g

R RieH
MODULA-2

- “Software Development System

LOGITECH

SOFTWARE ENGINEERING LIBRARY

MODULA-2/86
USER’S MANUAL

Third Edition = March 1986

Copyright (C) 1984, 1985, 1986 LOGITECH, Inc.

All Rights Reserved. No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of LOGITECH, Inc.

MODULA-2/86 and MODULA-2/VX86 are trademarks of LOGITECH, Inc.

Microsoft is a registered trademark of Microsoft Corporation. MS-DOS is a trademark of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

IBM is a registered trademark of International Business Machines Corporation.

LOGITECH, Inc. makes no warranties with respect to this documentation and disclaims any implied
warranties of merchantability and fitness for a particular purpose. The information in this document
is subject to change without notice. LOGITECH, Inc. assumes no responsibility for any errors that
may appear in this document.

From time to time changes may occur in the filenames and in the files actually included on the
distribution disks. LOGITECH, Inc. makes no warranties that such files or facilities as mentioned in
this documentation exist on the distribution disks or as part of the materials distributed.
LU-GU101-3

Initial issue: February 1984

Current revision: April 1986

This edition applies to Release 2.00 of the software.

Printed: April 1986

iii

Preface MODULA-2/86

LOGITECH’S POLICIES AND SERVICES

Congratulations on the purchase of your LOGITECH MODULA-2/86 Software Development
System. Please refer to the following information for details about LOGITECH’s policies and
services.

We feel that effective communication with our customers is the key to quality service. Therefore we
have designed a bulletin board, the LOGITECH MODULA-2 Information Service, so you can
contact us directly and conveniently. You can contact the LOGITECH MIS simply by dialing

(415) 364-7057

using a 1200 or 300 baud modem. You log in by typing modula2. The menu with available options is
self explanatory and allows you to:

order a MODULA-2 product

report a bug

access MODULA-2 source files for downloading

read about recent LOGITECH developments and other interesting information

iv

MODULA-2/86 Preface

If you are an Independent Software Vendor, we encourage you to join the impressive list of
developers who have used LOGITECH MODULA-2 products to design their own applications. For
all LOGITECH MODULA-2 users, including ISVs, we have formed a LOGITECH MODULA-2
User Group. LOGIMUG publishes a newsletter and provides a forum through which LOGITECH
MODULA-2 users can exchange ideas and information.

LOGITECH is committed to customer support. Whether you are an individual or part of a large
organization, we offer a support plan designed to meet your needs.

The Modula-2 User Association is another important source of information about the Modula-2
language, as well as a forum for Modula-2 users to exchange ideas and to share pertinent technical

tips. LOGITECH is an active corporate member of this association. We encourage you to contact
MODUS at:

MODUS
P.0O BOX 51778
PALO ALTO, CALIFORNIA 94303
(415) 322-0547

For those of you who would like to keep up with current MODULA-2/86 developments and
communicate electronically with us, LOGITECH sponsors a conference on the BYTE Information
Exchange (BIX). BIX is an electronic conferencing system that allows you to communicate with
other MODULA-2/86 users about technical problems, language issues, third-party software
developments, and any other topics that interest you. In addition to the LOGITECH conference,
BIX offers conferences on a vast range of other subjects including computers, operating systems,
applications, chips, Al, and up-to-date information from industry leaders on new technolgy.

To join BIX contact:

BYTE INFORMATION EXCHANGE
ONE PHOENIX MILL LANE
PETERBOROUGH, NH 03458
(603) 924-9281

We look forward to hearing from you on BIX!

Preface MODULA-2/86

This manual is designed to meet your particular needs, depending upon your level of programming
experience. Although the manual assumes you are familiar with basic programming concepts, it
provides an overview of the Modula-2 language and a bibliography of relevant texts for more detailed
information. For novice programmers this manual may be used as an introduction to the Modula-2
language and eventually as a step-by-step guide to the specific implementation of LOGITECH
MODULA-2/86. For more experienced programmers, especially those familiar with Modula-2’s
predecessor, Pascal, it may be used as an introduction to the implementation specific features of
MODULA-2/86 and later as a reference manual for specific problems or questions which may arise.

As illustrated in the following diagram, this manual contains five kinds of information:

= Introductory and general reference information, including system requirements, installation
instructions, and a global index which lists all key concepts and words you may need for
future reference.

A step-by-step tutorial to guide you through the LOGITECH MODULA-2/86 world,
focusing on the Mod Editor as the thread which joins, and the point from which you can
control, the various components of your system.

= An overview of the Modula-2 language which explains how Modula-2 differs from, and is
similar to, Pascal, in addition to describing the primary features of the language.

A section which describes the implementation features of MODULA-2/86.

A reference section which explains the details of the various components of LOGITECH
MODULA-2/86, including the Compiler, Linker, Debuggers, Utilities, and Library.

If you are an inexperienced programmer, you can follow the manual sequentially -- working through
the tutorial to familiarize yourself with the LOGITECH MODULA-2/86 system, and then reading
the overview of Modula-2 to better understand the language. Experienced programmers can skim the
introduction to the Modula-2 language and should concentrate on the tutorial and the system
dependent facilities of MODULA-2/86, eventually using the manual as a reference guide.

NOTE:
PLEASE REFER TO THE READ.ME FILE FOR THE LATEST INFORMATION ABOUT THE
SYSTEM

MODULA-2/86 Preface

Introductory and General
Reference Information LOGITECH MODULA—-2/86 Tutorial

APPENDIX A

Glossary

A Step—By—Step
APPENDIX B Guide to
Bibliography

LIBRARY

MODULA-2/86

Introduction

Installation

Modula—2 Language Information

CHAPTER 4 MODULA—2/86: Implementation Features

Technical Reference

Modula-2 Tutorial
for the Pascal
Programmer

CHAPTER 6

System Dependent

Facilities
The Compiler

CHAPTER 5.2

Priorities and
Interrupts

CHAPTER 5.3

The Linker

CHAPTER 8

DOSCALL Program Execution

CHAPTER 9

The Symbolic
Post—Mortem
Debhugger

CHAPTER 5.4

Interfacing
Assembly Code
Libraries

CHAPTER 5.5 CHAPTER 10

The Symbolic
Run—Time Debugger

Library Search
Strategy

CHAPTER 5.6 CHAPTER 11

Decimals

STRUCTURE
OF THIS

CHAPTER 5.8

MANUAL oS tom

CHAPTER 5.9

Utilities

CHAPTER 12

System and
Library Modules

Version Checking

Preface MODULA-2/86

The following syntactic conventions are used in this manual:

= Input a user must type on the keyboard looks like this:
A>m2programname <CR>

» Qutput the program displays on the screen, for example listings, looks like this:
Program Not Found

= Program source code looks like this:
VAR
a:ADDRESS;
w:word
off,seg:CARDINAL;

» Special keys such as ’escape’ and ’carriage return’ are abbreviated and enclosed in brackets,
for example:
<ESC>, <CR>.

= Control characters, characters entered while the key marked ’ctrl’ is depressed, are
preceeded by *Ctrl’ and enclosed in brackets, for example:
<Ctrl-C>, <Ctrl-Break>.

= Alt characters, characters entered while the key marked Alt’ is depressed, are preceeded by
’Alt’ and enclosed in brackets, for example:
<Alt-C>.

viii

Section

1.1
12
13

21
22
23

3

INTRODUCTION

INSTALLATION

TUTORIAL: A STEP-BY-STEP GUIDE TO MODULA-2/86

TABLE OF CONTENTS

Contents

Page

System Requirements

Memory Requirements

Other Requirements

Configuring Your Operating System
Systems Equipped with Floppy Disks Only

Systems Equipped with a Hard Disk

co W A

11

FEATURES OF MOD

11

MENUS

13

BASIC COMMANDS

14

CUT AND PASTE

14

WINDOWING

15

SEARCH AND REPLACE

16

CONFIGURATION FILE

18

HOW TO COMPILE

19

HOW TO LINK

20

HOW TO RUN A MODULA-2 PROGRAM FROM MOD
EXITING MOD

20

20

USING MODULA-2/86 WITHOUT THE EDITOR

21

Section

5.1

511
5.12
5121
5122
5.123
5.13
5131
5.1.32

Contents Page
HOW TO ANALYZE AND SOLVE PROGRAM EXECUTION ERRORS 21
KEYSTROKES AND THEIR DEFINITIONS 23
CONFIGURATION 30
USING LOGITECH MODULA-2 EDITOR WITH A MOUSE 32

MODULA-2 TUTORIAL FOR THE PASCAL PROGRAMMER 33
Types of Modules 33
Program Modules 34
Definition Modules 34
Implementation Modules 35
The First Steps From Pascal To Modula-2 37
More Differences 38
Functions and Procedures 48
USE OF MODULES 53
User Definable Modules 53
Importing Procedures with Identical Names 59
Standard Library Modules 61

MODULA-2/86: IMPLEMENTATION FEATURES 75

SYSTEM DEPENDENT FACILITIES 75

Language Extensions 7¢

Address Arithmetic 7¢
Interpretation of Objects of Type ADDRESS 7
Operations Involving Objects of Type ADDRESS 7
Dereferencing Pointers 7

The Module SYSTEM 8i
Constants Exported from Module SYSTEM 8
Types Exported from Module SYSTEM 8

Section

5133
5134
514
5.1.5

5.2

52.1
522
523
5.23.1
5232
5233
5234
524
524.1
5242
5243
5244
525
526

53

531

54

541
542
543

Contents Page
Functions Exported from Module SYSTEM 81
Procedures Exported from Module SYSTEM 82

Data Representation 86
Type Conversion and Type Transfer 88
PRIORITIES AND INTERRUPTS 91
Use of Priorities 91
Priority Levels 92
Interrupt Handling 92
Standard Method with IOTRANSFER 92

Faster Method with IOTRANSFER 93

Low Level Interrupt Handling 93

How to Cope with Non-Reentrancy of MS-DOS 101
Implementation Notes 102

The Device Mask 102

The Priority Mask 103

The Interrupt Controller Mask 103
Monitor Entry and Exit 104

The Definition Module ‘InputDevice’ 105

The Implementation Module ‘InputDevice’ 106
DOSCALL 110
Extensions for DOS 2.0 119
INTERFACING ASSEMBLY CODE LIBRARIES 130
Sample Assembly Library 130
Adapting the Run-Time Support 131

Creating a New Executable File NEWM2.EXE 132

Section Contents Page

544 Definition Module for the Sample Assembly Library. 132
54.5 Implementation Module for the Sample Assembly Library 133
54.6 Sample Assembly Library Listing 134
54.7 RTS Extensions 136
54.8 The Definition Module ‘AsmLib’ 138
549 The Implementation Module ‘AsmLib’ 139
55 LIBRARY SEARCH STRATEGY 143
551 Default Names 143
552 The Default Search Strategy. 143
553 The Query Search Strategy 145
5.6 DECIMALS 147
5.6.1 Internal and External Format 147
5.62 Types 147
5.6.3 Variables 148
5.64 Conversion and Status Procedures 148
5.6.5 Arithmetic Operations, 149
5.6.6 Pictures 15C
5.6.7 Picture Characters 151
5.6.8 Procedure StrToDec 152
5.69 Procedure DecToStr 15:
5.6.10 Error Propagation 15!
5.7 REAL ARITHMETIC 15.

571 Simple Use of REAL Arithmetic 15

572 Choices for Using REAL Arithmetic 15

5.74 Accuracy of the Computations 15

Section Contents Page

5.7.5 Memory Requirements 159
5.7.6 Performance 160
5.8 MEMORY ORGANIZATION 162
5.8.1 Global Memory Organization 162
5.82 Subprograms and Overlays 165
5.8.3 Processes 167
584 Allocation of Variables 169
5.8.5 The Heap 170
5.8.6 The Stack 171
5.8.7 The Procedure Activation Record 171
5.8.8 Procedure Calling Conventions 174
5.89 Function Results 176
59 VERSION CHECKING 177
59.1 Module Key and Version Checking 177
59.2 Version Errors and How to Fix Them 177
59.3 Version Errors During Compilation 178
594 Version Errors During Linking 178
59.5 Version Errors During Loading 179
6 THE COMPILER 181
6.1 How to Use the Compiler 181
6.2 Compiler Organization 182
6.3 Compiler Output Files 183
6.4 Compilation of a Program Module 183
6.5 Compilation of a Definition Module 185

6.6 Compilation of an Implementation Module 186

Section Contents

6.7
6.8
6.8.1
6.8.2
6.9
6.10
6.10.1
6.10.2
6.11
6.12

7.1
72
13

81
8.11
82
82.1
822
83
84

9.1
9.1.1

Page
Symbol Files Needed for Compilation 187
Compiler Options 188
Table of Available Options 188
Description of the Options 189
Compiler Directives in Modules 191
Compiler Messages 192
Source Text Errors 193
Compiler Operational Messages and Errors 193
Compiler Table Limits, 197
Compiler Error Messages 199
THE LINKER 205
How to Use the Linker 205
Linker Options 207
Linker Messages 209
PROGRAM EXECUTION 213
Running MODULA-2/86 with M2 213
Memory Allocation Options 214
The File Conversion Utility LOD2EXE 216
Memory Allocation Options 21¢
Example Dialog 21¢
Aborting MODULA-2/86 Programs 21¢
Command Line Arguments 21¢
THE SYMBOLIC POST-MORTEM DEBUGGER 22
Introduction 22
Installation 22

Section Contents Page

9.1.2 Windows 221
9.2 How to Run the Post-Mortem Debugger 223
9.3 ‘Window Format 224
9.3.1 Selecting an Item for Display 224
9.3.2 Execution Markers 224
933 Numbers and Addresses 225
94 The Post-Mortem Debugger Commands 225
94.1 Global Commands 225
9.5 Post-Mortem Debugger Windows 228
9.5.1 Call Window 228
952 Module Window 230
953 Data Window 231
954 Text Window 237
9.5.5 Raw Window 239
9.6 Post-Mortem Debugger Messages 245
9.7 Sample Program ‘Demo’ 252
10 THE SYMBOLIC RUN-TIME DEBUGGER 254
10.1 Introduction 254
10.1.1 Installation 254
10.2 How to Run the Run-Time Debugger 255
10.2.1 Run-Time Debugger Options 256
10.2.2 Memory Requirements and Swapping 257
10.2.3 Programs Taking Command Line Arguments 258
10.3 Control of Program Execution 259
10.3.1 Breakpoints 259
10.3.2 Step Mode 260
10.3.3 Overview of the Run-Time Debugger Commands 260
10.3.4 Run-Time Errors 261
10.3.5 Stopping Programs During Execution 261
10.3.6 Debugging Programs That Use Overlays 262

104 ‘Window Format 262

Section

104.1
10.4.2
10.5

10.5.1
10.5.2
10.5.3
10.5.4
10.6

10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.7

11

11.1
11.11
112
1121
11.3
11.3.1
114
114.1
1142
11.4.3
1144

Contents Page
Markers 262
Selecting an Item for Display 262

The Run-Time Debugger Commands 263
Global Commands 263
Activating the Step Mode 264
Display of Information 264
Use of the Step Mode in a Multi-Process Program 265

Run-Time Debugger Windows 265
Call Window 265
Module Window 266
Data Window 267
Text Window 272
Raw Window 273

Run-Time Debugger Messages 274

UTILITIES 276

Introduction 276
Installation 276

The Link-Load File Decoder Utility M2DECOD 277
Example Dialog 279

The Cross-Reference Utility XREF 279
Example Dialog 280

The Source Versions Manager Utility VERSION 280
Marking the Version Dependent Parts 281
Invoking Utility Version 282
Example Dialog 282
Error Handling 284

Section

12

12.1
12.2
12.2.1

Contents

Page

SYSTEM AND LIBRARY MODULES

287

The System Modules

287

The General Library Modules

288

Brief Descriptions of Library Modules

APPENDIX A - GLOSSARY

289

293

APPENDIX B - BIBLIOGRAPHY.

LIBRARY

298

300

INDEX

MODULA-2/86 INTRODUCTION

1 INTRODUCTION

Welcome to MODULA-2/86!

Modula-2 is a modern language suitable for system design. It benefits from a decade of experience
with Pascal by building on its strengths and correcting many of its deficiencies. The ’standard’
language is powerful enough to prevent incompatible dialects from arising. Low level routines may be
implemented efficiently without sacrificing the benefits of a high level modular programming
language. Modula-2 allows true modular programming with strong type checking while incorporating
the flexibility of routines for transfer of data between variables of different types, interrupt handling,
and access to underlying hardware and operating software.
The LOGITECH MODULA-2/86 system is a full standard implementation of Modula-2 on
8088/8086 based microcomputers. Very large programs may be compiled in efficient native machine
code. Features of the LOGITECH MODULA-2/86 system include:

= Native code compiler

= Extensive library of standard modules

= Support for the 8087 for fast, accurate REAL math

= Support for 80186/80286 advanced instruction set

= Support for REAL emulation

= Support for the full one Megabyte address space of the 8086/8088

= Access to underlying hardware and operating system functions

= Support for the creation of overlays for very large systems

= A syntax assisted, fully integrated editor

INTRODUCTION MODULA-2/86

= Two symbolic debuggers: post-mortem and run-time
m A set of utilities

= Capability to generate ROMable code

1.1 System Requirements

To develop programs using the LOGITECH MODULA-2/86 system, the following minimum system
configuration is required:

IBM PC or ‘compatible’ with:

m 256K or more of RAM memory (512K if you want to run the fully linked version of the
compiler)

= Two double sided disk drives (300K each or more), one of them may be a hard disk drive
= PC-DOS or MS-DOS 2x, 3x operating system
Other systems or configurations supported:

= 8086/8088 based microcomputers running MS-DOS.

1.2 Memory Requirements
The MODULA-2 system has the following memory requirements:
= To Run the Editor

The editor takes up less than 128KB and DOS needs approximately 32KB. Therefore, we
suggest a 256KB or 320KB system.

MODULA-2/86 INTRODUCTION

= To Run the Editor and Call the Compiler and Linker

If you are compiling a small program, we suggest a 398KB system. However, to be safe, a
512KB system would be best.

If you run out of memory, the editor will recover gracefully. A small low-fuel box appears when only a
few KBytes remain. At this time you can save the texts that have been modified without losing them.

1.3 Other Requirements

A printer is not required but strongly recommended. Software developers will find a hard disk system
useful.

Compiled MODULA-2/86 programs may be executed on any 8086 or 8088 system assuming that the
target system’s memory is large enough to hold the executable program and data. No references to a
particular underlying operating system are generated by the compiler.

The numeric data processor 8087 is also supported. However, it is not required to run the compiler
and the other program development utilities.

INSTALLATION MODULA-2/86

2 INSTALLATION

This chapter describes the installation of MODULA-2/86 under DOS. The following section provides
more complete instructions on how to install your MODULA-2/86 system, and on how to make the
best use of it. Some command (batch) files are provided on the MODULA-2/86 system diskette that
can help you perform the necessary operations. These files assume a standard configuration - a floppy
disk drive A, and either a floppy disk drive B or a hard disk drive C. You might have to modify these

files or do the installation step-by-step if your system configuration differs from the assumed
standard.

2.1 Configuring Your Operating System

You need to configure your operating system to run MODULA-2/86. This must be done by setting
up the file CONFIG.SYS on the disk from which you start (boot) your operating system. A sample
CONFIG.SYS file is provided on your MODULA-2/86 System diskette. After you have changed or
installed your CONFIG.SYS file, you must restart your operating system for these changes to become
effective. It is recommended that this file contain the following three commands:

» FILES=12

= BUFFERS=13
= DEVICE=ANSLSYS

These commands have the following meaning:
s FILES=12
Defines the number of files that can be open at the same time. A value of twelve or more is

required in order to operate the MODULA-2/86 compiler, linker, editor, debugger, and
utilities properly.

MODULA-2/36 INSTALLATION

If the proper number of files is not set in DOS, an error message ‘file not found’ will appear.
While the file in question may be present, it cannot be opened due to a lack of file
descriptors in the operating system.

= BUFFERS=13

It is recommended to set the number of buffers to at least thirteen. An appropriate value will

increase the performance of the MODULA-2/86 system. However, this is not a requirement
and you may omit this command.

= DEVICE=ANSILSYS

This command gives access to the ‘Extended Screen and Keyboard Control’ provided by
DOS. Some parts of MODULA-2/86 assume that this driver is used. If this command is
omitted in CONFIG.SYS, certain control characters written to the display may not have the
effect specified in the definition module ‘Terminal’.

Because of the command ‘DEVICE=ANSILSYS’ in CONFIG.SYS you must also put a copy
of the file ANSLSYS onto the disk that contains CONFIG.SYS. The file ANSLSYS is
provided on one of the original diskettes of your operating system.

2.2 Systems Equipped with Floppy Disks Only

If you use the MODULA-2/86 system on a floppy-based installation, we recommend the following
organization of your disks:

1 First prepare a Modula-2 work disk. Insert a copy of the MODULA-2/86 system disk into
drive B, and an empty, formatted diskette into drive A. Copy the contents of the Modula-
2/86 system disk onto your working diskette.

2 Prepare a copy of the MODULA-2/86 compiler disk. Use this disk when compiling Modula-2
programs. Your compiler disk contains:

= The MODULA-2/86 compiler (LOD).
= The symbol files (.SYM) of the library modules.

INSTALLATION MODULA-2/86

3 Prepare a copy of the MODULA-2/86 linker disk. Use this disk when linking Modula-2
programs. Your linker disk contains:

s The MODULA-2/86 linker ((.LOD).
s The link files (LNK) of the library modules.
= The reference files ((REF) of the library modules.

‘While you are working with MODULA-2/86, drive A holds your Modula-2 work disk with:

The MODULA-2/86 run-time support (M2.EXE).
The MODULA-2/86 editor (MOD.EXE).
Your Modula-2 source files.

Any other files you created with your MODULA-2/86 system which are needed for
compiling, linking or debugging.

While you prepare your programs, drive B holds a disk with your operating system and its utilities.

To compile, you insert a copy of the compiler disk into drive B.

To link, you insert a copy of the linker disk into drive B.

To run the debuggers insert a copy of the debuggers disk into drive B.
To run the utilities insert a copy of the utility disk into drive B.

Note that, depending on the capacity of your disks, you can combine two or more of the above
described disks in one disk.

If your diskettes have a large capacity, it may be worthwhile for you to study the following section on

hard disk systems, on the environment variables used by MODULA-2/86, and also the section on
library search strategy.

Fully Linked Version

The compiler and linker are distributed in overlay version. If you have the Base Language
System/512k that contains the fully linked version of compiler and linker, you will have an additional
diskette containing the files M2C.EXE and M2L.EXE.

MODULA-2/86 INSTALLATION

Prepare a copy of the MODULA-2/86 fully linked compiler disk. From the additional diskette you
received with the Base Language System, copy in an empty, formatted diskette the file M2C.EXE.
From the MODULA-2/86 compiler disk copy all .SYM files. Your fully linked compiler disk will
contain:

= The MODULA-2/86 compiler M2C.EXE).
= The symbol files (.SYM) of the library modules.

Prepare a copy of the MODULA-2/86 fully linked linker disk. From the additional diskette you
received with the Base Language System, copy in an empty, formatted diskette the file M2L.EXE.
From the MODULA-2/86 linker disk copy all .LNK files. Your fully linked linker disk will contain:

s The MODULA-2/86 linker (M2L.EXE).
= The link files (.LNK) of the library modules.

PATH and Environment Variables

To allow the MODULA-2/86 system to work properly, you must insert some additional DOS
commands into your AUTOEXEC.BAT file. This file must be in the root directory of your boot disk.
The commands it contains are executed automatically every time you start, or boot, your operating
system. If you do not yet have such a file create it in the root directory, using your text editor. If you
keep your M-2 Work Disk in drive A and the compiler/linker /debuggers/utilities disk in drive B,
include the following commands in your AUTOEXEC.BAT file:

SET M2SYM=A:\B\; ...
SET M2LNK=A:\;B\; ...
SET M2REF=A:\;B\; ...
SET M2MOD=A:\;B\; ...
SET M2MAP=A:\;B\; ...

These commands will set up the environment variables for MODULA-2/86 for a dual floppy
configuration. In this way your MODULA-2/86 system can take full advantage of the DOS features.
More information on the environment variables used by MODULA-2/86 can be found in the section
of this manual on the library search strategy.

INSTALLATION MODULA-2/86

You must also set the DOS environment variable ‘PATH’ (refer to the DOS Manual). This variable
is used by DOS to search for .EXE files. If you keep your M-2 Work Disk in drive A and the
compiler/linker/debuggers/utilities disk in drive B, the environment variable PATH should contain:

= PATH=A:\B:\; ..

Before you start using MODULA-2/86, be sure to re-start, re-boot, your system, so the commands of
the AUTOEXEC.BAT file will be executed.

23 Systems Equipped with a Hard Disk

If you use the MODULA-2/86 system on an installation equipped with a hard disk, we recommend
that you copy all the files on the distribution disks to your hard disk. This is the most convenient way
to use Modula-2.

You can copy all the files into the same directory where you intend to write your Modula-2 programs.
However, this is not very convenient. It is better to take advantage of the structured directory system
(assuming that the version of DOS you are running supports this). This will reduce the number of
files in your directories and, at the same time, it will allow you to use the MODULA-2/86 system
from any directory you choose. We recommend the following organization:

1 Copy the file M2.EXE from the MODULA-2/86 system diskette to the directory where you
usually keep public executable programs. This should be (one of) the directory(ies) where
DOS searches for files to be executed. (Under DOS you can set the command search
directories using the ‘PATH’ command.) You can also copy the file M2.EXE to the directory
that you will use for developing your Modula-2 software. In this case, however, you need a
copy of M2.EXE in every directory where you want to run Modula-2 programs - including
your own Modula-2 programs, as well as the MODULA-2/86 compiler, linker, and debugger.

2 For the rest of the installation of your MODULA-2/86 system, command (batch) files are
provided on the MODULA-2/86 system diskette. They can be used to perform the rest of
the installation automatically. Only if you do not have a standard system configuration will
you need do it step-by-step. The installation command files assume that your hard disk is the
current drive and that the MODULA-2/86 diskettes are being inserted into drive A of your
system.

MODULA-2/86 INSTALLATION

Insert a copy of the MODULA-2/86 system diskette into drive A and type:

a:install1<CR>

This command file creates two new directories ‘m2lod’ and ‘m2lib’ in the root directory (‘\’)
of the current disk (your hard disk). Then, in the directory ‘m2lib’, it creates the sub-
directories ‘def’, ‘mod’, ‘sym’, ‘Ink’, ‘ref’, and ‘map’.

For a step-by-step installation, perform these DOS commands:

C>cd)
C>mkdir m2lod
C>mkdir m2lib
C>cd m2lib
C>mkdir def
C>mkdir mod
C>mkdir sym
C>mkdir Ink
C>mkdir ref
C>mkdir map

After these directories have been created - by running the command file or step-by-step - you
are ready for the next step. With the MODULA-2/86 system diskette in drive A execute the
second command file. Type:

azinstall2<CR>
and insert the compiler, linker, and debugger diskettes as requested by the command file.

For a step-by-step installation, copy all the files with extension ‘LOD’ from the three distribution
diskettes to the directory ‘\m2lod’. Then copy all the files according to their extension into the
corresponding directory. For example, copy the files with extension ‘DEF’ to the directory
‘\m2lib\def’, copy the files with extension ‘MOD’ to the directory ‘\m2lib\mod’, and so on.

Fully Linked Version

The compiler and linker are distributed in overlay version and to run them you type ‘m2 comp’ or ‘m2
link’. If you have the Base Language System that contains the fully linked version of compiler and
linker, you will have an additional diskette containing the files M2C.EXE and M2L.EXE.

INSTALLATION MODULA-2/86

Copy M2C.EXE and M2L.EXE from the additional diskette you received with the Base Language
System to the drive and directory where you usually keep public executable programs.

PATH and Environment Variables

To allow the MODULA-2/86 system to work properly, you must insert some additional DOS
commands into your AUTOEXEC.BAT file. This file must be in the root directory of your hard disk.
The commands it contains are executed automatically every time you start, or boot, your operating
system. If you do not yet have such a file create it in the root directory, using your text editor. Include
the following commands in your AUTOEXEC.BAT file:

SET M2SYM=C:\M2LIB\SYM,; ...
SET M2LNK=C:\M2LIB\LNK; ...
SET M2REF=C:\M2LIB\REF; ...
SET M2MOD=C:\M2LIB\MOD; ...
SET M2MAP=C:\M2LIB\MAP; ...

These commands will set up the environment variables for MODULA-2/86. In this way your
MODULA-2/86 system can take full advantage of the DOS features and your hard disk. More
information on the environment variables used by MODULA-2/86 can be found in the section of this
manual on the library search strategy.

You must also set the MS DOS environment variable ‘PATH’ (refer to the MS DOS Manual). This
variable is used by DOS to search for .EXE files. For example, if you keep your public executable file
in drive ‘C:\commands’, the environment variable PATH should contain:

» PATH=C:\commands; ...

Before you start using MODULA-2/86, be sure to re-start, re-boot, your system, so the commands of
the AUTOEXEC.BAT file will be executed.

10

MODULA-2/86 Tutorial

A STEP-BY-STEP GUIDE TO MODULA-2/86

The best way to learn a new language is to speak it. The same is true for programming languages and
with the LOGITECH MODULA-2 Editor, you'll be writing Modula-2 programs in no time. The
syntax assisted editor is fully integrated with your LOGITECH MODULA-2/86 system. That means
you can control and call on all the tools which make up your system from within the editor.

Therefore, before we begin our typical programming session with LOGITECH MODULA-2/86, it is
helpful to familiarize yourself with the features and general concepts of the Modula-2 Editor, ’mod’.

FEATURES OF MOD

Fast on-line Modula-2 syntax check
Ability to call the Modula-2 compiler, linker, other Modula-2 programs and utilities from the
editor.
Easy positioning and correcting of compile-time errors
Full screen capacity
Window based
Multiple windows
= variable size
= overlapping or split windows
= horizontal and vertical scroll
Edits more than one file at a time
Pop-up menu and single keystroke commands
On-line help information
User definable templates for Modula-2 syntactical constructs
User definable help file
Can be used with a mouse (LOGITECH Logimouse)

The mod editor edits standard ASCII files. It displays the text associated with these files in windows.

11

Tutorial MODULA-2/86

There is always a current position indicated on the screen by a blinking underscore, which is the locus
of action for most commands.

Most commands can be invoked either from the keyboard or from a menu. Function keys, Fl through
Fl10, and control characters allow you to invoke various commands. The cursor keys allow you to

move up and down in a menu. To execute a command from a menu, type either <CR>, or F8, or the
first letter of the command.

‘When the editor needs special information from you, such as the name of a file, it will put up a
Prompt Box. For example, if you type F10, mod generates a Prompt Box. When entering or editing
text in a Prompt Bogx, you can use many of the basic motion and editing commands.

‘When the editor needs to tell you some information, such as the result of an operation or the answer
to a request, and does not require an answer from you, it will put up a Dialogue Box. For example,
when you type <Alt-F1>, mod will generate a Dialogue Box indicating the release number, the
amount of memory available, and on which drive your compiler and linker are located.

Text you select will be highlighted on the screen. You can either delete.t or copy it into a temporary
holding area called the scratchpad. You can insert contents into the scratchpad at any time, which
allows text to be copied within a file or between files.

If you type a character mod does not understand, it will beep. For example, if you are trying to

execute a particular command and you type something other than the first character of the command,
mod will beep.

The escape command is very important in mod. The <ESC> key is used to exit a menu, exit Help, and
to resume editing after a dialogue box has been displayed. The <ESC> key is also used to exit mod. If
any texts have been modified and not saved when you try to exit mod by typing <ESC>, mod will ask
you if you want to save the files before exiting. If you have entered a menu and do not want to select
any of the choices, you can leave the menu by typing <ESC>.

Mod has an online help feature which describes all of the mod commands. At any point you can type
F1 to get a help screen. Make sure the file MOD.HLP is in the current directory or in a directory
specified by the MSDOS Path command. The file MOD.HLP is a standard ASCII file so you can
modify it to suit your needs.

Additional information about the amount of available memory and the release number of mod you
are using is displayed when you type <Alt-F1>.

12

MODULA-2/86 Tutorial

That’s enough general information about mod to get us started. In the following tutorial you’ll learn
the basics of your MODULA-2 system: how to load a program, edit it, compile, link and debug it. As
you proceed through the tutorial, take note of any questions that may come up or areas in which

you’d like further information. You can then refer to the appropriate section of this manual for more
detailed explanations.

Before you start this tutorial make back-up copies of all the MODULA-2/86 master diskettes and
then store the masters in a safe place. This tutorial assumes that you have successfully installed the
compiler, the linker, and mod on your system. This User’s Guide explains the proper installation
procedures. Make sure that you have specified the MS-DOS "PATH’ and 'SET’ commands correctly.

To evoke the editor you only need to type ‘'mod’ and then <CR> to execute the file MOD.EXE. You
can also specify a file name on the command line when mod is called and this file will be loaded into
the editor. Just one more note before we begin -- unless otherwise specified, the information you

must type into your computer is underlined (so you don’t enter the drive name and prompt sign).
Let’s begin. Type:

A> mod<CR>

MENUS

There are three important menus within mod -- the Main menu, the File menu, and the Window
menu. The Main menu is evoked by typing F9. This menu provides editing functions, the ability to
call the syntax checker, and access to the File and Window menus. To see the Main menu, type F9.
Most of the menu choices will be described later in this tutorial. The cursor keys followed by <CR>,
or the first character of a command can be used to select choices within a menu. To leave the menu
without selecting anything, type <ESC>.

The File menu is called either from the Main menu or by typing <Alt-F9>. This menu provides file
related commands. Type <Alt-F9> to see the File menu. Most of the commands available in the File

menu can be executed using the function keys except for ‘'name’, ‘run’ and write’. Type <ESC> to
leave this menu.

The Window menu is called either from the Main menu or by typing <Alt-F10>. All the commands
needed for creating and using windows are included on the Window menu. Type <Alt-F10> to see the
Window menu. We will explain this menu later in the tutorial.

Now let’s try mod’s online help feature. Type F1 to display the help text. Type <ESC> to exit from the
help text.

13

Tutorial MODULA-2/86

BASIC COMMANDS

Now you are ready to begin editing a file. To load a file into mod, type F3. A prompt box will appear
on the screen asking you which file to get. For this tutorial we have provided a file called
MODEX1.MOD. The default file name extension when getting a file is MOD so you can simply type
MODEX1<CR>. For files with different extensions such as .DEF or .TXT the complete file name and
extension must be entered.

The text of the file EXAMP1.MOD should now be displayed on your screen. There are several ways
to move around the file. Try playing with the cursor keys to position the cursor at different places in
the file. The End key will move to the end of the text; the Home key will return you to the top of the
file. For a more complete description of the various ways to move within a file refer to the commands
listed in the section on "Keystrokes and their Definitions".

Now let’s modify the Module ModEx1 which is currently displayed on your screen. If you have
already changed it at all please reload it by typing F3 and then typing MODEX1<CR>.

CUT AND PASTE

Text can be selected to cut or to delete by typing F8. Selected text will be highlighted. Position the
cursor at the beginning of the fifth line which begins with WriteString. The cursor should be under
the "W". Now type F8 to begin selecting text. Using the cursor key, move the cursor to the right and
notice how each character is highlighted showing that it is now selected text. Go all the way to the
end of the line including the semicolon so that the entire line is highlighted. If you decide that you
really don’t want to select this particular text, the selection can be cancelled by typing F8 again -- try
it.

Text which is selected can be deleted or cut and then reinserted at a different place in the file. Move
back to the beginning of the fifth line and again select the entire line using the F8 key. Once the line
is selected press the key to delete the line. This line has been written to the Scratchpad. The
Scratchpad holds information which has been cut from a file so that it may be copied somewhere else.

