result must match one 
of the two previous lines. 

You can alter the source line number and filename by writing a #line directive. 
The translator uses the line number and filename to determine the values of the 
predefined macros __ FILE __ and __ LINE __ . 



208 C Language Reference 

The current line number and filename are always available through the predefined 
macros __ LINE __ and __ FILE __ . You can use the __ LINE __ and 
__ FILE __ identifiers to insert self-descriptive error messages into the 
program text. 

The __ FILE __ macro expands to a string whose contents are the filename, sur­
rounded by double quotation marks (" "). See "Predefined Macros" on page 198. 

If you change the line number and filename, the compiler ignores the previous 
values and continues processing with the new values. The #line directive is 
typically used by program generators to cause error messages to refer to the origi­
nal source file instead of to the generated program. 

These examples illustrate #line and the __ LINE __ and __ FILE __ macros. 

'line 151 "copy.c" 

In this statement, the internally stored line number is set to 151 and the filename is 
changed to copy. c. 

'define ASSERT(cond) 

1f( l (cond) )\ 
{printf( "assertion error line %d, file(%s)\n", \ 
__ LINE __ , _JILL_ );} 

In this example, the macro ASSERT uses the predefined identifiers __ LINE __ 
and __ FILE __ to print an error message about the source file if a given "asser­
tion" is not true. 

7.7 Error Directives 

Syntax 

Error directives produce compile-time error messages. 

control-line: 
#error preprocessor-tokens opt new-line 

The error messages include the argument preprocessor-tokens, which is subject to 
macro expansion. These directives are most useful for detecting programmer in­
consistencies and violation of constraints during preprocessing. The following ex­
ample demonstrates error processing during preprocessing. 

'if ldefined(error_chk) 
'error No error checking enabled. 
ffendi f 

If the error _chk constant is not defined at compile time, the 



Preprocessor Directives and Pragmas 209 

No error checking enabled 

message prints on the screen along with other compiler messages. 

7.8 Pragma Directives (Microsoft Specific) 

Syntax 

Although portability is a hallmark of C, its creators recognized that every C com­
piler needs to support some features unique to its host machine. Some programs, 
for instance, need to exercise precise control over the memory areas where data is 
placed or to control the way certain functions receive parameters. The #pragrna 
directive offers a way for each C compiler to offer machine-specific features while 
retaining overall compatibility with the C language and other C compilers. 

Since pragmas are machine-specific by definition, they are usually different for 
every C compiler. Pragmas can be used in conditional statements to provide 
specific preprocessor functionality or to provide implementation-defined informa­
tion to the compiler. The pragmas discussed in this section apply to the Microsoft 
C compiler. 

#pragrna pragma-directive opt new-line 

The pragma-directive is one of a series of directives that gives a specific compiler 
instruction and arguments, if any. The number sign (#) must be the first nonwhite­
space character on the line containing the pragma; white-space characters can sepa­
rate the number sign and the word pragrna. The argument to #pragrna is subject 
to macro expansion. 

With many of these pragmas, one of the arguments can be left out. When that is 
done, the setting of the option returns to the command-line setting. For example: 

1fpragma pack( 1) 

struct var 
{ 

1* Structure elements defined here *1 

1fpragma pack( ) 

In this example, the pack pragma forces the structure to be packed on one-byte 
boundaries until #pragma pack( ) tells the compiler to go back to whatever the 
previous setting had been. 

The #pragrna directives instruct the compiler to implement the features specified 
by the argument. The Microsoft C compiler recognizes the following pragmas: 



210 C Language Reference 

alloc_text 
auto_inline 
checlL pointer 
checlL stack 
code_seg 
comment 

datLseg 
function 
hdrstop 
checlL stack 
inline_ recursion 
intrinsic 

linesize 
message 
native_ caller 
optimize 
pack 
page 

These pragma directives are summarized in the following list. 

#pragma alloc_ text( textsegment,junctioni, ... ) 

pagesize 
skip 
subtitle 
title 
warning 

Names the segment where the specified routine definitions are to reside. This 
must occur between a function declarator and the function definition for the 
named functions. The alloL text pragma is still supported, but the recom­
mended technique is to use __ based. 

#pragma auto_inline ( [on I off] ) 
Inhibits the inline expansion of a function. The auto_inline pragma inhibits the 
preprocessor from expanding a function when the IOb2 command-line option is 
in effect. To use it, place one pragma just before and again just after a function 
definition. 

#pragma checlLpointer ([{ on I off}]) 
Instructs the compiler to tum off pointer checking if off is specified, or to tum 
on pointer checking if on is specified. Checks every pointer dereference to 
make sure the pointer is not a null or out-of-range pointer. Also enabled with 
the IZr command-line option, which is only available with the Iqc option. 
(Within PWB select Additional Debug Options from the C Compiler Options 
dialog box. Then select Quick Compile and Null Pointer Checking.) 

#pragma checlLstack ([ { on I off }]) 
Instructs the compiler to tum off stack probes if off is specified, or to tum on 
stack probes if on is specified. If no argument is given, stack probes are treated 
according to the default (on, unless IGs was used). You can reduce the size of a 
program and speed up execution slightly by removing stack probes. You can do 
this with either the IGs option or the checlLstack pragma. 

#pragma code_seg ( [ " segmenCname" [ , " segmenCclass " ] ) 
Specifies a segment where functions are to be allocated, allowing the use of 
based allocation without rewriting code. Using #pragma code_seg is equiv­
alent to using __ based when __ based is used for allocation. You can specify 
the class for the segment by giving the segmenCclass as a string. Using 
#pragma code_seg without a segmenCname string resets allocation to 
whatever it was when compilation began. 

#pragma comment (comment-type [, commentstring]) 
Allows you to place a comment record in an object file or executable file. The 
comment-type specifies the type of comment record. The optional 
commentstring is a string literal that provides additional information for some 
comment types. Because comment-type is a string literal, it obeys all the rules 



Preprocessor Directives and Pragmas 211 

for string literals with respect to escape characters, embedded quotation marks 
("), and concatenation. 

#pragma datLseg ( [ " segmenCname" [, " segmenCclass" ] ) 
Specifies a segment where data is to be allocated, allowing the use of based 
allocation without rewriting code. Using #pragma data_seg is equivalent to 
using __ based when __ based is used for allocation. The segment-class allows 
you to assign a segment class to a segment name. This pragma applies only to 
initialized data and does not affect tentative definitions. Using #pragma 
datLseg without a segmenCname string resets allocation to whatever it was 
when compilation began. This datLseg pragmas is not equivalent to the 
datL seg pragma supported by earlier versions of the compiler. 

#pragma function (function1 [,jitnction2, ... ] ) 
Specifies that calls to the specified functions will actually take place. The 
intrinsic pragma affects a specified function beginning where the pragma ap­
pears. The effect continues to the end of the source file or to the appearance of a 
function pragma specifying that function. 

#pragma hdrstop [ ( ''filename'' ) ] 
Controls the way precompiled headers work. The filename is the name of the 
precompiled header file to use or create (depending on compilation options). If 
filename does not contain a path specification, the precompiled header file is as­
sumed to be in the same directory as the source file. See Chapter 2 in the Pro­
gramming Techniques manual for more information on precompiled header 
files. 

#pragma inline_depth ( [0 .. 255] ) 
Controls the number of times that inline expansion can occur by controlling the 
number of times that a series of function calls can be expanded (from 0 to 255 
times). Use this pragma to control inline functions, or functions that the com­
piler automatically expands under the IOb2 option. Requires an lOb command­
line option setting of either 1 or 2. 

#pragma inline_recursion ( [on I off] ) 
Controls the inline expansion of direct or mutually recursive function calls. Use 
this pragma to control inline functions, or functions that the compiler automat­
ically expands under the IOb2 option. Requires an lOb command-line option 
setting of either 1 or 2. The default state for inline_recursion is off. 

#pragma intrinsic (function1 [,jitnction2, ... ] ) 
Specifies that calls to the specified functions are intrinsic (a library function 
known to the compiler). Alternatively, you can use the IOi option to make in­
trinsic the default form for functions that have intrinsic forms. In this case, you 
can use the function pragma to override IOi for specified functions. This 
pragma cannot be used with Iqc. 

The following functions have intrinsic forms: 



212 C language Reference 

_alloca _rotl 10glO _asinl 
_disable _rotr memcmp _atanl 
_enable _strset memcpy _atan21 
_fmemcmp abs memset _ceill 
_fmemcpy acos pow _cosl 
_fmemset asin sin _coshl 
_fstrcat atan sinh _expl 
_fstrcmp atan2 sqrt _floorl 
_fstrcpy ceil strcat _fmodl 
_fstrlen cos strcmp _logl 
_fstrset cosh strcpy _loglOl 
_inp exp strlen _powl 
_inpw fabs tan _sinl 
_Irotl floor tanh _sinhl 
_Irotr fmod 16-Bit Target _sqrtl 
_outp labs Only: _tanl 
_outpw log _acosl _tanhl 

#pragma linesize ( [num-chars] ) 
Specifies the number of characters per line in the source listing. The optional 
parameter num-chars is an integer constant in the range 79-132. If num-chars 
is absent, the compiler uses the value specified in the lSI option or, if that op­
tion is absent, the default value of 79 characters per line. The linesize pragma 
takes effect the line after it appears. 

#pragma message ( messagestring ) 
Sends a string literal to the standard output without terminating the compilation. 
The messagestring parameter can be a macro that expands to a string literal, 
and you can concatenate such macros with string literals in any combination. 

#pragma native_caller ([ { on I off}]) 
Controls the removal of native-code entry points from within source code. If 
you have p-code functions that are called only by other p-code functions, you 
can omit those entry points and save those bytes by using the IGn compiler op­
tion or on a function-by-function basis with this pragma. See Chapter 3 in the 
Programming Techniques manual for more information on p-code. 

#pragma optimize ( "[ optimization-aptian-list ]", { off I on } ) 
Specifies optimizations to be performed. This pragma must appear outside of a 
function. The optimization option list may be zero or more of the following: a, 
c, e, g, 1, n, p, q, t, and w. These letters correspond to the 10 compiler options. 

#pragma pack ( [{ 1 I 2 I 4 }] ) 
Specifies the byte boundary for packing members of C structures. You can use 
the /Zp option to specify the same packing for all structures in a module. The 
default is 2 for 16-bit computers and 4 on 32-bit computers. See "Structure Dec­
larations," on page 65 for more information. 



32-Bit Specific 

Preprocessor Directives and Pragmas 213 

On 32-bit targets, the packing can be set at 8 or 16 as well as 1,2, and 4 as given 
for 16-bittargets .• 

#pragma page ([numpages]) 
Tells the compiler to generate formfeeds in the source listing at the line where it 
appears. The page pragma generates one or more formfeeds (page eject) in the 
source listing (created with IFs) at the place where the pragma appears. The 
number of formfeeds is specified by numpages. Legal values are 1-127, with 
the default being 1. 

#pragma pagesize ( [numlines] ) 
Sets the number of lines per page in the source listing. The optional numlines 
parameter is an integer constant in the range 15-255 that specifies the number 
of lines you want on each page of the source listing to have. If numlines is ab­
sent, the pragma sets the page size to the number of lines specified in the /Sp 
option or, if that option is absent, to a default value of 63 lines. 

#pragma skip ( [numlines] ) 
Skips the specified number of lines in the source listing. The skip pragma 
generates one or more newline characters (carriage return-linefeed) in the 
source listing at the point where the pragma appears. The optional numlines par­
ameter is an integer constant in the range 1-127 that specifies the number of 
lines to skip. If this parameter is absent, the skip pragma defaults to one line. 

#pragma subtitle ( "subtitlename" ) 
Specifies a subtitle for the source listing. The subtitlename parameter can be a 
macro that expands to a string literal, and you can concatenate such macros 
with string literals in any combination. A null subtitlename erases any previous 
subtitle. 

#pragma title ( "titlename" ) 
Specifies a title for the source listing. The title appears in the upper-left corner 
of each page of the listing. The titlename parameter can be a macro that ex­
pands to a string literal, and you can concatenate such macros with string liter­
als in any combination. A null titlename erases any previous title. 

#pragma warning( warning-specifier[; warning-specifier] ) 
Controls the warning level for compiler errors. The warning-specifier has the 
syntax warning-type:warning-number-list where warning-type can be once, 
default, 1, 2, 3, 4, disable, or error. The specifier once tells the compiler to dis­
playa warning only once, default is the standard compiler warning level, and 
1-4 force warning levels 1-4. Specifying disable disables the selected warn­
ings, and error forces a warning to be reported as an error. The warning­
number-list can be any number between 1 and 699 or 4001 and 4699. 

The loop_opt pragma has been replaced with the optimize pragma. The 
same_seg pragma is no longer supported. Use __ based for specifying the place­
ment of external variables in memory. 







C Language Syntax Summary 

Definitions 

Conventions 

This appendix gives the full description ofthe C language and the Microsoft­
specific C language features. You can use the syntax notation in this appendix to 
determine the exact syntax for any language component. The explanation for the 
syntax appears in the section of this manual where a topic is discussed. 

Note This syntax summary is not part of the ANSI standard, but is included for in­
formation only. Microsoft-specific syntax is noted in comments following the 
syntax. 

Terminals are endpoints in a syntax definition. No other resolution is possible. Ter­
minals include the set of reserved words and user-defined identifiers. 

Nonterminals are placeholders in the syntax and are defined elsewhere in this syn­
tax summary. Definitions can be recursive. 

An optional component is indicated by the subscripted opt. For example 

{ expression opt} 

indicates an optional expression enclosed in curly braces. 

The conventions use different font attributes for different components of the syn­
tax. The symbols and fonts are as follows: 



218 C Language Reference 

Attribute 

nonterminal 

const 

opt 

default typeface 

Description 

Italic type indicates nonterminals. 

Terminals in boldface type are literal 
reserved words and symbols that must be 
entered as shown. Characters in this 
context are always case sensitive. 

Nonterminals followed by opt are always 
optional. 

Characters in the set described or listed in 
this typeface can be used as terminals in 
C statements 

A colon (:) following a nonterminal introduces its definition. Alternative defini­
tions are listed on separate lines, except when prefaced with the words "one of." 

