

LOGITECH

SOFIWARE ENGINEERING LIBRARY

MODUlA-2/86
USER'S MANUAL

Third Edition March 1986

Copyright (C) 1984, 1985, 1986 LOGITECH, Inc.

All Rights Reserved. No part of this document may be copied or reproduced in any form or by any
means without the prior written consent of LOGITECH, Inc.

MODULA-2/86 and MODULA-21VX86 are trademarks of LOGITECH, Inc.

Microsoft is a registered trademark of Microsoft Corporation. MS-DOS is a trademark of Microsoft
Corporation.

Intel is a registered trademark of Intel Corporation.

IBM is a registered trademark of International Business Machines Corporation.

LOGITECH, Inc. makes no warranties with respect to this documentation and disclaims any implied
warranties of merchantability and fitness for a particular purpose. The information in this document
is subject to change without notice. LOGITECH, Inc. assumes no responsibility for any errors that
may appear in this document.

From time to time changes may occur in the filenames and in the files actually included on the
distribution disks. LOGITECH, Inc. makes no warranties that such files or facilities as mentioned in
this documentation exist on the distribution disks or as part of the materials distributed.

LU-GU101-3

Initial issue: February 1984

Current revision: April 1986

This edition applies to Release 2.00 of the software.

Printed: April 1986

iii

Preface MODULA-2/86

LOGITECH'S poucms AND SERVICES

Congratulations on the purchase of your LOGITECH MODULA-2/86 Software Development
System. Please refer to the following information for details about LOGITECH's policies and
services.

We feel that effective communication with our customers is the key to quality service. Therefore we
have designed a bulletin board, the LOGlTECH MODULA-2 Information Service, so you can
contact us directly and conveniently. You can contact the LOGITECH MIS simply by dialing

(415) 364-7057

using a 1200 or 300 baud modem. You log in by typing modula2. The menu with available options is
self explanatory and allows you to:

• order a MODULA-2 product
• report a bug
• access MODULA-2 source files for downloading
• read about recent LOGITECH developments and other interesting information

tv

MODULA-2/86 Preface

If you are an Independent Software Vendor, we encourage you to join the impressive list of
developers who have used LOGITECH MODULA-2 products to design their own applications. For
all LOGITECH MODULA-2 users, including ISVs, we have formed a LOGITECH MODULA-2
User Group. LOGIMUG publishes a newsletter and provides a forum through which LOGITECH
MODULA-2 users can exchange ideas and information.

LOGITECH is committed to customer support. Whether you are an individual or part of a large
organization, we offer a support plan designed to meet your needs.

The Modula-2 User Association is another important source of information about the Modula-2
language, as well as a forum for Modula-2 users to exchange ideas and to share pertinent technical
tips. LOGITECH is an active corporate member of this association. We encourage you to contact
MODUS at:

MODUS
P.O BOX 51778

PALO ALTO, CALIFORNIA 94303
(415) 322-0547

For those of you who would like to keep up with current MODULA-2/86 developments and
communicate electronically with us, LOGITECH sponsors a conference on the BYfE Information
Exchange (BIX). BIX is an electronic conferencing system that allows you to communicate with
other MODULA-2/86 users about technical problems, language issues, third-party software
developments, and any other topics that interest you. In addition to the LOGITECH conference,
BIX offers conferences on a vast range of other subjects including computers, operating systems,
applications, chips, AI, and up-to-date information from industry leaders on new technolgy.

To join BIX contact:

BYTE INFORMATION EXCHANGE
ONE PHOENIX MILL LANE

PETERBOROUGH, NH 03458
(603) 924-9281

We look forward to hearing from you on BIX!

v

Preface MODULA-2/86

This manual is designed to meet your particular needs, depending upon your level of programming
experience. Although the manual assumes you are familiar with basic programming concepts, it
provides an overview of the Modula-2language and a bibliography of relevant texts for more detailed
information. For novice programmers this manual may be used as an introduction to the Modula-2
language and eventually as a step-by-step guide to the specific implementation of LOGlTECH
MODULA-2/86. For more experienced programmers, especially those familiar with Modula-2's
predecessor, Pascal, it may be used as an introduction to the implementation specific features of
MODULA-2/86 and later as a reference manual for specific problems or questions which may arise.

As illustrated in the following diagram, this manual contains five kinds of information:

• Introductory and general reference information, including system requirements, installation
instructions, and a global index which lists all key concepts and words you may need for
future reference.

• A step-by-step tutorial to guide you through the LOGITECH MODULA-2/86 world,
focusing on the Mod Editor as the thread which joins, and the point from which you can
control, the various components of your system.

• An overview of the Modula-2 language which explains how Modula-2 differs from, and is
similar to, Pascal, in addition to describing the primary features of the language.

• A section which describes the implementation features of MODULA-2/86.
• A reference section which explains the details of the various components of LOGITECH

MODULA-2/86, including the Compiler, Linker, Debuggers, Utilities, and Library.

If you are an inexperienced programmer, you can follow the manual sequentially -- working through
the tutorial to familiarize yourself with the LOGITECH MODULA-2/86 system, and then reading
the overview of Modula-2 to better understand the language. Experienced programmers can skim the
introduction to the Modula-2 language and should concentrate on the tutorial and the system
dependent facilities of MODULA-2/86, eventually using the manual as a reference guide.

vi

NOTE:
PLEASE REFER TO THE READ.ME FILE FOR mE IATEST INFORMATION ABOUT THE

SYSTEM

MODULA-2/86

Introductory and General
Reference Information

Installation

Modula-Z Language Information

CHAPTER <I

Modula-Z Tutorial
for the Pascal

Proflrammer

MODULA-Z/86: Implementation F .. atur

STRUCTURE
OF THIS
MANUAL

Preface

LOGITECH MODULA-Z 86 Tutorial

CHAPTER 3

A Step-By-Step
Guida to

MODULA-Z 86

Technical R .. f .. rence

Version Checking

Syst .. m and
Lihrary Modul ...

vii

Preface MODULA-2/86

The following syntactic conventions are used in this manual:

viii

• Input a user must type on the keyboard looks like this:
A>m2programname <CR>

• Output the program displays on the screen, for example listings, looks like this:
Program Not Found

• Program source code looks like this:
VAR

a.-ADDRESS,·
w:word
off,seg:CARDINAL,'

• Special keys such as 'escape' and 'carriage return' are abbreviated and enclosed in brackets,
for example:

<ESC>, <CR>.

• Control characters, characters entered while the key marked 'ctrI' is depressed, are
preceeded by 'CtrI' and enclosed in brackets, for example:

<CtrI-C>, <CtrI-Break>.

• Alt characters, characters entered while the key marked 'Alt' is depressed, are preceeded by
'Alt' and enclosed in brackets, for example:

<Alt-C>.

TABLE OF CONTENTS

Section Contents Page

1 INTRODUCTION ... 1

1.1 System Requirements .. 2
1.2 Memory Requirements ... 2
1.3 Other Requirements .. 3

2 INSTALLATION .. 4

2.1 Configuring Your Operating System .. 4
2.2 Systems Equipped with Floppy Disks Only ... 5
2.3 Systems Equipped with a Hard Disk .. 8

3 TUTORIAL: A STEP-BY-STEP GUIDE TO MODULA-2/86 .. 11

FEATURES OF MOD .. 11
MENUS ... 13
BASIC COMMANDS .. 14
CUT AND PASTE .. 14
WINDOWING .. 15
SEARCH AND REPLACE ... 16
CONFIGURATION FILE ... 18
HOW TO COMPILE ... 19
HOW TO LINK .. 20
HOW TO RUN A MODULA-2 PROGRAM FROM MOD ... 20
EXITING MOD ... 20
USING MODULA-2/86 WITHOUT THE EDITOR .. 21

Section Contents Page

HOW TO ANALYZE AND SOL VB PROGRAM EXECUTION ERRORS 21
KEYSTROKES AND THEIR DEFINITIONS ... 23
CONFIGURATION ... 30
USING LOGITECH MODULA-2 EDITOR WITH A MOUSE ... 32

4 MODULA-2 TUTORIAL FOR THE PASCAL PROGRAMMER .. 33

5

5.1

5.1.1
5.1.2
5.1.2.1
5.1.2.2
5.1.2.3
5.1.3
5.1.3.1
5.1.3.2

Types of Modules .. 33
Program Modules ... 34
Definition Modules .. 34
Implementation Modules ... 35
The First Steps From Pascal To Modula-2 .. 37
More Differences .. 38 '
Functions and Procedures ... 48
USE OF MODULES .. 53
User Definable Modules .. 53
Importing Procedures with Identical Names ... 59
Standard Library Modules ... 61'

MODULA-2/86: IMPLEMENTATION FEATURES ... 75

SYSTEM DEPENDENT FACILITIES ... 75

1

Language Extensions .. 7(
Address Arithmetic ... 7(

Interpretation of Objects of Type ADDRESS .. T
Operations Involving Objects of Type ADDRESS ... T
Dereferencing Pointers ... 7~

The Module SYSTEM ... 81
Constants Exported from Module SySTEM .. 81

Types Exported from Module SYSTEM .. 8,

Section

5.1.3.3
5.1.3.4
5.1.4
5.1.5

5.2

5.2.1
5.2.2
5.2.3
5.2.3.1
5.2.3.2
5.2.3.3
5.2.3.4
5.2.4
5.2.4.1
5.2.4.2
5.2.4.3
5.2.4.4
5.2.5
5.2.6

5.3

5.3.1

5.4

5.4.1
5.4.2
5.4.3

Contents Page

Functions Exported from Module SySTEM ... 81
Procedures Exported from Module SySTEM .. 82

Data Representation ... 86
Type Conversion and Type Transfer .. 88

PRIORITIES AND INTERRUPTS .. 91

Use of Priorities .. 91
Priority Levels .. 92
Interrupt Handling ... 92

Standard Method with IOTRANSFER .. 92
Faster Method with IOTRANSFER .. 93
Low Level Interrupt Handling .. 93
How to Cope with Non-Reentrancy of MS-DOS ... 101

Implementation Notes .. 102
The Device Mask ... 102
The Priority Mask .. 103
The Interrupt Controller Mask ... 103
Monitor Entry and Exit ... 104

The Definition Module 'InputDevice' ... 105
The Implementation Module 'InputDevice' ... 106

DOSCALL .. 110

Extensions for DOS 2.0 .. 119

INTERFACING ASSEMBLY CODE LIBRARIES ... 130

Sample Assembly Library .. 130
Adapting the Run-Time Support. ... 131
Creating a New Executable File NEWM2.EXE .. 132

Section

5.4.4
5.4.5
5.4.6
5.4.7
5.4.8
5.4.9

5.5

5.5.1
5.5.2
5.5.3

5.6

5.6.1
5.6.2
5.6.3
5.6.4
5.6.5
5.6.6
5.6.7
5.6.8
5.6.9
5.6.10

5.7

5.7.1
5.7.2
5.7.4

Contents Page

Definition Module for the Sample Assembly Library .. 132
Implementation Module for the Sample Assembly Library .. 133
Sample Assembly Library Listing .. 134
R1'S ExtensioDS ... 136
The Definition Module 'AsrnLib' ... 138
The Implementation Module 'AsmLib' .. 139

LIBRARY SEARCH STRATEGY .. 143

Default Names ... 143
The Default Search Strategy .. ~ .. 143
The Query Search Strategy ... 145

DECIMALS .. 147,

Internal and External Format .. 147
1'ypes ... 147
Variables .. 148:
Conversion and Status Procedures ... 148
Arithmetic Operations .. 149
Pictures ... 15C
Picture Characters .. 151
Procedure StrToDec .. 15;
Procedure DecToStr .. 15~
Error Propagation .. 15:

REAL ARITHMETIC ... 15;

Simple Use of REAL Arithmetic ... 15:
Choices for Using REAL Arithmetic .. 151
Accuracy of the Computations .. 15

Section Contents Page

5.7.5 Memory Requirements ... 159
5.7.6 Performance ... 160

5.8 MEMORY ORGANIZATION ... 162

5.8.1 Global Memory Organization .. 162
5.8.2 Subprograms and Overlays .. 165
5.8.3 Processes .. 167
5.8.4 Allocation of Variables ... 169
5.8.5 The Heap ... 170
5.8.6 The Stack ... 171
5.8.7 The Procedure Activation Record ... 171
5.8.8 Procedure Calling Conventions ... 174
5.8.9 Function Results ... 176

5.9 VERSION CHECKING ... 177

5.9.1 Module Key and Version Checking ... 177
5.9.2 Version Errors and How to Fix Them .. 177
5.9.3 Version Errors During Compilation .. 178
5.9.4 Version Errors During Linking ... 178
5.9.5 Version Errors During Loading .. 179

6 THE COMPILER .. 181

6.1 How to Use the Compiler .. 181
6.2 Compiler Organization .. 182
6.3 Compiler Output Files ... 183
6.4 Compilation of a Program Module ... 183
6.5 Compilation of a Definition Module .. 185
6.6 Compilation of an Implementation Module .. 186

Section Contents Page

6.7 Symbol Files Needed for Compilation ... 187
6.8 Compiler Options .. 188
6.8.1 Table of Available Options ... 188
6.8.2 Description of the Options .. 189
6.9 Compiler Directives in Modules .. 191
6.10 Compiler Messages ... 192
6.10.1 Source Text Errors ... 193
6.10.2 Compiler Operational Messages and Errors ... 193
6.11 Compiler Table Limits ... 197
6.12 Compiler Error Messages ... 199

7 mE LINKER ... 205

7.1 How to Use the Unker ... 205 '
7.2 Linker Options ... 207
7.3 Linker Messages .. 209 '

8 PROGRAM EXECUTION ... 213

8.1 Running MODULA-2/86 with M2 ... 213
8.1.1 Memory Allocation Options ... 214
8.2 The File Conversion Utility LOD2EXE ... 216
8.2.1 Memory Allocation Options ... 216
8.2.2 Example Dialog ... 21~
8.3 Aborting MODULA-2/86 Programs .. 21~
8.4 Command Line Arguments ... 21~

9 mE SYMBOI.JC POST-MORTEM DEBUGGER ... 22!

9.1 Introduction .. 22'
9.1.1 Installation .. 22;

Section

9.1.2
9.2
9.3
9.3.1
9.3.2
9.3.3
9.4
9.4.1
9.5
9.5.1
9.5.2
9.5.3
9.5.4
9.5.5
9.6
9.7

10

10.1
10.1.1
10.2
10.2.1
10.2.2
10.2.3
10.3
10.3.1
10.3.2
10.3.3
10.3.4
10.3.5
10.3.6
10.4

Contents Page

Windows .. 221
How to Run the Post-Mortem Debugger ... 223
Window Format. .. 224

Selecting an Item for Display ... 224
Execution Markers ... 224
Numbers and Addresses .. 225

The Post-Mortem Debugger Commands .. 225
Global Commands ... 225

Post-Mortem Debugger Windows ... 228
Call Window ... 228
Module Window ... 230
Data Window ... 231
Text Window .. 237
Raw Window .. 239

Post-Mortem Debugger Messages .. 245
Sample Program 'Demo' ... 252

THE SYMBOLIC RUN-TIME DEBUGGER .. 254

Introduction .. 254
Installation .. 254

How to Run the Run-Time Debugger ... 255
Run-Time Debugger Options .. 256
Memory Requirements and Swapping .. 257
Programs Taking Command Line Arguments ... 258

Control of Program Execution ... 259
Breakpoints ... 259
Step Mode ... 260
Overview of the Run-Time Debugger Commands ... 260
Run-Time Errors .. 261
Stopping Programs During Execution .. 261
Debugging Programs That Use Overlays ... 262

Window Format. .. 262

Section

10.4.1
10.4.2
10.5
10.5.1
10.5.2
10.5.3
10.5.4
10.6
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.7

11

11.1
11.1.1
11.2
11.2.1
11.3
11.3.1
11.4
11.4.1
11.4.2
11.4.3
11.4.4

Contents Page

Markers .. 262
Selecting an Item for Display ... 262

The Run-Time Debugger Commands .. .263
Global Commands ... 263
Activating the Step Mode .. 264
Display of Information ... 264
Use of the Step Mode in a Multi-Process Program .. 265

Run-Time Debugger Windows ... 265
Call Window ... 265
Module Window ... 266
Data Window .. .267
Text Window .. 272
Raw Window .. 273

Run-Time Debugger Messages .. 274

UTILITIES ... 276

Introduction276'
Installation276

The Link-Load File Decoder Utility M2DECOD ... 277
Example Dialog ... 279

The Cross-Reference Utility XREF ... 279'
Example Dialog ... 280

The Source Versions Manager Utility VERSION .. 280
Marking the Version Dependent Parts ... 281
Invoking Utility Version .. 282
Example Dialog .. .282
Error Handling .. 28J

Section Contents Page

12 SYSTEM AND LIBRARY MODULES .. 287

12.1 The System Modules .. 287
12.2 The General Library Modules .. 288
12.2.1 Brief Descriptions of Library Modules ... 289

APPENDIX A - GLOSSARY .. 293

APPENDIX B - BmLIOGRAPHY .. 298

LIBRARy ... 300

INDEX

MODUIA-2/86 INTRODUCTION

1 INTRODUCTION

Welcome to MODULA-2/86!

Modula-2 is a modem language suitable for system design. It benefits from a decade of experience
with Pascal by building on its strengths and correcting many of its deficiencies. The 'standard'
language is powerful enough to prevent incompatible dialects from arising. Low level routines may be
implemented efficiently without sacrificing the benefits of a high level modular programming
language. Modula-2 allows true modular programming with strong type checking while incorporating
the flexibility of routines for transfer of data between variables of different types, interrupt handling,
and access to underlying hardware and operating software.

The LOGITECH MODULA-2/86 system is a full standard implementation of Modula-2 on
8088/8086 based microcomputers. Very large prCigrants may be compiled in efficient native machine
code. Features of the LOGITECH MODULA~2186 system include:

• Native code compiler

• Extensive library of standard modules

• Support for the 8087 for fast, accurate REAL math

• Support for 80186/80286 advanced instruction set

• Support for REAL emulation

• Support for the full one Megabyte address space of the 8086/8088

• Access to underlying hardware and operating system functions

• Support for the creation of overlays for very large systems

• A syntax assisted, fully integrated editor

1

INTRODUCTION MODULA-2/86

• Two symbolic debuggers: post-mortem and run-time

• A set of utilities

• Capability to generate ROMabie code

1.1 System Requirements

To develop programs using the LOGITECH MODULA-2/86 system, the following minimum system
configuration is required:

mM PC or 'compatible' with:

• 256K or more of RAM memory (512K if you want to run the fully linked version of the
compiler)

• Two double sided disk drives (300K each or more). one of them may be a hard disk drive

• PC-DOS or MS-DOS 2.x, 3.x operating system

Other systems or configurations supported:

• 8086/8088 based microcomputers running MS-DOS.

1.2 Memory Requirements

The MODULA-2 system has the following memory requirements:

2

• To Run the Editor
The editor takes up less than 128KB and DOS needs approximately 32KB. Therefore, we
suggest a 256KB or 320KB system.

MODUIA-2/86 INTRODUCTION

• To Run the Editor and Call the Compiler and Linker
If you are compiling a small program, we suggest a 398KB system. However, to be safe, a
512KB system would be best.

If you run out of memory, the editor will recover gracefully. A small low-fuel box appears when only a
few KBytes remain. At this time you can save the texts that have been modified without losing them.

1.3 Other Requirements

A printer is not required but strongly recommended. Software developers will find a hard disk system
useful.

Compiled MODULA-2/86 programs may be executed on any 8086 or 8088 system assuming that the
target system's memory is large enough to hold the executable program and data No references to a
particular underlying operating system are generated by the compiler.

The numeric data processor 8087 is also supported. However, it is not required to run the compiler
and the other program development utilities.

3

INSTALlATION MODULA-2/86

2 INSTALlATION

This chapter describes the installation of MODULA-2/86 under DOS. The following section provides
more complete instructions on how to install your MODULA-2/86 system, and on how to make the
best use of it. Some command (batch) files are provided on the MODULA-2/86 system diskette that
can help you perform the necessary operations. These files assume a standard configuration - a floppy
disk drive A, and either a floppy disk drive B or a hard disk drive C. You might have to modify these
files or do the installation step-by-step if your system configuration differs from the assumed
standard.

2.1 Configuring Your Operating System

You need to configure your operating system to run MODULA-2/86. This must be done by setting
up the file CONFIG.SYS on the disk from which you start (boot) your operating system. A sample
CONFIG.SYS file is provided on your MODULA-2/86 System diskette. After you have changed or
installed your CONFIG.SYS file, you must restart your operating system for these changes to become
effective. It is recommended that this file contain the following three commands:

• FILES=12
• BUFFERS=13
• DEVICE=ANSI.SYS

These commands have the following meaning:

4

• FILES=12

Defines the number of files that can be open at the same time. A value of twelve or more is
required in order to operate the MODULA-2/86 compiler, linker, editor, debugger, and
utilities properly.

MODUIA-2/86 INSTALlATION

If the proper number of files is not set in DOS, an error message 'file not found' will appear.
While the file in question may be present, it cannot be opened due to a lack of file
descriptors in the operating system.

• BUFFERS = 13

It is recommended to set the number of buffers to at least thirteen. An appropriate value will
increase the performance of the MODULA-2/86 system. However, this is not a requirement
and you may omit this command .

• DEVICE=ANSI.SYS

This command gives access to the 'Extended Screen and Keyboard Control' provided by
DOS. Some parts of MODULA-2/86 assume that this driver is used. If this command is
omitted in CONFIG.SYS, certain control characters written to the display may not have the
effect specified in the definition module 'Terminal'.

Because of the command 'DEVICE=ANSI.SYS' in CONFIG.SYS you must also put a copy
of the file ANSl.SYS onto the disk that contains CONFlG.SYS. The file ANSI.SYS is
provided on one of the original diskettes of your operating system.

2.2 Systems Equipped with Floppy Disks Only

lfyou use the MODULA-2/86 system on a floppy-based installation, we recommend the following
organization of your disks:

1 First prepare a Modula-2 work disk. Insert a copy of the MODULA-2/86 system disk into
drive B, and an empty, formatted diskette into drive A. Copy the contents of the Modula-
2/86 system disk onto your working diskette.

2 Prepare a copy of the MODULA-2/86 compiler disk. Use this disk when compiling Modula-2
programs. Your compiler disk contains:

• The MODULA-2/86 compiler (.LOD).
• The symbol files (.SYM) of the library modules.

5

INSTALLATION MODULA-2/86

3 Prepare a copy of the MODULA-2/86 linker disk. Use this disk when linking Modula-2
programs. Your linker disk contains:

• The MODULA-2/86 linker (.LOD) .
• The link files (.LNK) of the library modules.
• The reference files (.REF) of the library modules.

While you are working with MODULA-2/86, drive A holds your Modula-2 work disk with:

• The MODULA-2/86 run-time support (M2.EXE).
• The MODULA-2/86 editor (MOD.EXE).
• Your Modula-2 source files.
• Any other files you created with your MODULA-2/86 system which are needed for

compiling, linking or debugging.

While you prepare your programs, drive B holds a disk with your operatmg system and its utilities.

• To compile, you insert a copy of the compiler disk into drive B.
• To link, you insert a copy of the linker disk into drive B.
• To run the debuggers insert a copy of the debuggers disk into drive B.
• To run the utilities insert a copy of the utility disk into drive B.

Note that, depending on the capacity of your disks, you can combine two or more of the above
described disks in one disk.

If your diskettes have a large capacity, it may be worthwhile for you to study the following section on
hard disk systems, on the environment variables used by MODULA-2/86, and also the section on
library search strategy.

Fully Linked Version

The compiler and linker are distributed in overlay version. If you have the Base Language
SystemlS12k that contains the fully linked version of compiler and linker, you will have an additional
diskette containing the files M2C.EXE and M2L.EXE.

6

MODULA-2/86 INSTALLATION

Prepare a copy of the MODULA-2/86 fully linked compiler disk. From the additional diskette you
received with the Base Language System, copy in an empty, formatted diskette the file M2CEXE.
From the MODULA-2/86 compiler disk copy all.SYM files. Your fully linked compiler disk will
contain:

• The MODULA-2/86 compiler (M2CEXE).
• The symbol files (.SYM) of the library modules.

Prepare a copy of the MODULA-2/86 fully linked linker disk. From the additional diskette you
received with the Base Language System, copy in an empty, formatted diskette the file M2L.EXE.
From the MODULA-2/86 linker disk copy all.LNK files. Your fully linked linker disk will contain:

• The MODULA-2/86 linker (M2L.EXE).
• The link files (.LNK) of the library modules.

PATH and Environment Variables

To allow the MODULA-2/86 system to work properly, you must insert some additional DOS
commands into your AUTOEXECBAT file. This file must be in the root directory of your boot disk.
The commands it contains are executed automatically every time you start, or boot, your operating
system. If you do not yet have such a file create it in the root directory, using your text editor. If you
keep your M-2 Work Disk in drive A and the compiler/linker /debuggers/utilities disk in drive B,
include the following commands in your AUTOEXECBAT file:

• SETM2SYM=A:\;B\; .. .
• SET M2LNK=A:\;B\; .. .
• SET M2REF=A:\;B\; .. .
• SET M2MOD=A:\;B\; .. .
• SET M2MAP=A:\;B\; ...

These commands will set up the environment variables for MODULA-2/86 for a dual floppy
configuration. In this way your MODULA-2/86 system can take full advantage of the DOS features.
More information on the environment variables used by MODULA-2/86 can be found in the section
of this manual on the library search strategy.

7

INSTALlATION MODULA-2/86

You must also set the DOS environment variable 'PATH' (refer to the DOS Manual). TItis variable
is used by DOS to search for .EXE files. If you keep your M-2 Work Disk in drive A and the
compiler/linker/debuggers/utilities disk in drive B, the environment variable PATH should contain:

• PATH=A:\;B:\; ...

Before you start using MODULA-2/86, be sure to re-start, re-boot, your system, so the commands of
the AUTOEXEC.BAT file will be executed.

2.3 Systems Equipped with a Hard Disk

If you use the MODULA-2/86 system on an installation equipped with a hard disk, we recommend
that you copy all the files on the distribution disks to your hard disk. TItis is the most convenient way
to use Modula-2.

You can copy all the files into the same directory where you intend to write your Modula-2 programs.
However, this is not very convenient. It is better to take advantage of the structured directory system
(assuming that the version of DOS you are running supports this). TItis will reduce the number of
files in your directories and, at the same time, it will allow you to use the MODULA-2/86 system
from any directory you choose. We recommend the following organization:

8

1 Copy the file M2.EXE from the MODULA-2/86 system diskette to the directory where you
usually keep public executable programs. TItis should be (one of) the directory(ies) where
DOS searches for files to be executed. (Under DOS you can set the command search
directories using the 'PATH' command.) You can also copy the file M2.EXE to the directory
that you will use for developing your Modula-2 software. In this case, however, you need a
copy of M2.EXE in every directory where you want to run Modula-2 programs - including
your own Modula-2 programs, as well as the MODULA-2/86 compiler, linker, and debugger.

2 For the rest of the installation of your MODULA-2/86 system, command (batch) files are
provided on the MODULA-2/86 system diskette. They can be used to perform the rest of
the installation automatically. Only if you do not have a standard system configuration will
you need do it step-by-step. The installation command files assume that your hard disk is the
current drive and that the MODULA-2/86 diskettes are being inserted into drive A of your
system.

MODULA-2/86 INSTALLATION

Insert a copy of the MODULA-2/86 system diskette into drive A and type:

a:instaIIl <CR>

This command file creates two new directories 'm210d' and 'm2lib' in the root directory ('\')
of the current disk (your hard disk). Then, in the directory 'm21ib', it creates the sub­
directories 'def, 'mod', 'sym', 'Ink', 'ref, and 'map'.

For a step-by-step installation, perform these DOS commands:

• C>cd \
• C>mkdir m2Iod
• C>mkdir m2Iib
• C>cd m2lib
• C>mkdir def
• C>mkdir mod
• C>mkdir sym
• C>mkdir Ink
• C>mkdir ref
• C>mkdir map

After these directories have been created - by running the command file or step-by-step - you
are ready for the next step. With the MODULA-2/86 system diskette in drive A execute the
second command file. Type:

a:instaIl2<CR>

and insert the compiler, linker, and debugger diskettes as requested by the command file.

For a step-by-step installation, copy all the files with extension 'LOD' from the three distribution
diskettes to the directory '\m210d'. Then copy all the files according to their extension into the
corresponding directory. For example, copy the files with extension 'DEF' to the directory
'\m2lib\def, copy the files with extension 'MOD' to the directory '\m2lib\mod', and so on.

Fully Linked Version

The compiler and linker are distributed in overlay version and to run them you type 'm2 comp' or 'm2
link'. If you have the Base Language System that contains the fully linked version of compiler and
linker, you will have an additional diskette containing the files M2C.EXE and M2L.EXE.

9

INSTALLATION MODULA-2/86

Copy M2C.EXE and M2L.EXE from the additional diskette you received with the Base Language
System to the drive and directory where you usually keep public executable programs.

PATH and Environment Variables

To allow the MODULA-2/86 system to work properly, you must insert some additional DOS
commands into your A UTOEXEC.BA T file. This file must be in the root directory of your hard disk.
The commands it contains are executed automatically every time you start, or boot, your operating
system. If you do not yet have such a file create it in the root directory, using your text editor. Include
the following commands in your AUTOEXEC.BAT file:

• SET M2SYM=C:\M2LID\SYM; .. .
• SET M2LNK=C:\M2LID\LNK; .. .
• SET M2REF=C:\M2LIB\REF; .. .
• SET M2MOD=C:\M2LID\MOD; .. .
• SET M2MAP=C:\M2LIB\MAP; .. .

These commands will set up the environment variables for MODULA-2/86. In this way your
MODULA-2/86 system can take full advantage of the DOS features and your hard disk. More
information on the environment variables used by MODULA-2/86 can be found in the section of this
manual on the library search strategy.

You must also set the MS DOS environment variable 'PAm' (refer to the MS DOS Manual). This
variable is used by DOS to search for .EXE files. For example, if you keep your public executable file
in drive 'C:\commands', the environment variable PAm should contain:

• PAm=C:\commands; ...

Before you start using MODULA-2/86, be sure to re-start, re-boot, your system, so the commands of
the AUTOEXEC.BAT file will be executed.

10

MODULA-2/86 Tutorial

A STEP-BY-STEP GUIDE TO MODULA-2/86

The best way to learn a new language is to speak it. The same is true for programming languages and
with the LOGITECH MODULA-2 Editor, you'll be writing Modula-2 programs in no time. The
syntax assisted editor is fully integrated with your LOGITECH MODULA-2/86 system. That means
you can control and call on all the tools which make up your system from within the editor.

Therefore, before we begin our typical programming session with LOGlTECH MODULA-2/86, it is
helpful to familiarize yourself with the features and general concepts of the Modula-2 Editor, 'mod'.

FEATURES OF MOD

• Fast on-line Modula-2 syntax check
• Ability to call the Modula-2 compiler, linker, other Modula-2 programs and utilities from the

editor.
• Easy positioning and correcting of compile-time errors
• Full screen capacity
• Window based
• Multiple windows

• variable size
• overlapping or split windows
• horizontal and vertical scroll

• Edits more than one file at a time
• Pop-up menu and single keystroke commands
• On-line help information
• User definable templates for Modula-2 syntactical constructs
• User definable help file
• Can be used with a mouse (LOGITECH Logimouse)

The mod editor edits standard ASCII files. It displays the text associated with these files in windows.

11

Tutorial MODULA-2/86 '

There is always a current position indicated on the screen by a blinking underscore, which is the locus
of action for most commands.

Most commands can be invoked either from the keyboard or from a menu. Function keys, Fl through
FlO, and control characters allow you to invoke various commands. The cursor keys allow you to
move up and down in a menu. To execute a command from a menu, type either <CR>, or F8, or the
first letter of the command.

When the editor needs special information from you, such as the name of a file, it will put up a
Prompt Box. For example, if you type FlO, mod generates a Prompt Box. When entering or editing
text in a Prompt Box, you can use many of the basic motion and editing commands.

When the editor needs to tell you some information, such as the result of an operation or the answer
to a request, and does not require an answer from you, it will put up a Dialogue Box. For example,
when you type <Alt-Fl>, mod will generate a Dialogue Box indicating the release number, the
amount of memory available, and on which drive your compiler and linker are located.

Text you select will be highlighted on the screen. You can either delete.it or copy it into a temporary
holding area called the scratchpad. You can insert contents into the scratchpad at any time, which
allows text to be copied within a file or between files.

If you type a character mod does not understand, it will beep. For example, if you are trying to
execute a particular command and you type something other than the first character of the command,
mod will beep.

The escape command is very important in mod. The <ESC> key is used to exit a menu, exit Help, and
to resume editing after a dialogue box has been displayed. The <ESC> key is also used to exit mod. If '
any texts have been modified and not saved when you try to exit mod by typing <ESC>, mod will ask
you if you want to save the files before exiting. If you have entered a menu and do not want to select
any of the choices, you can leave the menu by typing <ESC>.

Mod has an online help feature which describes all of the mod commands. At any point you can type
Fl to get a help screen. Make sure the file MOD.HLP is in the current directory or in a directory
specified by the MSDOS Path command. The file MOD.HLP is a standard ASCII file so you can
modify it to suit your needs.

Additional information about the amount of available memory and the release number of mod you
are using is displayed when you type <Alt-Fl>.

12

MODULA-2/86 Tutorial

That's enough general information about mod to get us started. In the following tutorial you'll learn
the basics of your MODULA-2 system: how to load a program, edit it, compile, link and debug it. As
you proceed through the tutorial, take note of any questions that may come up or areas in which
you'd like further information. You can then refer to the appropriate section of this manual for more
detailed explanations.

Before you start this tutorial make back-up copies of all the MODULA-2/86 master diskettes and
then store the masters in a safe place. This tutorial assumes that you have successfully installed the
compiler, the linker, and mod on your system. This User's Guide explains the proper installation
procedures. Make sure that you have specified the MS-DOS 'PATH' and 'SET' commands correctly.

To evoke the editor you only need to type 'mod' and then <CR> to execute the file MOD.EXE. You
can also specify a file name on the command line when mod is called and this file will be loaded into
the editor. Just one more note before we begin -- unless otherwise specified, the information you
must type into your computer is underlined (so you don't enter the drive name and prompt sign).
Let's begin. Type:

A>mod<CR>

MENUS

There are three important menus within mod -- the Main menu, the File menu, and the Window
menu. The Main menu is evoked by typing F9. This menu provides editing functions, the ability to
call the syntax checker, and access to the File and Window menus. To see the Main menu, type F9.
Most of the menu choices will be described later in this tutorial. The cursor keys followed by <CR>,
or the first character of a command can be used to select choices within a menu. To leave the menu
without selecting anything, type <ESC>.

The File menu is called either from the Main menu or by typing <AIt-F9>. This menu provides file
related commands. Type <Alt-F9> to see the File menu. Most of the commands available in the File
menu can be executed using the function keys except for 'name', 'run' and 'write'. Type <ESC> to
leave this menu.

The Window menu is called either from the Main menu or by typing <AIt-FIO>. All the commands
needed for creating and using windows are included on the Window menu. Type <Alt-FlO> to see the
Window menu. We will explain this menu later in the tutorial.

Now let's try mod's online help feature. Type Fl to display the help text. Type <ESC> to exit from the
help text.

13

Tutorial MODULA-2/S6

BASIC COMMANDS

Now you are ready to begin editing a file. To load a file into mod, type F3. A prompt box will appear
on the screen asking you which file to get. For this tutorial we have provided a file called
MODEXl.MOD. The default file name extension when getting a file is .MOD so you can simply type
MODEX1<CR>. For files with different extensions such as .DEF or.TXT the complete file name and
extension must be entered.

The text of the file EXAMPl.MOD should now be displayed on your screen. There are several ways
to move around the file. Try playing with the cursor keys to position the cursor at different places in
the file. The End key will move to the end of the text; the Home key will return you to the top of the
file. For a more complete description of the various ways to move within a file refer to the commands
listed in the section on "Keystrokes and their Definitions".

Now let's modify the Module ModExl which is currently displayed on your screen. If you have
already changed it at all please reload it by typing F3 and then typing MODEXl<CR>.

CUT AND PASTE

Text can be selected to cut or to delete by typing FS. Selected text will be highlighted. Position the
cursor at the beginning of the fifth line which begins with WriteString. The cursor should be under
the "W". Now type FS to begin selecting text. Using the cursor key, move the cursor to the right and
notice how each character is highlighted showing that it is now selected text. Go all the way to the
end of the line including the semicolon so that the entire line is highlighted. If you decide that you
really don't want to select this particular text, the selection can be cancelled by typing FS again -- try
it.

Text which is selected can be deleted or cut and then reinserted at a different place in the file. Move
back to the beginning of the fifth line and again select the entire line using the FS key. Once the line
is selected press the key to delete the line. This line has been written to the Scratchpad. The
Scratchpad holds information which has been cut from a file so that it may be copied somewhere else.

14

MODUIA-2/86 Tutorial

There is only one Scratchpad so whenever you cut a portion of a file, the previous contents of the
Scratchpad are destroyed. The text Scratchpad can also store text for cutting and pasting between
different files. Now type the <INS> key and the line will reappear in the file. Move the cursor to the
end of the word BEGIN of the previous line and type <CR> to create a blank line. Position the cursor
at the beginning of this new blank line and type <INS>. The WriteString statement should have been
inserted on the blank line. On this new line delete the string 'The program worked! (Hit a key)'
typing F8 to select the text and to delete it. Replace the string with something simple like This
is my tirst program!

WINDOWING

Using windows, you can edit more than one file at a time with mod. To open a new window you
invoke the Window menu. You can display this menu either by typing F9 for the Main menu and
then selecting Window, or by typing <AIt-FIO>. The Window menu provides several choices of
windows, such as horizontal and vertical windows, as well as the ability to close, move and reshape
windows which display text read from files.

Each window shows a part of some text, and the name of the file associated with that text is visible on
the lower right corner of the window. If a text has been changed so that it might differ from its
associated file, a small 'delta' symbol appears before the name of the file.

There are two types of windows mod can create. The first type are split-screen windows which are
created with either the horizontal-split or the vertical-split commands. The second type of windows
are overlapping windows which are created using the open command. Windows behave differently
depending upon how they were created. With practice you can develop combinations of windows
which are suited for different tasks.

To begin, let's open a horizontal window. Position the cursor about halfway down the screen, the
window will be created from this cursor position. If the cursor is in the home or upper left corner
position when a horizontal window is created, the new window will automatically split the screen in
half. Now type <Alt-FlO> to get the Window menu. To select horizontal split you can either type h. or
select the horizontal option and type <CR>. There should be a horizontal line across the screen which
is the window border. The cursor is now in the new window which is the active window. To switch
back to the upper window type F7. The cursor should now be in the upper window marking it as the
active window. The F7 key is used to switch between different windows.

15

Tutorial MODULA-2/86

Type F7 to activate the lower window. To close this window type <AIt-FIO> to display the Window
menu and then select 'close'. The window is now gone but the space which it occupied on the screen
will not be reclaimed. To allow the current window access to the full screen you must reshape the
window. The reshape command in the Window menu will reshape a window by defining a new lower
right corner of the window. Display the Window menu <AIt-FIO> and select 'reshape', the cursor
should now be in the lower right corner of the window. Use the cursor keys to move the cursor
somewhere down towards the bottom of the screen and in toward the left margin, to redefine the
lower right corner of the window. Now type <CR> and the window will assume this new shape. If you
simply want the half window to become a full screen window, select the full screen option from the
Window menu <Alt-FIO>.

Another type of window in mod is an overlapping window. Recall that with the horizontal-split
window both windows were displayed at the same time and you could switch between the windows
using the F7 key. Overlapping windows differ by actually overlapping one another on the screen. They
are created using the open command from the Window menu. The cursor position at the time the
open command is executed will define the upper left corner of the overlapping window.

Position the cursor at approximately the center of the screen. Type <Alt-FIO> to call the Window
menu and select the open command. A new window should be created using the cursor position as
the upper left corner. Notice how this window overlaps the full screen window. Type F7 to switch
back to the first window. The new window disappears because the full screen window completely
overlaps the smaller one. Type F7 again to activate the smaller overlapping window. Close this
window by selecting the close command from the Window menu. When an overlapping window is
closed, the space which it occupied is now available to other windows without having to reshape
them.

You can open an unlimited number of windows, however, if you open more than six windows at a
time you will dramatically hinder the performance of the editor.

You should now have one window open which takes up the full screen. Type F3 to load a new file
called MODEX2.MOD into this window. Mod will ask you if it is okay to abandon the current text.
Answer ru to this prompt and Mod will load the file MODEX2.MOD.

SEARCH AND REPLACE

Mod allows you to search for a specified string and to replace occurrences of a specified string with a.
new string. To search for a string, you type FlO to specify the string you want to find. All searches wil
begin from the current cursor position. The two commands to initiate a search are <Ctrl-S> for
forward search and <Ctrl-R> for a reverse or backward search through a file.

16

MODUIA-2/86 Tutorial

Type FlO and enter the string Read. Because the cursor is at the beginning of the file start the search
with <Ctrl-S>. After the first occurrence you can continue to search by typing <Ctrl-S> as many times
as you need. Now position the cursor at the end of the file using the End key. Type FlO to select a
new search string. Type <Ctrl END> to delete the word 'Read' and enter the word Lines. You can
now do a reverse search for the word 'Lines' using <Ctrl-R>.

In addition to a simple search, you can also do a search and replace operation. The command <Ctr!­
Q> initiates the search and replace feature. Like the search commands, the search and replace will
start from the current cursor position and goes forward only, so if you want to search and replace
through an entire file you must first position the cursor at the top of the file.

Position the cursor at the beginning of the Module ModEx2 and type <Ctrl-O> to start the search
and replace. The file MODEX2.MOD which you are currently editing has errors in it which need to
be changed. Mod will prompt you for the old string. Type the word string for the Old String. Mod
will then prompt for the New String. Enter the word String as the New String. Mod will now give you
the choice to have a query or non-query search and replace. A query replace means that at each
occurrence of the Old String, mod will stop and prompt the user befortLit replaces the Old String
with the New String. At this point select !lllirrY search. The error you will now fix will be to replace
the word string with the proper spelling, String, in the identifier WriteString. Begin the search and
answer m at the replace prompts. Notice how mod searches for the Old String even when it is only
part of a longer string.