14

MODULA-2/86 Tutorial

There is only one Scratchpad so whenever you cut a portion of a file, the previous contents of the
Scratchpad are destroyed. The text Scratchpad can also store text for cutting and pasting between
different files. Now type the <INS> key and the line will reappear in the file. Move the cursor to the
end of the word BEGIN of the previous line and type <CR> to create a blank line. Position the cursor
at the beginning of this new blank line and type <INS>. The WriteString statement should have been
inserted on the blank line. On this new line delete the string “The program worked! (Hit a key)’
typing F8 to select the text and to delete it. Replace the string with something simple like This
is my first program!

WINDOWING

Using windows, you can edit more than one file at a time with mod. To open a new window you
invoke the Window menu. You can display this menu either by typing F9 for the Main menu and
then selecting Window, or by typing <Alt-F10>. The Window menu provides several choices of
windows, such as horizontal and vertical windows, as well as the ability to close, move and reshape
windows which display text read from files.

Each window shows a part of some text, and the name of the file associated with that text is visible on
the lower right corner of the window. If a text has been changed so that it might differ from its
associated file, a small *delta’ symbol appears before the name of the file.

There are two types of windows mod can create. The first type are split-screen windows which are
created with either the horizontal-split or the vertical-split commands. The second type of windows
are overlapping windows which are created using the open command. Windows behave differently
depending upon how they were created. With practice you can develop combinations of windows
which are suited for different tasks.

To begin, let’s open a horizontal window. Position the cursor about half way down the screen, the
window will be created from this cursor position. If the cursor is in the home or upper left corner
position when a horizontal window is created, the new window will automatically split the screen in
half. Now type <Alt-F10> to get the Window menu. To select horizontal split you can either type h, or
select the horizontal option and type <CR>. There should be a horizontal line across the screen which
is the window border. The cursor is now in the new window which is the active window. To switch
back to the upper window type F7. The cursor should now be in the upper window marking it as the
active window. The F7 key is used to switch between different windows.

15

Tutorial MODULA-2/86

Type F7 to activate the lower window. To close this window type <Alt-F10> to display the Window
menu and then select 'close’. The window is now gone but the space which it occupied on the screen
will not be reclaimed. To allow the current window access to the full screen you must reshape the
window. The reshape command in the Window menu will reshape a window by defining a new lower
right corner of the window. Display the Window menu <Alt-F10> and select ’reshape’, the cursor
should now be in the lower right corner of the window. Use the cursor keys to move the cursor
somewhere down towards the bottom of the screen and in toward the left margin, to redefine the
lower right corner of the window. Now type <CR> and the window will assume this new shape. If you
simply want the half window to become a full screen window, select the full screen option from the
Window menu <Alt-F10>.

Another type of window in mod is an overlapping window. Recall that with the horizontal-split
window both windows were displayed at the same time and you could switch between the windows
using the F7 key. Overlapping windows differ by actually overlapping one another on the screen. They
are created using the open command from the Window menu. The cursor position at the time the
open command is executed will define the upper left corner of the overlapping window.

Position the cursor at approximately the center of the screen. Type <Alt-F10> to call the Window
menu and select the open command. A new window should be created using the cursor position as
the upper left corner. Notice how this window overlaps the full screen window. Type F7 to switch
back to the first window. The new window disappears because the full screen window completely
overlaps the smaller one. Type F7 again to activate the smaller overlapping window. Close this
window by selecting the close command from the Window menu. When an overlapping window is

closed, the space which it occupied is now available to other windows without having to reshape
them.

You can open an unlimited number of windows, however, if you open more than six windows at a
time you will dramatically hinder the performance of the editor.

You should now have one window open which takes up the full screen. Type F3 to load a new file
called MODEX2.MOD into this window. Mod will ask you if it is okay to abandon the current text.
Answer yes to this prompt and Mod will load the file MODEX2.MOD.

SEARCH AND REPLACE

Mod allows you to search for a specified string and to replace occurrences of a specified string with a
new string. To search for a string, you type F10 to specify the string you want to find. All searches wil
begin from the current cursor position. The two commands to initiate a search are <Ctrl-S> for
forward search and <Ctrl-R> for a reverse or backward search through a file.

16

MODULA-2/86 Tutorial

Type F10 and enter the string Read. Because the cursor is at the beginning of the file start the search
with <Ctrl-S>. After the first occurrence you can continue to search by typing <Ctrl-S> as many times
as you need. Now position the cursor at the end of the file using the End key. Type F10 to select a
new search string. Type <Ctrl END> to delete the word 'Read’ and enter the word Lines. You can
now do a reverse search for the word ’Lines’ using <Ctrl-R>.

In addition to a simple search, you can also do a search and replace operation. The command <Ctrl-
Q> initiates the search and replace feature. Like the search commands, the search and replace will
start from the current cursor position and goes forward only, so if you want to search and replace
through an entire file you must first position the cursor at the top of the file.

Position the cursor at the beginning of the Module ModEx2 and type <Ctrl-Q> to start the search
and replace. The file MODEX2.MOD which you are currently editing has errors in it which need to
be changed. Mod will prompt you for the old string. Type the word string for the Old String. Mod
will then prompt for the New String. Enter the word String as the New String. Mod will now give you
the choice to have a query or non-query search and replace. A query replace means that at each
occurrence of the Old String, mod will stop and prompt the user befora. it replaces the Old String
with the New String. At this point select query search. The error you will now fix will be to replace
the word string with the proper spelling, String, in the identifier WriteString. Begin the search and
answer yes at the replace prompts. Notice how mod searches for the Old String even when it is only
part of a longer string.

SYNTAX CHECKING

Now that you have modified the file, you can quickly check for syntax errors from within mod using
the F2 function key. The syntax checker will check the entire file, so the current cursor position is not
important. Note: The syntax checker requires proper indentation of nested Modula-2 statements (i.e.
an indent factor of at least one). The syntax checker will either position you at the first error and
display the error message in a box or put up a box saying that no errors were found. In either case,
the box will disappear as soon as you type <ESC> or one of the cursor keys. Try checking your syntax
now by positioning the cursor at the end of the file and typing F2. There are syntax errors in the file
MODEZX2.MOD so the syntax checker should find them. Use the regular editing commands to fix
any errors that are detected and then recheck until no errors are found. Once the program is
syntactically correct you are ready to compile and link the program.

17

Tutorial MODULA-2/86

CONFIGURATION FILE

Mod is a syntax assisted editor. This means that with only one keystroke you can program mod to
create commonly used structures such as IF.THEN statements and PROCEDURE declarations.
There is a file called MOD.CON which is included on the mod diskette. This is the file which contains
the template information mod needs to build the Modula-2 statements.

‘When you start mod, it will search the current directory, and those directories specified by the Path
command for the standard file MOD.CON. The example MOD.CON file provided on the mod
diskette is a default configuration file which we created to get you started. MOD.CON is a standard
ASCII file so you can modify this file to better fit your programming style. If you edit the MOD.CON
and want to reload the new version you can save it first and then, type <Alt-F2> which will find and
load the modified configuration file.

To demonstrate the syntax assisted power of mod, let’s open a small practice window. To do this
move the cursor to the center of the screen and type <Alt-F10> to display the Window menu. Then
select 'open’ either by typing © or by using the cursor keys. You should now have an overlapping
window in the lower right corner of the screen.

The configuration file defines structures that are created using the keys <Alt-a> through <Alt-z>. To
start, type <Alt-h> for a program header. Mod will now write to the screen the outline for a program
header and then position the cursor at the first entry which is *Title’. Go ahead and fill in a title, date,
and your name. Now skip a few lines and try some of the other built-in statements like <Alt-i> for an
IF. THEN statement or <Alt-w> for a WHILE loop. Once you get accustomed to using this feature
you can add to the configuration file and modify it so that the templates are displayed exactly how

you want them.

To call the compiler and the linker from mod it is necessary to provide mod with information about
where to find the compiler and linker files. This compiler/linker drive specification information is also
included in the MOD.CON configuration file. You should still be in the overlapping window that you
created to practice the syntax assisted features of mod. Now type F3 and load the file called
MOD.CON. Mod will ask you if it should abandon any unsaved text before it allows you to load a
new file -- answer yes.

18

MODULA-2/86 Tutorial

The first line of this file is '@:c’ which is the compiler/linker drive specification for a hard disk system.
It tells mod to look for the compiler and linker files on the C drive. If you are using a dual floppy
system you should change this line to ’@:b’. If you modify MOD.CON remember to save the new one
by typing F4. Once the new MOD.CON is saved you can load it by typing <Alt-F2>. You can now
close the overlapping window you have been using by choosing the close command from the Window
menu. Mod will ask you if it should abandon any unsaved text before it lets you close a window. Once
the window is closed the Module ModEx2 should still be displayed on the screen in a full screen
window. Now you are ready to try compiling Module ModEx2.

HOW TO COMPILE

Before you try to call the compiler or linker from mod make sure that you have properly installed
both the compiler and the linker, properly set the MS DOS variables PATH and SET as explained in
the Installation chapter, and that you have a drive specification in the file MOD.CON telling mod
where to look for compiler/linker files. If you are using a dual floppy system, remember to put the
compiler disk into drive B.

To start the compiler type F5. Mod will display a prompt box asking what file to compile, with the file
MODEX2.MOD as the default. Type <CR> to begin compiling Module ModEx2.MOD. There are
errors in this file so don’t worry when the compiler tells you that an error is detected. The errors were
placed in the file so that you can learn how to use the GoToError feature of mod.

Before the compiler terminates it will quickly display the errors it found on the screen. After the
compilation is complete you will have to correct the errors in the Module ModEx2.MOD. Type
<ESC> to return to the editor. To correct the errors in the module, type <Alt-F5> which will put you
in GoToError mode. Mod will position you near the first error and display a box which tells you what
type of error was detected. In this case the error is ‘Identifier not declared’ refering to the identifier
LineCopied. The correct identifier is LinesCopied. Use the cursor keys to move to this error and
correct it by inserting the ’s’ into the identifier name.

To proceed to the next error type <Alt-F5> again. The error here is the same as the last one. Go
ahead and fix this one by changing 'LineCopied’ to 'LinesCopied’. Try typing <Alt-F5> again and mod
will tell you that there are no more errors which need to be fixed. Type FS to compile again. This time
the compilation should complete without any errors. If an error is found try fixing it the same way you
did before; if no errors are found you are ready to link the program.

19

Tutorial MODULA-2/86

HOW TO LINK

If you are using a dual floppy system remember to take the compiler disk out of drive B and insert
the linker disk in drive B. Now you can call the linker by typing F6. As with compilation, mod will
display a dialogue box asking which file to link with the file MODEX2.LNK as the default. Type
<CR> to start linking the program. The linker produces a .LOD file.

The linker will display its messages to the screen along with any linker error messages. Once the
linkage is complete you can return to mod by typing <ESC>.

HOW TO RUN A MODULA-2 PROGRAM FROM MOD

You can execute MODULA-2/86 programs (.LOD files) from mod. The file you try to run must be a
.LOD file. In the previous section you produced a file called MODEX2.LOD by linking the file
MODEX2.LNK. To run this program, first display the Files menu <Alt-F9> and select the run
command. Type the name of the file you want to run, MODEX?2, and press <CR>. The default file
extension is .LOD so it is not necessary to include this extension when you type the file name.

The program MODEX2 copies a specified number of lines from one file to another. The first prompt
will ask you to enter an input file. You can type MODEX2.MOD for the input file. The second
prompt will ask you for the lines to copy. Enter 10 at this prompt. The third prompt will ask for an
output file into which MODEX2 will copy the 10 lines. Type the file name TEST.TXT for the output
file. When the program terminates type <ESC> to return to mod.

MODEX?2 should have created a file called TEST.TXT. To see this file, open a new window by typing
<Alt-F10> to display the Windows menu and select horizontal split. Now get the file TEST.TXT by

typing F3 and then the file name. The first 10 lines of the file MODEX2.MOD were copied to the file
TEST.TXT.

EXITING MOD

To exit mod simply type <ESC>. If any files have been modified and not saved, mod will give you a
chance to save the modifications before it terminates.

20

MODULA-2/86 Tutorial

USING MODULA-2/86 WITHOUT THE EDITOR

All the components of MODUILA-2/86 function as stand alone parts. Therefore, once you have
written your MODULA-2 program, as long as you use your editor to create standard ASCII files, you
can evoke the Compiler, Linker and all the Utilities from the command line.

To run a MODULA-2 program you can still use the runtime system and run your program the same
way you were running it from within MOD. Or, if you use the utility LOD2EXE, you can create a
standar .EXE file and run your program without the runtime support.

Once you have completed the sample program, exit from MOD and try to compile, link and run your
program!

MODULA-2/86 is easy, flexible and extremely powerful.
HOW TO ANALYZE AND SOLVE PROGRAM EXECUTION ERRORS

There are three possible ways to analyze the execution error of a program. The simplest method is

the use of module 'Debug’ which provides you with limited debug information upon unsuccessful
program termination.

The next ’level’ of debugging is the use of the symbolic post-mortem debugger which allows you to
analyze the program status (content of variables) from a memory dump file produced upon
unsuccessful termination of the program.

The best tool to study the execution of a program is the symbolic run-time debugger which allows you
to follow the program execution in steps, analyze at certain breakpoints the variable contents, and
slowly approach the statement producing the execution error.

For further description of both symbolic debuggers, please refer to the corresponding chapters. The
following text explains in more detail the use of module ‘Debug’:

If the module 'Debug’ is linked to the application program, no dump file is generated. Instead, the
system generates a list of the call sequence within the current process that lead to the termination
displayed on the terminal. If the necessary reference files are available in the current directory, each
line displays the name of the procedure, its module and the source line number, where the next
procedure is called, or (in the case of the first line listed) where the program was stopped.

21

Tutorial MODULA-2/86

If there are missing reference files, the procedure names are replaced by procedure numbers within
the module, and the line numbers are replaced by the value of the instruction pointer. The module
body (module initialization code) is referred to as procedure zero. It is followed, in the order of their
declaration, by the procedures declared in the definition module, if any, and then by the other
procedures of the module. The Utility M2DECOD can be helpful to associate procedures numbers
with your code.

Sample Terminal Qutput
---> halt called

MODULE : Demo PROCEDURE : LastOne LINE : 48
MODULE : Demo PROCEDURE : RecursiveOne LINE : 37
MODULE : Demo PROCEDURE : RecursiveOne LINE : 38
MODULE : Demo PROCEDURE : FirstOne LINE : 24
MODULE : Demo PROCEDURE : Demo LINE : 57

---=> halt called

To be able also to debug all initialization codes of imported modules, module "Debug’ should be
forced to be initialized as the first module. This can be accomplished by importing it as the first
module in the main module of the application program.

22

MODULA-2/86

Tutorial

KEYSTROKES AND THEIR DEFINITIONS

The following section lists all the MODULA-2 Editor keystrokes and their definitions.

KEYSTROKE

DEFINITION

Esc

Enter, <CR>

Home
Ctrl-Home
End

PgUp

PgDn

Del

Tab

Escapes from prompt boxes and dialogue boxes and from the editor itself. If
you try to escape from the editor with unsaved modifications, you will be
asked if you really want to do this.

Inserts a line-break, moves down one line, and indents. Functions the same
as <Ctrl-O>, <Ctrl-N>, and <Tab>.

Moves to the beginning of a text. (Also valid in menus)
Moves the cursor to the top left corner of the window.
Moves to the end of a text. (Also valid in menus)

Slides the window upward over the text, approximately the height of the
window.

Slides the window down over the text, approximately the height of the
window.

If a block of text is selected, deletes it and places it in the scratchpad.
Otherwise deletes the character at the cursor position. If this is done
beyond the end of a line, it will join the following line to the current one.

Inserts the contents of the scratch pad at the current cursor position.

(Note: Tab, in mod, does not function as it does in most standard editors).
Moves the cursor to an appropriate beginning column for the current line.
If the current line has something on it, Tab moves the cursor to the first
non-blank. Otherwise, it looks backward for keywords or preceding text and

positions the cursor to an appropriate indentation according to Modula-2
syntax.

If a block of text is selected with F8, Tab will indent (move to the right) all
the lines by the indent factor.

23

Tutorial MODULA-2/86

KEYSTROKE DEFINITION

Alt-Tab If a block of text is selected with F8, Alt-Tab will ‘unindent’ (move to the
left) all the lines by the indent factor.

Shift Tab Moves to the end of the current line.

Ctrl--> Go to the next word.

Ctrl<-- Go to the previous word.

Ctrl-PgUp Scrolls the text up one line in the window.

Ctrl-PgDn Scrolls the text down one line in the window.

Ctrl-End Deletes the entire line including the line-break and loads it into the
scratchpad, replacing the old contents.

Ctrl-A Moves to the beginning of the current line.

Ctrl-B, <-- Moves the cursor Backward one character.

Ctrl-D See Del.

Ctrl-E Moves the cursor to the end of the current line.

Ctrl-F, --> Moves the cursor Forward one character.

Ctrl-K Kills the rest of the line, to the right and loads it in the scratchpad, replacing
the old contents.

Ctrl-L Redisplays the screen.

Ctrl-N,), Moves the cursor to the Next line.

Ctrl-O Opens a line: Breaks the line, or inserts a new line.

Ctrl-p, T Moves the cursor to the Preceding line.

Ctrl-Q Query replace: starting from the current position Replaces old string with

new string. If you answer yes to the Query mode, the replace will stop after
each old string found and ask for a confirmation; otherwise, it will replace
all occurrences.

Ctrl-R Searches in the Reverse direction for the current pattern.

Ctrl-S Searches in the Forward direction for the current pattern.

24

MODULA-2/86

KEYSTROKE

Tutorial

DEFINITION

F1

Alt-F1

Alt-F2
F3

Alt-F3
Ctrl-F3
F4
Alt-F4
Ctrl-F4
F5

Alt-F5

Help - Displays a very brief help text in a temporary window. (The help text
is in the file MOD.HLP, so you can edit it.) Type <ESC> to go back to your
text. All cursor movement keys are allowed to browse through the help text.

Gives system information about mod. Type <ESC> to go back to your text.

Syntax - Checks the syntax of the text as a Modula-2 module. It will either
position you to the first error and display the error message in a box, or put
up a box indicating that no errors were found. In either case, the box will go
away as soon as you type something. The syntax checker requires that you
properly indent your Modula-2 program.

Reloads the Configuration File.

Get - Prompts for a file name and loads the file in the current window. If
the file you edit is a .MOD file, you don’t need to specify the extension
'MOD’ because it’s used by default.

Splits the current window and asks for a file to load.
Opens a full window and asks for a file to load.
Save - Saves the current text in its associated file.
Go to the specified line.

Tells you at what line and column the cursor is.

Compile - Invokes the MODULA-2 Compiler. Note: mod can only run a
Compiler 2.0 or later. If the file has been modified, it will ask if you want
you want to save it.

Go to next error after compilation with errors. It loops on the error list
(maximum 30 errors). Allows you to work on an existing error listing file
(.LST) even if you didn’t evoke the compiler from the editor. This is very
useful to correct all the compiler errors after a batch compilation. Note:
This keystroke is supported only with Compiler 2.0 or later.

25

Tutorial MODULA-2/86

KEYSTROKE DEFINITION

F6 Link - Invokes the MODULA-2 Linker. Note: mod can only run a Linker
2.0 or later.

Alt-F6 Converts a number (eg: 123, -123, 0b00h, 867B, 45H) or a string (eg: ‘ab’,
"Ab", ‘a’, "a") into a cardinal, integer, octal, hex, binary, or string.

Ctrl-F6 Displays the ASCII table (file mod.asc)

F7 Next Window - Switches to another window. If repeated, this command will
cycle through all windows.

Ctrl-F7 Enters any byte value [00H..FFH] at the current cursor position. This

command is useful to enter a page break (=0CH) or special characters which
don’t exist on the keyboard.

F8 Select - Starts selecting a block of text. All direct motion commands (Home,
End, Arrows, Page Up, and Page Down) can be used to establish the other
end of the selected region. The selected text is highlighted. (F8 acts like a
switch -- if you make a selection and type F8 again, the second F8 cancels
the selection.)

F9 Main Menu - Calls up the Main Menu with the following commands:

= files
Calls up the File Menu. Functions the same as <Alt F9>.

= delete

Cuts a selected block of text from your program into the scratchpad;
removes the text from the program. Using FS8, first select a block of text.
"Delete’ this text and put it in the scratchpad.

= copy

Copies a selected block of text from your program into the scratchpad;
leaves the text in the program. Using FS8, first select a block of text. ’Copy’
into a scratchpad the text you've selected.

= paste
Pastes the text from the scratchpad into the window at the current cursor
position.

26

MODULA-2/86

KEYSTROKE

Tutorial

DEFINITION

Alt-F9

= quit
Exits the editor. Functions the same as <Esc>. If you have modified your

program, the editor will ask if you really want to exit without saving your
modifications. Y = yes, N or <Esc> = no.

= syntax
Checks to see if your program is syntactically correct. Functions the same as
F2.

s windows
Calls up the Window Menu. Functions the same as Alt-F10.

File Menu - Calls up the File Menu with the following commands:

= compile

Calls the MODULA-2 Compiler and prompts for the program you wish to
have compiled. Note: mod can only run a Compiler 2.0 or later. When
finished compiling, type <ESC> to return to the editor. If errors are
detected by the compiler, the errors are displayed on the screen and a listing
file with the error message is generated with the name, <prog>LST. You
can open a window in this file and check the errors, or better, use <Alt-F5>
to have an automatic positioning where the error occurred. Note: this
feature requires a system with at least 398K bytes of main memory.

Only the overlay version of the Compiler can be called from mod. You
cannot call 'M2C.EXE’, the fully linked version of the Compiler.

= get
Prompts for the file name and reads in the file. Functions the same as F3.

= link

Calls the MODULA-2 Linker and prompts for the program you wish to
have linked. Note: mod can only run a Linker 2.0 or later. When finished
linking, type <ESC> to return to the editor. Only the overlay version of the

Linker can be called from mod. You cannot call ’M2L.EXE’, the fully linked
version of the linker.

27

Tutorial

KEYSTROKE

28

MODULA-2/86

DEFINITION

F10

Alt-F10

= name

Allows you to change the name of a file. Especially useful if you want to
retain a copy of an old file as well as the modified version of this file. You
would rename the modified file and thus keep both files (MOD is the
default extension).

= run

Executes any MODULA-2/86 program that fits in memory (extension
.LOD). Note: mod can only execute a program generated with a Compiler
and Linker 2.0 or later. It prompts you for the name of the program you
wish to execute. When the program has finished, type <ESC> to return to
the editor.

= save
Saves the current text in its associated file. Functions the same as F4.

= write
Also saves text, but you specify the file name you wish to save. The default
proposes the current file name. (MOD is the default extension).

Pattern - Opens a window for editing the search pattern for editing. Note:
<ESC>’ inside the pattern window closes the pattern window and restores
the old pattern. ’Enter’ sets the new pattern and closes the window. Any
other command saves and closes the pattern, and is then executed,
including Search forward and Search backwards.

Window Menu - Calls up the Window Menu with the following commands:

= close

Closes the selected window. If more than one window is open, the one in
which the cursor is positioned disappears. The window that remains open
will retain its current shape, for example, half the screen if two windows
were opened. Use the reshape command to modify it.

MODULA-2/86

KEYSTROKE

Tutorial

DEFINITION

<Alt-a>..<Alt-z>

s hor. split

Splits the current window horizontally. First, define where you want to split

the window by positioning the cursor. Then select hor. split’ from the menu
to split the current window. If the cursor is in the upper left corner position
when the hor. split is invoked, the current window will automatically be split
in half. You then invoke F3 to get another file. This allows you to have two

or more windows open at the same time.

= move

Moves the current window. Select ‘move’ from the menu. Moving the cursor
defines the new position of the upper left corner of the window. Enter
<CR> to confirm this position and the window will move to this position.

= open
Creates a new window with the upper left corner at the current cursor
position. The size of the screen determines the size of the new window.

s reshape

Reshapes the current window. Select ‘reshape’ from the menu. Moving the
cursor defines the new position of the lower right corner of the window.
Enter <CR> to confirm this position and the window will reshape with the
new lower right corner.

= vert. split

Splits the current window vertically. First, define where you want to split the
window by positioning the cursor. Then select ‘vert. split’ from the menu to
split a current window. If the cursor is in the upper left corner position
when the vert. split is invoked, the current window will automatically be split
in half. You then invoke F3 to get another file. This allows you to have two
or more windows open at the same time.

= full screen

Makes the current window a full screen window which overlaps the other
windows. All other windows remain unchanged and can be visited using F7.
It is not the reverse operation of vertical or horizontal split.

Inserts a template in the current window of the current cursor position
(please refer to the Configuration File section).

29

Tutorial MODULA-2/86

CONFIGURATION FILE

The file ‘'mod.con’ is an ASCII file that contains system information and user definable templates for
the MODULA-2 Editor.

Select the Compiler/Linker Drive

The MODULA-2 Editor is compatible with MODULA-2/86 Release 2.0 or later. If you try to invoke
the MODULA-2 Compiler or Linker or run any MODULA-2/86 .LOD file, and you are using a
version earlier than 2.0, you will get the following error:

Bad File Structure
Type <ESC> to return to the editor.

If mod is in a different drive than the MODULA-2/86 Compiler and Linker, before you run the
Compiler or Linker from within mod, you must specify in the configuration file the drive in which to
search.

To tell mod that the Compiler and Linker are in drive C you type the following:
@:C
If you use a different drive-id, substitute your drive-id for ’C’. If you fail to indicate the drive in which

you keep the compiler or linker, when you try to invoke the compiler or linker you will get the
following error message:

Program Not Found

The same message is displayed when you try to run a MODULA-2/86 program (.LOD) and you do
not specify the correct drive and directory to tell where the .LOD is.

Select Indentation

The indent factor (the number of columns used to indent) is user programmable. The default is 2, so
if you wish to change the indent factor, simply type any number 0 to 9 after @:C. (The value 0
disables the indentation mechanism.)

30

MODULA-2/86 Tutorial

Select Backup Option

You can also specify if you want to keep the backup file by typing b in the configuration file
(mod.con). For example, to specify drive C, to define an indent factor of 4, and to indicate true for
the backupFlag type:

@:C4b

If you accidently try to invoke the compiler or linker, for example with F5 or F6, you can exit by
typing <ESC>. If, however, you begin compiling or linking, you must type <Ctrl-Break> to stop them.

User Definable Template

A template is a sequence of characters inserted in the currently open window when you press the
ALT key and a character [a..z] associated with the template.

The current version of the Configuration File contains templates for some frequently used Modula-2
constructs; for example, if you type <Alt-i> you will get the following template:

IF THEN

END
You can redefine the templates as you wish. The format of a template is:

@x
1st line of the template

Nth line of the template

When you type <Alt-x>, the lines following ’@x’ will be inserted in the current cursor position. The

first underscore character,’_’, found in the template lines will be the new cursor position after the

template is inserted. If there is no underscore the first character of the first line of the template will
be the new current cursor position. User definable templates are always called by typing <Alt-x>

where x is in the set [a..z].

31

Tutorial MODULA-2/86

You can modify the Configuration File with the MODULA-2 Editor itself. After you have saved the
Configuration File you can reload it by typing Alt-F2.

The maximum size for the Configuration File is 3000 bytes.

USING LOGITECH MODULA-2 EDITOR WITH A MOUSE

The LOGITECH MODULA-2 Editor can be used with a LOGITECH Logimouse. There is a file in
CLICK -- the control center of the mouse -- called mod.mnu which enables you to use pop-up menus

in mod. Please refer to your LOGIMOUSE documentation for more information about using mod
with LOGIMOUSE.

32

MODULA-2/86 Modula-2 TUTORIAL

MODULA-2 TUTORIAL FOR THE PASCAL PROGRAMMER

This tutorial is aimed mainly at Pascal programmers in transition to Modula-2. The fact that
Modula-2 evolved from Pascal makes it easy for Pascal programmers to familiarize themselves with
the new language.

There are two levels of differences between Modula-2 and Pascal. First, Modula-2 implements
modern software engineering, such as, data abstraction, functional abstraction, concurrency and more
frequent use of modular programs. All these features are not part of the standard Pascal definition,
neither are they present in any implementation. The second level of difference consists of relatively
minor changes in Modula-2 program syntax and constructs.

The most important difference is the introduction of the module.

Types of Modules

There are three types of modules in Modula-2. These are program modules, definition modules and
implementation modules. Program modules contain the source code for a user’s main program.
Program libraries are created from matched pairs of definition modules and implementation
modules. The source code for all types of modules is stored as standard text files and may be
modified by any text editor capable of working with these files. The naming convention for program
and implementation modules is MOD. Definition modules have the file extension .DEF.

Note: Most of the common word processors have program file modes which work with standard text
files.

33

Modula-2 TUTORIAL MODULA-2/86

Program Modules

A program module is the main module of a user program. A program consists of all the modules that
are referred to directly or indirectly by the main module. For program modules, the module code,
which is declared following the last ' BEGIN’, constitutes the main program. After initialization of all
imported modules, the program will start there.

The examples in the following section are program modules. Program modules have the following
form:

MODULE <modulename>;

Import from the library modules to use, if any, in the form:

FROM <modulename> IMPORT

<list of identifiers separated by commas>;

or:

IMPORT <modulename>;

Declaration of constants, types, variables and procedures.
BEGIN

Code of the main program.
END <modulename>.

The list of identifiers imported may contain the names of constants, types, variables and procedures
exported from a library module. These names must be separated by commas. Refer to Wirth’s book
Programming in Modula-2 for a more detailed explanation of the module syntax.

Definition Modules

Definition modules are used to define the interfaces between modules. By separating the definition of
the interface between modules from the implementation of those modules, the implementations may
be modified without having to recompile the entire system. As programmers involved with large
systems know, recompiling the entire system can be a very time consuming process.

34

MODULA-2/86 Modula-2 TUTORIAL

Definition modules have the following form:

DEFINITION MODULE <modulename>;
Import from the library modules to use, if any, in the form:
FROM <modulename>IMPORT
<list of names separated by commas>;
or:
IMPORT <modulename>;
EXPORT QUALIFIED
<list of names separated by commas>;
Declaration of constants, types, variables and procedures. Procedure declarations
consist of the procedure header only, including the parameter list.
END <modulename>.

Implementation Modules

Implementation modules contain the statements required to perform the functions defined in the

definition modules. They are similar in format to program modules except their module body does
not need to constitute a main program. Libraries are constructed from matching sets of definition

and implementation modules.

Implementation modules have the following form:
IMPLEMENTATION MODULE <modulename>;
Import from the library modules to use, if any, in the form:
FROM <modulename> IMPORT «<list of names separated by commas>;
or:
IMPORT <modulename>;
Declaration of constants, types, variables and procedures. Procedure declarations
consist of the header and body, including the code of the procedure.
BEGIN
Module initialization code.
END <modulename>.

35

Modula-2 TUTORIAL MODULA-2/86

The constants, types and variables declared in the corresponding definition module, must not be
repeated in the implementation. These names are known implicitly. However, for every procedure
specified in the definition part, a complete procedure, with matching name and parameter list, must
be contained in the implementation part.

Modula-2 is a language aimed at enhancing software production. The real advantage of using the
language is that it shortens development time. While the real time speed of a Pascal or Modula-2
compilers are important, we must look at the overall time involved in software production cycle. This
includes the time for software updates and alterations. With Pascal this often translates into a
significant additional programming effort. This extra effort ends up offsetting the benefit of short
Pascal compiling sessions. With Modula-2 such wasteful "domino effect” is minimized by using highly
independent module libraries.

The core of the Modula-2 language is smaller than that of Pascal. This is due to the fact that
Modula-2 has no predefined I/O statements, math functions or string manipulation routines, to name
a few. Instead, they are all imported from a variety of library modules. In a sense, Modula-2 really
practices what it preaches!

There are two main sections to this tutorial. The first section will allow a Pascal programmer to write
a Modula-2 program or to convert a Pascal program to Modula-2. The second section explains the
concept of the module.

The following section will discuss the differences in syntax and construct between Pascal and Modula-
2. This should allow a programmer to convert Pascal programs or to write new ones in Modula-2.

36

MODULA-2/86 Modula-2 TUTORIAL

The First Steps From Pascal To Modula-2

To demonstrate some basic syntax differences between Pascal and Modula-2, consider the following
simple number-squaring program:

MODULE FirstDemo;

(* List of imported procedures *)
FROM InOut IMPORT WriteString, Writelnt, Readlnt, WriteLn,

VAR Number, Square : INTEGER; (* Programs’ identifiers *)

BEGIN
(* ---------- Input ------- *)
WriteString("Type an integer "); Readlnt(Number);
(* ------ Processing ------ *)
Square := Number * Number;
(% --meeemee- Output ------ *)

WriteString("Number = "); WriteInt(Number,4); WriteLn,
WriteString("It’s square = "); WriteInt(Square, 6);
WriteLn;

END FirstDemo.

The following are new concepts specific to Modula-2 and demonstrated in the previous example:
= Modula-2 programs start with the reserved word MODULE followed by a program name.
The same name appears after the very last END statement. The program name takes no

arguments.

» All identifiers are case sensitive in Modula-2. Thus changing the case of one letter in an
identifier’s name is sufficient to create a new identifier name.

s Modula-2 reserved words are always in upper case letters.

= Comments are enclosed in (* and *). Modula-2 uses curly braces for sets, hence they do not
enclose comments as in Pascal. Modula-2 allows nested comments.

37

Modula-2 TUTORIAL MODULA-2/86

= All I/O procedures are imported from a library module, such as InOut in this case. Hence,
Pascal’s multipurpose WRITELN is replaced with a series of output procedures. Each
outputs only one item. If you look for the InOut module in Programming in Modula-2, by
Niklaus Wirth, published by Springer Verlag, you will find that it exports many procedures.
In our example we chose to "import” the four required procedures only.

More Differences

Labels and GOTO statements are no longer supported by Modula-2. To translate Pascal programs
with labels or GOTO statements, you need to rewrite your Pascal program.

Constants are declared similar to Pascal. Modula-2 allows for constant expressions to be used
wherever a constant is expected. Integer constants now include hexadecimal and octal numbers.
Thus 12AFH represents a hexadecimal number, by appending an "H’. Similarly, 27B is an octal
number, ending with a ’'B’. In addition, 27C represents the same octal number, but its type is CHAR.
Real constants are similar to those in Pascal. When expressed in scientific notation, only the
uppercase 'E’ must be used. All real constants require a decimal point.

Character and string constants are similar to Pascal with an enhancement. Single or double quotes
may be used to delimit them. Thus, "Hello" and "Hello’ are both acceptable, but "Hello’ is not. The
choice of delimiter may be dictated by the presence of a quote symbol as part of the string constant.
Thus "Don’t" forces the use of double quotes, since a single one is part of the string. Similarly, *They
have "some" children’ must be delimited by single quotes.

Modula-2 defines the following basic data types: integer, boolean, characters, real, cardinal and
bitsets. The first three types are used identically as in Pascal. Using reals has the restriction that
prevents it from being mixed with integers and cardinals in an expression. Predefined type converter
functions must be used. Cardinals are unsigned integers with values ranging from zero to an upper,
machine-fixed limit. While cardinals and integers are assignment compatible, they too cannot be
directly mixed in an expression. The bitset type is a predeclared set type for low level data
manipulation.

Modula-2 supports sets with some syntax modifications. Set constants are enclosed in curly braces.
Set types are defined with SET OF <enumerated or subrange types>:

. CONST OctalNumSet ={1,2,3,4,5,6,7,8}

= TYPE Binary = SET OF [0..1];

38

MODULA-2/86 Modula-2 TUTORIAL

Modula-2 implements a generous number of set operations, including the symmetric set differences.
Modula-2 supports enumerated types just like Pascal. Subranges are also similar, but Modula-2

requires them to be enclosed in square brackets. Why? This enables subrange types to be used in
defining array limits, as in:

TYPE SmallRange= [1.10];

BigRange = [1.100];

SmallArray = ARRAY SmallRange OF REAL;

BigArray = ARRAY BigRange OF REAL;

HugeArray = ARRAY SmallRange, BigRange OF REAL;
Table = ARRAY [1..10],[1..100] OF REAL;

Matrix = ARRAY [1..10,1..10] OF REAL; (* WRONG! *)

The above list also shows the difference between the two languages in declaring arrays. Modula-2
allows subrange types to be used. Moreover, multidimensional arrays must have the range of each
dimension separated by a comma. However, using multidimensional arrays in a program follows the
familiar Pascal notation.