Syntax Categories 
The syntax categories are: 

• Lexical Grammar 

• Tokens 

• Keywords 

• Identifiers 

• Constants 

• String Literals 

• Operators 

• Punctuators 

• Phrase Structure Grammar 

• Expressions 

• Declarations 

• Statements 

• External Definitions 

• Preprocessing Directives 



A.1 Language Syntax Summary 

Lexical Grammar 

Tokens 
token: 

keyword 
identifier 
constant 
string-literal 
operator 
punctuator 

preprocessing-token: 
header-name 
identifier 
pp-number 
character-constant 
string-literal 
operator 
punctuator 

C Language Syntax Summary 219 

each nonwhite-space character that cannot be one of the above 

Keywords 
keyword: one of 

auto double int struct 
break else long switch 
case enum register typedef 
char extern return union 
const float short unsigned 
continue for signed void 
default goto sizeof volatile 
do if static while 



220 C Language Reference 

Identifiers 

Constants 

identifier: 
nondigit 
identifier nondigit 
identifier digit 

nondigit : one of 
a b c d e f 9 h j k 1 m 
n 0 p q r stu v w x y z 
A B C D E F G H I J K L M 
N 0 P Q R S T U V W X Y Z 

digit: one of 
o 1 234 5 6 7 8 9 

constant: 
floating-point-constant 
integer-constant 
enumeration-constant 
character-constant 

floating-point-constant : 
fractional-constant exponent-part opt floating-suffix opt 

digit-sequence exponent-part floating-suffix opt 

fractional-constant: 
digit-sequence opt • digit-sequence 
digit-sequence • 

exponent-part: 
e sign opt digit-sequence 
E sign opt digit-sequence 

sign: one of 
+ 

digit-sequence: 
digit 
digit-sequence digit 

floating-suffix: one of 
f 1 F L 



integer-constant: 
decimal-constant integer-suffix opt 

octal-constant integer-suffIX opt 

hexadecimal-constant integer-suffix opt 

decimal-constant: 
nonzero-digit 
decimal-constant digit 

octal-constant: 
o 
octal-constant octal-digit 

hexadecimal-constant: 
Ox hexadecimal-digit 
OX hexadecimal-digit 
hexadecimal-constant hexadecimal-digit 

nonzero-digit: one of 
123456789 

octal-digit: one of 
01234567 

hexadecimal-digit: one of 
0123456789 
abcdef 
ABCDEF 

unsigned-suffix: one of 
uU 

long-suffix: one of 
IL 

character-constant: 
'c-char-sequence' 
L' c-char-sequence' 

integer-suffix: 
unsigned-suffIX long-suffIX opt 

long-suffIX unsigned-suffIX opt 

c-char-sequence : 
c-char 
c-char-sequence c-char 

C Language Syntax Summary 221 



222 C Language Reference 

String Literals 

Operators 

c-char: 
Any member of the source character set except the single quotation mark ('), 

backslash (\), or newline character 
escape-sequence 

escape-sequence: 
simple-escape-sequence 
octal-esc ape-sequence 
hexadecimal-escape-sequence 

simple-escape-sequence : one of 
\a \b \f \n \r \t \v 
\, \" \\ \? 

octal-escape-sequence : 
\ octal-digit 
\ octal-digit octal-digit 
\ octal-digit octal-digit octal-digit 

hexadecimal-escape-sequence : 
\x hexadecimal-digit 
hexadecimal-escape-sequence hexadecimal-digit 

string-literal: 
"s-char-sequence opt" 

L"s-char-sequence opt" 

s-char-sequence : 
s-char 
s-char-sequence s-char 

s-char: 
any member of the source character set except the double-quote 

quotation mark (,,), backslash (\), or newline character 
escape-sequence 

assignment-operator: one of 
= *= 1= %= += -= «= »= &= 1\= 1= 



Punctuators 
punctuator: one of 

[] () {} * , = 

C Language Syntax Summary 223 

... # 

Phrase Structure Grammar 

Expressions 
primary-expression: 

identifier 
constant 
string-literal 
( expression) 

expression: 
assignment-expression 
expression, assignment-expression 

constant-expression: 
conditional-expression 

conditional-expression: 
logical-OR-expression 
logical-OR-expression ? expression: conditional-expression 

assignment-expression: 
conditional-expression 
unary-expression assignment-operator assignment-expression 

postfix-expression: 
primary-expression 
postfix-expression [ expression] 
postfix-expression ( argument-expression-list opt) 

postfIX-expression. identifier 
postfIX-expression -> identifier 
postfix-expression ++ 
postfix-expression --
postfIX-expression :> expression /* Microsoft-specific */ 

argument-expression-list: 
assignment-expression 
argument-expression-list , assignment-expression 



224 C Language Reference 

unary-expression: 
posifix-expression 
++ unary-expression 
- unary-expression 
unary-operator cast-expression 
sizeof unary-expression 
sizeof ( type-name) 

unary-operator: one of 
&*+--! 

cast-expression: 
unary-expression 
( type-name) cast-expression 

multiplicative-expression: 
cast-expression 
multiplicative-expression * cast-expression 
multiplicative-expression I cast-expression 
multiplicative-expression % cast-expression 

additive-expression: 
multiplicative-expression 
additive-expression + multiplicative-expression 
additive-expression - multiplicative-expression 

shift-expression: 
additive-expression 
shift-expression «additive-expression 
shift-expression »additive-expression 

relational-expression: 
shift-expression 
relational-expression < shift-expression 
relational-expression> shift-expression 
relational-expression <= shift-expression 
relational-expression >= shift-expression 

equality-expression: 
relational-expression 
equality-expression == relational-expression 
equality-expression != relational-expression 

AND-expression: 
equality-expression 
AND-expression & equality-expression 



Declarations 

exclusive-OR-expression: 
AND-expression 
exclusive-OR-expression A AND-expression 

inclusive-OR-expression: 
exclusive-OR-expression 

C Language Syntax Summary 225 

inclusive-OR-expression I exclusive-OR-expression 

logical-AND-expression : 
inclusive-OR -expression 
logical-AND-expression && inclusive-OR-expression 

logical-OR-expression: 
logical-AND-expression 
logical-OR-expression IIlogical-AND-expression 

declaration: 
declaration-specifiers init-declarator-list opt; 

declaration-specifiers: 
storage-class-specifier declaration-specifiers opt 

type-specifier declaration-specifiers opt 

type-qualifier declaration-specifiers opt 

attributes opt declaration-specifiers opt /* Microsoft Specific */ 

init-declarator-list : 
init-declarator 
init-declarator-list, init-declarator 

init-declarator : 
declarator 
declarator = initializer /* For scalar initialization */ 

storage-class-specifier: 
auto 
register 
static 
extern 
typedef 



226 C Language Reference 

type-specifier: 
void 
char 
short 
int 
long 
float 
double 
signed 
unsigned 
struct-or-union-specifier 
enum-specifier 
typedef-name 

type-qualifier: 
const 
volatile 

declarator: 
pointer opt direct-declarator 

direct-declarator: 
identifier 
( declarator) 
direct-declarator [ constant-expression opJ 
direct-declarator (parameter-type-list) /* New-style declarator */ 
direct-declarator ( identifier-list opt) /* Obsolete-style declarator */ 

pointer: 
* type-qualifier-list opt 

* type-qualifier-list opt pointer 

parameter-type-list: 
parameter-list 
parameter-list, ••• 

parameter-list: 
parameter-declaration 
parameter-list, parameter-declaration 

type-qualifier-list: 
type-qualifier 
type-qualifier-list type-qualifier 

enum-specifier : 
enum identifier opt { enumerator-list} 
enum identifier 

/* The parameter list */ 



enumerator-list: 
enumerator 
enumerator-list, enumerator 

enumerator: 
enumeration-constant 
enumeration-constant = constant-expression 

enumeration-constant: 
identifier 

struct-or-union-specifier: 

C Language Syntax Summary 227 

struct-or-union identifier opt { struct-declaration-list} 
struct-or-union identifier 

struct-or-union : 
struct 
union 

struct-declaration-list : 
struct-declaration 
struct-declaration-list struct-declaration 

struct-declaration : 
specifier-qualifier-list struct-declarator-list ; 

specifier-qualifier-list: 
type-specifier specifier-qualifier-list opt 

type-qualifier specifier-qualifier-list opt 

struct-declarator-list : 
struct-declarator 
struct-declarator-list, struct-declarator 

struct-declarator: 
declarator 
type-specifier declarator opt: constant-expression 

parameter-declaration: 
declaration-specifiers declarator /* Named declarator */ 
declaration-specifiers abstract-declarator opt /* Anonymous declarator */ 

identifier-list: /* For old-style declarator */ 
identifier 
identifier-list, identifier 



228 C language Reference 

Statements 

abstract-declarator: /* Used with anonymous declarators */ 
pointer 
pointer opt direct-abstract-declarator 

direct-abstract-declarator : 
( abstract-declarator) 
direct-abstract-declarator opt [ constant-expression opt] 

direct-abstract-declarator opt (parameter-type-list opt) 

initializer : 
assignment-expression 
{ initializer-list } /* For aggregate initialization */ 
{ initializer-list , } 

initializer-list : 
initializer 
initializer-list , initializer 

type-name: 
specifier-qualifier-list abstract-declarator opt 

typedef-name : 
identifier 

Statement: 
labeled-statement 
compound-statement 
expression-statement 
selection-statement 
iteration-statement 
jump-statement 

jump-statement: 
goto identifier; 
continue; 
break; 
return expression opt; 

compound-statement: 
{ declaration-list opt statement-list opt} 



declaration-list: 
declaration 
declaration-list declaration 

statement-list: 
statement 
statement-list statement 

expression-statement: 
expression opt; 

iteration-statement: 
while ( expression) statement 
do statement while ( expression) 

C Language Syntax Summary 229 

for ( init-expression opt; cond-expression opt; loop-expression opt) statement 

selection-statement: 
if ( expression) statement 
if ( expression) statement else statement2 
switch ( expression) statement 

labeled-statement: 
identifier: statement 
case constant-expression: statement 
default: statement 

External Definitions 
translation-unit : 

external-declaration 
translation-unit external-declaration 

external-declaration: 
function-definition 
declaration 

/* Allowed only at external (file) scope */ 

function-definition: /* Declarator here is the function declarator */ 
declaration-specifiers opt declarator declaration-list opt compound-statement 



230 C Language Reference 

Preprocessing Directives 
preprocessing-file: 

group opt 

group: 
group-part 
group group-part 

group-part: 
pp-tokens opt new-line 
if-section 
control-line 

if-section: 
if-group elif-groups opt else-group opt endif-line 

if-group: 
#if restricted-constant-expression new-line group opt 

#ifdef identifier new-line group opt 

#ifndef identifier new-line group opt 

elif-groups: 
elif-group 
elif-groups elif-group 

elif-group : 
#elif restricted-constant-expression new-line group opt 

else-group: 
#else new-line group opt 

endif-line : 
#endif new-line 

control-line: 
#include "path-spec" new-line /* Programmer-supplied header files */ 
#include <path-spec> new-line /* Standard C header files */ 
#define identifier replacement-list new-line /* Macro without parameters */ 
#define identifier (identifier-listopt ) replacement-list new-line 
#undef identifier new-line 
#line digit-sequence new-line 
#line digit-sequence "filename "opt new-line 
#line digit-sequence preprocessing-tokens new-line 
#error preprocessor-tokens opt new-line 
#pragma pragma-directive opt new-line 
# new-line 



replacement-list: 
pp-tokens opt 

new-line: 
the newline character 

pp-tokens: 
preprocessing-token 
pp-tokens preprocessing-token 

C Language Syntax Summary 231 





Implementation-Defined Behavior 

The American National Standards Institute (ANSI) Standard for the C program­
ming language, volume x3.159-1989, contains an appendix called "Portability 
Issues." The ANSI appendix lists areas of the C language that ANSI leaves open 
to each particular implementation. This appendix describes how Microsoft C han­
dles these implementation-defined areas of the C language. 

This appendix follows the same order as the ANSI Standard appendix. Each item 
covered includes references to the ANSI chapter and section that explains the im­
plementation-defined behavior. 

Note This appendix describes the U.S. English-language version of the C com­
piler only. Implementations of Microsoft C for other languages may differ slightly. 

B.1 Translation 

Diagnostics 
How a diagnostic is identified (§2.1.1.3) 

Microsoft C produces error messages in the form: 

filename(line-number) : diagnostic Cnumber message 

where filename is the name of the source file in which the error was encountered; 
line-number is the line number at which the compiler detected the error; 
diagnostic is either "error" or "warning"; number is a unique four-digit number 
(preceded by a C) that identifies the error or warning; message is an explanatory 
message. 



234 C language Reference 

B.2 Environment 

Arguments to main 
The semantics of the arguments to main (§2.1.2.2.1) 

In Microsoft C, the function called at program startup is called main. There is no 
prototype declared for main, and it can be defined with zero, two, or three 
parameters: 

int main( void) 
int main( int argc, char *argv[] ) 
int main( int argc, char *argv[], char *envp[] ) 

The third line above, where main accepts three parameters, is a Microsoft exten­
sion to the ANSI standard. The third parameter, envp, is an array of pointers to en­
vironment variables. The envp array is terminated by a null pointer. See "The 
main Function and Program Execution" on page 30 for more information about 
main and envp. 

The variable argc never holds a negative value. 

The array of strings ends with argv[argc], which contains a null pointer. 

All elements of the argv array are pointers to strings. 

A program invoked with no command-line arguments will receive a value of one 
for argc, as the name of the executable file is placed in argv[O]. (In DOS versions 
prior to 3.0, the executable-file name is not available. The letter "c" is placed in 
argv[O].) Strings pointed to by argv[1] through argv[argc -1] represent program 
parameters. 

The parameters argc and argv are modifiable and retain their last-stored values be­
tween program startup and program termination. 

Interactive Devices 
What constitutes an interactive device (§2.1.2.3) 

Microsoft C defines the keyboard and the display as interactive devices. 



Implementation-Defined Behavior 235 

B.3 Identifiers 

Significant Characters Without External Linkage 
The number of significant characters without external linkage (§3.1.2) 

Identifiers are significant to 247 characters. The compiler does not restrict the 
number of characters you can use in an identifier; it simply ignores any characters 
beyond the limit. 

Significant Characters with External Linkage 
The number of significant characters with external linkage (§3.1.2) 

Identifiers declared extern in programs compiled with Microsoft C are significant 
to 247 characters. You can modify this default to a smaller number using the /H 
(restrict length of external names) option. 

Uppercase and lowercase 
Whether case distinctions are significant (§3.1.2) 

Microsoft C treats identifiers within a compilation unit as case sensitive. Exter­
nally linked identifiers mayor may not be case sensitive, depending on whether 
you use INOIGNORECASE option when you invoke the linker. The default for 
the linker is to ignore case, making externally linked identifiers case insensitive. 

Thus, symbols in source files are sensitive to case. By default, symbols in object 
files are not. 

Two CL command-line options affect case scnsitivity: 

• The /Gc (generate Pascal-style function calls) command-line option converts all 
external identifiers (including function names) to uppercase. The __ pascal dec­
larator performs the same operation on a function-by-function basis for 16-bit 
targets. 

• The /Zc (compile case insensitive) ignores case at the source level for any iden­
tifier names declared with the __ pascal keyword. 



236 C Language Reference 

8.4 Characters 

The ASCII Character Set 
Members of source and execution character sets (§2.2.1) 

The source character set is the set of legal characters that can appear in source 
files. For Microsoft C, the source character set is the standard ASCII character set. 

Warning Because keyboard and console drivers can remap the character set, pro­
grams intended for international distribution should check the country code. 

Multibyte Characters 
Shift statesfor multibyte characters (§2.2.1.2) 

Multibyte characters are used by some implementations, including Microsoft C 
version 7.0, to represent foreign-language characters not represented in the base 
character set. However, Microsoft C version 7.0 does not support any state­
dependent encodings. Therefore, there are no shift states. See "Multibyte and 
Wide Characters" on page 8 for more information. 

Bits per Character 

Character Sets 

Number of bits in a character (§2.2.4.2.1) 

The number of bits in a character is represented by the manifest constant 
CHAlLBIT. The LIMITS.H file defines CHAlLBIT as 8. 

Mapping members of the source character set (§3.1.3.4) 

The source character set and execution character set include the ASCII characters 
listed in Table B.l. Escape sequences are also shown in Table B.l. 

Table B.l Escape Sequences 

Escape Sequence 

\a 

\b 

\f 

Character 

Alertlbell 

Backspace 

Formfeed 

ASCII Value 

7 

8 

12 



Implementation-Defined Behavior 237 

Table B.1 Escape Sequences (continued) 

Escape Sequence Character ASCIIVa)ue 

\n Newline 10 

\r Carriage return 13 

\t Horizontal tab 9 

\v Vertical tab 11 
\" Double quotation 34 
\ . Single quotation 39 

\\ Backslash 92 

Unrepresented Character Constants 

Wide Characters 

The value of an integer character constant that contains a character or escape 
sequence not represented in the basic execution character set or the extended 
character set for a wide character constant (§3.1.3.4) 

There are no character constants or escape sequences that cannot be represented in 
the extended character set. 

The value of an integer character constant that contains more than one 
character or a wide character constant that contains more than one multibyte 
character (§3.1.3.4) 

The regular character constant, . ab' has the integer value (int)Ox6162. When 
there is more than one byte, previously read bytes are shifted left by the value of 
CHAR-BIT and the next byte is compared using the bitwise-OR operator with 
the low CHAR_BIT bits. The number of bytes in the multibyte character constant 
may not exceed sizeof(int), which is 2 for 16-bit target code, 4 for 32-bit target 
code. 