SYNTAX CHECKING

Now that you have modified the file, you can quickly check for syntax errors from within mod using
the F2 function key. The syntax checker will check the entire file, so the current cursor position is not
important. Note: The syntax checker requires proper indentation of nested Modula-2 statements (i.e.
an indent factor of at least one). The syntax checker will either position you at the first error and
display the error message in a box or put up a box saying that no errors were found. In either case,
the box will disappear as soon as you type <ESC> or one of the cursor keys. Try checking your syntax
now by positioning the cursor at the end of the file and typing F2. There are syntax errors in the file
MODEX2.MOD so the syntax checker should find them. Use the regular editing commands to fix
any errors that are detected and then recheck until no errors are found. Once the program is
syntactically correct you are ready to compile and link the program.

17

Tutorial MODULA-2/86

CONFIGURATION FILE

Mod is a syntax assisted editor. This means that with only one keystroke you can program mod to
create commonly used structures such as IF .. THEN statements and PROCEDURE declarations.
There is a file called MOD.CON which is included on the mod diskette. This is the file which contains
the template information mod needs to build the Modula-2 statements.

When you start mod, it will search the current directory, and those directories specified by the Path
command for the standard file MOD. CON. The example MOD.CON file provided on the mod
diskette is a default configuration file which we created to get you started. MOD.CON is a standard
ASCII file so you can modify this file to better fit your programming style. If you edit the MOD.CON
and want to reload the new version you can save it first and then, type <Alt-F2> which will find and
load the modified configuration file.

To demonstrate the syntax assisted power of mod, let's open a small practice window. To do this
move the cursor to the center of the screen and type <AIt-FlO> to display the Window menu. Then
select 'open' either by typing Q or by using the cursor keys. You should now have an overlapping
window in the lower right corner of the screen.

The configuration file defines structures that are created using the keys <Alt-a> through <Alt-z>. To
start, type <AIt-h> for a program header. Mod will now write to the screen the outline for a program
header and then position the cursor at the first entry which is 'Title'. Go ahead and fill in a title, date,
and your name. Now skip a few lines and try some of the other built-in statements like <Alt-i> for an
IF .. THEN statement or <Ait-w> for a WHILE loop. Once you get accustomed to using this feature
you can add to the configuration file and modify it so that the templates are displayed exactly how
you want them.

To call the compiler and the linker from mod it is necessary to provide mod with information about
where to find the compiler and linker files. This compiler/linker drive specification information is also
included in the MOD.CON configuration file. You should still be in the overlapping window that you
created to practice the syntax assisted features of mod. Now type F3 and load the file called
MOD.CON. Mod will ask you if it should abandon any unsaved text before it allows you to load a
new file -- answer m.

18

MODUIA-2/86 Tutorial

The first line of this file is '@:c' which is the compiler/linker drive specification for a hard disk system.
It tells mod to look for the compiler and linker files on the C drive. If you are using a dual floppy
system you should change this line to '@:b'. If you modify MOD.CON remember to save the new one
by typing F4. Once the new MOD.CON is saved you can load it by typing <AIt-F2>. You can now
close the overlapping window you have been using by choosing the close command from the Window
menu. Mod will ask you if it should abandon any unsaved text before it lets you close a window. Once
the window is closed the Module ModEx2 should still be displayed on the screen in a full screen
window. Now you are ready to try compiling Module ModEx2.

HOW TO COMPILE

Before you try to call the compiler or linker from mod make sure that you have properly installed
both the compiler and the linker, properly set the MS DOS variables PATH and SET as explained in
the Installation chapter, and that you have a drive specification in the file MOD.CON telling mod
where to look for compiler/linker files. If you are using a dual floppy system, remember to put the
compiler disk into drive B.

To start the compiler type FS. Mod will display a prompt box asking what file to compile, with the file
MODEX2.MOD as the default. Type <CR> to begin compiling Module ModEx2.MOD. There are
errors in this file so don't worry when the compiler tells you that an error is detected. The errors were
placed in the file so that you can learn how to use the GoToError feature of mod.

Before the compiler terminates it will quickly display the errors it found on the screen. After the
compilation is complete you will have to correct the errors in the Module ModEx2.MOD. Type
<ESC> to return to the editor. To correct the errors in the module, type <Alt-FS> which will put you
in GoToError mode. Mod will position you near the first error and display a box which tells you what
type of error was detected. In this case the error is 'Identifier not declared' refering to the identifier
LineCopied. The correct identifier is LinesCopied. Use the cursor keys to move to this error and
correct it by inserting the's' into the identifier name.

To proceed to the next error type <AJt-FS> again. The error here is the same as the last one. Go
ahead and fix this one by changing 'Line Copied' to 'LinesCopied'. Try typing <Alt-FS> again and mod
will tell you that there are no more errors which need to be fixed. Type FS to compile again. This time
the compilation should complete without any errors. If an error is found try fixing it the same way you
did before; if no errors are found you are ready to link the program.

19

Tutorial MODULA-2/86

HOW TO LINK

If you are using a dual floppy system remember to take the compiler disk out of drive B and insert
the linker disk in drive B. Now you can call the linker by typing H. As with compilation, mod will
display a dialogue box asking which file to link with the file MODEX2.LNK as the default Type
<CR> to start linking the program. The linker produces a .LOD file.

The linker will display its messages to the screen along with any linker error messages. Once the
linkage is complete you can return to mod by typing <ESC>.

HOW TO RUN A MODULA-2 PROGRAM FROM MOD

You can execute MODULA-2/86 programs (.LOD files) from mod. The file you try to run must be a
.LOD file. In the previous section you produced a file called MODEX2.LOD by linking the file
MODEX2.LNK. To run this program, first display the Files menu <Alt-F9> and select the run
command. Type the name of the file you want to run, MODEX2, and press <CR>. The default file
extension is .LOD so it is not nece~ary to include this extension when you type the file name.

The program MODEX2 copies a specified number of lines from one file to another. The first prompt
will ask you to enter an input file. You can type MODEX2.MOD for the input file. The second
prompt will ask you for the lines to copy. Enter 10 at this prompt. The third prompt will ask for an
output file into which MODEX2 will copy the 10 lines. Type the file name TEST.TXT for the output
file. When the program terminates type <ESC> to return to mod.

MODEX2 should have created a file called TEST.TXT. To see this file, open a new window by typing
<Alt-F10> to display the Windows menu and select horizontal split Now get the file TEST.TXT by
typing F3 and then the file name. The first 10 lines of the file MODEX2.MOD were copied to the file
TEST.TXT.

EXITING MOD

To exit mod simply.type <ESC>. If any files have been modified and not saved, mod will give you a
chance to save the modifications before it terminates.

20

MODUIA-2/86 Tutorial

USING MODUIA-2/86 WITHOUT THE EDITOR

All the components of MODULA-2/86 function as stand alone parts. Therefore, once you have
written your MODULA-2 program, as long as you use your editor to create standard ASCII files, you
can evoke the Compiler, Linker and all the Utilities from the command line.

To run a MODULA-2 program you can still use the runtime system and run your program the same
way you were running it from within MOD. Or, if you use the utility LOD2EXE, you can create a
standar .EXE file and run your program without the runtime support.

Once you have completed the sample program, exit from MOD and try to compile, link and run your
program!

MODULA-2/86 is easy, flexible and extremely powerful.

HOW TO ANALYZE AND SOLVE PROGRAM EXECUTION ERRORS

There are three possible ways to analyze the execution error of a program. The simplest method is
the use of module 'Debug' which provides you with limited debug information upon unsuccessful
program termination.

The next 'level' of debugging is the use of the symbolic post-mortem debugger which allows you to
analyze the program status (content of variables) from a memory dump file produced upon
unsuccessful termination of the program.

The best tool to study the execution of a program is the symbolic run-time debugger which allows you
to follow the program execution in steps, analyze at certain breakpoints the variable contents, and
slowly approach the statement producing the execution error.

For further description of both symbolic debuggers, please refer to the corresponding chapters. The
following text eXplains in more detail the use of module 'Debug':

If the module 'Debug' is linked to the application program, no dump file is generated. Instead, the
system generates a list of the call sequence within the current process that lead to the termination
displayed on the terminal. If the necessary reference files ate' available in the current directory, each
line displays the name of the procedure, its module and the source line number, where the next
procedure is called, or (in the case of the first line listed) where the program was stopped.

21

Tutorial MODULA-2/86

If there are missing reference files, the procedure names are replaced by procedure numbers within
the module, and the line numbers are replaced by the value of the instruction pointer. The module
body (module initialization code) is referred to as procedure zero. It is followed, in the order of their
declaration, by the procedures declared in the definition module, if any, and then by the other
procedures of the module. The Utility M2DECOD can be helpful to associate procedures numbers
with your code.

Sample Tenninal Output

---> halt called
MODULE Demo PROCEDURE
MODULE Demo PROCEDURE
MODULE Demo PROCEDURE
MODULE Demo PROCEDURE
MODULE Demo PROCEDURE
---> halt called

LastOne
RecursiveOne
RecursiveOne
Firstone
Demo

LINE
LINE
LINE
LINE
LINE

48
37
38
24
57

To be able also to debug all initialization codes of imported modules, module 'Debug' should be
forced to be initialized as the first module. This can be accomplished by importing it as the first
module in the main module of the application program.

22

MODUIA-2/86 Tutorial

KEYSTROKES AND THEIR DEFINmONS

The following section lists all the MODULA-2 Editor keystrokes and their definitions.

KEYSTROKE

Esc

Enter, <CR>

Home

Ctrl-Home

End

PgUp

PgDn

Del

Ins

Tab

DEFINmON

Escapes from prompt boxes and dialogue boxes and from the editor itself. If
you try to escape from the editor with unsaved modifications, you will be
asked if you really want to do this.

Inserts a line-break, moves down one line, and indents. Functions the same
as <Ctrl-O>, <CtrI-N>, and <Tab>.

Moves to the beginning of a text. (Also valid in menus)

Moves the cursor to the top left comer of the window.

Moves to the end of a text. (Also valid in menus)

Slides the window upward over the text, approximately the height of the
window.

Slide.s the window down over the text, approximately the height of the
window.

If a block of text is selected, deletes it and places it in the scratchpad.
Otherwise deletes the character at the cursor position. If this is done
beyond the end of a line, it will join the following line to the current one.

Inserts the contents of the scratch pad at the current cursor position.

(Note: Tab, in mod, does not function as it does in most standard editors).
Moves the cursor to an appropriate beginning column for the current line.
If the current line has something on it, Tab moves the cursor to the first
non-blank. Otherwise, it looks backward for keywords or preceding text and
positions the cursor to an appropriate indentation according to Modula-2
syntax.

If a block of text is selected with F8, Tab will indent (move to the right) all
the lines by the indent factor.

23

Tutorial

KEYSTROKE

24

AIt-Tab

Shift Tab

CtrI-->

Ctrl<-­

CtrI-PgUp

CtrI-PgDn

CtrI-End

CtrI-A

CtrI-B, <-­

CtrI-D

Ctrl-E

CtrI-F, -->

CtrI-K

Ctrl-L

Ctrl-N,~

Ctrl-O

CtrI-P,j

CtrI-Q

CtrI-R

CtrI-S

MODUIA-2/86

DEFINITION

If a block of text is selected with F8, Alt-Tab will 'unindent' (move to the
left) all the lines by the indent factor.

Moves to the end of the current line.

Go to the next word.

Go to the previous word.

Scrolls the text up one line in the window.

Scrolls the text down one line in the window.

Deletes the entire line including the line-break and loads it into the
scratchpad, replacing the old contents.

Moves to the beginning of the current line.

Moves the cursor Backward one character.

See Del.

Moves the cursor to the end of the current line.

Moves the cursor Forward one character.

Kills the rest of the line, to the right and loads it in the scratchpad, replacing
the old contents.

Redisplays the screen.

Moves the cursor to the Next line.

Opens a line: Breaks the line, or inserts a new line.

Moves the cursor to the Preceding line.

Query replace: starting from the current position Replaces old string with
new string. If you answer yes to the Query mode, the replace will stop after
each old string found and ask for a confirmation; otherwise, it will replace
all occurrences.

Searches in the Reverse direction for the current pattern.

Searches in the Forward direction for the current pattern.

MODULA-2/86

KEYSTROKE

Fl

Alt-Fl

F2

Alt-F2

F3

Alt-F3

Ctrl-F3

F4

Alt-F4

Ctrl-F4

F5

Alt-F5

Tutorial

DEFINmON

Help - Displays a very brief help text in a temporary window. (The help text
is in the file MOD.HLP, so you can edit it.) Type <ESC> to go back to your
text. All cursor movement keys are allowed to browse through the help text.

Gives system information about mod. Type <ESC> to go back to your text.

Syntax - Checks the syntax of the text as a Modula-2 module. It will either
position you to the first error and display the error message in a box, or put
up a box indicating that no errors were found. In either case, the box will go
away as soon as you type something. The syntax checker requires that you
properly indent your Modula-2 program.

Reloads the Configuration File.

Get - Prompts for a file name and loads the file in the current window. If
the file you edit is a .MOD file, you don't need to specify the extension
'MOD' because it's used by default.

Splits the current window and asks for a file to load.

Opens a full window and asks for a file to load.

Save - Saves the current text in its associated file.,

Go to the specified line.

Tells you at what line and column the cursor is.

Compile - Invokes the MODULA-2 Compiler. Note: mod can only run a
Compiler 2.0 or later. If the file has been modified, it will ask if you want
you want to save it.

Go to next error after compilation with errors. It loops on the error list
(maximum 30 errors). Allows you to work on an existing error listing file
(.LST) even if you didn't evoke the compiler from the editor. This is very
useful to correct all the compiler errors after a batch compilation. Note:
This keystroke is supported only with Compiler 2.0 or later.

25

Tutorial

KEYSTROKE

26

F6

Alt-F6

Ctrl-F6

F7

Ctrl-F7

F8

F9

MODULA-2/86

DEFINmON

Link· Invokes the MODULA-2 Linker. Note: mod can only run a Linker
2.0 or later.

Converts a number (eg: 123, -123, ObOOh, 867B, 45H) or a string (eg: "ab',
"Ab", 'a', "a") into a cardinal, integer, octal, hex, binary, or string.

Displays the ASCII table (file mod.asc)

Next Window - Switches to another window. If repeated, this command will
cycle through all windows.

Enters any byte value [OOH .. FFH] at the current cursor position. This
command is useful to enter a page break (=OCH) or special characters which
don't exist on the keyboard.

Select· Starts selecting a block of text. All direct motion commands (Home,
End, Arrows, Page Up, and Page Down) can be used to establish the other
end of the selected region. The selected text is highlighted. (F8 acts like a
switch _. if you make a selection and type F8 again, the second F8 cancels
the selection.)

Main Menu - Calls up the Main Menu with the following commands:

• files
Calls up the File Menu. Functions the same as <Alt F9> .

• delete
Cuts a selected block of text from your program into the scratchpad;
removes the text from the program. Using F8, first select a block of text.
'Delete' this text and put it in the scratchpad.

• copy
Copies a selected block of text from your program into the scratchpad;
leaves the text in the program. Using F8, first select a block of text. 'Copy'
into a scratchpad the text you've selected .

• paste
Pastes the text from the scratchpad into the window at the current cursor
position.

MODULA-2/86

KEYSTROKE

Alt-F9

Tutorial

DEFINITION

• quit
Exits the editor. Functions the same as <Esc>. If you have modified your
program, the editor will ask if you really want to exit without saving your
modifications. Y = yes, N or <Esc> = no.

• syntax
Checks to see if your program is syntactically correct. Functions the same as
F2.

• windows
Calls up the Window Menu. Functions the same as Alt-FIO.

File Menu - Calls up the File Menu with the following commands:

• compile
Calls the MODULA-2 Compiler and prompts for the program you wish to
have compiled. Note: mod can only run a Compiler 2.0 or later. When
finished compiling, type <ESC> to return to the editor. If errors are
detected by the compiler, the errors are displayed on the screen and a listing
file with the error message is generated with the name, <prog>.LST. You
can open a window in this file and check the errors, or better, use <Alt-FS>
to have an automatic positioning where the error occurred. Note: this
feature requires a system with at least 398K bytes of main memory.

Only the overlay version of the Compiler can be called from mod. You
cannot call 'M2C.EXE', the fully linked version of the Compiler.

• get
Prompts for the file name and reads in the file. Functions the same as F3.

• link
Calls the MODULA-2 Linker and prompts for the program you wish to
have linked. Note: mod can only run a Linker 2.0 or later. When finished
linking, type <ESC> to return to the editor. Only the overlay version of the
Linker can be called from mod. You cannot call 'M2L.EXE', the fully linked
version of the linker.

27

Tutorial

KEYSTROKE

FlO

Alt-FlO

28

MODULA-2/86

DEFINITION

• name
Allows you to change the name of a file. Especially useful if you want to
retain a copy of an old file as well as the modified version of this file. You
would rename the modified file and thus keep both files (.MOD is the
default extension).

• run
Executes any MODULA-2/86 program that fits in memory (extension
.LOD). Note: mod can only execute a program generated with a Compiler
and Linker 2.0 or later. It prompts you for the name of the program you
wish to execute. When the program has finished, type <ESC> to return to
the editor.

• save
Saves the current text in its associated file. Functions the same as F4.

• write
Also saves text, but you specify the file name you wish to save. The default
proposes the current file name. (.MOD is the default extension).

Pattern - Opens a window for editing the search pattern for editing. Note:
'<ESC>' inside the pattern window closes the pattern window and restores
the old pattern. 'Enter' sets the new pattern and closes the window. Any
other command saves and closes the pattern, and is then executed,
including Search forward and Search backwards.

Window Menu - Calls up the Window Menu with the following commands:

• close
Closes the selected window. If more than one window is open, the one in
which the cursor is positioned disappears. The window that remains open
will retain its current shape, for example, half the screen if two windows
were opened. Use the reshape command to modify it.

MODUIA-2/86

KEYSTROKE

Tutorial

DEFINmON

• hor. split
Splits the current window horizontally. First, define where you want to split
the window by positioning the cursor. Then select 'hor. split' from the menu
to split the current window. If the cursor is in the upper left corner position
when the hor. split is invoked, the current window will automatically be split
in half. You then invoke F3 to get another file. This allows you to have two
or more windows open at the same time.

• move
Moves the current window. Select 'move' from the menu. Moving the cursor
defines the new position of the upper left corner of the window. Enter
<CR> to confirm this position and the window will move to this position.

• open
Creates a new window with the upper left corner at the current cursor
position. The size of the screen determines the size of the new window.

• reshape
Reshapes the current window. Select 'reshape' from the menu. Moving the
cursor defines the new position of the lower right comer of the window.
Enter <CR> to confirm this position and the window will reshape with the
new lower right comer.

• vert. split
Splits the current window vertically. First, define where you want to split the
window by positioning the cursor. Then select 'vert. split' from the menu to
split a current window. If the cursor is in the upper left comer position
when the vert. split is invoked, the current window will automatically be split
in half. You then invoke F3 to get another file. This allows you to have two
or more windows open at the same time.

• full screen
Makes the current window a full screen window which overlaps the other
windows. All other windows remain unchanged and can be visited using F7.
It is not the reverse operation of vertical or horizontal split.

<Alt-a> .. <Alt-z> Inserts a template in the current window of the current cursor position
(please refer to the Configuration File section).

29

Tutorial MODULA-2/86

CONFIGURATION FILE

The file 'mod.con' is an ASCII file that contains system information and user definable templates for
the MODULA-2 Editor.

Select the Compiler/Linker Drive

The MODULA-2 Editor is compatible with MODULA-2/86 Release 2.0 or later. If you try to invoke
the MODULA-2 Compiler or Linker or run any MODULA-2/86 .LOD file, and you are using a
version earlier than 2.0, you will get the following error:

Bad File structure

Type <ESC> to return to the editor.

If mod is in a different drive than the MODULA-2/86 Compiler and Linker, before you run the
Compiler or Linker from within mod, you must specify in the configuration file the drive in which to
search.

To tell mod that the Compiler and Linker are in drive C you type the following:

.@i.C

If you use a different drive-id, substitute your drive-id for 'C'. If you fail to indicate the drive in which
you keep the compiler or linker, when you try to invoke the compiler or linker you will get the
following error message:

Program Not Found
The same message is displayed when you try to run a MODULA-2/86 program (.LOD) and you do
not specify the correct drive and directory to tell where the .LOD is.

Select Indentation

The indent factor (the number of columns used to indent) is user programmable. The default is 2, so
if you wish to change the indent factor, simply type any number 0 to 9 after @:c. (The value 0
disables the indentation mechanism.)

30

MODULA-2/86 Tutorial

Select Backup Option

You can also specify if you want to keep the backup file by typing b in the configuration file
(mod.con). For example, to specify drive C, to define an indent factor of 4, and to indicate true for
the backupFlag type:

@:C4b

If you accidently try to invoke the compiler or linker, for example with F5 or F6, you can exit by
typing <ESC>. If, however, you begin compiling or linking, you must type <Ctrl-Break> to stop them.

User Definable Template

A template is a sequence of characters inserted in the currently open window when you press the
ALT key and a character [a .. z] associated with the template.

The current version of the Configuration File contains templates for some frequently used Modula-2
constructs; for example, if you type <Alt-i> you will get the following template:

IF THEN

END

You can redefine the templates as you wish. The format of a template is:

@x
1st line of the template

Nth line of the template

When you type <Alt-x>, the lines following '@x' will be inserted in the current cursor position. The
first underscore character, '_', found in the template lines will be the new cursor position after the
template is inserted. If there is no underscore the first character of the first line of the template will
be the new current cursor position. User definable templates are always called by typing <AIt-x>
where x is in the set [a .. z].

31

Tutorial MODUIA-2/86

You can modify the Configuration File with the MODULA-2 Editor itself. After you have saved the
Configuration File you can reload it by typing Alt-F2.

The maximum size for the Configuration File is 3000 bytes.

USING WGITECH MODUIA-2 EDITOR WIm A MOUSE

The LOGITECH MODULA-2 Editor can be used with a LOGITECH Logimouse. There is a file in
CLICK. -- the control center of the mouse -- called mod.mnu which enables you to use pop-up menus
in mod. Please refer to your LOGIMOUSE documentation for more information about using mod
with LOGIMOUSE.

32

MODUIA-2/86 Modula-2 TUTORIAL

MODULA-2 TUTORIAL FOR mE PASCAL PROGRAMMER

TIrls tutorial is aimed mainly at Pascal programmers in transition to Modula-2. The fact that
Modula-2 evolved from Pascal makes it easy for Pascal programmers to familiarize themselves with
the new language.

There are two levels of differences between Modula-2 and Pascal. First, Modula-2 implements
modem software engineering, such as, data abstraction, functional abstraction, concurrency and more
frequent use of modular programs. All these features are not part of the standard Pascal definition,
neither are they present in any implementation. The second level of difference consists of relatively
minor changes in Modula-2 program syntax and constructs.

The most important difference is the introduction of the module.

Types of Modules

There are three types of modules in Modula-2. These are program modules, definition modules and
implementation modules. Program modules contain the source code for a user's main program.
Program libraries are created from matched pairs of definition modules and implementation
modules. The source code for all types of modules is stored as standard text files and may be
modified by any text editor capable of working with these files. The naming convention for program
and implementation modules is .MOD. Definition modules have the file extension .DEF.

Note: Most of the common word processors have program file modes which work with standard text
files.

33

Modula-2 TUTORIAL MODULA-2/86

Program Modules

A program module is the main module of a user program. A program consists of all the modules that
are referred to directly or indirectly by the main module. For program modules, the module code,
which is declared following the last 'BEGIN', constitutes the main program. After initialization of all
imported modules, the program will start there.

The examples in the following section are program modules. Program modules have the following
form:

MODULE <modulename>;
Import from the library modules to use, if any, in the form:
FROM <modulename> IMPORT

<list of identifiers separated by commas>;
or:
IMPORT <modulename>,'
Declaration of constants, types, variables and procedures.

BEGIN
Code of the main program.

END <modulename>.

The list of identifiers imported may contain the names of constants, types, variables and procedures
exported from a library module. These names must be separated by commas. Refer to Wirth's book
Programming in Modula-2 for a more detailed explanation of the module syntax.

Definition Modules

Definition modules are used to define the interfaces between modules. By separating the definition of
the interface between modules from the implementation of those modules, the implementations may
be modified without having to recompile the entire system. As programmers involved with large
systems know, recompiling the entire system can be a very time consuming process.

34

MODUIA-2/86 Modula-2 TUTORIAL

Definition modules have the following form:

DEFINITION MODULE <modulename>;
Import from the library modules to use, if any, in the form:
FROM <modulename>IMPORT

<list of names separated by commas>;
or:
IMPORT <modulename>;
EXPORT QUALIFIED

<list of names separated by commas>;
Declaration of constants, types, variables and procedures. Procedure declarations
consist of the procedure header only, including the parameter list.

END <modulename>.

Implementation Modules

Implementation modules contain the statements required to perform the functions defined in the
definition modules. They are similar in format to program modules except their module body does
not need to constitute a main program. Libraries are constructed from matching sets of definition
and implementation modules.

Implementation modules have the fol/owing form:
IMPLEMENTATION MODULE <modulename>;

BEGIN

Import from the library modules to use, if any, in the form:
FROM <modulename> IMPORT <list of names separated by commas>;
or:
IMPORT <modu!ename>;
Declaration of constants, types, variables and procedures. Procedure declarations
consist of the header and body, including the code of the procedure.

Module initialization code.
END <modulename>.

35

Modula-2 TUTORIAL MODUIA-2/86

The constants, types and variables declared in the corresponding definition module, must not be
repeated in the implementation. These names are known implicitly. However, for every procedure
specified in the definition part, a complete procedure, with matching name and parameter list, must
be contained in the implementation part.

Modula-2 is a language aimed at enhancing software production. The real advantage of using the
language is that it shortens development time. While the real time speed of a Pascal or Modula-2
compilers are important, we must look at the overall time involved in software production cycle. This
includes the time for software updates and alterations. With Pascal this often translates into a
significant additional programming effort. This extra effort ends up offsetting the benefit of short
Pascal compiling sessions. With Modula-2 such wasteful "domino effect" is minimized by using highly
independent module libraries.

The core of the Modula-2language is smaller than that of Pascal. This is due to the fact that
Modula-2 has no predefined I/O statements, math functions or string manipulation routines, to name
a few. Instead, they are all imported from a variety of library modules. In a sense, Modula-2 really
practices what it preaches!

There are two main sections to this tutorial. The first section will allow a Pascal programmer to write
a Modula-2 program or to convert a Pascal program to Modula-2. The second section explains the
concept of the module.

The following section will discuss the differences in syntax and construct between Pascal and Modula-
2 This should allow a programmer to convert Pascal programs or to write new ones in Modula-2.

36

MODULA-2/86 Modula-2 TUTORIAL

The First Steps From Pascal To Modula-2

To demonstrate some basic syntax differences between Pascal and Modula-2, consider the following
simple number-squaring program:

MODULE FirstDemo;

(* List o/imported procedures *)
FROM In Out IMPORT WriteString, WriteInt, ReadInt, WriteLn,·

VAR Number, Square: INTEGER,· (* Programs' identifiers *)

BEGIN
(* ---------- Input -------*)
WriteString("Type an integer "); ReadInt(Number),·
(* ------ Processing ------*)
Square := Number * Number;
(* ---------- Output ------*)
WriteString("Number = "),. WriteInt(Number,4); WriteLn;
WriteString("It's square = "); WriteInt(Square,6),·
WriteLn;

END FirstDemo.

The following are new concepts specific to Modula-2 and demonstrated in the previous example:

• Modula-2 programs start with the reserved word MODULE followed by a program name.
The same name appears after the very last END statement. The program name takes no
arguments.

• All identifiers are case sensitive in Modula-2. Thus changing the case of one letter in an
identifier's name is sufficient to create a new identifier name.

• Modula-2 reserved words are always in upper case letters.

• Comments are enclosed in (* and *). Modula-2 uses curly braces for sets, hence they do not
enclose comments as in Pascal. Modula-2 allows nested comments.

37

Modula-2 TUTORIAL MODULA-2/86

• All I/O procedures are imported from a library module, such as InOut in this case. Hence,
Pascal's multipurpose WRITELN is replaced with a series of output procedures. Each
outputs only one item. If you look for the InOut module in Programming in Modula-2, by
Niklaus Wirth, published by Springer Verlag, you will find that it exports many procedures.
In our example we chose to "import" the four required procedures only.

More Differences

Labels and GOTO statements are no longer supported by Modula-2. To translate Pascal programs
with labels or GOTO statements, you need to rewrite your Pascal program.

Constants are declared similar to Pascal. Modula-2 allows for constant expressions to be used
wherever a constant is expected. Integer constants now include hexadecimal and octal numbers.
Thus 1ZAFH represents a hexadecimal number, by appending an 'H'. Similarly, Z7B is an octal
number, ending with a 'B'. In addition, 27C represents the same octal number, but its type is CHAR.
Real constants are similar to those in Pascal. When expressed in scientific notation, only the
uppercase 'E' must be used. All real constants require a decimal point.

Character and string constants are similar to Pascal with an enhancement. Single or double quotes
may be used to delimit them. Thus, "Hello" and 'Hello' are both acceptable, but "Hello' is not. The
choice of delimiter may be dictated by the presence of a quote symbol as part of the string constant.
Thus "Don't" forces the use of double quotes, since a single one is part of the string. Similarly, 'They
have "some" children' must be delimited by single quotes.

Modula-Z defines the following basic data types: integer, boolean, characters, real, cardinal and
bit sets. The first three types are used identically as in Pascal. Using reals has the restriction that
prevents it from being mixed with integers and cardinals in an expression. Predefined type converter
functions must be used. Cardinals are unsigned integers with values ranging from zero to an upper,
machine-fixed limit. While cardinals and integers are assignment compatible, they too cannot be
directly mixed in an expression. The bitset type is a predeclared set type for low level data
manipulation.

Modula-Z supports sets with some syntax modifications. Set constants are enclosed in curly braces.
Set types are defined with SET OF <enumerated or sub range types>:

• CONST OctalNumSet = {1,Z,3,4,5,6,7,8};

• TYPE Binary = SET OF [0 .. 1];

38

MODUlA-2/86 Modula-2 TUTORIAL

Modula-2 implements a generous number of set operations, including the symmetric set differences.

Modula-2 supports enumerated types just like Pascal. Sub ranges are also similar, but Modula-2
requires them to be enclosed in square brackets. Why? This enables sub range types to be used in
defining array limits, as in:

TYPE SmallRange =
BigRange =
SmallArray =
BigArray=
HugeArray=
Table =
Matrix =

[1..10};
[1..100};
ARRAY SmallRange OF REAL;
ARRAY BigRange OF REAL;
ARRAY SmallRange, BigRange OF REAL;
ARRAY [1.. 10},[1 .. 100} OF REAL;
ARRAY [1.. 10, 1.. 10} OF REAL,' (* WRONG! *)

The above list also shows the difference between the two languages in declaring arrays. Modula-2
allows subrange types to be used. Moreover, multidimensional arrays must have the range of each
dimension separated by a comma. However, using multidimensional arrays in a program follows the
familiar Pascal notation.

Modula-2 regards character strings as merely an array of characters. In normal practices the ASCII
null (zero code) is used as a string terminator. However, it is possible to use slightly more elaborate
record structures to implement strings. String manipulation depends on library modules. The
standard string library offers the essential operations and treats strings as an array of characters.

Fixed records are no different in Modula-2 than in Pascal. Variant records have been extended to
allow for more than one variant field. In addition, the latter may have an ELSE clause option.

39

Modula-2 TUTORIAL MODULA-2/86

Consider the following example:

CHAR,'

40

TYPE Material = (Element, Compound);
State = (Liquid, Gas, Solid),'

Chemical Pointer = POINTER TO Chemical;

Chemical = RECORD
Name: ARRAY [1..40] OF CHAR;
Formula: ARRAY [1 .. 20] OF CHAR;
CASE MaterialType : Material OF

END,'

Element: AtomicNumber : CARDINAL,'
Valence: INTEGER;
AtomicWeight: REAL I

Compound:Molecularweight:REAL,'
Cation Charge,
AnionCharge:INTEGER,'
CationName,
AnionName:ARRAY [1 .. 15] OF

CASE NormalPhysicalState:State OF
Liquid:LiquidDensity,BoilingPoint: REAL I
Gas :VaporPressure, VaporTemp : REAL I
Solid :SpecijicGravity, MeltingPoint:REAL,'

END;

MODULA-2/86 Modula-2 TUTORIAL

Dynamic records can be created and accessed using pointers. Their declaration is a bit more verbose.
using the keywords POINTER TO. as in:

MODULE Pointer Demo,'
(* Partial listing *)
TYPE CardPtr = POINTER TO CARDINAL,'

ComplexPtr = POINTER TO Complex;
Complex = RECORD

Re, Imag " REAL;
END,'

V AR CPtr,' ComplexPtr;
(* Other variables declared here *)

BEGIN
New(CPtr); (* Create new dynamic record *)
(* Initialize to square root of minus one *)
CPtrA.Re,'= 0.0; CptrA.Imag,'= 1.0;
(* rest of the program *)

END PointerDemo.

41

Modula-2 TUTORIAL MODUIA-2/86

As shown above, pointers are used with the carat symbol. The WITH keyword is also used in
Modula-2 to reference a record's field name without the record-name-dot notation. A mandatory
END is required. Modula-2 allows one record identifier per WITH statement. There is no need for
the BEGIN keyword after the DO reserved word.

Creating dynamic variables with variant record structures uses the predefined NEW procedure and
includes variant tags as additional arguments. Recalling the variant record Chemical, and its real ted
pointer type ChemicalPointer, we proceed to define the following pointer-typed variables:

V AR Iron, Water, Oxygen: ChemicalPointer;

and create dynamic variables using the above pointers:

(* Iron is an element and a solid at normal conditions *)
NEW(Iron,Element,Solid) ;
(* Water is a compound and a liquid at normal conditions *)
NEW(Water,Compound,Liquid);
(* Oxygen is an element and a gas at normal conditions *)
NEW(Oxygen,Element, Gas);

Since I/O operations are no longer part of the core Modula-2 language, the predefined Pascal FILE
OF <type> has no equivalent. Instead, File structures depend on the I/O library module used.

Modula-2 variable declaration is identical to that in Pascal with one additional feature. An absolute
address, enclosed in square brackets, may follow the variable name. For example:

VAR Screen[B800H:OH} : ARRAY [l .. MAXCOL},[l..MAXROW] OF CHAR;

Modula-2 has simplified the syntax of statement blocks. In Pascal loops or WITH statements, if the
DO reserved word was followed by BEGIN, there is a compound statement. Modula-2 has dropped
the BEGIN keyword after DO and replaced it with a mandatory END to close the loop or WITH
body.

42

MODUlA-2/86 Modula-2 TUTORIAL

The IF statement is very similar to that in Pascal with the following changes:

• No need for BEGIN-END in THEN or ELSE clauses that have more than one statement.

• The IF construct must close with the END statement.

• The Pascal ELSEIF is now ELSIF, one letter shorter.

The above changes are shown in the following function to calculate your checking account balance.
For less than $500, a local bank charges you with a $5.00 service charge. For under $1500, you get
5.4% interest rate. Beyond that amount, you get a 9.4% rate.

PROCEDURE BankOnIt(Savings : REAL) : REAL;

V AR BankCharges, Interest: REAL;

BEGIN
BankCharges:= 0.0,'
IF Savings < 500. THEN

(* Apply a five dollar service charge *)
BankCharges := 5.00;
Interest := 5.4 (* percent *)

ELSIF Savings < 1500. THEN
(* same rate as above, but no charges *)
Interest := 5.4

ELSE (* Very nice account *)
Interest := 9.5;

END,' (* IF statement *)
RETURN (Savings * (1. + Interest/100.) - BankCharges),'

END BankOnIt;

The CASE statement has also been enhanced in Modula-2. A much needed catch-all ELSE clause is
recognized. Statement sequences for each case are simply separated by vertical bars. The BEGIN­
END keywords are no longer needed for compound statements. Here is an example of using the
CASE statement to translate numeric school grades into letters:

43

Modula-2 TUTORIAL

CASE NumericGrade OF
90 .. 100 : Grade := 'A';

Message := 'Very Nice work champ!' I
80 .. 89 : Grade:= 'B',·

Message:= 'Nice work'i
70 .. 79 : Grade := 'e';

Message:= 'OK. but you can do better'
ELSE Grade := 'F',·

Message := 'Sony, you failed',·
END,· (* CASE NumericGrade *)

MODULA-2/86

Modula-2 has improved on loops where needed. The REPEAT-UNTIL loop is identical to its
implementation in Pascal. The WHILE-DO loop now requires a mandatory END statement to
bracket the loop. This is regardless of the number of statements inside the loop. No BEGIN keyword
is required after the DO. The FOR-DO loop has undergone even more changes. Like the above
WHILE loop, it must have an END statement. Modula-2 allows the loop counter to
increment/decrement by more than one, using the "BY" clause. These "steps" can be positive or
negative. Appropriately, Modula-2 no longer supports the Pascal DOWNTO keyword. Here is a
short program demonstrating the FOR-DO loop in its new construct.

44

MODULA-2/86

MODULE AreaUnderCurve,·
(* Program to calculate area under curve Y = X*X between *)
(* zero and one. Simpson's rule is used. *)
FROM In Out IMPORT WriteString, WriteLn;
FROM RealInOut IMPORT WriteReal,·

VAR Y: ARRAY [1..11J OF REAL;
Increment, Area, SumEven, Sum Odd : REAL;
i:CARDINAL

BEGIN
Increment := 0.1,·
i:= 1
WHILE i <= 11 DO (* Initialize Yan'ay *)

Y[iJ := Increment * FLOAT(i) * FLOAT(i);
INC(i) (* Increment i by one *);

END:
(* Initialize summations *)
SumEven:= 0.0,· Sum Odd := 0.0;
(* Start loop for summing even terms *)
FOR i :=2 TO 10 BY2 DO

SumEven:= Sumeven + Y[iJ,·
END;
(* Start loop for summing odd terms, counting back *)
FOR i := 9 TO 1 BY -2 DO

SumOdd := SumOdd + Y[iJ,·
END;
Area := Increment / 3.0 *

(Y{lJ + 4.0*SumEven + 2.0*SumOdd + Y[l1]),·
WriteString("Area for X'2 between 0 and 1 = H),.
WriteReal(Area,14); WriteLn;

END AreaUnderCurve.

Modula-2 TUTORIAL

Modula-2 introduces a new loop construct, the open loop. The keywords LOOP and END define the
open loop body. To exit such a loop an EXIT statement is used. The open loop is very flexible. An if
statement with EXIT placed right after the LOOP keyword gives the effect of a WHILE loop, as in:

45

Modula-2 TUTORIAL

i := O;j := 0; i:= O;j := 0;
WHILE i < 10 DO LOOP

INC(i),'
INC(j,i);

END,'

IF i >= 10 THEN EXIT,' END;
INC(i),'
INC(j,i) (* j := j + i *),'

END,'

MODULA-2/86

Similarly, placing the loop exit test just before the end of the loop simulates the REPEAT-UNTIL
loop.

i:=O;j:=O
REPEAT

INC(i);
INC(j,i),'

UNTIL i = 10,'

i := 0,' j := 0,'
LOOP

INC(i);
INC(j,i);

IF i = 10 THEN EXIT,' END,'
END,'

The loop exit test can be anywhere inside the loop body, as shown in the following example. The
program calculates the Bessel function of the first kind.

46

MODUIA·2/86

MODULE BesselFunction;

FROM In Out IMPORT WriteString, WriteLn, ReadCard;
FROM RealInOut IMPORT WriteReal, ReadReal;

CONST Epsilon = 1.0E-08;

V AR Sum, Term, X, Y,
Factorl, Factor2, Factor3, PowerTerm: REAL;
Order, i: CARDINAL;

BEGIN
WriteString(''Enter order of Bessel junction '1;
ReadCard(Order),' WriteLn;
WriteString("Enter argument H);
WriteReal(X); WriteLn;
Sum:= 0.0; i:= 0;
Y:= -0.25 * X * X,'
Factorl := 1.0; Factor2:= 1.0;
Factor3:= 1.0; PowerTerm:= 1.0;
IF Order> 0 THEN

FOR i := 1 TO Order DO
Factor3 := Factor3 * FLOAT(i);
PowerTerm := PowerTerm * X /2.0;

END;
END;

Modula·2 TUTORIAL

47

Modula-2 TUTORIAL

i:= 0; (* Initialize counter *)
LOOP

Term :=Factorl / Factor2 / Factor3;
Sum := Sum + Term;
(* Is added term insignificant? *)
IF ABS(Term) < Epsilon THEN EXIT; END,'
INC(i);
Factorl := Factorl * Y;
Factor2 := Factor2 * FLOAT(i),'
Factor3 := Factor3 * FLOAT(i);

END,'
(* Program flow resumes here after EXIT *)
Sum := Sum * PowerTerm; (* Last calculation *)
WriteString("Bessel Function = H);
WriteReal(Sum,14); WriteLn; WriteLn;

END BesseiFunction.

MODUIA-2/86

Each EXIT statement resumes program flow after the exited loop body. Therefore, to exit nested
open loops one needs as many exit statements as there are loops.

Functions and Procedures

Modula-2 considers a function as merely a procedure returning a value. Thus, the keyword
FUNCTION has been dropped and replaced with PROCEDURE. The other change implements a
RETURN statement that exits the function and returns the sought value. If there are any statements
after the RETURN, they will not be executed. Modula-2 functions only return basic types and
pointers.

Consider the following examples of a function to calculate the square root of a real number, using
Newton's iterative method.

48

MODULA-2/86

PROCEDURE SquareRoot(X.' REAL) .' REAL;

CONST Epsilon = 1.0E-08; (* Tolerance factor *)

VARY.' REAL,· (* Local storage for square root oil)

BEGIN
Y.'= X /2.,· (* Initial guess for square root oil)
REPEAT (* Improve guess by Newton's iterations *)

Y = (y + X / Y) /2.,·
UNTILABS(y*Y - X) < Epsilon;
RETURNY (* back to caller *);

END SquareRoot;

Modula-2 TUTORIAL

An additional difference between the two languages, is that Modula-2 requires all procedures and
functions to include their names after the last END in the subprogram.

Like Pascal, Modula-2 allows parameter passing by value or by reference (using VAR declaration).
The latter makes it possible to simulate a function that returns structured data types. Modula-2 has
implemented an important new feature in parameter passing -- open arrays. This enables procedures
(and functions) to tackle arrays of consistent type, but varying in size. This makes it easier to write
general purpose routines in Modula-2. Open arrays are limited to one dimensional arrays. They are
declared in an argument list as ARRAY OF <type>, with no dimension limits. Inside the procedure
body the dimension bounds are mapped onto [O .. <array size -1>]. Modula-2 provides the predefined
HIGHO function to return the upper bound value for an open array. Thus an open array is mapped
onto [O .. HIGH«Open array name»].