Modula-2 regards character strings as merely an array of characters. In normal practices the ASCII
null (zero code) is used as a string terminator. However, it is possible to use slightly more elaborate
record structures to implement strings. String manipulation depends on library modules. The
standard string library offers the essential operations and treats strings as an array of characters.

Fixed records are no different in Modula-2 than in Pascal. Variant records have been extended to
allow for more than one variant field. In addition, the latter may have an ELSE clause option.

39

Modula-2 TUTORIAL MODULA-2/86

Consider the following example:

TYPE Material = (Element, Compound);
State = (Liquid, Gas, Solid);

ChemicalPointer = POINTER TO Chemical;

Chemical = RECORD
Name : ARRAY [1..40] OF CHAR;

Formula : ARRAY [1..20] OF CHAR;
CASE MaterialType : Material OF
Element: AtomicNumber : CARDINAL;
Valence : INTEGER;
AtomicWeight: REAL |
Compound:Molecularweight:REAL;
CationCharge,
AnionCharge:INTEGER;
CationName,
AnionName:ARRAY [1..15] OF

CHAR;
END;

CASE NormalPhysicalState:State OF
Liquid:LiquidDensity, BoilingPoint: ~ REAL |
Gas sVaporPressure,VaporTemp : REALI
Solid :SpecificGravity, MeltingPoint:REAL,

END;

40

MODULA-2/86 Modula-2 TUTORIAL

Dynamic records can be created and accessed using pointers. Their declaration is a bit more verbose,
using the keywords POINTER TO, as in:

MODULE PointerDemo;

(* Partial listing *)

TYPE CardPtr = POINTER TO CARDINAL;
ComplexPtr = POINTER TO Complex;
Complex = RECORD

Re, Imag : REAL;

END;

VAR CPtr : ComplexPtr;
(* Other variables declared here *)

BEGIN
New(CPtr); (* Create new dynamic record *)
(* Initialize to square root of minus one *)
CPtr".Re := 0.0; Cptr™.Imag := 1.0;
(* rest of the program *)

END PointerDemo.

41

Modula-2 TUTORIAL MODULA-2/86

As shown above, pointers are used with the carat symbol. The WITH keyword is also used in
Modula-2 to reference a record’s field name without the record-name-dot notation. A mandatory
END is required. Modula-2 allows one record identifier per WITH statement. There is no need for
the BEGIN keyword after the DO reserved word.

Creating dynamic variables with variant record structures uses the predefined NEW procedure and
includes variant tags as additional arguments. Recalling the variant record Chemical, and its realted
pointer type ChemicalPointer, we proceed to define the following pointer-typed variables:

VAR Iron, Water, Oxygen : ChemicalPointer;
and create dynamic variables using the above pointers:

(* Iron is an element and a solid at normal conditions *)
NEW(Iron,Element,Solid) ;

(* Water is a compound and a liquid at normal conditions *)
NEW(Water,Compound, Liquid);

(* Oxygen is an element and a gas at normal conditions *)
NEW(Oxygen,Element, Gas);

Since 1/0 operations are no longer part of the core Modula-2 language, the predefined Pascal FILE
OF <type> has no equivalent. Instead, File structures depend on the I/O library module used.

Modula-2 variable declaration is identical to that in Pascal with one additional feature. An absolute
address, enclosed in square brackets, may follow the variable name. For example:

VAR Screen[BS00OH:0H] : ARRAY [1.MAXCOL],[1.. MAXROW] OF CHAR;
Modula-2 has simplified the syntax of statement blocks. In Pascal loops or WITH statements, if the
DO reserved word was followed by BEGIN, there is a compound statement. Modula-2 has dropped

the BEGIN keyword after DO and replaced it with a mandatory END to close the loop or WITH
body.

42

MODULA-2/86 Modula-2 TUTORIAL

The IF statement is very similar to that in Pascal with the following changes:
= No need for BEGIN-END in THEN or ELSE clauses that have more than one statement.
s The IF construct must close with the END statement.

s The Pascal ELSEIF is now ELSIF, one letter shorter.

The above changes are shown in the following function to calculate your checking account balance.
For less than $500, a local bank charges you with a $5.00 service charge. For under $1500, you get
5.4% interest rate. Beyond that amount, you get a 9.4% rate.

PROCEDURE BankOnlt(Savings : REAL) : REAL;
VAR BankCharges, Interest : REAL;

BEGIN
BankCharges :=0.0;
IF Savings < 500. THEN
(* Apply a five dollar service charge *)
BankCharges := 5.00;
Interest := 5.4 (* percent *)
ELSIF Savings < 1500. THEN
(* same rate as above, but no charges *)
Interest := 5.4
ELSE (* Very nice account *)
Interest := 9.5;
END:; (* IF statement *)
RETURN (Savings * (1. + Interest/100.) - BankCharges);
END BankOnlt;

The CASE statement has also been enhanced in Modula-2. A much needed catch-all ELSE clause is
recognized. Statement sequences for each case are simply separated by vertical bars. The BEGIN-
END keywords are no longer needed for compound statements. Here is an example of using the
CASE statement to translate numeric school grades into letters:

43

Modula-2 TUTORIAL MODULA-2/86

CASE NumericGrade OF
90..100 : Grade :="A’;
Message := 'Very Nice work champ! ’|
80..89 : Grade := 'B’;
Message := Nice work’|
70..79 : Grade :='C’;
Message := 'OK, but you can do better’
ELSE Grade := 'F’;
Message := 'Sorry, you failed’;
END; (* CASE NumericGrade *)

Modula-2 has improved on loops where needed. The REPEAT-UNTIL loop is identical to its
implementation in Pascal. The WHILE-DO loop now requires a mandatory END statement to
bracket the loop. This is regardless of the number of statements inside the loop. No BEGIN keyword
is required after the DO. The FOR-DO loop has undergone even more changes. Like the above
WHILE loop, it must have an END statement. Modula-2 allows the loop counter to
increment/decrement by more than one, using the "BY" clause. These "steps” can be positive or
negative. Appropriately, Modula-2 no longer supports the Pascal DOWNTO keyword. Here is a
short program demonstrating the FOR-DO loop in its new construct.

MODULA-2/86 Modula-2 TUTORIAL

MODULE AreaUnderCurve;
(* Program to calculate area under curve Y = X*X between *)
(*zero and one. Simpson’s rule is used. *)

FROM InOut IMPORT WriteString, WriteLn,;
FROM ReallnOut IMPORT WriteReal;

VARY :ARRAY [1.11] OF REAL;
Increment, Area, SumEven, SumOdd : REAL;
i: CARDINAL

BEGIN

Increment ;= 0.1;

i=1

WHILE i <= 11 DO (* Initialize Y array *)
Y/i] := Increment * FLOAT(i) * FLOAT(i),
INC(i) (* Increment i by one *);

END:

(* Initialize summations *)

SumEven := 0.0; SumOdd := 0.0;

(* Start loop for summing even terms *)

FORi:=2TO 10 BY2 DO
SumEven := Sumeven + Y[i];

END;

(* Start loop for summing odd terms, counting back *)

FORi:=9TO 1BY-2DO
SumOdd := SumOdd + Y[i];

END;

Area := Increment / 3.0 *

(Y[1] + 4.0*SumEven + 2.0*SumQdd + Y[11]);
WriteString("Area for X~ 2 between 0 and 1 = ");
WriteReal(Area, 14); WriteLn,

END AreaUnderCurve.

Modula-2 introduces a new loop construct, the open loop. The keywords LOOP and END define the
open loop body. To exit such a loop an EXIT statement is used. The open loop is very flexible. An if
statement with EXIT placed right after the LOOP keyword gives the effect of a WHILE loop, as in:

45

Modula-2 TUTORIAL MODULA-2/86

i=0j=0; Q=00
WHILEi<10DO LOOP
IF i >= 10 THEN EXIT; END;

INC(i); INC(i);
INCG); INCGD) (*) =)+ %);
EN. D; ENi D,'

Similarly, placing the loop exit test just before the end of the loop simulates the REPEAT-UNTIL
loop.

i=0j=0 i=0je=0;

REPEAT LOOP
INC(i); INC(i);
INC(,i); INC(,i);

IFi=10 THEN EXIT; END;
UNTIL i = 10; END;

The loop exit test can be anywhere inside the loop body, as shown in the following example. The
program calculates the Bessel function of the first kind.

MODULA-2/86

MODULE BesselFunction;

FROM InQut IMPORT WriteString, WriteLn, ReadCard;

FROM ReallnOut IMPORT WriteReal, ReadReal;
CONST Epsilon = 1.0E-08;

VAR Sum, Term, X, Y,
Factorl, Factor2, Factor3, PowerTerm : REAL,
Order, i : CARDINAL;

BEGIN
WriteString("Enter order of Bessel function ");
ReadCard(Order); WriteLn;
WriteString("Enter argument ");
WriteReal(X),; WriteLn,
Sum :=0.0;i :=0;
Y:=-0.25*X *X;
Factorl := 1.0; Factor2 := 1.0;
Factor3 := 1.0; PowerTerm := 1.0;
IF Order > 0 THEN
FORi:=1TO Order DO
Factor3 := Factor3 * FLOAT(i);
PowerTerm := PowerTerm * X / 2.0;
END;
END;

Modula-2 TUTORIAL

47

Modula-2 TUTORIAL MODULA-2/86

i := 0; (* Initialize counter *)
LooP
Term := Factorl / Factor2 / Factor3;
Sum := Sum + Term;
(* Is added term insignificant ? *)
IF ABS(Term) < Epsilon THEN EXIT; END;
INC(i);
Factorl := Factorl *Y;
Factor2 := Factor2 * FLOAT(i),
Factor3 := Factor3 * FLOAT (i),
END;
(* Program flow resumes here after EXIT *)
Sum := Sum * PowerTerm, (* Last calculation *)
WriteString("Bessel Function = ");
WriteReal(Sum, 14); WriteLn; WriteLn,

END BesselFunction.

Each EXIT statement resumes program flow after the exited loop body. Therefore, to exit nested
open loops one needs as many exit statements as there are loops.

Functions and Procedures

Modula-2 considers a function as merely a procedure returning a value. Thus, the keyword
FUNCTION has been dropped and replaced with PROCEDURE. The other change implements a
RETURN statement that exits the function and returns the sought value. If there are any statements
after the RETURN, they will not be executed. Modula-2 functions only return basic types and
pointers.

Consider the following examples of a function to calculate the square root of a real number, using
Newton’s iterative method.

MODULA-2/86 Modula-2 TUTORIAL

PROCEDURE SquareRoot(X : REAL) : REAL;
CONST Epsilon = 1.0E-08; (* Tolerance factor *)
VARY : REAL; (* Local storage for square root *)

BEGIN
Y := X/ 2.; (* Initial guess for square root *)
REPEAT (* Improve guess by Newton’s iterations *)
Y=(Y+X/Y)/2;
UNTIL ABS(Y*Y - X) < Epsilon;
RETURNY (* back to caller *);
END SquareRoot;

An additional difference between the two languages, is that Modula-2 requires all procedures and
functions to include their names after the last END in the subprogram.

Like Pascal, Modula-2 allows parameter passing by value or by reference (using VAR declaration).
The latter makes it possible to simulate a function that returns structured data types. Modula-2 has
implemented an important new feature in parameter passing -- open arrays. This enables procedures
(and functions) to tackle arrays of consistent type, but varying in size. This makes it easier to write
general purpose routines in Modula-2. Open arrays are limited to one dimensional arrays. They are
declared in an argument list as ARRAY OF <type>, with no dimension limits. Inside the procedure
body the dimension bounds are mapped onto [0..<array size - 1>]. Modula-2 provides the predefined
HIGH() function to return the upper bound value for an open array. Thus an open array is mapped
onto [0.HIGH(<Open array name>)].

The following is an example for a routine to calculate the mean value of an array of reals.

49

Modula-2 TUTORIAL MODULA-2/86

PROCEDURE Mean(X : ARRAY OF REAL) : REAL;

VAR i : CARDINAL;
Sum : REAL;

BEGIN
Sum := 0.; (Initialize sum *)
FORi:=0TO HIGH(X) DO
Sum := Sum + X[i];
END;
RETURN Sum / FLOAT(HIGH(X) + 1);
END Mean,

Function Mean is able to handle arrays of varying sizes. The number of elements in the passed array
X is (HIGH(X) + 1). The example assumes that the entire array X is filled with data.

Procedural and functional types are supported in Modula-2. The following example demonstrates the
first type. The program below reads an array of cardinals from a file and sorts them. The sorting
routines are imported. The program examines the list size and depending on its value employs the
appropriate sorting method. For small arrays, the bubble sort is used. For medium arrays the Shell
sort is called upon. QuickSort is reserved for large arrays. To demonstrate the procedural type, the
program defines SortProc. It is a procedure taking two arguments: an array of cardinal and a scalar
type cardinal. The variable SortMethod is of SortProc type. In the IF statement we assign either
imported sorting procedure to SortMethod. Notice that the assignment does not involve any
procedural arguments. Following the IF statement is a call to SortMethod with a complete argument
list. The call will execute the assigned procedure (BubbleSort, ShellSort or QuickSort). Here is the
program:

50

MODULA-2/86 Modula-2 TUTORIAL

MODULE Sort;

FROM InOut IMPORT WriteString, ReadString,
WriteCard, WriteLn;
(* Modules FileIO and CardinalSortLib are fictitious *)
FROM MyFileIO IMPORT TextFile, EOF,
Assign, Reset, ReadCardinal, Close;
FROM CardinalSortLib IMPORT ShellSort, QuickSort,
BubbleSort;

(* Define a procedure type with an array of cardinals *)
(* and a scalar cardinal as arguments. *)
(* Imported sorting procedures must have same arguments *)

TYPE SortProc = PROCEDURE(VAR ARRAY OF CARDINAL; CARDINAL);

VAR CardinalList : ARRAY [1..5000] OF CARDINAL;
Num, i : CARDINAL;
Filename : ARRAY [1..14] OF CHAR;
F : TextFile
SortMethod : SortProc;

51

Modula-2 TUTORIAL MODULA-2/86

BEGIN
WriteString("Enter data filename ");
ReadString(Filename)
Assign(TextFile Filename),; Reset(F)
Num :=0;
WHILE NOT EOF(F) DO
INC(Num);
ReadCardinal(F,CardinalList[Num]);
END;
Close(F),; .
IF Num <= 30 THEN (* Small list, use bubble sort *)
SortMethod := BubbleSort (* No arguments *)
ELSIF Num <= 150 THEN (* Medium list => Shell sort *)
SortMethod := ShellSort (* No arguments *)
ELSE (* QuickSort used for large array *)
SortMethod := QuickSort (* No arguments *);
END;

SortMethod(CardinalList, Num); (* Sort list *)
FOR i := 1TO Num DO (* Display sorted list *)
WriteCard(i,5);
WriteString(’ ’);
WriteCard(CardinalList[i],6); WriteLn,
END;

END Sort.

Modula-2 provides PROC, a predefined parameterless procedure type. This is useful in creating
coroutines, which are discussed later.

Modula-2 provides a number of predefined functions and procedures. They are listed in Wirth’s
book, Programming in Modula-2.

52

MODULA-2/86 Modula-2 TUTORIAL

USE OF MODULES

User Definable Modules

Modula-2 implements library modules to benefit software productivity. This affects both the
individual programmer and a team of programmers working on a big project. One of the advantages
of library modules is that they minimize side effects between modules written by different
programmers or written at different times. This reduces debugging greatly and significantly improves
on software maintainability.

The virtue of modules stems from the fact that inter-module communication is spelled out and is not
ambiguous. This is done by specifying the objects exported and imported. As we have seen in
previous Modula-2 programs, there are invariably lists of imports. Each specifies the module from
which to import and the specific procedures imported. If the reader looks at the definition module
of, for example, module InOut, he will find all the imported items defined in that module (i.e. marked
for export). Modula-2 works on the principle that you can obtain an item only if it is made available
to you.

In Modula-2 a library module is made up of two parts: the definition and the implementation
modules. The definition module is regarded as the interface with client modules. All exported objects
are catalogued there. This includes constants, data types, variables and procedures. The
implementation module has all the detailed exported procedure code and additional local constants,
data types, variables and procedures. Optional module initialization code lines may be included.
Each of the definition and implementation modules are compiled separately. The programmer may
"improve"” on the implementation module by replacing old algorithms with more efficient ones. As
long as the exported objects are not altered, we only need to recompile the implementation module.

Consider the following example to demonstrate some of the above points. We present a small library
module to create and add complex numbers. The definition module is:

53

Modula-2 TUTORIAL MODULA-2/86

DEFINITION MODULE ComplexQOps;

EXPORT QUALIFIED
Complex, (* Type *)
MakeComplex, AddComplex; (* Procedures *)

TYPE Complex = RECORD Real, Imaginary : REAL; END;
(* Only procedure headings are needed *)

PROCEDURE MakeComplex(X, Y : REAL; (* Input *)
VAR C : Complex (* OQutput *))

(* Procedure to create a complex number from X & Y *)

(* components. *)

PROCEDURE AddComplex(A, B : Complex; (* Input *)
VAR C : Complex (* Output *));
(* Procedure to add complex numbers A & B to give C *);

END ComplexOps.

The definition module ComplexOps exports the "transparent” type Complex. The terminology refers
to types whose definition is made available to client modules. Modula-2 also allows the export of
"opaque" types, where the data type definition is not revealed. We will discuss this in more detail
later. For now, it is enough to say that there is the following difference between transparent and
opaque types: the ability of the client modules to have their own procedures (possibly available for
export) to manipulate the transparent types only. This privilege is denied with opaque types. Thus
clients modules of ComplexOps can develop and export procedure to subtract, divide and multiply
complex numbers. Their access to the components of type Complex makes it possible.

In general, definition modules need only the heading of the exported procedures, and the definition

module ComplexOps is no exception. In practice, the definition module should be the first one
written to set the module specification. In large software projects this is the appropriate thing to do.

54

MODULA-2/86 Modula-2 TUTORIAL

The implementation module is:
IMPLEMENTATION MODULE ComplexOps;
(* Type Complex has been defined in the definition module *)

PROCEDURE MakeComplex(X, Y : REAL; (* Input *)
VAR C : Complex (* Output *))

(* Procedure to create a complex number from X & Y *)
(* components. *)
BEGIN
C.Real := X;
C.Imaginary :=Y;
END MakeComplex;

PROCEDURE AddComplex(A, B : Complex, (* Input *)
VAR C : Complex (* Output *));
(* Procedure to add complex numbers A & B to give C *)
BEGIN
C.Real := A.Real + B.Real;
C.Imaginary := A.Imaginary + B.Imaginary;
END AddComplex;

END ComplexOps.

The implementation module does not contain the definition of type Complex. Since it is exported,
the compiler is already aware of it through the definition module. The exported procedures are listed
in the module. Imported objects are placed in either the definition or implementation module. If
there are imported data objects that are included in the definition module, the import list is located
in the latter module. Otherwise, import lists are located in the implementation module. Local
constants, data types, variables and procedures are of course included in the implementation module.

55

Modula-2 TUTORIAL MODULA-2/86

‘We spoke earlier of the ability to change and improve the code in the implementation module. In
certain cases this may require that exported transparent data types be modified. This poses a
problem since transparent types give library module developers little or no control over how client
modules use them. Most likely the sought improvement may be hindered because of potential data
type incompatibility between the old and new structures. A new sister module is created. However
this solution is not always a sound way to go.

While the above discussion refers to a rather specific case, it also points to a broader programming
aspect: full control over exported data types. Modula-2 has met this need by allowing opaque
exported types. In this case the definition module lists the name of the opaque type only. No type
structure is defined there. Instead, it is located in the implementation module. With the details about
the structure denied to client modules, the exporting module has the monopoly on procedures that
manipulate opaque types. Thus, with full control over opaque types comes the responsibility to

export every procedure needed to process the data types in question. Care in planning ahead must be
exercised.

Let us return to our complex number addition module. Complex numbers may be represented by
two dimensional rectangular coordinates (X,Y). Alternatively, the same (X,Y) point can be replaced
by polar coordinates: a modulus and an angle. While the two systems are equivalent, their
components represent different physical entities. It is possible to develop a library of complex
operations using rectangular coordinates and later change the implementation module to use polar
ones. Using an opaque complex type, the above transition is a smooth one.

Below is the new definition module for ComplexOps. Notice that the exported type Complex has no
structure definition associated with it.
DEFINITION MODULE ComplexQOps;
EXPORT QUALIFIED
Complex, (* Type *)
MakeComplex, AddComplex, (* Procedures *)
TYPE Complex; (* Is now opaque *)

(* Only procedure headings are needed *)

56

MODULA-2/86 Modula-2 TUTORIAL

PROCEDURE MakeComplex(X, Y : REAL; (* Input *)
VAR C : Complex (* Output *))

(* Procedure to create a complex number from X & Y *)

(* components. *)

PROCEDURE AddComplex(A, B : Complex; (* Input *)
VAR C : Complex (* Output *));
(* Procedure to add complex numbers A & B to give C *);

END ComplexQOps.

The implementation module is similar to the previous version. Within it the Complex type is now
fully defined. The fields of the type Complex have been renamed to remind the reader that
rectangular coordinates are used to represent complex numbers. Notice that opaque types must be
pointer to other structures. This is a mandatory requirement in Modula-2.

IMPLEMENTATION MODULE ComplexOps;
(* Type Complex uses rectangular coordinates *)

TYPE Complex = POINTER TO RECORD
XCoord, YCoord : REAL;
END;

PROCEDURE MakeComplex(X, Y : REAL; (* Input *)
VAR C : Complex (* Output *))

(* Procedure to create a complex number from X & Y *)
(* components. *)
BEGIN
NEW(C),;
C".XCoord := X;
C".YCoord :=Y;
END MakeComplex;

57

Modula-2 TUTORIAL MODULA-2/86

PROCEDURE AddComplex(A, B : Complex; (* Input *)
VAR C : Complex (* Output *));
(* Procedure to add complex numbers A & B to give C *)
BEGIN
C".XCoord := A*.XCoord + B~.XCoord;
C".YCoord := A”.YCoord + B”.YCoord;
END AddComplex;

END ComplexOps.

Below is the implementation module version that uses polar coordinates:

IMPLEMENTATION MODULE ComplexQOps;
FROM MathLib0 IMPORT sqrt, arctan, sin, cos;
(* Type Complex uses polar coordinates *)

TYPE Complex = POINTER TO RECORD
Modulus, Angle : REAL;
END;

PROCEDURE MakeComplex(X, Y : REAL; (* Input *)
VAR C : Complex (* Output *))

(* Procedure to create a complex number from X & Y *)
(* components. *)
BEGIN
NEW(C);
C™.Modulus :=sqri(X *X + Y *Y);
C . Angle :=arctan(Y / X);
END MakeComplex;

58

MODULA-2/86 Modula-2 TUTORIAL

PROCEDURE AddComplex(A, B : Complex; (* Input *)
VAR C : Complex (* Qutput *));
(* Procedure to add complex numbers A & B to give C *)

VARX, Y :REAL;

BEGIN
X := A".Modulus * cos(A”.Angle) + B".Modulus * cos(B".Angle);
Y := A”.Modulus * sin(A".Angle) + B".Modulus * sin(B".Angle);
MakeComplex(X, Y, C);

END AddComplex,

END ComplexOps.

The following changes took place:

Four required mathematical functions are imported from MathLib0Q.
The Complex type is defined using the Modulus and Angle fields.

The body of the two module procedures has been significantly changed.
Procedure AddComplex now calls procedure MakeComplex.

It is worthwhile pointing out that procedure MakeComplex in the very first implementation seemed
an extravagant export. After all, given the definition of Compleg, client programs can assign values to
the record fields effortlessly. The situation is quite the reverse with the opaque Complex. Client
modules now really need procedure MakeComplex, since they have no idea about its internal
structure. The rectangular and polar versions demonstrate this point.

Importing Procedures with Identical Names

‘With the incentive to develop library modules it is inevitable that the same procedure names appear
in more than one module. How do we resolve the conflict due to importing two identically named
routines? It is possible to omit the import list, thus importing the entire library. To use the imported
routine we use the same notation as with referencing fields of record structures. With the module
name constantly referenced, the compiler is able to distinguish which procedure we are calling.
Moreover, the program readability will enjoy the clarity too. Consider the following example.

59

Modula-2 TUTORIAL MODULA-2/86

MODULE ImportAllDemo

IMPORT InOut;
IMPORT MyFilelO;

VAR Filename : ARRAY [1..14] OF CHAR;
F : MyFilelO.TextFile; (* Imported type *)
Message : ARRAY [1..80] OF CHAR;
NumlLines : CARDINAL;

BEGIN;
InOut.WriteString("Enter file name ");
InOut.ReadString(Filename),; InOut.WriteLn,
REPEAT
InOut.WriteString("Enter number of lines ");
InOut.ReadCard(NumlLines); InOut.WriteLn;
UNTIL NumlLines > 0;

MyFilelO.Assign(F, Filename);

MyFilel O.Reset(F);

InOut. WriteString("Enter text "); InOut.WriteLn,;

REPEAT
InOut.ReadString(Message);
MyFilelO.WriteString(F,Message);
DEC(NumLines);

UNTIL NumLines = 0;

MyFilelO.Close(F);

END ImportAllDemo.

In the above example we can distinguish for each call to procedure WriteString whether it is imported
from modules InOut or MyFilelO.

60

MODULA-2/86 Modula-2 TUTORIAL

Standard Library Modules

Modula-2/86 comes with a variety of versatile library modules. They supply users’ programs with a
wide gamut of capabilities. This includes string manipulation, file I/O, disk directory access, data
conversions, mathematical functions, DOS and low level access, coroutines, just to name a few. Many
of the above routines are part of Pascal, but not Modula-2. Thus Modula-2 depends heavily on a
core or fundamental library modules. The reader is referred to other parts of the manual where the
definition modules are discussed.

There are three small but very important modules -- SYSTEM, Storage and Processes. We will
discuss these modules because they export low level and process management routines.

The module Storage tackles the allocation and deallocation of dynamic variables. The ALLOCATE
and DEALLOCATE procedures are defined as:

PROCEDURE ALLOCATE(VAR a : ADDRESS; size : CARDINAL)
PROCEDURE DEALLOCATE(VAR a : ADDRESS; size : CARDINAL)

where ADDRESS is a pointer to a memory location imported from module SYSTEM. These are
equivalent to calling the NEW and DISPOSE procedures used for the same purpose. The following
demonstrates how the two sets of procedures work identically. Let us define the following data types
and variable.

TYPE Ptr = POINTER TO Element;
Element = RECORD
Volume, Weight : REAL;
Name : ARRAY [1..80] OF CHAR;
END;

VAR Indicator : Ptr;

61

Modula-2 TUTORIAL

Calling NEW(Indicator) and ALLOCATE(Indicator, TSIZE(Element)) yield the same result:
creating a dynamic variable accessed through the pointer Indicator. TSIZE() is a function imported
from module SYSTEM that returns the size of any data type. Similarly, DISPOSE(Indicator) and
DEALLOCATE(Indicator, TSIZE(Element)) both undo the effect of the above procedures.

Let us demonstrate the use of the ALLOCATE and DEALLOCATE procedures in developing a

short dynamic string library module.

62

DEFINITION MODULE DynamicString;

EXPORT QUALIFIED STRING, NewString, RemoveString,
AssignString, Length;

TYPE STRING; (* Opaque type *)
PROCEDURE NewString(VAR S : STRING; (* Output *)

MaxLength : CARDINAL (* Input *));
(* Create a dynamic string *)

PROCEDURE RemoveString(VAR S : STRING; (* Input *));

(* Remove a dynamic string *)

PROCEDURE AssignString(VAR S : STRING; (* Output *)
A : ARRAY OF CHAR (* Input *))

(* assign an array of characters to a STRING *)

PROCEDURE Length(S : STRING) : CARDINAL;
(* Function to return string length *);

END DynamicString.

MODULA-2/86

MODULA-2/86 Modula-2 TUTORIAL

The implementation module is:

IMPLEMENTATION MODULE DynamicString

FROM SYSTEM IMPORT ADDRESS, TSIZE;
FROM Storage IMPORT ALLOCATE, DEALLOCATE;

TYPE STRING = POINTER TO RECORD
Long,
MaxLong : CARDINAL;
Element : ADDRESS;
END;

PROCEDURE NewString(VAR S : STRING; (* Output *)
" MaxLength : CARDINAL (* Input *));
(* Create a dynamic string *)

BEGIN
NEW(S);
WITH S DO
Long :=0;
MaxLong := MaxLength;
ALLOCATE(Element, + MaxLong),
END;
END NewString;

PROCEDURE RemoveString(VAR S : STRING; (* Input *));
(* Remove a dynamic string *)

BEGIN
WITH S DO
DEALLOCATE(Element, + MaxLong);
END;
DISPOSE(S);
END RemoveString;

63

Modula-2 TUTORIAL

PROCEDURE AssignString(VAR S : STRING; (* Output *)
A : ARRAY OF CHAR (* Input *))
(* assign an array of characters to a STRING *)

VAR Ptr : POINTER TO CHAR;

BEGIN
IF A[0] <> 0C THEN
i=0
WHILE (i <= HIGH(A)) AND (A[i] <> 0C) DO
Ptr :=S".Element + i * TSIZE(CHAR);
Pt o= Afi];
INC(@);
END;
S™.Long :=i+ I;
ELSE
S”.Long := 0 (* Empty string *);
END;
END AssignString;

PROCEDURE Length(S : STRING) : CARDINAL;
(* Function to retumn string length *)

BEGIN
RETURN S”.Long;
END Length;

END DynamicString.

MODULA-2/86

The next module we examine is SYSTEM. It exports three data types: WORD, ADDRESS and
PROCESS. The type WORD corresponds to one hardware storage unit. For example, the types
CARDINAL and INTEGER use one WORD of storage. The type ADDRESS is defined as

POINTER TO WORD. The type PROCESS is used in declaring coroutines.

64

MODULA-2/86 Modula-2 TUTORIAL

The type WORD opens the door for some data conversion and the creation of general purpose
(generic) routines. Recall that Modula-2 routines accept open arrays of any type in their argument
lists. The ARRAY OF WORD is no exception and is compatible with any type, scalar or otherwise.

In the first example of using WORD we demonstrate the compatibility between CARDINAL and
INTEGER. Each type occupies one WORD of storage, a key feature in the example. The following
procedure searches an array of either types. The index of the matched element is returned. A
boolean flag is used to indicate whether the returned value reflects a successful search. We assume
that the array values are in the range [0..32767], the common value range for integers and cardinals.

PROCEDURE SearchArray(A : ARRAY OF WORD; (* Input *)
S : WORD (* Input *)
VAR Found : BOOLEAN (* Output *)) : CARDINAL;

VAR i, SoughtValue : CARDINAL;

BEGIN
Found := FALSE; (* Default outcome *)
i »= 0; (* Zero search index *)
SoughtValue := CARDINAL(S);
WHILE (i <= HIGH(A)) AND (NOT Found) DO
IF CARDINAL(A[i]) = SoughtValue THEN (* Found it! *)
Found := TRUE
ELSE (* Next element? *)

INC(i);

END;
END; (* WHILE *)
RETURN i;

END SearchArray;

Using ARRAY OF WORD to create generic modules is more elaborate when handling multi-word
data structures. Since the processed object size varies, we must supply a single "sample" type in the
generic procedure argument list. The above sample type is used as a template to determine the type
size and provide local scalar variables. Another set of needed parameters is the user-supplied
operations, such as comparisons, performed on the data objects. This is supplied in the form of
procedural or functional parameters.

65

Modula-2 TUTORIAL MODULA-2/86

Let us present a simple procedure to perform a generic linear list search on an array:

PROCEDURE GenericLookUp(VAR SearchArray : ARRAY OF WORD;
SampleScalarType,
SearchValue : ARRAY OF WORD;
IsItEqual : SuppliedPROC;
VAR Found : BOOLEAN) : CARDINAL;

VAR Num, TypeSize, Searchindex : CARDINAL;

PROCEDURE GetElement(Index : CARDINAL;

VAR Object : ARRAY OF WORD);
(* Procedure to extract one object *)
VAR i: CARDINAL;

BEGIN
FOR i =0 TO TypeSize-1 DO
Object[i] := SearchArray[(Index*TypeSize + i);
END;
END GetElement;

BEGIN
TypeSize := HIGH(SampleScalarType) + 1;
Num := (HIGH(SearchArray) + 1) DIV TypeSize;
SearchIndex := 0;
Found := FALSE;
WHILE (SearchIndex < Num) AND (NOT Found) DO
GetElement(Searchindex, SampleScalarType);
IF IsltEqual(SampleScalarType, SearchValue) THEN
Found := TRUE
ELSE
INC(Searchindex),
END;
END;
RETURN Searchindex;
END GenericLookUp;

66

MODULA-2/86 Modula-2 TUTORIAL

In the above example we supply an array of objects via SearchArray. The SearchValue and
SampleScalarType variables supply the searched value and an additional internally needed copy of the
single object. The local procedure GetElement is used to extract a member of the search array and
save it into SampleScalarType. The user-supplied function IsItEqual is used in comparing the search
value with an array element.

Below is a sample for the IsItEqual function dealing with date records. Local pointers are used to
access the record structure in question. Once the pointer addresses are assigned, the RETURN
statement supplies the logical result for the two-field test.

PROCEDURE IsItEqual(Element I,
Element2 : ARRAY OF WORD) : BOOLEAN;

VAR Ptrl, Ptr2 : POINTER TO RECORD
DayNumber, MonthNumber : CARDINAL;
END;
BEGIN
(* Get pointers addresses *)
Ptrl := ADR(Element1);
Ptr2 := ADR(Element2);
RETURN ((PtrI".DayNumber = Ptr2”.DayNumber) AND
(Ptr1”.MonthNumber = Ptr2".MonthNumber)),
END IsltEqual;

Module SYSTEM has three address related functions. ADR(Z) returns the address of identifier Z.
Functions SIZE and TSIZE return the sizes of a variable and data type, respectively.

The rest of the exported routines tackle concurrency. Consider the following simple example. It
continuously displays the messages "In Coroutine <n>", where <n> follows the sequence [1,2,3].

67

Modula-2 TUTORIAL

68

MODULE ConcurrentDemo;

FROM InOut IMPORT WriteString, WriteLn;
FROM SYSTEM IMPORT WORD, PROCESS, ADR, SIZE, NEWPROCESS,
TRANSFER;

VAR main, Coroutinel, Coroutine2, Coroutine3 : PROCESS;
WorkSpace 1, WorkSpace2,
WorkSpace3 : ARRAY [1..200] OF WORD; (* Workspace *)

PROCEDURE Messagel;
BEGIN
LOOP

WriteString("In Coroutine # 1");
WriteLn,

TRANSFER(Coroutine 1, Coroutine2);

END;

END Messagel;

PROCEDURE Message2;
BEGIN
LOOP
WriteString("In Coroutine # 2");
WriteLn;
TRANSFER(Coroutine2, Coroutine3);
END;
END Message2;

PROCEDURE Message3;
BEGIN
LOOP
WriteString("In Coroutine # 3");
WriteLn;
TRANSFER(Coroutine3, Coroutinel);
END;
END Message3;

MODULA-2/86

MODULA-2/86 Modula-2 TUTORIAL

BEGIN (* main *)

(* Create the new Coroutines *)

NEWPROCESS(Messagel, ADR(WorkSpacel),
SIZE(WorkSpacel), Coroutinel);

NEWPROCESS (Message2, ADR(WorkSpace2),
SIZE(WorkSpace2), Coroutine2);

NEWPROCESS (Message3, ADR(WorkSpace3),
SIZE(WorkSpace3), Coroutine3);

TRANSFER(main, Coroutinel);

END ConcurrentDemo.
The above program shows that each coroutine is created using the NEWPROCESS procedure taking
the following arguments:

= Parameterless procedure name. The procedure must be at the top level in the module and
not nested within another routine.