The multi byte character constant is read as above and this is converted to a wide 
character constant using the mbtowc run-time function. If the result is not a valid 
wide character constant, an error is issued. In any event, the number of bytes ex­
amined by the mbtowc function is limited to the value ofMB_CUR-MAX. 



238 C Language Reference 

Converting Multibyte Characters 
The current locale used to convert multibyte characters into corresponding wide 
characters (codes) for a wide character constant (3.1.3.4) 

Microsoft CIC++ 7.0 supports only the "C" locale, which does not include any 
true multibyte characters. In the "C" locale, the mbtowc function maps from the 
ANSI [8859] character set to Unicode. 

Range of char Values 

B.5 Integers 

Whether a "plain" char has the same range of values as a signed char or an 
unsigned char (§3.2.1.1) 

All character values range from OxOO to OxFF, signed or unsigned. If a char is not 
explicitly marked as signed or unsigned, it defaults to the signed type. 

The CL option IJ changes the default from signed to unsigned. 

Range of Integer Values 
The representations and sets of values of the various types of integers (§3.1.2.5) 

Short integers contain 16 bits (two bytes). Long integers contain 32 bits (four 
bytes). Signed integers are represented in two's-complement form. The most­
significant bit holds the sign: 1 for negative, 0 for positive and zero. The values 
are listed below: 

Type 

unsigned short 

signed short 

unsigned long 
signed long 

Minimum and Maximum 

o to 65535 

-32768 to 32767 

o to 4294967295 

-2147483648 to 2147483647 



Implementation-Defined Behavior 239 

Demotion of Integers 
The result of converting an integer to a shorter signed integer, or the result of 
converting an unsigned integer to a signed integer of equal length, if the value 
cannot be represented (§3.2.1.2) 

When a long integer is cast to a short, or a short is cast to a char, the least­
significant bytes are retained. 

For example, this line 

short x = (short)0x12345678L; 

assigns the value Ox5678 to x, and this line 

char y = (char)0x1234; 

assigns the value Ox34 to y. 

When signed variables are converted to unsigned and vice versa, the bit patterns re­
main the same. For example, casting -2 (OxFE) to an unsigned value yields 254 
(also OxFE). 

Signed Bitwise Operations 

Remainders 

The results of bitwise operations on signed integers (§3.3) 

Bitwise operations on signed integers work the same as bitwise operations on un­
signed integers. For example,-16 & 99 can be expressed in binary as 

11111111 11110000 
& 00000000 01100011 

00000000 01100000 

The result of the bitwise AND is 96. 

The sign of the remainder on integer division (§3.3.5) 

The sign of the remainder is the same as the sign of the dividend. For example, 

50 / -6 -8 
50 % -6 2 

-50 / 6 -8 
-50 % 6 -2 



240 C Language Reference 

Right Shifts 
The result of a right shift of a negative-value signed integral type (§3.3. 7) 

Shifting a negative value to the right yields half the absolute value, rounded down. 
For example, -253 (binary 11111111 00000011) shifted right one bit produces 
-127 (binary 11111111 10000001). A positive 253 shifts right to produce + 126. 

Right shifts preserve the sign bit. When a signed integer shifts right, the most­
significant bit remains set. When an unsigned integer shifts right, the most­
significant bit is cleared. Thus, if OxFOOO is signed, a right shift produces OxF800. 
If OxFOOO is unsigned, the result is Ox7800. 

Shifting a positive number right sixteen times produces OxOOOO. Shifting a nega­
tive number right sixteen times produces OxFFFF. 

8.6 Floating-Point Math 

Values 
The representations and sets of values of the various types offloating-point 
numbers (§3.1.2.5) 

The float type contains 32 bits: 1 for the sign, 8 for the exponent, and 23 for the 
mantissa. Its range is +/- 3.4E38 with at least 7 digits of precision. 

The double type contains 64 bits: 1 for the sign, 11 for the exponent, and 52 for 
the mantissa. Its range is +/- 1.7E308 with at least 15 digits of precision. 

The long double type is new to Version 7.0 of Microsoft C. It contains 80 
bits: 1 for the sign, 15 for the exponent, and 64 for the mantissa. Its range is 
+/- 1.2E4932 with at least 17 digits of precision. 

Casting Integers to Floating-Point Values 
The direction of truncation when an integral number is converted to afloating­
point number that cannot exactly represent the original value (§3.2.1.3) 

When an integral number is cast to a floating-point value that cannot exactly repre­
sent the value, the value is rounded (up or down) to the nearest suitable value. 

For example, casting an unsigned long (with 32 bits of precision) to a float 
(whose mantissa has 23 bits of precision) rounds the number to the nearest 



Implementation-Defined Behavior 241 

multiple of 256. The long values 4,294,966,913 - 4,294,967,167 are all rounded to 
the float value 4,294,967,040. 

Truncation of Floating-Point Values 
The direction of truncation or rounding when a floating-point number is con­
verted to a narrower floating-point number (§3.2.1.4) 

When an underflow occurs, the value of a floating-point variable is rounded down 
to zero. An overflow causes a run-time math error. 

B.7 Arrays and Pointers 

Largest Array Size 

Casting Pointers 

The type of integer required to hold the maximum size of an array-that is, the 
size of size _t (§3.3.3.4, 4.1.1) 

The size_ t typedef is an unsigned short, with the range OxOOOO to OxFFFF. Huge 
arrays can exceed this limit ifthey contain more than 65,535 elements. Arithmetic 
operations on huge arrays should therefore cast size_ t and the result of an arith­
metic operation on pointers to unsigned long. 

The result of casting a pointer to an integer or vice versa (§3.3.4) 

Near pointers are the same size as short integers; casting near to short (or short to 
near) has no immediate effect on the value. 

Far pointers and huge pointers are the same size as long integers. Casting far/huge 
to long (or long to far/huge) has no immediate effect on the value. 

When a near pointer is cast to a long, the 16-bit value is "normalized," which 
means the segment (usually DS) and offset are combined to produce a 32-bit 
memory location. 

When a far or huge pointer is cast to a short, the long value is truncated to a short. 

The compiler normalizes based pointers when necessary, unless the based pointer 
is a constant zero, in which case it is assumed to be a null pointer. See Chapter 12, 
"Writing Portable C Programs," in the Programming Techniques manual for more 
information about based pointers. 



242 C language Reference 

Pointer Subtraction 
The type of integer required to hold the difference between two pointers to ele­
ments of the same array, ptrdiff-t (§3.3.6, 4.1.1) 

A ptrdifLtis a signed integer in the range -32,768 to 32,767, with one exception. 
Because huge pointers can address more than 64 K of memory, subtracting one 
huge pointer from another can yield a result that is a long integer. The result of 
subtracting two huge pointers should be cast to a long. 

The compiler normalizes based pointers when necessary. In most cases, based 
pointers are treated as far pointers. 

B.8 Registers 

Availability of Registers 
The extent to which objects can actually be placed in registers by use of the reg­
ister storage-class specifier (§3.S.1) 

Two registers, SI and DI, are available for 16-bit targets with Microsoft C, and 
ESI, EDl, and EBX are available for 32-bit targets. Register variables with a type 
that has 16 (or 32) bits may be allocated in these registers. 

B.9 Structures, Unions, Enumerations, and Bit Fields 

Improper Access to a Union 
A member of a union object is accessed using a member of a different type 
(§3.3.2.3) 

If a union of two types is declared and one value is stored, but the union is 
accessed with the other type, the results are unreliable. 

For example, a union of float and int is declared. A float value is stored, but the 
program later accesses the value as an int. In such a situation, the value would 
depend on the internal storage of float values. The integer value would not be 
reliable. 



Implementation-Defined Behavior 243 

Padding and Alignment of Structure Members 
The padding and alignment of members of structures (§3.5.2.1) 

Structure members are aligned to the minimum of their own size or the current 
packing size. For 16-bit targets, the default packing size is 2. The default corre­
sponds to the /Zp2 command-line option. The default packing size is 4 for 32-
bit targets. See page 70, "Storage and Alignment of Structures," for more 
information. 

Sign of Bit Fields 
Whether a "plain" int field is treated as a signed int bit field or as an unsigned 
int bit field (§3.5.2.1) 

Bit fields can be signed or unsigned. Plain bit fields are treated as signed. 

Storage of Bit Fields 
The order of allocation of bit fields within an int (§3.5.2.1) 

Bit fields are allocated within a 16-bit integer from least-significant to most­
significant bit. In the following code, 

struct mybitfields 
{ 

unsigned a 
unsigned b 
unsigned c 

} test; 

void main( void 
{ 

} 

test.a = 2; 
test.b = 31; 
test.c = 0; 

4; 
5 ; 
7 ; 

the bits for the integer OxOlF2 would be arranged as follows: 

00000001 11110010 
cccccccb bbbbaaaa 

Since the 80x86 processors store the low byte of integer values before the high 
byte, the integer OxOlF2 above would be stored in physical memory as OxF2 fol­
lowed by OxOl. 



244 C Language Reference 

Alignment of Bit Fields 

The enum Type 

Whether a bitfield can straddle a storage-unit boundary (§3.5.2.1) 

Bit fields default to size short, which can cross a byte boundary but not a 16-bit 
boundary. If the size and location of a bit field would cause it to overflow the cur­
rent integer, the field is moved to the beginning of the next available integer. 

If a bit field is declared as a long, it can hold up to 32 bits. 

In either case, an individual field cannot cross a 16- or 32-bit boundary. 

The integer type chosen to represent the values of an enumeration type (§3. 5. 2.2) 

A variable declared as enum is an int. 

B.10 Qualifiers 

Access to Volatile Objects 
What constitutes an access to an object that has volatile-qualified type (§3.5.5.3) 

Any reference to a volatile-qualified type is an access. 

B .11 Declarators 

Maximum Number 
The maximum number of declarators that can modify an arithmetic, structure, 
or union type (§3.5.4) 

Microsoft C does not limit the number of declarators. The number is limited only 
by available memory. 



Implementation-Defined Behavior 245 

B .12 Statements 

Li mits on Switch Statements 
The maximum number of case values in a switch statement (§3.6.4.2) 

Microsoft C does not limit the number of case values in a switch statement. The 
number is limited only by available memory. 

B .13 Preprocessing Directives 

Character Constants and Conditional Inclusion 
Whether the value of a single-character character constant in a constant expres­
sion that controls conditional inclusion matches the value of the same character 
constant in the execution character set. Whether such a character constant can 
have a negative value (§3.8.1) 

The character set used in preprocessor statements is the same as the execution 
character set. The preprocessor recognizes negative character values. 

Including Bracketed Filenames 
The method for locating includable source files (§3.8.2) 

For file specifications enclosed in angle brackets, the preprocessor does not search 
directories of the parent files. A "parent" file is the file that has the #include direc­
tive in it. Instead, it begins by searching for the file in the directories specified on 
the compiler command line following II. If the II option is not present or fails, the 
preprocessor uses the INCLUDE environment variable to find any include files 
within angle brackets. The INCLUDE environment variable can contain multiple 
paths separated by semicolons (;). If more than one directory appears as part of the 
II option or within the INCLUDE environment variable, the preprocessor searches 
them in the order they appear. 

See "Include Files" on page 200 for more information. 



246 C language Reference 

Including Quoted Filenames 
The support for quoted names for includable source files (§3.B.2) 

If you specify a complete, unambiguous path specification for the include file be­
tween two sets of double quotation marks (" "), the preprocessor searches only 
that path specification and ignores the standard directories. 

For include files specified as #include ''path-spec'', directory searching begins 
with the directories of the parent file, then proceeds through the directories of any 
grandparent files. Thus, searching begins relative to the directory containing the 
source file currently being processed. If there is no grandparent file and the file 
has not been found, the search continues as if the filename were enclosed in angle 
brackets. 

See "Include Files" on page 200 for more information. 

Character Sequences 

Pragmas 

The mapping of source file character sequences (§3.B.2) 

Preprocessor statements use the same character set as source file statements with 
the exception that escape sequences are not supported. 

Thus, to specify a path for an include file, use only one backslash: 

1finclude "pathl\path2\myfile" 

Within source code, two backslashes are necessary: 

fil = fopen( "pathl\\path2\\myfile", "rt" ); 

The behavior on each recognized #pragma directive (§3.B.6) 

The following pragmas are defined for the Microsoft C compiler: 

alloc_text datLseg linesize pagesize 
auto_inline function message skip 
checlL pointer hdrstop nativLcaller subtitle 
checlL stack checlL stack optimize title 
code_seg inline_ recursion pack warning 
comment intrinsic page 

See "Pragma Directives" on page 209 for more information. 



Implementation-Defined Behavior 247 

Default Date and Time 
The definitions for _DATE_and _TIME_when, respectively, the date and time 
of translation are not available (§3.S.S) 

When the operating system does not provide the date and time of translation, the 
default values for _DATE_ and_TIME_ are May 03 1957 and 17: 00 :00". 

B .14 library Functions 

NUll Macro 
The null pointer constant to which the macro NULL expands (§4.l.S) 

Several include files define the NULL macro as « v 0 i d *) 0 ) . 

Diagnostic Printed by the assert Function 
The diagnostic printed by and the termination behavior of the assertfunction 
(§4.2) 

The assert function prints a diagnostic message and calls the abort routine if the 
expression is false (0). The diagnostic message has the form 

Assertion failed: [expression], file rJilename] , line [linenumber] 

where filename is the name of the source file and linenumber is the line number of 
the assertion that failed in the source file. No action is taken if expression is true 
(nonzero). 

Character Testing 
The sets of characters tested for by the isalnum, isalpha, iscntrl, islower, isprint, 
and is upper functions (§4.3.1) 

Function 

isalnum 

isalpba 

iscntrl 

Tests For 

Characters 0-9, A-Z, a-z ASCII 48-57,65-90, 
97-122 
Characters A-Z, a-z 
ASCII 65-90, 97-122 

ASCII 0-31,127 



248 C Language Reference 

Domain Errors 

Function 

islower 

isprint 

isupper 

Tests For 

Characters a-z 
ASCII 97-122 
Characters A-Z, a-z, 0-9, punctuation, space 
ASCII 32-126 

Characters A-Z 
ASCII 65-90 

The values returned by the mathematics functions on domain errors (§4.S.1) 

The ERRNO.H file defines the domain error constant EDOM as 33. 

Underflow of Floating-Point Values 
Whether the mathematics functions set the integer expression errno to the value 
of the macro ERANGE on underflow range errors (§4.5.1) 

A floating-point underflow does not set the expression errno to ERANGE. When 
a value approaches zero and eventually underflows, the value is set to zero. 

The fmod Function 
Whether a domain error occurs or zero is returned when the fmod function has 
a second argument of zero (§4.S.6.4) 

When the fmod function has a second argument of zero, the function returns zero. 

The signal Function 
The set of signals for the signalfunction (§4.7.1.1) 

The first argument passed to signal must be one of the symbolic constants de­
scribed in the Run-Time Library Reference manual for the signal function. The in­
formation in the Run-Time Library Reference also lists the operating mode support 
for each signal. The constants are also defined in SIGNAL.H. 



Default Signals 

Implementation-Defined Behavior 249 

If the equivalent of signal (sig, SIG_DFL) is not executed prior to the call of a 
signal handler, the blocking of the signal that is performed (§4.7.I.l) 

Signals are set to their default status when a program begins running. 

The SIGILL Signal 
Whether the default handling is reset if the SIGlLL signal is received by a han­
dler specified to the signalfunction (§4.7.I.l) 

SIGILL is not generated under DOS. It is included for ANSI compatibility. DOS 
does not provide a way for an application to regain control when an illegal instruc­
tion occurs. However, a user can issue a signal function and later trigger that sig­
nal via an explicit call to the raise function. As with all signals under DOS, the 
signal handler is set to the default action (SIG_DFL) before the user's signal han­
dler gets control. 

Terminating Newline Characters 

Blank Lines 

Null Characters 

Whether the last line of a text stream requires a terminating newline character 
(§4.9.2) 

Stream functions recognize either new line or end of file as the terminating charac­
ter for a line. 