The following is an example for a routine to calculate the mean value of an array of reals.

49

Modula-2 TUTORIAL

PROCEDURE Mean (X : ARRAY OF REAL) : REAL;

V AR i: CARDINAL;
Sum:REAL,·

BEGIN
Sum := 0.,· (Initialize sum *)
FOR i := 0 TO HIGH(X) DO

Sum := Sum + X[i];
END;
RETURN Sum / FLOAT(HIGH(X) + 1),·

END Mean,·

MODULA-2/86

Function Mean is able to handle arrays of varying sizes. The number of elements in the passed array
X is (HIGH(X) + 1). The example assumes that the entire array X is filled with data.

Procedural and functional types are supported in Modula-2. The following example demonstrates the
first type. The program below reads an array of cardinals from a file and sorts them. The sorting
routines are imported. The program examines the list size and depending on its value employs the
appropriate sorting method. For small arrays, the bubble sort is used. For medium arrays the Shell
sort is called upon. QuickSort is reserved for large arrays. To demonstrate the procedur<\l type, the
program defines SortProc. It is a procedure taking two arguments: an array of cardinal and a scalar
type cardinal. The variable SortMethod is of SortProc type. In the IF statement we assign either
imported sorting procedure to SortMethod. Notice that the assignment does not involve any
procedural arguments. Following the IF statement is a call to SortMethod with a complete argument
list. The call will execute the assigned procedure (BubbleSort, ShellSort or QuickSort). Here is the
program:

50

MODULA-2/86

MODULE Sort;

FROM In Out IMPORT WriteString, ReadString,
WriteCard, WriteLn,·

(* Modules Fi/eIO and CardinalSortLib are fictitious *)
FROM MyFileIO IMPORT TextFile, EOF,

Assign, Reset, ReadCardina~ Close;
FROM CardinalSortLib IMPORT ShellSort, QuickSort,

BubbleSort;

(* Define a procedure type with an array of cardinals *)
(* and a scalar cardinal as arguments. *)
(* Imported sorting procedures must have same arguments *)

Modula-2 TUTORIAL

TYPE SortProc = PROCEDURE(VAR ARRAY OF CARDINAL; CARDINAL);

VAR Cardinal List : ARRAY [1..5000J OF CARDINAL,·
Num, i: CARDINAL,·
Filename: ARRAY [1..14J OF CHAR,·
F: TextFile
SortMethod: SortProc,·

51

Modula-2 TUTORIAL

BEGIN
WriteString("Enter data filename ");
ReadString(Filename)
Assign (TextFile,Filename); Reset(F)
Num:=O;
WHILE NOT EOF(F) DO
INC(Num);
ReadCardinal(F, CardinaIList[Num]);

END,'
Close(F),'
IF Num <= 30 THEN (* Small list, use bubble sort *)
Sort Method := BubbleSort (* No arguments *)

ELSIF Num <= 150 THEN (* Medium list => Shell sort *)
SortMethod := ShellSort (* No arguments *)

ELSE (* QuickSort used/or large an-ay *)
Sort Method := QuickSort (* No arguments *);

END;

SortMethod(CardinaIList, Num),' (* Sort list *)

FOR i := 1 TO Num DO (* Display sorted list *)
WriteCard(i,5),'
WriteString(' ');
WriteCard(CardinaIList[ij,6),' WriteLn,'

END;

END Sort,

MODUlA-2/86

Modula-2 provides PROC, a predefined parameterless procedure type. This is useful in creating
coroutines, which are discussed later.

Modula-2 provides a number of predefined functions and procedures. They are listed in Wirth's
book, Programming in Modula-2.

52

MODUIA-2/86 Modula-2 TUTORIAL

USE OF MODULES

User Definable Modules

Modula-2 implements library modules to benefit software productivity. This affects both the
individual programmer and a team of programmers working on a big project. One of the advantages
of library modules is that they minimize side effects between modules written by different
programmers or written at different times. This reduces debugging greatly and significantly improves
on software maintainability.

The virtue of modules stems from the fact that inter-module communication is spelled out and is not
ambiguous. This is done by specifying the objects exported and imported. As we have seen in
previous Modula-2 programs, there are invariably lists of imports. Each specifies the module from
which to import and the specific procedures imported. If the reader looks at the definition module
of, for example, module InOut, he will find all the imported items defined in that module (i.e. marked
for export). Modul1l-2 works on the principle that you can obtain an item only if it is made available
to you.

In Modula-2 a library module is made up of two parts: the definition and the implementation
modules. The definition module is regarded as the interface with client modules. All exported objects
are catalogued there. This includes constants, data types, variables and procedures. The
implementation module has all the detailed exported procedure code and additional local constants,
data types, variables and procedures. Optional module initialization code lines may be included.
Each of the definition and implementation modules are compiled separately. The programmer may
"improve" on the implementation module by replacing old algorithms with more efficient ones. As
long as the exported objects are not altered, we only need to recompile the implementation module.

Consider the following example to demonstrate some of the above points. We present a small library
module to create and add complex numbers. The definition module is:

53

Modula-2 TUTORIAL

DEFINITION MODULE ComplexOps;

EXPORT QUALIFIED
Complex, (* Type *)
MakeComplex, AddComplex,' (* Procedures *)

TYPE Complex = RECORD Rea~ Imaginary,' REAL,' END,'

(* Only procedure headings are needed *)

PROCEDURE MakeComplex(J(, Y,' REAL; (* Input *)
VAR C,' Complex (* Output *»

(* Procedure to create a complex number from X & Y *)
(* components. *)

PROCEDUREAddComplex(A, B,' Complex,' (* Input *)
VAR C,' Complex (* Output *»;

(* Procedure to add complex numbers A & B to give C *),.

END ComplexOps.

MODULA-2/86

The definition module ComplexOps exports the "transparent" type Complex. The terminology refers
to types whose definition is made available to client modules. Modula-2 also allows the export of
"opaque" types, where the data type definition is not revealed. We will discuss this in more detail
later. For now, it is enough to say that there is the following difference between transparent and
opaque types: the ability of the client modules to have their own procedures (possibly available for
export) to manipulate the transparent types only. This privilege is denied with opaque types. Thus
clients modules of ComplexOps can develop and export procedure to subtract, divide and multiply
complex numbers. Their access to the components of type Complex makes it possible.

In general, definition modules need only the heading of the exported procedures, and the definition
module ComplexOps is no exception. In practice, the definition module should be the first one
written to set the module specification. In large software projects this is the appropriate thing to do.

54

MODULA-2/86

The implementation module is:

IMPLEMENTATION MODULE ComplexOps;

('" Type Complex has been defined in the definition module "')

PROCEDURE MakeComplex(X, Y: REAL; ('" Input "')
VAR C: Complex ('" Output "'»

('" Procedure to create a complex number from X & Y *)
(* components. *)
BEGIN

C.Real := x,'
C.Imaginary := Y,'

END MakeComp/ex;

PROCEDURE AddComplex(A, B : Complex; (* Input *)
VAR C: Complex (* Output *»;

(* Procedure to add complex numbers A & B to give C *)
BEGIN

C.Real := A.Real + B.Real,·
C.Imaginary := A.Imaginary + B.Imaginary,·

END AddComplex,'

END ComplexOps.

Modula-2 TUTORIAL

The implementation module does not contain the definition of type Complex. Since it is exported,
the compiler is already aware of it through the definition module. The exported procedures are listed
in the module. Imported objects are placed in either the definition or implementation module. If
there are imported data objects that are included in the definition module, the import list is located
in the latter module. Otherwise, import lists are located in the implementation module. Local
constants, data types, variables and procedures are of course included in the implementation module.

55

Modula-2 TUTORIAL MODUlA-2/86

We spoke earlier of the ability to change and improve the code in the implementation module. In
certain cases this may require that exported transparent data types be modified. This poses a
problem since transparent types give library module developers little or no control over how client
modules use them. Most likely the sought improvement may be hindered because of potential data
type incompatibility between the old and new structures. A new sister module is created. However
this solution is not always a sound way to go.

While the above discussion refers to a rather specific case, it also points to a broader programming
aspect: full control over exported data types. Modula-2 has met this need by allowing opaque
exported types. In this case the definition module lists the name of the opaque type only. No type
structure is defined there. Instead, it is located in the implementation module. With the details about
the structure denied to client modules, the exporting module has the monopoly on procedures that
manipulate opaque types. Thus, with full control over opaque types comes the responsibility to
export every procedure needed to process the data types in question. Care in planning ahead must be
exercised.

Let us return to our complex number addition module. Complex numbers may be represented by
two dimensional rectangular coordinates (X,Y). Alternatively, the same (X,Y) point can be replaced
by polar coordinates: a modulus and an angle. While the two systems are equivalent, their
components represent different physical entities. It is possible to develop a library of complex
operations using rectangular coordinates and later change the implementation module to use polar
ones. Using an opaque complex type, the above transition is a smooth one.

Below is the new definition module for ComplexOps. Notice that the exported type Complex has no
structure definition associated with it.

DEFINITION MODULE ComplexOps,'

EXPORT QUALIFIED
Complex, (* Type *)
MakeComplex, AddComplex,' (* Procedures *)

TYPE Complex,' (* Is now opaque *)

(* Only procedure headings are needed *)

56

MODULA-2/86

PROCEDURE MakeComplex(X. Y: REAL; (* Input *)
VAR C: Complex (* Output *))

(* Procedure to create a complex number from X & Y *)
(* components. *)

PROCEDUREAddComplex(A, B: Complex,· (* Input *)
VAR C: Complex (* Output *));

(* Procedure to add complex numbers A & B to give C *);

END ComplexOps.

Modula-2 TUTORIAL

The implementation module is similar to the previous version. Within it the Complex type is now
fully defined. The fields of the type Complex have been renamed to remind the reader that
rectangular coordinates are used to represent complex numbers. Notice that opaque types must be
pointer to other structures. This is a mandatory requirement in Modula-2.

IMPLEMENTATION MODULE ComplexOps,·

(* Type Complex uses rectangular coordinates *)

TYPE Complex = POINTER TO RECORD
XCoord, YCoord: REAL,·

END;

PROCEDURE MakeComplex(X. Y: REAL; (* Input *)
VAR C: Complex (* Output *»

(* Procedure to create a complex number from X & Y *)
(* components. *)
BEGIN

NEW(C);
C' .xCoord := x..
C". YCoord := Y,.

END MakeComplex;

57

Modula-2 TUTORIAL

PROCEDURE AddComplex(A, B: Complex; (* Input *)
VAR C: Complex (* Output *)),.

(* Procedure to add complex numbers A & B to give C *)
BEGIN

C" XCoord :=A" XCoord + B" XCoord,'
C". YCoord :=A". YCoord + B". YCoord;

END AddComplex;

END ComplexOps.

Below is the implementation module version that uses polar coordinates:

IMPLEMENTATION MODULE ComplexOps;

FROM MathLibO IMPORT sqrt, arctan, sin, cos,'

(* 'JYpe Complex uses polar coordinates *)

58

TYPE Complex = POINTER TO RECORD
Modulus, Angle: REAL,'

END;

PROCEDURE MakeComplex(X, Y: REAL,' (* Input *)
VAR C: Complex (* Output *))

(* Procedure to create a complex number from X & Y *)
(* components. *)
BEGIN

NEW(C),'
C".Modulus := sqrt(X * X + Y * r),'
C" .Angle := arctan(Y / X),'

END MakeComplex;

MODULA-2/86

MODUIA-2/86 Modula-2 TUTORIAL

PROCEDUREAddComplex(A, B: Complex; (* Input *)
VAR C: Complex (* Output *)),'

(* Procedure to add complex numbers A & B to give C *)

VARX; Y: REAL;

BEGIN
X :=A"'.Modulus * cos (A " Angle) + B".Modulus * cos(B" Angle),'
Y := A ".Modulus * sin(A "Angle) + B"'.Modulus * sin(B" Angle);
MakeComplex(X; Y, C),'

END AddComplex,'

END ComplexOps.

The following changes took place:

• Four required mathematical functions are imported from MathLibO.
• The Complex type is defined using the Modulus and Angle fields.
• The body of the two module procedures has been significantly changed.
• Procedure AddComplex now calls procedure MakeComplex.

It is worthwhile pointing out that procedure MakeComplex in the very first implementation seemed
an extravagant export. After all, given the definition of Complex, client programs can assign values to
the record fields effortlessly. The situation is quite the reverse with the opaque Complex. Client
modules now really need procedure MakeComplex, since they have no idea about its internal
structure. The rectangular and polar versions demonstrate this point.

Importing Procedures with Identical Names

With the incentive to develop library modules it is inevitable that the same procedure names appear
in more than one module. How do we resolve the conflict due to importing two identically named
routines? It is possible to omit the import list, thus importing the entire library. To use the imported
routine we use the same notation as with referencing fields of record structures. With the module
name constantly referenced, the compiler is able to distinguish which procedure we are calling.
Moreover, the program readability will enjoy the clarity too. Consider the following example.

59

Modula-2 TUTORIAL

MODULE ImportAllDemo

IMPORT InOut;
IMPORT MyFileIO,'

V AR Filename: ARRAY [1 .. 14J OF CHAR,'
F : MyFileIO. TextFile; (* Imported type *)
Message: ARRAY [1..80J OF CHAR;
NumLines: CARDINAL,'

BEGIN,'
InOut. WriteString("Enter file name "),'
InOut.ReadString(Filename); In Out. WriteLn;
REPEAT

InOut. WriteString("Enter number of lines "),'
InOut.ReadCard(NumLines),· In Out. WriteLn;

UNTIL NumLines > 0;

MyFileIO.Assign(F,Filename);
MyFileIO.Reset(F);
InOut. WriteString("Enter text "); In Out. WriteLn;
REPEAT

InOut.ReadString(Message),·
MyFileIO. WriteString(F,Message);
DEC(NumLines);

UNTIL NumLines = 0;
MyFileIO. Close(F);

END ImportAllDemo.

MODULA-2/86

In the above example we can distinguish for each call to procedure WriteString whether it is imported
from modules InOut or MyFileIO.

60

MODULA-2/86 Modula-2 TUTORIAL

Standard library Modules

Modula-2I86 comes with a variety of versatile library modules. They supply users' programs with a
wide gamut of capabilities. This includes string manipulation, file IJO, disk directory access, data
conversions, mathematical functions, DOS and low level access, coroutines, just to name a few. Many
of the above routines are part of Pascal, but not Modula-2. Thus Modula-2 depends heavily on a
core or fundamental library modules. The reader is referred to other parts of the manual where the
definition modules are discussed.

There are three small but very important modules -- SYSTEM, Storage and Processes. We will
discuss these modules because they export low level and process management routines.

The module Storage tackles the allocation and deallocation of dynamic variables. The ALLOCATE
and DEALLOCATE procedures are defined as:

PROCEDURE ALLOCATE(VAR a " ADDRESS; size,' CARDINAL)
PROCEDURE DEALLOCATE(VAR a,' ADDRESS; size,' CARDINAL)

where ADDRESS is a pointer to a memory location imported from module SYSTEM. These are
equivalent to calling the NEW and DISPOSE procedures used for the same purpose. The following
demonstrates how the two sets of procedures work identically. Let us define the following data types
and variable.

TYPE Ptr = POINTER TO Element,'
Element = RECORD

Volume, Weight,' REAL,'
Name,' ARRAY [1 .. 80J OF CHAR,'

END;

V AR Indicator,' Ptr,'

61

Modula-2 TUTORIAL MODULA-2/86

Calling NEW(Indicator) and ALLOCAlE(Indicator, TSIZE(Element» yield the same result:
creating a dynamic variable accessed through the pointer Indicator. TSIZEO is a function imported
from module SYSlEM that returns the size of any data type. Similarly, DISPOSE(Indicator) and
DEALLOCAlE(Indicator, TSIZE(Element» both undo the effect of the above procedures.

Let us demonstrate the use of the ALLOCAlE and DEALLOCATE procedures in developing a
short dynamic string library module.

62

DEFINITION MODULE DynamicString,·

EXPORT QUALIFIED STRING, NewString, RemoveString,
AssignString, Length,·

TYPE STRING,· ('" Opaque type "')

PROCEDURE NewString(VAR S : STRING,· ('" Output "')
Max Length : CARDINAL ('" Input "'»,.

('" Create a dynamic string "')

PROCEDURE RemoveString(VAR S: STRING,· ('" Input "'»,.
('" Remove a dynamic string "')

PROCEDUREAssignString(VAR S: STRING,· ('" Output "')
A: ARRAY OF CHAR ('" Input "'»

('" assign an array of characters to a STRING "')

PROCEDURE Length(S : STRING) : CARDINAL,·
('" Function to retum string length "');

END DynamicString.

MODULA-2/86

The implementation module is:

IMPLEMENTATION MODULE DynamicString

FROM SYSTEM IMPORT ADDRESS, TSIZE,·
FROM Storage IMPORT ALLOCATE, DEALLOCATE,·

TYPE STRING = POINTER TO RECORD
Long,
MaxLong: CARDINAL,·
Element: ADDRESS,·

END;

PROCEDURE NewString(V AR S : STRING,· (* Output *)
. MaxLength: CARDINAL (* Input *»;

(* Create a dynamic string *)

BEGIN
NEW(S);
WITHSDO

Long:= 0;
MaxLong := MaxLength;
ALLOCATE(Element, + MaxLong),·

END,·
END NewString;

PROCEDURE RemoveString(VAR S : STRING; (* Input *»;
(* Remove a dynamic string *)

BEGIN
WITHSDO

DEALLOCATE(Element, + MaxLong),·
END;
DISPOSE(S);

END RemoveString;

Modula-2 TUTORIAL

63

Modula-2 TUTORIAL

PROCEDUREAssignString(VAR S.' STRING; (* Output *)
A.' ARRAY OF CHAR (* Input *»

(* assign an a"ay of characters to a STRING *)

VAR Ptr.' POINTER TO CHAR;

BEGIN
IF A[O] <> OC THEN

i.'= 0;
WHILE (i <= HIGH(A» AND (A[i] <> OC) DO

Ptr .'=SA.Element + i * TSIZE(CHAR);
PtrA .'=A[i],·
INC(i);

END;
SA. Long .'= i + 1;

ELSE
SA. Long .'= 0 (* Empty string *);

END,'
END AssignString;

PROCEDURE Length(S .' STRING) .' CARDINAL;
(* Function to retum string length *)

BEGIN
RETURN SA.Long,·

END Length,'

END DynamicString.

MODULA-2/86

The next module we examine is SYSTEM. It exports three data types: WORD, ADDRESS and
PROCESS. The type WORD corresponds to one hardware storage unit. For example, the types
CARDINAL and INTEGER use one WORD of storage. The type ADDRESS is defined as
POINTER TO WORD. The type PROCESS is used in declaring coroutines.

64

MODULA-2/86 Modula-2 TUTORIAL

The type WORD opens the door for some data conversion and the creation of general purpose
(generic) routines. Recall that Modula-2 routines accept open arrays of any type in their argument
lists. The ARRAY OF WORD is no exception and is compatible with any type, scalar or otherwise.

In the first example of using WORD we demonstrate the compatibility between CARDINAL and
INTEGER. Each type occupies one WORD of storage, a key feature in the example. The following
procedure searches an array of either types. The index of the matched element is returned. A
boolean flag is used to indicate whether the returned value reflects a successful search. We assume
that the array values are in the range [0 .. 32767], the common value range for integers and cardinals.

PROCEDURE SearchArray(A " ARRAY OF WORD,' (* Input *)
S,' WORD (* Input *)
VAR Found,' BOOLEAN (* Output *)) " CARDINAL;

V AR i, SoughtValue " CARDINAL,'

BEGIN
Found ,'= FALSE; (* Default outcome *)
i ,'= 0,' (* Zero search index *)
SoughtValue ,'= CARDINAL(S);
WHILE (i <= HIGH(A)) AND (NOT Found) DO

IF CARDINAL(A[iJ) = SoughtValue THEN (* Found it! *)
Found ,'= TRUE

ELSE (* Next element? *)
INC(i),'

END;
END; (* WHILE *)
RETURNi;

END SearchArray;

Using ARRAY OF WORD to create generic modules is more elaborate when handling multi-word
data structures. Since the processed object size varies, we must supply a single "sample" type in the
generic procedure argument list. The above sample type is used as a template to determine the type
size and provide local scalar variables. Another set of needed parameters is the user-supplied
operations, such as comparisons, performed on the data objects. This is supplied in the form of
procedural or functional parameters.

65

Modula-2 TUTORIAL MODUIA-2/86

Let us present a simple procedure to perform a generic linear list search on an array:

PROCEDURE GenericLookUp(VAR SearcMrray: ARRAY OF WORD;
SampleScalarType,

66

Search Value : ARRAY OF WORD;
IsItEqual : SuppliedPROC,·
VAR Found: BOOLEAN) : CARDINAL,·

VARNum, TYpeSize, Searchlndex: CARDINAL,·

PROCEDURE GetElement(Index: CARDINAL,·
V AR Object: ARRAY OF WORD);

(* Procedure to extract one object *)
VAR i: CARDINAL,·

BEGIN
FOR i := 0 TO TYpeSize-1 DO

Object[i] := SearcMrray[(Index*TYpeSize + i);
END;

END GetElement,·

BEGIN
TYpeSize := HIGH(SampleScalarTYpe) + 1;
Num:= (HIGH(SearcMrray) + 1) DWTYpeSize;
Searchlndex := 0;
Found := FALSE;
WHILE (Searchlndex < Num) AND (NOT Found) DO

GetElement(Searchlndex, SampleScalarTYpe),·
IF IsItEqual(SampleScalarType, SearchValue) THEN

Found:= TRUE
ELSE

INC(Searchlndex);
END,·

END,·
RETURN Searchlndex,·

END GenericLookUp;

MODUIA-2/86 Modula-2 TUTORIAL

In the above example we supply an array of objects via SearchArray. The SearchValue and
SampleScalarType variables supply the searched value and an additional internally needed copy of the
single object. The local procedure GetElement is used to extract a member of the search array and
save it into SampleScalarType. The user-supplied function IsItEqual is used in comparing the search
value with an array element.

Below is a sample for the IsItEqual function dealing with date records. Local pointers are used to
access the record structure in question. Once the pointer addresses are assigned, the RETURN
statement supplies the logical result for the two-field test.

PROCEDURE IsItEqual(Elementl,
Element2: ARRAY OF WORD) : BOOLEAN,'

V AR Ptr 1, Ptr2 : POINTER TO RECORD

BEGIN

DayNumber, MonthNumber: CARDINAL;
END,'

(* Get pointers addresses *)
Ptr 1 := ADR(Elementl);
Ptr2 :=ADR(Element2),'
RETURN ((Ptr r.DayNumber = Ptr2A.DayNumber) AND

(Ptr r.MonthNumber = Ptr2A.MonthNumber»,·
END IsItEqual;

Module SYSTEM has three address related functions. ADR(Z) returns the address of identifier Z.
Functions SIZE and TSIZE return the sizes of a variable and data type, respectively.

The rest of the exported routines tackle concurrency. Consider the following simple example. It
continuously displays the messages "In Coroutine <n>", where <n> follows the sequence [1,2,3].

67

Modula-2 TUTORIAL

MODULE ConcurrentDemo,·

FROM In Out IMPORT WriteString, WriteLn;
FROM SYSTEM IMPORT WORD, PROCESS, ADR, SIZE, NEWPROCESS,

TRANSFER;

VAR main, Coroutine I, Coroutine2, Coroutine3: PROCESS,·
WorkSpaceI, WorkSpace2,
WorkSpace3 : ARRAY [1 .. 200J OF WORD; (* Workspace *)

PROCEDURE MessageI,·
BEGIN

LOOP
WriteString("In Coroutine # 1");
WriteLn;
TRANSFER(CoroutineI, Coroutine2);

END,·
END MessageI,·

68

PROCEDURE Message2;
BEGIN

LOOP
WriteString("In Coroutine # 2");
WriteLn;
TRANSFER(Coroutine2, Coroutine3);

END,·
END Message2;

PROCEDURE Message3,·
BEGIN

LOOP
WriteString("In Coroutine # 3"),·
WriteLn;
TRANSFER(Coroutine3, Coroutine I),·

END;
END Message3,·

MODULA-2/86

MODUIA-2/86 Modula-2 TUTORIAL

BEGIN (* main *)
(* Create the new Coroutines *)
NEWPROCESS(Message1, ADR(WorkSpace1),

SIZE(WorkSpace1), Coroutine1);
NEWPROCESS(Message2, ADR(WorkSpace2),

SIZE(WorkSpace2), Coroutine2),'
NEWPROCESS(Message3, ADR(WorkSpace3),

SIZE(WorkSpace3), Coroutine3),.
TRANSFER(main, Coroutine 1),'

END ConcunYmtDemo.

The above program shows that each coroutine is created using the NEWPROCESS procedure taking
the following arguments:

• Parameterless procedure name. The procedure must be at the top level in the module and
not nested within another routine.

• The address of a coroutine workspace (for stacks and other items).

• Size of the workspace.

• A PROCESS typed variable to be associated with the coroutine name.

Our example uses three variables, each 200 WORDS long, to reserve the needed workspaces. An
alternate route is to dynamically allocate the workspace sizes.

The coroutine example also shows how coroutines are activated. The TRANSFER procedure is used
to request the activation of a new coroutine while suspending the old one. When ConcurrentDemo
first runs, the three coroutines are created. Next, the main section transfers the attention of the CPU
to the first coroutine and suspends itself. An infinite sequence of tasks begins. Each coroutine
displays a message and transfer CPU control to another coroutine, and so on. Coroutine procedures
are parameterless, as stated earlier, and contain their code inside an infinite open loop.

69

Modula-2 TUTORIAL MODUlA-2/86

IOTRANSFER is another procedure exported by SYSTEM and works similar to TRANFER. It is
oriented towards tackling device interrupts. Since these interrupts take place beyond the program's
control, there must be an automatic way to handle them. IOTRANSFER shifts the control from a
first process to a second one, but is able to resume the first when an interrupt occurs.
IOTRANSFER takes a third parameter, the interrupt vector number. Module SYSlEM also
exports procedure LISlEN. This causes the coroutine to wait for an IOTRANSFER to take place.

Synchronization between coroutines is vital in keeping their liveliness. This assures that every process
maintains its vitality. Using a single CPU, each process must run for a short period of time and then
be suspended to allow others to resume likewise. The above coordination becomes more critical
when the same data is accessed by more than one coroutine. In this case it is imperative to ensure
that only one process manipulate data This means that other coroutines must wait for their turn to
access the same data The overall picture depicts two waiting queues: one for processes simply
waiting their turn to use the CPU, the other for processes waiting to access a critical data item.

The module Processes exports items needed to accomplish the above sought synchronization. The
definition module is:

DEFINITION MODULE Processes,·

EXPORT QUALIFIED SIGNAL, init, SEND, WAlT, Awaited,
StartProcess,·

70

TYPE SIGNAL; (* Opaque type used by processes to *)
(* communicate with each other *)

PROCEDURE Init(VAR S: SIGNAL),· (* Initialize signal *)

PROCEDURE SEND(VAR S : SIGNAL),· (* Send signal *)

PROCEDURE WAIT(VAR S : SIGNAL),· (* Wait for signal *)

MODULA-2/86

PROCEDURE Awaited(S : SIGNAL) : BOOLEAN;
(* Function to retum if a signal is awaited *)

PROCEDURE StartProcess(P : PROC,· WorkSpace: CARDINAL),·
(* Start process P with WorkSpace bytes *),.

END Processes.

Modula-2 TUTORIAL

In the above module, type SIGNAL is used for process inter-communication. Procedure Init is used
to initialize a signal. Procedure WAIT suspends a process while waiting for a particular signal to be
sent (using SEND) by another process. To demonstrate how the above data type and procedures are
used, consider the following program. It takes an array of reals from the keyboard and calculates the
corresponding average and standard deviation values. These statistics are evaluated using the sums
of the observations and their squared values which can be evaluated concurrently. A coroutine is
employed to update the sum of squares, while the main program calculates the sum of observations.
Since each array element is accessed by the main program and the coroutine, we need to synchronize
their access. Let us present the listing and then resume our discussion.

MODULE Synchronicity;

FROM Processes IMPORT SIGNAL, Init, SEND, WAIT,
Start Process,·

FROM In Out IMPORT WriteString, WriteLn, ReadCard,
WriteCard,·

FROM RealInOut IMPORT ReadRea~ WriteReal;
FROM MathLibO IMPORT sqrt;

CONST MAX = 100;

VAR Count, NumData : CARDINAL;
GoAheadMakeMyDay: SIGNAL,·
Sum}{, SumXX, Average, SttiDeviation : REAL;
X: ARRAY [l..MAX] OF REAL,·

PROCEDURE GetSumSquare,·
(* Process to calculate sum o/data squares *)

71

Modula-2 TUTORIAL

BEGIN
(* Message displayed first time process is invoked *)
WriteString('Start squaring'),' WriteLn,'
LOOP

WAIT(GoAheadMakeMyDay); (*waitfora go signal *)
WriteString('Squaring observation # '),'
WriteCard(Count,4); WriteLn,'
SumXX,'= SumXX + X[Countj * X[Countj,'
SEND(GoAheadMakeMyDay);

END;
END GetSumSquare;

PROCEDURE GetData;

72

V AR i " CARDINAL;

BEGIN
REPEAT

WriteString('Enter number of data «100) '),'
ReadCard(Numdata)

UNTIL (NumData <= MAX) AND (NumData > 2);

FOR i ,'= 1 TO NumData DO
WriteString(,Enter observation # '),'
WriteCard(i,4); WriteString(' ');
ReadReal(X[i]); WriteLn;

END;
END GetData,'

MODULA-2/86

MODULA-2/86

BEGIN
Get Data;
WriteString('AII data entered'),' WriteLn,'
Init(GoAheadMakeMyDay),'
(* Initialize counter and statistical summations *)
Count:= 1,'
Sum}(:=0.0,' Sum}{}{:= 0.0,'
StartProcess(GetSumSquare,400);
SEND(GoAheadMakeMyDay);
LOOP

WAJT(GoAheadMakeMyDay);
WriteString('Summing observation # '),.
WriteCard(Count,4),' WriteLn,'
Sum}(:= Sum}{ + X[Count};
INC(Count),' (* Increment global data counter *)
(* Are all the observations processed? *)
IF Count> NumData THEN EXIT END;
(* Signal for GetSumSquare process to resume *)
SEND(GoAheadMakeMyDay),'

END,'
Average := Sum}{ / FLOAT(NumData);
StdDeviation := sqrt((SumXX - Sum}(* Sum}(/

FLOAT(NumData» /
(FLOAT(NumData -1»,'

WriteString('Average = ');
WriteReal(Average,14),' WriteLn,'
WriteString('Standard Deviation = ');
WriteReal(StdDeviation,14); WriteLn;

END Synchronicity.

Modula-2 TUTORIAL

73

Modula-2 TUTORIAL MODULA-2/86

When the program starts it first prompts for keyboard data entry, performed by procedure GetData.
The main program proceeds with a confirmation message followed by initializing the process signal.
After the appropriate variable initializations process GetSumSquare is triggered. In turn it displays
the "Start squaring" message once and waits for a signal. The control is briefly transferred back to
the main program only to execute the SEND procedure and return us to the coroutine. The open
loop is resumed and the message "Squaring observation 1" is displayed followed by the first update of
the sum of squares. Having accessed the first array member, X[I], the coroutine signals to the main
program for it to resume. The message "Summing observation 1" is displayed, sum updated and
counter incremented. This is followed by a test to determine if all the data have been processed and
the loop is accordingly exited. Otherwise the main program signals the coroutine to perform its task
and another cycle of calculations is executed.

74

MODUlA-2/86: IMPLEMENTATION FEATURES

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

5.1 SYSTEM DEPENDENT FACILITIES

This chapter gives an overview of the MODULA-2/86 specific low-level features. The chapter
Priorities and Interrupts gives additional information on hardware dependencies.

The differences in programming for various implementations can be attributed to the following:

• Changes to the language proper.

• Differences in the set of available procedures and data types which reflect the structure of
the machine used.

• Differences in the internal representation of data.

• Differences in the set of available modules, in particular those for handling files and
peripheral devices.

The last item reflects the environmental aspects of Modula-2 -- the set of standard library modules
that allow access, for example, to the file system, the keyboard and the screen.

A description of the MODULA-2/86 library is given in the library section of this manual.

WARNING

All features described in this chapter should be applied with utmost care, since their use might
conflict with the basic software of the operating system, and the MODULA-2/86 system.

75

SYSTEM DEPENDENT FACILITIES MODULA-2/86

5.1.1 Language Extensions

Constants of type ADDRESS may be declared as <segment:offset>, where the segment and offset are
CARDINAL numbers. The segment and offset may not be constant expressions.

Examples:

CONST int3Addr = OH: 12H;

TYPE ScreenType =
ARRAY [0 .. 24] OF
ARRAY [0 .. 79] OF
RECORD char, attr: CHAR END,·

VAR screen [OBOOOH:OH]: ScreenType,·

a := 1234:5678; (* assume 'a'o/type ADDRESS *)

(* rows *)
(* columns *)
(* content *)

MODULA-2/86 also provides for the declaration of absolute variables. Absolute variables are
variables for which the programmer, rather than the MODULA-2/86 compiler, defines the memory
address at which the variable will be located. This feature is intended to be used for memory-mapped
input and output.

When declaring an absolute variable, the identifier denoting it must be followed by an address
constant in brackets. The address constant defines the absolute address of the variable in memory.
The variable 'screen' in the above example is declared as an absolute variable.

5.1.2 Address Arithmetic

In Modula-2, the standard module 'SYSTEM' provides the type ADDRESS. The use of the type
ADDRESS and the operations on objects of type ADDRESS, must be considered non-portable. The
implementation of ADDRESS operations is very dependent on the architecture of the target system.
The structure of a computer may restrict the operations that are possible on objects of type
ADDRESS.

76

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

5.1.2.1 Interpretation of Objects of Type ADDRESS

Objects of type ADDRESS denote a particular location in memory. Type ADDRESS is compatible
with any pointer type. Objects of type ADDRESS can be used as if there were two different type
definitions for type ADDRESS:

• TYPE ADDRESS = POINTER TO WORD;

• TYPE ADDRESS =RECORD

Example:

OFFSET: CARDINAL;
SEGMENT: CARDINAL;

END;

If we assume the declarations:

VAR
a: ADDRESS;
w: WORD;
off,seg: CARDINAL;

then the following statements are legal:

a" := w; w := a";
a.OFFSET:= off,' off:= a.OFFSET,·
a.SEGMENT := seg,' seg := a.SEGMENT
WITH a DO SEGMENT:= seg END,'

5.1.2.2 Operations Involving Objects of Type ADDRESS

A restricted set of arithmetic operations on objects of type ADDRESS is possible. The switch and
compiler option'T' determines whether or not test code is generated for ADDRESS operations.

77

SYSTEM DEPENDENT FACIUTIES MODULA-2t86

ADDmON AND SUBTRACTION

Addition and subtraction are allowed in expressions of type ADDRESS. An ADDRESS expression
contains exactly one operand of type ADDRESS. All other operands must be of type CARDINAL.
The operation is only performed with the OFFSET value of the ADDRESS - the SEGMENT value
is never modified. If test code is on, the run-time error 'address overflow' will occur upon an overflow
of the OFFSET value on an addition or subtraction operation.

The standard procedures INC and DEC can also be used with variables of type ADDRESS. The
following declarations are assumed:

• PROCEDURE INC (VAR a:ADDRESS; k:CARDINAL);
• PROCEDURE DEC (VAR a:ADDRESS; k:CARDINAL);

Note that in particular, the second parameter must be assignment compatible with type CARDINAL.
If test code is on, negative values will generate a run-time error. Using INC and DEC is the preferred
way to do ADDRESS arithmetic.

The following list shows the kinds of expressions involving operands of type ADDRESS which are
valid. Each operand itself may be an expression of the corresponding type.

Operation

addition
addition
subtraction

lstOperand

ADDRESS
CARDINAL
ADDRESS

2nd Operand

CARDINAL
ADDRESS
CARDINAL

MULTIPUCATION AND DMSION

Result Type

ADDRESS
ADDRESS
ADDRESS

Multiplication and division operations (* , t, MOD, DIY) are not allowed with operands of type
ADDRESS.

78

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

COMPARISON

The comparison of two operands, or expressions, of type ADDRESS is allowed. The following
explains the restrictions and how the comparison is implemented:

• Operations 'equal', 'not-equal':

A check on (non-) identity is generated: al = a2 <--> (al.SEGMENT = a2.SEGMENT) AND
(al.0FFSET = a2.0FFSET)

• Operations 'greater-than', 'greater-equal', 'less-than', 'less-equal':

These operations are allowed only between addresses within the same segment - if the
SEGMENT values of both operands are identical. They compare the OFFSET values only.

The result of these operations is undefined if the two ADDRESS operands compared have
different SEGMENT values. If test code is on, the run-time error 'address overflow' will
occur when the SEGMENT values are not equal.

5.1.2.3 Dereferencing Pointers

The switch and compiler option 'T' determines whether or not test code is generated for accessing
data through pointers.

If test code is on, any pointer with an offset equal to OFFFFH is considered to be NIL. Therefore,
any access through such a pointer is illegal and will result in a run-time error.

The predefined constant NIL, which is compatible with all pointer types, has the internal
representation OFFFFH:OFFFFH. It is strongly recommended that no program makes use of this
information. The representation of NIL is implementation dependent and subject to change without
notice.

79

SYSTEM DEPENDENT FACIUTmS MODULA-2/86

5.1.3 The Module SYSTEM

The module SYSTEM offers additional facilities to programs written in the Modula-2 language. Most
of them are dependent upon the implementation or are specific to the target processor. Module
SYSTEM also contains types and procedures which allow very basic coroutine handling.

Module SYSTEM is directly known to the compiler because its exported objects obey special rules
that must be checked by the compiler. If a compilation unit imports objects from module SYSTEM,
no symbol file need be supplied for this module. However, the declaration of these objects in the
import list is required.

Furthermore, no link file exists for this module. The implementation of the pseudo module SYSTEM
is realized by inline code or by calls to the MOOULA-2/86 run-time support, generated by the
compiler.

The interface of the pseudo module SYSTEM cannot be described completely with a regular
Modula-2 definition module. Module SYSTEM offers some features which expand the language
itself. However, for easy reference, a description of module SYSTEM in a form similar to a definition
module has been included in the library section of this manual.

For additional information please refer to Chapter 12 of the Modula-2 Language Report in
Programming in Modula-2.

5.1.3.1 Constants Exported from Module SYSTEM

80

• AX. BX. ex. ox. SI, 01, ES, OS, CS, SS, SP, BP

These constants denote the processor's registers. They are defined for use with the
procedures 'GETREG' and 'SETREG' which are also provided by module SYSTEM .

• RTSVECfOR

This is the number of the interrupt vector which is used to call the MOOULA-2/86 run-time
support. It is not recommended that application programs call the run-time support directly.
If it is necessary, RTSVECfOR can be used to issue a software interrupt.

MODULA-2/86

5.1.3.2 Types Exported from Module SYSTEM

• BYTE

SYSTEM DEPENDENT FACILmES

An individually accessible storage unit (one byte). No operations except assignments and
type conversions are allowed for variables of type BYTE. An actual parameter of any type
that uses one byte of storage may be passed to a formal BYTE parameter. For convenience
small CARDINAL constants «=255) are also allowed as parameters.

• WORD

One word of memory (two bytes). No operations except assignments and type conversions
are allowed for variables of type WORD. An actual parameter of any type that uses one
word of storage may be passed to a formal WORD parameter.

• PROCESS

A type used for process handling.

• ADDRESS

The address of any location in storage. The type ADDRESS is compatible with all pointer
types and is itself defined as POINTER TO WORD. The section on 'Address Arithmetic'
explains more on the properties and the use of type ADDRESS.

5.1.3.3 Functions Exported from Module SYSTEM

• ADR(variable): ADDRESS

Storage address of the parameter variable.

• SIZE(variable): CARDINAL

Returns the number of bytes used in storage by the parameter variable. If the variable is of
type RECORD with variants, then a variant of maximal size is assumed.

81

SYSTEM DEPENDENT FACILITIES MODULA-2/86

• TSIZE(type): CARDINAL
• TSIZE(type, taglconst, tag2const): CARDINAL

Yields the number of bytes used in storage by a variable of the substituted type. If the type is
a record with variants, then tag constants of the last 'FieldList' (see syntax in Programming
in Modula-2) may be substituted in their nesting order. If some or all tag constants are
omitted, then the remaining variant with maximal size is assumed.

5.1.3.4 Procedures Exported from Module SYSTEM

82

• NEWPROCESS (processBody: PROC;
workspaceAddress: ADDRESS;
workspaceSize: CARDINAL;
VAR process: PROCESS)

Create a new process. 'processBody' is the procedure to execute. 'workspaceAddress' is the
address of the data area for the process (the workspace). 'workspaceSize' is the size of the
workspace in bytes. The variable 'process' receives the created PROCESS object. Allow 400
bytes for system overhead in each workspace.

Note: If the workspace of the new process is too small and does not allow a reasonable
initialization, the process that calls NEWPROCESS is terminated with a stack overflow.

• TRANSFER (VAR fromProcess, toProcess: PROCESS)

Save the current process state in 'fromProcess', and resume the execution of the process in
'toProcess'.

• IOTRANSFER (VAR interruptHandler: PROCESS;
interruptedProcess: PROCESS;
interruptVectorNumber: CARDINAL)

Save the current process state in 'interruptHandler', and resume the execution of the process
in 'interruptedProcess'. The occurrence of the designated interrupt has the effect of
'TRANSFER (interruptedProcess, interruptHandler)'.

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

• LISTEN

Temporarily lower the priority of the calling process and allow pending interrupts to come
through.

• GETREG (register: CARDINAL; V AR value: BYTEorWORD)
• SETREG (register: CARDINAL; value: BYTEorWORD);

These two procedures are used to set and to retrieve the contents of machine registers. They
generate in-line code, and are particularly useful in conjunction with the special procedures
CODE and SWI (software interrupt) described below. The registers AX, BX, Cx, DX, SP,
BP, SI, DI, ES, CS, SS, and DS are accessible where SP, BP, SS and CS cannot be used with
'SETREG'. For 'register' only the register constants provided by module SYSTEM should be
used.

If the actual argument for 'value' is a variable in one byte, only the lower half of the register
is affected. For example, in SETREG (AX, ch), where ch is declared to be a CHAR, only the
AL register is modified.