= The address of a coroutine workspace (for stacks and other items).
= Size of the workspace.

= A PROCESS typed variable to be associated with the coroutine name.

Our example uses three variables, each 200 WORDS long, to reserve the needed workspaces. An
alternate route is to dynamically allocate the workspace sizes.

The coroutine example also shows how coroutines are activated. The TRANSFER procedure is used
to request the activation of a new coroutine while suspending the old one. When ConcurrentDemo
first runs, the three coroutines are created. Next, the main section transfers the attention of the CPU
to the first coroutine and suspends itself. An infinite sequence of tasks begins. Each coroutine
displays a message and transfer CPU control to another coroutine, and so on. Coroutine procedures
are parameterless, as stated earlier, and contain their code inside an infinite open loop.

69

Modula-2 TUTORIAL MODULA-2/86

IOTRANSFER is another procedure exported by SYSTEM and works similar to TRANFER. It is
oriented towards tackling device interrupts. Since these interrupts take place beyond the program’s
control, there must be an automatic way to handle them. IOTRANSFER shifts the control from a
first process to a second one, but is able to resume the first when an interrupt occurs.
IOTRANSFER takes a third parameter, the interrupt vector number. Module SYSTEM also
exports procedure LISTEN. This causes the coroutine to wait for an IOTRANSFER to take place.

Synchronization between coroutines is vital in keeping their liveliness. This assures that every process
maintains its vitality. Using a single CPU, each process must run for a short period of time and then
be suspended to allow others to resume likewise. The above coordination becomes more critical
when the same data is accessed by more than one coroutine. In this case it is imperative to ensure
that only one process manipulate data. This means that other coroutines must wait for their turn to
access the same data. The overall picture depicts two waiting queues: one for processes simply
waiting their turn to use the CPU, the other for processes waiting to access a critical data item.

The module Processes exports items needed to accomplish the above sought synchronization. The
definition module is:

DEFINITION MODULE Processes;

EXPORT QUALIFIED SIGNAL, init, SEND, WAIT, Awaited,
StartProcess;

TYPE SIGNAL; (* Opaque type used by processes to *)
(* communicate with each other *)

PROCEDURE Init(VAR S : SIGNAL); (* Initialize signal *)
PROCEDURE SEND(VAR S : SIGNAL); (* Send signal *)

PROCEDURE WAIT(VAR S : SIGNAL); (* Wait for signal *)

70

MODULA-2/86 Modula-2 TUTORIAL

PROCEDURE Awaited(S : SIGNAL) : BOOLEAN;
(* Function to return if a signal is awaited *)

PROCEDURE StartProcess(P : PROC; WorkSpace : CARDINAL); .
(* Start process P with WorkSpace bytes *);

END Processes.

In the above module, type SIGNAL is used for process inter-communication. Procedure Init is used
to initialize a signal. Procedure WAIT suspends a process while waiting for a particular signal to be
sent (using SEND) by another process. To demonstrate how the above data type and procedures are
used, consider the following program. It takes an array of reals from the keyboard and calculates the
corresponding average and standard deviation values. These statistics are evaluated using the sums
of the observations and their squared values which can be evaluated concurrently. A coroutine is
employed to update the sum of squares, while the main program calculates the sum of observations.
Since each array element is accessed by the main program and the coroutine, we need to synchronize
their access. Let us present the listing and then resume our discussion.

MODULE Synchronicity;

FROM Processes IMPORT SIGNAL, Init, SEND, WAIT,
StartProcess;
FROM InOut IMPORT WriteString, WriteLn, ReadCard,
WriteCard;
FROM ReallnOut IMPORT ReadReal, WriteReal;
FROM MathLib0 IMPORT sqrt;

CONST MAX = 100;

VAR Count, NumData : CARDINAL,
GoAheadMakeMyDay : SIGNAL;
SumX, SumXX, Average, StdDeviation : REAL;
X :ARRAY [1.MAX] OF REAL;

PROCEDURE GetSumSquare;
(* Process to calculate sum of data squares *)

71

Modula-2 TUTORIAL MODULA-2/86

BEGIN
(* Message displayed first time process is invoked *)
WiriteString(’Start squaring’); WriteLn;
LOOP
WAIT(GoAheadMakeMyDay); (* wait for a go signal *)
WriteString(’Squaring observation # °);
WriteCard(Count,4); WriteLn,
SumXX := SumXX + X[Count] * X[Count];
SEND(GoAheadMakeMyDay);
END;
END GetSumSquare;

PROCEDURE GetData;
VAR i: CARDINAL;

BEGIN
REPEAT
WriteString(’Enter number of data (<100) °);
ReadCard(Numdata)
UNTIL (NumData <= MAX) AND (NumData > 2);

FORi:= 1TO NumData DO
WriteString(’Enter observation # °);
WriteCard(i,4); WriteString(’ °);
ReadReal(X[i]); WriteLn,

END;

END GetData,

72

MODULA-2/86 Modula-2 TUTORIAL

BEGIN
GetData;
WriteString('All data entered’); WriteLn;
Init(GoAheadMakeMyDay);
(* Initialize counter and statistical summations *)
Count := I;
SumX :=0.0; SumXX := 0.0;
StartProcess(GetSumSquare,400);
SEND(GoAheadMakeMyDay);
LOOP
WAIT(GoAheadMakeMyDay);
WriteString(’Summing observation # °);
WriteCard(Count,4); WriteLn;
SumX := SumX + X[Count];
INC(Count); (* Increment global data counter *)
(* Are all the observations processed? *)
IF Count > NumData THEN EXIT END;
(* Signal for GetSumSquare process to resume *)
SEND(GoAheadMakeMyDay);
END;
Average := SumX / FLOAT(NumData);
StdDeviation := sqrt((SumXX - SumX * SumX /
FLOAT(NumData)) /
(FLOAT(NumData - 1));
WriteString(’Average =’);
WriteReal(Average, 14); WriteLn;
WriteString(’Standard Deviation =°);
WriteReal(StdDeviation, 14); WriteLn,
END Synchronicity.

73

Modula-2 TUTORIAL MODULA-2/86

‘When the program starts it first prompts for keyboard data entry, performed by procedure GetData.
The main program proceeds with a confirmation message followed by initializing the process signal.
After the appropriate variable initializations process GetSumSquare is triggered. In turn it displays
the "Start squaring” message once and waits for a signal. The control is briefly transferred back to
the main program only to execute the SEND procedure and return us to the coroutine. The open
loop is resumed and the message "Squaring observation 1" is displayed followed by the first update of
the sum of squares. Having accessed the first array member, X[1], the coroutine signals to the main
program for it to resume. The message "Summing observation 1" is displayed, sum updated and
counter incremented. This is followed by a test to determine if all the data have been processed and

the loop is accordingly exited. Otherwise the main program signals the coroutine to perform its task
and another cycle of calculations is executed.

74

MODULA-2/86: IMPLEMENTATION FEATURES

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

5.1 SYSTEM DEPENDENT FACILITIES

This chapter gives an overview of the MODULA-2/86 specific low-level features. The chapter

Priorities and Interrupts gives additional information on hardware dependencies.

The differences in programming for various implementations can be attributed to the following:
= Changes to the language proper.

= Differences in the set of available procedures and data types which reflect the structure of
the machine used.

= Differences in the internal representation of data.
= Differences in the set of available modules, in particular those for handling files and
peripheral devices.
The last item reflects the environmental aspects of Modula-2 -- the set of standard library modules

that allow access, for example, to the file system, the keyboard and the screen.

A description of the MODULA-2/86 library is given in the library section of this manual.

WARNING

All features described in this chapter should be applied with utmost care, since their use might
conflict with the basic software of the operating system, and the MODULA-2/86 system.

75

SYSTEM DEPENDENT FACILITIES MODULA-2/86

5.1.1 Language Extensions

Constants of type ADDRESS may be declared as <segment:offset>, where the segment and offset are
CARDINAL numbers. The segment and offset may not be constant expressions.

Examples:

CONST int3Addr = OH: 12H;

TYPE ScreenType =
ARRAY [0..24] OF (*rows *)
ARRAY [0..79] OF (* columns *)
RECORD char, attr: CHAR END; (* content *)

VAR screen [0BOOOH:0H] : ScreenType;

a := 1234:5678; (* assume ’a’of type ADDRESS *)

MODULA-2/86 also provides for the declaration of absolute variables. Absolute variables are
variables for which the programmer, rather than the MODULA-2/86 compiler, defines the memory
address at which the variable will be located. This feature is intended to be used for memory-mapped
input and output.

When declaring an absolute variable, the identifier denoting it must be followed by an address
constant in brackets. The address constant defines the absolute address of the variable in memory.
The variable ’screen’ in the above example is declared as an absolute variable.

5.1.2 Address Arithmetic

In Modula-2, the standard module 'SYSTEM’ provides the type ADDRESS. The use of the type
ADDRESS and the operations on objects of type ADDRESS, must be considered non-portable. The
implementation of ADDRESS operations is very dependent on the architecture of the target system.
The structure of a computer may restrict the operations that are possible on objects of type
ADDRESS.

76

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

5.1.2.1 Interpretation of Objects of Type ADDRESS

Objects of type ADDRESS denote a particular location in memory. Type ADDRESS is compatible
with any pointer type. Objects of type ADDRESS can be used as if there were two different type
definitions for type ADDRESS:

» TYPE ADDRESS = POINTER TO WORD;

= TYPE ADDRESS =RECORD
OFFSET: CARDINAL;
SEGMENT: CARDINAL;
END;

Example:
If we assume the declarations:

VAR
a: ADDRESS;
w: WORD;
off,seg: CARDINAL;

then the following statements are legal:

a’=ww:=a";

a.OFFSET := off; off := a. OFFSET;
a.SEGMENT := seg; seg := a. SEGMENT
WITH a DO SEGMENT := seg END;

5.1.2.2 Operations Involving Objects of Type ADDRESS

A restricted set of arithmetic operations on objects of type ADDRESS is possible. The switch and
compiler option T’ determines whether or not test code is generated for ADDRESS operations.

77

SYSTEM DEPENDENT FACILITIES MODULA-2/86

ADDITION AND SUBTRACTION

Addition and subtraction are allowed in expressions of type ADDRESS. An ADDRESS expression
contains exactly one operand of type ADDRESS. All other operands must be of type CARDINAL.
The operation is only performed with the OFFSET value of the ADDRESS - the SEGMENT value
is never modified. If test code is on, the run-time error ’address overflow’ will occur upon an overflow
of the OFFSET value on an addition or subtraction operation.

The standard procedures INC and DEC can also be used with variables of type ADDRESS. The
following declarations are assumed:

= PROCEDURE INC (VAR a:ADDRESS; k:CARDINAL);
= PROCEDURE DEC (VAR a:ADDRESS; k:CARDINAL);

Note that in particular, the second parameter must be assignment compatible with type CARDINAL.
If test code is on, negative values will generate a run-time error. Using INC and DEC is the preferred
way to do ADDRESS arithmetic.

The following list shows the kinds of expressions involving operands of type ADDRESS which are
valid. Each operand itself may be an expression of the corresponding type.

Operation 1st Operand 2nd Operand Result Type
addition ADDRESS CARDINAL ADDRESS
addition CARDINAL ADDRESS ADDRESS
subtraction ADDRESS CARDINAL ADDRESS

MULTIPLICATION AND DIVISION

Multiplication and division operations (*, /, MOD, DIV) are not allowed with operands of type
ADDRESS.

78

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

COMPARISON

The comparison of two operands, or expressions, of type ADDRESS is allowed. The following
explains the restrictions and how the comparison is implemented:

= Operations ’equal’, ’not-equal’:

A check on (non-) identity is generated: al = a2 <--> (al.SEGMENT = a2.SEGMENT) AND
(al.OFFSET = a2.OFFSET)

= Operations ’greater-than’, ‘greater-equal’, ’less-than’, ’less-equal’:

These operations are allowed only between addresses within the same segment - if the
SEGMENT values of both operands are identical. They compare the OFFSET values only.

The result of these operations is undefined if the two ADDRESS operands compared have
different SEGMENT values. If test code is on, the run-time error *address overflow’ will
occur when the SEGMENT values are not equal.

5.1.2.3 Dereferencing Pointers

The switch and compiler option T’ determines whether or not test code is generated for accessing
data through pointers.

If test code is on, any pointer with an offset equal to OFFFFH is considered to be NIL. Therefore,
any access through such a pointer is illegal and will result in a run-time error.

The predefined constant NIL, which is compatible with all pointer types, has the internal
representation OFFFFH:OFFFFH. It is strongly recommended that no program makes use of this

information. The representation of NIL is implementation dependent and subject to change without
notice.

79

SYSTEM DEPENDENT FACILITIES MODULA-2/86

5.13 The Module SYSTEM

The module SYSTEM offers additional facilities to programs written in the Modula-2 language. Most
of them are dependent upon the implementation or are specific to the target processor. Module
SYSTEM also contains types and procedures which allow very basic coroutine handling.

Module SYSTEM is directly known to the compiler because its exported objects obey special rules
that must be checked by the compiler. If a compilation unit imports objects from module SYSTEM,
no symbol file need be supplied for this module. However, the declaration of these objects in the
import list is required.

Furthermore, no link file exists for this module. The implementation of the pseudo module SYSTEM
is realized by inline code or by calls to the MODULA-2/86 run-time support, generated by the
compiler.

The interface of the pseudo module SYSTEM cannot be described completely with a regular
Modula-2 definition module. Module SYSTEM offers some features which expand the language
itself. However, for easy reference, a description of module SYSTEM in a form similar to a definition
module has been included in the library section of this manual.

For additional information please refer to Chapter 12 of the Modula-2 Language Report in
Programming in Modula-2.

5.13.1 Constants Exported from Module SYSTEM
= AX, BX, CX, DX, SI, DL, ES, DS, CS, SS, SP, BP

These constants denote the processor’s registers. They are defined for use with the
procedures ’"GETREG’ and 'SETREG’ which are also provided by module SYSTEM.

s RTSVECTOR
This is the number of the interrupt vector which is used to call the MODULA-2/86 run-time

support. It is not recommended that application programs call the run-time support directly.
If it is necessary, RTSVECTOR can be used to issue a software interrupt.

80

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

5.1.3.2 Types Exported from Module SYSTEM
= BYTE

An individually accessible storage unit (one byte). No operations except assignments and
type conversions are allowed for variables of type BYTE. An actual parameter of any type

that uses one byte of storage may be passed to a formal BYTE parameter. For convenience
small CARDINAL constants (<=255) are also allowed as parameters.

= WORD

One word of memory (two bytes). No operations except assignments and type conversions
are allowed for variables of type WORD. An actual parameter of any type that uses one
word of storage may be passed to a formal WORD parameter.

= PROCESS

A type used for process handling.
= ADDRESS

The address of any location in storage. The type ADDRESS is compatible with all pointer
types and is itself defined as POINTER TO WORD. The section on ’Address Arithmetic’
explains more on the properties and the use of type ADDRESS.

5.1.3.3 Functions Exported from Module SYSTEM
= ADR(variable): ADDRESS

Storage address of the parameter variable.

» SIZE(variable): CARDINAL

Returns the number of bytes used in storage by the parameter variable. If the variable is of
type RECORD with variants, then a variant of maximal size is assumed.

81

SYSTEM DEPENDENT FACILITIES MODULA-2/86

n TSIZE(type): CARDINAL
n TSIZE(type, taglconst, tag2const,...): CARDINAL

Yields the number of bytes used in storage by a variable of the substituted type. If the type is
a record with variants, then tag constants of the last "FieldList’ (see syntax in Programming
in Modula-2) may be substituted in their nesting order. If some or all tag constants are
omitted, then the remaining variant with maximal size is assumed.

5.1.34 Procedures Exported from Module SYSTEM

= NEWPROCESS (processBody: PROC;
workspaceAddress: ADDRESS;
workspaceSize: CARDINAL;
VAR process: PROCESS)

Create a new process. ’processBody’ is the procedure to execute. 'workspaceAddress’ is the
address of the data area for the process (the workspace). ‘workspaceSize’ is the size of the
workspace in bytes. The variable ’process’ receives the created PROCESS object. Allow 400
bytes for system overhead in each workspace.

Note: If the workspace of the new process is too small and does not allow a reasonable
initialization, the process that calls NEWPROCESS is terminated with a stack overflow.

= TRANSFER (VAR fromProcess, toProcess: PROCESS)

Save the current process state in ’fromProcess’, and resume the execution of the process in
s t]
toProcess’.

» IOTRANSFER (VAR interruptHandler: PROCESS;
interruptedProcess: PROCESS;
interruptVectorNumber: CARDINAL)

Save the current process state in ’interruptHandler’, and resume the execution of the process

in ’interruptedProcess’. The occurrence of the designated interrupt has the effect of
"TRANSFER (interruptedProcess, interruptHandler)’.

82

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

= LISTEN

Temporarily lower the priority of the calling process and allow pending interrupts to come
through.

s GETREG (register: CARDINAL; VAR value: BYTEorWORD)
= SETREG (register: CARDINAL; value: BYTEorWORD);

These two procedures are used to set and to retrieve the contents of machine registers. They
generate in-line code, and are particularly useful in conjunction with the special procedures
CODE and SWI (software interrupt) described below. The registers AX, BX, CX, DX, SP,
BP, SI, DL, ES, CS, SS, and DS are accessible where SP, BP, SS and CS cannot be used with

'SETREG’. For ’register’ only the register constants provided by module SYSTEM should be
used.

If the actual argument for ’value’ is a variable in one byte, only the lower half of the register
is affected. For example, in SETREG (AX, ch), where ch is declared to be a CHAR, only the
AL register is modified.

83

SYSTEM DEPENDENT FACILITIES MODULA-2/86

WARNING

Utmost care must be exercised when using GETREG and SETREG. It must be kept in mind
that expression evaluation and address computation use registers and therefore might
destroy the value of a register already set by SETREG or to be read by GETREG. It is
impossible for the compiler to recognize such a situation and the programmer must take full
responsibility.

Only constants, or variables and value parameters which are declared local to the procedure
calling GETREG or SETREG, should be used for the second argument. This argument
should be of a simple type. It should neither be an expression, contain a function call, index
an array, nor be a global (module) variable or a VAR parameter. If necessary, input
parameter values should be copied to local variables of simple types which can be used when
calling SETREG. Only local variables of simple types should be used with GETREG. If
necessary, their values should be copied to the real output parameters. If there are sequences
of calls to SETREG or GETREG, no other statements should break such a sequence. All
local copies of input values should be made before the first call to SETREG, and the values
of the local variables should be copied back after the last call to GETREG.

Unpredictable effects may result from failure to heed this warning.

84

= CODE (codelConst, code2Const, ... : BYTE)

Insert binary machine instructions into the code. A call to CODE inserts the constant values,
’code1Const’, ’code2Const’, etc., in-line as executable code.

s SWI(interruptVectorNumber: CARDINAL)

This procedure is used to generate a software interrupt. It compiles into an INT’ instruction.
The parameter must be a constant.

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

If you are using the procedure SWI to call the IBM-PC ROM BIOS or to call any other
assembly routines, we strongly recommend that you save and restore the base pointer
register BP. The value of the BP register is essential to MODULA-2/86 because it is used to
access local variables and procedure parameters.

To save and restore the BP register, use procedure "CODE’, which is also provided by
module SYSTEM. Insert ’'CODE(55H);’ right before, and CODE(5DH);’ right after the call
to 'SWI'. This pushes and pops the BP register to/from the stack, so that its value will be
preserved.

= ENABLE
= DISABLE

Calls to the procedures ENABLE and DISABLE compile into ’STI’ and "CLI’ instructions,
which enables or disables interrupts.

Note: Any call to the operating system, or any input or output by means of the MODULA-
2/86 library may have the effect of enabling interrupts, thus undoing a previous call to
DISABLE.

= INBYTE (port: CARDINAL; VAR value: BYTEorWORD)
= QUTBYTE (port: CARDINAL; value: BYTEorWORD)

Get or put a byte value from or to the specified I/O port.

= INWORD (port: CARDINAL; VAR value: WORD)
= OUTWORD (port: CARDINAL; value: WORD)

Get or put a word value from or to the specified I/O port.

= DOSCALL (functionNumber: CARDINAL,; ...)
It generates a DOS function call via software interrupt 21H. The parameter list is variable,
depending on the first parameter, which must be a constant and indicates the number of the
DOS function. The appendix contains a detailed description of the available DOSCALLSs.
Because the parameters of DOSCALL must be given to DOS in registers, no complicated

expressions should be used. The compiler might easily run out of registers, resulting in
compiler error 204.

85

SYSTEM DEPENDENT FACILITIES MODULA-2/86

5.1.4 Data Representation
The data types have the following internal representation in MODULA-2/86:

= BYTE
One byte.
= BOOLEAN
One byte, TRUE=1, FALSE=0.
= CHAR
One byte, ASCII character set.
s Enumeration Types
One byte, elements are numbered 0..255.
= WORD
Two bytes.
= INTEGER
Two bytes, -32768..32767, two’s complement notation, least significant byte first.
= CARDINAL
Two bytes, 0..65535, least significant byte first.
= Subrange Types

Same representation as the base type.

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

REAL

Eight bytes, Intel 8087 double precision format (IEEE Floating Point standard).

SET
BITSET

Two bytes. If we number the elements of a set from 0 to 15, the representation in a memory
word is:

|76543210|15141312111098 |

low byte high byte

POINTER
PROC
PROCEDURE
ADDRESS
PROCESS

Four bytes. The first two bytes (lower address) hold the offset value (lower byte first) and the
second two bytes hold the segment value (lower byte first).

ARRAY

An array is stored as a contiguous sequence of elements, with the indices in ascending order,
the right-most index varying most quickly. If the base type fits in one byte (CHAR,
BOOLEAN, enumeration) the elements are stored in sequential bytes. Otherwise, each
element is stored on a word boundary (at an even address).

RECORD

The fields of a record are allocated in the order in which they are declared. The first field has
the lowest address. If you select the Alignment option, fields with a size other than one byte
are allocated on even addresses. Therefore, dummy bytes are included after odd sized
elements.

87

SYSTEM DEPENDENT FACILITIES MODULA-2/86

= Opaque Types

Opaque Types are always allocated four bytes, regardless of their actual implementation.

5.1.5 Type Conversion and Type Transfer
There are two ways to deal with the ’strong typing’ of Modula-2: type conversion and type transfer.

88

= Type Conversion

Type conversion provides the means to convert data from one type into another one,
regardless of the internal representation. This is the system independent and portable way to
convert data from one type to another. Therefore, whenever possible, type conversion should
be used rather than type transfer. The procedures to make the conversion are provided as
built-in, standard procedures or as part of the MODULA-2/86 library. They are as follows:

Standard Functions Library Functions
CHR MathLib0.real
ORD MathLib0.entier
VAL
FLOAT
TRUNC

Type conversion works by calculating a new value of a new type which corresponds to the
value to be converted. Code is executed to perform the conversion, and range checks are
done for the resulting values.

= Type Transfer

The second way is referred to as type transfer, or sometimes, as type coersion. This method is
system dependent - it depends on the internal representation of data. Therefore, type
transfers must be used with utmost care, and should be avoided whenever possible.

With a type transfer, no conversion of data takes place. The data is simply interpreted in a
different way, according to the new type structure.

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

Modula-2 provides for use of an identifer of a type, either a standard type like CHAR, or any
user-defined type, as if it were a function procedure. The compiler does not produce any
code for type transfers. A type transfer simply indicates that a value shall be interpreted in a
different way.

A type transfer is only allowed if the object is of the same size as objects of the new type.
When transferring a variable of type T1 into type T2, the following relation must be true:

SYSTEM.TSIZE (T1) = SYSTEM.TSIZE (T2)
When using type transfer instead of type conversion the user must be aware of the internal
representation of data. Also, his programs probably will not run on other machines or with
other implementations of Modula-2.
Example 1:
Interpret the value of a SET as a CARDINAL

VAR b: BITSET; (*’b’and ’c’ are both *)
¢: CARDINAL; (* represented as 2 bytes *)

b = {0,515}
¢:= CARDINAL(D); (* ¢ = 2%*%0 + 2%%5 + 2**]5 %)

89

SYSTEM DEPENDENT FACILITIES MODULA-2/86

Example 2:

Use a CARDINAL value in an INTEGER expression

VAR i : INTEGER;
¢ . CARDINAL;

i := 2%+ INTEGER (c);

This second example illustrates an abuse of the type transfer. What was really meant was a
conversion to integer. The correct solution is:

i o= z*i + VAL (INTEGER; c);

90

MODULA-2/86 PRIORITIES AND INTERRUPTS

5.2 PRIORITIES AND INTERRUPTS

5.2.1 Use of Priorities

Priorities can be specified in the header of a module. They are allowed in program and
implementation modules, as well as in local modules declared inside of another module. Priorities are
used to control the occurrence of interrupts. When no priority is specified, all interrupts may occur.

However, when a program is running at a certain priority, only interrupts of a higher priority will be
accepted. At the highest priority all interrupts are disabled. Note also that running at the lowest,
specified priority is very different from running without any priority.

A priority module is entered upon the execution of its module initialization code or upon a call of an
exported procedure. A priority module is left upon return from its initialization code or upon return
from an exported procedure. When entering a priority module, the interrupt control system
(hardware and software) is set such that interrupts of a priority lower or equal to the one specified in
that module are not passed to the processor. When leaving a priority module, the interrupt control
system is reset to the state it was prior to entering that module. The procedure ‘LISTEN’, from
module 'SYSTEM’, allows a process to lower its priority temporarily. During the execution of the
procedure 'LISTEN’ the interrupt control system is set such that all pending interrupts are accepted.

Inside a priority module, calls to procedures of other priority modules with a lower priority than that
of the module with the call statement are not allowed. When this situation is detected by the
compiler, an appropriate error message is produced (error 161). If a procedure of a module with no
specified priority is called, the current priority remains unchanged. If a procedure of a module with
higher priority is called, that higher priority becomes effective during execution of the called
procedure. The old priority is restored upon return from that procedure.

Priorities are attached to processes. Upon a 'TRANSFER’ or IOTRANSFER’ to a process running
at another priority, the interrupt control system is switched to the priority of the process which will be
activated. The same holds true for the implicit coroutine transfer which occurs upon an interrupt.

‘When a subprogram terminates, the priority is set back to the value which was effective when the
subprogram was loaded.

91

PRIORITIES AND INTERRUPTS MODULA-2/86

5.2.2 Priority Levels

Both the MODULA-2/86 compiler and the MODULA-2/86 run-time support only allow for a fixed
range of priority levels. Eight priority levels are supported with values ranging from 0 (lowest level) to
7 (highest level). If a module priority is specified with a value out of this range, the compiler produces
an appropriate error message (error 80).

The above range of priority levels is the default for the MODULA-2/86 system. The default may be
changed during installation of MODULA-2/86 as follows:

Note: To encorporate the following changes, you need the sources of the MODULA-2/86 run-time
support and some compiler modules.

s Limit in the compiler
The compiler parameter module contains a variable that specifies the upper limit of the legal
range. By assigning another value to that variable, this upper limit can be modified.

= Limit in the run-time support
Please refer to the assembly source program of the run-time support for the changes
required to support another range of priority levels.

523 Interrupt Handling
There are three main ways to handle interrupts in MODULA-2/86:

5.23.1 Standard Method with IOTRANSFER

In ’standard’ Modula-2, the procedure TOTRANSFER’ from module 'SYSTEM’ allows for the
implementation of interrupt handlers. After the call to IOTRANSFER'’ the interrupt handler is
installed and is waiting for the specified interrupt. However, on 8086 based systems, the system needs
to be notified that interrupts from the corresponding device may now occur. In MODULA-2/86, the
module ’Devices’ provides the capability to enable and disable interrupts from a device. After an
interrupt handler has been installed, module ’Devices’ should be used to enable interrupts from the
corresponding device.

An interrupt handler should not call the operating system, for instance to write to the terminal or to

a file. If the operating system is not reentrant, such a call may crash the whole system. In general,
operating systems that do not support multi-tasking, for instance DOS 2.0, are not reentrant.

92

MODULA-2/86 PRIORITIES AND INTERRUPTS

Please refer also to the definition module "Devices’ and to the sample device driver "InputDevice’ at
the end of this section. Module "InputDevice’ illustrates how an interrupt handler should be
programmed with MODULA-2/86.

5.2.3.2 Faster Method with IOTRANSFER

The standard method using IOTRANSFER as described in the previous section, associates a process
with the next occurrence of the specified interrupt only. The procedure ’InstallHandler’ provided by
module 'Devices’ allows you to install an interrupt handler permanently. It associates a process, the
interrupt handler, permanently with a particular interrupt. While it is not required to install an
interrupt handler in this way, it may be useful for handling time critical interrupts. Installing an
interrupt handler permanently improves the performance, by about 20 percent, of IOTRANSFER
and of the implicit coroutine transfer that takes place when the interrupt occurs. ‘InstallHandler’
must only be called after the process has been created (by means of NEWPROCESS) and before the
process has called IOTRANSFER. For instance, it may be called at the beginning of the code of the
process.

5.2.3.3 Low Level Interrupt Handling

This is the fastest method to handle interrupts, but also the least portable. Unlike the previous two
methods, this implementation doesn’t perform a context switch upon interrupts, but uses the current
stack to handle the interrupt. This provides a great improvement in speed because the overhead of
two coroutine transfers is removed. One other disadvantage of this method is that the debug utilities
do not support the debugging of interrupt service routines because the state of the stack does not
have the usual form. The following code shows a module which allows the installation of a Modula-2
procedure as an interrupt service routine:

93

PRIORITIES AND INTERRUPTS

DEFINITION MODULE ISR;
(*

Interrupt Service Routines

Module, to support faster interrupt handling without
context-switch upon interrupts.

Allows installation of Modula-2 procedures as interrupt
service routines.

*)

FROM SYSTEM IMPORT
ADDRESS, BYTE;

EXPORT QUALIFIED
ISR, InstallISR, UninstallISR;

(*$4-*)
(*
make sure, that the following type declaration will
not have word aligned fields, because they have to
stay consecutive
*)
TYPE
ISR = RECORD (* should be considered a hidden type *)
(* the following fields represent the code
that will be executed as the actual
interrupt service routine. The address
of a variable of this data type will
be used as the content of the specified
interrupt vector
*)
(* save all registers; BP automatically saved
by user procedure
*)

pushAX, pushCX, pushDX, pushBX,
pushSI, pushDI, pushDS, pushES: BYTE;

9%

MODULA-2/86

MODULA-2/86 PRIORITIES AND INTERRUPTS

(* call indirectly the user procedure *)
farCall: BYTE;
handlerProc: PROC;

(* send EOI code to interrupt controller 8259 *)
sendEOI: ARRAY [1..5] OF BYTE;

(* restore the saved registers *)
POpPES, popDS, popDI, popSI,
popBX, popDX, popCX, popAX: BYTE;

(* return from interrupt *)
iret: BYTE;

(* the next fields hold some additional
information, needed to set and restore
the interrupt vector
*
)

oldinterruptVector: ADDRESS;
vectorNr: CARDINAL;

END;

PROCEDURE InstallISR(VAR isr: ISR; proc: PROC;
interruptVectorNr: CARDINAL);
(* Installs the user procedure ‘proc’ as an interrupt
service routine for the specified interrupt vector.
The procedure ’proc’ can be declared in a priority
module (Monitor). In this case, the interrupt mask
will be automatically set by the run-time support
upon entry to the user procedure.

*)
PROCEDURE UninstallISR(isr: ISR);

(* Uninstalls the previously installed interrupt
service routine
*)

END ISR.

95

PRIORITIES AND INTERRUPTS MODULA-2/86

IMPLEMENTATION MODULE ISR;

(*
Module, to support faster interrupt handling without
context-switch upon interrupts.
Allows installation of Modula-2 procedures as interrupt
service routines.

*)

FROM SYSTEM IMPORT
ADDRESS, BYTE, ADR;

IMPORT Devices;

PROCEDURE InstallISR(VAR isr: ISR; proc: PROC;
interruptVectorNr: CARDINAL);
BEGIN
WITH isr DO

pushAX := BYTE(50H);

pushCX := BYTE(51H);

pushDX := BYTE(52H);

pushBX := BYTE(53H);

pushSI := BYTE(56H);

pushDI := BYTE(57H);

pushDS := BYTE(IEH);

pushES := BYTE(06H),

farCall := BYTE(9AH);

handlerProc := proc;

sendEOI[1] := BYTE(OBSH); (* MOV AX, 20H *)
sendEOI[2] := BYTE(20H);
sendEOI[3] := BYTE(0OH);
sendEOI[4] := BYTE(OEG6H); (* OUT 20H, AL *)
sendEOI[5] := BYTE(20H);

96

MODULA-2/86 PRIORITIES AND INTERRUPTS

POpES := BYTE(07H);
popDS := BYTE(IFH);
popDI := BYTE(5FH);
popSI := BYTE(SEH);
popBX := BYTE(5BH);
popDX := BYTE(5AH);
popCX := BYTE(59H),;
PpopAX := BYTE(58H);

iret := BYTE(OCFH);
vectorNr := interruptVectorNr;
Devices.SavelnterruptVector(vectorNr, oldInterruptVector);
Devices.RestorelnterruptVector(vectorNr, ADR(isr)),
END; (* WITH *)
END InstallISR;

PROCEDURE UninstallISR(isr: ISR);
BEGIN

Devices.RestorelnterruptVector(isr.vectorNr, isr.oldInterruptVector);
END UninstallISR;

END ISR.

An even faster method is to use the user procedure directly as interrupt service routine, by initializing
the interrupt vector to the entry point of the procedure. In this case, the procedure code must make
sure to save all registers, to send an end-of-interrupt to the interrupt controller and to return
correctly from the interrupt.

Note that the procedure may not be declared within a priority module (Monitor), and stack test code
should be turned off. This is because the compiler-generated calls to the run-time support for stack

check and monitor entry are called before any user code, and therefore the saving of the registers
comes too late.

97

PRIORITIES AND INTERRUPTS MODULA-2/86

To execute the interrupt handler with the correct priority, the user can explicitly include the run-time
support function calls for monitor entry (exit) after saving (before restoring) the registers. Another
method is to directly set the register mask of the interrupt controller. In this case, it must be
guaranteed that the whole system doesn’t use priority modules because the run-time support is not
aware of the direct modification of the register mask and might change it to another (incorrect)
value.

The following module shows the selection of an interrupt handler using this approach:
MODULE SimplelnterruptHandler;

FROM SYSTEM IMPORT
ADDRESS, CODE, SETREG, SWI, OUTBYTE;

FROM Devices IMPORT
SavelnterruptVector, RestorelnterruptVector;

CONST
devicelnterrupt = ?2; (*interrupt vector number *)
priority = ?2?2; (* priority level (0..7) *)
(* lowest priority = (0 *)

(* RTS function calls *)
monitorEntry = 5;
monitorExit = 6;

VAR
oldInterruptVector: ADDRESS;

(*85-%)

(* Turn stack test off, because it is called before
we save the registers, so some registers could be
destroyed.