Whether space characters that are written out to a text stream immediately 
before a newline character appear when read in (§4.9.2) 

Space characters are preserved. 

The number of null characters that can be appended to data written to a binary 
stream (§4.9.2) 

Any number of null characters can be appended to a binary stream. 



250 C language Reference 

File Position in Append Mode 
Whether the file position indicator of an append mode stream is initially posi­
tioned at the beginning or end of the file (§4.9.3) 

When a file is opened in append mode, the file position indicator initially points to 
the end of the file. 

Truncation of Text Files 

File Buffering 

Whether a write on a text stream causes the associated file to be truncated 
beyond that point (§4.9.3) 

Writing to a text stream does not truncate the file beyond that point. 

The characteristics offile buffering (§4.9.3) 

Disk files accessed through standard I/O functions are fully buffered. By default, 
the buffer holds 512 bytes. Some of the low-level DOS and BIOS functions (all of 
which are non-ANSI) are unbuffered. 

Zero-length Files 

Filenames 

Whether a zero-length file actually exists (§4.9.3) 

Files with a length of zero are permitted. 

The rules for composing validfile names (§4.9.3) 

A file specification can include an optional drive letter (always followed by a 
colon), a series of optional directory names (separated by backslashes), and a 
filename. 

Filenames and directory names can contain up to eight characters followed by a 
period and a three-character extension. Case is ignored. The wild-card characters * 
and? are not permitted within the name or extension. 



Implementation-Defined Behavior 251 

File Access limits 
Whether the same file can be open multiple times (§4. 9. 3) 

Opening a file that is already open is not permitted. 

Deleting Open Files 
The effect of the remove function on an open file (§4.9.4.1) 

The remove function deletes a file, even if the file is open. 

Renaming with a Name That Exists 
The effect if a file with the new name exists prior to a call to the rename 
function (§4. 9.4. 2) 

If you attempt to rename a file using a name that exists, the rename function fails 
and returns an error code. 

Printing Pointer Values 
The outputfor %p conversion in thefprintffunction (§4.9.6.1) 

Microsoft C supports three types of pointer conversions: %p (a pointer), %lp (a 
32-bit far pointer), and %hp (a 16-bit near pointer). 

The fprintf function produces hexadecimal values of the form XXXX (an offset) 
for near pointers or XXXX:XXXX (a segment plus an offset, separated by a colon) 
for far pointers. The output for %p depends on the memory model in use. 

Reading Pointer Values 
The inputfor %p conversion in thefscanffunction (§4.9.6.2) 

When the %p format character is specified, the fscanffunction converts pointers 
from hexadecimal ASCII values into the correct address. 



252 C Language Relerence 

Reading Ranges 
The interpretation of a dash (-) character that is neither the first nor the last 
character in the scan list for % [ conversion in the fscanf function (§4.9.6.2) 

The following line 

fscanf( fileptr, "%[A-Z]", strptr); 

reads any number of characters in the range A-Z into the string to which strptr 
points. 

File Position Errors 
The value to which the macro errno is set by the fgetpos or ftell function on 
failure (§4.9.9.1, 4.9.9.4) 

When fgetpos or ftell fails, errno is set to the manifest constant EINV AL if the 
position is invalid or EBADF if the file number is bad. The constants are defined 
inERRNO.H. 

Messages Generated by the perror Function 
The messages generated by the perror function (§4.9.10.4) 

The perror function generates these messages: 

o Error 0 
1 
2 No such file or directory 
3 
4 
5 
6 
7 Arg list too long 
8 Exec format error 
9 Bad file number 
10 
11 
12 Not enough core 
13 Permission denied 
14 
15 
16 
17 File exists 
18 Cross-device link 
19 
20 
21 



22 Invalid argument 
23 
24 Too many open files 
25 
26 
27 
28 No space left on device 
29 
30 
31 
32 
33 Math argument 
34 Result too large 
35 
36 Resource deadlock would occur 

Allocating Zero Memory 

Implementation-Defined Behavior 253 

The behavior of the calloc, malloc, or realloc function if the size requested is 
zero (§4.10.3) 

The ealloe, malloe, and realloe functions accept zero as an argument. No actual 
memory is allocated, but a valid pointer is returned and the memory block can be 
modified later by realloe. 

The abort Function 
The behavior of the abort function with regard to open and temporary files 
(§4.10.4.1) 

The abort function does not close files that are open or temporary. It does not 
flush stream buffers. 

The atexit Function 
The status returned by the atexitfunction if the value of the argument is other 
than zero, EXIT_SUCCESS, or EXIT_FAILURE (§4.10.4.3) 

The atexit function returns zero if successful, or a nonzero value if unsuccessful. 

Environment Names 
The set of environment names and the method for altering the environment list 
used by the getenv function (§4.10.4.4) 

The set of environment names is unlimited. 



254 C language Reference 

To change environment variables from within a C program, call the putenv func­
tion. To change environment variables from the DOS command line, use the SET 
command (for example, SET LIB = D:\ LIBS). 

Environment variables exist only as long as their host copy of DOS is running. For 
example, the line 

system( "SET LIB = D:\LIBS" l; 

would run a copy of DOS, set the environment variable LIB, and return to the C 
program, exiting the secondary copy of DOS. Exiting that copy of DOS removes 
the temporary environment variable LIB. 

Likewise, changes made by the putenv function last only until the program ends. 

The system Function 
The contents and mode of execution of the string by the system function 
(§4.10A.5) 

The system function executes an internal DOS command, or an EXE, COM, or 
BAT file from within a C program rather than from the command line. 

It examines the COMSPEC environment variable to find the command interpreter, 
which is typically COMMAND. COM in DOS. The system function then passes 
the argument string to the command interpreter. 

The strerror Function 
The contents of the error message strings returned by the strerror function 
(§4. 11. 6.2) 

The strerror function generates these messages: 

o Error 0 
1 
2 No such file or directory 
3 
4 
5 
6 
7 
8 
9 
10 
11 

Arg list too long 
Exec format error 
Bad file number 

12 Not enough core 
13 Permission denied 



The Time Zone 

Implementation-Defined Behavior 255 

14 
15 
16 
17 File exists 
18 Cross-device 1 ink 
19 
20 
21 
22 Invalid argument 
23 
24 Too many open files 
25 
26 
27 
28 No space left on device 
29 
30 
31 
32 
33 Math argument 
34 Result too large 
35 
36 Resource deadlock would occur 

The local time zone and Daylight Saving Time (§4.12.1) 

The local time zone is Pacific Standard Time. Microsoft C supports Daylight 
Saving Time. 

The clock Function 
The erafor the clockfunction (§4.12.2.1) 

The clock function· s era begins (with a value of 0) when the C program starts to 
execute. It returns times measured in 1ICLOCKS_PER_SEC (which equals 
111000 for Microsoft C version 7.0). 





Differences Between eVersions 
6.0 and 7.0 

This appendix describes the differences between versions 6.0 and 7.0 of Microsoft 
C, including additions, deletions, and changes. Some of the changes are required 
by the American National Standards Institute (ANSI) standard for the C program­
ming language. Other changes improve or augment the existing capabilities of the 
compiler. 

Many of the changes will have no effect on code that was written and compiled 
with previous versions of Microsoft C. In some cases, however, you may have to 
modify or correct existing code before compiling with version 7.0. 

C.1 New Features 

Support for C++ 

The features described in this section are new to Microsoft C/C++ version 7.0. 

The C++ compiler provided with version 7.0 implements the C++ programming 
language as described in the Annotated c++ Reference by Margaret A. Ellis and 
Bjarne Stroustrup. See the c++ Tutorial and the c++ Language Reference for 
more information. 

Precompiled Header Files 
Precompiled header files reduce compilation time for both C and C++ programs. 
See Chapter 2 in Programming Techniques for information on creating and using 
precompiled headers. 



258 C Language Reference 

P-Code 

New Pragmas 

Inline Functions 

Compiling programs or parts of programs into p-code typically reduces code size 
by a factor of four. This is a useful technique when code size is more important 
than speed. See Chapter 3 in Programming Techniques for information on p-code. 

New pragmas in Microsoft C, version 7.0, include auto_inline, code_seg, 
dabLseg, hdrstop, inline_depth, inline_recursion, native_caller, and 
warning. See page 209, "Pragma Directives," for information on these pragmas. 

The __ inline keyword tells the compiler that it can substitute the code within the 
function definition for every instance of a function call. Substitution occurs at the 
discretion of the compiler. You can specify that individual functions be __ inline 
functions or you can use the /Ob2 command-line option to have the compiler op­
timize your code by generating as many functions inline as possible. The __ inline 
keyword (and the inline keyword when compiling with /Ze) are new keywords for 
Microsoft C, version 7.0. See page 173 for more information. 

New Intrinsic Functions 
The command-line option for intrinsic function optimization (/Oi) or the pragma 
intrinsic causes the compiler to generate inline code for functions. Microsoft C 
version 7.0 adds many intrinsic functions. See "Pragma Directives" on page 209 
for a list of all intrinsic functions. 

Function Allocation Using __ based 
Due to bug fixes since version 6.0 of the compiler, programs that use __ based in­
correctly may not compile with Microsoft C, version 7.0. 

Only lvalues may be converted to __ based« __ segment) __ self) pointers. 
Since the right side of an assignment gets converted to the type of the left hand 
side, this means you must now use an explicit cast when assigning to a 
__ based« __ segment) __ self) pointer. For example, 

int __ based« __ segment) __ self) *piself; 
piself = 1; 

is interpreted as 



Differences Between eVersions 6.0 and 7.0 259 

piself = (int ~~based((~~segment)~~self)) 1; 1* Illegal! *1 

but the expression 1 does not have a segment so this is illegal. To put the offset 1 
into this based pointer, you must cast it to a __ based(void} pointer as shown: 

piself = (int --based(void)*) 1; 

Similarly, 

unsigned short us; 
piself=ui; 

must be written as 

piself = (int ~~based(void)*) ui; 

if you want to move the contents of ui into the __ based« __ segment} __ self) 
pointer. 

Also new to Microsoft C, version 7.0, functions can now be declared as based on a 
segment constant if a function needs to be allocated in a given segment. This fea­
ture replaces the alloc_ text pragma. 

When a segment name ends with _TEXT, the compiler converts it to a code seg­
ment rather than a data segment. For example, for this declaration, 

void funct1() 
{ 

static char ~based(~segname("MY~TEXT")) arr[] "A string\n"; 

the C version 6.0 compiler made MY ~ TEXT a data segment, but the C 7.0 compiler 
makes MY ~ TEXT a code segment. 

See Chapter 4 of Programming Techniques for more information. 

New Run-Time Library Functions 
Microsoft C/C++ provides several new functions to support virtual memory. See 
Chapter 2 in the Run-Time Library Reference for a list. A list of new functions pro­
vided to support Microsoft QuickWin is also in Chapter 2 of that manual. 

In addition to the _osmajor, _osminor, _osversion, and _osmode variables, 
Microsoft C/C++ now provides the _ cpumode variable. It returns either 
_REAL_MODE or _PROTECT_MODE to indicate the mode of the current 
process. 

The new _fatexit and _fonexit functions provide model-independent processing 
at program termination. 



260 C Language Reference 

The new library functions _snprintf and _ vsnprintf can be used to control the 
size of a fonnatted string written to a buffer. 

Microsoft C/C++ now provides the ability to bypass the operating system buffers 
and flush a file directly to disk. The new functions that provide this capability are 
_commit in IO.H and _dos_commit in DOS.H. The fdopen and fopen functions 
have new flags to specify either mode. To take advantage of this with applications 
written prior to Microsoft C, version 7.0, you can link your application with 
COMMODE.OBJ in your \C700\LIB directory. 

See the Run-Time Library Reference for complete infonnation on all these new 
library functions. 

New CL Command-Line Options 
The following CL command-line options are new to Microsoft C 7: 

Option 

IBmmemavailable 

/f 

/Fpfilename 

/GA 

/GD 

/GEstring 

/Gn 

/Gpnumber 

/Gq 

/Gx 

/Gy 

ILd 

ILw 
lLu 

/NQpcodesegment 

/NV 

/Obnumber 

/Oq 

Action 

Sets the amount of memory available to 
the compiler. 

Specify fast compile (replaces /qc). 

Specify precompiled header filename. 

Optimize entry/exit code for protected­
mode Windows applications. 

Optimize entry/exit code for protected­
mode Windows DLLs. 

Optimize entry/exit code for protected­
mode Windows DLLs. 

Remove p-code native entry points. 

Specify maximum number of entry tables. 

Specify real mode Windows (for 
compatibility with /Gw). 

Assume all data is near. 

Enable function-level linking. 

Control library selection for DLLs. 

Control library selection for applications. 

Link without C run-time startup code. 

Name temporary segment for p-code. 

Name temporary segment for far virtual 
tables. 

Control inline expansion. 

Tum on p-code optimization. 



Option 

/Of[-] 

/00[-] 

/Ov[-] 

/Tp 
Nc[filename] 

Nd 

Nu[filename] 

/Zf 

/Zn 

Support for Super VGA Screen Modes 

Differences Between eVersions 6.0 and 7.0 261 

Action 

Tum on (or off) p-code quoting. 

Tum on (or off) post code-generation 
optimizing. 

Sort local variables by frequency of use 
(or in the order they appear) for p-code. 

Specify c++ source file. 

Create precompiled header. 

Include debugging information in 
precompiled header file. 

Use precompiled header file. 

Accept __ far keyword (32-bit code only) 

Tum off SBRPACK utility. 

Microsoft C/C++ provides eight new manifest constants that support the Super 
VGA screen modes specified by the Video Electronic Standards Association 
(VESA). These are _ ORES256COLOR, _ VRES256COLOR, 
_ SRES16COLOR, _ SRES256COLOR, _ XRES16COLOR, 
_XRES256COLOR, _ZRES16COLOR, and _ZRES256COLOR. Other 
non-standard Super VGA nodes may also be supported; see the Programming 
Techniques manual for important warranty information. 

C.2 Changes and Deletions 
A number of changes have been made to the compiler to support the ANSI 
standard. By default, the Microsoft-extensions to the compiler are enabled (/Ze). 
When you compile with /Za (disable Microsoft extensions), the compiler generates 
errors and warnings for code that does not conform to the ANSI standard. 

Note There are no areas of nonconformance to the ANSI standard in Microsoft C 
version 7.0, when compiling with the /Za command-line option. 

The changes and deletions listed in this section may affect existing programs. 

ANSI-Mandated New Features 
The following ANSI-mandated features are new to version 7.0: 

• Wide characters (type (wchac t) have been implemented. See page 8 for 
more information. 



262 C language Reference 

• Complete parameter declarations ( i nt a ) and abstract declarations ( i nt ) 
are allowed in the same declaration. 

• The STDLIB.H header file contains five new functions (mblen, mbstowcs, 
mbtowc, wcstombs, and wctomb), and a new macro, MB_CUR_MAX, for 
wide character support. 

Microsoft C version 7.0, also provides model-independent versions of these 
new functions (_fmblen, _fmbtowc, _fwctomb, _fmbstowcs, and 
_fwctombs), although these functions are not mandated by ANSI. 

Return Statements Containing Expressions 
A return statement with an expression in a function returning void now generates 
a level 1 warning and the code in the return expression is not evaluated. In this 
example with Microsoft C version 6.0, funcl was called, but funcl is not called 
when using Microsoft C version 7.0. 

void functl() 
{ 

} 

void funct2() 
{ 

return functl (); 

Function Declarations 
To comply with the ANSI standard, old-style function declarations using an ellip­
sis now generate an error when compiling with /Za and a level 4 warning when 
compiling with /Ze. For example, 

void functl( a, ... ) 
int a; 
{ 

} 

1* Generates a warning under IZe or *1 
1* an error when compiling with IZa *1 

You should rewrite this declaration to as a prototype: 

void functl( int a, ... ) 
{ 

} 

See page 166 for information on old-style function declarations. 

Old-style function declarations also generate warnings if you subsequently declare 
or define the same function with either an ellipsis or a parameter with a type that is 
not the same as its promoted type. 