83

SYSTEM DEPENDENT FACILITIES MODULA-2/86

84

WARNING

Utmost care must be exercised when using GETREG and SETREG. It must be kept in mind
that expression evaluation and address computation use registers and therefore might
destroy the value of a register already set by SETREG or to be read by GETREG. It is
impossible for the compiler to recognize such a situation and the programmer must take full
responsibility.

Only constants, or variables and value parameters which are declared local to the procedure
calling GETREG or SETREG, should be used for the second argument. This argument
should be of a simple type. It should neither be an expression, contain a function call, index
an array, nor be a global (module) variable or a VAR parameter. If necessary, input
parameter values should be copied to local variables of simple types which can be used when
calling SETREG. Only local variables of simple types should be used with GETREG. If
necessary, their values should be copied to the real output parameters. If there are sequences
of calls to SETREG or GETREG, no other statements should break such a sequence. All
local copies of input values should be made before the first call to SETREG, and the values
of the local variables should be copied back after the last call to GETREG.

Unpredictable effects may result from failure to heed this warning .

• CODE (codelConst, code2Const, ... : BYTE)

Insert binary machine instructions into the code. A call to CODE inserts the constant values,
'codelConst', 'code2Const', etc., in-line as executable code.

• SWI(interruptVectorNumber: CARDINAL)

This procedure is used to generate a software interrupt. It compiles into an 'INT' instruction.
The parameter must be a constant.

MODUIA-2/86 SYSTEM DEPENDENT FACILITIES

If you are using the procedure SWI to call the IBM-PC ROM BIOS or to call any other
assembly routines, we strongly recommend that you save and restore the base pointer
register BP. The value of the BP register is essential to MODULA-2/86 because it is used to
access local variables and procedure parameters.

To save and restore the BP register, use procedure 'CODE', which is also provided by
module SYSTEM. Insert 'CODE(SSH);' right before, and CODE(SDH);' right after the call
to 'SWI'. This pushes and pops the BP register to/from the stack, so that its value will be
preserved.

• ENABLE
• DISABLE

Calls to the procedures ENABLE and DISABLE compile into 'ST!' and 'CLI' instructions,
which enables or disables interrupts.

Note: Any call to the operating system, or any input or output by means of the MODULA-
2/86 library may have the effect of enabling interrupts, thus undoing a previous call to
DISABLE.

• INBYTE (port: CARDINAL; VAR value: BYTEorWORD)
• OUTBYTE (port: CARDINAL; value: BYTEorWORD)

Get or put a byte value from or to the specified I/O port.

• INWORD (port: CARDINAL; V AR value: WORD)
• OUTWORD (port: CARDINAL; value: WORD)

Get or put a word value from or to the specified I/O port.

• DOSCALL (functionNumber: CARDINAL; ...)

It generates a DOS function call via software interrupt 21H. The parameter list is variable,
depending on the first parameter, which must be a constant and indicates the number of the
DOS function. The appendix contains a detailed description of the available DOSCALLs.

Because the parameters of DOSCALL must be given to DOS in registers, no complicated
expressions should be used. The compiler might easily run out of registers, resulting in
compiler error 204.

85

SYSTEM DEPENDENT FACILITIES MODULA-2/86

5.1.4 Data Representation

The data types have the following internal representation in MODULA-2/86:

• BYTE

One byte.

• BOOLEAN

One byte, TRUE= 1, FALSE=O.

• CHAR

One byte, ASCII character set.

• Enumeration Types

One byte, elements are numbered 0 .. 255.

• WORD

Two bytes.

• INTEGER

Two bytes, -32768 .. 32767, two's complement notation, least significant byte first.

• CARDINAL

Two bytes, 0 .. 65535, least significant byte first.

• Subrange Types

Same representation as the base type.

86

MODUIA-2/86 SYSTEM DEPENDENT FACILITIES

• REAL

Eight bytes, Intel 8087 double precision format (IEEE Floating Point standard).

• SET
• BITSET

Two bytes. If we number the elements of a set from 0 to 15, the representation in a memory
word is:

I 7 6 5 4 3 2 1 0 115 14 13 12 1110 9 8 I
low byte high byte

• POINTER
• PROC
• PROCEDURE
• ADDRESS
• PROCESS

Four bytes. The first two bytes (lower address) hold the offset value (lower byte first) and the
second two bytes hold the segment value (lower byte first).

• ARRAY

An array is stored as a contiguous sequence of elements, with the indices in ascending order,
the right-most index varying most quickly. If the base type fits in one byte (CHAR,
BOOLEAN, enumeration) the elements are stored in sequential bytes. Otherwise, each
element is stored on a word boundary (at an even address).

• RECORD

The fields of a record are allocated in the order in which they are declared. The first field has
the lowest address. If you select the Alignment option, fields with a size other than one byte
are allocated on even addresses. Therefore, dummy bytes are included after odd sized
elements.

87

SYSTEM DEPENDENT FACILITIES MODULA-2/86

• Opaque Types

Opaque Types are always allocated four bytes, regardless of their actual implementation.

5.1.5 Type Conversion and Type Transfer

There are two ways to deal with the 'strong typing' of Modula-2: type conversion and type transfer.

88

• Type Conversion

Type conversion provides the means to convert data from one type into another one,
regardless of the internal representation. This is the system independent and portable way to
convert data from one type to another. Therefore, whenever possible, type conversion should
be used rather than type transfer. The procedures to make the conversion are provided as
built-in, standard procedures or as part of the MODULA-2/86 library. They are as follows:

Standard Functions
CRR
ORD
VAL
FLOAT
TRUNC

Library Functions
MathLibO.real
MathLibO.entier

Type conversion works by calculating a new value of a new type which corresponds to the
value to be converted. Code is executed to perform the conversion, and range checks are
done for the resulting values.

• Type Transfer

The second way is referred to as type transfer, or sometimes, as type coersion. This method is
system dependent - it depends on the internal representation of data. Therefore, type
transfers must be used with utmost care, and should be avoided whenever possible.

With a type transfer, no conversion of data takes place. The data is simply interpreted in a
different way, according to the new type structure.

MODULA-2/86 SYSTEM DEPENDENT FACILITIES

Modula-2 provides for use of an identifer of a type, either a standard type like CHAR, or any
user-defined type, as if it were a function procedure. The compiler does not produce any
code for type transfers. A type transfer simply indicates that a value shall be interpreted in a
different way.

A type transfer is only allowed if the object is of the same size as objects of the new type.
When transferring a variable of type Tl into type TI, the following relation must be true:

SYSTEM.TSIZE (T1) = SYSTEM.TSIZE (TI)

When using type transfer instead of type conversion the user must be aware of the internal
representation of data. Also, his programs probably will not run on other machines or with
other implementations of Modula-2.

Example 1:

Interpret the value of a SET as a CARDINAL

V AR b: BITSET,' (* 'b' and 'e' are both *)
e: CARDINAL,' (* represented as 2 bytes *)

b := {0,5,I5};
e:= CARDINAL(b); (* e = 2"""0 + 2"""5 + 2**15 *)

89

SYSTEM DEPENDENT FACILITIES MODULA-2/86

90

Example 2:

Use a CARDINAL value in an INlEGER expression

VAR i: INTEGER;
c : CARDINAL;

i := 2*i + INTEGER (c);

This second example illustrates an abuse of the type transfer. What was really meant was a
conversion to integer. The correct solution is:

i := 2*i + VAL (INTEGER, c);

MODULA-2/86 PRIORITIES AND INTERRUPTS

5.2 PRIORITIES AND INTERRUPTS

5.2.1 Use of Priorities

Priorities can be specified in the header of a module. They are allowed in program and
implementation modules, as well as in local modules declared inside of another module. Priorities are
used to control the occurrence of interrupts. When no priority is specified, all interrupts may occur.

However, when a program is running at a certain priority, only interrupts of a higher priority will be
accepted. At the highest priority all interrupts are disabled. Note also that running at the lowest,
specified priority is very different from running without any priority.

A priority module is entered upon the execution of its module initialization code or upon a call of an
exported procedure. A priority module is left upon return from its initialization code or upon return
from an exported procedure. When entering a priority module, the interrupt control system
(hardware and software) is set such that interrupts of a priority lower or equal to the one specified in
that module are not passed to the processor. When leaving a priority module, the interrupt control
system is reset to the state it was prior to entering that module. The procedure 'LISTEN', from
module 'SYSTEM', allows a process to lower its priority temporarily. During the execution of the
procedure 'LISTEN' the interrupt control system is set such that all pending interrupts are accepted.

Inside a priority module, calls to procedures of other priority modules with a lower priority than that
of the module with the call statement are not allowed. When this situation is detected by the
compiler, an appropriate error message is produced (error 161). If a procedure of a module with no
specified priority is called, the current priority remains unchanged. If a procedure of a module with
higher priority is called, that higher priority becomes effective during execution of the called
procedure. The old priority is restored upon return from that procedure.

Priorities are attached to processes. Upon a 'TRANSFER' or 'IOTRANSFER' to a process running
at another priority, the interrupt control system is switched to the priority of the process which will be
activated. The same holds true for the implicit coroutine transfer which occurs upon an interrupt.

When a subprogram terminates, the priority is set back to the value which was effective when the
subprogram was loaded.

91

PRIORITIES AND INTERRUPTS MODULA-2/86

5.2.2 Priority Levels

Both the MODULA-2/86 compiler and the MODULA-2/86 run-time support only allow for a fixed
range of priority levels. Eight priority levels are supported with values ranging from 0 (lowest level) to
7 (highest level). If a module priority is specified with a value out of this range, the compiler produces
an appropriate error message (error 80).

The above range of priority levels is the default for the MODULA-2/86 system. The default may be
changed during installation of MODULA-2/86 as follows:

Note: To encorporate the following changes, you need the sources of the MODULA-2/86 run-time
support and some compiler modules.

• Limit in the compiler
The compiler parameter module contains a variable that specifies the upper limit of the legal
range. By assigning another value to that variable, this upper limit can be modified.

• Limit in the run-time support
Please refer to the assembly source program of the run-time support for the changes
required to support another range of priority levels.

5.2.3 Interrupt Handling

There are three main ways to handle interrupts in MODULA-2/86:

5.2.3.1 Standard Method with IOTRANSFER

In 'standard' Modula-2, the procedure 'IOTRANSFER' from module 'SYSTEM' allows for the
implementation of interrupt handlers. After the call to 'IOTRANSFER' the interrupt handler is
installed and is waiting for the specified interrupt. However, on 8086 based systems, the system needs
to be notified that interrupts from the corresponding device may now occur. In MODULA-2/86, the
module 'Devices' provides the capability to enable and disable interrupts from a device. After an
interrupt handler has been installed, module 'Devices' should be used to enable interrupts from the
corresponding device.

An interrupt handler should not call the operating system, for instance to write to the terminal or to
a file. If the operating system is not reentrant, such a call may crash the whole system. In general,
operating systems that do not support multi-tasking, for instance DOS 2.0, are not reentrant.

92

MODULA-2/86 PRIORITIES AND INTERRUPTS

Please refer also to the definition module 'Devices' and to the sample device driver 'InputDevice' at
the end of this section. Module 'InputDevice' illustrates how an interrupt handler should be
programmed with MODULA-2/86.

5.2.3.2 Faster Method with IOTRANSFER

The standard method using IOTRANSFER as described in the previous section, associates a process
with the next occurrence of the specified interrupt only. The procedure 'InstallHandler' provided by
module 'Devices' allows you to install an interrupt handler permanently. It associates a process, the
interrupt handler, permanently with a particular interrupt. While it is not required to install an
interrupt handler in this way, it may be useful for handling time critical interrupts. Installing an
interrupt handler permanently improves the performance, by about 20 percent, of IOTRANSFER
and of the implicit coroutine transfer that takes place when the interrupt occurs. 'InstallHandler'
must only be called after the process has been created (by means of NEWPROCESS) and before the
process has called IOTRANSFER. For instance, it may be called at the beginning of the code of the
process.

5.2.3.3 Low Level Interrupt Handling

This is the fastest method to handle interrupts, but also the least portable. Unlike the previous two
methods, this implementation doesn't perform a context switch upon interrupts, but uses the current
stack to handle the interrupt. This provides a great improvement in speed because the overhead of
two coroutine transfers is removed. One other disadvantage of this method is that the debug utilities
do not support the debugging of interrupt service routines because the state of the stack does not
have the usual form. The following code shows a module which allows the installation of a Modula-2
procedure as an interrupt service routine:

93

PRIORnnESANDINTERRUPTS

DEFINITION MODULE ISR;
(*

*)

Interrupt Service Routines

Module, to support faster interrupt handling without
context-switch upon interrupts.
Allows installation of Modula-2 procedures as interrupt
service routines.

FROM SYSTEM IMPORT
ADDRESS, BITE,'

EXPORT QUALIFIED
ISR, InstallISR, UninstallISR;

(*$A.*)
(*

*)

94

make sure, that the following type declaration will
not have word aligned fields, because they have to
stay consecutive

TYPE
ISR = RECORD (* should be considered a hidden type *)

(* the following fields represent the code
that will be executed as the actual
interrupt service routine. The address
of a variable of this data type will

*)

be used as the content of the specified
interrupt vector

(* save all registers; BP automatically saved
by user procedure

*)
pushAX, pushcx, pushDX, pushBX,
pushSI, pushDI, pushDS, pushES: BITE,'

MODULA-2/86

MODULA-2/86 PRIORITIES AND INTERRUPTS

(* call indirectly the user procedure *)
/arCall: BYTE,·
handlerProc: PROC;

(* send EOI code to interrupt controller 8259 *)
sendEOL· ARRAY [1..5J OF BYTE,·

(* restore the saved registers *)
popES, popDS, popD!, popS!,
popBX, popDX, popcx, popAX: BYTE,·

(* retumfrom interrupt *)
iret: BYTE,·

(* the next fields hold some additional
in/ormation, needed to set and restore
the interrupt vector
*)
oldInterruptVector: ADDRESS,·
vectorNr: CARDINAL;

END;

PROCEDURE InstaIUSR(VAR isr: ISR; proc: PROC,·
interruptVectorNr: CARDINAL);

(* Installs the user procedure 'proc' as an interrupt
service routine for the specified interrupt vector.
The procedure 'proc' can be declared in a priority
module (Monitor). In this case, the interrupt mask
will be automatically set by the run-time support
upon entry to the user procedure.

*)

PROCEDURE UninstaIUSR(isr: ISR),·
(* Uninstalls the previously installed interrupt

service routine
*)

ENDISR.

95

PRIORITIES AND INTERRUPTS

IMPLEMENTATION MODULE ISR,'
(*

*)

96

Module, to support faster interrupt handling without
context-switch upon interrupts.
Allows installation of Modula-2 procedures as interrupt
service routines.

FROM SYsTEM IMPORT
ADDRESS, BYTE, ADR,'

IMPORT Devices;

PROCEDURE InstallISR(VAR isr: ISR,·proc: PROC,'
interruptVectorNr: CARDINAL),'

BEGIN
WITH isr DO

pushAX:= BYTE(50H),'
pushCX:= BYTE(51H);
pushDX:= BYTE(52H);
pushBX:= BYTE(53H),'
pushSI := BYTE(56H);
pushDI := BYTE(57H),'
pushDS := BYTE(lEH),'
pushES := BYTE(06H);
/arCali := BYTE(9AH),'
handlerProc := proc,'

sendEOI[1] := BYTE(OBBH),' (* MOV AX; 20H *)
sendEOI[2] := BYTE(20H),'
sendEOI[3] := BYTE(OOH),'
sendEOI[4] := BYTE(OE6H),' (* OUT 20B, AL *)
sendEOI[5] := BYTE(20H);

MODUIA-2/86

MODUIA-2/86 PRIORllITESANDINTERRUPTS

popES := BITE(07H);
popDS := BITE(IFH);
popDI:= BITE(5FH);
popSI := BITE(5EH),'
popBX:= BITE(5BH);
popDX:= BITE(5AH);
popCX:= BITE(59H);
popAX:= BITE(58H);

iret := BITE(OCFH),'
vectorNr := interruptVectorNr;
Devices.SaveInterruptVector(vectorNr, oldInterruptVector);
Devices.RestoreInterruptVector(vectorNr, ADR(isr»;

END,' (* WITH *)
END InstallISR;

PROCEDURE UninstallISR(isr: ISR);
BEGIN

Devices.RestoreInterruptVector(isr. vectorNr, isr.oldInterruptVector);
END UninstallISR;

END ISR.

An even faster method is to use the user procedure directly as interrupt service routine, by initializing
the interrupt vector to the entry point of the procedure. In this case, the procedure code must make
sure to save all registers, to send an end-of-interrupt to the interrupt controller and to return
correctly from the interrupt.

Note that the procedure may not be declared within a priority module (Monitor), and stack test code
should be turned off. This is because the compiler-generated calls to the run-time support for stack
check and monitor entry are called before any user code, and therefore the saving of the registers
comes too late.

97

PRIORITIES AND INTERRUPTS MODUIA-2/86

To execute the interrupt handler with the correct priority, the user can explicitly include the run-time
support function calls for monitor entry (exit) after saving (before restoring) the registers. Another
method is to directly set the register mask of the interrupt controller. In this case, it must be
guaranteed that the whole system doesn't use priority modules because the run-time support is not
aware of the direct modification of the register mask and might change it to another (incorrect)
value.

The following module shows the selection of an interrupt handler using this approach:

MODULE SimpleInterruptHandler;

FROM SYSTEM IMPORT
ADDRESS, CODE, SET REG, SJt7, OUTBYTE;

FROM Devices IMPORT
SaveInterruptVector, RestoreInterruptVector,·

CONST
deviceInterrupt = ??; (* interrupt vector number *)
priority = ??; (* priority level (0 .. 7) *)

(* lowest priority = 0 *)

(* RTS function calls *)
monitor Entry = 5;
monitor Exit = 6,·

VAR
oldInterruptVector: ADDRESS;

("'$S-"')
('" Tum stack test off, because it is called before

we save the registers, so some registers could be
destroyed.

"')

98

MODULA-2/86

PROCEDURE HandleDeviceInterrupt;
BEGIN

(* compiler generated procedure prolog:
PUSHBP
SUB SP, variable space

*)
(* save all the registers *)
CODE(50H); (* PUSH AX *)
CODE(51H); (* PUSH ex *)
CODE(52H); (* PUSH DX *)
CODE(53H); (* PUSH BX *)
CODE(56H),· (* PUSH SI *)
CODE(57H); (* PUSH DI *)
CODE(lEH); (* PUSH DS *)
CODE(06H),· (* PUSH ES *)

(* here we could explicitly call the
monitor entry function

*)

SETREG(B){, priority);
SETREG(AX, monitor Entry),.
SWI(RTSCALL),·

(* actual code to handle the interrupt *)

OUTBYTE(20H, 20H);
(* send EOI to 8259 interrupt controller *)

(* here we could explicitly call the
monitor exit function

*)

SETREG(AX, monitorExit);
SWI(RTSCALL);

PRIORITIES AND INTERRUPTS

99

PRIORITIES AND INTERRUPTS

(* restore all saved registers *)
CODE(07H),· (* POP ES *)
CODE(lFH); (* POP DS *)
CODE(5FH); (* POP DI *)
CODE(5EH),· (* POP SI *)
CODE(5BH),· (* POP BX *)
CODE(5AH),· (* POP DX *)
CODE(59H); (* POP CX *)
CODE(58H),· (* POP AX *)

(* call explicitly procedure epilog with an IRET *)
CODE(89H, OECH); (* MOV SP, BP *)
CODE(5DH),· (* POP BP *)
CODE(OCFH); (* IRET *)

END HandleDeviceInterrupt,·

(*$S=*)
(* reset stack option to previous state *)

BEGIN
(* install the interrupt handler *)
SaveInterruptVector(deviceInterrupt, oldInterruptVector);
RestoreInterruptVector(deviceInterrupt, ADDRESS(HandleDeviceInterrupt»;

(* actual program code *)

(* remove the interrupt handler *)
RestoreInterruptVector(deviceInterrup~ oldInterruptVector);

END SimpleInterruptHandler.

100

MODULA-2/86

MODULA-2/86 PRIORfiaESANDINTERRUPTS

5.2.3.4 How to Cope With Non-Reentrancy of MS-DOS

The non-reentrancy of MS-DOS appears to be a problem when writing a real-time kernel in Modula-2
(as in other languages). The basic principle is to avoid task switching while DOS is in a 'critical
section'. There is an undocumented DOS call (34H) which can be used to determine whether DOS is
in such a critical section. Since DOSCALL 34H is not documented, it is not supported by the
LOGITECH MODULA-2/86 Compiler. The following program extract shows you how to get access
to this information:

MODULE scheduler;

FROM SYSTEM IMPORT
ADR, ADDRESS, SETREG, GET REG, SWl, ~ ES, BX;

TYPE
BooleanPtr = POINTER TO BOOLEAN;

VAR
criticalSectionPtr: BooleanPtr,·
aux: ADDRESS;

BEGIN
SETREG(~ 3400H);
SWI(21H);
GETREG(ES, aux.SEGMENT);
GETREG(B.K, aux.OFFSET);
criticaISectionPtr:= BooleanPtr(aux);

END scheduler.

In the scheduler routine which actually performs the task switching, one must test the critical section
flag in DOS:

101

PRIORITIES AND INTERRUPTS

IF criticalSectionPtr" THEN
(* don't do the transfer to the waiting

process, but let the interrupted process
continue

*)
TRANSFER(current Process, interrupted Process);

ELSE
(* transfers to waiting process *)
TRANSFER(currentProcess, waiting Process);

END;

MODULA-2/86

A similar check can be done to avoid DOS function calls in an interrupt handler routine, while DOS
is in a critical section.

5.2.4 Implementation Notes

MODULA-2/86 implements priorities and device handling through the mask register of the interrupt
controller in the 8086 system. The corresponding code is part of the MODULA-2/86 run-time
support.

5.2.4.1 The Device Mask

The run-time support maintains a device mask that indicates from which devices interrupts are
enabled. When a program is not running at any priority, the mask register of the interrupt controller
is identical to this device mask. The initial value of the device mask corresponds to the value of the
interrupt controller mask at the time when the MODULA-2/86 program was started.

The library module 'Devices' provides procedures that allow a program to enable or disable
interrupts from a device. These procedures are implemented by calls to functions of the run-time
support, which modify the device mask. The device numbers used by module 'Devices' and by the
MODULA-2/86 run-time support correspond to the order and meaning of the bits in the mask
register of the interrupt controller.

The run-time support maintains only one copy of the device mask. Thus, the device mask is shared
among all processes and any subprograms of a MODULA-2/86 program.

102

MODUIA-2/86 PRIORITIES AND INTERRUPTS

5.2.4.2 The Priority Masks

To each priority level a particular priority mask corresponds, which masks out the interrupts from all
devices with the same or a lower priority. The order and meaning of the bits in the priority mask are
the same as those in the device mask and in the mask register of the interrupt controller. The
mapping between the priorities and the priority masks is done by the run-time support. The value of
the priority level is used as an index to a table of priority masks.

The table of priority masks is initialized as follows: It masks bit seven for priority level zero, the
lowest priority. It masks bit six and seven for priority level one, and so on. For priority level seven, the
highest priority, all bits in the mask are set such that all interrupts are disabled. These default settings
correspond to the mM-PC hardware. If necessary, the values in this table may be modified to
implement a different priority scheme that reflects the hardware properties of a given 8086 based
system.

5.2.4.3 The Interrupt Controller Mask

When a program is not running at any priority, MODULA-2/86 sets the mask register of the
interrupt controller such that it is identical to the device mask. If a program is running at a particular
priority, the mask register of the interrupt controller is set to the logical OR of the device mask and
the corresponding priority mask. In this way, all interrupts are disabled which are masked out either
in the device mask or in the current priority mask.

The field 'interruptMask' of the process descriptor holds the priority mask that corresponds to the
priority at which the process is running. When creating a new process (procedure 'NEWPROCESS'),
the initial value of the priority mask in the process descriptor is zero. This initial value indicates that
the process is not running at any priority. If the procedure which constitutes the process is declared in
a priority module, its priority becomes effective when the process is started. A process starts
execution upon the first 'TRANSFER' of control to it, after it was created by 'NEWPROCESS'.

103

PRIORITIES AND INTERRUPTS MODULA-2/86

The mask register of the interrupt controller is always equal to the logical OR of the current device
mask and the priority mask that corresponds to the priority at which the current process is running.
When a coroutine transfer occurs upon a call to 'TRANSFER', 'IOTRANSFER', or upon an
interrupt, the mask register of the interrupt controller is set according to the priority of the process
that takes control and according to the value of the device mask. The mask register of the interrupt
controller is also set accordingly whenever the priority changes because of a call to, or a return from,
a priority module. When the device mask is modified, the mask register of the interrupt controller is
updated according to the new device mask and according to the priority mask of the current process.

5.2.4.4 Monitor Entry and Exit

Priority modules are also called 'monitors'. When entering or leaving a monitor, some code is
executed to change the priority of the current process. This code is part of the MODULA-2/86 run­
time support.

The compiler generates a call to the run-time support (RTS call) in the procedure entry code (to the
Monitor Entry function) and in the procedure exit code (to the Monitor Exit function) for every
procedure exported from a priority module. The procedure 'LISTEN' from module 'SYSTEM' is
translated to another RTS call, the Listen function.

The Monitor Entry function is called after the possible stack-test and after the stack pointer is
decremented by the size of the local data. It saves the current priority mask, from the process
descriptor of the current process, onto the stack of the entered procedure. The new priority is used as
an index in a table that contains the value of the priority mask for each priority level. The new priority
mask is stored in the process descriptor. The mask register of the interrupt controller is set to the
logical OR of the new priority mask and the current device mask.

"

The MonitQr Exit function restores the old priority mask from the top of the stack back into the
process descriptor. It also sets the mask register of the interrupt controller to the logical OR of the
old priority mask and the current device mask. Unless the device mask has been changed while
running on priority, the mask register of the interrupt controller will have the same value as before
entering the priority module.

104

MODULA-2/86 PRIORITIES AND INTERRUPTS

The Listen function first sets the current priority to 'no priority', in a way similar to the Monitor
Entry function. The value of the priority mask for 'no priority' is not stored in the table of priority
masks. The mask for 'no priority' has all bits set to zero. Therefore, the mask register of the interrupt
controller will be equal to the device mask. The Listen function then sets the interrupt enable flag of
the processor. At this point, all pending interrupts may come through, if they were enabled in the
device mask. After the execution of a no-operation instruction, the Listen function restores the old
priority in a way similar to the Monitor Exit function.

5.2.5 The Definition Module 'InputDevice'

DEFINITION MODULE InputDevice;
(*

Sample Input Device

This is the sample interface definition for a small
input device driver, which shows how interrupt driven
devices should be handled in LOGITECH MODULA-2/86.
A corresponding scheme can be used for interrupt driven
output devices.
*)

EXPORT QUALIFIED
ReadInfo,·

PROCEDURE ReadInfo (VAR info: Information),·
(* get information from the device,

where 'Information' might be of
type 'CHAR' for a character device

*)

END InputDevice.

105

PRIORITIES AND INTERRUPTS

5.2.6 The Implementation Module 'InputDevice'

IMPLEMENTATION MODULE InputDevice [priority};
(*

Sample Input Device

This is a small sample input device driver, which shows
how interrupt driven devices should be handled in
LOGITECH MODULA-2/86.

A con-esponding scheme can be used for interrupt driven
output devices.
*)

FROM SYSTEM IMPORT
PROCESS, NEWPROCESS, TRANSFER, IOTRANSFER,
ADR, SIZE, BYTE, ADDRESS;

FROM System IMPORT
TermProcedure;

FROM Devices IMPORT
GetDeviceStatus, SetDeviceStatus,
SaveInterruptVector, RestoreInterruptVector;
Instal/Handler;

CONST
device = ??,'
(* bit number in interrupt controller mask *)

interruptVectorNumber = ??,'
(* interrupt vector used by device *)

YAR
mainP, driverP: PROCESS,' (* Modula-2 coroutines *)

workspace: ARRAY [O .. ??} OF BYTE;
(* workspace for driver coroutine *)

106

MODULA-2/86

MODULA-2/86 PRIORDnESANDINTERRUPTS

oldInterruptVector: ADDRESS,'

oldDeviceStatus: BOOLEAN,'

activ: BOOLEAN,'
(* indicates whether the device driver has

been activated
*)

PROCEDURE ReadInfo(VAR info: Information);
BEGIN

(* get info from a buffer *)
END ReadInfo,'

PROCEDURE DeviceDriver,'
BEGIN

(* here we could associate the process permanently
to the given interrupt vector number by:
InstallHandler(driverP, interruptVectorNumber),'
This call improves the performance of the
interrupt handling

*)
LOOP

IOTRANSFER(driverP, mainP, interruptVectorNumber);
(* handle the interrupt, put info into a buffer *)

END,' (* LOOP *)
END DeviceDriver;

107

PRIORITIES AND INTERRUPTS

PROCEDURE StartDevice,'
BEGIN

IF NOT activ THEN
SaveInterruptVector(interruptVectorNumber,

oldInterruptVector);
(* save interrupt vector used by device *)

GetDeviceStatus(device, oldDeviceStatus);
(* save old device status

(interrupts enabled/disabled)
*)
activ := TRUE,'
NEWPROCESS(DeviceDriver, ADR(workspace),

SIZE(workspace), driverP);
(* create a Modula-2 process for the driver *)

TRANSFER(mainp, driverP);
(* transfer control to the driver process *)

SetDeviceStatus(device, TRUE),'
(* allow (enable) interrupts from the device *)

END,'
END Start Device,'

PROCEDURE StopDevice,'
BEGIN

IF activ THEN
activ := FALSE,'
SetDeviceStatus(device, oldDeviceStatus),.
(* restore the Original device status

(interrupts enabled/disabled) *)

RestoreInterruptVector(interruptVectorNumber, oldInterruptVector),'
(* restore the Original value of the interrupt

vector used by the device *)
END,'

END StopDevice;

108

MODUIA-2/86

MODULA-2/86

PROCEDURE InitDevice,'
BEGIN

(* initialize device ifnecessary *)
END InitDevice;

BEGIN
activ := FALSE;
InitDevice;
Start Device,'
System. TermProcedure(StopDevice);

(* install 'StopDevice' as a termination routine,
in order to properly stop the device driver
when the program that uses the driver terminates
*)

END InputDevice.

PRIORITIES AND INTERRUPTS

109

DOSCALL MODULA-2/86

5.3 DOSCALL

The procedure DOSCALL must be imported from module SYS1EM. It provides a rather simple way
to access the underlying operating system from programs written in Modula-2. For the description of
each of these functions we refer to the corresponding MS-DOS or PC-DOS Manual. The actual
parameters of the procedures should not be very complicated. The compiler might easily run out of
registers.

The first line is a Modula-2 procedure declaration. The second line notes for each parameter the
register(s) in which it is passed. The type BYTEWORD (which doesn't exist in Modula-2) means that
any type compatible with BYTE or WORD is possible for the actual parameter.

Example:

DOSCALL(15; FCBAddr:ADDRESS; V AR returnCode:BYTEWORD);
AHDS:DX AL

possible use:

VAR FCB: ARRAY[O ... 35] OF CHAR;
return Val: CARDINAL

DOSCALL(15,ADR(FCB), returnVal);
IF returnVal= ... THEN

The standard procedure DOSCALL has a variable parameter list. This parameter list depends on the
first parameter that must be a constant. This constant is the number of the DOS function to be
called.

The formats of these functions are as follows:

Function 08: Program Terminate

DOSCALL(OH)
AH

110

MODUIA·2/86

Function IH: Keyboard Input

DOSCALL(1H; V AR char:BYTEWORD);
AH AL

Function 2H: Display Output

DOSCALL(2H; char:BYTEWORD);
AH DL

Function 3H: Auxiliary Input

DOSCALL(3H; V AR char:BYTEWORD),'
AH AL

Function 4H: Auxiliary Output

DOSCALL(4H; char:BYTEWORD);
AH DL

Function SH: Printer Output

DOSCALL(5H,' char:BYTEWORD);
AH DL

Function 6H: Direct Console I/O

DOSCALL(6H,' OFFH,' VAR char:BYTEWORD;
AH DL AL

VAR reatiy:BOOLEAN); (input)
ZF

DOSCALL(6H,' char:BYTEWORD),' (output)
AH DL

DOSCALL

111

DOSCALL

Function 7H: Direct console Input without echo

DOSCALL(7H; V AR char:BYTEWORD),"
AH AL

Function 8H: Console input without echo

DOSCALL(8H; VAR char:BYTEWORD),"
AH AL

Function 9H: Print String

DOSCALL(9H," stringaddr:ADDRESS),"
AH DS:DX

Function OAH: Buffered Keyboard input

DOSCALL(OAH," stringaddr:ADDRESS),"
AH DS:DX

Function OBH: check standard Input status

DOSCALL(OBH; V AR status:BYTEWORD);
AH AL

112

MODULA-2/86

MODUIA-2/86 DOSCALL

Function OCH: Clear standard input butTer and invoke a standard input function

The second parameter (input function) determines the form of the parameter list. It must be one of
the constants (functions) 1H, 6H, 7H, SH, or OAR.

DOSCALL(OCH,· IH,· V AR char:BYTEWORD);
AN AL AL

DOSCALL(OCH,· 6H,· V AR char:BYTEWORD,·
AN AL AL
[DL = OFFH implicitly]
V AR ready:BOOLEAN);

ZF

DOSCALL(OCH,· 7H,· VAR char:BYTEWORD);
AN AL AL

DOSCALL(OCH; 8H; VAR char:BYTEWORD),·
AN AL AL

DOSCALL(OCH,· OAR,· stringaddr:ADDRESS),·
AN AL DS:DX

Function ODH: Disk reset

DOSCALL(ODH)
AN

Function OEH: Select Disk

DOSCALL(OEH,· drive:BYTEWORD;
AN DL

V AR nrofdrives: WORD);
AL

113

DOSCALL

Function OFH: Open File

DOSCALL(OFB,' FCBaddr:ADDRESS;
AH DS:DX

VAR returnCode:BYTWORD),'
AL

Function 10H: Close File

DOSCALL(IOH; FCBaddr:ADDRESS,'
AH DS:DX

V AR returnCode:BYI'EWORD);
AL

Function 11H: Search for the first entry

DOSCALL(lIB,' FCBaddr:ADDRESS,'
AH DS:DX

V AR returnCode:BYI'EWORD);
AL

Function 12H: Search for the next entry

DOSCALL(12H; FCBaddr:ADDRESS,'
AH DS:DX

114

VAR retumCode:BYI'EWORD),'
AL

MODULA-2/86

MODUIA-2/86

Function 13H: Delete File

DOSCALL(13H; FCBaddr:ADDRESS;
AH DS:DX

V AR retumCode:BYTEWORD);
AL

Function 14H: Sequential Read

DOSCALL(l4H,. FCBaddr:ADDRESS,·
AH DS:DX

V AR retumCode:BYTEWORD);
AL

Function ISH: Sequential Write

DOSCALL(I5H; FCBaddr:ADDRESS;
AH DS:DX

V AR retumCode:BYTEWORD);
AL

Function 16H: Create File

DOSCALL(I6H,· FCBaddr:ADDRESS;
AH DS:DX

V AR retumCode:BYTEWORD);
AL

DO S CALL

115

DOSCALL

Function 17H: Rename File

DOSCALL(17H; FCBaddr:ADDRESS,'
AH DS:DX

V AR retumCode:BYTEWORD),.
AL

Function 19H: Current Disk

DOSCALL(19H; V AR currDrive:BYTEWORD);
AH AL

Function lAH: Set Disk Transfer Address

DOSCALL(lAH,' DTA:ADDRESS);
AH DS:DX

Function lBH: Allocation table information

DOSCALL(1BH; VAR FATaddr:ADDRESS;
AH DS:BX

VAR nrallocUnits, nrSectors,
DX AL

sectSize:BYTEWORD);
CX

Function 1CH: (not implemented)

Function 21H: Random Read

116

DOSCALL(21H; FCBaddr:ADDRESS,'
AH DS:DX

V AR retumCode:BYTEWORD);
AL

MODUIA-2/86

MODUIA-2/86

Function 220: Random Write

DOSCALL(22H,· FCBadtir:ADDRESS,·
AH DS:DX

VAR retumCode:BYTEWORD),·
AL

Function 230: File Size

DOSCALL(23H,- FCBadtir:ADDRESS;
AH DS:DX

V AR retumCode:BYTEWORD),.
AL

Function 240: Set Random Record Field

DOSCALL(24H,· FCBadtir:ADDRESS);
AH DS:DX

Function 25H: Set Interrupt Vector

DOSCALL(25H,· vectorVal:ADDRESS; IntNumber:BYTEWORD);
AH DS:DX AL

Function 260: Create a new program segment

DOSCALL(26H; progSegment:BYTEWORD),.
AH DX

DOSCALL

117

DOSCALL

Function 278: Random Block Read

DOSCALL(27H; FCBaddr:ADDRESS,'
AH DS:DX

V AR nrofBytes:BYTEWORD;
CX

V AR retumCode:BYTEWORD),.
AL

Function 288: Random Block Read

DOSCALL(28H,' FCBaddr:ADDRESS;
AH DS:DX

V AR nrofBytes:BYTEWORD,'
ex

V AR retumCode:BYTEWORD),.
AL

Function 298: Parse Filename

DOSCALL(29H,' FCBaddr:ADDRESS,' mode:BYTEWORD;
AH ES:D AL

V AR stringaddr:ADDRESS;
DS:SI

V AR retumCode:BYTEWORD),.
AL

Function 2AH: Get Date

DOSCALL(2AH; V AR year:WORD; VAR monthday:WORD);
AH ex DX

118

MODULA-2/86

MODULA-2/86

Function 2BU: Set Date

DOSCALL(2BH; year:WORD; monthday: WORD;
AH CX DX

VAR retumCode:BYTEWORD);
AL

Function 2CU: Get Time

DOSCALL(2CH,· V AR hourminute, secondmillisec: WORD);
AH ex DX

Function 2DU: Set Time

DOSCALL(2DH,· hourminute, secondmillisec:WORD;
AH CX DX

V AR retumCode:BYTEWORD);
AL

Function 2EU: Set/Reset Verify Switch

DOSCALL(2EH,· zero:BYTEWORD; onoff:BYTEWORD);
AH DL AL

5.3.1 Extensions for DOS 2.0

Function 2FU: Get DTA

DOSCALL (2FH,· V AR DTAaddr: ADDRESS);
AH ES:BX

Function 30U: Get DOS version

DOSCALL (30H,· VAR major, minor: BYTE);
AH AL AH

DO S CALL

119

DO S CALL

Function 31H: Terminate and remain resident

DOSCALL (3IH,' exitCode: BYTEWORD,'
AH AL

paragraphs: WORD);
DX

Function 33H: Ctrl-Break-Cbeck

DOSCALL(33H,' mode:BYTEWORD; VAR state:BYTE);
AH AL DL

Function 35M: Get Vector

DOSCALL(35H,' vector:BYTEWORD,' VAR vector:ADDRESS
AH AL ES:BX

Function 36H: Get disk free space

DOSCALL(36H,' drive:BYTEWORD; VAR valid:BYTEWORD;
AH DL AX

V AR availClusters:BYTEWORD,'
BX

V AR totclust:BYTEWORD,'
DX

V AR bytesPerSect:BYTEWORD),'
ex

Function 38H: Return Country dependent information

DOSCALL(38H,' buffAddr:ADDRESS; !ctcode:BYTEWORD);
AH DS:DX AL

120

MODULA-2/86

MODUlA-2/86

Function 39H: Create a subdirectory (MKDIR)

DOSCALL(39H,' stringaddr:ADDRESS;
AH DS:DX

VAR error:WORD);
AX;CF

(error = 0 means no error,' refer to the table in
the DOS manualfor other errors)

Function 3AH: Remove a directory entry (RMDIR)

DOSCALL(3AH; stringaddr:ADDRESS,' VAR error:WORD);
AH DS:DX AX;CF

Function 3BH: Change the current directory (CHDIR)

DOSCALL(3BH,' stringaddr:ADDRESS; VAR error:WORD);
AH DS:DX AX;CF

Function 3CH: Create a File

DOSCALL(3CH,' stringaddr:ADDRESS; attrib:BYTEWORD;
AH DS:DX CX

V AR handle:BYTEWORD; V AR error: WORD);
AX AX;CF

Function 3DH: Open a File

DOSCALL(3DH,' stringaddr:ADDRESS,' access:BYTEWORD,'
AH DS:DX AL

VAR handle:BYTEWORD,' VAR error:WORD),'
AX AX;CF

DOSCALL

121

DOSCALL

Function 3EH: Close a file handle

DOSCALL(3EH; handle:WORD,' VAR e"or:WORD),'
AH BX AX;CF

Function 3FH: Read from a file or device

DOSCALL(3FH; handle:WORD,' nrbytes:WORD;
AH BX CX

bujfAddr:ADDRESS;
DS:DX

VAR readBytes:BYTEWORD;
AX

VAR e"or:WORD),'
AX;CF

Function 40H: Write to a file or device

DOSCALL(40H; handle:WORD,' nrbytes:WORD,'
AH BX ex

bujfAddr:ADDRESS;
DS:DX

VAR writtenBytes:BYTEWORD,' VAR e"or:WORD);
AX AX;CF

Function 41H: Delete a file from a specified directory

DOSCALL(41H; stringaddr:ADDRESS,' VAR e"or:WORD);
AH DS:DX AX;CF

122

MODULA-2/86

MODUIA-2/86 DOSCALL

Function 42H: Move file read/write pointer

DOSCALL(42H,' handle:WORD,' method:BYTEWORD,'
AH BX AL

inHigh,inLow: WORD;
CX DX

VAR outHigh,outLow:WORD; VAR error:WORD),'
DX AX Ax,CF

Function 43H: Change File Mode

DOSCALL(43H,' stringaddr:ADDRESS; !ctcode:BYTEWORD;
AH DS:DX AL

VAR mode:BYTEWORD,' VAR error:WORD),'
CX Ax,CF

Function 44H: I/O control for devices

The procedure depends on the value of the second parameter that must be a constant. This
parameter determines the function to execute:

Get device info

DOSCALL(44H,' 0; handle:WORD,'
AH ALBX

V AR devicein!o:BYTEWORD;
DX

VAR error:WORD);
Ax,CF

123

DOSCALL

Set device info

DOSCALL(44H; 1; handle:WORD;
AH ALBX

deviceinfo:BYI'EWORD;
DX

VAR eITor:WORD);
AX,CF

Read Bytes from device control channel

DOSCALL(44H,' 2; handle:WORD;
AH ALBX

nrBytes:BYI'EWORD; buffAddr:ADDRESS;
ex DS:DX

V AR transferredbytes:BYI'EWORD;
AX

VAR eITor:WORD);
AX,CF

Write Bytes to device control channel

DOSCALL(44H,' 3; handle:WORD;
AH ALBX

124

nrBytes:BYI'EWORD,' buffAddr:ADDRESS,'
ex DS:DX

V AR transferedbytes:BYI'EWORD,'
AX

VAR eITor:WORD);
AX,CF

MODULA-2/86

MODULA·2/86

Read Bytes from drive control channel

DOSCALL(44H; 4; drive:BYTEWORD;
AH ALBL

nrBytes:BYTEWORD; bujfAddr:ADDRESS;
CX DS:DX

V AR trans!eredbytes:BYTEWORD;
AX

VAR error:WORD);
AX,CF

Write Bytes to drive control channel

DOSCALL(44H; 5; drive:BYTEWORD,'
AH ALBL

Get Input Status

nrBytes:BYTEWORD; bujfAddr:ADDRESS;
ex DS:DX

V AR transferedbytes:BYTEWORD;
AX

VAR error:WORD);
AX,CF

DOSCALL(44H,' 6,' handle: WORD,' VAR status:BYTEWORD;
AH ALBX AX

VAR error:WORD),'
AX,CF

DOSCALL

125

DOSCALL

Get Output Status

DOSCALL(44H; 7,· handle: WORD; VAR status:BYrEWORD,·
AH ALBX AX

VAR error:WORD),·
AX;CF

Function 45H: Duplicate a file handle

DOSCALL(45H; handlel:WORD; V AR handle2:BYrEWORD;
AH BX AX

V AR error:WORD);
AX;CF

Function 46H: Force a duplicate of a tile

DOSCALL(46H; handlel:WORD; V AR handle2:BYrEWORD;
AH BX CX

VAR error:WORD);
AX,CF

Function 47H: Get Current Directory

126

DOSCALL(47H; drive:BYrEWORD; straddr:ADDRESS;
AH DL DS:SI

V AR error: WORD);
AX,CF

MODULA-2/86

MODULA-2/86

Function 48H: Allocate Memory

DOSCALL(48H; V AR paragraphs:BYTEWORD,·
AH BX

V AR membase:BYTEWORD;
AX

VAR error:WORD);
AX;CF

Function 49H: Free allocated Memory

DOSCALL(49H: segaddr:ADDRESS;
AH ES must be a paragraph address

VAR error:WORD);
AX;CF

Function 4AH: SETBWCK-Modify allocated memory blocks

DOSCALL(4AH; blockaddr:ADDRESS;
AH ES must be a paragraph address

V AR paragraphs:BYTEWORD,·
BX

VAR error:WORD),·
AX;CF

DOSCALL

127

DOSCALL

Function 4BH: Load or execute a program

DOSCALL(4BH;stringaddr:ADDRESS; paramblock:ADDRESS;
AH DS:DX ES:BX

/ctval:BYTEWORD;
AL

VAR en-or:WORD);
AX;CF

Function 4CH: Terminate a process(Exit)

DOSCALL(4CH," retumCode:BYTEWORD),"
AH AL

Function 4DH: Retrieve the return code or a sub-process (Wait)

DOSCALL(4DH," V AR retCode:BYTEWORD),"
·AH AX

Function 4EH: Find first matching file

DOSCALL(4EH," stringaddr:ADDRESS; attribut:BYTEWORD;
AH DS:DX ex

VAR en-or:WORD);
AX;CF

Function 4FH: Find next matching file

DOSCALL(4FH," ~A~~ error:WOP.D);
AH AX;CF

Function 54H: Get Verify state

DOSCALL(54H," VAR state:BYTE),"
AH AL

128

MODULA-2/86

MODULA-2/86

Function 56H: Rename a file

DOSCALL(56H; fromstring,tostring:ADDRESS;
AH DS:DX ES:DI

VAR e"or:WORD),·
AX,CF

Function 57H: Get/Set a file's date and time

DOSCALL(57H; handle:WORD,· mode:BYTEWORD;
AH BX AL

V AR date,time:BYTEWORD;
DX ex

VAR e"or:WORD);
AX,CF

DOSCALL

129

INTERFACING ASSEMBLY CODE LIBRARIES MODULA-2/86

5.4 INTERFACING ASSEMBLY CODE LIBRARIES

Note: To encorporate the following changes you need the sources of the MODULA-2/86 run-time
system.