*)

98

MODULA-2/86 PRIORITIES AND INTERRUPTS

PROCEDURE HandleDevicelnterrupt;

BEGIN
(* compiler generated procedure prolog:
PUSH BP
SUB SP, variable space
*
)

(* save all the registers *)
CODE(50H); (* PUSH AX *)
CODE(51H); (* PUSH CX *)
CODE(52H),; (* PUSH DX *)
CODE(53H); (* PUSH BX *)
CODE(56H), (* PUSH SI *)
CODE(57H); (* PUSH DI *)
CODE(1EH); (* PUSH DS *)
CODE(06H); (* PUSHES *)

(* here we could explicitly call the
monitor entry function

SETREG(BX, priority);
SETREG(AX, monitorEntry);
SWI(RTSCALL);

*)

(* actual code to handle the interrupt *)

OUTBYTE(20H, 20H);
(* send EOI to 8259 interrupt controller *)

(* here we could explicitly call the
monitor exit function

SETREG(AX, monitorExit);
SWI(RTSCALL);
*)

99

PRIORITIES AND INTERRUPTS MODULA-2/86

(* restore all saved registers *)
CODE(07H); (* POP ES *)
CODE(IFH); (* POP DS *)
CODE(SFH), (* POP DI *)
CODE(SEH); (* POP SI *)
CODE(5BH); (* POP BX *)
CODE(5AH); (* POP DX *)
CODE(59H); (* POP CX *)
CODE(58H); (* POPAX *)

(* call explicitly procedure epilog with an IRET *)
CODE(89H, OECH); (*MOV SP, BP *)
CODE(5DH); (*POPBP ¥)
CODE(0CFH); (*IRET *)

END HandleDevicelnterrupt;

(*85=%)

(* reset stack option to previous state *)

BEGIN
(* install the interrupt handler *)
SavelnterruptVector(devicelnterrupt, oldInterruptVector);
RestorelnterruptVector(devicelnterrupt, ADDRESS(HandleDevicelnterrupt));

(* actual program code *)
(* remove the interrupt handler *)

RestorelnterruptVector(devicelnterrupt, oldInterruptVector);
END SimplelnterruptHandler.

100

MODULA-2/86 PRIORITIES AND INTERRUPTS

5.2.34 How to Cope With Non-Reentrancy of MS-DOS

The non-reentrancy of MS-DOS appears to be a problem when writing a real-time kernel in Modula-2
(as in other languages). The basic principle is to avoid task switching while DOS is in a ’critical
section’. There is an undocumented DOS call (34H) which can be used to determine whether DOS is
in such a critical section. Since DOSCALL 34H is not documented, it is not supported by the
LOGITECH MODULA-2/86 Compiler. The following program extract shows you how to get access
to this information:

MODULE scheduler;

FROM SYSTEM IMPORT
ADR, ADDRESS, SETREG, GETREG, SWI, AX, ES, BX;

TYPE
BooleanPtr = POINTER TO BOOLEAN;

VAR
criticalSectionPtr: BooleanPtr;
aux: ADDRESS;

BEGIN
SETREG(AX, 3400H),
SWI(21H),;
GETREG(ES, aux.SEGMENT);
GETREG(BX, aux.OFFSET);
criticalSectionPtr := BooleanPtr(aux),

END scheduler.

In the scheduler routine which actually performs the task switching, one must test the critical section
flag in DOS:

101

PRIORITIES AND INTERRUPTS MODULA-2/86

IF criticalSectionPtr™ THEN
(* don’t do the transfer to the waiting
process, but let the interrupted process
continue
*)
TRANSFER(currentProcess,interruptedProcess);
ELSE
(* transfers to waiting process *)
TRANSFER (currentProcess, waitingProcess),
END;

A similar check can be done to avoid DOS function calls in an interrupt handler routine, while DOS
is in a critical section.

5.2.4 Implementation Notes

MODULA-2/86 implements priorities and device handling through the mask register of the interrupt
controller in the 8086 system. The corresponding code is part of the MODULA-2/86 run-time
support.

5.24.1 The Device Mask

The run-time support maintains a device mask that indicates from which devices interrupts are
enabled. When a program is not running at any priority, the mask register of the interrupt controller
is identical to this device mask. The initial value of the device mask corresponds to the value of the
interrupt controller mask at the time when the MODULA-2/86 program was started.

The library module 'Devices’ provides procedures that allow a program to enable or disable
interrupts from a device. These procedures are implemented by calls to functions of the run-time
support, which modify the device mask. The device numbers used by module Devices’ and by the
MODULA-2/86 run-time support correspond to the order and meaning of the bits in the mask
register of the interrupt controller.

The run-time support maintains only one copy of the device mask. Thus, the device mask is shared
among all processes and any subprograms of a MODULA-2/86 program.

102

MODULA-2/86 PRIORITIES AND INTERRUPTS

5.2.4.2 The Priority Masks

To each priority level a particular priority mask corresponds, which masks out the interrupts from all
devices with the same or a lower priority. The order and meaning of the bits in the priority mask are
the same as those in the device mask and in the mask register of the interrupt controller. The
mapping between the priorities and the priority masks is done by the run-time support. The value of
the priority level is used as an index to a table of priority masks.

The table of priority masks is initialized as follows: It masks bit seven for priority level zero, the
lowest priority. It masks bit six and seven for priority level one, and so on. For priority level seven, the
highest priority, all bits in the mask are set such that all interrupts are disabled. These default settings
correspond to the IBM-PC hardware. If necessary, the values in this table may be modified to
implement a different priority scheme that reflects the hardware properties of a given 8086 based
system.

5.2.4.3 The Interrupt Controller Mask

When a program is not running at any priority, MODULA-2/86 sets the mask register of the
interrupt controller such that it is identical to the device mask. If a program is running at a particular
priority, the mask register of the interrupt controller is set to the logical OR of the device mask and
the corresponding priority mask. In this way, all interrupts are disabled which are masked out either
in the device mask or in the current priority mask.

The field ’interruptMask’ of the process descriptor holds the priority mask that corresponds to the
priority at which the process is running. When creating a new process (procedure ’NEWPROCESS"),
the initial value of the priority mask in the process descriptor is zero. This initial value indicates that
the process is not running at any priority. If the procedure which constitutes the process is declared in
a priority module, its priority becomes effective when the process is started. A process starts
execution upon the first ' TRANSFER’ of control to it, after it was created by 'NEWPROCESS'.

103

PRIORITIES AND INTERRUPTS MODULA-2/86

The mask register of the interrupt controller is always equal to the logical OR of the current device
mask and the priority mask that corresponds to the priority at which the current process is running.
When a coroutine transfer occurs upon a call to ' TRANSFER’, IOTRANSFER’, or upon an
interrupt, the mask register of the interrupt controller is set according to the priority of the process
that takes control and according to the value of the device mask. The mask register of the interrupt
controller is also set accordingly whenever the priority changes because of a call to, or a return from,
a priority module. When the device mask is modified, the mask register of the interrupt controller is
updated according to the new device mask and according to the priority mask of the current process.

5.2.4.4 Monitor Entry and Exit

Priority modules are also called 'monitors’. When entering or leaving a monitor, some code is

executed to change the priority of the current process. This code is part of the MODUILA-2/86 run-
time support.

The compiler generates a call to the run-time support (RTS call) in the procedure entry code (to the
Monitor Entry function) and in the procedure exit code (to the Monitor Exit function) for every
procedure exported from a priority module. The procedure "LISTEN’ from module 'SYSTEM’ is
translated to another RTS call, the Listen function.

The Monitor Entry function is called after the possible stack-test and after the stack pointer is
decremented by the size of the local data. It saves the current priority mask, from the process
descriptor of the current process, onto the stack of the entered procedure. The new priority is used as
an index in a table that contains the value of the priority mask for each priority level. The new priority
mask is stored in the process descriptor. The mask register of the interrupt controller is set to the
logical OR of the new priority mask and the current device mask.

The Monitor Exit function restores the old priority mask from the top of the stack back into the
process descriptor. It also sets the mask register of the interrupt controller to the logical OR of the
old priority mask and the current device mask. Unless the device mask has been changed while
running on priority, the mask register of the interrupt controller will have the same value as before
entering the priority module.

104

MODULA-2/86 PRIORITIES AND INTERRUPTS

The Listen function first sets the current priority to 'no priority’, in a way similar to the Monitor
Entry function. The value of the priority mask for ’no priority’ is not stored in the table of priority
masks. The mask for 'no priority’ has all bits set to zero. Therefore, the mask register of the interrupt
controller will be equal to the device mask. The Listen function then sets the interrupt enable flag of
the processor. At this point, all pending interrupts may come through, if they were enabled in the
device mask. After the execution of a no-operation instruction, the Listen function restores the old
priority in a way similar to the Monitor Exit function.

5.2.5 The Definition Module *InputDevice’

DEFINITION MODULE InputDevice;
(*
Sample Input Device

This is the sample interface definition for a small

input device driver, which shows how interrupt driven
devices should be handled in LOGITECH MODULA-2/86.
A corresponding scheme can be used for interrupt driven
output devices.

*)
EXPORT QUALIFIED
Readlnfo;

PROCEDURE Readlnfo (VAR info: Information);
(* get information from the device,
where ’Information’ might be of
type 'CHAR’ for a character device
*
)

END InputDevice.

105

PRIORITIES AND INTERRUPTS MODULA-2/86

5.2.6 The Implementation Module *InputDevice’

IMPLEMENTATION MODULE InputDevice [priority];
(*
Sample Input Device

This is a small sample input device driver, which shows
how interrupt driven devices should be handled in
LOGITECH MODULA-2/86.

A corresponding scheme can be used for interrupt driven
output devices.

*)

FROM SYSTEM IMPORT
PROCESS, NEWPROCESS, TRANSFER, IOTRANSFER,
ADR, SIZE, BYTE, ADDRESS;

FROM System IMPORT
TermProcedure;

FROM Devices IMPORT
GetDeviceStatus, SetDeviceStatus,
SavelnterruptVector, RestorelnterruptVector;
InstallHandler;

CONST
device = ??;
(* bit number in interrupt controller mask *)

interruptVectorNumber = ??;
(* interrupt vecior used by device *)

VAR
mainP, driverP: PROCESS; (* Modula-2 coroutines *)

workspace: ARRAY [0..7?] OF BYTE;
(* workspace for driver coroutine *)

106

MODULA-2/86 PRIORITIES AND INTERRUPTS

oldInterruptVector: ADDRESS;
oldDeviceStatus: BOOLEAN;

activ: BOOLEAN;

(* indicates whether the device driver has
been activated

*)

PROCEDURE ReadlInfo(VAR info: Information);
BEGIN

(* get info from a buffer *)
END ReadlInfo;

PROCEDURE DeviceDriver;
BEGIN
(* here we could associate the process permanently
to the given interrupt vector number by:
InstallHandler(driverP, interruptVectorNumber);
This call improves the performance of the
interrupt handling
*
)
LOOP
IOTRANSFER(driverP, mainP, interruptVectorNumber);
(* handle the interrupt, put info into a buffer *)
END; (* LOOP *)
END DeviceDriver;

107

PRIORITIES AND INTERRUPTS

PROCEDURE StartDevice;
BEGIN
IF NOT activ THEN
SavelnterruptVector(interruptVectorNumber,
oldInterruptVector),
(* save interrupt vector used by device *)

GetDeviceStatus(device, oldDeviceStatus);
(* save old device status

(interrupts enabled/disabled)
*)

activ ;= TRUE;

NEWPROCESS (DeviceDriver, ADR(workspace),
SIZE(workspace), driverP);

(* create a Modula-2 process for the driver *)

TRANSFER(mainP, driverP);
(* transfer control to the driver process *)

SetDeviceStatus(device, TRUE);
(* allow (enable) interrupts from the device *)
END;
END StartDevice;

PROCEDURE StopDevice;
BEGIN
IF activ THEN
activ ;= FALSE;
SetDeviceStatus(device, oldDeviceStatus);
(* restore the original device status
(interrupts enabled/disabled) *)

RestorelnterruptVector(interruptVectorNumber, oldInterruptVector);

(* restore the original value of the interrupt
vector used by the device *)
END;
END StopDevice;

108

MODULA-2/86

MODULA-2/86

PROCEDURE InitDevice;
BEGIN
(* initialize device if necessary *)
END InitDevice;

BEGIN

activ ;= FALSE;

InitDevice;

StartDevice;

System. TermProcedure(StopDevice);
(* install ’StopDevice’ as a termination routine,
in order to properly stop the device driver
when the program that uses the driver terminates
*

END InputDevice.

PRIORITIES AND INTERRUPTS

109

DOSCALL MODULA-2/86

53 DOSCALL

The procedure DOSCALL must be imported from module SYSTEM. It provides a rather simple way
to access the underlying operating system from programs written in Modula-2. For the description of
each of these functions we refer to the corresponding MS-DOS or PC-DOS Manual. The actual
parameters of the procedures should not be very complicated. The compiler might easily run out of
registers.

The first line is a Modula-2 procedure declaration. The second line notes for each parameter the
register(s) in which it is passed. The type BYTEWORD (which doesn’t exist in Modula-2) means that
any type compatible with BYTE or WORD is possible for the actual parameter.

Example:
DOSCALL(15; FCBAddr:ADDRESS; VAR returnCode:BYTEWORD);
AH DS:DX AL
possible use:

VAR FCB: ARRAY/[O...35] OF CHAR;
returnVal: CARDINAL

DOSCALL(15, ADR(FCB), returnVal);
IF returmVal=...THEN

The standard procedure DOSCALL has a variable parameter list. This parameter list depends on the
first parameter that must be a constant. This constant is the number of the DOS function to be
called.

The formats of these functions are as follows:

Function 0H: Program Terminate

DOSCALL(0H)
AH

110

MODULA-2/86

Function 1H: Keyboard Input

DOSCALL(1H; VAR char:-BYTEWORD);
AH AL

Function 2H: Display Output

DOSCALL(2H; char:BYTEWORD);
AH DL

Function 3H: Auxiliary Input

DOSCALL(3H; VAR char:BYTEWORD);
AH AL

Function 4H: Auxiliary Output

DOSCALL(4H; char:-BYTEWORD);
AH DL

Function SH: Printer Qutput
DOSCALL(5H; char:BYTEWORD);
AH DL

Function 6H: Direct Console I/O

DOSCALL(6H; OFFH; VAR char:-BYTEWORD;

AH DL AL

VAR ready:BOOLEAN); (input)
ZF

DOSCALL(6H; char:BYTEWORD); (output)

AH DL

DOSCALL

111

DOSCALL

Function 7H: Direct console Input without echo

DOSCALL(7H; VAR char:BYTEWORD);
AH AL

Function 8H: Console input without echo

DOSCALL(8H; VAR char:BYTEWORD);
AH AL

Function 9H: Print String

DOSCALL(9H; stringaddr-ADDRESS);
AH DS:DX

Function 0AH: Buffered Keyboard input
DOSCALL(0AH; stringaddr:ADDRESS);
AH DS:DX

Function 0BH: check standard input status

DOSCALL(0BH; VAR status:BYTEWORD);

AH AL

112

MODULA-2/86

MODULA-2/86 DOSCALL

Function 0CH: Clear standard input buffer and invoke a standard input function
The second parameter (input function) determines the form of the parameter list. It must be one of
the constants (functions) 1H, 6H, 7H, 8H, or 0AH.

DOSCALL(0CH; 1H; VAR char:BYTEWORD);
AH AL AL

DOSCALL(0CH; 6H; VAR char:BYTEWORD;
AH AL AL
[DL = OFFH implicitly]
VAR ready:BOOLEAN);
ZF

DOSCALL(0CH; 7H; VAR char:BYTEWORD);
AH AL AL

DOSCALL(0CH; 8H; VAR char:-BYTEWORD);
AH AL AL

DOSCALL(0CH; OAH; stringaddr-ADDRESS);
AH AL DS:DX

Function 0DH: Disk reset

DOSCALL(0DH)
AH

Function 0EH: Select Disk

DOSCALL(OEH; drive:BYTEWORD;
AH DL

VAR nrofdrives: WORD);
AL

113

DOSCALL

Function 0FH: Open File
DOSCALL(OFH; FCBaddr:ADDRESS;
AH DS:DX

VAR retumCode:BYTWORD);
AL

Function 10H: Close File
DOSCALL(10H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD);
AL

Function 11H: Search for the first entry
DOSCALL(11H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD);
AL

Function 12H: Search for the next entry

DOSCALL(12H; FCBaddr:-ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD);
AL

114

MODULA-2/86

MODULA-2/86

Function 13H: Delete File
DOSCALL(13H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD),
AL

Function 14H: Sequential Read
DOSCALL(14H; FCBaddr:ADDRESS;
AH DS:DX

VAR retumCode:BYTEWORD);
AL

Function 15H: Sequential Write
DOSCALL(15H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD),
AL

Function 16H: Create File
DOSCALL(16H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD);
AL

DOSCALL

115

DOSCALL

Function 17H: Rename File
DOSCALL(17H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD),
AL

Function 19H: Current Disk

DOSCALL(19H; VAR curDrive:BYTEWORD);
AH AL

Function 1AH: Set Disk Transfer Address

DOSCALL(1AH; DTA:ADDRESS);
AH DS:DX

Function 1BH: Allocation table information

DOSCALL(1BH; VAR FATaddr:ADDRESS;
AH DS:BX

VAR nrallocUnits, nrSectors,
DX AL

sectSize:BYTEWORD),
(6).4

Function 1CH: (not implemented)

Function 21H: Random Read

DOSCALL(21H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD),
AL

116

MODULA-2/86

MODULA-2/86

Function 22H: Random Write
DOSCALL(22H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD);,
AL

Function 23H: File Size
DOSCALL(23H; FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTEWORD),
AL

Function 24H: Set Random Record Field

DOSCALL(24H; FCBaddr-ADDRESS);
AH DS:DX

Function 25H: Set Interrupt Vector

DOSCALL(25H; vectorVal:ADDRESS; IntNumber:BYTEWORD);
AH DS:DX AL

Function 26H: Create a new program segment

DOSCALL(26H; progSegment:BYTEWORD);
AH DX

DOSCALL

117

DOSCALL

Function 27H: Random Block Read
DOSCALL(27H; FCBaddr:ADDRESS;
AH DS:DX

VAR nrofBytes:BYTEWORD;
X

VAR retumCode:BYTEWORD),
AL

Function 28H: Random Block Read
DOSCALL(28H; FCBaddr:ADDRESS;
AH DS:DX

VAR nrofBytes:BYTEWORD;
cx

VAR returnCode:BYTEWORD),
AL

Function 29H: Parse Filename
DOSCALL(29H; FCBaddr:ADDRESS; mode:BYTEWORD;
AH ES:D AL

VAR stringaddr:ADDRESS;
DS:ST

VAR returnCode:BYTEWORD),
AL

Function 2AH: Get Date

DOSCALL(2AH; VAR year:-WORD; VAR monthday:WORD);
AH CX DX

118

MODULA-2/86

MODULA-2/86

Function 2BH: Set Date
DOSCALL(2BH; year:WORD; monthday:WORD;
AH CX DX

VAR returnCode:BYTEWORD);
AL

Function 2CH: Get Time

DOSCALL(2CH; VAR hourminute, secondmillisec:-WORD);
AH CX DX

Function 2DH: Set Time
DOSCALL(2DH; hourminute, secondmillisec:WORD;

AH CX DX
VAR returnCode:BYTEWORD),
AL

Function 2EH: Set/Reset Verify Switch

DOSCALL(2EH; zero:BYTEWORD; onoff:BYTEWORD);
AH DL AL

5.3.1 Extensions for DOS 2.0
Function 2FH: Get DTA

DOSCALL (2FH; VAR DTAaddr: ADDRESS);
AH ES:BX

Function 30H: Get DOS version

DOSCALL (30H; VAR major, minor: BYTE);
AH AL AH

DOSCALL

119

DOSCALL

Function 31H: Terminate and remain resident

DOSCALL (31H; exitCode: BYTEWORD;
AH AL

paragraphs: WORD);
DX

Function 33H: Ctrl-Break-Check

DOSCALL(33H; mode:BYTEWORD; VAR state:BYTE);
AH AL DL

Function 35H: Get Vector
DOSCALL(35H; vector-BYTEWORD; VAR vector:ADDRESS
AH AL ES:BX

Function 36H: Get disk free space

DOSCALL(36H; drive:BYTEWORD; VAR valid:BYTEWORD;

AH DL AX

VAR availClusters:BYTEWORD;
BX

VAR totclust:BYTEWORD;
Dx

VAR bytesPerSect:BYTEWORD);
(0.4

Function 38H: Return Country dependent information

DOSCALL(38H; buffAddr:ADDRESS; fctcode:BYTEWORD);
AH DS:DX AL

120

MODULA-2/86

MODULA-2/86

Function 39H: Create a subdirectory (MKDIR)
DOSCALL(39H; stringaddr:ADDRESS;
AH DS:DX

VAR error:WORD),
AX,CF

(error = () means no error; refer to the table in
the DOS manual for other errors)

Function 3AH: Remove a directory entry (RMDIR)

DOSCALL(3AH; stringaddr:ADDRESS; VAR error:-WORD);
AH DS:DX AX,CF

Function 3BH: Change the current directory (CHDIR)

DOSCALL(3BH; stringaddr:ADDRESS; VAR error-WORD),
AH DS:DX AX,CF

Function 3CH: Create a File

DOSCALL(3CH; stringaddr:ADDRESS; attrib: BYTEWORD;
AH DS:DX CcX

VAR handle:BYTEWORD; VAR error:WORD);
AX AX,CF

Function 3DH: Open a File

DOSCALL(3DH; stringaddr:ADDRESS; access:BYTEWORD;

AH DS:DX AL

VAR handle:BYTEWORD; VAR error2-WORD),
AX AX,CF

DOSCALL

121

DOSCALL MODULA-2/86
Function 3EH: Close a file handle
DOSCALL(3EH; handle:-WORD; VAR error>-WORD);
AH BX AX,CF
Function 3FH: Read from a file or device

DOSCALL(3FH; handle:WORD; nrbytes:WORD;
AH BX cx

buffAddr:ADDRESS;
DS:DX

VAR readBytes:BYTEWORD;
AX

VAR error:-WORD);
AX,CF
Function 40H: Write to a file or device

DOSCALL(40H; handle:WORD; nrbytes:WORD;
AH BX (0.4 '

buffAddr:ADDRESS;
DS:DX

VAR writtenBytes:BYTEWORD; VAR error:WORD);
AX AX,CF

Function 41H: Delete a file from a specified directory

DOSCALL(41H; stringaddr:ADDRESS; VAR error:-WORD);
AH DS:DX AX,CF

122

MODULA-2/86

Function 42H: Move file read/write pointer
DOSCALL(42H; handle:-WORD; method:BYTEWORD;

AH BX AL
inHigh,inLow:WORD;
CX DX

VAR outHigh,outLow:WORD; VAR errorz-WORD),
DX AX AX,CF

Function 43H: Change File Mode

DOSCALL(43H; stringaddr:ADDRESS; fctcode:BYTEWORD;
AH DS:DX AL

VAR mode:BYTEWORD; VAR error-WORD);
(0.4 AX,CF

Function 44H: 1/O control for devices

DOSCALL

The procedure depends on the value of the second parameter that must be a constant. This

parameter determines the function to execute:

Get device info
DOSCALL(44H; 0; handle:-WORD;
AH AL BX

VAR deviceinfo:BYTEWORD;
DX

VAR error:WORD),
AX,CF

123

DOSCALL

Set device info
DOSCALL(44H; 1; handle:WORD;
AH AL BX
deviceinfo:BYTEWORD;
DX
VAR error:-WORD);
AX,CF

Read Bytes from device control channel

DOSCALL(44H; 2; handle:WORD;
AH AL BX

nrBytes:BYTEWORD; buffAddr:ADDRESS;

cx DS:DX

VAR transferredbytes:BYTEWORD;
AX

VAR error:WORD);
AX,CF

Write Bytes to device control channel

DOSCALL(44H; 3; handlezWORD;

AH AL BX
nrBytes:BYTEWORD; buffAddr-ADDRESS;
cx DS:DX
VAR transferedbytes:BYTEWORD;
AX
VAR error:WORD);
AX,CF

124

MODULA-2/86

MODULA-2/86 DOSCALL

Read Bytes from drive control channel

DOSCALL(44H; 4; drive:BYTEWORD;

AH AL BL
nrBytes:BYTEWORD; buffAddr:ADDRESS;
(9.4 DS:DX
VAR transferedbytes:BYTEWORD;
AX
VAR error-WORD),
AX,CF

Write Bytes to drive control channel
DOSCALL(44H; 5; drive:BYTEWORD;

AH AL BL
nrBytes:BYTEWORD; buffAddr-~ADDRESS;
(6).4 DS:DX
VAR transferedbytes:BYTEWORD;
AX
VAR error:WORD),
AX,CF
Get Input Status
DOSCALL(44H; 6; handle: WORD; VAR status:BYTEWORD;
AH AL BX AX
VAR error:-WORD),
AX,CF

125

DOSCALL MODULA-2/86

Get Output Status
DOSCALL(44H; 7; handle: WORD; VAR status:BYTEWORD;
AH AL BX AX
VAR error:WORD);

AX,CF

Function 45H: Duplicate a file handle

DOSCALL(45H; handlel:WORD; VAR handle2:BYTEWORD;
AH BX AX

VAR error:-WORD);
AX,CF

Function 46H: Force a duplicate of a file
DOSCALL(46H; handle1:WORD; VAR handle2:BYTEWORD;
AH BX (0.4

VAR error:-WORD);
AX,CF

Function 47H: Get Current Directory

DOSCALL(47H; drive:BYTEWORD; straddr:ADDRESS;
AH DL DS:ST

VAR errorrWORD);
AXCF

126

MODULA-2/86 DOSCALL

Function 48H: Allocate Memory
DOSCALL(48H; VAR paragraphs:BYTEWORD;
AH BX

VAR membase:BYTEWORD;
AX

VAR errorz-WORD),
AX,CF

Function 49H: Free allocated Memory
DOSCALL(49H: segaddr:ADDRESS;
AH ES must be a paragraph address

VAR error:-WORD);
AX,CF

Function 4AH: SETBLOCK-Modify allocated memory blocks

DOSCALL(4AH; blockaddr:ADDRESS;
AH ES must be a paragraph address

VAR paragraphs:BYTEWORD;
BX

VAR error:-WORD);
AX,CF

127

DOSCALL MODULA-2/86

Function 4BH: Load or execute a program
DOSCALL(4BH;stringaddr:ADDRESS; paramblock:ADDRESS;
AH DS:DX ES:BX

fetval:BYTEWORD;
AL

VAR error:WORD);
AX,CF

Function 4CH: Terminate a process(Exit)

DOSCALL(4CH; returnCode:BYTEWORD),
AH AL

Function 4DH: Retrieve the return code of a sub-process(Wait)

DOSCALL(4DH; VAR retCode:BYTEWORD);
‘AH AX

Function 4EH: Find first matching file
DOSCALL(4EH; stringaddr:ADDRESS; attribut:BYTEWORD;
AH DS:DX (0.4

VAR errorzWORD),
AX,CF

Function 4FH: Find next matching file

DOSCALL(4FH; VAR error:-WORD),
AH AX,CF

Function S4H: Get Verify state

DOSCALL(54H; VAR state:BYTE);
AH AL

128

MODULA-2/86

Function 56H: Rename a file

DOSCALL(56H; fromstring,tostringzZADDRESS;
AH DS:DX ES:DI

VAR error:zWORD);
AX,CF

Function 57H: Get/Set a file’s date and time

DOSCALL(57H; handle:-WORD; mode:BYTEWORD;

AH BX AL

VAR date,time:BYTEWORD;
DX CX

VAR error:-WORD),
AX,CF

DOSCALL

129

INTERFACING ASSEMBLY CODE LIBRARIES MODULA-2/86

54 INTERFACING ASSEMBLY CODE LIBRARIES

Note: To encorporate the following changes you need the sources of the MODULA-2/86 run-time
system.

MODULA-2/86 uses its own object file formats (LNK and LOD files). Therefore, it is not possible to
link standard object files together with MODULA-2/86 programs. However, there are other ways to
call routines written in assembly language from a MODULA-2/86 program. This section will explain
such a way by means of an example. The sample assembly and Modula-2 programs referenced can be
found at the end of this section.

The task of preparing a library of assembly code routines for use with MODULA-2/86 can be divided
into five steps:

= Preparing the assembly library itself and verifying that it meets all the requirements

Adapting the file RTS.ASM of the MODULA-2/86 run-time support

Creating an executable file by assembling and linking your assembly library and the modified
MODULA-2/86 run-time support

Writing a Modula-2 definition module for the assembly library routines

= Implementing this module in Modula-2 by means of calls to the assembly routines

54.1 Sample Assembly Library

For our example we use a library of four assembly routines we would like to call from MODULAZ2/86
programs. The routines in this assembly library are called ’init’, ’fct1’, ’fct2’, and ’fct3’. The routine
’init’ takes no parameters and needs to be called to initialize this assembly library. The other routines
take their parameters in registers. The assembly source code of this library is shown in the listing of
the sample assembly library at the end of this section.

130

MODULA-2/86 INTERFACING ASSEMBLY CODE LIBRARIES

Note that any routines which will be called from a MODULA-2/86 program must be declared as ’far’
procedures. This ensures that the assembler will generate a ’far’ return instruction. It is not possible
to call routines that are declared ’near’ (instead of ’far’) from a MODULA-2/86 program, because
these routines must be called with an intrasegement call (’far’ call) from the MODULA-2/86
program. This is due to the fact that MODULA-2/86 supports the full address space of the 8086
processor (large memory model), where code and data may be anywhere in memory.

For the same reason, any parameter given by an address must be handed over to the assembly
routines by means of two registers, one containing the segment part and one containing the offset
part of the address. In general, two variables declared in a MODULA-2/86 program will be allocated
in different data segments.

54.2 Adapting the Run-Time Support

To make our assembly routines accessible from Modula-2, we also need to modify the main part of
the MODULA-2/86 run-time support. The assembly sources of the MODULA-2/86 run-time support
are provided on the distribution disks. For example, we copy the file RTS.ASM to a file we call
NEWRTS.ASM. Then we can start to modify the copy. The necessary modifications are described in
the following paragraphs. The names used, refer to the listing of the RTS extensions added at the end
of this section.

First, we need to define and initialize a table ("EntryPointTable’) that contains the entrypoints
(addresses) of all our library routines (init, fctl, fct2, fct3).

We also need a procedure ('GetEntryPointTable’) that returns the address (segment and offset) of
this table. This procedure will be called by the Modula-2 counterpart of our assembly library through
a software interrupt. Therefore, it must end with a return from interrupt instruction (IRET).

Then, we need to choose an interrupt vector ('LibraryVector’) which will be used to call this
initialization procedure. Any interrupt vector which is not occupied may be used. In our example we
used the interrupt vector number 229, which is next to the interrupt number 228, used by the
MODULA-2/86 run-time support.

131

INTERFACING ASSEMBLY CODE LIBRARIES MODULA-2/86

The entry code of the run-time support should then be adapted such that it saves the old value of the
library interrupt vector, and sets it to the address of the initialization procedure
('GetEntryPointTable’). This should be done at the same place where the RTS sets up its own
interrupt vector, and similar code can be used. In the same way the original value of the library
interrupt vector should be restored in the termination code of the run-time support.

54.3 Creating a New Executable File NEWM2.EXE

After the modifications have been done, we need to assemble and link our new run-time support,
such that it includes our assembly library. For this purpose, we also need the other sources of the
MODULA-2/86 run-time support which are provided on the distribution disks: RTS.INC,
SERVICES.ASM, TRANSFER.ASM, LOADER.ASM, and DBUG.ASM.

We need to assemble all the .ASM files, including the modified NEWRTS.ASM and the file of our

assembly library. This can be done by the DOS commands masm newrts;’, ‘masm services;’, and so
on.

In order to produce a new executable file we should then link the resulting object files. Assuming that
the object code of our assembly library is in a file ASMLIB.OBJ, the DOS command:

link newrts+services+transfer+loader+dbug+asmlib;
can be used. This produces an output file NEWRTS.EXE,

which we can rename to NEWM2.EXE. Programs that use our assembly library must be started using
this new run-time support, by typing newm2 <program name>.

5.4.4 Definition Module for the Sample Assembly Library

The definition module ’AsmLib’ for our sample assembly library declares and exports Modula-2
procedures (Fct1, Fct2, Fct3) with appropriate parameter lists, corresponding to the routines in the
assembly library (fct1, fct2, fct3). It is no different from a regular Modula-2 definition module. Please
refer to the listing at the end of this section.

132

MODULA-2/86 INTERFACING ASSEMBLY CODE LIBRARIES

54.5 Implementation Module for the Sample Assembly Library

The implementation module ’AsmLib’ for our sample assembly library is given at the end of this
section. It declares a variable that corresponds to the table of entrypoints as it is declared in the
assembly part. It is essential that the number and order of the procedures in these two tables match.
The procedure ‘InitLib’ calls the procedure 'GetEntryPointTable’ of the run-time support through
the corresponding software interrupt. Then it copies the table of entrypoints.

The implementations of the exported procedures that correspond to the routines in the assembly
library all follow the same scheme: The input parameters are copied into the appropriate registers,
the function is called, and the returned values are copied to the output parameters.

Note that around the call to the assembly routine the value of the base pointer register BP is saved
and restored. There is no need to save any other registers. (It is assumed that the stack segment SS
and the stack pointer SP will be preserved.) The BP register may then be modified by the call,
however, it should not be used to pass parameters. The value of the BP register is essential to
MODULA-2/86 because it is used to access local variables and procedure parameters.

If there is more than one input parameter (several calls to SETREG), or if there are output
parameters (one or more calls to GETREG), then only constants, or variables and value parameters
which are declared local to the procedure, should be used with SETREG and GETREG. Also, the
second argument of SETREG or GETREG should be of a simple type. It should neither be an
expression, contain a function call, index an array, nor be a global (module) variable or a VAR
parameter. If necessary, input parameter values should be copied to local variables of simple types
before the first call to SETREG. Only local variables of simple types should be used with GETREG.
If necessary, their values should be copied to the real output parameters after the last call to
GETRERG. If these guidelines are not observed, calls to SETREG or GETREG might destroy
parameter values which are in registers.