Type Checking 

Prototype Scope 

Differences Between eVersions 6.0 and 7.0 263 

Type checking is now ANSI-compliant which means that type short and type int 
are distinct types. For example, this is a redefinition in Microsoft C 7.0 that was ac­
cepted by version 6.0. 

int myfunc(); 
short myfunc(); 

This next example also generates a warning about indirection to different types: 

int *pi; 
short *ps; 

ps = pi; /* Generates warning under C 7.0 */ 

The C 7.0 compiler also generates warnings for differences in sign. For example, 

signed int *pi; 
unsigned int *pu 

pi = pu; /* Generates warning under C 7.0 */ 

Prototype scope is now ANSI-compliant when compiling with the /Za command­
line option. This means that if you declare a struct or union tag within a proto­
type, the tag is entered at that scope rather than at global scope. For example, 
under ANSI you can never call this function without getting a type mismatch 
error: 

void funcl( struct 5 * ); 

To correct your code, define or declare the struct or union at global scope before 
the function prototype: 

struct 5; 
void funcl( struct 5 * ); 

Under /Ze, the tag is still entered at global scope. 

Naming Conventions 
ANSI specifies that identifiers that begin with two underscores are reserved in all 
scopes for use by the implementation. In Microsoft C 7.0, you should avoid using 
your own identifiers with these names because they may conflict with existing or 
future Microsoft-specific identifiers. 



264 C Language Reference 

ANSI also specifies that identifiers that begin with a single underscore and a lower 
case letter are reserved at file scope for use by the implementation. This means 
that you should not start your own global variable and function names with an un­
derscore because they may conflict with existing or future MS-specific identifiers. 

Under /Ze, Microsoft C 7.0 still permits references to old Microsoft-specific 
identifier names that did not follow the ANSI rules for implementation-reserved 
identifiers. For example, you may use either _MSDOS or MSDOS to test whether 
you are compiling for MS-DOS, near or __ near to specify a near address, and 
either read or _read to call that runtime library function. If you reference 
MS-specific identifiers that are global variable names or function names and you 
use the non-ANSI form, you must link with OLDNAMES.LIB. (Under /Ze, your 
program is automatically linked with OLDNAMES.LIB.) 

See "Keywords" on page 4 for the ANSI and Microsoft-specific keywords. 

Time Returned by the time Function 
The time run-time library function now returns the number of seconds elapsed 
since midnight, December 31, 1899, Coordinated Universal Time, instead ofthe 
number of seconds that have elapsed since Greenwich Mean Time, January 1, 
1970. This change conforms with the ANSI standard. 

Nesting Level for Include Files 
The nesting level for include files is now limited only by available memory. 

const and volatile in Declarations 
The const and volatile attributes cannot be repeated in a declaration, even through 
a typedef. 

typedef canst int CI; 
canst CI i; /* Illegal */ 

Conditional Operator 
Typing for the conditional operator (? :) now conforms to the ANSI standard. See 
page 136 for information on the conditional operator. 



Differences Between eVersions 6.0 and 7.0 265 

Visibility of Functions 
In C, version 6.0 and in eversion 7.0 when compiling with the IZe command-line 
option, functions declared within a block using the extern keyword have global 
visibility. This is not true when compiling with IZa. This feature should not be re­
lied upon if portability of source code is a consideration. 

Macro Redefinition 
When you compile with IZa (Microsoft extensions disabled), the compiler 
generates a warning if two macros are the same except for the spelling of a macro 
argument. The C 7.0 compiler generates a warning when it encounters the second 
macro in this example: 

#define findnum( a a 
#define findnum( b ) b 

Version 6.0 of the Microsoft C compiler did not generate a warning in this case. 
The macro expansion is the same. 

Unary Arithmetic Operators on Pointers 
Unary arithmetic operators on pointers are now illegal. For example, this code 
generates an error: 

char *p; 
funcl( -p ); 

New Errors and Warnings 

1* III egal *1 

The C 7.0 compiler catches more problems and therefore generates more errors 
and warnings than the C 6.0 compiler. Warning levels are new adjustable, and you 
can also specify that warnings display only once or not at all. See "Pragma Direc­
tives" on page 209 for information on pragma warning. 

• Unrecognized escape sequences now generate a level 1 warning instead of level 
4 the backslash is an escape sequence in strings and some operating systems 
use the backs lash as a path separator. 

• The compiler generates a level 1 warning if a header file uses #pragma pack to 
change the packing size for a structure and does not reset the packing size to the 
original level. 

The following changes to errors and warnings were made in order to conform with 
the ANSI standard: 



266 C Language Reference 

• A hex escape sequence used as a char constant generates an error if it exceeds 
the range of type char (or the range of wide characters for type whar_ t). 

• Overflow on constant expressions now generate warnings. 

• Declarations that do not declare at least one declarator, tag, or enum member 
now generate a warning. 

• Translation units that do not contain at least one external declaration generate 
warnings. 

• Attempting to take the address of a register array, either explicitly or impli­
citly, now generates an error. 

• Function parameters declared with the auto attribute generate an error. 

• Block-scope function declarations with a storage-class specifier other than 
extern generate errors. 

• When compiling with IZa, the main function must conform to either of the fol­
lowing or the compiler generates an error: 

int main( void) 

int main( int argc, char *argv[] ) 

• Escaped newline characters in single-line comments (comments preceded by II) 
now generate a level 1 warning. 

Changes to Calling Conventions 
The __ syscall and __ stdcall calling conventions are not supported for 16_bit tar­
gets. For 32-bit targets, the __ pascal, __ fortran, and __ syscall calling conven­
tions are not supported, but __ stdcall is supported. See page 169, "Specifying 
Calling Conventions," for more information. 

Expanded Functionality with __ export 
You can use the IGA and IGD command-line options with __ export to selectively 
optimize the entry or exit code for protected mode Windows applications and 
dynamic-link libraries. 

Obsolete Pragmas 
The same_seg pragma is no longer supported. Use the __ based keyword instead. 
The loop_opt pragma has been replaced with the optimize pragma. 

See page 209, "Pragma Directives," for more information. 



Differences Between eVersions 6.0 and 7.0 267 

Obsolete and Changed Command-Line Options 
The !MD, IML, !MT, ILp, ILc, ILi, IGi, IB 1, IB2, and IB3 command-line options 
are no longer supported. 

The behavior of lu has changed. In Microsoft eversion 6.0, the lu option removed 
definitions of all predefined identifiers. In version 7.0, the action of the lu option 
has been expanded to turn off every defined identifier. 

The ID command-line option has expanded functionality in Microsoft C version 
7.0. The ID option now accepts a pound sign (#) as an alternative to the equal sign 
(=). This allows you to use the CL environment variable to set precompiler macros 
as follows: 

SET CL="/DQUOTES4!l" 

See Chapter 13 in Environment and Tools for more information on CL command­
line options. 

Linking Considerations 
Object modules produced by the C 7.0 compiler cannot be linked with the C 6.0 
linker. See Chapter 14 in Environment and Tools for more information on new 
linker features. 

Changes to Constants 
The value of MB_LEN_MAX has changed from 1 to 2 to conform to the ANSI 
standard. 

Alternate Math Library 
The alternate math library does not support type long double. 

Obsolete Functions 
The following OS/2-specific functions are not supported by Microsoft C version 
7.0: _ beginthread, _ cwait, _ endthread, _ pclose, _ pipe, _ popen, _ wait. 

Storage of Strings 
The compiler does not guarantee that identical strings will be stored at different 
addresses. Code for Microsoft C, version 7.0, should not depend on identical 
addresses for identical strings. 





Index 

! (negation operator), 122, 124 
" " (quotation marks) 

See also Escape sequences 
arguments, usage in, 32 
representation, 18 

# (number sign) 
in preprocessing directives, 24, 190 
with pragmas, 209 

# (stringizing operator), 195-196 
## (token-pasting operator), 195-197 
#@ (charizing operator), 195-197 
% (remainder operator), 127 
%= (Remainder assignment operator) 

table listing, 138 
& (address-of operator) 

bit-field components, 69 
described, 122-124 
length, 69 
register objects, 48 

&& (logical-AND operator) 
described, 135-136 
sequence points, 113 

&= (bitwise-AND assignment operator) 
table listing, 138 

, (single quotation character) 
forming character constants, 16 
restrictions, 197 

( ) (parentheses) 
enclosing expression arguments, 160-161 
enclosing operands, 107 
function declarations, 88 
in abstract declarators, 88-89 
in declarations, 42, 60 
in identifier names, 89 
in identifiers, 55 
precedence, 192-193 

* (asterisk) in declarations, 42, 54-55 
* (DOS wildcard) 

in filenames and pathnames, 31 
* (indirection operator), 108, 121-124 
* (multiplicative operator), 126-127 
*= (multiplication assignment operator) 

table listing, 138 

+ (addition operator) 
described, 124, 128 
placement and association, 122 

++ (increment operator), 122 
+= (addition assignment operator) 

table listing, 13 8 
, (comma) 

as tokens, 2 
in constant expressions, 95 
in initializer lists, 94 
sequential evaluations operator, 113, 140 

... (ellipsis notation) 
compiling error, 262 
indicating variable number of arguments, 180 
terminating partial parameter list, 187 

- (negation operator) 
described, 124 
placement and association, 122 

- (subtraction operator), 129 
-> (member-selection operator) 

shorthand expression, 120 
-- (decrement operator) before operands, 122 
-= (subtraction assignment operator) 

table listing, 138 
. (period), 120 
1 (division operator), 127 
1* *1 (comment delimiters), 2, 190 
1= (division assignment operator) 

table listing, 138 
: (colon) in bit-field declarations, 68 
:> (base operator), 121 
= (assignment operator), table listing, 138 
? (DOS wildcard) 

in filenames and pathnames, 31 
?: (conditional operator), 113, 136 
??! (trigraph) translates as I character, 9 
?1' (trigraph) translates as A character, 8 
??( (trigraph) translates as [character, 8 
??) (trigraph) translates as 1 character, 8 
??- (trigraph) translates as - character, 9 
??I (trigraph) translates as \\ character, 8 
??= (trigraph) translates as # character, 8 
?1< (trigraph) translates as { character, 8 
??> (trigraph) translates as } character, 8 



270 Index 

\ (backslash) 
in arguments, 32 
line concatenation, 19, 190, 194 

\' (escape sequence), single quotation mark, 18 
\" (escape sequence), literal quotation mark, 18,32 
\? (escape sequence), literal question mark, 18 
\\ (escape sequence), backslash, 18 
@ (at-sign character) 

appended to names by __ stdcall, 58 
\f ( escape sequence), form feed, 18 
< < = (left-shift assignment operator) 

table listing, 13 8 
[ ] (brackets) 

in declarations, 42, 55, 88, 116 
\n (escape sequence), new line character, 18 
> > = (right-shift assignment oeprator) 

table listing, 138 
; (semicolon) 

null statement, 159-160 
statement terminator, 151 

" (bitwise-exclusive-OR operator), 134 
"= (bitwise-exclusive-OR assignment operator), 
138 
_ (underscore) 

prepended to name by __ stdcall, 58 
{ } (braces) 

block delimiters, 28, 174 
compound statement delimiters, 151 
in initializer lists, 95-96 

1 (bitwise-inclusive-OR operator), 134 
1= (bitwise-inclusive-OR assignment operator) 

table listing, 138 
II (logical OR operator), sequence points, 113 
- bitwise-NOT operator, 124 
- negation operator 

placement and association, 122 

A 
\a (escape sequence), bell, 18 
abort function, 253 
Abstract declarators 

described, 88 
in parameter declarations, 86 
mixing with parameter declarations, 180 

Accessing 
files, 251 
nested structures, 66 

Addition assignment operator ( +=) 
table listing, 138 

Additive operators, 128-129 

Address-of operator (&) 
described, 122-124 
in bit-field components, 69 
placement and association, 122 
with register objects, 48 

Addresses 
normalizing, 149 
overriding, 56, 169 
register array, warning, 266 

Addressing memory 
with based pointers, 79 

Aggregate types initializing, 93-95, 97 
IAH option, CL, 60 
I AL option, CL, 60 
ALregister 

fastcall functions, 170-171 
for I-byte return values, 171 

I AM option, CL, 60 
I AS option, CL, 60 
Alarm. See Bell 
Aligning structures, 70-71 
Alignment 

described, 123 
in bit fields, 69 
structure members, 70, 243 

alloc_text pragma 
described, 210 
replaced by __ based keyword, 57 
replacing, 173 

Allocating 
bit fields, 69 
memory, 253 
memory, dynamic, 35 
storage for variables, 27 

I AM option, CL, 60 
Anonymous structures, 67 
Apostrophe ('). See Escape sequences 
Append mode, 250 
Architecture, segmented 

effects on addresses in arrays, 130 
argc parameters 

passing information to main, 31 
Arguments 

ANSI compatibility, 233 
character, 171 
command-line rules, 30-33 
defined, 30, 179 
function calls, 119, 185-187 
in pragmas, 209 
passed by value, 185 
prototypes, 167 



Arguments (continued) 
side effects, 194 
to main, 234 

argv parameters 
passing information to main, 31 

Arithmetic conversions, 115-116 
Array declarations, 74-76 
Array type incomplete, 100 
Arrays 

as arguments, I 85 
characters, initializing, 97-98 
declarations, 74-76 
declaring, 42 
defined, 53 
element types, 21 
huge arithmetic operations, 95 
in expressions, 107 
initializing, 93-97 
multidimensional 

declaring, 75 
described, 117-119 

of bit fields 
not allowed, 69 

of pointers, defining, 75 
one-dimensional, 116-117 
pointer comparison, 133 
size, 57, 94, 241 
storage 

by row, 75 
of arrays, 76 

unsized 
as last member of structure, 68, 125 

zero-sized 
as last member of structure, 68 

I AS option, CL, 60 
ASCII character sets, 191 
_asm keyword 

invoking inline assembler, 174 
assert function, 247 
Assignment conversions, 141-147 
Assignment operators, 138 
Associating attributes, 27 
Associativity 

C operators, 23 
defined, 112 

Asterisk (*) 
declaring pointer return type, 87 
in identifiers, 55 
modifying identifiers, 42 
specifying filenames and pathnames, 31 

At-sign character (@) 
appended to name by __ stdcall, 58 

atexit function, 253 
Attributes 

of functions, 18 I, 183 
overriding defaults, 168 

IAu option, CL, 175 
auto_inline pragma 

described, 210 
new in version 7.0, 258 

auto storage class 
default, 47 
local variables, 181 

auto storage-class specifier 
external level, invalid, 45 
lifetime, 37 
local lifetime, 44 
nonterminal, 43 
omitted, 44 
visibility, 37-38 

AX register 
changed, 58 
fastcall functions, 170 
for 2-byte return values, 171 

B 
IB 1 option, CL, 267 
IB2 option, CL, 267 
/B3 option, CL, 267 
\b (escape sequence), backspace, 18 
Backslash (\) 

arguments, usage in, 32 
continuation character, 19 
escape sequence, 18 
line concatenation operator, 194 
line splicing, 191 

Backspace (\b) 
(escape sequence), 18 

Base operator (:»,121 
Based addressing 

supported by base operator, 121 
uses, 79 

__ based keyword 
compiler errors, 258 
described, 55-57, 59,79 
offset, 121 
overriding addressing modes, 169 
replaces same_seg pragma, 266 