MODULA-2/86 uses its own object file formats (LNK and LOD files). Therefore, it is not possible to
link standard object files together with MODULA-2/86 programs. However, there are other ways to
call routines written in assembly language from a MODULA-2/86 program. This section will explain
such a way by means of an example. The sample assembly and Modula-2 programs referenced can be
found at the end of this section.

The task of preparing a library of assembly code routines for use with MODULA-2/86 can be divided
into five steps:

• Preparing the assembly library itself and verifying that it meets all the requirements

• Adapting the file RTS.ASM of the MODULA-2/86 run-time support

• Creating an executable file by assembling and linking your assembly library and the modified
MODULA-2/86 run-time support

• Writing a Modula-2 definition module for the assembly library routines

• Implementing this module in Modula-2 by means of calls to the assembly routines

5.4.1 Sample Assembly Library

For our example we use a library of four assembly routines we would like to call from MODULA2/86
programs. The routines in this assembly library are called 'init', 'fctl', 'fct2', and 'fct3'. The routine
'init' takes no parameters and needs to be called to initialize this assembly library. The other routines
take their parameters in registers. The assembly source code of this library is shown in the listing of
the sample assembly library at the end of this section.

130

MODUIA-2I86 INTERFACING ASSEMBLY CODE LIBRARIES

Note that any routines which will be called from a MODULA-2/86 program must be declared as 'far'
procedures. This ensures that the assembler will generate a 'far' return instruction. It is not possible
to call routines that are declared 'near' (instead of 'far') from a MODULA-2/86 program, because
these routines must be called with an intrasegement call ('far' call) from the MODULA-2/86
program. This is due to the fact that MODULA-2/86 supports the full address space of the 8086
processor (large memory model). where code and data may be anywhere in memory.

For the same reason, any parameter given by an address must be handed over to the assembly
routines by means of two registers, one containing the segment part and one containing the offset
part of the address. In general, two variables declared in a MODULA-2/86 program will be allocated
in different data segments.

5.4.2 Adapting the Run-Time Support

To make our assembly routines accessible from Modula-2, we also need to modify the main part of
the MODULA-2/86 run-time support. The assembly sources of the MODULA-2/86 run-time support
are provided on the distribution disks. For example, we copy the file RTS.ASM to a file we call
NEWRTS.ASM. Then we can start to modify the copy. The necessary modifications are described in
the following paragraphs. The names used, refer to the listing of the RTS extensions added at the end
of this section.

First, we need to define and initialize a table (,EntryPointTable') that contains the entrypoints
(addresses) of all our library routines (init, fctl, fct2, fct3).

We also need a procedure (,GetEntryPointTable') that returns the address (segment and offset) of
this table. This procedure will be called by the Modula-2 counterpart of our assembly library through
a software interrupt. Therefore, it must end with a return from interrupt instruction (IRET).

Then, we need to choose an interrupt vector ('LibraryVector') which will be used to call this
initialization procedure. Any interrupt vector which is not occupied may be used. In our example we
used the interrupt vector number 229, which is next to the interrupt number 228, used by the
MODULA-2/86 run-time support.

131

INTERFACING ASSEMBLY CODE UBRARmS MODULA-2/86

The entry code of the run-time support should then be adapted such that it saves the old value of the
library interrupt vector, and sets it to the address of the initialization procedure
(,GetEntryPointTable'). This should be done at the same place where the RTS sets up its own
interrupt vector, and similar code can be used. In the same way the original value of the library
interrupt vector should be restored in the termination code of the run-time support.

5.4.3 Creating a New Executable File NEWM2.EXE

After the modifications have been done, we need to assemble and link our new run-time support,
such that it includes our assembly library. For this purpose, we also need the other sources of the
MODULA-2/86 run-time support which are provided on the distribution disks: RTS.INC,
SERVICES.ASM, TRANSFER.ASM, LOADER.ASM, and DBUG.ASM.

We need to assemble all the .ASM files, including the modified NEWRTS.ASM and the file of our
assembly library. This can be done by the DOS commands 'masm newrts;', 'masm services;', and so
on.

In order to produce a new executable file we should then link the resulting object files. Assuming that
the object code of our assembly library is in a file ASMUB.OBJ, the DOS command:

link newrts+services+transfer+loader+dbug+asmlib;

can be used. This produces an output file NEWRTS.EXE,

which we can rename to NEWM2.EXE. Programs that use our assembly library must be started using
this new run-time support, by wping newm2 <program name>.

5.4.4 Definition Module for the Sample Assembly Library

The definition module 'AsmLib' for our sample assembly library declares and exports Modula-2
procedures (Fctl, Fct2, Fct3) with appropriate parameter lists, corresponding to the routines in the
assembly library (fctl, fct2, fct3). It is no different from a regular Modula-2 definition module. Please
refer to the listing at the end of this section.

132

MODULA-2/86 INTERFACING ASSEMBLY CODE LIBRARIES

5.4.5 Implementation Module for the Sample Assembly Library

The implementation module' AsmLib' for our sample assembly library is given at the end of this
section. It declares a variable that corresponds to the table of entrypoints as it is declared in the
assembly part. It is essential that the number and order of the procedures in these two tables match.
The procedure 'InitLib' calls the procedure 'GetEntryPointTable' of the run-time support through
the corresponding software interrupt. Then it copies the table of entrypoints.

The implementations of the exported procedures that correspond to the routines in the assembly
library all follow the same scheme: The input parameters are copied into the appropriate registers,
the function is called, and the returned values are copied to the output parameters.

Note that around the call to the assembly routine the value of the base pointer register BP is saved
and restored. There is no need to save any other registers. (It is assumed that the stack segment SS
and the stack pointer SP will be preserved.) The BP register may then be modified by the call,
however, it should not be used to pass parameters. The value of the BP register is essential to
MODULA-2/86 because it is used to access local variables and procedure parameters.

If there is more than one input parameter (several calls to SETREG), or if there are output
parameters (one or more calls to GETREG), then only constants, or variables and value parameters
which are declared local to the procedure, should be used with SETREG and GETREG. Also, the
second argument of SETREG or GETREG should be of a simple type. It should neither be an
expression, contain a function call, index an array, nor be a global (module) variable or a VAR
parameter. If necessary, input parameter values should be copied to local variables of simple types
before the first call to SETREG. Only local variables of simple types should be used with GETREG.
If necessary, their values should be copied to the real output parameters after the last call to
GETREG. If these guidelines are not observed, calls to SETREG or GETREG might destroy
parameter values which are in registers.

133

INTERFACING ASSEMBLY CODE LIBRARIES MODULA-2/86

5.4.6 Sample Assembly Library Listing

;*** . ,
; this is a sample of a possible assembly library, for
; which we build a Modula-2 interface . ,
mycode
mydata

group
group

libcode
libdata

assume CS:
assume DS:

mycode
mydata

;***
public init; initialization routine of library
public fctl; entrypoint of first library routine
public fct2; entrypoint of second library routine
public fct3; entrypoint of third library routine

;***

;***
libdata segment public 'data'

; data of the library
libdata ends
;***

134

MODULA-2/86 INTERFACING ASSEMBLY CODE LIBRARIES

;***
libcode segment public 'code'

init

init

fctl

fctl

fct2

fct2

fct3

fct3

proc far
; initialization code of the library
ret
endp

proc far
; entry parameters: description
; exit parameters: description
; code of the first library routine
ret
endp

proc far
; entry parameters: description
; exit parameters: description
; code of the second library routine
ret
endp

proc far
; entry parameters: description
; exit parameters: description
; code of the third library routine
ret
endp

libcode ends
;***

end

135

INTERFACING ASSEMBLY CODE LmRARIES MODULA-2/86

5.4.7 RTS Extensions

;*** . ,
; this is a listing of the code that must be inserted into
; the RTS, in order to build a Modula-2 interface for an
; assembly library
;
;***

;***
code segment public 'code'
; FROM lib IMPORT

extrn init:
extrn fctl:
extrn fct2:
extrn fct3:

code ends

far
far
far
far

;***

LibraryVectorNr EQU 229 . , number of the interrupt
vector which is used to
call GetEntryPointTable

; . ,
;***
data segment public 'data'

oldLibraryIV dd ?
; variable to save the original value of the
; library interrupt vector (LibraryVectorNr)

EntryPointTable dd init, fctl, fct2, fct3
; table containing the entrypoints of all
; library routines

data ends
;***

136

MODULA-2/86 INTERFACING ASSEMBLY CODE LIBRARIES

:***
code segment

GetEntryPointTable:

code

: return the address of the table that contains
: the entrypoints of the library routines . ,
: exit parameters: . , ES:SI hold the

MOV AX, data
MOV ES, AX
MOV SI, offset
IRET

ends

address of EntryPointTable

data: EntryPointTable

:***

; the following code must be inserted at the appropriate
: place into the Modula-2 run-time support (file RTS.ASM),
; in order to save the original value of the interrupt
: vector LibraryVectorNr, and to set it such that it can
; be used to call the function GetEntrypointTable

: save interrupt vector and set it to entrypoint
: of GetEntrypointTable interrupt service routine

MOV BX, LibraryVectorNr*4
; save the old value

MOV AX, ES: [BX]
MOV word ptr oldLibraryIv, AX
MOV AX, ES: 2[BX]
MOV word ptr oldLibraryIV + 2, AX

: set the new-one
MOV ES:word ptr [BX],offset GetEntryPointTable
MOV ES:word ptr 2[BX], CS

:***

137

INTERFACING ASSEMBLY CODE LIBRARIES MODULA-2/86

; the following code must be inserted at the appropriate
; place into the Modula-2 run-time support (file RTS.ASM),
; in order to restore the original value of the interrupt
; vector LibraryVectorNr, which is used to call the
; function GetEntryPointTable

; restore interrupt vector
MOV BX, LibraryVectorNr*4

; restore the old value
MOV AX,word ptr oldLibraryIV
MOV ES:word ptr [BX],AX
MOV AX,word ptr oldLibraryIV + 2
MOV ES:word ptr [BX]+2,AX

;***

5.4.8 The Definition Module' AsmLib'

DEFINITION MODULE AsmLib;
(* this module is the Modula-2 interface to the sample

library of assembly routines
*)

EXPORT QUALIFIED
FctJ, Fct2, Fct3,'

PROCEDURE Fctl(parameters);
(* Modula-2 declaration o/the procedure interface of

the first assembly library routine
*)

PROCEDURE Fct2(parameters);

138

(* Modula-2 declaration o/the procedure interface of
the second assembly library routine

*)

MODULA-2/86 INTERFACING ASSEMBLY CODE LIBRARIES

PROCEDURE Fct3(parameters),·
(* Modula-2 declaration of the procedure interface of

the third assembly library routine
*)

END AsmLib.

5.4.9 The Implementation Module' AsmLib'

IMPLEMENTATION MODULE AsmLib,·
FROM SYSTEM IMPORT

ADDRESS, SWl, CODE, GETREG, SETREG, ES, SI,·

CONST
LibraryVectorNr = 229,·

(* number of the interrupt vector used to call the
junction GetEntryPointTable in the modified
RTS,. this function retums the address of the
table with the entrypoints of the assembly
library routines.

*)

PushBP = 55H,.
PopBP=5DH,.

139

INTERFACING ASSEMBLY CODE LIBRARIES

TYPE
EntryPointTable = RECORD

init: PROC,'
(* entrypoint of a possible

function in the assembly
library to initialize the
library

*)
fet1: PROC;
fct2: PROC,'
fct3: PROC;
(* entrypoints for all assembly

library routines
*)

END,'

VAR
fets: EntryPointTable,'

(* local table with the entrypoints of all the
assembly library routines. It is a copy of an
identical table in the RTS. It is initialized
by the procedure 'InitLib' of this module.
We use a copy for performance reasons.

*)

PROCEDURE Fct1(parameters),'
BEGIN

(* initialize entry parameters, using SET REG *)
CODE(PushBP); (* save BP *)
fcts·fetl;
CODE(PopBP); (* restore BP *)
(* get values of return parameters, using GETREG *)

END Fctl,'

140

MODUIA-2/86

MODULA-2/86 INTERFACING ASSEMBLY CODE LIBRARIES

PROCEDURE Fet2(parameters);
BEGIN

('" initialize entry parameters, using SETREG "')
CODE(PushBP),· ('" save BP "')
fets·fet2;
CODE(PopBP); ('" restore BP "')
('" get values of return parameters, using GETREG "')

END Fet2;

PROCEDURE Fet3(parameters);
BEGIN

('" initialize entry parameters, using SETREG "')
CODE(PushBP); ('" save BP "')
fets.fetn;
CODE(PopBP); ('" restore BP "')
('" get values of return parameters, using GETREG "')

END Fet3;

PROCEDURE InitLib;
VAR

adr: ADDRESS;
tableptr: POINTER TO EntryPointTable,·

('" pointer to the original table with the
entry points of the assembly library routines.

"')

141

INTERFACING ASSEMBLY CODE LIBRARIES

BEGIN
SWI(LibraryVectorNr),·

(* call the /Unction GetEntryPointTable in the RTS,
which returns the address of the table with the
entrypoints of the assembly library routines

*)
GETREG(ES, adr.SEGMENT),·
GETREG(SI, adr. OFFSET);

(* get the address of the entry point table
*)

tableptr := adr,·
fcts := tableptr";

(* copy the table into local table of this module
*)

END InitLib,·

BEGIN
InitLib;
fcts.init;

(* call the initialization code of the assembly
library

*)

END AsmLib.

142

MODULA-2/86

MODULA-2/86 LIBRARY SEARCH STRATEGY

5.5 LIBRARY SEARCH STRATEGY

No special manipulation is required to build or to use the library of modules. All on-line modules,
residing on hard disk or floppy disk, comprise the library. The compiler, linker, and debugger
automatically search for referenced modules. The default search strategy can be modified by
command options. Note that during the operation of the MODULA-2/86 compiler, linker and
debugger, all needed files must be on-line. By default, several drives or directories are searched to
find a library module.

For the following discussion we will use the term 'path' or 'path name' as an abbreviation for 'drive
and/or directory name'.

5.5.1 Default Names

The MODULA-2/86 compiler, linker, post-mortem debugger, and run-time debugger construct the
default filename for a library module from its module name. This is done by truncating the module
name if it is longer than a file name may be, and by appending the appropriate extension (SYM,
LNK, etc.) to the resulting name. This default filename is then used to find the corresponding file.

5.5.2 The Default Search Strategy

When a library module is needed, several paths will be checked automatically to find the
corresponding file. A search strategy, as explained below, is applied by the compiler (for files with
extension .SYM), by the linker (for .LNK and .MAP files), and by the debugger (for .REF, .MOD
and .DEF files).

The first search is always done using the 'source' or 'master' path. The source or master path is the
path you specify when entering the name of the file to compile or link. If the file is not found using
this path, the current path -- the current drive and directory as known to your operating system -- is
checked for the file. If it is not found there, a third and last automatic search is done using the path
from where the compiler (or linker, debugger) was loaded. If the file still cannot be opened, you will
be prompted to type in the (path and) file name.

143

UBRARYSEARCHSTRATEGY MODUlA-2/86

This default search strategy is adequate only if your system has floppy disks. For hard disk systems it
is recommended that you organize the disk as described in the installation section of this manual and
that you change the default search strategy by setting up the environment (in DOS) for MODULA-
2/86. This is done by the following DOS commands:

• SET M2SYM=\M2UB\SYM<CR>
• SET M2LNK=\M2LIB\LNK<CR>
• SET M2REF=\M2LIB\REF<CR>
• SET M2MAP=\M2LIB\MAP<CR>

It is recommended that these DOS commands be included in your AUTOEXEC.BAT file, which is
executed by DOS automatically every time you boot your system. If these environment strings
(M2SYM, M2LNK, M2REF, M2MAP) are defined in DOS, they will be used by the MODULA-2/86
system in order to determine which paths are searched automatically. If these environment strings are
not defined, then three automatic searches as explained above will be performed. If you use the
recommended disk organization, then you should define these environment strings.

Each of these environment strings can denote a number of paths. Different paths must be separated
by semicolons. If the environment strings are defined, then the MODULA-2/86 system - the
compiler, linker and debugger - will search the library files using all the paths specified by the
corresponding environment string. However, the first search is still done using the 'source' or 'master'
path. If it fails, the paths specified in the corresponding environment string are checked one after the
other according to the order in which they appear. If the file is not found, then you will be prompted
to type in the (path and) file name.

Example:

Let us assume, that the M2SYM" string has been set by

set m2Sym=i\mystufr\mylibi\m2Iib\Sym

and that a compilation was started by

144

C> m2 comp<CR>
LOGITECH MODULA-2/86 Compiler, ReI. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
source file>a:myprog<CR>

MODUIA-2/86 LIBRARY SEARCH STRATEGY

In this case; the compiler will always perform a first search for symbol files on drive A, using the path
you specified with the source file. If the file is not found there, it will try to open the file using the first
path from M2SYM. In our case, this first path is empty, because the string starts with a semicolon.
An empty path denotes the current directory on the current drive. If a symbol file is not found using
the current path, the second path '\mystuft\mylib' is searched. If this search and the last automatic
attempt to open a symbol file using the path '\m2lib\sym' both fail, you will be prompted to type in
the file name.

This way of searching library files gives you a lot of flexibility to add your own library modules. The
simplest way to add your own library modules is to put them into the directories with the standard
library. As the example shows, you can also add new libraries of your own and organize it in your own
way. Note that, unlike in the case where no environment strings are defined, the current directory is
only searched if you did not specify a path when entering the source file name, or when an empty
path occurs in the environment string.

5.5.3 The Query Search Strategy

The query search strategy is always applied by the MODULA-2/86 system when you are prompted to
type in the (path and) file name of a library file. This can happen when a file is not found using the
default search strategy, or when you specify the Query option when compiling (or linking, or
debugging).

When you are prompted, several responses are available. They are discussed in the following
paragraphs.

• You can enter <ESC>, which means 'no file'. This can be used to indicate that the file is not
available or, in the case of the linker, that it should not be included. Depending on the
context, entering <ESC> may not allow the successful completion of the program you are
currently using.

• You can enter <CR> only, which means that the file name should be constructed from the
module name, and that the default search strategy (as explained above) will be applied.

145

UBRARY SEARCH STRATEGY MODUlA-2/86

146

• You can enter a file name only. without specifying any path name. If you do this. that file
name will be used. but the file will still be searched for automatically according to the default
search strategy. (Remark: Here an empty path name does not denote the current path. If you
want to get a file from the current path then you must denote it by 'OK:'. Under DOS you
may also use '.\'.)

• You can enter a path name only (terminated by':' or by '\'). In this case the file name will be
constructed from the module name and searched for using the specified path. Only one
attempt to open the file will be made.

• You can enter a complete path and file name. In this case also, there will be only one attempt
to open the file.

MODULA-2/86 DECIMALS

5.6 DECIMALS

The module 'Decimals' provides functions for arithmetic and formatting with decimal numbers of 18
or less digits. These functions are appropriate for business-oriented computation.

5.6.1 Internal and External Format

Decimal numbers have two formats -- external and internal. Numbers in external format are
represented by character strings. This external format is used for reading and writing numbers to the
console or printer in a form understandable to the user. Arithmetic operations are performed on
numbers stored in an encoded, internal format. The procedures 'StrToDec' and 'DecToStr' are used
to convert decimal numbers between internal and external format. Procedure 'StrToDec' is used to
encode decimal numbers and procedure 'DecToStr is used to decode decimal numbers.

5.6.2 Types

Module 'Decimals' provides the following types:

• Type 'DECIMAL'

Type 'DECIMAL' is used for the internal representation of a decimal number. Arithmetic
operations are performed on variables of type 'DECIMAL'.

147

DECIMALS MODULA-2/86

• Type 'DecState'

A variable of type 'DECIMAL' has a state of type 'DecState' associated with it. This state
may have the following values:

• NegOvfl indicates a negative overflow
• Minus indicates a negative decimal value
• Zero indicates the value 0
• Plus indicates a positive decimal value
• PosOvfl indicates a positive overflow
• Invalid indicates an invalid number

The procedure 'DecStatus' returns the state of a decimal variable.

5.6.3 Variables

The following variables are exported from module 'Decimals':

• VAR'DecValid'

The variable 'DecValid' indicates the success of the last operations. 'DecValid' is set after
each call to a conversion or arithmetic procedure. It is set to FALSE if the operation failed.

• V AR 'Remainder'

The variable 'Remainder' is set after each division operation with procedure 'DivDec'.
'DivDec' returns an integer number for the quotient. If the result is not aninteger number,
'Remainder' indicates the first digit that appears after the decimal point. For example, the
division of 39 by 8 yields a quotient of 4. The remainder is equal to 8 because this digit
appears immediately after the decimal point in the exact result of 4.875. If the division
operation fails, the remainder is '?'.

5.6.4 Conversion and Status Procedures

The following conversion and status procedures are provided by module 'Decimals':

• Procedure 'StrToDec'

148

MODULA-2/86 DECIMALS

Procedure 'StrToDec' converts numbers from external to internal format. It is explained in
greater detail below.

• Procedure 'DecToStr'

Procedure 'DecToStr' converts numbers from internal to external format. It is explained in
greater detail below.

• Procedure 'DecStatus'

Procedure 'DecStatus' returns the current state of a decimal variable. It can be used to get
the sign of a valid decimal number. When an operation fails, the user can call the procedure
'DecStatus' to determine the actual arithmetic error. 'DecStatus' specifies the error status of
the decimal variable according to type 'DecState'.

5.6.5 Arithmetic Operations

The following arithmetic operations can be performed with variables of type 'DECIMAL':

• Procedure 'CompareDec'

Performs the comparison of two decimal values, DecO and Decl. The output is an integer
value as follows:

• -1 if DecO is less than Dec1
• 0 if DecO equals Decl
• 1 if DecO is greater than Dec1

• Procedure 'AddDec'

Performs the addition of two decimal values, DecO and Dec1. The output is the sum of the
two values, a decimal value.

• Procedure 'SubDec'

Performs the subtraction of one decimal value, Dec1, from another decimal value, DecO. The
output is the difference of the two values, a decimal value.

• Procedure 'MuIDec'

149

DECIMALS MODUIA-2/86

Performs the multiplication of two decimal values, a multiplicand, DecO and a multiplier,
Decl. The output is the product of the two values, a decimal value.

• Procedure 'DivDec'

Performs the division of one decimal value by another. The dividend, DecO is divided by the
divisor, Decl. The output is the quotient of the two values, a decimal value.

The remainder is placed in the global variable 'Remainder' as previously explained .

• Procedure 'NegDec'

Returns the negative value of a decimal value.

5.6.6 J»ictuunes

Numbers in external format are stored in character strings. These strings may include a currency
character, commas and decimal points. For example:

$923,841,371.38

is a decimal number in external format.

So called 'pictures' are used for the conversion between the string representation of decimal numbers
in external format and their representation in internal format. Pictures indicate how decimal numbers
appear in external format. They control the occurrence of leading blanks, leading zeros, number signs,
currency characters, commas and decimal points.

For example, the picture which corresponds to the decimal number shown above is:

$,$$$,$$$,$$$,$$9.99

With the picture ZZZZZZZZZZZZ9 the same decimal number would have appeared as:

92384137138

150

MODULA-2/86 DECIMALS

5.6.7 Picture Characters

Blank spaces may not appear in a picture. Pictures may consist of the following characters only:

• 9 digit
• Z nonzero digit or leading blank
• $ nonzero digit, leading blank, or $
• S sign of number ('+' or '.')
• decimal point
• comma or leading blank

If the first character of a picture is a dollar sign ($), it will appear as a currency character in the
external format. The currency character floats across any leading blanks so it appears adjacent to the
leftmost digit. However, if a decimal value consists of the same number of digits as the picture which
represents it, each dollar sign will be replaced by a digit and thus, no currency character will appear.

Numbers without leading zeros are represented with 'Z's. A 'z' is replaced by a digit if there is one,
otherwise it is replaced by a blank.

'9's represent numbers which require leading zeros to be displayed. A '9' is replaced by a digit if there
is one, otherwise it is replaced by a zero.

In the following picture, the '9's guarantee that dollar amounts less than $1.00 appear in standard
form.

$$$,$$9.99

The following numbers correspond to this picture:

$0.39
$369.00

$48,327.04

Sign characters (S) and decimal points (.) do not float across leading blanks, they appear in their
specified position. Commas (,), 'z' and '$' characters correspond to leading blanks when they appear
to the left of a number.

151

DECIMALS MODUIA-2/86

5.6.8 Procedure StrToDec

The procedure 'StrToDec' uses pictures to convert numbers from external to internal format. If the
input string is shorter than the picture string, leading blanks are added until it is the same length as
the picture. A currency character can appear only once in the input string, and it must be adjacent to
the leftmost digit. Commas are matched if they are within the number, or ignored if they appear to
the left of the number. The sign character is matched by a '+', '-' or a blank. Decimal points are
matched unconditionally.

Pictures ensure that input strings will be within a limited range. 'StrToDec' sets 'DecValid' to FALSE
and the state of the decimal result to 'Invalid' under the following conditions:

• The input string does not match the picture specification.

• The input string is longer than the picture string.

• The input string and the picture specify more than 18 digits.

5.6.9 Procedure DecToStr

If the number of digits in a number in external format exceeds the number of digit characters in the
picture which represents it, DecToStr sets DecValid to FALSE and returns an 'invalid' format string.
Thus, pictures can be used to control the maximum number of digits that can appear in a number.

Procedure 'DecToStr' represents erroneous decimal variables with special character strings
depending on the state of the decimal variable:

• PosOvfl is represented by '+++++++'
• NegOvfl is represented by ,-----------,
• Invalid is represented by'???????'

The length of the string is determined by the length of the cOiiesponding picture.

152

MODUIA-2/86 DECIMALS

5.6.10 Error Propagation

Once an error occurs in a decimal variable as the result of an operation, the error remains through all
the operations involving the variable. The following tables show how errors are propagated by the
arithmetic operations. For operations in the form 'A <operation> B', the leftmost column represents
states of A and the topmost row represents states of B.

Addition and Subtraction:

AlB NegOyfl Minus Zero Plus PosOyfl Invalid

NegOvtl NegOyfl NegOvtl NegOvtl NegOvtl Invalid Invalid
Minus NegOyfl PosOvtl Invalid
Zero NegOvtl PosOvtl Invalid
Plus NegOvtl PosOvtl Invalid
PosOvtl Invalid PosOyfl PosOyfl PosOyfl PosOyfl Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid

Multiplication:

AlB NegOyfl Minus Zero Plus PosOvtl Invalid

NegOvtl PosOvtl PosOvtl Zero NegOvtl NegOvtl Invalid
Minus PosOyfl Plus Zero Minus NegOvtl Invalid
Zero Zero Zero Zero Zero Zero Invalid
Plus NegOvtl Minus Zero Plus PosOvtl Invalid
PosOvtl NegOvtl NegOyfl Zero PosOvtl PosOvtl Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid

153

DECIMALS MODUIA-2/86

Division:

AlB NegOyfl Minus Zero Plus PosOvt1 Invalid

NegOvt1 Invalid Invalid Invalid Invalid Invalid Invalid
Minus Invalid Plus Invalid Minus Invalid Invalid
Zero Zero Zero Invalid Zero Zero Invalid
Plus Invalid Minus Invalid Plus Invalid Invalid
PosOvt1 Invalid Invalid Invalid Invalid Invalid Invalid
Invalid Invalid Invalid Invalid Invalid Invalid Invalid

154

MODUIA-2/86 REAL ARITHMETIC

5.7 REALARITHMETIC

The Modula-2 programming language provides the data type REAL for floating point arithmetic.
MODULA-2/86 supports the type REAL according to the IEEE standard for double precision
floating point numbers. This format uses 8 bytes and is precise for 15 to 16 decimal digits. The values
that can be represented range from 2.23 times 10 to the minus 308th power, to 1.79 times 10 to the
308th power:

2.23E-308 <= Ixl <= 1.79E+308.

An optional 8087 math coprocessor can be added to many 8086/8088 based microcomputer systems.
The 8087 performs floating point operations at very high speed. It provides a set of instructions which
manipulate operands and yield results in the IEEE standard floating point format. If an 8087
coprocessor is not present, the REAL arithmetic functions must be emulated on the 8086 or 8088
processor.

MODULA-2/86 allows you to create programs that use an 8087 coprocessor and run at very high
speed, as well as programs that emulate REAL arithmetic on the 8086 or 8088. A compile time
switch decides whether the compiler generates 8087 inline code or code that uses the LOGlTECH
REAL arithmetic emulator.

5.7.1 Simple Use of REAL Arithmetic

If you know your program will be running on a system with an 8087, you can use the compiler option
Coprocessor. When compiling with the Coprocessor option, the compiler generates 8087 inline code
for REAL operations. The prefix 'C87' has been added to the names of the object files of those
MODULA-2/86 library modules that contain 8087 inline code. If you compile with the Coprocessor
option you should use these files when linking. A program that includes 8087 inline code requires an
8087 to run and cannot be executed on a system without an 8087.

The following describes the easiest way to create a program that runs without an 8087 coprocessor:

155

REAL ARITHMETIC MODULA-2/86

You must choose the compiler option Emulator if your program should run on a system without an
8087. When compiling with the Emulator option, which is the default, the compiler generates code
for the LOGlTECH REAL emulator. It also generates a reference to module 'Reals' which provides
the REAL emulation. The prefIx 'E87' has been added to the names of the object fIles of those
MODULA-2/86 library modules that have been compiled for the emulator. If you compile with the
Emulator option you should use these files when linking. When you link with the fIles with the prefIx
'E87', your program will always use the emulator for REAL arithmetic.

A MODULA-2/86 program compiled with the Emulator option can also be linked in other ways. It is
still possible to link the program such that it requires an 8087 for execution and executes at maximum
speed. It is also possible to link the program such that it uses an 8087 if one is present, and otherwise
uses the emulator. The use of these advanced features of MODULA-2/86 is described in the
following sections.

5.7.2 Choices for Using REAL Arithmetic

You may decide what kind of REAL arithmetic to use either at compile-time, link-time or run-time.

The later the decision about which kind of REAL arithmetic to use is made, the more the portability
of a program is improved. However, postponing this decision also increases memory requirements
and decreases execution speed. The relative benefits and disadvantages of each alternative are
detailed below.

MODULA-2/86 offers the following alternatives for REAL arithmetic:

156

• At compile time the compiler options Coprocessor and Emulator determine the kind of code
generated. The user can choose to generate 8087 inline code (Coprocessor option) or to
compile for the LOGlTECH REAL emulator (Emulator option). When compiling for the
emulator, the compiler automatically generates a reference to module 'Reals' which provides
the REAL emulation. The compiler implicitly !alOws the interface of module 'Reals',
therefore no symbol file needs to be provided.

• If you choose to generate 8087 inline code, an 8087 coprocessor is required to execute the
program. The program will not run on a system without an 8087. The link fIles with the prefIx
'C87' should be used when linking the program. For those library modules that use REAL
arithmetic the link files with the prefix 'C87' contain the object code for the 8087.

MODUIA-2/86 REAL ARITHMETIC

• If you choose to compile a module for the LOGITECH REAL emulator, how the program
will be linked is still flexible. MODULA-2/86 provides the following implementations for the
REAL emulator (module 'Reals') and for the mathematical functions (module 'MathLibO'):

• If the program will not be executed on a system with an 8087, using the pure
emulator version is the best choice. To use this version of the emulator, you must
link with the files with the prefix 'E87'. A program linked in this way may be
executed on a system with an 8087; however, it will never use the 8087.

• The pure 8087 version of the emulator can be useful if the program being linked is
executed on a system with an 8087. To use this version of the emulator, you should
link with the files with the prefix 'C87'. A program linked with the files with the
prefix 'C87' requires an 8087 for execution.

• Using a 'mixed' version of the emulator postpones, until run-time, the decision of
whether or not to use an 8087. The mixed emulator version is a combination of the
other two versions, and thus is the most flexible option. If you choose to link with
the mixed version of the emulator, then it will be determined at run-time whether an
8087 is present or not. Based on this determination:

• The program will use the 8087 if executed on a system with an 8087.

• The program will use the emulator to perform REAL arithmetic when the 8087
coprocessor is not present.

Linking with the mixed version of the emulator increases flexibility and improves the
portability of a program. The main disadvantage of the mixed version of the
emulator is that the program requires more memory to run because the code for
both forms of the emulation must be present. When linking the program, the files
with the prefix 'M87' must be used for the modules 'Reals' and 'MathLibO', and the
files with the prefix 'E87' must be used for all other library modules that use REAL
arithmetic.

Because of the prefix 'E87', 'e87', or 'M87' in the filename, the MODULA-2/86 linker cannot find
the corresponding library modules automatically. Therefore, you must decide which Real modules
you want to use: emulation, coprocessor or mixed. Then, you must copy these files to files with
appropriate names, such that the linker will find them. The following list tells you which files to copy
depending upon which method you decide to use:

157

REAL ARITHMETIC MODUIA-2/86

8087 Inline Code

Compile all your modules which use floating point arithmetic with the IC option.

• Reals
You will not use the emulator.

• MathLibO
Copy C87MathO.LNK to MathLibO.LNK.

• RealConversions
Copy C87RealC.LNK to ReaIConv.LNK.

• ReallnOut
Copy C87RealI.LNK to RealInOu.LNK.

Pure Emulator

Compile all your modules which use floating point arithmetic with the IE option.

• Reals
Copy E87Reals.LNK to Reals.LNK.

• MathLibO
Copy E87MathO.LNK to MathLibO.LNK.

• RealConversions
Copy E87RealC.LNK to RealConv.LNK.

• ReallnOut
Copy E87RealI.LNK to ReallnOu.LNK.

8087 Version of Emulator

Compile all your modules which use floating point arithmetic with the IE option.

• Reals
Copy C87Reals.LNK to Reals.LNK

• MathLibO
Copy C87MathO.LNK to MathLibO.LNK

• RealConversions
Copy E87RealC.LNK to ReaIConv.LNK.

• RealInOut
Copy E87RealI.LNK to ReallnOu.LNK.

158

MODUIA-2/86 REAL ARITHMETIC

Mixed Emulator

Compile all your modules which use floating point arithmetic with the IE option.

• Reals
Copy M87Reals.LNK to Reals.LNK.

• MathLibO
Copy M87MathO.LNK to MathLibO.LNK

• RealConversions
Copy E87RealC.LNK to RealConv.LNK.

• RealInOut
Copy E87RealILNK to RealInOu.LNK.

COMPARISON OF mE DIFFERENT ALTERNATIVES

5.7.4 Accuracy or the Computations

For all the basic arithmetic operations on operands of type REAL, the 8087 coprocessor and the
LOGITECH REAL emulator yield the same results. To compute mathematical functions such as
sine or cosine, the emulator uses the Chebyshev polynomial approximation. Because the 8087
coprocessor uses a different scheme for approximation, the results of mathematical functions may
sometimes differ slightly. For all practical purposes, these differences between the 8087 and the
emulator are not significant.

5.7.5 Memory Requirements

When you compile with the Coprocessor option, the compiler generates 8087 inline code and makes
no reference to the emulator (module 'Reals'). Module 'Reals' is only linked into a program if some
part of the program was compiled using the Emulator option. As a general rule, the memory
requirements are larger for programs that use the emulator.

Table 5.7-1 lists the approximate memory requirements (code and data) for the different
implementations of the modules 'Reals' and 'MathLibO'. All numbers are given in bytes.

159

REAL ARITHMETIC

Reals

8087 Intine Code

8087 Version of Emulator 500

Pure Emulator 2300

Mixed Emulator 2800

5.7.6 Performance

MathLibO

1700

1700

4200

6100

TABLE 5.7-1

MODUlA-2/86

Reals & MathLibO

1700

2200

6500

8900

Table 5.7-2 lists the time measured for 1000 executions of the addition, multiplication, and division of
two REAL numbers. Subtraction and addition require the same amount of time. The last row lists
the times measured for 1000 executions of a loop that performs once, each basic operation (addition,
subtraction, etc.), each kind of comparison (equal, less than, etc.), and calls once, each of the
functions provided by 'MathLibO'.

All times are given in seconds. However, the times measured may differ from system to system.
Table 5.7-2 allows for a relative comparison of the performance the user can expect when choosing a
particular alternative for REAL arithmetic in MODULA-2/86. On the average, 8087 inline code is
approximately ten times faster than full emulation of REAL arithmetic on the 8086.

160

MODUIA-2/86 REAL ARITHMETIC

Addition Multiplication Division Combination

8087 Inline Code 0.11 0.11 0.11 6.6

8087 Version of Emulator 0.22 0.22 0.22 8.2

Mixed Emulator (with 8087) 0.31 0.31 0.31 12.5

Pure Emulator 1.0 1.2 2.1 61.0

Mixed Emulator (without 8087) 1.1 1.3 2.2 63.0

TABLE 5.7-2

161

MEMORY ORGANIZATION MODULA-2/86

5.8 MEMORY ORGANIZATION

5.8.1 Global Memory Organization

The global memory organization when executing a MODULA-2/86 program is shown in Figure 5.8-1.
This setup is established by the MODULA-2/86 run-time support.

After loading a program the run-time support creates the main process, which will execute the
program. It then transfers control to this main process. The process descriptor of the main process is
stored in the data segment of the run-time support.

162

MODULA-2/86 MEMORY ORGANIZATION

Interrupt vector table
--- 400H

operating system
--- RTS address

Code of the MODULA-2/86 run time system
support

--- RTS DS
Data of the MODULA-2/86 run-time

support
--- M2 START MARK

Code of the MODULA-2/86 program,
loaded by the run-time support

Global data of the MODULA-2/86
program

--- START MEMORY
Heap of main process

--- Top of main
heap

free memory
--- Top of main

stack
Stack of main process

--- M2 END MARK
unused memory

TOP OF MEMORY

FIGURE 5.8-1
GLOBAL MEMORY ORGANIZATION

163

MEMORY ORGANIZATION MODULA-2/86

The memory locations indicated in Figure 5.8-1 have the following definitions:

164

• RTS address

Load address of the MODULA-2/86 run-time support. This address depends on the size of
the operating system. The RTS is a relocatable program, containing a code and a data
segment.

Address of the data segment of the MODULA-2/86 run time support.

Load address for a Modula-2 program. The MODULA-2/86 code is relocatable and is
loaded immediately after the end of the run-time support.

Address of the first free paragraph after the code and data of a Modula-2 program loaded by
the RTS. At this address the heap of the main process starts.

• Top of main heap

Current top of heap for the main process. The heap grows toward the stack. When the
program uses module Storage' to dynamically allocate and deallocate memory, the heap top
may be increased and decreased. If the heap grows too close to the top of the stack, the
program is aborted with a heap overflow.