133

INTERFACING ASSEMBLY CODE LIBRARIES MODULA-2/86
54.6 Sample Assembly Library Listing
shkkkhkkhhhhkhhhhhhkhdhhhhkhhhhkhhhhhhdhhhhhhhhhhhhhhhdhhhkhhhddhhhkrk

this is a sample of a possible assembly library, for
which we build a Modula-2 interface

w-e “e wo wo

mycode group libcode
mydata group libdata

assume CS: mycode
assume DS: mydata

shdkdkkkdhkkkkhkhkhdkhhddkhhhhdkkkhhdkhhhkhhhkdkhhhhkkhhhdkkhdkkkkk
public init; initialization routine of library
public fctl; entrypoint of first library routine
public fct2; entrypoint of second library routine

public fct3; entrypoint of third library routine
phkkkkkkhkdhhdkhhhkhhhkhhkhhhkhhhhhhkhhhhhhhdkhhkhhkhrkhhhrkhkx

shhkdhkkdkhkdhkdkhhkhhkhhhkdhhkkhkdkhhkdhhhkhhkhhkhhhhhkhhkhhhkhhhhhhdkhkdkx
libdata segment public 'data’

; data of the library
libdata ends
shhkhkkhhhhkhhdkhkhhkhhkhhkhhkhhhkhhkhhkhhhkhkhhkkhhkhhkhhhkhkkkkk

134

MODULA-2/86 INTERFACING ASSEMBLY CODE LIBRARIES

shhkkkkkkkkkhhhkkhkhhhkhhkhhhhhkhhkhhhkhhhkhhhkhhhhkhhkhkhhkkhkdkdkhxk
libcode segment public 'code'

init proc far
; initialization code of the library
ret

init endp

fctl proc far

entry parameters: description

exit parameters: description

code of the first library routine
ret

fctl endp

~e wo wo

fct2 proc far

; entry parameters: description

exit parameters: description

; code of the second library routine
ret

fct2 endp

o wo ~

fct3 proc far
; entry parameters: description
; exit parameters: description
; code of the third library routine
ret
fct3 endp

libcode ends
;***

end

135

INTERFACING ASSEMBLY CODE LIBRARIES MODULA-2/86

5.4.7 RTS Extensions
ckdkkhkhdkhkhhkhhkhhkhhkhhhhhhkhhdkhhhhhhhdhhhhhkhhhhkhhhdhhhhkhhhdhhhkhhkhhrhx

this is a listing of the code that must be inserted into
the RTS, in order to build a Modula-2 interface for an
assembly library

WO N Ne Ne N Ne ™

khkhkkhkhkhhkhkhhhhkhkhhhhkkhkhhhkhkhkhhkhhhhhhkhhkhkhhhhhkhhkkkkhkkkhhkkk

T T T T T T T T T
code segment public 'code'
: FROM 1ib IMPORT

extrn init: far

extrn fctl: far

extrn fct2: far

extrn fct3: far

code ends
;***

LibraryVectorNr EQU 229 number of the interrupt
vector which is used to

call GetEntryPointTable

~o “weo wo

shdkkhkkhkdhkdkhkhkhhkhkhhdhdkhhhkhdkhhhhhhhkhhhhkhdkhhhkhhhkhdkdhhkhhkhhkhkk
data segment public 'data’

oldLibrarylIVv dd ?
; variable to save the original value of the
; library interrupt vector (LibraryVectorNr)

EntryPointTable dd init, fctl, fct2, fct3
; table containing the entrypoints of all
; library routines

data ends
phkkkkhkhkkhhkhhkhkdhhhhhhhhkhhhhhhhhhhhhhhhhhhhhkhkhhhhhhhkhhhhkk

136

MODULA-2/86

INTERFACING ASSEMBLY CODE LIBRARIES

shhkkkkkkhkkhkhkhkhhkhhhhkdkhkhhhkdhkhhhhkdkhkhhhkkhkhdkhhkdhhhkd
code segment

GetEntryPointTable:

e “o wo we “o

code

return the address of the table that contains
the entrypoints of the library routines

exit parameters:
ES:SI hold the address of EntryPointTable
MOV AX, data
MOV ES, AX
MOV SI, offset data: EntryPointTable
IRET

ends

shhkkkhdkhkhkhkhhkhhhkhkhhhhhkhhkhkhhhkhhkhhhhhkdkhhhhhhhkhkhkrkkrhhdhxk

e No “e N “o

be used

~e wo

~-e

~e

the following code must be inserted at the appropriate
place into the Modula-2 run-time support (file RTS.ASM),
in order to save the original value of the interrupt
vector LibraryVectorNr, and to set it such that it can

to call the function GetEntryPointTable

save interrupt vector and set it to entrypoint
of GetEntryPointTable interrupt service routine
MoV BX, LibraryVectorNr*4

save the old value

MOV AX, ES: [BX]

MOV word ptr oldLibraryIV, AX

MOV AX, ES: 2[BX]

MOV word ptr oldLibraryIV + 2, AX

set the new-one

MOV ES:word ptr [BX],offset GetEntryPointTable
MOV ES:word ptr 2[BX], CS

shhhdkhhhhhhkhhhhkkhkkhkhkhkhkhkhhhhhkhhhhhkhkhkhkhhkkkhkhkkkkhkkkkkdkdhdkikk

137

INTERFACING ASSEMBLY CODE LIBRARIES MODULA-2/86

the following code must be inserted at the appropriate
place into the Modula-2 run-time support (file RTS.ASM),
in order to restore the original value of the interrupt
vector LibraryVectorNr, which is used to call the
function GetEntryPointTable

.o Wwe we “o “o

; restore interrupt vector
MoV BX, LibraryVectorNr*4

; restore the old value
MOV AX,word ptr oldLibraryIV
MOV ES:word ptr [BX],AX
MOV AX,word ptr oldLibrarylIV + 2
MOV ES:word ptr [BX]+2,AX

shhkhkkkkhkhkhkhkkhkhkhhkhkhkhhhkkhhhkhhkdhkhhhkhkhhkhkhkhhhkhkhkkhkkhkkkdx

5.4.8 The Definition Module ’AsmLib’

DEFINITION MODULE AsmLib;
(* this module is the Modula-2 interface to the sample
library of assembly routines

*)

EXPORT QUALIFIED
Fctl, Fct2, Fct3;
PROCEDURE Fctl1(parameters);
(* Modula-2 declaration of the procedure interface of
the first assembly library routine
*)

PROCEDURE Fct2(parameters);
(* Modula-2 declaration of the procedure interface of
the second assembly library routine

*)

138

MODULA-2/86 INTERFACING ASSEMBLY CODE LIBRARIES

PROCEDURE Fct3(parameters);

(* Modula-2 declaration of the procedure interface of
the third assembly library routine
*)

END AsmLib.

549 The Implementation Module ’AsmLib’
IMPLEMENTATION MODULE AsmLib;
FROM SYSTEM IMPORT

ADDRESS, SWI, CODE, GETREG, SETREG, ES, SI;

CONST
LibraryVectorNr = 229;
(* number of the interrupt vector used to call the
function GetEntryPointTable in the modified
RTSS; this function retumns the address of the

table with the entrypoints of the assembly
library routines.

*)

PushBP = 55H;
PopBP = 5DH;

139

INTERFACING ASSEMBLY CODE LIBRARIES

TYPE
EntryPointTable = RECORD

init: PROC;

(* entrypoint of a possible
function in the assembly
library to initialize the
library

*)

fetl: PROC;

fet2: PROC;

fct3: PROC;

(* entrypoints for all assembly
library routines

*)

END;

VAR
fets: EntryPointTable;

(* local table with the entrypoints of all the
assembly library routines. It is a copy of an
identical table in the RTS. It is initialized
by the procedure ’InitLib’ of this module.
We use a copy for performance reasons.

*)

PROCEDURE Fctl(parameters);
BEGIN
(* initialize entry parameters, using SETREG *)
CODE(PushBP); (* save BP *)
fets.fetl;
CODE(PopBP); (* restore BP *)

(* get values of return parameters, using GETREG *)

END Fctl;

140

MODULA-2/86

MODULA-2/86 INTERFACING ASSEMBLY CODE LIBRARIES

PROCEDURE Fct2(parameters);
BEGIN
(* initialize entry parameters, using SETREG *)
CODE(PushBP); (* save BP *)
fets.fee2;
CODE(PopBP); (* restore BP *)
(* get values of return parameters, using GETREG *)
END Fct2;

PROCEDURE Fct3(parameters);
BEGIN
(* initialize entry parameters, using SETREG *)
CODE (PushBP), (* save BP *)
fets.fetn;
CODE(PopBP); (* restore BP *)
(* get values of return parameters, using GETREG *)
END Fct3;

PROCEDURE InitLib;
VAR

adr: ADDRESS;

tableptr: POINTER TO EntryPointTable;
(* pointer to the original table with the

entrypoints of the assembly library routines.
*
)

141

INTERFACING ASSEMBLY CODE LIBRARIES MODULA-2/86

BEGIN
SWI(LibraryVectorNr);

(* call the function GetEntryPointTable in the RTS,
Wwhich returns the address of the table with the
entrypoints of the assembly library routines

*

)
GETREG(ES, adr.SEGMENT);
GETREG(SI, adr.OFFSET),
(* get the address of the entrypoint table
%

tableptr := adr;
fets := tableptr”™;
(* copy the table into local table of this module
*)
END InitLib;

BEGIN
InitLib;
fcts.init;
(* call the initialization code of the assembly
library
*)

END AsmlLib.

142

MODULA-2/86 LIBRARY SEARCH STRATEGY

5.5 LIBRARY SEARCH STRATEGY

No special manipulation is required to build or to use the library of modules. All on-line modules,
residing on hard disk or floppy disk, comprise the library. The compiler, linker, and debugger
automatically search for referenced modules. The default search strategy can be modified by
command options. Note that during the operation of the MODULA-2/86 compiler, linker and
debugger, all needed files must be on-line. By default, several drives or directories are searched to
find a library module.

For the following discussion we will use the term ’path’ or ’path name’ as an abbreviation for ’drive
and/or directory name’.

5.5.1 Default Names

The MODULA-2/86 compiler, linker, post-mortem debugger, and run-time debugger construct the
default filename for a library module from its module name. This is done by truncating the module
name if it is longer than a file name may be, and by appending the appropriate extension (SYM,
LNK, etc.) to the resulting name. This default filename is then used to find the corresponding file.

5.5.2 The Default Search Strategy

When a library module is needed, several paths will be checked automatically to find the
corresponding file. A search strategy, as explained below, is applied by the compiler (for files with
extension .SYM), by the linker (for .LNK and .MAP files), and by the debugger (for .REF, . MOD
and .DEF files).

The first search is always done using the ’source’ or ’‘master’ path. The source or master path is the
path you specify when entering the name of the file to compile or link. If the file is not found using
this path, the current path -- the current drive and directory as known to your operating system -- is
checked for the file. If it is not found there, a third and last automatic search is done using the path
from where the compiler (or linker, debugger) was loaded. If the file still cannot be opened, you will
be prompted to type in the (path and) file name.

143

LIBRARY SEARCH STRATEGY MODULA-2/86

This default search strategy is adequate only if your system has floppy disks. For hard disk systems it
is recommended that you organize the disk as described in the installation section of this manual and
that you change the default search strategy by setting up the environment (in DOS) for MODULA-
2/86. This is done by the following DOS commands:

SET M2SYM=\M2LIB\SYM<CR>
SET M2INK=\M2LIB\L NK<CR>
SET M2REF=\M2LIB\REF<CR>

SET M2MAP=\M2LIB\MAP<CR>

It is recommended that these DOS commands be included in your AUTOEXEC.BAT file, which is
executed by DOS automatically every time you boot your system. If these environment strings
(M2SYM, M2LNK, M2REF, M2MAP) are defined in DOS, they will be used by the MODULA-2/86
system in order to determine which paths are searched automatically. If these environment strings are
not defined, then three automatic searches as explained above will be performed. If you use the
recommended disk organization, then you should define these environment strings.

Each of these environment strings can denote a number of paths. Different paths must be separated
by semicolons. If the environment strings are defined, then the MODULA-2/86 system - the
compiler, linker and debugger - will search the library files using all the paths specified by the
corresponding environment string. However, the first search is still done using the ’source’ or ‘master’
path. If it fails, the paths specified in the corresponding environment string are checked one after the
other according to the order in which they appear. If the file is not found, then you will be prompted
to type in the (path and) file name.

Example:
Let us assume, that the M2SYM string has been set by
set m2sym=;\mystul lib;\m2lib

and that a compilation was started by

C> m2 comp<CR>

LOGITECH MODULA-2/86 Compiler, Rel. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
source file>a:myprog<CR>

144

MODULA-2/86 LIBRARY SEARCH STRATEGY

In this case, the compiler will always perform a first search for symbol files on drive A, using the path
you specified with the source file. If the file is not found there, it will try to open the file using the first
path from M2SYM. In our case, this first path is empty, because the string starts with a semicolon.
An empty path denotes the current directory on the current drive. If a symbol file is not found using
the current path, the second path \mystuffimylib’ is searched. If this search and the last automatic

attempt to open a symbol file using the path "\m2lib\sym’ both fail, you will be prompted to type in
the file name.

This way of searching library files gives you a lot of flexibility to add your own library modules. The
simplest way to add your own library modules is to put them into the directories with the standard
library. As the example shows, you can also add new libraries of your own and organize it in your own
way. Note that, unlike in the case where no environment strings are defined, the current directory is
only searched if you did not specify a path when entering the source file name, or when an empty
path occurs in the environment string.

5,53 The Query Search Strategy

The query search strategy is always applied by the MODULA-2/86 system when you are prompted to
type in the (path and) file name of a library file. This can happen when a file is not found using the

default search strategy, or when you specify the Query option when compiling (or linking, or
debugging).

‘When you are prompted, several responses are available. They are discussed in the following
paragraphs.

= You can enter <ESC>, which means ’no file’. This can be used to indicate that the file is not
available or, in the case of the linker, that it should not be included. Depending on the

context, entering <ESC> may not allow the successful completion of the program you are
currently using.

= You can enter <CR> only, which means that the file name should be constructed from the
module name, and that the default search strategy (as explained above) will be applied.

145

LIBRARY SEARCH STRATEGY MODULA-2/86

= You can enter a file name only, without specifying any path name. If you do this, that file
name will be used, but the file will still be searched for automatically according to the default
search strategy. (Remark: Here an empty path name does not denote the current path. If you
want to get a file from the current path then you must denote it by ‘DK:’. Under DOS you

may also use *.\’.)

= You can enter a path name only (terminated by ’’ or by 'V’). In this case the file name will be
constructed from the module name and searched for using the specified path. Only one

attempt to open the file will be made.

» You can enter a complete path and file name. In this case also, there will be only one attempt
to open the file.

146

MODULA-2/86 DECIMALS

5.6 DECIMALS

The module ‘Decimals’ provides functions for arithmetic and formatting with decimal numbers of 18
or less digits. These functions are appropriate for business-oriented computation.

5.6.1 Internal and External Format

Decimal numbers have two formats -- external and internal. Numbers in external format are
represented by character strings. This external format is used for reading and writing numbers to the
console or printer in a form understandable to the user. Arithmetic operations are performed on
numbers stored in an encoded, internal format. The procedures ‘StrToDec’ and ‘DecToStr’ are used
to convert decimal numbers between internal and external format. Procedure ‘StrToDec’ is used to
encode decimal numbers and procedure ‘DecToStr is used to decode decimal numbers.

5.6.2 Types
Module ‘Decimals’ provides the following types:

= Type ‘DECIMAL’

Type ‘DECIMAL’ is used for the internal representation of a decimal number. Arithmetic
operations are performed on variables of type ‘DECIMAL’.

147

DECIMALS MODULA-2/86

= Type ‘DecState’

A variable of type ‘DECIMAL’ has a state of type ‘DecState’ associated with it. This state
may have the following values:

NegOvfl indicates a negative overflow
Minus indicates a negative decimal value
Zero indicates the value 0

Plus indicates a positive decimal value
PosOvfl indicates a positive overflow
Invalid indicates an invalid number

The procedure ‘DecStatus’ returns the state of a decimal variable.

5.6.3 Variables

The following variables are exported from module ‘Decimals’:

5.6.4

= VAR ‘DecValid’

The variable ‘DecValid’ indicates the success of the last operations. ‘DecValid’ is set after
each call to a conversion or arithmetic procedure. It is set to FALSE if the operation failed.

VAR ‘Remainder’

The variable ‘Remainder’ is set after each division operation with procedure ‘DivDec’.
‘DivDec’ returns an integer number for the quotient. If the result is not an integer number,
‘Remainder’ indicates the first digit that appears after the decimal point. For example, the
division of 39 by 8 yields a quotient of 4. The remainder is equal to 8 because this digit
appears immediately after the decimal point in the exact result of 4.875. If the division
operation fails, the remainder is ‘?’.

Conversion and Status Procedures

The following conversion and status procedures are provided by module ‘Decimals’:

148

= Procedure ‘StrToDec’

MODULA-2/86 DECIMALS
Procedure ‘StrToDec’ converts numbers from external to internal format. It is explained in
greater detail below.

= Procedure ‘DecToStr’

Procedure ‘DecToStr’ converts numbers from internal to external format. It is explained in
greater detail below.

= Procedure ‘DecStatus’

Procedure ‘DecStatus’ returns the current state of a decimal variable. It can be used to get
the sign of a valid decimal number. When an operation fails, the user can call the procedure
‘DecStatus’ to determine the actual arithmetic error. ‘DecStatus’ specifies the error status of
the decimal variable according to type ‘DecState’.

5.6.5 Arithmetic Operations
The following arithmetic operations can be performed with variables of type ‘DECIMAL’:

s Procedure ‘CompareDec’

Performs the comparison of two decimal values, Dec0 and Decl. The output is an integer
value as follows:

= -1 if Dec0 is less than Decl
s (if Dec0 equals Decl
= 1if Dec(is greater than Decl

s Procedure ‘AddDec’

Performs the addition of two decimal values, Dec0 and Dec1. The output is the sum of the
two values, a decimal value.

= Procedure ‘SubDec’

Performs the subtraction of one decimal value, Decl, from another decimal value, Dec0. The
output is the difference of the two values, a decimal value.

= Procedure ‘MulDec’

149

DECIMALS MODULA-2/86

Performs the multiplication of two decimal values, a multiplicand, Dec0 and a multiplier,
Decl. The output is the product of the two values, a decimal value.

m Procedure ‘DivDec’

Performs the division of one decimal value by another. The dividend, Dec(is divided by the
divisor, Dec1. The output is the quotient of the two values, a decimal value.

The remainder is placed in the global variable ‘Remainder’ as previously explained.
= Procedure ‘NegDec’
Returns the negative value of a decimal value.

5.6.6 Pictures

Numbers in external format are stored in character strings. These strings may include a currency
character, commas and decimal points. For example:

$923,841,371.38
is a decimal number in external format.
So called ‘pictures’ are used for the conversion between the string representation of decimal numbers
in external format and their representation in internal format. Pictures indicate how decimal numbers
appear in external format. They control the occurrence of leading blanks, leading zeros, number signs,
currency characters, commas and decimal points.
For example, the picture which corresponds to the decimal number shown above is:
$,$8$,5$3$,$$8,$$9.99
With the picture ZZZZZ7777Z7779 the same decimal number would have appeared as:

92384137138

150

MODULA-2/86 DECIMALS

5.6.7 Picture Characters

Blank spaces may not appear in a picture. Pictures may consist of the following characters only:

digit

nonzero digit or leading blank
nonzero digit, leading blank, or $
sign of number (‘+’ or *-’)

. decimal point

. comma or leading blank

Ve N ©

If the first character of a picture is a dollar sign (8), it will appear as a currency character in the
external format. The currency character floats across any leading blanks so it appears adjacent to the
leftmost digit. However, if a decimal value consists of the same number of digits as the picture which
represents it, each dollar sign will be replaced by a digit and thus, no currency character will appear.

Numbers without leading zeros are represented with ‘Z’s. A ‘Z’ is replaced by a digit if there is one,
otherwise it is replaced by a blank.

‘9’s represent numbers which require leading zeros to be displayed. A ‘9’ is replaced by a digit if there
is one, otherwise it is replaced by a zero.

In the following picture, the ‘9’s guarantee that dollar amounts less than $1.00 appear in standard
form.

$$$,$$9.99
The following numbers correspond to this picture:
$0.39
$369.00
$48,327.04
Sign characters (S) and decimal points (.) do not float across leading blanks, they appear in their

specified position. Commas (,), ‘Z’ and ‘$’ characters correspond to leading blanks when they appear
to the left of a number.

151

DECIMALS MODULA-2/86

5.6.8 Procedure StrToDec

The procedure ‘StrToDec’ uses pictures to convert numbers from external to internal format. If the
input string is shorter than the picture string, leading blanks are added until it is the same length as
the picture. A currency character can appear only once in the input string, and it must be adjacent to
the leftmost digit. Commas are matched if they are within the number, or ignored if they appear to
the left of the number. The sign character is matched by a ‘+’, ‘-’ or a blank. Decimal points are
matched unconditionally.

Pictures ensure that input strings will be within a limited range. ‘StrToDec’ sets ‘DecValid’ to FALSE
and the state of the decimal result to ‘Invalid’ under the following conditions:

= The input string does not match the picture specification.
= The input string is longer than the picture string.
= The input string and the picture specify more than 18 digits.

5.6.9 Procedure DecToStr

If the number of digits in a number in external format exceeds the number of digit characters in the
picture which represents it, DecToStr sets DecValid to FALSE and returns an ‘invalid’ format string.
Thus, pictures can be used to control the maximum number of digits that can appear in a number.

Procedure ‘DecToStr’ represents erroneous decimal variables with special character strings
depending on the state of the decimal variable:

m» PosOvfl is represented by ‘+++++++’
= NegOvfl is represented by ‘----------- ’
s Invalid is represented by ‘2?7?7777

The length of the string is determined by the length of the corresponding picture.

152

MODULA-2/86 DECIMALS

5.6.10 Error Propagation

Once an error occurs in a decimal variable as the result of an operation, the error remains through all
the operations involving the variable. The following tables show how errors are propagated by the
arithmetic operations. For operations in the form ‘A <operation> B’, the leftmost column represents
states of A and the topmost row represents states of B.

Addition and Subtraction:

A/B NegOvfl Minus Zero Plus PosOvfl Invalid
NegOvil NegOvfl NegOvfl NegOvfl NegOvfl Invalid Invalid
Minus NegOvfl PosOvfl Invalid
Zero NegOvfl PosOvfl Invalid
Plus NegOvfl PosOvfl Invalid
PosOvfl Invalid PosOvfl PosOvfl PosOvfl PosOvfl Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid
Multiplication:

AB NegOvfl Minus Zero Plus PosOvfl Invalid
NegOvfl PosOvfl PosOvfl Zero NegOvfl NegOvfl Invalid
Minus PosOvfl Plus Zero Minus NegOvfl Invalid
Zero Zero Zero Zero Zero Zero Invalid
Plus NegOvfl Minus Zero Plus PosOvfl Invalid
PosOvil NegOvfl NegOvfl Zero PosOvfl PosOvfl Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid

153

DECIMALS MODULA-2/86

Division:

A/B NegOvfl Minus Zero Plus PosOvfl Invalid
NegOvil Invalid Invalid Invalid Invalid Invalid Invalid
Minus Invalid Plus Invalid Minus Invalid Invalid
Zero Zero Zero Invalid Zero Zero Invalid
Plus Invalid Minus Invalid Plus Invalid Invalid
PosOvfl Invalid Invalid Invalid Invalid Invalid Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid

154

MODULA-2/86 REAL ARITHMETIC

5.7 REAL ARITHMETIC

The Modula-2 programming language provides the data type REAL for floating point arithmetic.
MODULA-2/86 supports the type REAL according to the IEEE standard for double precision
floating point numbers. This format uses 8 bytes and is precise for 15 to 16 decimal digits. The values
that can be represented range from 2.23 times 10 to the minus 308th power, to 1.79 times 10 to the
308th power:

2.23E-308 <= |x| <= 1.79E+308.

An optional 8087 math coprocessor can be added to many 8086/8088 based microcomputer systems.
The 8087 performs floating point operations at very high speed. It provides a set of instructions which
manipulate operands and yield results in the IEEE standard floating point format. If an 8087
coprocessor is not present, the REAL arithmetic functions must be emulated on the 8086 or 8088
processor.

MODULA-2/86 allows you to create programs that use an 8087 coprocessor and run at very high
speed, as well as programs that emulate REAL arithmetic on the 8086 or 8088. A compile time
switch decides whether the compiler generates 8087 inline code or code that uses the LOGITECH
REAL arithmetic emulator.

5.7.1 Simple Use of REAL Arithmetic

If you know your program will be running on a system with an 8087, you can use the compiler option
Coprocessor. When compiling with the Coprocessor option, the compiler generates 8087 inline code
for REAL operations. The prefix ’C87’ has been added to the names of the object files of those
MODULA-2/86 library modules that contain 8087 inline code. If you compile with the Coprocessor
option you should use these files when linking. A program that includes 8087 inline code requires an
8087 to run and cannot be executed on a system without an 8087.

The following describes the easiest way to create a program that runs without an 8087 coprocessor:

155

REAL ARITHMETIC MODULA-2/86

You must choose the compiler option Emulator if your program should run on a system without an
8087. When compiling with the Emulator option, which is the default, the compiler generates code
for the LOGITECH REAL emulator. It also generates a reference to module ’Reals’ which provides
the REAL emulation. The prefix ’E87’ has been added to the names of the object files of those
MODULA-2/86 library modules that have been compiled for the emulator. If you compile with the
Emulator option you should use these files when linking. When you link with the files with the prefix
"E87’, your program will always use the emulator for REAL arithmetic.

A MODULA-2/86 program compiled with the Emulator option can also be linked in other ways. It is
still possible to link the program such that it requires an 8087 for execution and executes at maximum
speed. It is also possible to link the program such that it uses an 8087 if one is present, and otherwise
uses the emulator. The use of these advanced features of MODULA-2/86 is described in the
following sections.

5.7.2 Choices for Using REAL Arithmetic

You may decide what kind of REAL arithmetic to use either at compile-time, link-time or run-time.

The later the decision about which kind of REAL arithmetic to use is made, the more the portability
of a program is improved. However, postponing this decision also increases memory requirements
and decreases execution speed. The relative benefits and disadvantages of each alternative are
detailed below.

MODULA-2/86 offers the following alternatives for REAL arithmetic:

= At compile time the compiler options Coprocessor and Emulator determine the kind of code
generated. The user can choose to generate 8087 inline code (Coprocessor option) or to
compile for the LOGITECH REAL emulator (Emulator option). When compiling for the
emulator, the compiler automatically generates a reference to module "Reals’ which provides
the REAL emulation. The compiler implicitly knows the interface of module 'Reals’,
therefore no symbol file needs to be provided.

= Ifyou choose to generate 8087 inline code, an 8087 coprocessor is required to execute the
program. The program will not run on a system without an 8087. The link files with the prefix
’C87 should be used when linking the program. For those library modules that use REAL
arithmetic the link files with the prefix ’C87’ contain the object code for the 8087.

156

MODULA-2/86 REAL ARITHMETIC

= If you choose to compile a module for the LOGITECH REAL emulator, how the program
will be linked is still flexible. MODULA-2/86 provides the following implementations for the
REAL emulator (module ’Reals’) and for the mathematical functions (module ‘MathLib0’):

If the program will not be executed on a system with an 8087, using the pure
emulator version is the best choice. To use this version of the emulator, you must
link with the files with the prefix 'E87’. A program linked in this way may be
executed on a system with an 8087; however, it will never use the 8087.

= The pure 8087 version of the emulator can be useful if the program being linked is
executed on a system with an 8087. To use this version of the emulator, you should
link with the files with the prefix ’C87’. A program linked with the files with the
prefix ’C87 requires an 8087 for execution.

= Using a ‘'mixed’ version of the emulator postpones, until run-time, the decision of
whether or not to use an 8087. The mixed emulator version is a combination of the
other two versions, and thus is the most flexible option. If you choose to link with
the mixed version of the emulator, then it will be determined at run-time whether an
8087 is present or not. Based on this determination:

s The program will use the 8087 if executed on a system with an 8087.

» The program will use the emulator to perform REAL arithmetic when the 8087
coprocessor is not present.

Linking with the mixed version of the emulator increases flexibility and improves the
portability of a program. The main disadvantage of the mixed version of the
emulator is that the program requires more memory to run because the code for
both forms of the emulation must be present. When linking the program, the files
with the prefix 'M87” must be used for the modules ’Reals’ and "MathLib0’, and the
files with the prefix ’E87’ must be used for all other library modules that use REAL
arithmetic.

Because of the prefix "E87’, ’C87’, or "M87’ in the filename, the MODULA-2/86 linker cannot find
the corresponding library modules automatically. Therefore, you must decide which Real modules
you want to use: emulation, coprocessor or mixed. Then, you must copy these files to files with
appropriate names, such that the linker will find them. The following list tells you which files to copy
depending upon which method you decide to use:

157

REAL ARITHMETIC

8087 Inline Code

Compile all your modules which use floating point arithmetic with the /C option.

= Reals

You will not use the emulator.
= MathLibQ

Copy C87Math0.LNK to MathLib0.LNK.
= RealConversions

Copy C87RealC.LNK to RealConv.LNK.
= ReallnOut

Copy C87Reall. LNK to RealInOu.LNK.

Pure Emulator

Compile all your modules which use floating point arithmetic with the /E option.

= Reals

Copy E87Reals.LNK to Reals.LNK.
= MathLib0

Copy E87Math(0.LNK to MathLib(0.LNK.
s RealConversions

Copy E87RealC.LNK to RealConv.LNK.
= ReallnOut

Copy E87Reall.LNK to ReallInOu.LNK.

8087 Version of Emulator

Compile all your modules which use floating point arithmetic with the /E option.

= Reals

Copy C87Reals.LNK to Reals.LN
= MathLib0

Copy C87Math(0.LNK to MathLib(0.LNK
s RealConversions

Copy E87RealC.LNK to RealConv.LNK.

= ReallnOut
Copy E87Reall.LNK to ReallInOu.LNK.

158

MODULA-2/86

MODULA-2/86 REAL ARITHMETIC

Mixed Emulator

Compile all your modules which use floating point arithmetic with the /E option.

= Reals

Copy M87Reals.LNK to Reals.LNK.
= MathLib0

Copy M87Math(.LNK to MathLib0.LNK
= RealConversions

Copy E87RealC.LNK to RealConv.LNK.
= ReallnOut

Copy E87Reall.LNK to RealInOu.LNK.

COMPARISON OF THE DIFFERENT ALTERNATIVES

5.7.4 Accuracy of the Computations

For all the basic arithmetic operations on operands of type REAL, the 8087 coprocessor and the
LOGITECH REAL emulator yield the same results. To compute mathematical functions such as
sine or cosine, the emulator uses the Chebyshev polynomial approximation. Because the 8087
coprocessor uses a different scheme for approximation, the results of mathematical functions may
sometimes differ slightly. For all practical purposes, these differences between the 8087 and the
emulator are not significant.

5.7.5 Memory Requirements

‘When you compile with the Coprocessor option, the compiler generates 8087 inline code and makes
no reference to the emulator (module ’‘Reals’). Module ’Reals’ is only linked into a program if some
part of the program was compiled using the Emulator option. As a general rule, the memory
requirements are larger for programs that use the emulator.

Table 5.7-1 lists the approximate memory requirements (code and data) for the different
implementations of the modules ’Reals’ and 'MathLib(’. All numbers are given in bytes.

159

REAL ARITHMETIC MODULA-2/86

Reals MathLibQ Reals & MathLib(Q
8087 Inline Code - 1700 1700
8087 Version of Emulator 500 1700 2200
Pure Emulator 2300 4200 6500
Mixed Emulator 2800 6100 8900
TABLE 5.7-1

5.7.6 Performance

Table 5.7-2 lists the time measured for 1000 executions of the addition, multiplication, and division of
two REAL numbers. Subtraction and addition require the same amount of time. The last row lists
the times measured for 1000 executions of a loop that performs once, each basic operation (addition,
subtraction, etc.), each kind of comparison (equal, less than, etc.), and calls once, each of the
functions provided by "MathLib0’.

All times are given in seconds. However, the times measured may differ from system to system.

Table 5.7-2 allows for a relative comparison of the performance the user can expect when choosing a
particular alternative for REAL arithmetic in MODULA-2/86. On the average, 8087 inline code is
approximately ten times faster than full emulation of REAL arithmetic on the 8086.

160

MODULA-2/86 REAL ARITHMETIC

Addition Multiplication Division Combination

8087 Inline Code 0.11 0.11 0.11 6.6

8087 Version of Emulator 0.22 0.22 0.22 82

Mixed Emulator (with 8087) 031 031 031 125

Pure Emulator 1.0 12 21 61.0

Mixed Emulator (without 8087) 11 13 22 63.0
TABLE 5.7-2

161

MEMORY ORGANIZATION MODULA-2/86

5.8 MEMORY ORGANIZATION

5.8.1 Global Memory Organization
The global memory organization when executing a MODULA-2/86 program is shown in Figure 5.8-1.
This setup is established by the MODULA-2/86 run-time support.

After loading a program the run-time support creates the main process, which will execute the
program. It then transfers control to this main process. The process descriptor of the main process is
stored in the data segment of the run-time support.

162

MODULA-2/86 MEMORY ORGANIZATION

--- 400H
| Operating system |
--- RTS address
| Code of the MODULA-2/86 run time system |
| support |
--- RTS_DS
| Data of the MODULA-2/86 run-time |
| support |
--- M2_ START MARK
| Code of the MODULA-2/86 program, |
| loaded by the run-time support |
| Global data of the MODULA-2/86 |
| program
--- START MEMORY
| Heap of main process |
--- Top of main
| | heap
| free memory |
----- e —em——————————————————- Top of main
| | stack
| Stack of main process |
--- M2 END MARK
| unused memory |

TOP_OF MEMORY

FIGURE 5.8-1
GLOBAL MEMORY ORGANIZATION

163

MEMORY ORGANIZATION MODULA-2/86

The memory locations indicated in Figure 5.8-1 have the following definitions:

164

RTS address

Load address of the MODULA-2/86 run-time support. This address depends on the size of
the operating system. The RTS is a relocatable program, containing a code and a data
segment.

RTS_DS

Address of the data segment of the MODULA-2/86 run time support.

M2_START MARK

Load address for a Modula-2 program. The MODULA-2/86 code is relocatable and is
loaded immediately after the end of the run-time support.

START MEM

Address of the first free paragraph after the code and data of a Modula-2 program loaded by
the RTS. At this address the heap of the main process starts.

Top of main heap

Current top of heap for the main process. The heap grows toward the stack. When the
program uses module Storage’ to dynamically allocate and deallocate memory, the heap top
may be increased and decreased. If the heap grows too close to the top of the stack, the
program is aborted with a heap overflow.

Top of main stack

Current top of stack for the main process. The stack grows toward the heap. For each active
procedure, the stack contains a procedure activation record. The structure of this record is
explained below. If the stack grows too close to the top of the heap, the program is aborted
with a stack overflow.

MODULA-2/86 MEMORY ORGANIZATION

s M2 END_MARK
End of the memory area actually used by the Modula-2 program and the run-time support.

= TOP OF MEMORY

End of memory area which in principle could be used by the Modula-2 program and the run-
time support. The run-time support gets the value for this address from the operating system.

5.8.2 Subprograms and Overlays

The MODULA-2/86 environment offers a standard overlay schema, with the following
characteristics:

= Qverlays can be loaded in the form of subprograms. This feature is provided by procedure
‘Call’ from module ‘Program’.

= The size of an overlay is limited only by the physical address space, a maximum of one
megabyte.

s The programmer is not concerned about where an overlay is loaded. To load and execute an
overlay, one simply calls the procedure ‘Call’ from module ‘Program’. This procedure finds a
memory area, on top of stack, large enough to hold the overlay. The relocatable loader then
loads the program in that area and control is passed to it. After termination of the overlay,
either normal termination or termination caused by an error, execution continues at the
statement that immediately follows the call to the procedure ‘Call’, and the memory occupied
by the overlay is freed.

s Only the main process can call subprograms. The procedure ‘Call’ must not be used from
coroutines that have beeen created by means of ‘NEWPROCESS?’. If the subprogram is
called in a ‘shared’ way (see definition module ‘Program’), there is no distinction between the
old and the new heap of the main process. Only one heap exists. Any dynamic storage
allocated by the subprogram remains allocated upon termination of the subprogram.

165

MEMORY ORGANIZATION MODULA-2/86

If the subprogram is called in an ‘unshared’ way, it uses its own private heap. If the main process uses
module ‘Storage’ to dynamically allocate memory, the private heap of the subprogram is used. During
the execution of the subprogram no memory can be allocated from the old heap of the main program.
Upon termination of the subprogram all the memory allocated dynamically by the subprogram is
freed and the heap is reset to the old heap.

In either case, the stack is set back to the old stack when the subprogram terminates. This
automatically frees the memory area occupied by the code and global data of the subprogram.

After loading of a subprogram, the memory layout is as shown in Figure 5.8-2. (Only the higher part
of memory is shown. See also Figure 5.8-1.)

166

MODULA-2/86 MEMORY ORGANIZATION

| | lower address

-------------------------------------- START MEM

I

-------------------------------------- 0l1ld top of heap
| New heap of main process |
| (heap used by the subprogram) |

-------------------------------------- New top of heap
| Free memory |
-------------------------------------- New top of stack
| New stack of main process |

| (stack used by the subprogram) |
-------------------------------------- Load address

| Code of the subprogram, |

| loaded by 'Program.Call' |

| Global data of the subprogram |
-------------------------------------- 0ld top of stack
| 0l1ld stack of main process |
-------------------------------------- M2 END_MARK

| unused memory |
-------------------------------------- TOP_OF MEMORY

FIGURE 5.8-2
MEMORY ORGANIZATION FOR SUBPROGRAMS

5.8.3 Processes

‘When starting a Modula-2 program, the MODULA-2/86 run-time support automatically creates the
main process. This ‘default’ process gets the largest available region of memory as its workspace. The
program which is loaded by the run-time support runs as the main process. Subprograms loaded by
the Modula-2 program through module ‘Program’ run as overlays to the main process. No new
process is created to execute subprograms. The Figures 5.8-1 and 5.8-2 illustrate the organization of
the workspace of the main process.