Index 271 

specifying function in specific segment, 169 



272 Index 

Based pointers 
defined, 57 
described, 79-84 
nonnalized, 242 
null, 149 

Bell character (\a), 18 
Binary operators, 112 
Binding. See Precedence 

defined, 112 
expressions, 114 
postfix operators, 116 

Bit fields 
described, 68 
signed, 243 
storage, 243 

Bitwise operators, 134-135 
Bitwise-AND assignment operator (&=) 

table listing, 138 
Bitwise-AND operator (&), 134 
Bitwise-exclusive-OR assignment operator( A=) 

table listing, 138 
Bitwise-exclusive-OR operator (A), 134 
Bitwise-inclusive-OR assignment operator(I=) 

table listing, 138 
Bitwise-inclusive-OR operator (I), 134 
Bitwise-NOT operator (-),124 
Bitwise shift operators, 130--133 
BL register, fastcall functions, 171 
Block scope 

function declarations, 266 
rules, 36 

Blocks 
See also Compound statements 
defined, 28 

IBm option, CL, 260 
Bold type, use of, xiii 
Braces ({ }) 

block delimiters, 28 
compound statement delimiters, 151 
enclosing __ asm blocks, 174 
in initializer lists, 95-96 

Brackets ([ ]) 
array declarations, 88 
in declarations, 42, 74 
in identifiers, 55 

Branching operations. See if statements 
See also switch statements 

break statements 
See also continue statements 
described, 152 
example, 152 

break statements (continued) 
preferred over goto statements, 158 
tenninate for statements, 156 
transfer control, 161 
within switch statements, 162 

Building DLLs, module-definition files, 172 
BX register 

changed, 58 
fastcall functions, 170 

Bypassing buffers, flushing file to disk, 260 

c 
C++ 

Microsoft C version 7.0 support for, 257 
Calling conventions 

specifying, 169-170 
unsupported, 266 

Caret (A). See Bitwise-exclusive OR operator 
Carriage-return escape sequence (\r), 18 
case labels in switch statements, 161-164 
Case sensitivity of identifiers, 6, 235 
Cast 

See also Type casts 
long values to unsigned short type, 100 
operators, 126 
segment values, 83 
types, 64 

__ cdecl keyword 
calling convention, 55, 58 
example, 170 
invalid with fastcall, 171 
specifying, 170 

char type 
conversion, 142 
usage, 98 

Character constants 
described, 16 
unrepresented, 267 

Character sets 
compared, 18 
mapping translation phase, 191 
table, 236 

Characters 
ASCII compatibility, 236 
backslash (\), 18 
backspace escape sequence (\b), 18 
bell (\a), 18 
carriage-return escape sequence (\r), 18 
double-quotation-mark escape sequence (\"), 18 
fonnfeed escape sequence (\f), 18 



Characters (continued) 
hexadecimal escape sequence, 19-20 
horizontal tab escape sequence (\t), 18 
international, 8 
multi byte, 8, 236 
nongraphic control, 19 
null, 249 
octal escape sequences, 19-20 
range of values, 238 
single-quotation-mark escape sequence (\'),18 
special, 23-24 
string literals, 20 
testing, 247 
types, 17 
vertical-tab escape sequence (\v), 18 
white-space, 2 
wide, 8,237 

Charizing operator (#@), 195-197 
check_pointer pragma, 210 
check_stack pragma, 210 
CL options 

I AH determining pointer size, 60 
I AL determining pointer size, 60 
I AM determining pointer size, 60 
I AS determining pointer size, 60 
I Au has same effect as __ loadds attribute, 175 
IB 1 unsupported, 267 
IB2 unsupported, 267 
1B3 unsupported, 267 
IBm set memory amount, 260 
fD defining macros/constants, 195,206,267 
If specify precompiled header filename, 260 
IGc forces calling conventions, 170, 175, 235 
IGd forces _3decl calling convention, 170 
IGD optimize entry/exit code, 260 
IGE optimize entry/exit code, 260 
IGi unsupported, 267 
IGn saving bytes, 212, 260 
IGp specify maximum number of entry tables, 260 
IGq specify real mode Windows, 260 
IGr causes functions to compile as fastcall, 170, 175 
IGx assume all data is near, 260 
IGy enable function-level linking, 260 
IGz specifies __ stdcall, 170 
/H restrict external name length, 6, 235 
IJ changing default char type, 52, 98 
/Lc unsupported, 267 
ILd control library selection for DLLs, 260 
lLiunsupported,267 
ILp unsupported, 267 
lLu link without C run-time startup code, 260 

Index 273 

CL options (continued) 
ILw control library selection for applications, 260 
IMD unsupported, 267 
IML unsupported, 267 
IMT unsupported, 267 
IND name-data segment, 175 
new in version 7.0, 261 
INQ name temporary segment for p-code, 260 
INV name temporary segment, 260 
10 optimizations, 212 
IOb2 inhibits expansion, 210-211 
lab control inline expansion, 260 
10f p-code quoting, 261 
10i intrinsic functions, 211 
lao post code-generation optimizing, 261 
10q turn on p-code optimization, 260 
10v sort local variables by frequency of use, 261 
IP debugging macros, 196 
Iqc restrictions, 211 
lSI specifying number of characters per line, 212 
/Tp specify C++ source file, 261 
lu turns off every defined identifer, 267 
IW4 generating name length warning, 6 
fY c create precompiled header, 261 
fY d debugging information, 261 
fYu use precompiled header file, 261 
IZa disabling Microsoft extensions, 3-4, 169,200, 

261 
IZc ignore case, 7, 235 
IZe __ STDC_ macro, 199,261,265 
IZf accept __ far keyword, 261 
IZn turn off SBRPACK utility, 261 
IZp controlling packing, 70, 212 
IZr checking pointer dereference, 210 

clock function, 255 
code_seg pragma 

described, 210 
new in version 7.0, 258 

Colon (:) 
setting off length of bit field from declarator, 68 

Comma (,) in initializer lists, 95 
Comma operator. See sequential evaluation operator 
Command-line arguments 

parsing, 32-33 
received by main, 30 

Command-line processing, 33-34 
comment pragma, 210-211 
Comments, 2 
_commit function, bypassing buffers, 260 



274 Index 

Compiling 
__ based keyword, 258 
comments, 2-3 
errors 

due to single-line comments, 3 
messages produced by error directives, 208 

translation units, 26 
white space ignored, 2 
/Za command-line option, 263-265 

Complex declarators, 88-91 
Compound assignment operators, 139 
Compound statements 

See also Blocks 
defined, 168 
described, 153 
overview, 151 
repeating, 156 
type of block, 28 

Concatenating string literals, 21,195 
Conditional branching. See if statements 

See also switch statements 
Conditional compilation 

described,202-207 
evaluating expressions, 206 
testing code, 3 

Conditional operator (? :) 
ANSI compatibility, 264 
described, 136-138 
uses, 137 

const keyword 
declaring object nonmodifiable, 52 
listed,53 
modifying typedef, 102 
nonterminal, 43 
repeating, 264 
restrictions, 107 
using, 53 

Constant expressions 
described, 108-109 
restricted, 204 
with #if directives, 204 

Constants 
characteristics, 9 
described, 9-20 
floating-point, 10 
integer types, 14 
types, 106 

continue statement 
described, 154 
preferred over goto statements, 158 

Controlling inline expansion, 260 

Conversions 
arithmetic, 115-116 
assignment, 126, 141-150 
enumeration types, 147 
floating-point types, 145-146 
function call, 149-150 
integral types, 141-144 
pointer types, 127, 146-147 
rules, 15, 115, 141-150 
signed integral types, 126, 141-144 
type cast, 147-149 
types, 126 

Converting 
data segments, 259 
expression-list, 185 
floating-point values, 145-146 
pointers, 86 

_cpumode, variable mode indicator, 259 
Creating 

identifiers, 5 
long string literals, 19 
precompiled headers, 261 
types, 102 

CTRL+Z character (end-of-file indicator), 4 
Customizing command-line processing, 34 

D 
ID option, CL, 195,206,267 
_DATA (default data segment) 

defined by __ near keyword, 56 
data_seg pragma, new in version 7.0,258 
__ DATE __ predefined macro 

default,247 
described, 199 

Debugging 
macros, 196 
precompiled headers, 261 

Decimal constants. See Integer constants 
Declarations 

arrays, 74-76 
clarified from definitions, 43 
defining, 47 
function prototypes, 181-183 
in declaration-list, 168 
keywords, 55-61 
overview, 41--43 
placement in source file, 153, 165 
pointers, 76-79 
structures, 65-71 



Declarations (continued) 
union, 71-74 
warnings, 262, 266 

Declarators 
defined, 43, 54 
initializing, 91-98 
names of exported functions, 172 
restrictions, 55, 244 

Declaring 
bit fields, 69 
pointers, 77 
struct or union tags, 263 
variables 

multiple, 42 
volatile, 53 

default labels 
in switch statements, 161-164 

Defaults 
auto storage class, 47 
bit fields, 71 
characters per line, 212 
Microsoft C extensions enabled, 108 
pointers, 60 
signals, 249 
storage class, 176 
structure packing size, 70 
symbol characteristics, 172 
translation date, 199 
translation time, 199 
type specifier int, 43 

#define preprocessor directive 
described, 190-197 
enumerations an alternative, 62 

defined operator 
described, 195 
used with #if and #elif, 204-206 

Defining 
declarations, 45-47 
identifiers, 5 
macros, 192 
manifest constants, 192 

Definitions 
clarified from declarations, 43 
defined, 41 
serving as declarations, 165 

Deleting open files, 251 
DI register, variables for version 7.0, 48 
Diagnostic, assert function, 247 
Displaying 

nongraphic control characters, 19 

Division assignment operator (/=) 
table listing, 138 

DL register, fastcall functions, 170-171 
do-while statements 

described, 154-155 
iterations, 155 
terminating, 152 

Document conventions, xiii 
Documenting code, writing comments, 2 
Domain errors, 248 
_dos_commit function 

bypassing buffers, 260 
double type 

described, 99 
floating-point constants, II 

DS register, based pointers, 81 
DX register 

changed, 58 
fastcall functions, 170-171 

DX:AX register 
fastcall functions, 170-171 
for 4-byte return values, 171 

Dynamic memory allocation 
See also malloc function 
not part of language, 35 

Dynamic-link library (DLL) 

E 

exporting functions to Windows, 171 
exporting symbols to Windows, 58 

EBX register 
variables for 32-bit compiler, 48 

ECX register 
argument passing, 171 
changed, 58 

EDI register 
variables for 32-bit compiler, 48 

EDX register 
argument passing, 171 
changed, 58 

Index 275 

#elif preprocessor directive, 190, 202-204 
Ellipsis notation (, ... ) 

compiling errors, 262 
indicating variable number of arguments, 180 
terminating partial parameter list, 187 

else clauses, nesting, 159 
#else preprocessor directive, 190,202-204 
Embedded structures, 67 
End-of-file indicator (CTRL+Z), 4 



276 Index 

#endif preprocessor directive 
described, 190,202-204 
testing code, 3 

Enumeration declarations 
conversion, 147 
described, 62-64 
overview, 39 
variables defined, 54 

envp parameters 
passing information to main, 31 

Equality operators, 132-133 
Error directives, 208-209 
#error preprocessor directive 

described, 190 
error messages, 208-209 

Errors 
arrays, 94 
block-scope function declarations, 266 
caused by interpretation of tokens, 4 
compiling, 213 

__ based used incorrectly, 258-259 
old style function declarations with IZa, 262 

domain, 248 
file position, 252 
function parameters with auto attribute, 266 
hex escape sequence, 266 
illegal expression, 114 
integer constants, 16 
macro redefinition, 194 
main function causes, 266 
messages, 233, 252, 254 
symbol redefinition, 37 
taking address of register array, 266 
type mismatch, 263 

Escape sequences 
described, 18-19 
hexadecimal, 266 
in string literals, 21 
string literals, 196 
table listing, 18 
unrecognized, 265 
unsupported by preprocessor directives, 190 

ESI register, variables, 48 
Evaluating 

expressions, 4, 108, 155, 185 
subscript expressions, 117-118 
tokens, 4 

Evaluation order, effect of parentheses, 107 
Event-handler functions, exporting, 172 
_exec function 

effect of suppressing environment processing, 34 

Executable program 
formed by linking translation units, 190 

Execution character set 
compared to source character set, 18 

Execution speed, improving, 192,257 
exit function 

terminating programs, 30 
Expanding macro arguments, 31, 192-193, 196 
Export functions 

described, 58, 171-172 
event-handler, 172 

__ export keyword 
described, 58 
dynamic-link library, 171-172 
expanded functionality in version 7.0, 266 
invalid with fastcall, 171 

expression-list 
converting, 185 
evaluating, 185 

Expressions 
binding, 114 
defined, 105 
evaluating, 4, 111 
floating-point, 10 
function calls, 183-185 
I-value expressions, 108 
parentheses, used in, 107 
statements, 152, 155-156 

Extended Dictionary, disabling, 31 
Extensions, Microsoft-specific, 108 
extern storage-class specifier 

no linkage when not included, 37 
nonterminal, 43 
visibility, 37 

External declarations, 37, 44-47, 48-50 
External identifiers, naming restrictions, 6 
External linkage, identifiers, 37 

F 
If option, CL, 260 
_jar keyword 

accepting with IZf option, 261 
conversions, 150 
described, 56 
modifying items, 56, 61 
overriding addressing modes, 169 
referencing far objects, 169 
related to addressing, 55 
restrictions, 60, 169 
usage with __ based keyword, 173 



Fastcall functions 
registers used, 170-171 

__ fastcall keyword 
calling conventions, 55 
described, 58 
specifying, 170 

_fatexit function 
model-independent processing, 259 

File buffering, 250 
__ FILE __ macro 

described, 199 
determining value, 207 

File scope 
function declarations, 176 
rules, 35 

Filenames 
fully qualified, 200 
rules, 250 

Files 
accessing, 251 
header, 11,15,99,187,200,204 
module definitions, 172 
object, 26 

FLOAT.H header file, restrictions, 11 
Floating-point types 

constants, 11-12 
conversions, 145-146 
described, 99 
listed, 51 

Floating-point values 
converting, 145-146 
IEEE format, 99 
limits, 11-12 
preventing change of, 10 
representation, 240 
rounding, 149 
truncation, 241 

Flushing file to disk, bypassing buffers, 260 
fmod function, 248 
jonexit function 

model-independent processing, 259 
for statements 

described, 156-157 
iterations, 154 
terminating, 152 

Formal parameters. See Parameters 
Formfeed 

escape sequence, 18 
__ fortran keyword 

calling conventions, 55 
modifying function names, 57 

_jortran keyword (continued) 
restrictions, 57, 170-171,266 
specifying, 170 

IFp option, CL, 260 
Function body 

compound-statement, 168 
described, 181 
syntax, 168 

Function calls 
conversions, 149-150 
described, 119, 166, 183, 188 
recursive, 188, 211 
variable number of arguments, 187 

Function declarations 
See also Declarations 
definition, 165 
described, 84-87 
levels of scope, 28 
obsolete forms, 166 
overview, 28 
placement, 44 
type specifiers, 51-52 
with storage-class specifiers, 50 

Function definitions, 166-176 
Function identifiers as addresses, 106 
Function pointers, values, 119 
function pragma, 211 
Function prototypes 

affects type of conversion, 149-150 
described, 181, 183 
scope 

rules, 36 
Function return values, 160-161 
Function scope rules, 36 
Functions 

addressing, 169 
attributes, 168-176 
exporting, 171-172 
intrinsic, new, 258 
lifetime, 34-35, 43 
nesting, 44 
new in version 7.0,259-260 
obsolete, 166 
overview, 165-166 
passed as arguments, 185 
return type, 51 
rules, 34 

Index 277 

specifying calling conventions, 169-170 
visibility of identifiers, 46 



278 Index 

G 
/GA option, CL, 260 
/Gc option, CL, 57-58, 170, 175, 235 
/Gd option, CL, 170 
/GD option, CL, 260 
/GE option, CL, 260 
Generating 

faster code, 173 
form feeds, 213 
in-line code for functions, 258 

/Gi option, CL, 267 
Global lifetime 

determined by storage class, 43 
identifiers, 35 

/Gn option, CL, 212, 260 
goto statements 

described, 157-158 
terminating for statements, 156 
transferring control, 152 

/Gp option, CL, 260 
/Gq option, CL, 260 
/Gr option, CL, 170, 175 
/Gx option, CL, 260 
/Gy option, CL, 260 
/Gz option, CL, 170 