• Top of main stack

Current top of stack for the main process. The stack grows toward the heap. For each active
procedure, the stack contains a procedure activation record. The structure of this record is
explained below. If the stack grows too close to the top of the heap, the program is aborted
with a stack overflow.

MODULA-2/86 MEMORY ORGANIZATION

End of the memory area actually used by the Modula-2 program and the run-time support.

• TOP OF MEMORY

End of memory area which in principle could be used by the Modula-2 program and the run­
time support. The run-time support gets the value for this address from the operating system.

5.8.2 Subprograms and Overlays

The MODULA-2186 environment offers a standard overlay schema. with the following
characteristics:

• Overlays can be loaded in the form of subprograms. This feature is provided by procedure
'Call' from module 'Program'.

• The size of an overlay is limited only by the physical address space, a maximum of one
megabyte.

• The programmer is not concerned about where an overlay is loaded. To load and execute an
overlay, one simply calls the procedure 'Call' from module 'Program'. This procedure finds a
memory area. on top of stack, large enough to hold the overlay. The relocatable loader then
loads the program in that area and control is passed to it. After termination of the overlay,
either normal termination or termination caused by an error, execution continues at the
statement that immediately follows the call to the procedure 'Call', and the memory occupied
by the overlay is freed.

• Only the main process can call subprograms. The procedure 'Call' must not be used from
coroutines that have beeen created by means of 'NEWPROCESS'. If the subprogram is
called in a 'shared' way (see definition module 'Program'), there is no distinction between the
old and the new heap of the main process. Only one heap exists. Any dynamic storage
allocated by the subprogram remains allocated upon termination of the subprogram.

165

MEMORYORG~ZATION MODUIA-2/86

If the subprogram is called in an 'unshared' way, it uses its own private heap. If the main process uses
module 'Storage' to dynamically allocate memory, the private heap of the subprogram is used. During
the execution of the subprogram no memory can be allocated from the old heap of the main program.
Upon termination of the subprogram all the memory allocated dynamically by the subprogram is
freed and the heap is reset to the old heap.

In either case, the stack is set back to the old stack when the subprogram terminates. This
automatically frees the memory area occupied by the code and global data of the subprogram.

After loading of a subprogram, the memory layout is as shown in Figure 5.8-2. (Only the higher part
of memory is shown. See also Figure 5.8-1.)

166

MODULA-2/86 MEMORY ORGANIZATION

lower address

Code of main program

Global data of main program
-------------------------------------- START MEM

Old heap of main process
-------------------------------------- Old top of heap

New heap of main process
(heap used by the subprogram)

-------------------------------------- New top of heap
Free memory

-------------------------------------- New top of stack
New stack of main process

(stack used by the subprogram)
-------------------------------------- Load address

Code of the subprogram,
loaded by 'Program.Call'

Global data of the subprogram
-------------------------------------- Old top of stack

Old stack of main process
-------------------------------------- M2 END MARK

unused memory
-------------------------------------- TOP OF MEMORY

FIGURE 5.8-2
MEMORY ORGANIZATION FOR SUBPROGRAMS

5.8.3 Processes

When starting a Modula-2 program, the MODULA-2/86 run-time support automatically creates the
main process. This 'default' process gets the largest available region of memory as its workspace. The
program which is loaded by the run-time support runs as the main process. Subprograms loaded by
the Modula-2 program through module 'Program' run as overlays to the main process. No new
process is created to execute subprograms. The Figures 5.8-1 and 5.8-2 illustrate the organization of
the workspace of the main process.

167

MEMORY ORGANIZATION MODULA-2/86

When a new process is created by a call to procedure 'NEWPROCESS' from module 'SYSTEM', it
must be assigned a workspace. This region of memory must be explicitly defined by the programmer.
It is usually a variable, owned by the father process. Such a variable can be global, for example, an
ARRA Y declared at the level of a module. It can be a dynamic variable, created on the heap by a call
to NEW, or it can also be a variable declared local to a procedure, which is allocated on the stack. If a
non-global variable is used, make sure the process does not have a longer lifetime than its workspace!

The organization of the workspace of a process created by a call to 'NEWPROCESS' differs slightly
from the organization of the workspace of the main process. It is used for the local and dynamic
variables of the process (stack and heap). A part of the workspace also contains the process
descriptor, which is needed for the TRANSFER mechanism. This process descriptor is initialized by
the call to procedure 'NEWPROCESS'. Figure 5.8-3 shows the organization of the process
workspace.

-------------------------------------- Workspace address
Process descriptor

Heap of process

free memory inside of
workspace

stack of process

FIGURE 5.8-3
PROCESS WORKSPACE

Top of process
heap

Top of process
stack

Workspace end

The process descriptor of a process created by 'NEWPROCESS' starts at the first paragraph
boundary in the process workspace. Approximately 200 bytes are needed for the process descriptor,
the initial heap and the initial stack. In addition, at any point in time, there should be approximately
200 bytes of free memory in the process workspace. This memory may be needed when an interrupt
occurs during the execution of the process, because the standard interrupt handlers of the operating
system use the current stack. This is true for any program and is not related in any way to the use of
'IOTRANSFER' in Modula-2. This brings the minimum size of a workspace to approximately 400
bytes, assuming that the corresponding process does nothing at all!

168

MODUIA-2/86 MEMORY ORGANIZATION

Note: If the workspace of the new process is too small and does not allow a reasonable
initialization, the process that calls 'NEWPROCESS' is terminated with a stack overflow.

For any procedure call, some space on the stack is needed. Also, any call to the operating system,
needs approximately 100 bytes of stack space. The standard MODULA-2/86 library implements all
input and output functions by means of calls to the operating system. Taking everything into account,
even the most simple process that does terminal or file i/o requires a workspace of AT LEAST 2 K
BYTES. For more complicated processes, a larger workspace is required.

The workspace of a process must be large enough to hold its heap and stack. If the process heap and
stack grow too much, using all of the free memory in the process workspace, the program containing
this process is aborted with a heap or stack overflow. The maximum size of a process workspace is
approximately 64K bytes.

5.8.4 Allocation of Variables

Local variables are variables which are declared inside of a procedure. They are allocated with the
procedure activation record on the stack of the process that executes the procedure call. The
variables of modules which are declared local to a procedure are allocated at the same place. The
procedure parameters are allocated at a different place inside of the procedure activation record.

Because the procedure activation record only exists while the procedure is being executed, the
lifetime of local variables and of the procedure parameters is limited to the duration of the procedure
call. Every time a procedure is called, a new instance of its activation record is created. If the
procedure is recursive, or if it is called by more than one process at the same time, several instances
of its procedure activation record will exist.

Global variables are variables which are declared in modules which are not local to a procedure, for
instance, in a definition module. They come into existence when the program or subprogram that
contains this module is loaded. They are of a more permanent nature than local variables. Their
lifetime is limited by the lifetime of the program or subprogram to which they belong.

In general, there exists only one instance of the global variables of a module. Global variables are
shared by all the procedures and processes of a program. A program that calls a subprogram also
shares its global variables with the subprogram.

169

MEMORY ORGANIZATION MODULA-2/86

Variables are allocated in the order of their declaration, the first variable has the lowest address.
Alignment of variables depends on the setting of the alignment option. If the alignment is on,
variables with a size greater than one byte are allocated on even addresses. Byte sized variables can be
allocated on odd addresses. The use of alignment can improve the performance of the program for an
8086 based system.

The maximum total size of all local variables of a procedure is approximately 32K bytes. The same
limit exists for the total size of all parameters of a procedure. In practice, however, these sizes are
much more limited by the size of the stack, which cannot exceed 64K bytes. The limit for the total
size of all global variables declared in one program module or in one implementation module,
including those declared in the corresponding definition module, is approximately 64K bytes. The
total size of the global variables in all modules of a program is only limited by the physical address
space which is at most one megabyte on an 8086 or 8088 based system.

5.8.5 The Heap

The heap of the main process starts immediately after the end of the code and data of the Modula-2
program loaded by the run-time support. To avoid unpredictable memory occupation due to the
concurrency of multiple processes, the heap of every process is administrated independently. For any
process created by 'NEWPROCESS' the heap is the memory area between the bottom of the
workspace, after the process descriptor, and the top of stack.

The library module 'Storage' implements this default heap management. It provides procedures
'ALLOCATE' and 'DEALLOCATE', which allocate or deallocate memory from the heap of the
calling process. Inside of the corresponding heap, the same strategy of allocation and deallocation is
used for the main process and all other processes. The heap grows toward the stack which occupies
the high end of the workspace of the process. If upon a call to 'ALLOCATE', the heap grows too
close to the stack, the heap manager aborts the Modula-2 program with a heap overflow.

Modula-2 provides the standard procedures 'NEW' and 'DISPOSE' to allocate and deallocate
dynamic memory. The compiler maps calls to these procedures to calls of the procedures
'ALLOCATE' and 'DEALLOCATE'. When using 'NEW' or 'DISPOSE' in a module, some
procedure 'ALLOCATE' or 'DEALLOCATE' must be imported or declared in that module. The
standard way of doing this is to import these procedures from the library module 'Storage'. However,
a program may declare and use its own versions of 'ALLOCATE' or 'DEALLOCATE'. In this way, a
program can implement its own heap management. In general, the strategy used for allocation and
deallocation of dynamic memory will then differ from the default strategy that is provided by module
'Storage'.

170

MODULA-2/86 MEMORY ORGANIZATION

5.8.6 The Stack

The stack holds different kinds of data:

• procedure activation records

• temporary values during the evaluation of an expression

• other temporary data

Every process owns its private stack which is part of its workspace. Upon creation of a process by a
call to 'NEWPROCESS' the stack is set such that the first word pushed onto the stack occupies the
last word at the highest even address in the workspace. The stack grows from the end of the
workspace toward the heap which occupies the lower end of the workspace.

The maximum size a stack can be is 64K bytes. However, in most applications the workspace of a
process will be less than 64K bytes. Therefore, the stack size is, in general, limited by the size of the
workspace and the occupation of the heap.

When the main process loads a subprogram, the current stack is 'frozen', and the subprogram is
loaded on top of it. After this, a new stack is created which starts at the address just below the load
address of the subprogram. The value of the stack segment is adjusted, such that the new stack can
again grow up to 64K bytes. When the subprogram terminates, the stack segment and the stack
pointer are reset to the old 'frozen' stack. This automatically removes the stack, code, and data of the
subprogram. The value of the stack segment of any process other than the main process is never
modified.

5.8.7 The Procedure Activation Record

Each time a procedure call is executed, a new procedure activation record is created on the stack of
the current process. Depending on whether code for the 8086/8088 or 186/286 processors is
generated, the format of the activation records differs slightly. The procedure activation record
contains the following information (see also Figures 5.8-4 and 5.8-5 below):

171

MEMORY ORGANIZATION MODULA-2/86

172

• Procedure parameters

The parameters, if any exist, are pushed onto the stack in the order in which they are
declared. Because the stack grows toward lower addresses, the last parameter is found at the
lowest address.

• Static link

The static link is a pointer, within the same stack, to another procedure activation record
which constitutes the static environment of the procedure. The static link is used to find
variables or parameters in the static environment of the procedure. The static link only exists
for procedures which are declared nested inside of another procedure. The static
environment consists of the parameters and variables which are declared in the embedding
procedure(s). In the case of code generated for 186/286, the static link does not exist, but is
implemented as a display.

• Return address

If the procedure was activated by a 'near' procedure call, the return address consists of an
offset value only, which corresponds to the instruction pointer. If the procedure was
activated by a 'far' call, there is also a segment value, which corresponds to the code segment
of the calling procedure.

• Dynamic link

The dynamic link points to the previous procedure activation record within the same stack.

• Display (for 186/286 only)
The display is a table of pointers, within the same stack, to the other procedure activation
records which constitute the static environment of the procedure. The number of table
entries corresponds to the lexical nesting level of the current procedure. The display table is
used to find variables or parameters in the static environment of the procedure. The display
is only generated if the option for code generation for 186/286 was selected. In the case of
8086/8088 code, access to the static environment is implemented by the static link.

• Local data

The local data consists of all the variables which are declared inside of the procedure.

MODUIA-2/86 MEMORY ORGANIZATION

low addresses

-------------------------------------- stack pointer
Local data of procedure

-------------------------------------- base pointer
Dynamic link

Return offset (IP)

Return code segment (CS)

static link

Last parameter

First parameter

high addresses

FIGURE 5.8-4
PROCEDURE ACTIVATION RECORD FOR 8086/8088

173

MEMORY ORGANIZATION MODULA-2/86

low addresses

-------------------------------------- stack pointer
Local data of procedure

Display
-------------------------------------- base pointer

Dynamic link

Return offset (IP)

Return code segment (CS)

Last parameter

First parameter

high addresses

FIGURE 5.8-5
PROCEDURE ACTIVATION RECORD FOR 186/286

5.8.8 Procedure Calling Conventions

A procedure is called with a 'far' intersegment call if at least one of the following conditions is true:

• The procedure is imported from another separately compiled module.

• The procedure is exported from a definition module.

• The procedure is used in an assignment to a procedure variable or as a procedure parameter.

• The procedure is used as the body (starting point) of a process upon a call to
'NEWPROCESS'.

If none of these conditions is true, the procedure is called with a 'near' intrasegment call.

174

MODUIA-2/86 MEMORYORG~ZATION

Before a procedure call occurs the following prologue is executed in the calling procedure:

• The parameters, if any, are pushed on the stack in the same order as they are declared. A
value parameter on one byte occupies two bytes on the stack, with the value in the low byte
and an undefined high byte.

• for 8086/8088 only:
If the called procedure is declared nested inside of the calling procedure, the static link is
pushed on the stack.

This sets up the first part of the procedure activation record. The remainder is set up inside of the
called procedure.

Now the procedure is called and gains control. It executes the following procedure prologue, to
prepare the rest of the procedure activation record:

• An optional call to the run-time support routine stack check is executed. BX contains the
number of bytes on the stack needed by the current procedure. This amount includes the size
of local variables and the stack space needed to pass parameters to called procedures.

The following steps are executed for 8086/8088:

• The current value of the base pointer BP is pushed on the stack. This sets up the dynamic
link.

• The value of the base pointer BP is set to the current value of the stack pointer SP.

• Space is reserved on top of the stack for the local variables of the procedure, if any exist, by
reducing the current value of the stack pointer SP by the total size of the procedure
variables.

This is the code generated for 186/286:

• The instruction 'ENTER size, level' is executed where 'size' is the total size of the procedure
variables, and 'level' is the lexical nesting level of the procedure. This instruction
automatically sets up the dynamic link, the display, the space for the local variables on the
stack, and the values for BP and SP.

175

MEMORY ORGANIZATION MODUIA-2/86

The statements of the procedure body are then executed. The local variables and the parameters of
the procedure are accessed with an offset relative to the base pointer BP.

Upon termination of the procedure body, the procedure epilogue is executed, performing the
following operations:

The following steps are executed for 8086/8088:

• The stack pointer SP is reset to the current value of the base pointer BP. This removes the
local variables from the stack.

• The dynamic link is popped to restore the old value of the base pointer BP.

This is the code generated for the 186/286:

• The instruction LEA VE is called. This instruction automatically removes local variables,
display, and dynamic link and resets BP and SP.

• A return instruction is executed which passes control back to the calling procedure. A 'far' or
'near' return is used, according to the type of call that was used to activate the procedure.
The parameters and the static link are discarded automatically with the return instruction.

5.8.9 Function Results

A function result is returned as follows, depending on the size of the function type:

• One byte values are passed back in register BL.

• Two byte values are passed back in register BX.

• Four byte values are passed back in register ES and in register BX.

• REAL values are always passed back on top of the stack.

Note that in the current release, arrays and record types are not allowed as function types.

176

MODUlA-2/86 VERSION CHECKING

5.9 VERSION CHECKING

5.9.1 Module Key and Version Checking

All modules in a program must be compiled with a consistent version of module definitions. When a
module definition file is modified all program and implementation modules using that module must
be recompiled before a new executable program can be created. Modification of a definition part
means a particular compilation into a SYM file. Each time a definition module is compiled, it will
produce a new version of that module, which is incompatible with any other version of that module.
Even if you do not change the text of the definition part, recompilation will create a new version of
the SYM file.

MODULA-2/86 checks for version consistency and will not allow inconsistent versions to be
compiled together. The version checking mechanism is simple in concept, but can be complex in
application. Each time a definition module is compiled, a new module key is created and included in
the resulting SYM file. This key will be different each time the module is compiled.

Once a definition part has been compiled, it becomes possible to compile its implementation part, or
another module which uses the definition part - a 'client' module. These other modules will import
that module and the compiler will find the compiled version of the definition part, and use it to fully
check the module being compiled. The module key of the referenced definition parts are included in
the compiled output.

At compile, link and load time, MODULA-2/86 verifies that all the keys included for a given
definition module are the same. This guarantees that all modules which share an interface were
compiled using the same version of that interface. The purpose of this is to ensure the consistency of
the program, as if there was only one source file, compiled all at once.

5.9.2 Version Errors and How to Fix Them

If the version consistency rule is broken, you will get a version error during either compilation,
linking, or (sub)program loading. The following sections describe the typical cause and some possible
corrections for version errors.

177

VERSION CHECKING MODULA-2/86

5.9.3 Version Errors During Compilation

A version error while compiling module A can only arise if there is some definition module X that is
imported by two different paths into module A, and the version imported by one path is not the same
as the version imported on the other path.

Example:

A.MOD imports B and C

B.DEF imports X

C.DEF imports X

Suppose that we compile as follows:

X.DEF => X.SYM (version 1)

B.DEF => B.SYM (uses version 1 of X)

X.DEF => X.SYM (version 2)

C.DEF => C.SYM (version 2 of X)

A.MOD=> A.LNK

There will be a version inconsistency error when A.MOD is compiled, because the version of X
imported through B is not the same as the version imported through C. The recompilation of X.DEF
is the source of the version conflict. Before A.MOD can be compiled, B.DEF must be recompiled
with the newer version of X.

5.9.4 Version Errors During Linking

When two or more modules are linked together, a version error can occur if some definition module
has been used in two different versions by the linked modules.

178

MODUIA-2/86 VERSION CHECKING

Example:

MAIN.MOD imports InOut and Terminal.

INOUT.DEF defines InOut and imports nothing.

INOUT.MOD implements InOut and imports Terminal.

TERMINAL.DEF defines Terminal and imports nothing.

TERMINAL.MOD implements Terminal and imports nothing.

Now suppose these compilations are done:

TERMINALDEF => TERMINAL.SYM (version 1)

INOUT.DEF => INOUT.SYM

INOUT.MOD => INOUT.LNK (uses version 1 of Terminal)

TERMINAL.MOD => TERMINAL.LNK (corresponds to version 1)

TERMINAL.DEF => TERMINALSYM (version 2)

MAIN.MOD => MAIN.LNK (uses version 2 of Termioal)

Now, linking the program MAIN will generate a version conflict between the version of
TERMINAL(.SYM) used by MAIN, and the version used by TERMINAL and INOUT. A solution
is to recompile INOUT.MOD and TERMINAL.MOD with the new TERMINAL.SYM and link
again.

5.9.5 Version Errors During Loading

When loading a subprogram (overlay), it is possible to have a version error between the program
being loaded and the modules which are already in memory. This is always due to two modules, one
loading and one already resident, having been compiled with different versions of some interface.

179

VERSION CHECKING MODUIA-2/86

The following is a typical case:

There is a program which contains a module 'Windows' with an interface WINDOWS.DEF. This
program calls a subprogram, in which there is a module 'Edit' which imports 'Windows'.

Suppose that WINDOWS.DEF and WINDOWS.MOD are recompiled after the base (main
program) has been compiled and linked. Then if EDIT is compiled and linked into its subprogram,
that subprogram will be inconsistent with the main program. An error will occur when the main
program tries to load the subprogram, because two different versions of module 'Windows' are used.
(There is no way to detect it sooner.) The program loader will return to its caller with an error status
indicating that there was a module version conflict.

The straightforward correction is to recompile any module in the base that uses 'Windows' and to
relink the base. Then the base layer and the subprogram 'Edit' will use the same version of
'Windows'.

180

MODUIA-2/86 THE COMPILER

6 mE COMPILER

The compiler translates the high level language Modula-2 (filetype .DEF, .MOD) into low level
machine code in a linkable object file (filetype .LNK).

6.1 How to Use the Compiler

The compiler is run by typing 'm2 comp'. After displaying the banner with the version number, the
compiler will prompt for the filename of the module to be compiled:

A> m2 b:comD<CR>

LOGITECH MODULA-2/86 Compiler, ReI. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
source file>

Enter the filename and any option you wish to specify (see the subsection on compiler options
below). The default drive is the current disk and the default filetype is 'MOD' for program and
implementation modules.

When the compilation of this source is finished the compiler will ask for another source file to
compile. You can either enter another filename or terminate the compiler by typing <ESC>.

You can also run the compiler by typing the filename(s) on the command line:

A> m2 b:comp filenamel filename2 ... filenameX<CR>

In this case the compiler will compile all the files in the specified order. At the end it will return
automatically to DOS without any further request for source files.

181

THE COMPILER MODUIA-2/86

If you have installed the fully linked version of the compiler (M2C.EXE) you can run it by typing:

A> m2e<CR>

or

A> m2e examDI <CR>

To run the fully linked version of the compiler you need at least 512KB of memory. With the fully
linked version, the compilation time is reduced by one third.

6.2 Compiler Organization

The overlay version of the compiler is organized as a base part and several passes or 'overlays'. The
base part remains in memory during the entire compilation and calls the passes sequentially. When
loading these passes, the compiler assumes they are on the same drive as the compiler base. The
necessary files are:

• COMP.LOD
• M2INIT.LOD
• M2PASS1.LOD
• M2PASS2.LOD
• M2PASS3.LOD
• M2PASS4.LOD
• M2SYMFIL.LOD
• M2LISTER.LOD

compiler base
initialization
syntax analysis
declaration analysis
block analysis
code generation
symbol file generation
lister

The fully linked version of the compiler is the single file M2C.EXE.

During compilation temporary work files are created on the current drive. They are deleted before
the termination of a compilation.

182

MODUIA-2/86 mE COMPILER

6.3 Compiler Output Files

Several files are generated by the compiler. They are given the same file name, directory name and
device as the source file, with the appropriate filetype attached as follows:

• .SYM Symbol file
Compiler output file with symbol table information. This information is generated during
compilation of a definition module.

• .REF Reference file
Compiler output file with debugger information, generated during compilation of an
implementation or a program module.

• .LNK Object (Link) file
Compiler output file with the generated 8086 object code in linker format, generated during
compilation of an implementation or a program module.

• .LST Listing file
Normally generated only if errors occur.

6.4 Compilation of a Program Module

Compilation of a program module, in which there are no errors, generates a linkable object file
(.LNK) and a debug reference file (.REF). If there are errors, the link and reference files are not
produced, but a listing file is produced. The 'L' option (see section on compiler options below) directs
the compiler to generate a listing file even if there are no errors.

183

THE COMPILER MODULA-2/86

A> m2 b:comp<CR>

LOGITECH MODULA-2/86 Compiler, ReI. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH

source file> examp1<CR>
Syntax Analysis
Terminal in file: B:Terminal.SYM

Declaration Analysis
Block Analysis
Code Generation
Termination

The interactive setting of the options was:S+/R+/T+/A­
code for 8086/8088 generated
Codesize: 90 bytes Datasize: 1 bytes

End Compilation
LOGITECH MODULA-2/86 Compiler, ReI. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
source file> <ESC>
---- no compilation

Termination
End Compilation
A>

'Syntax Analysis', 'Declaration Analysis', 'Block Analysis', and 'Code Generation' denote the
succession of activated compiler passes. If errors are detected by the compiler, compilation stops after
the pass that found the error. The errors are displayed on the screen and a listing file with error
messages is generated.

184

MODUIA-2/86

A> m2 b:comD<CR>

LOGITECH MODULA-2/86 Compiler, ReI. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
source file> examp1<CR>
Syntax Analysis

Terminal in file: B:Terminal.SYM
---- error

Lister
3

VAR ch CHAR;

/'0.37
* 37: ':' expected
Termination
End Compilation
A>

THE COMPILER

When the error display is more than one page, the compiler will ask if you want to see more errors
after each page. If you hit any key it will continue. If you type <ESC> it will stop the error display. In
both cases, it will generate the error listing. This is true unless the compiler option '/batch' is used. In
this case the compiler will not ask for more errors.

6.5 Compilation of a Definition Module

Compilation of a definition module (filetype 'DEF') is similar to the compilation of a program
module. However, as the result of a successful compilation of a definition module, the compiler
produces a symbol file (filetype 'SYM'), while as the result of the compilation of a program or
implementation module the compiler produces a linkable object file ('LNK'). The symbol file
contains the declarations of the definition part in symbolic, compiler-readable format. It also contains
a unique module key which is used to check consistency. If errors are detected by the compiler, then a
listing file is generated instead of the symbol file.

185

THE COMPILER MODUIA-2/86

NOTE:

A DEFINITION MODULE MUST BE COMPILED PRIOR TO ITS IMPLEMENTATION
MODULE.

A DEFINITION MODULE MUST BE COMPILED PRIOR TO ANY MODULE THAT IMPORTS
IT.

Example:

A> m2 b:comD find.def<CR>

LOGITECH MODULA-2/86 Compiler, ReI. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH

source file> find.def
Syntax Analysis
Declaration Analysis
Symfile
Termination
End compilation
A>

6.6 Compilation of an Implementation Module

Compilation of an implementation module is similar to the compilation of a program module. At
compilation of an implementation module the symbol file for this module is needed. This symbol file
is produced by the compilation of the corresponding definition module, prior to the compilation of
the implementation module.

The compiler output files are the same as those generated when compiling a program module. A
linkable object file (.LNK) and a debug reference file (.REF) are generated as the result of a
successful compilation. In case of errors only a listing file is produced.

186

MODUIA-2/86

A> m2 b:comD tind<CR>

LOGITECH MODULA-2/86 Compiler, ReI. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
source file> find. mod

Syntax Analysis
Examp3 in file: A:Examp3.SYM
storage in file: B:Storage.SYM

Declaration Analysis
Block Analysis
Code Generation
Termination

THE COMPILER

The interactive setting of the options was:S+/R+/T+/A­
code for 8086/8088 generated
Codesize: 234 bytes Datasize: 56 bytes

End Compilation
A>

6.7 Symbol Files Needed for Compilation

Symbol files are used by the compiler to provide full inter-module checking. Upon compilation of a
definition module, a symbol file containing symbol table information is generated. When the
corresponding implementation part is compiled, or when another module - a 'client' - is compiled
which imports it, the appropriate symbol file must be read.

By default, the compiler first searches for symbol files on the disk containing the source file. It uses
the module name, truncated if necessary, as the filename, and a filetype of 'SYM'. If a symbol file is
not found on the first search, additional searches, on other drives or directories, are performed
automatically. (See the section on libray search strategy for a complete description).

If a symbol file is not found at all, the compiler issues a message and asks for the file. This can be
prevented, using the Autoquery option (see compiler options described below). If the Query option is
turned on, the compiler will not perform any automatic searches. It will display the module name and
let the user enter the file name for every symbol file needed.

When the compiler asks for a symbol file, the request is repeated until an appropriate file is found or
<ESC> is pressed. Pressing <ESC> means that the file is not available. The compiler will stop at the
end of the first pass, but first it will list all the required symbol files. This allows you to detect any
other missing files.

187

mE COMPILER MODULA-2/86

6.8 Compiler Options

When reading the source file name, the compiler can also accept some options. Options are entered
immediately following the filename, with each option preceded by 'I'. An option value is a predefined
string that defines the state of the corresponding option. The possible values for the following
compiler options are listed below, and an explanation of their effects is induded thereafter.

6.8.1 Table of Available Options

Option Value for ON Value for OFF Default

query Query NOQuery NOQ
auto query Aquery NOAquery AQ
interactive Interactive Batch I
listing Listing NOListing NOL
errorlisting EListing NOEListing EL
emulatorl
coprocessor Emulator Coprocessor E
8086/80286 2 8 8
version Version NOVersion NOV
statistics STATistics NOSTATistics STAT
stack test S+ S- S+
range test R+ R- R+
index test T+ T- T+
alignment A+ A- A-
header in listing Header NO Header H
footer in listing Footer NOFooter NOF
date in listing DAte NODAte NODA
debug Debug NODebug D

The default value for all options can be set in the compiler parameter module. The defaults shown
are those of the distributed compiler. If, after using the compiler for a while, you want to alter the
default settings, consult the appendix on system configuration. In the above list of values, the portion
in upper case letters must be entered when specifying an option value. The complete name may be
given. For the R, Sand T options the '+' sign is optional.

188

MODULA-2/86 THE COMPILER

6.8.2 Description of the Options

• /Q INOQ Query option
• /A INOA Autoquery option

These options define the search mechanism for the symbol files of the imported modules.
The following table shows the possible combinations of the setting of these options and the
corresponding behavior of the compiler:

Ouery

Query
Query
NOQuery

NOQuery

Alltogllery

Aquery
NOAquery
Aquery

NOAquery

Action

Ask for filenames
Ask for filenames
Tries to find file by
default strategy
If not found
it asks for filename.
If not found
compiler ends.

The default setting for these two options is NOQuery and Aquery.

• II /B Interactive/Batch option

This option tells the compiler whether it runs interactive or as a batch job. In the interactive
mode, the display of error messages is stopped after a screen page and can be resumed by
hitting a key. This facility is turned off in the batch mode. Note: The Autoquery option is not
affected by this option.

• ILINOL Listing option

• /ELINOEL Error Listing option

These options define whether a listing is generated or not. The following table shows the
possible combinations of the setting of these options and the corresponding behavior of the
compiler:

189

THE COMPILER MODULA-2/86

Listing

Listing
NOListing

NOListing

EListing

NOEListing
EListing

NOEListing

A listing file is
always generated.
Same as above
If errors are
detected, a short
error listing file
is generated
containing only the
erroneous lines with
error messages
No listing generated

In all cases the compiler writes the lines with errors and the error message on the screen.
Before each compilation, the compiler deletes the corresponding listing file (filename.LST).

• fE/C Emulator/Coprocessor option

This option affects the code generation for the floating point arithmetic. If it is set to
coprocessor, the compiler generates inline code for the Intel 8087 numeric processofo
Otherwise, it generates code for the LOGITECH REAL ARITHMETIC EMULATOR.

• N/NOV Version option

The compiler displays information about the running version, for example, processor and
operating system flags.

• /STAT /NOSTAT Statistics option

At the end of a compilation the compiler displays some statistics on the generated code.

• /S+ IS-
• /R+ fR-
• /T+ /T-
• IA+ IA-

Stack test option
Range and Overflow test option
Index and NIL pointer test option
Word alignment for variables
and record fields

With these options the user can define the initial value of the corresponding compiler directives. (See
the following subsection for more information.)

190

MODULA-2/86

• IHINOH
• IF INOF
• IDAINODA

Header in Listing option
Footer in Listing option
Date in Listing option

THE COMPILER

These options define the format of the generated listing file. The header option says whether
a page header line is generated or not. The footer option defines whether a page footer line
is generated or not. The date option says whether the date information is generated within
the header line. The format of a page header line is:

MODULA-2/86 filename.ext Date Page Number

The text for the footer line can only be defined in the compiler parameter module.

• IDINOD Debug option

This option defines whether the reference file (.REF) is generated or not. This file contains
the necessary information for the symbolic debugger.

• /8/2 8086/80286 option

This option affects the code generation. If it is set to 8086 the compiler generates code for
the 8086/8088. If it is set for 80286 the compiler generates code for the 80186/80286. The
advanced instructions used are ENTER, LEA VE, PUSH immediate, shift/rotate immediate,
integer immediate mUltiply.

• /A+ /A- Alignment option

This option affects the variable and record field allocation. If it is set to A+, all variables
except single bytes are allocated on even boundaries. If it is set to A-, no special effort is
made to allocate variables on even boundaries. With this option you can choose either to
save memory space (A+) or to increase the speed of program execution (A-).

6.9 Compiler Directives in Modules

Certain compiler directives may be specified in the source text of a module. These directives must
appear immediately at the beginning of a comment and consist of $<Letter><setting>, without any
intervening or preceding spaces.

191

THE COMPILER

Letter

S
R

T

A

Setting

+

Example:

Definition

Stack overflow test (default S+)
Subrange and arithmetic overflow test
(default R+)
Index test (arrays, case) and NIL pointer
test (default T +)
Word alignment for variables and record
fields (default A-)

Effect

Test code is generated or Alignment on
No test code is generated or Alignment off
Revert to setting before last

MODULE x;(*$T+*) test code is generated

(*$T-*)
CASEiOF

END
(*$T=*)

END x

6.10 Compiler Messages

There are two types of compilation errors:

no test code is generated

test code is generated (i.e.
the prior value is restored)

MODUIA-2/86

• Errors detected in the source text, which are printed on the listing and displayed on the
screen.

• Operational errors which are displayed on the screen.

192

MODUIA-2/86 mE COMPILER

6.10.1 Source Text Errors

These errors appear in the listing file, marked under the offending line by a ,A, and the error number.
The source line and error message are also displayed on the screen as they are written to the listing.
Compiler error messages are also listed in an appendix.

6.10.2 Compiler Operational Messages and Errors

Upon termination, the compiler sets the MS-DOS errorlevel system variable. This variable can be
checked in a batch file. The generated values are:

• 0: successful compilation
• 1: abnormal termination due to internal errors
• 2: incomplete compilation due to missing files
• 3: source program error

During the operation of the compiler the following messages and errors may be displayed:

• Assertion of compiler
internal reference: xx
at source line : nn

Please send a bug-report to LOGITECH

We hope that this message will never occur. It is displayed when an internal conSistency
check of the compiler fails. If you get this message, please contact LOGlTECH with a copy
of the program which caused the error. The information about the source line helps you to
find a work-around. The internal reference is an indicator for the kind of problem that
occurred and will help LOGlTECH locate it.

• cannot load 000

There is not enough memory to allocate all data areas the compiler needs or to load a
compiler overlay. You must extend the memory size. You can invoke the compiler by typing
'm2/f=0 b:comp' to save some memory space. See the chapter on Program Execution for
details.

193

THE COMPILER MODULA-2/86

194

• EOF on Control

We hope that this message will never occur. It is displayed when an internal consistency
check of the lister fails. If you get this message, please contact LOGITECH with a copy of
the program that caused the error.

• error

The compiler detected errors in your program. These errors will appear on the screen and in
the listing file.

• error message first element on control

See message 'EOF on control',

• file creation failed

Your disk directory is probably full. When running under DOS, this message may also appear
if you did not boot your operating system from a disk that contains a CONF!OSYS file, as
described in the section on installation of this manual.

• file not found

A source or symbol file was not found. The compiler will repeatedly request the filename.
You should either type the correct filename or press <ESC> if the required file is missing.
When running under DOS, this message may also appear if you did not boot your operating
system from a disk that contains a CONFIG.SYS file, as described in the section on
installation of this manual.

• <file name> halted

An overlay of the compiler terminated with an unexpected status. This might happen if you
stop the compiler by typing <Ctrl-Break> or <Ctrl-C>.

MODULA-2/86 THE COMPILER

• heap overflow

There is not enough memory to allocate all data areas the compiler needs or to load a
compiler overlay. You must extend the memory size. You can invoke the compiler by typing
'm2/f=O b:comp' to save some memory space. See the chapter on Program Execution for
details.

• illegal option: <option typed>

Please refer to the list of valid compiler options.

• Incorrect line number on Control

See message 'EOF on Control'.

• incorrect module name

The module name found in the symbol file does not correspond to the name of the module
for which a symbol file is needed. Make sure you enter the right filename.

• NControl too small

See message 'EOF on Control'.

• no compilation

No compilation takes place because no source file was specified.

• no file

You typed <ESC> when asked to enter a filename, and did not supply any file.

• not catalogued: <filetype>

The compiler had problems closing the file with the given filetype. Make sure that the disks
are in the drives.

195

THE COMPILER MODUIA-2186

196

• not deleted: <filetype>

The compiler had problems deleting the file with the given filetype. Make sure that the disks
are in the drives.

• output disk full

Because of insufficient space on your disk, the compiler has stopped. You should delete
superfluous files.

• <program name> program not found

A compiler overlay was not found on the disk where it is expected to be. Please check
whether you installed MODULA-2/86 properly. When running under DOS, this message
may also appear if you did not boot your operating system from a disk that contains a
CONFIG.SYS file, as descnbed in the section on installation of this manual.

• stack overflow

There is not enough memory to allocate all data areas the compiler needs or to load a
compiler overlay. You must extend the memory size. You can invoke the compiler by typing
'rn2 /f=O b:comp' to save some memory space. See the chapter on Program Execution for
details.

• symbol files missing

The compiler could not find all the symbol files for the imported modules. Therefore type
checking is impossible and compilation stops. Check that the corresponding definition
modules have been compiled and that all necessary symbol files have been specified correctly.

• <file name> warned

An overlay of the compiler terminated with an unexpected status. This might happen if you
stop the compiler by typing <Ctrl-Break> or <Ctrl-C>.

• wrong symbol file

The file found is not a correct symbol file. Most likely, the file isn't a symbol file at all, or it
was not generated by the same compiler.

MODULA-2/86 THE COMPILER

6.11 Compiler Table Umits

The following error messages depend on some internal compiler table sizes. The following list gives
the description of the errors and the actual table size of the compiler:

• 7: too many identifiers (identifier table full)

The identifier table holds 8.000 characters (Base Language SystemJ512k = 30.000). This is the
limit on the total number of characters of all distinct identifiers in one module and the
exported identifiers of its imported modules.

Contrary to readable. self-documenting programming style. shorter identifiers and the use of
the same identifiers in different scopes will help to avoid this error message.

• 8: too many identifiers (hash table full)

The hash table holds 997 identifiers (BLS/512k = 3571). This limits the number of distinct
identifiers in one module. including all the identifiers exported by the imported modules.

The use of the same identifier names in different scopes might help to avoid this error
message.

• 205: implementation restriction: procedure too long

The code size per procedure is limited to 3500 bytes (BLS/512k = 5000). Splitting the
procedure into smaller entities will help.

• 206: implementation restriction: statement
table overflow

The number of statements per procedure is limited to 700 (BLS/512k = 1000). Splitting the
procedure into smaller entities will help.

197

THE COMPILER MODUIA-2/86

198

• 209: expresson too complicated: jump table overflow

The size of the jumptable is SO entries. This determines the number of possible short circuit
jumps in a boolean expression.

A breakdown of the expression into several temporary expressions is a possible workaround .

• 210: too many globals, externals, and calls
(linker table overflow)

The linker table holds the fixup information for the linker. The size of this linker table is 600
entries per procedure (BLS/512k = 850). An access to an imported variable generates one
entry, a call to an imported procedure generates two entries. A forward call to a local
procedure generates one entry.

This error can be avoided by splitting the procedure into smaller sections or by reducing the
frequency of access to imported variables and calls to imported procedures.

MODULA-2/86 COMPILER ERROR MESSAGES

6.12 Compiler Error Messages

o : illegal character in source file
1
2 constant out of range
3 open comment at end of file
4 string terminator not on this line
5 too many errors
6 string too long
7 too many identifiers (identifier table full)
8 : too many identifiers (hash table full)

20 identifier expected
21 integer constant expected
22 ']' expected
23 ';' expected
24 : block name at the END does not match
25 error in block
26 ':=' expected
27 error in expression
28 THEN expected
29 error in LOOP statement

30 constant must not be CARDINAL
31 error in REPEAT statement
32 : UNTIL expected
33 : error in WHILE statement
34 DO expected
35 : error in CASE statement
36 OF expected
37 ':' expected
38 : BEGIN expected
39 error in WITH statement

199

COMPILER ERROR MESSAGES

40 : END expected
41 .). expected
42 : error in constant
43 : '=' expected
44 : error in TYPE declaration
45 : 'C' expected
46 : MODULE expected
47 QUALIFIED expected
48 error in factor
49 : error in simple type

50 ',' expected
51 : error in formal type
52 error in statement sequence
53 '.' expected
54 export at global level not allowed
55 : body in definition module not allowed
56 : TO expected

MODULA-2/86

57 : nested module in definition module not allowed
58 : '}' expected
59 : •••• expected

60 : error in FOR statement
61 : IMPORT expected

70 : identifier specified twice in importlist
71 : identifier not exported from qualifying module
72 identifier declared twice or illegal forward

reference to this identifier
73 identifier not declared
74 : type not declared
75 : identifier already declared in module environment
76
77 : too many nesting levels
78 : value of absolute address must be of type CARDINAL
79 : scope table overflow in compiler

200

MODULA-2/86 COMPILER ERROR MESSAGES

80
81

82

83
84

85

86
87
88
89

90
91
92
93

94
95
96
97
98
99

illegal priority
: definition module belonging to implementation not

found
structure not allowed for implementation of hidden

type
procedure implementation different from definition
not all defined procedures or hidden types

implemented
: name conflict of exported object or enumeration

constant in environment

· ·
· ·

incompatible versions of symbolic modules

function type is not scalar or basic type

: pointer-referenced type not declared
tagfieldtype expected
incompatible type of variant-constant
constant used twice

arithmetic error in evaluation of constant expression
incorrect range

: range only with scalar type
: type-incompatible constructor element
: element value out of bounds

set-type identifier expected

100 structured type too large
101 undeclared identifier in export list of the module
102 range not belonging to base type
103 : wrong class of identifier
104 no such module name found
105 module name expected
106
107 set too large
108
109 scalar or sub range type expected

201

COMPILER ERROR MESSAGES MODUlA-2/86

110 case label out of bounds
111 illegal export from program module
112 code block for modules not allowed

119 illegal variable as FOR loop counter

120 incompatible types in conversion
121 this type is not expected
122 variable expected
123 incorrect constant
124 no procedure found for sUbstitution
125 unsatisfying parameters of substituted procedure
126 : set constant out of range
127 error in standard procedure parameters
128 type incompatibility
129 : type identifier expected

130 tVDe imDossible to index
131 field not belonging to a record variable
132 too many parameters
133 function parenthesis missing
134 : reference not to a variable
135 illegal parameter sUbstitution
136 constant expected
137 expected parameters
138 : BOOLEAN type expected
139 scalar types expected

202

MODUIA-2/86 COMPILER ERROR MESSAGES

140 operation with incompatible type
141 only global procedure or function allowed in

expression
142 incompatible element type
143 type incompatible operands
144 no selectors allowed for procedures
145 only function call allowed in expression
146 arrow not belonging to a pointer variable
147 standard function or procedure must not be assigned
148 constant not allowed as variant
149 SET type expected

150 illegal sUbstitution to WORD or BYTE parameter
151 EXIT only in LOOP
152 : RETURN only in PROCEDURE
153 expression expected
154 expression not allowed
155 : type of function expected
156 integer constant expected
157 procedure call expected
158 identifier not exported from qualifying module
159 : code buffer overflow

160 illegal value for code
161 call of procedure with lower priority not allowed

170 global data too large (more than 64K bytes)
171 local data too large (more than 32K bytes)
172 parameter data too large (more than 32K bytes)

203

COMPILER ERROR MESSAGES MODUIA-2/86

200 : compiler error
201 implementation restriction
202 : implementation restriction: FOR step too large
203 implementation restriction: boolean expression too

long
204 implementation restriction: expression too

complicated
205 implementation restriction: procedure too long
206 implementation restriction: statement table overflow
207 : implementation restriction: illegal type conversion
208 :
209 expression too complicated: jump table overflow
210 : too many globals, externals and calls (linker table

overflow)

211 implementation restriction: code >= 64K bytes

220 not further scecified error
221 division by zero
222 index out of range or conversion error
223 case label defined twice

204

MODULA-2/86 THE LINKER

7 THELINKER

The linker combines all the separately compiled modules into a single load and executable module. It
takes the object files (filetype .LNK) of the modules to be linked as input and produces an executable
object file (filetype .LOD) and a map file (filetype .MAP).