167

MEMORY ORGANIZATION MODULA-2/86

When a new process is created by a call to procedure ‘NEWPROCESS’ from module ‘SYSTEM’, it
must be assigned a workspace. This region of memory must be explicitly defined by the programmer.
It is usually a variable, owned by the father process. Such a variable can be global, for example, an
ARRAY declared at the level of a module. It can be a dynamic variable, created on the heap by a call
to NEW, or it can also be a variable declared local to a procedure, which is allocated on the stack. If a
non-global variable is used, make sure the process does not have a longer lifetime than its workspace!

The organization of the workspace of a process created by a call to ' NEWPROCESS’ differs slightly
from the organization of the workspace of the main process. It is used for the local and dynamic
variables of the process (stack and heap). A part of the workspace also contains the process
descriptor, which is needed for the TRANSFER mechanism. This process descriptor is initialized by
the call to procedure ‘NEWPROCESS’. Figure 5.8-3 shows the organization of the process
workspace.

-------------------------------------- Workspace address

-------------------------------------- Top of process
| free memory inside of | heap

| workspace |

-------------------------------------- Top of process
| Stack of process | stack

-------------------------------------- Workspace end

FIGURE 5.8-3
PROCESS WORKSPACE

The process descriptor of a process created by ‘NEWPROCESS’ starts at the first paragraph
boundary in the process workspace. Approximately 200 bytes are needed for the process descriptor,
the initial heap and the initial stack. In addition, at any point in time, there should be approximately
200 bytes of free memory in the process workspace. This memory may be needed when an interrupt
occurs during the execution of the process, because the standard interrupt handlers of the operating
system use the current stack. This is true for any program and is not related in any way to the use of
‘IOTRANSFER’ in Modula-2. This brings the minimum size of a workspace to approximately 400
bytes, assuming that the corresponding process does nothing at all!

168

MODULA-2/86 MEMORY ORGANIZATION

Note: If the workspace of the new process is too small and does not allow a reasonable
initialization, the process that calls ‘NEWPROCESS’ is terminated with a stack overflow.

For any procedure call, some space on the stack is needed. Also, any call to the operating system,
needs approximately 100 bytes of stack space. The standard MODULA-2/86 library implements all
input and output functions by means of calls to the operating system. Taking everything into account,
even the most simple process that does terminal or file i/o requires a workspace of AT LEAST 2 K
BYTES. For more complicated processes, a larger workspace is required.

The workspace of a process must be large enough to hold its heap and stack. If the process heap and
stack grow too much, using all of the free memory in the process workspace, the program containing
this process is aborted with a heap or stack overflow. The maximum size of a process workspace is
approximately 64K bytes.

5.8.4 Allocation of Variables

Local variables are variables which are declared inside of a procedure. They are allocated with the
procedure activation record on the stack of the process that executes the procedure call. The
variables of modules which are declared local to a procedure are allocated at the same place. The
procedure parameters are allocated at a different place inside of the procedure activation record.

Because the procedure activation record only exists while the procedure is being executed, the
lifetime of local variables and of the procedure parameters is limited to the duration of the procedure
call. Every time a procedure is called, a new instance of its activation record is created. If the
procedure is recursive, or if it is called by more than one process at the same time, several instances
of its procedure activation record will exist.

Global variables are variables which are declared in modules which are not local to a procedure, for
instance, in a definition module. They come into existence when the program or subprogram that
contains this module is loaded. They are of a more permanent nature than local variables. Their
lifetime is limited by the lifetime of the program or subprogram to which they belong.

In general, there exists only one instance of the global variables of a module. Global variables are
shared by all the procedures and processes of a program. A program that calls a subprogram also
shares its global variables with the subprogram.

169

MEMORY ORGANIZATION MODULA-2/86

Variables are allocated in the order of their declaration, the first variable has the lowest address.
Alignment of variables depends on the setting of the alignment option. If the alignment is on,
variables with a size greater than one byte are allocated on even addresses. Byte sized variables can be
allocated on odd addresses. The use of alignment can improve the performance of the program for an
8086 based system.

The maximum total size of all local variables of a procedure is approximately 32K bytes. The same
limit exists for the total size of all parameters of a procedure. In practice, however, these sizes are
much more limited by the size of the stack, which cannot exceed 64K bytes. The limit for the total
size of all global variables declared in one program module or in one implementation module,
including those declared in the corresponding definition module, is approximately 64K bytes. The
total size of the global variables in all modules of a program is only limited by the physical address
space which is at most one megabyte on an 8086 or 8088 based system.

5.8.5 The Heap

The heap of the main process starts immediately after the end of the code and data of the Modula-2
program loaded by the run-time support. To avoid unpredictable memory occupation due to the
concurrency of multiple processes, the heap of every process is administrated independently. For any
process created by ‘NEWPROCESS’ the heap is the memory area between the bottom of the
workspace, after the process descriptor, and the top of stack.

The library module ‘Storage’ implements this default heap management. It provides procedures
‘ALLOCATE’ and ‘DEALLOCATE’, which allocate or deallocate memory from the heap of the
calling process. Inside of the corresponding heap, the same strategy of allocation and deallocation is
used for the main process and all other processes. The heap grows toward the stack which occupies
the high end of the workspace of the process. If upon a call to ‘ALLOCATE’, the heap grows too
close to the stack, the heap manager aborts the Modula-2 program with a heap overflow.

Modula-2 provides the standard procedures ‘NEW’ and ‘DISPOSE’ to allocate and deallocate
dynamic memory. The compiler maps calls to these procedures to calls of the procedures
‘ALLOCATE’ and ‘DEALLOCATE’. When using ‘NEW’ or ‘DISPOSE’ in a module, some
procedure ‘ALLOCATE’ or ‘DEALLOCATE’ must be imported or declared in that module. The
standard way of doing this is to import these procedures from the library module ‘Storage’. However,
a program may declare and use its own versions of ‘ALLOCATE’ or ‘DEALLOCATE’. In this way, a
program can implement its own heap management. In general, the strategy used for allocation and
deallocation of dynamic memory will then differ from the default strategy that is provided by module
‘Storage’.

170

MODULA-2/86 4 MEMORY ORGANIZATION

5.8.6 The Stack
The stack holds different kinds of data:

= procedure activation records
= temporary values during the evaluation of an expression
= other temporary data

Every process owns its private stack which is part of its workspace. Upon creation of a process by a
call to ‘NEWPROCESS’ the stack is set such that the first word pushed onto the stack occupies the
last word at the highest even address in the workspace. The stack grows from the end of the
workspace toward the heap which occupies the lower end of the workspace.

The maximum size a stack can be is 64K bytes. However, in most applications the workspace of a
process will be less than 64K bytes. Therefore, the stack size is, in general, limited by the size of the
workspace and the occupation of the heap.

When the main process loads a subprogram, the current stack is ‘frozen’, and the subprogram is
loaded on top of it. After this, a new stack is created which starts at the address just below the load
address of the subprogram. The value of the stack segment is adjusted, such that the new stack can
again grow up to 64K bytes. When the subprogram terminates, the stack segment and the stack
pointer are reset to the old ‘frozen’ stack. This automatically removes the stack, code, and data of the

subprogram. The value of the stack segment of any process other than the main process is never
modified.

5.8.7 The Procedure Activation Record

Each time a procedure call is executed, a new procedure activation record is created on the stack of
the current process. Depending on whether code for the 8086/8088 or 186/286 processors is
generated, the format of the activation records differs slightly. The procedure activation record
contains the following information (see also Figures 5.8-4 and 5.8-5 below):

17

MEMORY ORGANIZATION MODULA-2/86

172

= Procedure parameters

The parameters, if any exist, are pushed onto the stack in the order in which they are
declared. Because the stack grows toward lower addresses, the last parameter is found at the
lowest address.

Static link

The static link is a pointer, within the same stack, to another procedure activation record
which constitutes the static environment of the procedure. The static link is used to find
variables or parameters in the static environment of the procedure. The static link only exists
for procedures which are declared nested inside of another procedure. The static
environment consists of the parameters and variables which are declared in the embedding
procedure(s). In the case of code generated for 186/286, the static link does not exist, but is
implemented as a display.

Return address

If the procedure was activated by a ‘near’ procedure call, the return address consists of an
offset value only, which corresponds to the instruction pointer. If the procedure was
activated by a ‘far’ call, there is also a segment value, which corresponds to the code segment
of the calling procedure.

Dynamic link
The dynamic link points to the previous procedure activation record within the same stack.

Display (for 186/286 only)

The display is a table of pointers, within the same stack, to the other procedure activation
records which constitute the static environment of the procedure. The number of table
entries corresponds to the lexical nesting level of the current procedure. The display table is
used to find variables or parameters in the static environment of the procedure. The dispiay
is only generated if the option for code generation for 186/286 was selected. In the case of
8086/8088 code, access to the static environment is implemented by the static link.

Local data

The local data consists of all the variables which are declared inside of the procedure.

MODULA-2/86 MEMORY ORGANIZATION

low addresses
-------------------------------------- stack pointer

-------------------------------------- base pointer

| Last parameter |

| e o o |
| First parameter |

high addresses

FIGURE 5.8-4
PROCEDURE ACTIVATION RECORD FOR 8086/8088

173

MEMORY ORGANIZATION MODULA-2/86

low addresses
—————————————————————————————————————— stack pointer
-------------------------------------- base pointer

| Last parameter |

| ,
| First parameter |

high addresses
FIGURE 5.8-5
PROCEDURE ACTIVATION RECORD FOR 186/286

5.8.8 Procedure Calling Conventions

A procedure is called with a ‘far’ intersegment call if at least one of the following conditions is true:
s The procedure is imported from another ’separately compiled module.
= The procedure is exported from a definition module.
= The procedure is used in an assignment to a procedure variable or as a procedure parameter.

= The procedure is used as the body (starting point) of a process upon a call to
‘NEWPROCESS'.

If none of these conditions is true, the procedure is called with a ‘near’ intrasegment call.

174

MODULA-2/86 MEMORY ORGANIZATION

Before a procedure call occurs the following prologue is executed in the calling procedure:

» The parameters, if any, are pushed on the stack in the same order as they are declared. A

value parameter on one byte occupies two bytes on the stack, with the value in the low byte
and an undefined high byte.

= for 8086/8088 only:
If the called procedure is declared nested inside of the calling procedure, the static link is
pushed on the stack.

This sets up the first part of the procedure activation record. The remainder is set up inside of the
called procedure.

Now the procedure is called and gains control. It executes the following procedure prologue, to
prepare the rest of the procedure activation record:

= An optional call to the run-time support routine stack check is executed. BX contains the
number of bytes on the stack needed by the current procedure. This amount includes the size
of local variables and the stack space needed to pass parameters to called procedures.

The following steps are executed for 8086/8088:

s The current value of the base pointer BP is pushed on the stack. This sets up the dynamic
link.

= The value of the base pointer BP is set to the current value of the stack pointer SP.

= Space is reserved on top of the stack for the local variables of the procedure, if any exist, by

reducing the current value of the stack pointer SP by the total size of the procedure
variables.

This is the code generated for 186/286:

= The instruction ‘ENTER size, level’ is executed where ‘size’ is the total size of the procedure
variables, and ‘level’ is the lexical nesting level of the procedure. This instruction

automatically sets up the dynamic link, the display, the space for the local variables on the
stack, and the values for BP and SP.

175

MEMORY ORGANIZATION MODULA-2/86
The statements of the procedure body are then executed. The local variables and the parameters of
the procedure are accessed with an offset relative to the base pointer BP.

Upon termination of the procedure body, the procedure epilogue is executed, performing the
following operations:

The following steps are executed for 8086/8088:

= The stack pointer SP is reset to the current value of the base pointer BP. This removes the
local variables from the stack.

= The dynamic link is popped to restore the old value of the base pointer BP.

This is the code generated for the 186/286:

= The instruction LEAVE is called. This instruction automatically removes local variables,
display, and dynamic link and resets BP and SP.

= A return instruction is executed which passes control back to the calling procedure. A ‘far’ or

‘near’ return is used, according to the type of call that was used to activate the procedure.
The parameters and the static link are discarded automatically with the return instruction.

5.8.9 Function Results

A function result is returned as follows, depending on the size of the function type:
= One byte values are passed back in register BL.
= Two byte values are passed back in register BX.
= Four byte values are passed back in register ES and in register BX.

= REAL values are always passed back on top of the stack.

Note that in the current release, arrays and record types are not allowed as function types.

176

MODULA-2/86 VERSION CHECKING

5.9 VERSION CHECKING

59.1 Module Key and Version Checking

All modules in a program must be compiled with a consistent version of module definitions. When a
module definition file is modified all program and implementation modules using that module must
be recompiled before a new executable program can be created. Modification of a definition part
means a particular compilation into a SYM file. Each time a definition module is compiled, it will
produce a new version of that module, which is incompatible with any other version of that module.
Even if you do not change the text of the definition part, recompilation will create a new version of
the SYM file.

MODULA-2/86 checks for version consistency and will not allow inconsistent versions to be
compiled together. The version checking mechanism is simple in concept, but can be complex in
application. Each time a definition module is compiled, a new module key is created and included in
the resulting SYM file. This key will be different each time the module is compiled.

Once a definition part has been compiled, it becomes possible to compile its implementation part, or
another module which uses the definition part - a ’client’ module. These other modules will import
that module and the compiler will find the compiled version of the definition part, and use it to fully
check the module being compiled. The module key of the referenced definition parts are included in
the compiled output.

At compile, link and load time, MODULA-2/86 verifies that all the keys included for a given
definition module are the same. This guarantees that all modules which share an interface were
compiled using the same version of that interface. The purpose of this is to ensure the consistency of
the program, as if there was only one source file, compiled all at once.

5.9.2 Version Errors and How to Fix Them

If the version consistency rule is broken, you will get a version error during either compilation,
linking, or (sub)program loading. The following sections describe the typical cause and some possible
corrections for version errors.

177

VERSION CHECKING MODULA-2/86

593 Version Errors During Compilation

A version error while compiling module A can only arise if there is some definition module X that is
imported by two different paths into module A, and the version imported by one path is not the same
as the version imported on the other path.
Example:

AMOD imports Band C

B.DEF imports X

C.DEF imports X
Suppose that we compile as follows:

X.DEF => X.SYM (version 1)

B.DEF => B.SYM (uses version 1 of X)

X.DEF => X.SYM (version 2)

CDEF => C.SYM (version 2 of X)

AMOD-=> ALLNK
There will be a version inconsistency error when A.MOD is compiled, because the version of X
imported through B is not the same as the version imported through C. The recompilation of X.DEF

is the source of the version conflict. Before A.MOD can be compiled, B.DEF must be recompiled
with the newer version of X.

59.4 Version Errors During Linking

When two or more modules are linked together, a version error can occur if some definition module
has been used in two different versions by the linked modules.

178

MODULA-2/86 VERSION CHECKING

Example:
MAIN.MOD imports InOut and Terminal.
INOUT.DEF defines InOut and imports nothing.
INOUT.MOD implements InOut and imports Terminal.
TERMINAL.DEF defines Terminal and imports nothing.

TERMINAL.MOD implements Terminal and imports nothing.

Now suppose these compilations are done:

TERMINAL.DEF => TERMINAL.SYM (version 1)
INOUT.DEF => INOUT.SYM
INOUT.MOD => INOUT.LNK (uses version 1 of Terminal)

TERMINAL.MOD => TERMINAL.LNK (corresponds to version 1)
TERMINAL.DEF = TERMINAL.SYM (version 2)
MAIN.MOD => MAIN.LNK (uses version 2 of Terminal)

Now, linking the program MAIN will generate a version conflict between the version of
TERMINAL(.SYM) used by MAIN, and the version used by TERMINAL and INOUT. A solution
is to recompile INOUT.MOD and TERMINAL.MOD with the new TERMINAL.SYM and link
again.

59.5 Version Errors During Loading

When loading a subprogram (overlay), it is possible to have a version error between the program
being loaded and the modules which are already in memory. This is always due to two modules, one
loading and one already resident, having been compiled with different versions of some interface.

179

VERSION CHECKING MODULA-2/86

The following is a typical case:

There is a program which contains a module "Windows’ with an interface WINDOWS.DEF. This
program calls a subprogram, in which there is a module "Edit’ which imports "Windows’.

Suppose that WINDOWS.DEF and WINDOWS.MOD are recompiled after the base (main
program) has been compiled and linked. Then if EDIT is compiled and linked into its subprogram,
that subprogram will be inconsistent with the main program. An error will occur when the main
program tries to load the subprogram, because two different versions of module "Windows’ are used.
(There is no way to detect it sooner.) The program loader will return to its caller with an error status
indicating that there was a module version conflict.

The straightforward correction is to recompile any module in the base that uses "Windows’ and to
relink the base. Then the base layer and the subprogram ’Edit’ will use the same version of
"Windows’.

180

MODULA-2/86 THE COMPILER

6 THE COMPILER

The compiler translates the high level language Modula-2 (filetype .DEF, .MOD) into low level
machine code in a linkable object file (filetype .LNK).

6.1 How to Use the Compiler

The compiler is run by typing ‘'m2 comp’. After displaying the banner with the version number, the
compiler will prompt for the filename of the module to be compiled:

A> m2 b:comp<CR>
LOGITECH MODULA-2/86 Compiler, Rel. m.n

Copyright (C) 1983, 1984, 1985 LOGITECH
source file>

Enter the filename and any option you wish to specify (see the subsection on compiler options
below). The default drive is the current disk and the default filetype is 'MOD’ for program and
implementation modules.

‘When the compilation of this source is finished the compiler will ask for another source file to
compile. You can either enter another filename or terminate the compiler by typing <ESC>.

You can also run the compiler by typing the filename(s) on the command line:
A>_m2 b:comp filenamel filename?2 ... filenameX<CR>

In this case the compiler will compile all the files in the specified order. At the end it will return
automatically to DOS without any further request for source files.

181

THE COMPILER MODULA-2/86

If you have installed the fully linked version of the compiler (M2C.EXE) you can run it by typing:
A> m2c<CR>

or

A> m2c exampl<CR>

To run the fully linked version of the compiler you need at least 512KB of memory. With the fully
linked version, the compilation time is reduced by one third.

6.2 Compiler Organization

The overlay version of the compiler is organized as a base part and several passes or ’overlays’. The
base part remains in memory during the entire compilation and calls the passes sequentially. When
loading these passes, the compiler assumes they are on the same drive as the compiler base. The
necessary files are:

= COMP.LOD compiler base

s M2INIT.LOD initialization

s M2PASS1.LOD syntax analysis

= M2PASS2.L.OD declaration analysis
= M2PASS3.LOD block analysis

s M2PASS4.L.OD code generation

s M2SYMFIL.LOD symbol file generation
= M2LISTER.LOD lister

The fully linked version of the compiler is the single file M2C.EXE.

During compilation temporary work files are created on the current drive. They are deleted before
the termination of a compilation.

182

MODULA-2/86 THE COMPILER

6.3 Compiler Output Files

Several files are generated by the compiler. They are given the same file name, directory name and
device as the source file, with the appropriate filetype attached as follows:

= SYM Symbol file

Compiler output file with symbol table information. This information is generated during
compilation of a definition module.

s REF Reference file

Compiler output file with debugger information, generated during compilation of an
implementation or a program module.

= LNK Object (Link) file
Compiler output file with the generated 8086 object code in linker format, generated during
compilation of an implementation or a program module.

s LST Listing file
Normally generated only if errors occur.

6.4 Compilation of a Program Module

Compilation of a program module, in which there are no errors, generates a linkable object file
(.LNK) and a debug reference file (REF). If there are errors, the link and reference files are not
produced, but a listing file is produced. The "L’ option (see section on compiler options below) directs
the compiler to generate a listing file even if there are no errors.

183

THE COMPILER ' MODULA-2/86

A>_m?2 b:comp<CR>

LOGITECH MODULA-2/86 Compiler, Rel. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
source file> exampl<CR>
Syntax Analysis
Terminal in file: B:Terminal.SYM
Declaration Analysis
Block Analysis
Code Generation
Termination
The interactive setting of the options was:S+/R+/T+/A-
code for 8086/8088 generated
Codesize: 90 bytes Datasize: 1 bytes
End Compilation
LOGITECH MODULA-2/86 Compiler, Rel. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
source file> <ESC>
---= no compilation
Termination
End Compilation
A>

‘Syntax Analysis’, ‘Declaration Analysis’, ‘Block Analysis’, and ‘Code Generation’ denote the
succession of activated compiler passes. If errors are detected by the compiler, compilation stops after
the pass that found the error. The errors are displayed on the screen and a listing file with error
messages is generated.

184

MODULA-2/86 THE COMPILER

A>_m?2 b:comp<CR>

LOGITECH MODULA-2/86 Compiler, Rel. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
source file> exampl<CR>
Syntax Analysis
Terminal in file: B:Terminal.SYM
-—== error
Lister
3 VAR ch CHAR;
*kkkkx A37
* 37: ':' expected
Termination
End Compilation
A>

When the error display is more than one page, the compiler will ask if you want to see more errors
after each page. If you hit any key it will continue. If you type <ESC> it will stop the error display. In
both cases, it will generate the error listing. This is true unless the compiler option ’/batch’ is used. In
this case the compiler will not ask for more errors.

6.5 Compilation of a Definition Module

Compilation of a definition module (filetype "DEF’) is similar to the compilation of a program
module. However, as the result of a successful compilation of a definition module, the compiler
produces a symbol file (filetype 'SYM’), while as the result of the compilation of a program or
implementation module the compiler produces a linkable object file CLNK’). The symbol file
contains the declarations of the definition part in symbolic, compiler-readable format. It also contains
a unique module key which is used to check consistency. If errors are detected by the compiler, then a
listing file is generated instead of the symbol file.

185

THE COMPILER MODULA-2/86

NOTE:

A DEFINITION MODULE MUST BE COMPILED PRIOR TO ITS IMPLEMENTATION
MODULE.

A DEFINITION MODULE MUST BE COMPILED PRIOR TO ANY MODULE THAT IMPORTS
IT.

Example:

A>_m2 b:comp find.def<CR>

LOGITECH MODULA-2/86 Compiler, Rel. m.n

Copyright (C) 1983, 1984, 1985 LOGITECH
source file> find.def

Syntax Analysis

Declaration Analysis

Symfile

Termination

End compilation

A>

6.6 Compilation of an Implementation Module

Compilation of an implementation module is similar to the compilation of a program module. At
compilation of an implementation module the symbol file for this module is needed. This symbol file
is produced by the compilation of the corresponding definition module, prior to the compilation of
the implementation module.

The compiler output files are the same as those generated when compiling a program module. A

linkable object file (.LNK) and a debug reference file (.REF) are generated as the result of a
successful compilation. In case of errors only a listing file is produced.

186

MODULA-2/86 THE COMPILER

A> m2 b:comp find<CR>

LOGITECH MODULA-2/86 Compiler, Rel. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
source file> find.mod
Syntax Analysis
Examp3 in file: A:Examp3.SYM
Storage in file: B:Storage.SYM
Declaration Analysis
Block Analysis
Code Generation
Termination
The interactive setting of the options was:S+/R+/T+/A-
code for 8086/8088 generated
Codesize: 234 bytes Datasize: 56 bytes
End Compilation
A>

6.7 Symbol Files Needed for Compilation

Symbol files are used by the compiler to provide full inter-module checking. Upon compilation of a
definition module, a symbol file containing symbol table information is generated. When the
corresponding implementation part is compiled, or when another module - a ‘client’ - is compiled
which imports it, the appropriate symbol file must be read.

By default, the compiler first searches for symbol files on the disk containing the source file. It uses
the module name, truncated if necessary, as the filename, and a filetype of 'SYM’. If a symbol file is
not found on the first search, additional searches, on other drives or directories, are performed
automatically. (See the section on libray search strategy for a complete description).

If a symbol file is not found at all, the compiler issues a message and asks for the file. This can be
prevented, using the Autoquery option (see compiler options described below). If the Query option is
turned on, the compiler will not perform any automatic searches. It will display the module name and
let the user enter the file name for every symbol file needed.

‘When the compiler asks for a symbol file, the request is repeated until an appropriate file is found or
<ESC> is pressed. Pressing <ESC> means that the file is not available. The compiler will stop at the
end of the first pass, but first it will list all the required symbol files. This allows you to detect any
other missing files.

187

THE COMPILER MODULA-2/86

6.8 Compiler Options

When reading the source file name, the compiler can also accept some options. Options are entered
immediately following the filename, with each option preceded by ’/’. An option value is a predefined

string that defines the state of the corresponding option. The possible values for the following
compiler options are listed below, and an explanation of their effects is included thereafter.

6.8.1 Table of Available Options

Option Value for ON _ Value for OFF Default
query Query NOQuery NOQ
autoquery Aquery NOAgquery AQ
interactive Interactive Batch I
listing Listing NOListing NOL
errorlisting ElListing NOEListing EL
emulator/

COprocessor Emulator Coprocessor E
8086/80286 2 8 8
version Version NOVersion NOV
statistics STATistics NOSTATistics STAT
stack test S+ S- S+
range test R+ R- R+
index test T+ T- T+
alignment A+ A- A-
header in listing Header NOHeader H
footer in listing Footer NOFooter NOF
date in listing DAte NODAte NODA
debug Debug NODebug D

The default value for all options can be set in the compiler parameter module. The defaults shown
are those of the distributed compiler. If, after using the compiler for a while, you want to alter the
default settings, consult the appendix on system configuration. In the above list of values, the portion
in upper case letters must be entered when specifying an option value. The complete name may be
given. For the R, S and T options the ’+’ sign is optional.

188

MODULA-2/86 THE COMPILER

6.8.2 Description of the Options

= /Q /NOQ Query option
= /A /NOA Autoquery option

These options define the search mechanism for the symbol files of the imported modules.

The following table shows the possible combinations of the setting of these options and the
corresponding behavior of the compiler:

Query Autoquery Action
Query Aquery Ask for filenames
Query NOAgquery Ask for filenames
NOQuery Aquery Tries to find file by
default strategy
If not found
it asks for filename.
NOQuery NOAgquery If not found
compiler ends.

The default setting for these two options is NOQuery and Aquery.

= /I /B Interactive/Batch option

This option tells the compiler whether it runs interactive or as a batch job. In the interactive
mode, the display of error messages is stopped after a screen page and can be resumed by
hitting a key. This facility is turned off in the batch mode. Note: The Autoquery option is not

affected by this option.
= /L/NOL Listing option
= /EL /NOEL Error Listing option

These options define whether a listing is generated or not. The following table shows the

possible combinations of the setting of these options and the corresponding behavior of the
compiler:

189

THE COMPILER MODULA-2/86

Listing EListing A listing file is
always generated.
Listing NOEListing Same as above
NOListing EListing If errors are
detected, a short
error listing file
is generated
containing only the
erroneous lines with
€ITor messages
NOListing NOEListing No listing generated

In all cases the compiler writes the lines with errors and the error message on the screen.
Before each compilation, the compiler deletes the corresponding listing file (filename.LST).

/E/C Emulator/Coprocessor option

This option affects the code generation for the floating point arithmetic. If it is set to
coprocessor, the compiler generates inline code for the Intel 8087 numeric processor.
Otherwise, it generates code for the LOGITECH REAL ARITHMETIC EMULATOR.
/V [NOV Version option

The compiler displays information about the running version, for example, processor and
operating system flags.

/STAT /NOSTAT Statistics option

At the end of a compilation the compiler displays some statistics on the generated code.

/S+ /S- Stack test option

/R+ /R- Range and Overflow test option
[T+ /[T- Index and NIL pointer test option
[A+ [/A- Word alignment for variables

and record fields

With these options the user can define the initial value of the corresponding compiler directives. (See
the following subsection for more information.)

190

MODULA-2/86 THE COMPILER

= /H/NOH Header in Listing option
= /F/NOF Footer in Listing option
= /DA /NODA Date in Listing option

These options define the format of the generated listing file. The header option says whether
a page header line is generated or not. The footer option defines whether a page footer line
is generated or not. The date option says whether the date information is generated within
the header line. The format of a page header line is:

MODULA-2/86 filename.ext Date Page Number
The text for the footer line can only be defined in the compiler parameter module.
= /D/NOD Debug option

This option defines whether the reference file (.REF) is generated or not. This file contains
the necessary information for the symbolic debugger.

= /8/2 8086/80286 option

This option affects the code generation. If it is set to 8086 the compiler generates code for
the 8086/8088. If it is set for 80286 the compiler generates code for the 80186/80286. The
advanced instructions used are ENTER, LEAVE, PUSH immediate, shift/rotate immediate,
integer immediate multiply.

= /A+/A- Alignment option

This option affects the variable and record field allocation. If it is set to A+, all variables
except single bytes are allocated on even boundaries. If it is set to A-, no special effort is
made to allocate variables on even boundaries. With this option you can choose either to
save memory space (A+) or to increase the speed of program execution (A-).

6.9 Compiler Directives in Modules

Certain compiler directives may be specified in the source text of a module. These directives must
appear immediately at the beginning of a comment and consist of $<Letter><setting>, without any
intervening or preceding spaces.

191

MODULA-2/86

THE COMPILER
Letter Definition
S Stack overflow test (default S+)
R Subrange and arithmetic overflow test
(default R+)
T Index test (arrays, case) and NIL pointer
test (default T+)
A Word alignment for variables and record
fields (default A-)
Setting Effect
Test code is generated or Alignment on
- No test code is generated or Alignment off
= Revert to setting before last
Example:
MODULE x;(*8T+%*) test code is generated
(*$T-%) no test code is generated
CASE i OF
END
(*$T=*) test code is generated (i.e.
the prior value is restored)
END x

6.10 Compiler Messages

There are two types of compilation errors:

= Errors detected in the source text, which are printed on the listing and displayed on the

screen.

= Operational errors which are displayed on the screen.

192

MODULA-2/86 THE COMPILER

6.10.1 Source Text Errors

These errors appear in the listing file, marked under the offending line by a **’ and the error number.
The source line and error message are also displayed on the screen as they are written to the listing.
Compiler error messages are also listed in an appendix.

6.10.2 Compiler Operational Messages and Errors

Upon termination, the compiler sets the MS-DOS errorlevel system variable. This variable can be
checked in a batch file. The generated values are:

0: successful compilation

1: abnormal termination due to internal errors
2: incomplete compilation due to missing files
3: source program error

During the operation of the compiler the following messages and errors may be displayed:

B Assertion of compiler
-internal reference: xx
at source line : nn
Please send a bug-report to LOGITECH

We hope that this message will never occur. It is displayed when an internal consistency
check of the compiler fails. If you get this message, please contact LOGITECH with a copy
of the program which caused the error. The information about the source line helps you to
find a work-around. The internal reference is an indicator for the kind of problem that
occurred and will help LOGITECH locate it.

B cannot load ...

There is not enough memory to allocate all data areas the compiler needs or to load a
compiler overlay. You must extend the memory size. You can invoke the compiler by typing

'm2 /f=0 b:comp’ to save some memory space. See the chapter on Program Execution for
details.

193

THE COMPILER MODULA-2/86

194

EOF on Control

We hope that this message will never occur. It is displayed when an internal consistency
check of the lister fails. If you get this message, please contact LOGITECH with a copy of
the program that caused the error.

error

The compiler detected errors in your program. These errors will appear on the screen and in
the listing file.

error message first element on control
See message 'EOF on control’.
file creation failed

Your disk directory is probably full. When running under DOS, this message may also appear
if you did not boot your operating system from a disk that contains a CONFIG SVS file ags
described in the section on installation of this manual.

file not found

A source or symbol file was not found. The compiler will repeatedly request the filename.
You should either type the correct filename or press <ESC> if the required file is missing.
When running under DOS, this message may also appear if you did not boot your operating
system from a disk that contains a CONFIG.SYS file, as described in the section on
installation of this manual.

<file name> halted

An overlay of the compiler terminated with an unexpected status. This might happen if you
stop the compiler by typing <Ctrl-Break> or <Ctrl-C>.

MODULA-2/86 THE COMPILER

B heap overflow
There is not enough memory to allocate all data areas the compiler needs or to load a
compiler overlay. You must extend the memory size. You can invoke the compiler by typing
’'m2 /f=0 b:comp’ to save some memory space. See the chapter on Program Execution for
details.

B illegal option: <option typed>
Please refer to the list of valid compiler options.

M Incorrect line number on Control
See message "EOF on Control’.

H incorrect module name

The module name found in the symbol file does not correspond to the name of the module
for which a symbol file is needed. Make sure you enter the right filename.

B NControl too small
See message ’EOF on Control’.
® no compilation
No compilation takes place because no source file was specified.
® no file
You typed <ESC> when asked to enter a filename, and did not supply any file.
B not catalogued: <filetype>

The compiler had problems closing the file with the given filetype. Make sure that the disks
are in the drives.

195

THE COMPILER MODULA-2/86

196

not deleted: <filetype>

The compiler had problems deleting the file with the given filetype. Make sure that the disks
are in the drives.

output disk full

Because of insufficient space on your disk, the compiler has stopped. You should delete
superfluous files.

<program name> program not found

A compiler overlay was not found on the disk where it is expected to be. Please check
whether you installed MODULA-2/86 properly. When running under DOS, this message
may also appear if you did not boot your operating system from a disk that contains a
CONFIG.SYS file, as described in the section on installation of this manual.

stack overflow

There is not enough memory to allocate all data areas the compiler needs or to load a
compiler overlay. You must extend the memory size. You can invoke the compiler by typing
'm2 /f=0 b:comp’ to save some memory space. See the chapter on Program Execution for
details.

symbol files missing
The compiler could not find all the symbol files for the imported modules. Therefore type
checking is impossible and compilation stops. Check that the corresponding definition

modules have been compiled and that all necessary symbol files have been specified correctly.

<file name> warned

An overlay of the compiler terminated with an unexpected status. This might happen if you
stop the compiler by typing <Ctrl-Break> or <Ctrl-C>.

wrong symbol file

The file found is not a correct symbol file. Most likely, the file isn’t a symbol file at all, or it
was not generated by the same compiler.

MODULA-2/86 THE COMPILER

6.11 Compiler Table Limits

The following error messages depend on some internal compiler table sizes. The following list gives
the description of the errors and the actual table size of the compiler:

H 7: too many identifiers (identifier table full)
The identifier table holds 8,000 characters (Base Language System/512k = 30,000). This is the
limit on the total number of characters of all distinct identifiers in one module and the

exported identifiers of its imported modules.

Contrary to readable, self-documenting programming style, shorter identifiers and the use of
the same identifiers in different scopes will help to avoid this error message.

Hm 8: too many identifiers (hash table full)

The hash table holds 997 identifiers (BLS/512k = 3571). This limits the number of distinct
identifiers in one module, including all the identifiers exported by the imported modules.

The use of the same identifier names in different scopes might help to avoid this error
message.

H 205: implementation restriction: procedure too long

The code size per procedure is limited to 3500 bytes (BLS/512k = 5000). Splitting the
procedure into smaller entities will help.

B 206: implementation restriction: statement
table overflow

The number of statements per procedure is limited to 700 (BLS/512k = 1000). Splitting the
procedure into smaller entities will help.

197

THE COMPILER MODULA-2/86

M 209: expresson too complicated: jump table overflow

The size of the jumptable is 50 entries. This determines the number of possible short circuit
jumps in a boolean expression.

A breakdown of the expression into several temporary expressions is a possible workaround.

H 210: too many globals, externals, and calls
(linker table overflow)

The linker table holds the fixup information for the linker. The size of this linker table is 600
entries per procedure (BLS/512k = 850). An access to an imported variable generates one
entry, a call to an imported procedure generates two entries. A forward call to a local
procedure generates one entry.

This error can be avoided by splitting the procedure into smaller sections or by reducing the
frequency of access to imported variables and calls to imported procedures.