H 
/H option, CL, 6 
Handlers, interrupt, 175 
hdrstop pragma, new in version 7.0, 258 
Header (.H) files 

described, 200 
FLOAT.H,11 
LIMITS.H, 15,99,204 
precompiled, 211, 257, 261 
STDARGS.H, 187 
VARARGS.H, 187 

Hexadecimal escape sequences, 14, 17-20 
Hiding identifier names, 45 
Horizontal-tab escape sequence (\t), 18 
Huge arrays 

arithmetic operations, 95 
__ huge keyword 

conversions, 150 
described, 57 
modifying objects, 56 
modifying pointers to objects, 56 
overriding addressing modes, 169 
related to addressing, 55-57, 169 

__ huge keyword (continued) 
restrictions, 169 
substitutes codes, 173 

/1 option, CL, 201, 245 
Identifiers 

attributes, 37 
block scope rules, 36 
described, 5-9 
enumeration tags, 62-63 
external linkage, 37 
function scope rules, 36 
in function declarations, 86 
initializing, 80 
internal linkage, 36 
I-values, 107-108 
lifetime, 35 
linkage, 7, 27, 36-37 
lists, 97 
name spaces, 39-40 
names 

hiding, 45 
in different scopes, 36 
length, 6 
nested visibility, 39 
restrictions, 7 
with external linkage, 37 

nonmodifiable, 52 
parameters, naming, 85 
passing 

using ID option, 206 
restrictions, 194,235 
scope, 7 
statement labels, 6 
storage, 34 
types, 106 
values, 5, 34 
visibility, 35 

IEEE format, floating-point numbers, 99 
#if preprocessor directive 

described, 190,202-206 
testing code, 3 

if statements 
described, 158-159 
nesting, 159 

#ifdef preprocessor directive 
described, 190 
equivalent to #if, 206 

#ifndef preprocessor directive, 190 



INCLUDE environment variables, 201 
#include preprocessor directive, 190-191, 200 
Incomplete types, 100-101 
indirection operator (*) 

described, 122-124 
example, 123-124 
I-values, 108 

Initializing 
aggregate types, 93-97 
declarators, 91-97 
identifiers, 80 
internal static variables, 48 
local variables, 35 
restrictions, 66 
scalar types, 91-93 
strings, 97-98 
values, 91-97 

Inline assembler, 174 
Inline expansion, controlling, 260 
Inline functions 

compared to macros, 192 
described, 173 

inline_depth pragma, new in version 7.0, 258 
inlinejecursion pragma 

new in version 7.0,258 
Institute of Electrical and Electronics Engineers. 
See IEEE 
Instructions, preprocessor, 260 
int type 

described, 98-99 
signed,51 

Integers 
converting, 131, 141-143 
demotion, 239 
described, 13 
limits, 15 
range of value, 238 
types, 14 

Integral promotion 
effect of unary plus operator (*), 124 
preserving value, 141 

Integral types 
conversions, 126, 141-146 
1isted,51 

Interactive devices defined, 234 
Internal linkage 

initializing variables, 48 
objects, 43 
overview, 36 
See Storage classes 
storage-class specifiers, 47-50 

Interpreting tokens, 4 
Interrupt functions, 175 
__ interrupt keyword 

invalid with fastcall, 171 
specifying interrupt handler, 175 

Intrinsic functions 
new in version 7.0, 258 
pragma, 211 
specifying, 211 

intrinsic pragma 

Index 279 

generating inline code for functions, 258 
Italics, use of, xiii 

J 
IJ option, CL, 52, 98, 238 

K 
Keywords 

L 

addressing conventions, specifying, 56 
binding characteristics, 56 
calling conventions, specifying, 169 
compiling older versions, 264 
declarators, 55--61 
described, 4-5 
determining addressing conventions, 56 
Microsoft-specific, compiling, 263 
redefining, 4 

L-values 
accessing identifiers as, 52 
assignment operations, 138 
described, 107-108 
Microsoft C extension, 108 
prefix increment and decrement operators, 122 
primary expressions, 106 

Labeled statements, 157-158 
Labels 

in switch statements, 161-164 
names, 35 
overview, 39 
scope, 35 
statements, 152 

/Lc option, CL, 267 
/Ld option, CL, 260 
Left-shift assignment operator ( < < =) 

table listing, 138 
Levels, function declarations, 28 
Lexical scope. See Scope 



280 Index 

lLi option, CL, 267 
Library selection, 260 
Lifetime 

global, 35, 43-44 
overview, 34-35 
table listing, 37 
variables, 43, 48 

LIMITS.H header file 
limits for integer types, 15 
range of signed integer values, 99 

Line concatenation 
in #define directives, 194 

Line control, 207-208 
LINE __ macro 
described, 199 
determining value, 207 

#line preprocessor directive, 190 
linesize pragma, 212 
LINK 

export functions, 172 
fNOE linking with SETARGV.OBJ, 31 

Linkage 
external, 44-45 
identifiers, 7, 27, 176 
internal, 36 
overview, 36-37 

Linking 
function-level, 260 
lists of structures, 66 
object files, 26 
with SETARGV.OBJ (PWB), 31 
without C run-time startup code, 260 

Lists 
argument type, 51 
identifiers, 97 
linking, 66 

__ loadds keyword, 175 
in calling convention, 176 

Local variables 
defined, 181 
initializing, 35 

Locator values 
represented by I-value, 107 

Logical operators 
described, 135-136 
order of evaluation, 114 

Logical-AND operator (&&) 
described, 135 
sequence points, 113 

long double type 
described, 100 
unsupported, 267 

long keyword, 51 
long type 

conversion, 142 
floating-point constants, 11 
forcing, 14 

loop_opt pragma, 213 
replaced with optimize pragma, 266 

Loops 
exiting, 158 
infinite, 157 
returning to start of, 154 

fLp option, CL, 267 
fLu option, CL, 260 
fLw option, CL, 260 

M 
Macros 

ANSI, 187 
debugging, 196 
defining, 192 
expansion, 192-193, 197 
name space, 192 
predefined, 198-200 

__ DATE __ ,198 
__ FILE __ , 199,207 
__ LINE __ , 199,207 
__ STDC __ , 199 
__ TIME __ ,199 

redefining, 194 
redefinition, warnings, 265 
stringizing operator (#), 195 
without arguments, 192 
XENIX,187 

main function 
errors generated by, 266 
overview, 30-34 

Manifest constants, 191 
MB_LEN_MAX, value changed to 2, 267 
mblen function, translating characters, 8 
mbstowcs function, translating characters, 8 
mbtowc function, translating characters, 8 
fMD option, 267 
Member-selection expressions 

described, 119-120 
operators, 108 



Memory 
accessing special locations, 53 
addressing with based pointers, 79 
allocating, 253 
holes, 70 
model, 60 
setting amount available to compiler, 260 

Merging operator. See Token-pasting operator 
Messages 

#pragma, 212 
Microsoft C version 7.0 

differences from version 6.0, 257 
keywords listed, 5 
new features, 257-267 

Microsoft C/C++ 
character sets, 191 
new features, 260 
registers, 48 

Microsoft extensions 
casts of I-values, 108 
defaults 

disabling with IZa option, 108 
effect on storage classes, 177 

IML option, CL, 267 
Mode, indicating by _cpumode variable, 259 
Modifying 

external name length default, 6 
function declarations, 56 
function identifier, 87 
identifiers, 52 
meanings of declarations, 59 
pointers, 77 
types, 55 
variable declarations, 56 

Module-definition file, building DLL, 172 
IMT option, CL, 267 
Multidimensional arrays 

declaring, 75 
described, 117-119 
using subscript expressions, 118 

Multiplication assignment operator (*=) 
table listing, 138 

Multiplicative operators, 126 

N 
Name decoration 

__ stdcall calling convention, 170 
Name spaces 

overloading, 40 
overview, 39-40 

Names 
conflicts, 7 
environment, 253 
files, 20 I, 245-246, 250 
functions, 28, 46 
identifiers, 39 
labels, 36 
p-code segment, 260 
restrictions, 5-7 
segment, 80 
structure members, 39 
tags, 39 
typede~39, 102-103 
union members, 39 

native_caller pragma 
new in version 7.0,258 

Native-code entry points, 212 
IND option, CL, 175 
__ near keyword 

default code segment, 169 
described, 56 
implicit conversions, 150 
modifying objects, 56 
overriding addressing modes, 169 
related to addressing, 55 
restrictions, 169 
usage with __ based keyword, 173 

Negation operators 
described, 124 
placement and association, 122 

Nested structures, accessing, 66 
Nesting 

comments, 2-3 
else clauses, 158-159 
if statements, 158-159 
include files, 201 
initializer lists, 94 
levels, 264 
switch statements, 162 
un sized arrays, 68 

New line character 
\n (escape sequence), 18 

INOE option 
LINK, 31 

Normalizing, 149 
/NQ option, CL, 260 
/NT option, CL, 169 
Null 

characters, 249 
macro, 247 

Index 281 



282 Index 

Null (continued) 
pointers 

defined, 133 
if constant zero, 149 
invalidates pointer value, 123 
produced by conversions, 146 

statements 
described, 159-160 
empty, 152, 155 

Number sign (#) 
preprocessing directives, using in, 24 
usage, 209 

Numbers, signed real, 10 
/NV option, CL, 260 

o 
10 option, CL, 212 
lOb option, CL, 260 
IOb2 option, CL, 210-211, 258 
Object files, linking, 26 
Objects 

automatic, 44 
converting types, 126 
externally linked 

multiple declarations, 43 
far, 56 
huge, 57 
internally linked, 43 
linking, 267 
type cast, 148 
void, 148 

Octal 
character specifications, 19 
escape sequences, 18 
See integer constants 

10f option, CL, 261 
Offset. See based pointers 

based addressing, 121 
pointer with type __ based (void), 121 
relational operators, 132-133 

10i option, CL, 211, 258 
One-dimensional arrays, 116-117 
100 option, CL, 261 
100 CL option 

post code-generation optimizing, 261 
\000 (escape sequence), octal notation, 18 
Operands defined, 105 

Operators. See symbols 
additive, 128-130 
arithmetic table, 124 
assignment, 138 
bitwise, 134-135 
bitwise AND (&), 134 
bitwise shift, 130-132 
bitwise-exclusive OR (A), 134 
bitwise-inclusive OR (I), 134 
bitwise-shift, 130 
cast, 126 
complement, 124 
compound assignment, 139 
conditional, 136-138 
equality, 132-133 
multiplicative, 126-128 
postfix, 116-121 
precedence and associativity table, 23 
prefix decrement, 122 
prefix increment, 122 
relational 

described, 132-133 
testing relationships, 132 

simple assignment (=), 139 
sizeof, 125-126 
unary 

defined, III 
described, 122-126 
table, 124 

optimize pragma 
replaces loop_opt pragma, 266 

Optimizing 
entrylexit code, 260 
p-codes,260-261 
pragmas,212 

Optional items, xiii 
10q option, CL, 260 
OR operators 

bitwise exclusive (A), 134 
bitwise inclusive (I), 134 

Order of evaluation. See Precedence 
sequence points, 113 

10v option, CL, 261 
Overflow conditions 

bitwise shift operators may cause, 131 
warnings, 266 

Overlays, reducing swapping, 173 
Overriding, default addressing, 168 



P 
/P option, CL, 196 
p-code 

ensuring small code size, 258 
native entry points, 212, 260 
optimization, 260-261 
quoting, 261 
segment, naming, 260 
sorting local variables by frequency of use, 261 

Packing structures, 212 
Packing data, options, 70 
Packing size, warning, 265 
Padding 

effect of sizeof operator, 125 
structure members, 243 

Parameter declarations 
with abstract declarators, 180 

Parameters 
defined, 30, 179 
described, 85, 180-181 
ellipsis notation, 180 
macros, 193 
names 

in replacement-list, 193 
order, 180 
token-pasting operator (##),197 
types, 180 

Parentheses ( ) 
around identifier names, 89 
enclosing expression arguments, 160-161 
enclosing operands, 107 
ensure precedence of complicated arguments, 193 
in complex abstract declarators, 88 
in identifiers, 55 
modifying functions, 88 
modifying identifiers, 42 
overriding defaults of declarations, 60 
preserving precedence in expressions, 192 

Parsing 
command-line arguments, 32-33 

__ pascal keyword 
calling conventions, 55 
modifying function names, 57 
restrictions, 57,171,266 
specifying, 170 

Passing 
arguments to functions, 119, 185-187 
control to functions, 183-185 
execution control, 166 

Passing (continued) 
pointers 

to arrays, 185 
to functions, 185 
to structures, 178 

values 
in different translation units, 190 

Path specifications, fully qualified, 201 
Phases of translation, 190-191 
Plus operator (+). See Addition operator 
Pointers 

argv parameter, 31 
arithmetic, 128-l30, 242 
arrays, 185 
based on constant, 80 
based on pointers, 82 
based on segment variable, 81 
based on self, 83-84 
based on void, 82 
casting, 241 
checking, 210 
comparisons, 132-133 
converting,86,146-147,251 
declarations, 76-79 
defined,54 
envp parameter, 31 
functions, 185 
null,31, 133, 147, 149 
to bit fields, 69 
to identifiers, 86 
to interrupt handler, 175 
to unspecified type, 51 
to void, 77, 146-148 
types, 146-147 

conversions, 146-147 
values, accessing, 123 

converting to integral, 146 
printing, 251 
reading, 251 
with indirection operators, 122 

Pointers, based. See Based pointers 
Portability 

ANSI compatibility, 233 

Index 283 

disabling /Za command-line option, 5 
effect of lZe command-line option, 265 
integers converted to pointer type, 147 
keywords, 55 
machine-specific features, 209 
sizeof operator vs. hard-coded data sizes, 99 

Postfix operators, 116-121 



284 Index 

Pragmas 
alloc_text, 57, 169,210 
auto_inline,210 
check_pointer, 210 
check_stack, 210 
comment, 210 
data_seg, 211 
described, 189-213 
function, 211 
hdrstop, 211 
inline_depth,211 
inline_recursion,211 
intrinsic, 211 
linesize, 212 
loop_opt, 266 
message, 212 
Microsoft C specific, 27 
native_caller, 212 
new in version 7.0, 258 
obsolete, 266 
optimize, 212, 266 
overview, 26 
pack, 71, 212 
page, 213 
page size, 213 
same_seg,213,266 
skip, 213 
subtitle, 213 
title, 213 
unsupported, 213 
warning, 213 

Precedence 
C operators, 23 
described, 112-114 
operators, 132 
prefix. increment and decrement operators, 122 

PrecompIled headers 
controlled by #pragma hdrstop, 211 
creating, 261 
debugging, 261 
increasing speed, 257 

Predefined macros, 198-200 
Preprocessing, translation phase, 191 
Preprocessor directives 

bracketed file names, 245 
character set, 245 
described, 189-213 
example, 30 
listed, 26, 246 
overview, 26 
quoted file names, 246 

Preprocessor operators, 195 
Primary expressions, 106-107 
Programs 

execution, 30-34 
termination, 30 

Prototype scope 
ANSI compliant, 263 

Prototypes 
See also function prototypes 
arguments, 167 
comparing types, 166 
direct-declarator, 168 

ptrdifCt type 
defining size of integral value, 129 

Punctuation 
C character set, 23 

a 
/qc option, CL, 211 
Question mark (?) 

escape sequence, 18 
usage, 31 

Quotation mark (") 

R 

escape sequence, 18 
usage, xiv, 18,21,32 

\r (escape sequence), carriage return, 18 
R-value expressions defined, 107 
Ranges 

floating-point types, 145 
integers, 238 
reading, 252 

Real mode Windows, specifying, 260 
Records. See Structure declarations 
Recursive functions, 188,211 
Redefining 

keywords, 4 
macros, 192 
manifest constants, 192 

Referencing 
bit fields, 69 
declarations, 45-47 

register storage-class specifier 
described, 48 
external level, invalid, 45 
in parameters, 86 
lifetime, 37,44 
nonterminal, 43 
visibility, 37 