7.1 How to Use the Linker

The linker is run by typing 'm2Iink'. After displaying the banner with the version number, the linker
will prompt for the filename of the main module, the 'master file', of your program:

A> m2 b:link<CR>

LOGITECH MODULA-2/76 Linker, DOS 8086, ReI. m.n
copyright (C) 1983, 1984, 1985 LOGITECH
master file >

Enter the filename and any options you wish to specify (see the subsection on linker options below).
The default drive is the current disk and the default filetype is 'LNK', for modules compiled and
ready to link.

If you use the default values of the options, the linker automatically links all other necessary modules.
It also lists all imported modules together with their corresponding file names.

205

THEUNKER MODULA-2/86

Example:

A> m2 b:link<CR>

LOGITECH MODULA-2/86 Linker, DOS 8086, ReI. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
master file > exampl<CR>
name of load file :A:examp1.LOD
linked with:

Terminal in file: B:Terminal.LNK
Termbase in file: B:Termbase.LNK
System in file: B:System.LNK
Keyboard in file: B:Keyboard.LNK
ASCII in file: B:ASCII.LNK
Display in file: B:Display.LNK

Solving external references
end linkage
A>

You can also run the linker by typing the filename on the command line:

A> m2 b:Iink exampl <CR>

By default, the linker applies the search strategy explained in the chapter Library Search Strategy.
First, it looks for object files on the disk containing the master file. It uses the module name,
truncated if necessary, as a filename, and a filetype of'LNK'. If an object file is not found, the linker
issues a message and asks for a file to use (see the'A' option below). If the '0' option is turned on,
the linker will ask for every object file in this way.

When the linker asks for an object file, the request is repeated until an appropriate file is found or
<ESC> is pressed. Pressing <ESC> means that the file is not available. The linker will stop before
writing the .LOD file, but first it will list all the required object files. This allows you to detect any
other missing files.

206

MODUIA-2/86 THE LINKER

After successful linking, the program is written to a load file with the same name and on the same
disk as the master file (filetype .LOD), unless you have specified another filename (see option '0'
below).

If you have installed the fully linked version of the linker (M2L.EXE) you can run it by typing:

A>m21<CR>

or

A> m21 examol<CR>

7.2 Linker Options

The linker can accept several options, entered immediately following the filename. Each option is
preceded by 'I', and consists of a letter, specifying the switch and a sign '+' or '-', indicating whether
the switch is to be turned on or off. If the '+' or '-' is omitted, '+' is assumed.

The linker options are as follows:

• IB Base Layer option (Default B-)

This option is used when linking a subprogram (overlay). If this option is enabled, the linker
will ask for the name of a map file to use in determining which modules will be resident when
the current (sub)program is run. Modules which are referenced by the current program, but
are not in the map, are linked into the current program. The linker will only list those
imported modules that are actually linked into the subprogram.

If this option is turned off (default), your program is linked without any base layer.

When entering the file name for the map file of the base layer, an additional option is
available:

207

THE LINKER MODULA-2/86

208

• /Q Query Resident Modules (Default Q-)

If this option is turned on the linker will ask whether each resident module should be linked.
Type 'y' if it is to be linked and 'n' if this module will already be in memory upon execution.

If you want to link a subprogram without having the map file for the base layer - for example,
if you link a subprogram before you link the base - simply type <ESC> when you are asked to
enter its name. In this case, you should also invoke the Query option for the main module
(see below). When prompted for the names of the modules to link, you can press <ESC> to
indicate that a module will be loaded with the base layer and does not need to be linked into
the subprogram.

• IL Large option (Default L-)

If this option is turned off, up to 200 modules can be linked. If it is turned on, up to 400
modules can be linked.

• 1M Map File option (Default M-)

If this option is turned on, the linker generates the map file. A map file is needed if this
program will be the base for other programs - if it has overlays.

It is recommended that before executing your program you consult your base map to verify
that your modules will be initialized in the correct order. The order of initialization is the
order of appearance in the map.

• /0 Output File Query option (Default 0-)

If this option is turned on, the system prompts the user to give the name of the .LOD file. No
options may be specified with this filename!

MODULA-2/86 THE LINKER

• IQ Query option (Default Q-)

If turned off (default) the linker will search, according to the default search strategy, for each
link file using a default name - the module name truncated to the maximum length of a file
name with the filetype 'LNK'. If the Automatic Query option (see below) is turned on, the
linker enters a temporary query mode whenever a link file is not found. In this case, the
linker prompts for the file name.

If the Query option is turned on you are asked to enter the name of each link file (query
search strategy). You can specify the default name by pressing <CR>.

If a file is not available and will not be in the base at execution time, your program cannot be
linked. In this case, press <ESC> to stop the linker. Note that the linker will not stop until it
has checked the list of all imported modules.

If you are linking a subprogram and you specified the Query option together with the Base
Layer option, but you did not specify any base file, you can use <ESC> to indicate that a
module will be loaded with the base layer and does not need to be linked into the
subprogram.

• 1 A Automatic Query option (Default A +)

If turned on (default) the linker enters a temporary query mode when a link file is not found.
Turning off the Automatic Query option prevents this automatic query mode and is useful in
command files.

7.3 Linker Messages

During execution of the linker certain errors may occur. The following error messages may appear:

• cannot load •••

There is not enough memory to allocate all the data area needed by the linker. You must
extend the memory size. You can invoke the linker by typing 'm2 If=O b:link' to save same
memory space. See the chapter on Program Execution for details.

209

THE LINKER MODULA-2/86

210

• checksum error

The linker computes a checksum. This message indicates that the computed checksum does
not match the value found in the link file. The link file seems to be incorrect.

• invalid version

Make sure that the linker and the compiler are for the same target system.

• error in format of map file

When linking a subprogram (Base Layer option), the linker checks the syntax of the map file
of the base layer. Make sure the map file is correct and that it was generated by a compatible
linker.

• error in link-file format

The syntax of the link file is not correct. The linker is checking on the correct order of the
different link file records. Make sure that you are using the right Hnker and compHer. Also
check if the link file is complete.

• error in optionlist <default values> <option typed>

The option entered is not available. Refer to the description of the possible options above.

• file not found

The link or map file was not found. If the Automatic Query option is turned on, the linker
requests the file name, again. You should either type the correct file name or enter <ESC> if
the file is not available.

• not enough memory to link

There is not enough memory to allocate all the data area needed by the linker. You must
extend the memory size. You can invoke the linker by typing 'm2 /f=O b:link' to save some
memory space. See the chapter on Program Execution for details.

MODUI.A-2/86 mE LINKER

• linkage aborted: more than 6000 procedures
• linkage aborted: more than 200/400 separate modules
• linkage aborted: more than 2000/4000 modules under

process

These error messages appear when some internal table of the linker is too small for the
program to be linked. The number of separate modules and of imported modules under
process depends on the Large option: L- = 200, 2000 L+ = 400, 4000.

• error in linkqge

The linkage did not terminate successfully. No load file was produced.

• linkage failed (please report to LOGITECH)

This message appears when the linker detects some internal inconsistency. If you get this
error please contact LOGITECH with a copy of the program which caused the error, and a
copy of the dump produced (MEMORY.PMD).

• link files missing

The linker cannot link successfully because one or more link files are missing.

• module not found in this file

The module name found in the link file does not correspond to the name of the module to
be linked.

• output disk full

Insufficient disk space to write the load or map file causes the linker to stop execution. To
solve the problem, delete superfluous files or copy some files to the disk in the other drive or
turn off generation of the map file (see Map option above). The output files are written to
the disk where the main module is found.

• program exceeds memory size (1MB)

The size of a linked program is limited to one megabyte.

211

THEUNKER MODUIA-2/86

212

• version conflict in module: <module namel> imported by
<module name2>

The module key (time stamp) ofthe module 'namel' is different from the module key
expected by module 'name2'. To solve this problem, recompile the necessary modules in the
right order.

MODUIA-2/86 PROGRAM EXECUTION

8 PROGRAM EXECUTION

To run a MODULA-2/86 program you can either use the program 'M2' (described in section 8.1), or
you can use the utility LOD2EXE to generate a standard .EXE file (described in section 8.2).

S.l Running MODUIA-2/86 with M2

To run a MODULA-2/86 program you must invoke the program 'M2' which is supplied with the
MODULA-2/86 system. You should copy this program to the diskette or directory which you use to
develop your Modula-2 programs or to the directory where you generally keep executable programs.
(See the section on 'Installation' for details.) The program 'M2' is the MODULA-2/86 run-time
support (RTS) and has the ability to load and execute MODULA-2/86 programs. The default
extension for executable MODULA-2/86 programs is 'LOD'.

To run a MODULA-2/86 program enter 'M2 <programname>'. The program name may also be
preceded by a drive and/or a directory name, in which case the program is loaded from the specified
drive or directory. If a pure file name is entered, the MODULA-2/86 program will be searched in the
current directory on the current drive, and if not found, in the directory '\m210d' on the current drive.

The following is a brief example:

C>m2 examp1<CR>
The program worked! (Hit a key)
C>

The program 'exampl' has been loaded from the current drive C. It may have been found in the
current directory or in the directory '\m210d'.1f the program exists in both directories, the version
from the current directory is executed.

213

PROGRAM EXECUTION MODUIA-2/86

8.1.1 Memory Allocation Options

You can specify the amount of memory allocated for the program you execute with options for the
run-time support. If no option is specified, (as in the above example), the whole memory except the
space used by 'command.com' is given to the application program. There are two options from which
you can choose: one to specify the memory used by the application, the other to specify the memory
left free for DOS and other applications.

Only one option can be specified at a time. The option, either 'u' or 'f must come after the name of
the run-time support (usually m2), be preceded by a slash, and be followed by an equal sign and the
amount of memory in kilobytes (KB), as follows:

c> m2/u=xxx exampl

where 'u' stands for used memory option. It specifies the memory used by the application, including
its code and data.

The other option is indicated as:

c> m2jf=yyy exampl

where 'f stands for free memory option. It specifies the amount of memory that must remain
available for DOS and other applications.

214

MODULA-2/86 PROGRAM EXECUTION

The following figure shows the memory organization and the meaning of the parameters.

---------------------------------- OOOH
Interrupt vector table

---------------------------------- 400H
Operating system

1 Code and data of the MODULA-2/86 1
1 run-time support 1

----------------------------------+-------+-----------
1 Code of the MODULA-2/86 program 1 1
1 1 1

Global data of the MODULA-2/86 1
1
1

program 1 1 u option
---------------------------------- 1

1 Heap of main process 1 1
----------------------------------1 1

1 1 1

---------------------------------- 1
stack of main process 1 1

---------------------------------- -------+----------
1 1 1

1 f option
1 Command. COM 1 1
---------------------------------- TOP OF MEMORY----

FIGURE 8-1
MEMORY ORGANIZATION AND ALLOCATION PARAMETERS

If the memory space which remains for the application is not enough to load the program, the run­
time support tells you that it cannot load your program. If the space is just enough to load the
program, but not sufficient to set up a correct workspace (stack and heap), the program terminates
with a stack overflow.

215

PROGRAM EXECUTION MODULA-2/86

8.2 The File Conversion Utility LOD2EXE

The utility program 'LOD2EXE' converts a .LOD file into a standard MS-DOS .EXE file.

The program combines a special version of the MODULA-2/86 run-time support with the .LOD file
of the application program into a .EXE file. The adapted RTS version is called 'L2ERTS.L2E' and
must be in the current directory. The application program must first be linked with the LOGlTECH
MODULA-2/86 linker, without the /B+ option for a base file. The 'LOD2EXE' program prompts for
an input file to convert. The default extension is .LOD. The name and the pathname of the output
file are the same as those of the input file. The extension is .EXE.

The LOD2EXE utility itself is provided only in the .LOD version. However, you can use this .LOD
version to produce a .EXE version -- LOD2EXE.EXE.

8.2.1 Memory Allocation Options

You invoke the LOD2EXE utility by typing:

A> m2 lod2exe<CR>

All available memory, less space for 'command.com' will be allocated when the program is executed.

There are three other ways you can specify how much memory you want to allocate for your
application. The option is entered after the filename of the program to convert, separated by a slash.
The form of the option is a character ('u', 'f, or 'w') followed by an '=' sign and the amount of
memory in kilobytes (KB). If only the character is specified, the LOD2EXE utility will prompt you
for the number. Only one option may be specified. If you enter a sequence of options, the last entry
will be used. The three options are as follows:

A> m2 lod2exe exampUu=xxx

Used memory option: specifies the memory that is used by the application, including code and data.

A> m2 lod2exe exampUf=yyy

Free memory option: specifies the amount of memory that must remain available for DOS and other
applications.

216

MODULA-2/86 PROGRAM EXECUTION

A> m2 lod2exe examplJw=kkk

Work space option: defines the size of the workspace (heap and stack) for the application.

The following figure shows the memory organization and the meaning of the parameters:

---------------------------------- OOOH
Interrupt vector table

---------------------------------- 400H
Operating system

I Code and data of the MODULA-2/86 I
I run-time support I
----------------------------------+------------------+

I Code of the MODULA-2/86 program I 1
1 1 1
---------------------------------- 1

Global data of the MODULA-2/86 1 1
1 program 1 u 1
---------------------------------- -------+ option 1

1 Heap of main process 1 1 1
----------------------------------1 w 1 1

1 loption 1 I
---------------------------------- 1 1 1 stack of main process 1 1 1
---------------------------------- -------+----------+

I 1 f 1
---------------------------------- option 1

I Command. COM 1 1
---------------------------------- TOP OF MEMORY----

FIGURE 8-2
MEMORY ORGANIZATION AND ALWCATION PARAMETERS

217

PROGRAM EXECUTION

8.2.2 Example Dialog

A> rn2 lod2exe exarnpl<CR>

MODUIA-2/86

LOGITECH MODULA-2/86 LOD2EXE, DOS 8086, ReI. m.n.
copyright (C) 1983, 1984, 1985 LOGITECH.
Convert from: exampl.LOD

to E:examp1.EXE
using: L2ERTS.L2E

no option specified

code (size) data (size) ----key----- module
0238 (005A) 0313 (0001) AB3E02CAC724 Exampl
023E (0219) 0314 (0002) A91104323CC8 Terminal
0260 (03BB) 0315 (0069) A91104381612 Termbase
029C (007F) 031C (0000) A911043455B4 Display
02A4 (0314) 031C (0088) A9110433A5D2 Keyboard
02D6 (0011) 0325 (0000) A9110434E3EE ASCII
n. "',.. , ft '" " 0325 (OlO4j A,91104246A.54 System V~LlO \V.lOV)

pass2
A>

The values of the table written on the screen are in hexadecimal. In case of 'code' and 'data' they
constitute the base address in paragraphs. The size is given as a number of bytes. The key is the
representation of the three word time stamp generated for each module at compile time (module
key).

8.3 Aborting MODUlA~2/86 Programs

When you type <Ctrl-Break> or <Ctrl-C>, the operating system usually aborts the program currently
running. <Ctrl-C> and <Ctrl-Break> have the same effect in MODULA-2/86. However, depending on
the circumstances there are some restrictions on their use.

In general, <Ctrl-C> only has an effect when the program is waiting for keyboard input. <Ctrl-Break>
cannot be used when the program is waiting for input, but can be used any other time. <Ctrl-Break>
is immediately effective - it is acted upon as soon as the user enters it. The effect of <Ctrl-C> is

218

MODULA-2/86 PROGRAM EXECUTION

delayed until the program reads the <Ctrl-C> character. By typing <Ctrl-Break> it is possible to stop a
Modula-2 program running in an infinite loop. However, under certain circumstances, the whole
system might crash if <Ctrl-Break> was accepted. MODULA-2/86 tries to prevent this from
happening. Therefore, typing <Ctrl-Break> will sometimes have no effect at all.

In MODULA-2/86, the library module 'Break' allows the user to define how a program will behave
when <Ctrl-Break> or <Ctrl-C> is typed. If module 'Break' is linked into a program, a memory dump
(file MEMORY.PMD) will be generated when the user types <Ctrl-Break> or <Ctrl-C>. To debug a
program with the symbolic post-mortem debugger, a memory dump is needed. To be linked with a
Modula-2 program, module 'Break' must be imported explicitly into one of the modules that
constitute the program. Normally, one imports it in the main module of the program. If module
'Break' is not linked with a program, no memory dump will be generated when the program is
terminated by typing <Ctrl-Break> or <Ctrl-C>.

With module 'Break' it is also possible to disable aborting the program - to ignore <Ctrl-Break> and
<Ctrl-C>. In addition, it is possible to install a break-procedure which will be called when the user
types <Ctrl-Break> or <Ctrl-C>. With a break-procedure a dump will not be generated automatically.
When module 'Break' is used, typing <Ctrl-Break> once, in almost all cases, will stop the program or
call the installed break-procedure.

When debugging a program with the LOGlTECH MODULA-2/86 run-time debugger, one should
link module 'Break' with the program.

8.4 Command Line Arguments

When a MODULA-2/86 program is executed using the command 'm2 <programname>', any text
which follows the name of the program is taken as keyboard input. This means, for example, that it
works to say 'm2 comp my prog/batch/noaquery'. Note that this works for any MODULA-2/86
program that does keyboard input using the modules Terminal or InOut.

This allows MODULA-2/86 programs to be used more easily with the DOS Batch facility, which
requires that all input to a program be on the command line. Because the compiler, linker and
debugger accept a space (as well as <CR» to terminate an argument, multiple arguments may be
given on the command line. For example:

m2 link overlayllb mainline

219

THE SYMBOLIC POST-MORTEM DEBUGGER MODUlA-2/86

9 THE SYMBOLIC POST-MORTEM DEBUGGER

9.1 Introduction

The post-mortem debugger is an instrument used to inspect a crashed program to determine what
went wrong with the program and where the problem occurred. When a program terminates
abnormally, the memory image is saved on disk in a dump file. The post-mortem debugger allows the
user to inspect this dump file symbolically. The debugger displays the state of the program using the
corresponding module and procedure names. It shows the names and values of variables according to
their type structure.

The MODULA-2/86 run-time support creates a memory dump file, named MEMORY.PMD, when:

• a run-time error occurs.

• a program calls the standard procedure 'HALT' .

• a program calls procedure 'Terminate', exported by module 'System', with a status 'asserted'.

• the user types <Ctrl-Break> or <Ctrl-C> while running a program that imports module
'Break'.

In addition to the dump file (PMD filetype), the post-mortem debugger uses reference files (REF
filetype) and sometimes, source files (MOD and DEF filetype) of the component modules of the
stopped program. The compiler generates the reference file when it compiles the implementation of a
module. The reference file contains symbolic information and the addresses of all the variables,
procedures, and statements in a module.

The symbolic post-mortem debugger can be used even if some, or all, reference files are missing.
However, without reference files it is impossible to symbolically examine the corresponding modules.
Without source files the debugger cannot show the text of the corresponding modules in the
program.

The sample screens used for illustration refer to the sample program included at the end of this
chapter.

220

MODULA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

9.1.1 Installation

There are two ways to install the MODULA-2 post-mortem debugger depending on whether you
have two floppy disk drives or one floppy and a hard disk. In both cases we assume you have
successfully completed the installation process as described in the Installation chapter.

Two Floppy Disk Drives

If your system uses two floppy disk drives, prepare a copy of the MODULA-2 post-mortem debugger
disk. Use this disk when running the debugger on .PMD files. Your debugger disk contains:

• the MODULA-2 post-mortem debugger files (.LOD).

• the reference files (.REF) of the library modules.

One Floppy and a Hard Disk

If your system is equipped with a hard disk and one floppy, copy all .LOD files in the directory where
you keep MODULA-2/86 executable files (usually in '\m210d'). Copy all the .REF files in the
directory where you keep .REF files (usually in '\m2lib\ref).

Before you run the post-mortem debugger make sure that the PATH and 'M2xxx' environment
variables are correctly set.

9.1.2 Windows

The post-mortem debugger displays five different types of information about your program. This
information is divided into windows which are invoked using global commands. Only one window can
be displayed at a time. This section gives an overview of the different windows.

• Call Window

The Call window displays the chain of procedure calls of a process. All Modula-2 programs
contain at least one process - the main program itself. When you initiate the post-mortem
debugger, the debugger displays the Call window which details the call chain of the process
that was running when the program stopped. The first procedure of the call chain is the
procedure in which the program stopped. You can select a procedure to examine its text or
data, (i.e. local data).

221

mE SYMBOLIC POST-MORTEM DEBUGGER MODUIA-2/86

222

If the program which was stopped contains more than one process, the Call window can
show the call chain of each process in the program. (For further information see the Data
Window or Raw Window section).

• Module Window

The Module window displays the list of modules that constitute the program being
debugged. You can select a module to display its text or data (i.e. global data).

• Data Window

The Data window displays the data of the procedure or module that you selected in the Call
or Module window. You can browse into the data by selecting a data item to display
substructures or by selecting a PROCESS variable to display another call chain.

• Text Window

The Text window displays the text of the procedure or module selected in the Call or Module
window. If you choose to inspect the procedure in which the program stopped, a greater-than
sign indicates the line that was being executed when the program stopped. If you inspect any
other procedure, the greater-than sign indicates the line containing the call to the next
procedure in the call chain.

If you select a module, the Text window shows the end of that module for the lines displayed
previously. This window can also display the corresponding definition module, if one exists.

• RawWindow

The Raw window displays the memory image, recorded when the program stopped. The
debugger shows the memory contents in hexadecimal format (as bytes, words or addresses),
in decimal format (as integers, cardinais or reais), or in text format (as characters). You
select the information at a particular address for display. You also can select a process
descriptor at a specific address to build its call chain.

MODUrA-2/86

9.2 How to Run the Post-Mortem Debugger

To initiate the post-mortem debugger, enter:

A> m2 h:pmd<CR>

THE SYMBOLIC POST-MORTEM DEBUGGER

The debugger responds with a sign-on message:

LOGITECH MODULA-2/86 Post-Mortem Debugger, DOS 8086

followed by the release number and date and a copyright notice. Then, the debugger asks for the
name of your dump file. The default filename is MEMORY.PMD (type <CR> to indicate the default
filename).

After you enter the name of the dump file, the debugger executes some internal initialization and
then displays the Call window. When the debugger displays symbolic information, it needs to have
access to the corresponding reference files. The debugger automatically searches for reference and
source files according to the default search strategy. If a file cannot be found, the debugger will ask
you to type in the correct file name. Enter <ESC> to indicate that the file is not available.

Some modules are defined as a part of the System Library. If the corresponding files are not found
with the default search strategy, the post-mortem debugger does not prompt for their filenames. The
system library includes 'ASCII', 'DiskDirectory', 'DiskFiles', 'Display', 'FileSystem', 'Keyboard',
'Program', 'Reals', 'Storage', 'System', 'TermBase', and 'Terminal'.

When entering the name of the dump file, you can also specify the Query option, by following the
filename with '/q'. When the Query option is turned on, the user is prompted to enter the filename of
the reference and source files. If the user types <CR>, the system uses the default path and the
default name. If the user types the name only, the system uses the default path (see the section on
query search strategy). If the user types <ESC>, the system considers the file absent.

Another option you can specify is the Version option by following the filename with 'Iv'. The Version
option displays the date and version of the run-time debugger.

The run-time support (M2.EXE) reserves enough K bytes of memory for the DOS command
interpreter (COMMAND.COM) on top of memory. This area of memory can be used to load the
application program. The only disadvantage of this is that DOS will need to load from disk its
command interpreter each time the debugger terminates.

223

THE SYMBOUC POST-MORTEM DEBUGGER MODUIA-2/86

To run the debugger using all the available memory, type:

A> m2\f=O pmd<CR>

Refer to the Program Execution chapter for more details.

9.3 Window Format

Only one of the five windows is displayed at a time. The first two lines of each window indicate the
commands available for the particular window. The first, upper case letter of each command is the
command character. You may type a new command without waiting for the completion of the
previous one. The debugger then interrupts the display in progress and starts the new command.

9.3.1 Selecting an Item for Display

In each window, one of the displayed items is considered selected. The post-mortem debugger
displays the position of the selected item ~s ~ line !lumber in the lower part of each \vindcw. In the
Raw window the debugger displays the address of the selected memory location.

You can select a different item using the cursor keys. You can also type in a new line number to
select the item at that position.

9.3.2 Execution Markers

In the Call, the Module and the Text windows certain lines are marked with a greater-than sign (».
The greater-than sign is used as an Execution Marker to indicate active code.

In the Call window all the procedures are marked because they were all active when the program
stopped. In the Module window, only the modules to which these active procedures belong are
marked. In the Text window, when the debugger displays the text belonging to an active procedure, it
indicates with a greater-than sign (» the line that was being executed when the program stopped.

224

MODUrA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

9.3.3 Numbers and Addresses

In general, the post-mortem debugger displays hexadecimal values followed by an "h", and octal
values followed by a "c". The only exceptions are the values displayed in the Raw window, where the
header line indicates the format of the window contents.

The post-mortem debugger shows addresses in the format <segment>:<offset> with both parts in
hexadecimal representation.

When the address is related to code, the segment corresponds to the beginning of the module code.
When the address is related to module data, the segment indicates the beginning of the module data.
In both cases, the offset is relative to the beginning of the segment.

9.4 The Post-Mortem Debugger Commands

The post-mortem debugger has two main types of commands - global commands and local
commands. The user has access to the global commands in all the windows and can use them
whenever the post-mortem debugger is ready to accept commands. Local commands. are only
applicable to the particular window in which they appear and are explained in the appropriate
sections. Many of the global and local commands operate on the selected item in the window shown
when the command is typed.

9.4.1 Global Commands

The global commands appear on the second line of each window, below the window name and loc~il
commands, as follows:

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H)

You invoke a global command by entering the first letter of the command name, shown in upper case
on the command line. When invoking a command in the first set of brackets, you must preceed each
command with an equal sign (=). When invoking a command in the second set of brackets, you must
preceed each command with a pound sign (#).

225

THE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

For example, to invoke the Module window, enter:

To change the page mode, enter:

The following global commands are available:

• =.call

Invokes the Call window.

• =Module

Invokes the Module window.

• =Data

Invokes the Data window.

• =Text

Invokes the Text window.

• =Raw

Invokes the Raw window.

• =Init

Switches to the Call window and redisplays the process that was running when the program
stopped.

226

MODULA-2/86 THE SYMBOUC POST-MORTEM DEBUGGER

• Hexadecimal

Converts a number from decimal to hexadecimal. Enter a decimal number when prompted
and the debugger will display the hexadecimal value. The decimal number cannot be greater
than 65535 (decimal).

• Quit

Quits the debugger. You are prompted for a veto. Enter Yes to terminate the debugger
session.

• #Page

Turns the page mode on and off. If the page mode is on the debugger displays information
one screen at a time. If the page mode is off, the debugger scrolls information off the top of
the screen and adds new lines at the bottom. The default is page mode off.

• #Help

Turns the help mode on and off. If the help mode is on, the two help lines are displayed on
the top of the screen. The default is help mode on. This can be changed with the option IH­
when you start the PMD.

• ~ine

Specifies the number of lines the debugger displays at one time. The user can invoke this
command in scroll or page mode. The default value is 16.

• ~oise

Turns the bell that signals erroneous input on and off. The default is on.

• <Ctrl-X>

Erases all characters typed, without leaving the command, when a command requires
additional input - for example, the Hexadecimal command.

227

THE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

• <Esc>

Cancels the command, when a command consists of several keystrokes - for example the
commands to select another window - or when a command requires additional input - for
example, the Hexadecimal command.

9.S Post-Mortem Debugger Windows

The following sections explain each of the five windows, their components and primary functions.

9.S.1 Call Window

The Call window displays the chain of procedure calls of a process. When you initiate the post­
mortem debugger, the debugger displays the Call window which details the call chain of the process
that was running when the program was stopped.

The line number displayed with the first procedure indicates the line in the source text where the
progra..1!l was stopped" The line number displayed with the second procedure indicates the line in the
source text where the first procedure was called. After the line number, a statement number indicates
which statement is executed in the line.

When analyzing a process that was not actively running when the program stopped, the first
procedure displayed in the Call window shows where this process was suspended. The line number
indicates where the last 'TRANSFER' or the interrupt occurred.

The displayed call chain is limited to 32 procedures. You can select a procedure to examine its data
or text.

The following example shows the Call window for the sample program 'Demo', as the debugger will
initially display it when debugging the corresponding memory dump. A listing of the sample program
'Demo' is included at the end of this chapter. The 'Status: halted' indicates that a 'HALT' statement
was executed in procedure 'LastOne'. This occurred in the second statement on line 48 in module
'Demo'.

, 228

MODUIA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

CALL I
=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H]

status: halted

1 > LastOne in Demo stops at line 48, statement
2 > Recursiveone in Demo at line 37, statement
3 > Recursiveone in Demo at line 38, statement
4 > Firstone in Demo at line 24, statement
5 > initialization of Demo at line 57, statement
6 > PROCESS

Position > 1

SAMPLE SCREEN 9-1

If a reference file of a module is missing, the procedure names are replaced by procedure numbers
within the module. The body of the main module is number O. The procedures declared in the
definition module are numbered starting from 1 according to their declaration sequence. The
procedures that appear only in the implementation module get the numbers in the order of their
declaration (header). Local modules are handled as procedures.

2
2
1
1
1

The. last item in the call chain, shown as 'PROCESS', refers to the process currently being examined.
You may select this item and invoke the Data window to display the contents of the process
descriptor. The process descriptor is a set of data associated with a variable of type 'PROCESS'. It
contains information describing the current status of the process; for example, the 8086/88 registers.

There are no local commands in the Call window.

The typical use of the Call window is to select a procedure and invoke the Data or TFxt window.

229

THE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

9.5.2 Module Window

The Module window displays the list of modules that constitute the program being debugged. You
can select a module in order to display its data or text. The modules that contain code that was active
when the program stopped are marked by a greater-than sign (».

The Module window also displays the addresses of the code and data of each module. The number of
modules displayed cannot exceed 255 and the PMD cannot debug a program with more modules.

The following example shows the Module window as the debugger displays it, for instance when the
Module command is used in the situation shown in Sample Screen 1. The Module window displays
the names and addresses of the modules in the program being debugged. The module named 'Demo'
is marked with a greater-than sign, indicating that some of its code was active when the program
stopped.

MODULE I FIND
=[Call Mod Data Txt Raw Inij Hex Quit #[P L N H]

Module Name CodeAddress DataAddress

1 System OC8C:OOOOh OCE6:0000h
2 ASCII OC8A:OOOOh OCE6:0000h
3 Keyboard OC59:0000h OCDD:OOOOh
4 Display OC51:0000h OCDD:OOOOh
5 Termbase OCOB:OOOOh OCD6:0000h
6 Terminal OBE8:0000h OCD5:0000h
7 > Demo OBC5:0000h OCD1:OOOOh

position > '7 ,

SAMPLE SCREEN 9-2

230

MODULA-2/86 mE SYMBOLIC POST-MORTEM DEBUGGER

Local Commands in the Module Window

There is one local command in the Module window, the Find command.

• find

This command prompts the user for a module name (case sensitive) and, if it is found, the
PMD sets the selected position to this module.

The typical use of the Module window is to select a module and invoke the Data or Text window.

9.5.3 Data Window

The Data window displays the variables and/or parameters of the selected procedure or module. On
the first line below the global commands it shows the name of the procedure or module being
examined. It indicates the current values of each variable and the type of the variable. The Data
window also allows you to view the contents of structured variables such as arrays or records. You
can select a data item to display substructures.

Local Commands in the Data Window

There are seven local commands in the Data window. The user invokes the local commands by
entering the first character, shown in upper case, of each command name. (The Exchange command
is an exception. It is denoted by 'X'.) The local commands appear on the first line of the window, to
the right of the window name as follows:

DATA I Son Father Left(dec index) Right (inc) Var X Addr
Examine (process)

• Son

Displays the data structure beneath the current level for the selected item. If the selected
item is an array, the Son command displays the values of the elements of the array. If the
selected variable is a record, the Son command displays the names and values of the record
fields. Likewise, local modules are shown as data of the embedding module. You can also
examine the content of the process descriptor by entering the Son command when a variable
of type 'PROCESS' is selected. In addition, this command can be used to follow linked lists
when you select a variable which is a pointer or is of type 'ADDRESS'.

231

THE SYMBOLIC POST-MORTEM DEBUGGER MODUlA-2/86

232

If the selected item is of hidden type, the debugger will show the content of the variable as it
is defined in the corresponding module. Note that with modules compiled with a previous
compiler (before 2.0), the debugger will prompt the user for the module name.

• [ather

Displays the data structure above the current level. The Father command is the reverse of
the Son command .

• yariables

Returns to the first level of the selected procedure or module. The first level shows the
variables of the procedure or module. The Variables command can be used after you have
repeatedly entered the Son command and wish to return to the first level directly, without
repeatedly entering the Father command.

• Right / Left

These ccmma...~ds are en!y applicable '.Iw'hen the selected data item is an element of an array~
or part of an element of an array. The Right and Left commands select the element with the
next higher or lower index in the array. The current level is not changed by these commands.
If the array elements are records, the record field selected is not affected.

Example:

TYPE Point = RECORD
x,y: INTEGER;
END,·

VAR Figure = ARRAY [l..100J OF Point,·

If the selected item is Figure [17J.x then command Right will select Figure [lBJ.x .

• eXchange

The Exchange command switches the debugger screens between displays of module and
procedure data (i.e. global/local data). If you are currently examining the data of the selected
procedure, the Exchange command will show the data of the corresponding module and
vice-versa.

MODUlA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

• Address

Displays the address of the selected data item .

• gxamine

This command can be used when you select a variable of type 'PROCESS'. Otherwise, the
debugger prompts you to introduce the address of the process descriptor - the content of a
variable of type PROCESS. The Examine command switches to the Call window and displays
the call chain of the process to be examined. You may enter the global command Init to
show the Call window of the process that was running when the program stopped.

The following example shows the data for module 'Demo' as displayed by the debugger when the
Data command is used in the situation shown in Sample Screen 2, except that, in addition, the
position has been changed to '4'. The first column lists the four variables in module 'Demo', and the
second and third columns indicate the current value and type of each variable. For example, the first
variable is 'x'. It has a current value of '1' and is of type 'INTEGER'.

DATA I Son Father Left(dec index) Right (inc) Var X
Addr Examine(process)

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H]

Demo.

1 x
2 y
3 z
4 node

position > 4

1 INTEGER
2.0000000000E+OOO REAL

3 INTEGER
ARRAY[1 .. 4] OF RECORD

SAMPLE SCREEN 9-3

233

THE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

If you choose to examine the contents of structured data, the Data window indicates the complete
'path'. This path is shown on the first line below the global commands. It includes the name of the
procedure or module, the name of the variable, the names of the record fields, and the indices in the
case of arrays. There is no limitation on the length of this path. If the path contains a list, the { }
contain the number of the list element. For example,

MODULE Sample
TYPE T=RECORD

i:CARDINAL;

VAR

next: POINTER TO T,·
END,·

p:T;
END Sample;

If you examine the 3rd list element of 'Sample' the debugger writes:

which is equivalent to the Modula-2 expression, Sample.p.nextA.nexC.next.

The following example shows the content of the variable 'node' of module 'Demo'. This screen
illustrates the effect of the Son command when used in the situation shown in Sample Screen 3. The
path is indicated on the first line below the global commands as 'Demo.node'. Because 'node' is an
array of records, the numbers in brackets show the indices into the array. The next columns usually
show the content and type of each array element. In the case of structured data, as indicated by
'RECORD DATA' in the example, the Son command must be used to display the values.

234

MODULA-2/86 mE SYMBOLIC POST-MORTEM DEBUGGER

DATA I Son Father Left(dec index) Right (inc) Var X
Addr Examine(process)

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H]

Demo. node

1 [1]
2 [2]
3 [3]
4 [4]

position > 1

RECORD
RECORD
RECORD
RECORD

SAMPLE SCREEN 9-4

DATA
DATA
DATA
DATA

If the Son command is used in the situation shown in Sample Screen 4, the result will be as illustrated
by the following example. It shows the three fields of the record 'node[l]', the value of each field and
its type. For example, the field 'datal' has a value of '1' and is of type 'CARDINAL'.

235

THE SYMBOUC POST-MORTEM DEBUGGER MODUlA-2/86

DATA I Son Father Left(dec index) Right (inc) Var X
Addr Examine(process)

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H]

Demo.node[l]

1 datal
2 data2
3 data3

position > 1

1
2.0000000000E+OOO

SAMPLE SCREEN 9-5

CARDINAL
REAL
INTEGER

To examine another element of the array, you invoke the local command Right. When applied in the
situation shown in Sample Screen 5, this moves the position to the second element of the array, and
the Data window displays the fields of'Demo.node[2]'. This situation is shown in the following
example.

236

MODUlA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

DATA I Son Father Left(dec index) Right (inc) Var X
Addr Examine(process)

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H]

Demo.node[2]

1 datal
2 data2
3 data3

position > 1

9.5.4 Text Window

2
3.0000000000E+OOO

4

SAMPLE SCREEN 9-6

CARDINAL
REAL
INTEGER

The Text window shows the text of the selected module or procedure. The greater-than sign (»
indicates the line in which the program was stopped, the call of the next procedure, or the last process
transfer or interrupt. The Text window shows the module name on the line below the global
commands. It lists the source text with a line number within this module.

Local Commands in the Text Window

There are three local commands in the Text window. You invoke the commands by entering the first
character, shown in upper case, of each command name. The local commands appear on the first line
of the window, to the right of the window name as follows:

TEXT I Address Def Imp Find

• Address

Shows the code address of the selected source line.

237

mE SYMBOUC POST-MORTEM DEBUGGER MODUIA-2/86

• Definition

Displays the corresponding definition module (DEF filetype), if an implementation module
is displayed.

• Implementation

Redisplays the corresponding implementation module (MOD filetype) if the user is currently
inspecting the definition module.

• find

Searches for a procedure. The user is prompted to enter the porcedure name. If more than
one procedure has the same name (nested procedures), the Find command searches first for
the one which is less nested.

The following example shows the source text of module 'Demo', lines 43 through 58. In this case the
greater-than sign indicates that the program stopped on line 48.

238

MODUIA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

TEXT I Address Def Imp Find =[Call Mod Data Txt Raw Ini] Hex
Quit #[P L N H]

Demo
43
44
45
46
47
48 >
49
50
51
52
53
54
55
56
57 >
58

BEGIN
node[4].data1
node[4].data2
node[4].data3
INC (x);

:=
:=
:=

x;
y;
z;

y := y + 1.0; HALT; INC (z)
END LastOne;

BEGIN (** MAIN **)
Writestring ('Here we go ••• ');
writeLn;
x := 1;
y := 2.0;
z := 3;
Firstone (x, y, z)

END Demo.

position > 48

SAMPLE SCREEN 9-7

9.S.S Raw Window

The Raw window displays the memory contents around a given address. The Raw window can show
the memory contents in several different formats. The local commands for this window list the user's
choice of formats.

239

mE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

The initial address of the selected memory location, depends on the window from which you invoke
the Raw window. The values are set as follows:

• When initiated from the Call window, the Raw window sets the selected address to the
beginning of the local variables of the selected procedure. Note: This corresponds to the
value of the 'base pointer' register.

• When initiated from the Module window, the Raw window sets the selected address to the
beginning of the global variables of the selected module. Note: This corresponds to the
beginning of the module's 'data segment'.

• When initiated from the Data and Text windows, the selected address corresponds to the
address of the selected variable or line (statement). If a definition module is displayed in the
Text window the selected address corresponds to the last selected line (statement) in the
corresponding implementation module.

You can introduce a new address which will then be selected. You enter addresses in the form
<segment>:<offset>. Both parts are 4 digit, hexadecimal numbers. In the Raw window it is also
possible to enter the offset only_ In tltJs case, the 'segment' of the selected address win not be
changed.

Local Commands In the Raw Window

There are ten local commands in the Raw window. Eight of the local commands indicate the different
data formats available. You invoke the first two commands by entering the first character, shown in
upper case, of each command name. The commands that switch between different display formats
must be preceeded by a pound sign (#).

The local commands appear on the first line of the window, to the right of the window name as
follows:

RAW I Examine Son #[Byte Word Addr Char Text Int Unsigned
Real]

240

MODULA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

• Examine

Assumes the memory content at the selected address is of type 'PROCESS' - a pointer to a
process descriptor. The Examine command displays the Call window of this process. The
global command Init can be used to show the Call window of the process that was running
when the program stopped.

• .son

Takes the contents of the selected memory location as the new selected address. You
typically enter this command to follow a linked list.

The representation of data is chosen by the following commands:

• #Byte

BYTE (hexadecimal) format.

• #Word

WORD (hexadecimal) format. This is the default format.

• ~ddress

ADDRESS (hexadecimal) format.

• ~har

CHAR (octal) format. In CHAR format, non-printable characters are displayed as octal
numbers.

• next

Text format. In Text format, non printable characters are displayed as dots.

• #Integer

INTEGER format.

241

THE SYMBOUC POST-MORTEM DEBUGGER MODULA-2/86

• LUnsigned

Unsigned CARDINAL format.

• JlReal

REAL format.

The selected address in Sample Screen 8 is ODOO:0024. Using the Son command, you can select the
memory contents at this address to become the new address to display. An address is expressed as a 4
digit segment followed by a 4 digit offset separated by a colon. The segment is 0CF7 and the offset is
005C; hence, the new address is OCF7:005C. Sample Screen 9 shows the Raw window with
OCF7:005C as the new address. Both screens are represented in ADDRESS format, hexadecimal.