198

MODULA-2/86 COMPILER ERROR MESSAGES

6.12 Compiler Error Messages

0 : illegal character in source file

1 :

2 : constant out of range

3 : open comment at end of file

4 : string terminator not on this line

5 : too many errors

6 : string too long

7 : too many identifiers (identifier table full)
8 : too many identifiers (hash table full)
20 : identifier expected

21 : integer constant expected

22 : ']' expected

23 : ';' expected

24 ¢ block name at the END does not match
25 : error in block

26 : ':=' expected

27 ¢ error in expression

28 : THEN expected

29 : error in LOOP statement

30 ¢ constant must not be CARDINAL

31 : error in REPEAT statement

32 : UNTIL expected

33 : error in WHILE statement

34 ¢ DO expected

35 : error in CASE statement

36 : OF expected

37 ¢ ':' expected

38 : BEGIN expected

39 : error in WITH statement

199

COMPILER ERROR MESSAGES MODULA-2/86

40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59

60
61

70
71
72

73
74
75
76
77
78
79

200

€0 00 00 00 00 00 00 00 00 o0

®0 00 00 00 00 o¢ 00 o0 o0 o0

oo oo oo

END expected
') ' expected
error in constant

'=' expected
error in TYPE declaration
'(' expected

MODULE expected
QUALIFIED expected
error in factor
error in simple type

',' expected

error in formal type

error in statement sequence

'.' expected

export at global level not allowed

body in definition module not allowed

TO expected

nested module in definition module not allowed
'}' expected

'..' expected

error in FOR statement
IMPORT expected

identifier specified twice in importlist

identifier not exported from qualifying module

identifier declared twice or illegal forward
reference to this identifier

identifier not declared

type not declared

identifier already declared in module environment

too many nesting levels
value of absolute address must be of type CARDINAL
scope table overflow in compiler

MODULA-2/86 COMPILER ERROR MESSAGES

80 ¢ illegal priority

81 : definition module belonging to implementation not
found

82 : structure not allowed for implementation of hidden
type

83 ¢ procedure implementation different from definition

84 : not all defined procedures or hidden types
implemented

85 : name conflict of exported object or enumeration
constant in environment

86 : incompatible versions of symbolic modules

87 :

88 : function type is not scalar or basic type

89 :

90 : pointer-referenced type not declared

91 : tagfieldtype expected

92 ¢ incompatible type of variant-constant

93 ¢ constant used twice

94 : arithmetic error in evaluation of constant expression

95 : incorrect range

96 ¢ range only with scalar type

97 : type-incompatible constructor element

98 ¢ element value out of bounds

929 : set-type identifier expected

100 : structured type too large

101 : undeclared identifier in export list of the module

102 : range not belonging to base type

103 : wrong class of identifier

104 : no such module name found

105 : module name expected

106 :

107 : set too large

108 :

109 : scalar or subrange type expected

201

COMPILER ERROR MESSAGES MODULA-2/86

110 : case label out of bounds

111 : illegal export from program module

112 : code block for modules not allowed

119 : illegal variable as FOR loop counter
120 : incompatible types in conversion

121 : this type is not expected

122 : variable expected

123 : incorrect constant

124 : no procedure found for substitution
125 : unsatisfying parameters of substituted procedure
126 : set constant out of range

127 : error in standard procedure parameters
128 : type incompatibility

129 : type identifier expected

130 : type impossible to index

131 : field not belonging to a record variable
132 : too many parameters

133 : function parenthesis missing

134 : reference not to a variable

135 : illegal parameter substitution

136 : constant expected

137 : expected parameters

138 : BOOLEAN type expected

139 : scalar types expected

202

MODULA-2/86 COMPILER ERROR MESSAGES

140
141

142
143
144
145
146
147
148
149

150
151
152
153
154
155
156
157
158
159

160
161

170
171
172

o6 00 00 0 00 00 00 o0 o0 oo

operation with incompatible type

only global procedure or function allowed in
expression

incompatible element type

type incompatible operands

no selectors allowed for procedures

only function call allowed in expression

arrow not belonging to a pointer variable

standard function or procedure must not be assigned

constant not allowed as variant

SET type expected

illegal substitution to WORD or BYTE parameter
EXIT only in LOOP

RETURN only in PROCEDURE

expression expected

expression not allowed

type of function expected

integer constant expected

procedure call expected

identifier not exported from qualifying module
code buffer overflow

illegal value for code
call of procedure with lower priority not allowed

global data too large (more than 64K bytes)

local data too large (more than 32K bytes)
parameter data too large (more than 32K bytes)

203

COMPILER ERROR MESSAGES

200
201
202
203

204

205
206
207
208
209
210

211
220
221

222
223

204

o0 00 o0 o0 o0 oo [}

compiler error
implementation
implementation
implementation
long
implementation

complicated

implementation
implementation

implementation

expression too

restriction
restriction:
restriction:

restriction:
restriction:
restriction:
restriction:

complicated:

too many globals, externals

overflow)

implementation

not further specified error

restriction:

division by zero
index out of range or conversion error
case label defined twice

MODULA-2/86

FOR step too large
boolean expression too

expression too

procedure too long
statement table overflow
illegal type conversion
jump table overflow

and calls (linker table

code >= 64K bytes

MODULA-2/86 THE LINKER

7 THE LINKER

The linker combines all the separately compiled modules into a single load and executable module. It
takes the object files (filetype .LNK) of the modules to be linked as input and produces an executable
object file (filetype .LOD) and a map file (filetype .MAP).

7.1 How to Use the Linker

The linker is run by typing 'm2 link’. After displaying the banner with the version number, the linker
will prompt for the filename of the main module, the ‘master file’, of your program:

A> m2 b:link<CR>
LOGITECH MODULA-2/76 Linker, DOS 8086, Rel. m.n

Copyright (C) 1983, 1984, 1985 LOGITECH
master file >

Enter the filename and any options you wish to specify (see the subsection on linker options below).
The default drive is the current disk and the default filetype is 'LNK’, for modules compiled and
ready to link.

If you use the default values of the options, the linker automatically links all other necessary modules.
It also lists all imported modules together with their corresponding file names.

205

THE LINKER MODULA-2/86

Example:
A> m2 b:link<CR>

LOGITECH MODULA-2/86 Linker, DOS 8086, Rel. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
master file > exampl<CR>
name of load file :A:exampl.LOD
linked with:
Terminal in file: B:Terminal.LNK
Termbase in file: B:Termbase.LNK
System in file: B:System.LNK
Keyboard in file: B:Keyboard.LNK
ASCII in file: B:ASCII.LNK
Display in file: B:Display.LNK
Solving external references
end linkage
A>

You can also run the linker by typing the filename on the command line:

A> m2 b:link examp1<CR>

By default, the linker applies the search strategy explained in the chapter Library Search Strategy.
First, it looks for object files on the disk containing the master file. It uses the module name,
truncated if necessary, as a filename, and a filetype of 'LNK’. If an object file is not found, the linker
issues a message and asks for a file to use (see the ’A’ option below). If the ’Q’ option is turned on,
the linker will ask for every object file in this way.

‘When the linker asks for an object file, the request is repeated until an appropriate file is found or
<ESC> is pressed. Pressing <ESC> means that the file is not available. The linker will stop before

writing the .LOD file, but first it will list all the required object files. This allows you to detect any
other missing files.

206

MODULA-2/86 THE LINKER

After successful linking, the program is written to a load file with the same name and on the same
disk as the master file (filetype .LOD), unless you have specified another filename (see option 'O’
below).

If you have installed the fully linked version of the linker (M2L.EXE) you can run it by typing:

A> m2I<CR>

or

A> m2l examp1<CR>

7.2 Linker Options

The linker can accept several options, entered immediately following the filename. Each option is
preceded by ’/’, and consists of a letter, specifying the switch and a sign ’+’ or ’-’, indicating whether
the switch is to be turned on or off. If the ’+’ or -’ is omitted, '+’ is assumed.

The linker options are as follows:
= /B Base Layer option (Default B-)
This option is used when linking a subprogram (overlay). If this option is enabled, the linker
will ask for the name of a map file to use in determining which modules will be resident when
the current (sub)program is run. Modules which are referenced by the current program, but
are not in the map, are linked into the current program. The linker will only list those
imported modules that are actually linked into the subprogram.

If this option is turned off (default), your program is linked without any base layer.

‘When entering the file name for the map file of the base layer, an additional option is
available:

207

THE LINKER MODULA-2/86

= /Q Query Resident Modules (Default Q-)

If this option is turned on the linker will ask whether each resident module should be linked.
Type 'y’ if it is to be linked and ’n’ if this module will already be in memory upon execution.

If you want to link a subprogram without having the map file for the base layer - for example,
if you link a subprogram before you link the base - simply type <ESC> when you are asked to
enter its name. In this case, you should also invoke the Query option for the main module
(see below). When prompted for the names of the modules to link, you can press <ESC> to

indicate that a module will be loaded with the base layer and does not need to be linked into
the subprogram.

s /L Large option (Default L-)

If this option is turned off, up to 200 modules can be linked. If it is turned on, up to 400
modules can be linked.

s /M Map File option (Default M-)

If this option is turned on, the linker generates the map file. A map file is needed if this
program will be the base for other programs - if it has overlays.

It is recommended that before executing your program you consult your base map to verify
that your modules will be initialized in the correct order. The order of initialization is the
order of appearance in the map.

= /O Output File Query option (Default O-)

If this option is turned on, the system prompts the user to give the name of the .LOD file. No
options may be specified with this filename!

208

MODULA-2/86 THE LINKER

= /Q Query option (Default Q-)

If turned off (default) the linker will search, according to the default search strategy, for each
link file using a default name - the module name truncated to the maximum length of a file
name with the filetype 'LNK’. If the Automatic Query option (see below) is turned on, the
linker enters a temporary query mode whenever a link file is not found. In this case, the
linker prompts for the file name.

If the Query option is turned on you are asked to enter the name of each link file (query
search strategy). You can specify the default name by pressing <CR>.

If a file is not available and will not be in the base at execution time, your program cannot be
linked. In this case, press <ESC> to stop the linker. Note that the linker will not stop until it
has checked the list of all imported modules.

If you are linking a subprogram and you specified the Query option together with the Base
Layer option, but you did not specify any base file, you can use <ESC> to indicate that a
module will be loaded with the base layer and does not need to be linked into the
subprogram.

= /A Automatic Query option (Default A+)
If turned on (default) the linker enters a temporary query mode when a link file is not found.

Turning off the Automatic Query option prevents this automatic query mode and is useful in
command files.

7.3 Linker Messages

During execution of the linker certain errors may occur. The following error messages may appear:

B cannot load ...
There is not enough memory to allocate all the data area needed by the linker. You must

extend the memory size. You can invoke the linker by typing ‘'m2 /f=0 b:link’ to save same
memory space. See the chapter on Program Execution for details.

209

THE LINKER MODULA-2/86

210

checksum error

The linker computes a checksum. This message indicates that the computed checksum does
not match the value found in the link file. The link file seems to be incorrect.

invalid version

Make sure that the linker and the compiler are for the same target system.

error in format of map file

When linking a subprogram (Base Layer option), the linker checks the syntax of the map file
of the base layer. Make sure the map file is correct and that it was generated by a compatible
linker.

error in link-file format

The syntax of the link file is not correct. The linker is checking on the correct order of the
different link file records. Make sure that you are using the right linker and comniler, Also
check if the link file is complete.

error in optionlist <default values> <option typed>

The option entered is not available. Refer to the description of the possible options above.
file not found

The link or map file was not found. If the Automatic Query option is turned on, the linker
requests the file name, again. You should either type the correct file name or enter <ESC> if
the file is not available.

not enough memory to 1link

There is not enough memory to allocate all the data area needed by the linker. You must

extend the memory size. You can invoke the linker by typing 'm2 /f=0 b:link’ to save some
memory space. See the chapter on Program Execution for details.

MODULA-2/86 THE LINKER

linkage aborted: more than 6000 procedures

linkage aborted: more than 200/400 separate modules
linkage aborted: more than 2000/4000 modules under
process

These error messages appear when some internal table of the linker is too small for the
program to be linked. The number of separate modules and of imported modules under
process depends on the Large option: L- = 200, 2000 L+ = 400, 4000.

error in linkage

The linkage did not terminate successfully. No load file was produced.

linkage failed (please report to LOGITECH)

This message appears when the linker detects some internal inconsistency. If you get this
error please contact LOGITECH with a copy of the program which caused the error, and a
copy of the dump produced (MEMORY.PMD).

link files missing

The linker cannot link successfully because one or more link files are missing.

module not found in this file

The module name found in the link file does not correspond to the name of the module to
be linked.

output disk full

Insufficient disk space to write the load or map file causes the linker to stop execution. To
solve the problem, delete superfluous files or copy some files to the disk in the other drive or
turn off generation of the map file (see Map option above). The output files are written to

the disk where the main module is found.

program exceeds memory size (1MB)

The size of a linked program is limited to one megabyte.

211

THE LINKER MODULA-2/86

m version conflict in module: <module namel> imported by
<module name2>

The module key (time stamp) of the module ’namel’ is different from the module key

expected by module ’name2’. To solve this problem, recompile the necessary modules in the
right order.

212

MODULA-2/86 PROGRAM EXECUTION

8 PROGRAM EXECUTION

To run a MODULA-2/86 program you can either use the program ‘M2’ (described in section 8.1), or
you can use the utility LOD2EXE to generate a standard .EXE file (described in section 8.2).

8.1 Running MODULA-2/86 with M2

To run a MODULA-2/86 program you must invoke the program 'M2’ which is supplied with the
MODULA-2/86 system. You should copy this program to the diskette or directory which you use to
develop your Modula-2 programs or to the directory where you generally keep executable programs.
(See the section on 'Installation’ for details.) The program 'M2’ is the MODULA-2/86 run-time
support (RTS) and has the ability to load and execute MODULA-2/86 programs. The default
extension for executable MODULA-2/86 programs is 'LOD’.

To run a MODULA-2/86 program enter 'M2 <programname>’. The program name may also be
preceded by a drive and/or a directory name, in which case the program is loaded from the specified
drive or directory. If a pure file name is entered, the MODULA-2/86 program will be searched in the
current directory on the current drive, and if not found, in the directory "\m2lod’ on the current drive.

The following is a brief example:

C>m?2 examp1<CR>
The program worked! (Hit a key)
Cc>

The program ’examp1’ has been loaded from the current drive C. It may have been found in the
current directory or in the directory “\m2lod’. If the program exists in both directories, the version
from the current directory is executed.

213

PROGRAM EXECUTION MODULA-2/86

8.1.1 Memory Allocation Options

You can specify the amount of memory allocated for the program you execute with options for the
run-time support. If no option is specified, (as in the above example), the whole memory except the
space used by ’‘command.com’ is given to the application program. There are two options from which
you can choose: one to specify the memory used by the application, the other to specify the memory
left free for DOS and other applications.

Only one option can be specified at a time. The option, either ‘v’ or ’f must come after the name of
the run-time support (usually m2), be preceded by a slash, and be followed by an equal sign and the
amount of memory in kilobytes (KB), as follows:

C> m2/u=xxx examp1l

where 'u’ stands for used memory option. It specifies the memory used by the application, including
its code and data.

The other option is indicated as:

C> mZ/i=yyy examp

where ’f’ stands for free memory option. It specifies the amount of memory that must remain
available for DOS and other applications.

214

MODULA-2/86 PROGRAM EXECUTION

The following figure shows the memory organization and the meaning of the parameters.

| Code and data of the MODULA-2/86
| run-time support

| Global data of the MODULA-2/86 |

| program u option

I
__________________________________ I f option

|
---------------------------------- TOP OF MEMOR -—— ———

FIGURE 8-1
MEMORY ORGANIZATION AND ALLOCATION PARAMETERS

If the memory space which remains for the application is not enough to load the program, the run-
time support tells you that it cannot load your program. If the space is just enough to load the
program, but not sufficient to set up a correct workspace (stack and heap), the program terminates
with a stack overflow.

215

PROGRAM EXECUTION MODULA-2/86

8.2 The File Conversion Utility LOD2EXE

The utility program 'LOD2EXE’ converts a .LOD file into a standard MS-DOS .EXE file.

The program combines a special version of the MODULA-2/86 run-time support with the .LOD file
of the application program into a .EXE file. The adapted RTS version is called 'TL2ZERTS.L2E’ and
must be in the current directory. The application program must first be linked with the LOGITECH
MODULA-2/86 linker, without the /B+ option for a base file. The 'LOD2EXE’ program prompts for

an input file to convert. The default extension is .LOD. The name and the pathname of the output
file are the same as those of the input file. The extension is .EXE.

The LOD2EXE utility itself is provided only in the .LOD version. However, you can use this . LOD
version to produce a .EXE version -- LOD2EXE.EXE.

82.1 Memory Allocation Options
You invoke the LOD2EXE utility by typing:

A> m?2 lod2exe<CR>
All available memory, less space for ‘command.com’ will be allocated when the program is executed.
There are three other ways you can specify how much memory you want to allocate for your
application. The option is entered after the filename of the program to convert, separated by a slash.
The form of the option is a character ("w’, ’f’, or 'w’) followed by an ’=’ sign and the amount of
memory in kilobytes (KB). If only the character is specified, the LOD2EXE utility will prompt you

for the number. Only one option may be specified. If you enter a sequence of options, the last entry
will be used. The three options are as follows:

A>_m?2 lod2exe exampl/u=xxx

Used memory option: specifies the memory that is used by the application, including code and data.

A> m2 lod2exe exampl/f=yyy

Free memory option: specifies the amount of memory that must remain available for DOS and other
applications.

216

MODULA-2/86 PROGRAM EXECUTION

A> m?2 lod2exe exampl/w=Kkkk

‘Work space option: defines the size of the workspace (heap and stack) for the application.

The following figure shows the memory organization and the meaning of the parameters:

---------------------------------- 000H

| Interrupt vector table |
---------------------------------- 400H

| Operating system |

| Code and data of the MODULA-2/86 |

| run-time support |
__________________________________ b, —————
| Code of the MODULA-2/86 program |

I |

| Global data of the MODULA-2/86 |

| program | u
--- + option

| Heap of main process | |
---------------------------------- | W
| |option |
__________________________________ |

| Stack of main process | |
___ I I —
| | £
---------------------------------- option |

| Command . COM | |
---------------------------------- TOP OF MEMORY----

FIGURE 8-2
MEMORY ORGANIZATION AND ALLOCATION PARAMETERS

217

PROGRAM EXECUTION MODULA-2/86

8.2.2 Example Dialog
A> m?2 lod2exe exampl<CR>

LOGITECH MODULA-2/86 LOD2EXE, DOS 8086, Rel. m.n.
Copyright (C) 1983, 1984, 1985 LOGITECH.

Convert from : exampl.LOD
to : E:exampl.EXE
using: L2ERTS.L2E

no option specified

code (size) data (size) =----key-=---- module
0238 (005A) 0313 (0001) AB3E02CAC724 Exampl
023E (0219) 0314 (0002) A91104323CC8 Terminal
0260 (03BB) 0315 (0069) A91104381612 Termbase
029C (007F) 031C (0000) A911043455B4 Display
02A4 (0314) 031C (0088) A9110433A5D2 Keyboard
02D6 (0011) 0325 (0000) A9110434E3EE ASCII
02D8 (03BO) 0325 (0104) A91104246A54 System
pass2

A>

The values of the table written on the screen are in hexadecimal. In case of ’code’ and ’data’ they
constitute the base address in paragraphs. The size is given as a number of bytes. The key is the

representation of the three word time stamp generated for each module at compile time (module
key).

8.3 Aborting MODULA-2/86 Programs

When you type <Ctrl-Break> or <Ctrl-C>, the operating system usually aborts the program currently
running. <Ctrl-C> and <Ctrl-Break> have the same effect in MODULA-2/86. However, depending on
the circumstances there are some restrictions on their use.

In general, <Ctrl-C> only has an effect when the program is waiting for keyboard input. <Ctrl-Break>

cannot be used when the program is waiting for input, but can be used any other time. <Ctrl-Break>
is immediately effective - it is acted upon as soon as the user enters it. The effect of <Ctrl-C> is

218

MODULA-2/86 PROGRAM EXECUTION

delayed until the program reads the <Ctrl-C> character. By typing <Ctrl-Break> it is possible to stop a
Modula-2 program running in an infinite loop. However, under certain circumstances, the whole
system might crash if <Ctrl-Break> was accepted. MODULA-2/86 tries to prevent this from
happening. Therefore, typing <Ctrl-Break> will sometimes have no effect at all.

In MODULA-2/86, the library module ’Break’ allows the user to define how a program will behave
when <Ctrl-Break> or <Ctrl-C> is typed. If module ’Break’ is linked into a program, a memory dump
(file MEMORY .PMD) will be generated when the user types <Ctrl-Break> or <Ctrl-C>. To debug a
program with the symbolic post-mortem debugger, a memory dump is needed. To be linked with a
Modula-2 program, module ’Break’ must be imported explicitly into one of the modules that
constitute the program. Normally, one imports it in the main module of the program. If module
'Break’ is not linked with a program, no memory dump will be generated when the program is
terminated by typing <Ctrl-Break> or <Ctrl-C>.

With module ‘Break’ it is also possible to disable aborting the program - to ignore <Ctrl-Break> and
<Ctrl-C>. In addition, it is possible to install a break-procedure which will be called when the user
types <Ctrl-Break> or <Ctrl-C>. With a break-procedure a dump will not be generated automatically.
‘When module ’Break’ is used, typing <Ctrl-Break> once, in almost all cases, will stop the program or
call the installed break-procedure.

When debugging a program with the LOGITECH MODULA-2/86 run-time debugger, one should
link module ’Break’ with the program.

8.4 Command Line Arguments

‘When a MODULA-2/86 program is executed using the command ’m2 <programname>’, any text
which follows the name of the program is taken as keyboard input. This means, for example, that it
works to say ‘'m2 comp my prog/batch/noaquery’. Note that this works for any MODULA-2/86
program that does keyboard input using the modules Terminal or InOut.

This allows MODULA-2/86 programs to be used more easily with the DOS Batch facility, which
requires that all input to a program be on the command line. Because the compiler, linker and

debugger accept a space (as well as <CR>) to terminate an argument, multiple arguments may be
given on the command line. For example:

m2 link overlayl/b mainline

219

THE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

9 THE SYMBOLIC POST-MORTEM DEBUGGER

9.1 Introduction

The post-mortem debugger is an instrument used to inspect a crashed program to determine what
went wrong with the program and where the problem occurred. When a program terminates
abnormally, the memory image is saved on disk in a dump file. The post-mortem debugger allows the
user to inspect this dump file symbolically. The debugger displays the state of the program using the
corresponding module and procedure names. It shows the names and values of variables according to
their type structure.

The MODULA-2/86 run-time support creates a memory dump file, named MEMORY.PMD, when:

® arun-time error occurs.
= aprogram calls the standard procedure ‘HALT".
= aprogram calls procedure ‘Terminate’, exported by module ‘System’, with a status ‘asserted’.

s the user types <Ctrl-Break> or <Ctrl-C> while running a program that imports module
‘Break’.

In addition to the dump file (PMD filetype), the post-mortem debugger uses reference files (REF
filetype) and sometimes, source files (MOD and DEF filetype) of the component modules of the
stopped program. The compiler generates the reference file when it compiles the implementation of a
module. The reference file contains symbolic information and the addresses of all the variables,
procedures, and statements in a module.

The symbolic post-mortem debugger can be used even if some, or all, reference files are missing.
However, without reference files it is impossible to symbolically examine the corresponding modules.
Without source files the debugger cannot show the text of the corresponding modules in the
program.

The sample screens used for illustration refer to the sample program included at the end of this
chapter.

220

MODULA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

9.1.1 Installation

There are two ways to install the MODULA-2 post-mortem debugger depending on whether you
have two floppy disk drives or one floppy and a hard disk. In both cases we assume you have
successfully completed the installation process as described in the Installation chapter.

Two Floppy Disk Drives
If your system uses two floppy disk drives, prepare a copy of the MODULA-2 post-mortem debugger
disk. Use this disk when running the debugger on .PMD files. Your debugger disk contains:

= the MODULA-2 post-mortem debugger files (LOD).

= the reference files (.REF) of the library modules.

One Floppy and a Hard Disk

If your system is equipped with a hard disk and one floppy, copy all .LOD files in the directory where
you keep MODULA-2/86 executable files (usually in “\m2lod’). Copy all the .REF files in the
directory where you keep .REF files (usually in “\m2lib\ref’).

Before you run the post-mortem debugger make sure that the PATH and ‘M2xxx’ environment
variables are correctly set.

9.1.2 Windows

The post-mortem debugger displays five different types of information about your program. This
information is divided into windows which are invoked using global commands. Only one window can
be displayed at a time. This section gives an overview of the different windows.

= Call Window

The Call window displays the chain of procedure calls of a process. All Modula-2 programs
contain at least one process - the main program itself. When you initiate the post-mortem
debugger, the debugger displays the Call window which details the call chain of the process
that was running when the program stopped. The first procedure of the call chain is the
procedure in which the program stopped. You can select a procedure to examine its text or
data, (i.e. local data).

221

THE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

222

If the program which was stopped contains more than one process, the Call window can
show the call chain of each process in the program. (For further information see the Data
Window or Raw Window section).

» Module Window

The Module window displays the list of modules that constitute the program being
debugged. You can select a module to display its text or data (i.e. global data).

s Data Window

The Data window displays the data of the procedure or module that you selected in the Call
or Module window. You can browse into the data by selecting a data item to display
substructures or by selecting a PROCESS variable to display another call chain.

n Text Window

The Text window displays the text of the procedure or module selected in the Call or Module
window. If you choose to inspect the procedure in which the program stopped, a greater-than
sign indicates the line that was being executed when the program stopped. If you inspect any
other procedure, the greater-than sign indicates the line containing the call to the next
procedure in the call chain.

If you select a module, the Text window shows the end of that module for the lines displayed
previously. This window can also display the corresponding definition module, if one exists.

s Raw Window

The Raw window displays the memory image, recorded when the program stopped. The
debugger shows the memory contents in hexadecimal format (as bytes, words or addresses),
in decimal format (as integers, cardinais or reals), or in text format (as characters). You
select the information at a particular address for display. You also can select a process
descriptor at a specific address to build its call chain.

MODULA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

9.2 How to Run the Post-Mortem Debugger

To initiate the post-mortem debugger, enter:

A> m2 b:pmd<CR>
The debugger responds with a sign-on message:
LOGITECH MODULA-2/86 Post-Mortem Debugger, DOS 8086

followed by the release number and date and a copyright notice. Then, the debugger asks for the
name of your dump file. The default filename is MEMORY.PMD (type <CR> to indicate the default
filename).

After you enter the name of the dump file, the debugger executes some internal initialization and
then displays the Call window. When the debugger displays symbolic information, it needs to have
access to the corresponding reference files. The debugger automatically searches for reference and
source files according to the default search strategy. If a file cannot be found, the debugger will ask
you to type in the correct file name. Enter <ESC> to indicate that the file is not available.

Some modules are defined as a part of the System Library. If the corresponding files are not found
with the default search strategy, the post-mortem debugger does not prompt for their filenames. The
system library includes ‘ASCII’, ‘DiskDirectory’, ‘DiskFiles’, ‘Display’, ‘FileSystem’, ‘Keyboard’,
‘Program’, ‘Reals’, ‘Storage’, ‘System’, ‘TermBase’, and ‘Terminal’.

‘When entering the name of the dump file, you can also specify the Query option, by following the
filename with ‘/q’. When the Query option is turned on, the user is prompted to enter the filename of
the reference and source files. If the user types <CR>, the system uses the default path and the
default name. If the user types the name only, the system uses the default path (see the section on
query search strategy). If the user types <ESC>, the system considers the file absent.

Another option you can specify is the Version option by following the filename with ‘/v’. The Version
option displays the date and version of the run-time debugger.

The run-time support (M2.EXE) reserves enough K bytes of memory for the DOS command
interpreter (COMMAND.COM) on top of memory. This area of memory can be used to load the
application program. The only disadvantage of this is that DOS will need to load from disk its
command interpreter each time the debugger terminates.

223

THE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

To run the debugger using all the available memory, type:

A> m2\f=0 pmd<CR>

Refer to the Program Execution chapter for more details.

9.3 Window Format

Only one of the five windows is displayed at a time. The first two lines of each window indicate the
commands available for the particular window. The first, upper case letter of each command is the
command character. You may type a new command without waiting for the completion of the
previous one. The debugger then interrupts the display in progress and starts the new command.

93.1 Selecting an Item for Display

In each window, one of the displayed items is considered selected. The post-mortem debugger
displays the position of the selected item as a line number in the lower part of each window. In the

WA Wwil YVALIMUYY.e L1 LIV

Raw window the debugger displays the address of the selected memory location.

You can select a different item using the cursor keys. You can also type in a new line number to
select the item at that position.

93.2 Execution Markers

In the Call, the Module and the Text windows certain lines are marked with a greater-than sign (>).
The greater-than sign is used as an Execution Marker to indicate active code.

In the Call window all the procedures are marked because they were all active when the program
stopped. In the Module window, only the modules to which these active procedures belong are

marked. In the Text window, when the debugger displays the text belonging to an active procedure, it
indicates with a greater-than sign (>) the line that was being executed when the program stopped.

224

MODULA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

93.3 Numbers and Addresses

In general, the post-mortem debugger displays hexadecimal values followed by an "h", and octal
values followed by a "c". The only exceptions are the values displayed in the Raw window, where the
header line indicates the format of the window contents.

The post-mortem debugger shows addresses in the format <segment>:<offset> with both parts in
hexadecimal representation.

‘When the address is related to code, the segment corresponds to the beginning of the module code.
When the address is related to module data, the segment indicates the beginning of the module data.
In both cases, the offset is relative to the beginning of the segment.

94 The Post-Mortem Debugger Commands

The post-mortem debugger has two main types of commands - global commands and local
commands. The user has access to the global commands in all the windows and can use them
whenever the post-mortem debugger is ready to accept commands. Local commands. are only
applicable to the particular window in which they appear and are explained in the appropriate
sections. Many of the global and local commands operate on the selected item in the window shown
when the command is typed.

94.1 Global Commands
The global commands appear on the second line of each window, below the window name and local
commands, as follows:

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H]

You invoke a global command by entering the first letter of the command name, shown in upper case
on the command line. When invoking a command in the first set of brackets, you must preceed each
command with an equal sign (=). When invoking a command in the second set of brackets, you must
preceed each command with a pound sign (#).

225

THE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

For example, to invoke the Module window, enter:
=M

To change the page mode, enter:
#P

The following global commands are available:

= =Call

Invokes the Call window.
= =Module

Invokes the Module window.
= =Data

Invokes the Data window.
s =Text

Invokes the Text window.
= =Raw

Invokes the Raw window.
w =Init

Switches to the Call window and redisplays the process that was running when the program
stopped.

226

MODULA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

s Hexadecimal
Converts a number from decimal to hexadecimal. Enter a decimal number when prompted
and the debugger will display the hexadecimal value. The decimal number cannot be greater
than 65535 (decimal).

= Quit

Quits the debugger. You are prompted for a veto. Enter Yes to terminate the debugger
session.

= #Page
Turns the page mode on and off. If the page mode is on the debugger displays information
one screen at a time. If the page mode is off, the debugger scrolls information off the top of
the screen and adds new lines at the bottom. The default is page mode off.

= #Help
Turns the help mode on and off. If the help mode is on, the two help lines are displayed on

the top of the screen. The default is help mode on. This can be changed with the option /H-
when you start the PMD.

= #Line

Specifies the number of lines the debugger displays at one time. The user can invoke this
command in scroll or page mode. The default value is 16.

= #Noise
Turns the bell that signals erroneous input on and off. The default is on.
n <Ctrl-X>

Erases all characters typed, without leaving the command, when a command requires
additional input - for example, the Hexadecimal command.

227

THE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

s <Esc>

Cancels the command, when a command consists of several keystrokes - for example the
commands to select another window - or when a command requires additional input - for
example, the Hexadecimal command.

9.5 Post-Mortem Debugger Windows

The following sections explain each of the five windows, their components and primary functions.

9.5.1 Call Window

The Call window displays the chain of procedure calls of a process. When you initiate the post-
mortem debugger, the debugger displays the Call window which details the call chain of the process
that was running when the program was stopped.

The line number displayed with the first procedure indicates the line in the source text where the
program was stopped. The line number displaved with the second procedure indicates the line in the

source text where the first procedure was called. After the line number, a statement number indicates
which statement is executed in the line.

‘When analyzing a process that was not actively running when the program stopped, the first
procedure displayed in the Call window shows where this process was suspended. The line number
indicates where the last ‘TRANSFER'’ or the interrupt occurred.

The displayed call chain is limited to 32 procedures. You can select a procedure to examine its data
or text.

The following example shows the Call window for the sample program ‘Demo’, as the debugger will
initially display it when debugging the corresponding memory dump. A listing of the sample program
‘Demo’ is included at the end of this chapter. The ‘Status: halted’ indicates that a ‘HALT’ statement

was executed in procedure ‘LastOne’. This occurred in the second statement on line 48 in module
‘Demo’.

- 228

MODULA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

CALL |
=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H]

Status: halted

1 > LastOne in Demo stops at line 48, statement 2
2 > RecursiveOne in Demo at line 37, statement 2
3 > RecursiveOne in Demo at line 38, statement 1
4 > FirstOne in Demo at line 24, statement 1
5 > initialization of Demo at line 57, statement 1
6 > PROCESS

Position > 1

SAMPLE SCREEN 9-1

If a reference file of a module is missing, the procedure names are replaced by procedure numbers
within the module. The body of the main module is number 0. The procedures declared in the
definition module are numbered starting from 1 according to their declaration sequence. The
procedures that appear only in the implementation module get the numbers in the order of their
declaration (header). Local modules are handled as procedures.

The last item in the call chain, shown as ‘PROCESS’, refers to the process currently being examined.
You may select this item and invoke the Data window to display the contents of the process
descriptor. The process descriptor is a set of data associated with a variable of type PROCESS’. It
contains information describing the current status of the process; for example, the 8086/88 registers.

There are no local commands in the Call window.

The typical use of the Call window is to select a procedure and invoke the Data or Text window.

229

THE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

9.5.2 Module Window

The Module window displays the list of modules that constitute the program being debugged. You
can select a module in order to display its data or text. The modules that contain code that was active
when the program stopped are marked by a greater-than sign (>).

The Module window also displays the addresses of the code and data of each module. The number of
modules displayed cannot exceed 255 and the PMD cannot debug a program with more modules.

The following example shows the Module window as the debugger displays it, for instance when the
Module command is used in the situation shown in Sample Screen 1. The Module window displays
the names and addresses of the modules in the program being debugged. The module named ‘Demo’
is marked with a greater-than sign, indicating that some of its code was active when the program
stopped.

MODULE | FIND
=[Call Mod Data Txt Raw Ini] Hex Quit #{P L N H]

Module Name CodeAddress DataAddress
1 System 0C8C:0000h OCE6:0000h
2 ASCII 0C8A:0000h OCE6:0000h
3 Keyboard 0C59:0000h OCDD:0000h
4 Display 0C51:0000h OCDD:0000h
5 Termbase 0C0B:0000h 0CD6:0000h
6 Terminal OBE8:0000h 0CD5:0000h
7 > Demo OBC5:0000h 0OCD1:0000h

ey
Positicn > 7

SAMPLE SCREEN 9-2

230

MODULA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

Local Commands in the Module Window

There is one local command in the Module window, the Find command.
= Find

This command prompts the user for a module name (case sensitive) and, if it is found, the
PMD sets the selected position to this module.

The typical use of the Module window is to select a module and invoke the Data or Text window.

9.5.3 Data Window

The Data window displays the variables and/or parameters of the selected procedure or module. On
the first line below the global commands it shows the name of the procedure or module being
examined. It indicates the current values of each variable and the type of the variable. The Data
window also allows you to view the contents of structured variables such as arrays or records. You
can select a data item <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>