Registers 
AL 

fastcall functions, 170 
for return values, 171 

availability, 242 
AX 

16-bit compiler, 58 
fastcall functions, 170 
for return values, 171 

BL, fastcall functions, 170 
BX 

16-bit compiler, 58 
fastcall functions, 170 

CPU, saving, 176 
DI, variables for version 7.0, 48 
DL, fastcall functions, 170 
DS 

loading values, 175-176 
with based pointers, 81 

DX:AX 
fastcall functions, 170 
for 4-byte return values, 171 

DX 
16-bit compiler, 58 
fastcall functions, 170 

EBX, variables for version 7.0, 48 
ECX 

argument passing, 171 
32-bit compiler, 58 

EDI, variables for version 7.0, 48 
EDX 

argument passing, 171 
32-bit compiler, 58 

ESI, variables for version 7.0, 48 
fastcall functions, 170-171 
SI, variables for version 7.0, 48 
storage, 48 

Relational operators, 132-133 
Remainders, 239 
Removing 

macro names, 198 
macros, 192 
manifest constants, 192 
p-code native entry points, 260 

Repeating, statements, 164 
return statements 

containing expressions, 262 
controlling execution, 30, 152, 166 
described, 160-161 
preferred over goto statements, 158 

Return types, 87,177-178 

Index 285 

Return values, successful termination, 30 
Right shifts, 240 
Right-shift assignment operator (» =) 

table listing, 138 
Rules 

s 

arguments, interpreting, 32 
assignment conversions, 139 
command-line arguments, 32-33 
complex declarators, 60 
conversions, 15, 115, 141-150 
declaring parameters, 166 
division operations, 127 
enumeration sets, 63 
function scope, 35-36 
functions, 34 
initializing variables, 92 
static, 45--47 
storage duration, 34 
type casts, 126 
variables, 34 
visibility, 35, 50 

Sample programs 
abstract declarators, 88 
addition and subtraction operators, 128-129 
allocating bit fields, 69-70 
array declarations, 75 
based pointer declarations, 79 
blocks, 38 
break statement, 152 
calling variable number of arguments, 187 
__ cdecl calling convention, 170 
complex declarations, 89-91 
compound statement, 153-154 
continue statement, 154 
declarations and definitions, 28-30 
#define preprocessor directive, 194-195 
enumeration declarations, 63-64 
equality operators, 133 
expression statements, 155-156 
external declarations, 46--47 
_jar keyword, 169 
for statement, 157 
function called from switch statement, 184 
function return values, 178 
goto statement, 158 
if statement, 159 
illegal bit fields, 69-70 
incomplete types, 10 1 



286 Index 

Sample programs (continued) 
initializations, 93 
initializers for array, 95-97 
internal- and external-level declarations, 49 
logical operators, 136 
main function invoking macro, 196 
nameless structure, 68 
nested structure declarations, 66-67 
nested unions, 73 
nesting, 38 
null statement, 160 
pointer declarations, 77-78 
pointers as arguments, 186 
recursive calls, 188 
relational operators, 133 
return statement, 160-161 
return types in function declarations, 87 
__ segment keyword, 83 
simple forms of declarators, 55 
sizeof operator, 126 
stringizing operator, 196-197 
switch statements, 161-164 
token-pasting operators, 197 
two-dimentional array of structures, 69 
typedef & local scope identifier, same, 102-103 
typedef declarations, 102-104 
unions, 72 
visibility of variables, 38 
while statement, 164 

__ saveregs keyword 
invalid with fastcall, 171 
saves all CPU registers, 176 
using, 175 

Saving 
registers, 176 
space 

by suppressing _setargv, 33-34 
SBRPACK utility, turning off, 266 
Scalar initialization, 91-93 
Scalar types, postfix operators, 121 
Scope 

identifiers, 7,153 
overview, 35-36 
structures, 66 

Searching 
INCLUDE environment variables, 201 

__ segment keyword 
base operators, 121 
based addressing, 121 
based functions, 173 
based pointers, 81 

__ segment keyword (continued) 
described, 80 
restrictions, 80 

Segmented architecture 
effects on addresses in arrays, 130 

Segments, relocating in memory, 59 
__ segname keyword 

base operators, 121 
cast to segment values, 83 
described, 80, 173 
restrictions, 80 
storing data, 59 

__ self function 
ensuring location, 174 

Semicolon (;) 
null statement, 159-160 
statement terminator, 151 

Sequence points 
after first operand in logical expressions, 136 
after logical-OR expression, 136 
described,110-111 
evaluating expressions, 109 
guarantee order of evaluation, 113 
sequential operations, 140 
side effects, 183 

Sequential-evaluation operator 
described, 140 
sequence points, 113 

_setargv function, wildcards, 31 
SETARGV.OBJ file 

linking from within PWB, 31 
Shift operators, 130 
Shifting values, 131 
short keyword, 51 
short type, conversion, 142 
Short-circuit evaluation, 114, 136 
SI register, variables, 48 
Side effects 

caused by evaluation of expression, 110 
completed, 155 
in function calls, 110 
inline functions, 192-193 
macros, 192-193 
order of evaluation, 110 
sequence points, 183 
unexpected results, 194 
void expressions, 51 

SIGILL signal, 249 
signal function, table of arguments, 248 
Signals, defaults, 249 

------ -----------



Signed integers 
conversions, 141 
described,99 
results of bitwise operation, 135 

signed keyword 
required with IJ option, 52 
with integral types, 51 

Simple assignment operator (=), 139 
Simple variable declarations, 54, 61-62 
Single quotation mark (') 

escape sequence, 18 
forming character constants, 16 
restrictions, 197 

Size 
arrays, 94 
signed int, 99 
types, 98 
unsigned int, 99 

sizeof operator 
described, 125-126 
in unary expressions, 111 
in unsized arrays, 68 
placement and association, 122 

Sizes, determining, 125 
lSI option, CL, 212 
_snprintf function, controlling string size, 260 
Source character set 

compared to execution character set, 18 
defined,7 

Source files 
C++ 

specifying, 261 
overview, 25-30 
referencing variables at external level, 49 

Source listing 
form feeds, 213 
number of lines per page, 213 
skipping lines, 213 
specifying, 212 
subtitle, 213 
title, 213 

Source programs 
See also Source files 
defined,26 

_spawn function 
effect of suppressing environment processing, 34 

Special characters, C character set, 23 
Specifying 

argument-type list, 51 
calling conventions, 169-170 
function addressing, 169 

Specifying (continued) 
function return type, 51 
identifiers, 5 
fast compile, 260 

Index 287 

maximum number of entry tables, 260 
pointer to unspecified type, 51 
precompiled header filename, 260 
preprocessor instructions, 260 
real mode Windows, 260 
source listing, 212 
storage classes, 176 
structure declarations, 68 

Statement body, 151 
Statement labels 

See also goto statements 
overview, 39 
used in goto statements, 6 

Statements 
described,152-164 
overview, 151 
repeating, 156 
restrictions, 245 

static 
applying to functions, 46 
described,48 
external level, 45 
in function declarations, 50 
internal level, 36 
lifetime, 37, 44 
nonterminal, 43 
overriding external linkage, 44 
rules, 45-47 
specifying, 35 
visibility, 37 

__ STDC __ macro, 198 
__ stdcall keyword 

calling conventions, 55 
32-bit compilations, 170 
unsupported for 16-bit targets, 266 

described, 58 
specifying, 170 

Storage 
arrays, 76 
enumeration variables, 62 
integers, 70, 98 
registers, 48 
string literals, 21 
structures, 70-71 
types, 98-100 
unions, 73 
unsigned int, 99 



288 Index 

Storage classes 
described, 43-50 
determining meaning, 44 
extern, 37,44-47 
functions, 168 
in function declarations, 50 
in parameters, 86 
in variable declarations, 43 
interna11evel,47-50 
nonterminal, 43 
of identifiers, 34 
of local variables, 181 
register, 168 
required on variable declarations, 61 
restrictions, 43, 66 
rules, 35 
specifiers listed, 44 
specifying, 176 
static, 22, 35-36 

Storage-class specifiers, restrictions, 44 
Storing 

segments, 59 
string pointers, 22 
unions, 72 

strerror function, 254 
String concatenation 

multiple strings, 19 
translation phase, 191 

String literals 
defined, 107 
described, 20-22 
escape sequences, 196 
sending to standard output, 212 
types, 21 

String pointers, storing, 22 
Stringizing operator (#),195-196 
Strings 

initializing, 97-98 
static storage duration, 22 

Structure declarations, 65-70 
Structure members, 119-120 
Structure tags 

declaring, 263 
overview, 39 

Structure type, incomplete, 100 
Structures 

aggregate types, 93-95, 97 
alignment, 70-71 
anonymous, 67 
defined, 54 

Structures (continued) 
embedded, 67 
packing, 212 

Subscript expressions 
applying to pointers, 117 
evaluating, 117-118 
I-values, 108 
referring to array values, 116 
with multiple subscripts, 117 

Subtraction assignment operator (-=) 
table listing, 138 

Subtraction operator (-), 129 
switch statements 

described, 161-164 
terminating, 152 

Symbolic constants, 192 
Symbols 

case sensitivity, 7, 235 
described, 5 
exporting, 58 
exporting from DLLs, 172 

__ syscall keyword 
calling conventions, 55, 266 

system function, 254 

T 
\t (escape sequence), tab, 18 
Tab escape sequences, 18 
Tables, specifying number, 260 
Tags 

enumeration, 62 
overview, 39 
structure declarations, 65 

Terminating 
for statements, 156 
programs, 30 
statements, 152 

Testing, code, 3 
Text segments in version 7.0, 259 
Time 

ANSI compatibility, 264 
__ TIME __ predefined macro 

default, 247 
described, 198-199 

Time zone, 255 
Token-pasting operator (##), 195, 197 
Tokenization, translation phase, 191 
Tokens, 1-4 
/Tp option, CL, 261 
Transferring control, out of nested structure, 152 



Translation 
See also Phases of translation 
hiding identifier names, 45 
tokens converted into object code, 191 
trigraphs, 9 

Translation units 
compiling, 26 
defined, 25, 190 
warnings, 266 

Trigraphs 
confusion with question mark, 18 
converting to single characters, 191 
defined, 8 

Truncation 
division operations, 127 
text files, 250 

Type casts 
conversions, 147-150 
described, 108, 126 
objects, 148 
pointers, 149,241 
rounding of numbers, 240 
table of legal, 148 
unsigned integers, 143-144 

Type checking 
ANSI compliant, 263 
performed by compiler, 149 

Type qualifiers 
described, 52-53 
nonterminal, 43 

Type specifiers 
overview, 51-52 
required in declarators, 55 
return types, 177-178 

typedef 
described, 101-104 
improving code readability, 103 
names of identifiers in same scope, 39 
simplifying declarators, 89 
storage-class specifier nontermina1, 44 

Types 
aggregate, 93-97 
assigning to constants, 15 
cast to assign integer value, 64 
characters, 17 
conditional operations, 136-138 
conversions, 126 
converting, 126, 149 
creating, 102 
double, 11,99 
enumeration, 51, 244 

Types (continued) 

u 

float, 11, 99 
incomplete, 100-101 
integer constants, 14, 17 
integral conversions, 141-146 
long, 11, 14 
long double, 11, 100, 267 
modifying, 55 
pointers conversions, 146-147 
scalar, 121 
size_t, 125 
storage, 98-100 
string literals, 21 
unsigned, 14 

lu option 
CL,267 
Unary operators 
defined, 111 
described, 122-125 
on pointers 

illegal, 265 

Index 289 

#undefpreprocessordirective, 190, 192, 194, 198 
Underflow conditions 

bitwise shift operators may cause, 131 
cause rounding of values, 241 
value set to zero, 248 

Underscore C) 
usage in macro and keyword names, 58 

Unicode specification, wide characters, 8 
Union declarations 

accessing, 242 
defined, 54 
described, 71-73 
incomplete type, 100 
initializing aggregate types, 93-97 
members, 119-120 
tags, 39, 263 

unsigned char type 
conversion, 144 
range, 98 

Unsigned integers 
converting, 143-144 
forcing type, 14 
shifting, 131 
size, 99 

Unsigned integral types 
table of conversions, 144 

unsigned keyword with integral types, 51 



290 Index 

Uppercase, use of, xiii 
Usual arithmetic conversions 

bitwise shift operators, 131 
bitwise-NOT operator, 124 
described,115-116 
function prototype, 150 

v 

logical operators don't perform, 135 
multiplicative operators, 126-128 
performed on parameters, 180 
relational operators, 132-133 

\v (escape sequence), vertical tab, 18 
Values 

characters, 17 
constants, 13 
converting to void, 147 
decimal,lO 
enumeration, 63 
floating-point, 10-13, 145 
fractions, 10 
function return, 160-161 
hexadecimal, 135 
integers, 10, 17, 64, 70 
left,107 
locator, 107 
passing, 190 
pointers, 146 
range of signed integers, 99 
referring to with identifiers,S 
shifting, 131 
unsigned, 143 
variables, 47, 91-97 

Variable declarations 
external level, 45 
lifetime, 43 
placement, 44 

Variable-length parameter lists 
invalid with fastcall, 171 

Variables 
accessing, 27 
aggregate type, initializing, 93-97 
allocating storage for, 27 
automatic 

storage-class specifier, 47 
values affected by execution, 44 

with storage class extern, 153 
declared with register keyword, 153 
lifetime, 34 
multiple, 42, 61 

Variables (continued) 
scalar type, 91, 93 
simple declarations, 61-62 
storage classes, 43-50 
strings, 97-98 
type specifiers, overview, 51-52 
values 

setting, 91-97 
undefined,47 

visibility, 45, 48 
Variant records. See Union Declarations 
Vertical tab (escape sequence), 18 
VGA screen modes, 261 
Visibility 

external-level variables, 45 
function declarations, 44 
rules for function declarations, 50, 177 
global, with lZe command-line option, 265 
overview, 35-36 
static definitions, 45 
table listing, 37 
variables, 44-48 

void 
expressions 

sequential evaluations, 140 
side effects, 51 

keyword 
arguments to functions, 183-185 
expression list, 185-187 
if no arguments passed, 180 
uses, 51 

pointer to identifier of unspecified type, 86 
type 

as function return value, 160-161 
function calls, 119 
incomplete type, 101 

volatile keyword 
accessing objects, 244 
listed,53 
modifying typedef, 102 
permitting value changes, 52 
repeating, 264 
type-qualifier nonterminal, 43 
using, 53 

_ vsnprintf function 
controlling string size, 260 

W 
fW4 option, CL, 6 
warning pragma, new in version 7.0, 258 

-------------- --------- --------



Warnings 
compiling errors, 213, 262 
declarations, 266 
escape sequence unrecognized, 265 
generated by untyped variables, 61 
increased number, reasons for, 266 
indirection to different types, 263 
macro redefinition, 265 
overflow on constant expressions, 266 
packing size, 265 
translation units, 266 

wcstombs function, translating characters, 8 
wctomb function, translating characters, 8 
while statements 

described, 164 
iterations, 154 
terminating, 152 

White-space characters 
argument delimiters, 32 
defined,2 
ignored, 195 
in floating-point constants, 10 
restrictions, 14, 194 
separating # and pragma, 209 

Wildcards, expansion, 31-32 
Windows, real mode, 260 

x 
\xhhh (escape sequence), hexadecimal notation, 18 

y 
IYc option, CL, 261 
/Y d option, CL, 261 
/Yu option, CL, 261 

Z 
/Za option, CL, 3-5, 169,261,265 
/Zc option, CL, 7, 235 
/Ze option, CL, 199,258,261,265 
Zero-length files, 250 
/Zf option, CL, 261 
/Zn option, CL, 261 
/Zp option, CL, 70, 212 
Zp2 option, CL, 243 
/Zr option, CL, 210 

Index 291 



Microsoft Corporation 
One Microsoft Way 
Redmond, WA 98052-6399 

1191 Part No. 24771 