In Sample Screen 8, the window displays the statement, 'out of dump'. This indicates this part of the
memory is not contained in the memory dump because the program did not use it.

242

MODUIA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

RAW I Examine Son #[Byte Word Addr Char Text Int Unsign
Real]

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H]

address (hexadecimal) (<segment>:<offset>)
048

0000:0000
0000:0010
0000:0020
0000:0030
0000:0040
0000:0050
0000:0060
0000:0070
0000:0080
0000: 00.90
OOOO:OOAO
OOOO:OOBO
OOOO:OOCO
0000:0000
OOOO:OOEO
OOOO:OOFO

0000:0079 0000:0000
A911:0000 55B4:0434
OCF7:00B8 OCF7:005C
0000:0000 0000:0000
0433:A911 0002:A502
008A:OCF7 5341:0CF7
0000:0000 0000:0000
E3EE:0434 OC8A:0002
OCF7:00B8 7473:7953
0000:0000 0000:0000
0002:6A54 OCE6:0C8C
4E8A:OCF7 61F9:82FA
4E88:5FE1 FA46:8AFA
8A19:737F 8E2E:FA46

-- out of dump
-- out of dump

Position> 0000:0024

SAMPLE SCREEN 9-8

0000:0000
OC51:0002
6279:654B
0000:0000
OCOO:OC59
0049:4943
0000:0000
0001:OCE6
0000:6065
0000:0000
000F:0001
F982:087C
2076:203C
8BOO:001E

C

0000:0000
OOOl:OCOO
6472:616F
0000:0000
00E6:0001
0000:0000
A911:0000
OCF7:0114
0000:0000
0424:A911
00E6:FFFF
8003:7F7A
3CFA:468A
7100:5AOE

243

mE SYMBOUC POST-MORTEM DEBUGGER MODUlA-2/86

RAW I Examine Son #[Byte Word Addr Char Text Int Unsigned
Real]

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H]

address (hexadecimal) (

OCF7:0000
OCF7:0010
OCF7:0020
OCF7:0030
OCF7:0040
OCF7:0050
OCF7:0060
OCF7:0070
OCF7:0080
OCF7:0090
OCF7:00AO
OCF7:00BO
OCF7:00CO
OCF7:00DO
OCF7:00EO
OCF7:00FO

o
6F6D:6544
0000:0000
OCD1:0BC5
6E69:6D72
0000:0000
0001:0CD5
6573:6162
0000:0000
008A:0001
0000:0079
A911:0000
OCF7:00B8
0000:0000
0433:A911
008A:OCF7
0000:0000

position> OCF7:005C

244

<segment>:<offset>)
4

0000:0000
0000:0000
002E:0001
0000:6C61
A911:0000
OCF7:005C
0000:0000
0438:A911
002E:OCF7
0000:0000
55B4:0434
OCF7:005C
0000:0000
0002:A5D2
5341:0CF7
0000:0000

SAMPLE SCREEN 9-9

8
0000:0000
0385:A951
FFFF:OCF7
0000:0000
3CC8:0432
OCF7:0000
0000:0000
0002:1612
6944:0CF7
0000:0000
OC51:0002
6279:654B
0000:0000
OCDD:OC59
0049:4943
0000:0000

C
0000:0000
0031:7F58
6554:FFFF
0000:0000
OBE8:0002
6072:6554
0000:0000
OCD6:0COB
616C:7073
0000:0000
000l:0CDD
6472:616F
0000:0000
00E6:0001
0000:0000
A911:0000

MODUIA-2/86 THE SYMBOliC POST-MORTEM DEBUGGER

9.6 Post-Mortem Debugger Messages

The following is an alphabetical list of the Post-Mortem Debugger error messages. When error
messages are caused by certain commands only, these commands are listed in brackets.

• Already at the beginning of the array
[Data window, Left command]

The first element of the array is already being displayed.

• Already at the end of the array
[Data window, Right command]

The last element of the array is already being displayed.

• Already at top level (current process)
[Data window, Father and Variables commands]

The descriptor of the selected process is already being displayed.

• Already at top level
[Data window, Father and Variables commands]

The variables of the selected procedure or module are already being displayed.

• Assert: 'error message'

The debugger aborts with this message when an internal error is detected. We hope that this
message will never appear. If it does, please report it to LOGITECH.

• Can not display data window with a wrong reference file
[Data command]

When a wrong reference file is used, symbolic debugging is not possible for that module and
its procedures. In this case the debugger cannot display the Data window. (For further
explanation, see the note at the end of this section.)

245

TIlE SYMBOUC POST-MORTEM DEBUGGER MODUIA-2/86

246

• Can not display definition module without the text file
(.DEF)
[Text window, Defmition command]

The text of the definition module cannot be displayed because the corresponding source file
is missing.

• Can not display text window without the reference file
[Text command]

The text of the selected module cannot be displayed because the corresponding reference file
is missing. To display the text of a module, both the source and the reference files are
needed.

• Can not display text window without the text file
(.MOD)
[Text command]

The text of the selected module cannot be displayed because the corresponding source file is
missing.

• Can not find reference file (disk removed)

The reference file cannot be opened where it was found before. Most likely, the disk has
been removed. Reinsert the disk and try again.

• Can not find text file (.MOD) (disk removed)

The source file cannot be opened where it was found before. Most likely, the disk has been
removed. Reinsert the disk and try again.

• Invalid set
[Data window, Son command]

If a SET variable has its unused bits uncleared, the value is considered INVALID. The
unused bits are the bits which are not used to represent the value of the set.

MODUlA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

• No code address in the definition module
[Text window, Address command]

Because a definition module does not contain any code the Address command is not
applicable.

• No data in the selected module
[Data command, Exchange command in Data window]

The selected module does not contain any variable declarations.

• No data in the selected procedure, global data
displayed
[Data command, Exchange command in Data window]

The selected procedure contains neither a parameter list nor any variable declarations. If
global variables exist in the module, they are shown and this message is displayed.

• No data in the selected procedure and module
[Data command, Exchange command in Data window]

The selected procedure and module contain neither a parameter list nor any variable
declarations.

• No selected procedure in this module
[Data window, Exchange command]

When the Data window shows module data, the Exchange command can only be used if the
selected procedure belongs to the same module.

• No text associated with the current process
[Text command]

The last element (PROCESS) displayed in the Call window represents the process descriptor
kept internally by the Modula-2 system. It does not correspond to any particular declaration
or statement in any particular source file.

247

THE SYMBOLIC POST-MORTEM DEBUGGER MODULA-2/86

248

• Not modified (page length too small)
[Lines command]

The number typed in for the new page length is invalid.

• No valid call list for the examined process
[Data window and Raw window, Examine command]

The values found in the memory dump indicate that the call list of the process is invalid.
Most likely, the call list has been destroyed by your program or you are trying to examine an
invalid process.

• No valid module list for the examined process
[Data window and Raw window, Examine command]

The module list found in the memory dump is invalid. Most likely, the module list has been
destroyed by your program or you are trying to examine an invalid process.

• No valid process descriptor (out of dump)
[Data window and Raw window, Examine command]

The process descriptor found in the memory dump is invalid. Most likely. the process
descriptor has been destroyed by your program or you are trying to examine an invalid
process.

• Out of dump

The debugger tried to display or use the contents of the memory dump at some address that
is not a part of the dump. This can happen if you entered an invalid address. It also can
happen if the memory dump contains invalid addresses or pointers. The memory dump
contains all memory locations that might legally have been used by your program. Most
likeiy, you are trying to use an uninitiaiized or invaiid pointer or address. This might be
happening if your program has destroyed (overwritten) part of the memory.

• Out of dump (NIL value)

The debugger tried to use an address or pointer whose value was NIL.

MODULA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

• out of dump (>1 M Byte)

The debugger tried to use an address which is outside of the address space of one megabyte.

• This data is not an array element
[Data window, Left and Right command]

The selected data item is not part of an array structure. The Left and Right commands are
applicable inside of an array structure only.

• This data is not structured
[Data window, Son command]

The type of the selected data item is not a structured type (record, array, pointer). The Son
command is applicable to structured data only.

• This local module does not contain variables
[Data window, Son command]

The selected local module does not contain any variable declarations.

• This data is not a PROCESS
[Data window, Examine command]

The type of the selected data item is not PROCESS. The Examine command is applicable to
processes only.

• This line does not contain a statement
[Text window, Address command]

The selected line in the source text does not contain any statement. The Address command
of the Text window is applicable to statements only.

• This module name is not in the module list
[Module window, Find command]

The selected module is not found.

249

THE SYMBOUC POST-MORTEM DEBUGGER MODULA-2/86

250

• This procedure/module name is not in the module
[Text window, Find command]

The selected procedure or local module is not found.

• Too many modules
[Initialization of the PMD]

The number of modules of the process that was stopped exceeds the limit set in the
debugger. In the initialization of the PMD, this error is fatal (the debugger is left).

• Too many procedure calls (remaining calls can not be
viewed)

The number of procedures in the call chain (of the stopped or selected process) exceeds the
limit set in the debugger. Symbolic debugging is only possible for the procedures within the
limit.

• WARNING~ markers and breakpoint
incorrect (wrong files)
[Text command]

Some inconsistency has been detected between the reference file and the source file. This
might happen if the source is modified after the last compilation (and linkage). (For further
explanation, see the note at the end of this section.)

• Wrong reference file (too large)

When a reference file is larger than 64K bytes, symbolic debugging is not possible for that
module and its procedures. The corresponding modules must be split into smaller modules,
to allow symbolic debllgging.

• Wrong version of reference file

When a wrong reference file is used, symbolic debugging is not possible for that module and
its procedures. (For further explanation, see the note at the end of this section.)

MODULA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

• Wrong version of reference file (bad structure)

Some inconsistency inside of the reference file has been detected. Symbolic debugging is not
possible for that module and its procedures. (For further explanation, see the note at the end
of this section.)

• Wrong version of reference file (compiler version)

The debugger cannot recognize the format of the reference file. This may happen when you
try to use a compiler and a debugger which are not from the same release. In this case,
symbolic debugging is not possible for that module and its procedures. Please use the
appropriate versions of the compiler and the debugger. (For further explanation, see the
note at the end of this section.)

• Wrong version of reference file (module name conflict)

The name of the module in the reference file does not match with the name of the module
loaded. When a wrong reference file is used, symbolic debugging is not possible for that
module and its procedures. (For further explanation, see the note at the end of this section.)

NOTE

The debugger displays an error message if it detects some inconsistency between the memory dump
and the reference file or between the source file and the reference file. This might happen if the
source or the reference file (or both) used for debugging does not correspond to the version of the
module used in the program being debugged. For instance, one of these files might contain an old
version. Or, more likely, these files correspond to a newer version of the module because the module
has been changed and/or recompiled since the program was linked. The best way to solve this
problem is to recompile this module, to relink the program and to debug this new version (using a
new memory dump). If this is not possible, you should quit the debugger and restart it using the
Query option. When the debugger prompts you to enter the file names of the files in question, enter
<ESC> to indicate that these files are not present. In this case, no symbolic debugging will be possible
for that module, but the debugger will not display incorrect information.

251

THE SYMBOLIC POST-MORTEM DEBUGGER

9.7 Sample Program 'Demo'

1 003F
2 003F
3 003F
4 003F
5 003F
6 003F
7 003F
8 003F
9 003F

10 003F
11 003F
12 003F
13 003F
14 003F
15 003F
16 003F
17 0049
18 0051
19 005D
20 0068
21 0076
22 007A
23 0094
24 00A8
25 00B1
26 00B1
27 00B1

28 OOBD
29 OODE
30 00E8
31 00F1
32 0101
33 010B
34 0115
35 0119
36 0133

252

MODULE Demo;

FROM Terminal IMPORT WriteLn, WriteString;

TYPE DATA = RECORD
datal: CARDINAL;
data2 : REAL;
data3 : INTEGER

END;

VAR x: INTEGER;
y: REAL;
z:INTEGER;
node: ARRAY [1..4J OF DATA,·

PROCEDURE FirstOne (x:CARDINAL,y:REAL,-z:INTEGER),·
BEGIN

node[lj.datai :=x,·
node[1J.data2 := y,.
node[1J.data3 := z,·
INC (x),·
y:= y + 1.0,·
INC (z);
RecursiveOne (x, y, z)

END FirstOne,·

PROCEDURE RecursiveOne(x:CARDINAL,y:REAL,·
z:INTEGER);

BEGIN
WITH node [xl DO

datal :=x,·
data2 :=y;
data3 :=z

END; (...... WITH)
INC (x);
y :=y + 1.0;
INC (z),·

MODULA-2/86

MODUlA-2/86 THE SYMBOLIC POST-MORTEM DEBUGGER

37 014F
38 0169
39 016C
40 0172
41 0172
42 0172
43 0175
44 017D
45 0189
46 0194
47 OlA2
48 01C4
49 01CA
50 01CA
51 01D4
52 J1E2
53 01E7
54 01EC
55 01F7
56 0204
57 022B
58 0000

IF x > 3 THEN LastOne (x, y, z)
ELSE RecursiveOne (x, y, z)

END (** IF **)
END RecursiveOne;

PROCEDURE LastOne (x:CARDINAL; y:REAL; z:INTEGER);
BEGIN

node[4}.data1 :=x;
node[4}.data2 :=y;
node[4}.data3 :=z,'
INC (x),'
y:= y + 1.0; HALT; INC (z)

END LastOne;

BEGIN (** MAIN **)
WriteString ('Here we go ... ');
WriteLn;
x:= 1,'

y:= 2.0;
z:= 3;
FirstOne (x, y, z)

END Demo.

253

THE SYMBOLIC RUN-TIME DEBUGGER MODUIA-2/86

10 THE SYMBOLIC RUN-TIME DEBUGGER

10.1 Introduction

The symbolic run-time debugger allows you to monitor the execution of a program. You can execute
the program in steps, simulating slow motion. After each step, you may inspect the data and the
current status of the program. You can modify the values of the variables the program uses. There
are several ways you can step through the program. Depending on the situation, you may decide to
execute in larger or smaller steps.

The structure and user interface of the run-time debugger are very similar to that of the post-mortem
debugger. The run-time debugger uses the same windows and screen layout as the post-mortem
debugger. The run-time debugger commands are a superset of the post-mortem debugger commands:

• All global commands of the post-mortem debugger are also valid in the run-time debugger.

= In any particular window, aU local commallus of the:: post-mortem debugger are aiso vaiid in
the run-time debugger.

This chapter describes those features and functions which are specific to the run-time debugger. The
post-mortem debugger is documented in another chapter. Please refer to that chapter for a
description of the commands that are common to the post-mortem debugger and the run-time
debugger.

The sample screens used for illustration in this chapter refer to the sample program 'Demo' included
at the end of the chapter on the symbolic post-mortem debugger.

10.1.1 Installation

There are two ways to install the MODULA-2 run-time debugger depending on whether you have
two floppy disk drives or one floppy and a hard disk. In both cases we assume you have successfully
completed the installation process as described in the Installation chapter.

254

MODUlA-2/86 THE SYMBOLIC RUN-TIME DEBUGGER

Two Floppy Disk Drives

If your system uses two floppy disk drives, prepare a copy of the MODULA-2 run-time debugger
disk. Use this disk when running the debugger on .LOD files. Your debugger disk contains:

• the MODULA-2 run-time debugger files (.LOD)
• the reference files (.REF) of the library modules

One Floppy and a Hard Disk

If your system is equipped with a hard disk and one floppy, copy aU .LOD files in the directory where
you keep MODULA-2/86 executable files (usually in '\m2Iod'). Copy all the .REF files in the
directory where you keep .REF files (usually in '\m2lib\ref).

Before you run the run-time debugger, make sure that PATH and 'M2xxx' environment variables are
correctly set.

The reference file for module MathLibO, running for the mixed emulator version
(M87MATHO.REF), is distributed in your Base Language System - Linker diskette 3/3.

10.2 How to Run the Run-Time Debugger

To initialize the run-time debugger, enter:

A> m2 rtd<CR>

The debugger responds with a sign-on message:

MODULA-2/86 Run-Time Debugger

followed by the version number and a copyright notice. Then, the debugger asks for the name of the
program you wish to debug. Enter the name of the load file (filetype .LOD) followed by <CR>. The
debugger will then load your program into memory, and display the Module window. At this point,
the program has not started to execute.

You may set breakpoints before executing the program. You instruct the debugger to start the
execution of the program by entering one of the Go commands.

255

THE SYMBOLIC RUN-TIME DEBUGGER MODULA-2/86

When the program has terminated, the debugger prompts you to enter the name of the next program
to debug. Enter <ESC> to exit the run-time debugger.

10.2.1 Run-Time Debugger Options

When you start the run-time debugger, you may also specify, on the command line, various options.
Options are denoted by a slash (I) followed by the first character of the option name. For example, to
activate the Query and Swap options, enter:

A> 102 rtdlg/s<CR>

when starting the run-time debugger.

The following options are available:

256

• lSJ.uery

The Query option indicates that reference and source files should be searched for according
to the query search strategy (see the corresponding section of the MODULA-2/86 manual
for a description). You will be prompted to enter the reference and source file names. If the
Query option is not specified, the debugger automatically searches for these files according
to the default search strategy.

• illisplay

The Display option indicates that the debugger has to save/restore the screen of the
application when a breakpoint is encountered or when the execution is resumed. This option
allows the debugging of a program which does input/output to the screen. Note that the
content of the application's screen cannot be seen when the programmer communicates with
the debugger.

MODULA-2/86 THE SYMBOLIC RUN-TIME DEBUGGER

• LLarge

The Large option enlarges the internal workspace of the run-time debugger. This workspace
is used for storing information on the program being debugged. In particular, it contains
information for each module of the program. When debugging large programs consisting of
many modules, the default workspace of the run-time debugger may be too small. This would
lead to a stack or heap overflow in the debugger itself. If you use the Display option, the
debugger saves the content of the screen in its workspace. It is important to have enough
space allocated in the workspace for the copy of the screen.

The size of the default workspace is 16 K bytes. When the Large option is used, this size is
increased to 32 K bytes.

• ~wap

The Swap option enlarges the memory available to the program being debugged. This
enlargement is made by swapping a part of the run-time debugger code with the program
being debugged. A more complete description of the Swap option is given in the next section.

• LYersion

The Version option displays the date and version of the run-time debugger.

• LHelp

The Help option turns the help mode on and off. If the help mode is on, the two help lines
are displayed on the top of the screen. The default is help mode on. This can be changed with
the option /H- when you start the RID.

10.2.2 Memory Requirements and Swapping

The run-time debugger requires approximately 225 K bytes of memory to run. The remaining
memory can be used by the program being debugged. For example, on a system with 256 K bytes of
memory, you can debug a program that uses approximately 35 K bytes.

The requirement of 225 K bytes includes the run-time debugger and approximately 34 K bytes for the
operating system (DOS 2.0). If your operating system is larger than 34 K bytes, you should compute
the requirements accordingly.

257

THE SYMBOLIC RUN-TIME DEBUGGER MODULA-2/86

The run-time support (M2.EXE) reserves enough K bytes of memory for the DOS command
interpreter (COMMAND.COM) on top of memory. This area of memory can be used to load the
application program. The only disadvantage of this is that DOS will need to load from disk its
command interpreter each time the debugger terminates.

To run the debugger using all the available memory, type:

A> m2/f=O rtd<CR>

Refer to the Program Execution chapter for more details.

With the Swap option, it is possible to enlarge the memory space available to the program being
debugged by approximately 40 K bytes. On a system with 256 K bytes of memory, this allows you to
debug programs that use up to 75 K bytes.

When you specify the Swap option, part of the run-time debugger is only loaded into memory when
needed. This part includes the handling of the Call window, the Module window, the Data window
and the Raw window. When the program has been stopped and you invoke one of these windows, the
program is swapped out to disk It will be swapped into memory as soon as you resume execution.

Note that the handling of the Text window belongs to the resident part of the run-time debugger. As
long as you activate this window only, no swapping will occur. TIris allows you to step through a
program avoiding the delay caused by swapping.

When you choose the Swap option, the debugger creates the two swap files RTDSWAP.RTD and
RTDPROG.RTD in the current directory of the current drive. Both files have a fixed size of
approximately 45 K bytes. Therefore, when using the Swap option you should make sure 90 K bytes
of disk space are available.

10.2.3 Programs Taking Command Line Arguments

With the run-time debugger, you can debug programs that take arguments on the command line.
When the debugger asks for the program to be debugged, you should enter the arguments in the
usual way. For example:

Assume the program 'mycopy' is normally started under DOS by entering:

A> m2 mycopy filel file2<CR>

258

MODULA-2/86 THE SYMBOLIC RUN-TIME DEBUGGER

With the run-time debugger, the following will start the program in the same way:

name of the program (.LOD» mycopy filel file2<CR>

10.3 Control of Program Execution

There are two ways you can control the program being debugged. One is to set breakpoints on some
specific statements of the program. The other is to step through the program, stopping at each
statement or procedure call.

When the debugger stops the execution of the program, either at a breakpoint or after a step has
been executed, you can inspect and modify the content of variables in any part of the program. You
may examine any process, and you may view or change the data of any module or any active
procedure.

10.3.1 Breakpoints

One way for you to monitor program execution is to indicate to the run-time debugger certain points
at which the execution of the program should stop. These points are called breakpoints. When the
program executes a statement on which a breakpoint is set, the program stops and you may examine
the data structures and the status of the program.

You may set a breakpoint on any statement of the program. The debugger sets no limit to the
number of breakpoints. You may set or remove breakpoints before you start the execution of the
program or any time the program is stopped.

Each breakpoint has an occurrence counter associated with it. Each time you set a breakpoint, the
debugger prompts you to specify a limit for the occurrence counter. This counter tells the debugger
how many times to execute the statement before stopping the program. Once an occurrence counter
has reached its limit, the debugger stops the program each time it encounters this breakpoint.

For example, you set the limit of the counter for a particular breakpoint to five. The run-time
debugger will execute the program until the fifth time it reaches the statement on which this
breakpoint is set. If you continue the execution of the program, the debugger will stop the program
each time this breakpoint is encountered.

259

THE SYMBOUC RUN-TIME DEBUGGER MODUIA-2/86

10.3.2 Step Mode

You can also instruct the debugger to execute the program statement by statement or procedure call
by procedure call. The debugger 'steps' through the program stopping its execution at the beginning
of the next statement or procedure call. Another possible step is to execute the program up to the
return from the current procedure. If a breakpoint is encountered during the execution of a step, the
program will stop at the breakpoint. Anytime the program is stopped, you may examine its current
status and data

10.3.3 Overview of the Run-Time Debugger Commands

There are five global commands which most clearly distinguish the run-time debugger from the post­
mortem debugger. These commands allow you to control the execution of the program by stopping at
specific points in the program. Whenever the program is stopped, you can examine its current status,
and display and modify its data In this way you can determine more specifically the location and
cause of problems in your program.

The five global commands are described in detail in the corresponding section. The following list
briefly defines each command. You invoke these global. commands byenteru.g the letters of the
command name, shown in upper case on the command line. For example, you activate the Go
Breakpoint command by typing GB.

• !io Breakpoint

Stop at the next breakpoint or overlay loading.

• Go Statement

Stop at the next statement, breakpoint, or overlay loading.

• !io £rocedure

Stop on the next procedure call, breakpoint, or overlay loading.

• ,GoB,eturn

Stop on the return from the current procedure, or the next breakpoint, or overlay loading.

260

MODUlA-2/86 THE SYMBOLIC RUN-TIME DEBUGGER

• Go;End

Execute the program until the end, ignoring breakpoints, but not the overlay loading.

10.3.4 Run-Time Errors

When a run-time error occurs in the program being debugged or when the program calls the
standard procedure HALT, the run-time debugger gains control and displays the Call window. No
memory dump (file MEMORY.PMD) is generated. The run-time debugger also indicates in the Call
window the cause of the run-time error. You can now inspect the program, but you cannot resume
the execution. When you activate a Go command, the debugger displays the following message:

Note: Program stopped due to error or HALT

Then, the debugger asks for a new program to debug, as when the program terminates normally.

10.3.5 Stopping Programs During Execution

A program being debugged, with or without the run-time debugger, should import module 'Break', so
that its object file will include this module.

The program being debugged can be stopped by typing <Ctrl-C> when it is waiting for input, or <Ctrl­
Break> at any other time it is executing, for instance when it runs in an infinite loop. If a program
that contains module 'Break' is stopped in this way, the run-time debugger handles this situation in
the same way as when a run-time error occurs. It displays the Call window, and you can inspect the
status and the data of the program as they were when <Ctrl-C> or <Ctrl-Break> was typed. It is not
possible to resume the execution of the program. Upon the next Go command, the run-time
debugger will display a message. It then prompts you to enter the name of the next program to debug,
as when the program terminates normally.

If a program that does not contain module 'Break' is stopped by <Ctrl-C> or <Ctrl-Break>, the run­
time debugger will not display the Call window. Instead, it wiII just terminate the program.

261

THE SYMBOUC RUN-TIME DEBUGGER MODULA-2/86

10.3.6 Debugging Programs that Use Overlays

Each time an overlay is called, the run-time debugger stops the execution when the overlay has been
loaded, but before it has started execution. This is similar to what happens when you start debugging
a program. The debugger displays the Module window when the overlay has been loaded. You may
then set breakpoints or start the execution of the overlay in step mode.

10.4 Window Format

The run-time debugger has the same windows as the post- mortem debugger: the Call window, the
Module window, the Data window, the Text window and the Raw window. As in the post-mortem
debugger, the first two lines of each window indicate the commands available.

10.4.1 Markers

As in the post-mortem debugger, the greater-than (» sign is used in the run-time debugger as an
execution marker to indicate active code. It appears in the Call, the Module and the Text windows
and its meaning is the same in the run-time debugger as in the post-mortem debugger.

In the Call, the Module and the Text windows certain lines are marked with an asterisk (*) to
indicate where you have set breakpoints throughout the program. A breakpoint can be set at any
statement in any procedure or module.

The breakpoint at which a program stops is marked with a pound sign (#) which replaces the
asterisk.

10.4.2 Selecting an Item for Display

Like the post-mortem debugger the run-time debugger displays the position of the selected item in
the lower part of each window. You may select a different item using the cursor keys or by entering a
new position.

262

MODULA-2/86 THE SYMBOLIC RUN-TIME DEBUGGER

10.5 The Run-Time Debugger Commands

Like the post-mortem debugger, the run-time debugger has two types of commands - global and
local. The same definitions apply to these commands in the run-time debugger as in the post-mortem
debugger. Local commands are only applicable to the particular window in which they appear and are
explained in the appropriate sections.

10.5.1 Global Commands

In addition to the global commands available in the post-mortem debugger, six new global commands
are available in the run-time debugger. The global commands appear on the second line of each
window, below the. window name and local commands:

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H D]
Go[Bpt Pro Ret sta End]

The following describes the global commands available in the run-time debugger only:

• !io Breakpoint

Instructs the debugger to execute the program until the next breakpoint or the next overlay
loader.

• !ioEnd

Instructs the debugger to execute the program until the end, ignoring all breakpoints. It will,
however, stop on the overlay loadings.

For the following commands, the debugger stops the program either at the next breakpoint it
encounters or the next overlay loading, or after the specified step has been completed, whichever
comes first:

• .Go ~rocedure

Instructs the debugger to execute the program until the next procedure call, If no breakpoint
or overlay loading is encountered, the execution stops at the beginning of the procedure,
right after it has been called.

263

THE SYMBOLIC RUN-TIME DEBUGGER MODULA-2/86

• GoRetum

Instructs the debugger to execute the program until the return from the current procedure.
If no breakpoint or overlay loading is encountered, the execution stops at the statement
following the procedure call in the calling procedure.

• Go Statement

Instructs the debugger to execute the program until the next statement, or to the next
breakpoint, or to the next overlay loading.

10.5.2 Activating the Step Mode

When you invoke the Go Statement or the Go Procedure command, the step mode is active only in
certain modules. The debugger executes the program and stops at each statement or procedure in
those modules in which you have enabled the step mode. Unless a breakpoint is encountered, the
program will not stop in a module where the step mode is not enabled. When a program is loaded by
the debugger, by default the step mode is disabled in all modules that belong to the system library.
For aU other moduies, the step mode is enabied.

In the Module window, the run-time debugger marks modules where the step mode is enabled with a
plus sign (+) preceeding the module name. It does not mark modules with step mode disabled. You
may change the default and enable or disable the step mode in any module when the Module window
is displayed.

10.5.3 Display of Information

When the debugger stops executing the program at a breakpoint or after a step has been performed,
it displays the same window which was shown when you initiated the execution of the program. For
example, if you invoke the Go Procedure command from the Text window, the debugger will again
display the Text window when it stops executing the program.

264

MODUIA-2/86 THE SYMBOLIC RUN-TIME DEBUGGER

10.5.4 Use or the Step Mode In a MultI-Process Program

If the program to be debugged contains more than one process, the step mode is only applicable to
one process at a time. The commands Go Statement, Go Procedure and Go Return always refer to
the current process only. When you invoke one of these commands, the debugger will stop the
program in the current process - the same process in which it was stopped the last time.

If you wish to stop the program in another process, you must set a breakpoint on a statement in a
procedure that will be executed by this other process. When the debugger encounters this breakpoint,
you select the appropriate step mode to examine this new process. The step mode is then only
applicable to the new process. Whenever the debugger stops the execution of the program you can set
appropriate breakpoints to stop the program in the original process, or in any other process.

10.6 Run-Time Debugger Windows

The following sections describe those aspects of the run-time debugger windows which differ from
the post-mortem debugger windows. They explain the local commands which are available in the run­
time debugger only.

10.6.1 Can Window

The Call window in the run-time debugger has the same major components and functions as in the
post-mortem debugger. It displays the chain of procedure calls of a process. In the run-time debugger
the Call window cannot be invoked before you have started the program with the Go command.
Because no procedure of the program is active at that time, the Call window would be empty. When
this error occurs, the debugger displays the following message:

Error: Cannot display Call window during loading

to indicate that the program has been loaded into memory but has not been started yet.

There are no local commands available in the run-time debugger Call window.

The sample screens used for illustration in this chapter refer to the sample program 'Demo' included
at the end of the chapter on the symbolic post-mortem debugger.

265

THE SYMBOLIC RUN-TIME DEBUGGER MODUIA-2/86

The following example shows the Call window. The message 'Status: procedure step' indicates that
the program stopped after it completed a Go Procedure command. The two procedures marked with
an asterisk have breakpoints in them.

CALL I
=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H D) Go[Bpt

Pro Ret Sta End]

status: procedure step
procedure step for this process

1 *> RecursiveOne in Demo stops at line 36, statement
2 *> RecursiveOne in Demo at line 38, statement
3 > Firstone in Demo at line 24, statement
4 > initialization of Demo at line 57, statement
5 > PROCESS

position > 1

SAMPLE SCREEN 10-1

10.6.2 Module Window

1
1
1
1

The Module window displays the list of modules that constitute the program being debugged. The
modules in which the step mode is enabled are marked with a plus sign (+).

Local Commands in the Module Window

There are three new local commands in the Module window of the run-time debugger. You invoke
them by entering the first character (shown in upper case) of each command name. The local
commands appear on the first line of the window, to the right of the window name as follows:

266

MODUlA-2/86 THE SYMBOLIC RUN-TIME DEBUGGER

MODULE I Find Enablestep Disablestep Alldisablestep

• Enablestep

Enables the step mode in the selected module. When you invoke the Go Procedure and Go
Statement commands to step through the program, the program will only stop in the
modules where the step mode is enabled.

• Disablestep

Disables the step mode in the selected module. For all modules of the system library, the
step mode is disabled by default.

• Alldisablestep

Disables the step mode in all the modules.

10.6.3 Data Window

The Data window displays the variables and/or parameters of the selected procedure or module.

Local Commands in the Data Window

There is one additional local command in the Data window of the run-time debugger. The Modify
command appears at the end of the first line of the window after the window name and the other
local commands.

• Modify

Modifies the contents of the selected variable or parameter. The debugger prompts you to
enter the new value according to the type of the data item:

• CARDINAL, INTEGER, REAL
You enter the new value which must be of the same type.

• BYTE,WORD
You enter the new value as a hexadecimal number.

267

mE SYMBOLIC RUN-TIME DEBUGGER MODUIA-2/86

268

• ADDRESS, POINTER, PROCESS, PROCEDURE VARIABLE
You enter the new value in the form <segment>:<offset>. Both parts are four digit,
hexadecimal numbers. If you want to modify a process variable, you must enter the
address of the new process descriptor. To modify a procedure variable, enter the
address of the entry point (BEGIN).

WARNING:
The modification of a PROCESS variable and a PROCEDURE variable could be

very hazardous. Use these modifications very carefullyl

• BOOLEAN
You change items of type BOOLEAN by entering a T for TRUE or an F for
FALSE.

• CHAR
You modify items of type CHAR by entering a character in quotes, such as 'a' or
"a". or by entering an octal value.

• BITSET
You modify items of type BITSET by entering a binary number. The binary number
consists of up to 16 digits of 'one' or 'zero', indicating that the corresponding bit
should or should not be set. If you do not wish to modify a certain bit, you can enter
an x at this position and the debugger will retain the original value for this bit.

• SET
You modify items of type SET by invoking the Son command to list the contents of
the set. The run-time debugger then lists the possible elements in the set and
indicates whether each element is in the set or not. To change the elements included
in the set, you must select a particular element and activate the Modify command.
By responding with T for TRUE or an F for FALSE to the prompt 'In set?' you can
then include or exclude that element into or from the set.

The modifications of a set element clears the unused bits of the set. This can be used
to correct an invalid set.

• ENUMERATION
You modify the value by entering the name of the element to which you want to set
the value. The element name must be given as defined by the declaration of the
enumeration type.

MODUI.A-2/86 THE SYMBOLIC RUN-TIME DEBUGGER

The following sample screens show the path you follow to modify the content of an array element
with a record structure. First, you invoke the Son command to view the elements of the variable
'node' of the module 'Demo' (Sample Screens 10-2 & 10-3). Next, you again invoke the Son
command to display the fields of the record 'node[I]', and the value and type of each field (Sample
Screen 10-4). Finally, you modify the value of the first field which is of type CARDINAL. You invoke
the Modify command and enter a 6 to change the value from 1 to 6. Sample Screen 10-5 shows the
modified data.

DATA I Son Father Left(dec index) Right (inc) Var X Addr
Examine (process) Modif

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H D] Go[Bpt
Pro Ret Sta End]

Demo.

1 x
2 y
3 z
4 node

position > 4

1
2.0000000000E+OOO

3

SAMPLE SCREEN 10-2

INTEGER
REAL
INTEGER
ARRAY[1 •• 4] OF RECORD

269

THE SYMBOLIC RUN-TIME DEBUGGER MODUIA-2/86

DATA I Son Father Left(dec index) Right (inc) Var X Addr
Examine (process) Modif

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H D] Go[Bpt
Pro Ret Sta End]

Demo. node
1 [1]
2 [2]
3 [3]
4 [4]

position > 1

270

SAMPLE SCREEN 10-3

RECORD
RECORD
RECORD
RECORD

DATA
DATA
DATA
DATA

MODUlA-2/86 THE SYMBOLIC RUN-TIME DEBUGGER

DATA I Son Father Left(dec index) Right (inc) Var X Addr
Examine (process) Modif

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H D] Go[Bpt
Pro Ret Sta End]

Demo.node[l]
1 datal
2 data2
3 data3

1
2.0000000000E+OOO

3

position> 1 new value (cardinal) > 6

SAMPLE SCREEN 10-4

CARDINAL
REAL
INTEGER

271

THE SYMBOLIC RUN-TIME DEBUGGER MODUIA-2/86

DATA I Son Father Left(dec index) Right (inc) Var X Addr
Examine (process) Modif

=[Call Mod Data Txt Raw Ini] Hex Quit #[P L N H D] Go[Bpt
Pro Ret Sta End]

Demo.node[l]

1
2
3

datal
data2
data3

6
2.0000000000E+OOO

3

CARDINAL
REAL
INTEGER

position > 1

SAMPLE SCREEN 10-5

10.6.4 Text Window

The Text window displays the text of the module or procedure in which the, debugger stops the
program. The greater-than sign (» indicates the line in which the debugger stopped the program, the
call of the next procedure, or where the last process transfer or interrupt occurred.

Local Commands in the Text Window

The three local commands specific to the Text window of the run-time debugger allow you to set and
delete breakpoints.

272

• Set Breakpoint

Sets a breakpoint in the selected line. If more than one statement is on the line, the run-time
debugger prompts you to indicate on which statement you wish to set the breakpoint. The
run-time debugger also prompts you to set a limit for the occurrence counter associated with
the breakpoint. You may type <CR> for the default value for this limit which is one.

MODULA-2/86 THE SYMBOLIC RUN-TIME DEBUGGER

If a breakpoint is already set on the selected statement the debugger replaces the old value
of the occurrence counter with the new one.

• ,{:;Iear Breakpoint

Removes a breakpoint on the selected line. If more than one breakpoint is on the line, the
debugger prompts you to indicate from which statement you wish the breakpoint to be
removed.

• Kill Breakpoints

Removes all breakpoints from the program.

10.6.5 Raw Window

The Raw window displays the memory contents around a given address. The initial address of the
selected memory location depends on the window from which you invoke the Raw window. The
values are set the same way as in the post-mortem debugger.

Local Commands in the Raw Window

There are three additional local commands in the Raw window of the run-time debugger.

• Input / Output

Used to read in and write out data through an 110 port. The debugger prompts whether to
read in or write out a byte or a word. It then asks you to enter the address of the serial port
which will be used .

• Modify

Allows you to modify the memory contents at the selected address. The debugger asks you
for the new value and specifies in which format it should be entered. The format to be used
depends on the format in which the Raw window currently displays the memory contents.

273

THE SYMBOLIC RUN-TIME DEBUGGER MODUIA-2/86

10.7 Run-Time Debugger Messages

The following is an alphabetical list of the run-time debugger error messages. When error messages
are caused by certain commands only, these commands are listed in brackets. For error messages not
listed in this chapter, please refer to the list of error messages of the post-mortem debugger.

274

• Can not display call window during loading
[Call command]

The Call window shows the chain of active procedures. If the program has not started
execution, no procedures are active; thus, the Call window would be empty.

• Local data can not be modified until past BEGIN
[Data window, Modify command]

The local data of a procedure does not exist before the procedure entry code, to which the
'BEGIN' corresponds, has been executed.

• No breakpoint in definition module
[Text window, Set breakpoint command]

A breakpoint can only be set on a statement. Because a definition module does not contain
statements, no breakpoints can be set there.

• No breakpoint to clear
[Text window, Clear breakpoint command]

No breakpoint is set at the selected statement, therefore it cannot be removed.

• No statement in this line
[Text window, Set breakpoint command]

The selected line does not contain any statements. A breakpoint can only be set on a
statement. A line that contains only a symbol like 'END', 'IF', 'CASE', 'LOOP' or similar is
considered to contain no statement.

MODUIA-2/86 THE SYMBOLIC RUN-TIME DEBUGGER

• Not enough workspace to execute this command
[Any window]

The workspace is too small. Use the Large option to enlarge it.

• Not modified (new value out of range)
[Data and Raw windows, Modify command]

The new value the user entered is not within the valid range. No modification has been
made.

• Process descriptor can not be modified
[Data window, Modify command]

The run-time debugger does not allow you to modify process descriptors. Modification of the
process descriptors may cause unpredictable behavior of the program and the run-time
debugger.

• structured data can not be modified (use Son command)
[Data window, Modify command]

The Modify command is applicable only when the selected data item is of a simple type. You
should invoke the Son command and select those elements or fields you want to modify.

• This type of data can not be modified
[Data window, Modify command]

This data cannot be modified. Usually this is for hidden types. In this case you should use the
Son command to see the effective type and then you can modify the variable.

275

UTILITIES MODUIA-2/86

11 UTILITIES

11.1 Introduction

The following utility programs are described in this chapter:

• VERSION
Helps to administrate different versions of one program.

• M2DECOD
Decodes MODULA-2/86link and load files into text files containing information such as
disassembled code or data.

• XREF
Generates cross reference information tables of text files, especially of Modula-2 source
texts.

11.1.1 Installation

All utilities come in both .EXE and .LOD format. The .EXE format can be invoked by simply typing
the utility name, for example, 'XREF<CR>'. The .EXE format is generally faster to load in memory.
The .LOD version is provided so that you can run the utility from the editor using the command 'run'
in the File Menu (Alt-F9) and typing the utility name followed by <CR>.

There are two ways to install the MODULA-2 Utilities depending on whether you have two floppy
disk drives or one floppy and a hard disk. In both cases, we assume you have successfully completed
the installation process as described in the Installation chapter.

Two Floppy Disk Drives

If your system uses two floppy disks, copy the MODULA-2 utility disk (XREF, M2DECOD,
VERSION). Use this disk when running the utilities.

276

MODULA-2/86 UTILITIES

One Floppy and a Hard Disk

If your system is equipped with a hard disk and one floppy, copy all the .LOD and UERTS.L2E files
in the directory where you keep MODULA-2/86 executable .LOD files (usually in '\m210d').

Copy all .EXE files in the directory where you keep all .EXE public executable files. This directory
should be contained in your PATH variable (see MS DOS environment and PATH variables).

11.2 The link-Load File Decoder Utility M2DECOD

The utility program 'M2DECOD' decodes MODULA-2/86 link and load files. The different records
of the file are written on the output file in textual form. The text file contains information such as
disassembled code or data areas.

The codeblocks are disassembled in a more or less standard assembler language. In the most simple
use of the utility, there are no symbols used for variables, procedures and labels. For each instruction
the value of the IP, the code in HEX and a mnemonic form of the instruction are written. Each
procedure is identified by a number. The correspondence of this number with the procedure in the
source program can be found with the following rule:

The body of the main module is number O. The procedures declared in the definition module are
numbered starting from 1 according to their declaration sequence. The procedures that appear only
in the implementation module get the numbers in the order of their declaration (header). Local
modules are handled as procedures.

Because the generated output may be large in case of large modules, the decoder generates a multiple
of decoded files, each of them smaller than 60K bytes. This makes it possible to look at them with an
editor that has the famous 64K limitation. The filenames of the output files are automatically
generated, starting with the extensions .DCI, .DC2, and so on.

To decode a link file type:

A> m2decod exampl<CR>

To decode a load file you must type the extension:

A> m2decod exampI.LOD<CR>

277

UTILITIES MODUIA-2/86

M2DECOD can add symbolic information to the decoded file in two ways:

• Using the REF file, the decoded file is enriched with procedure names, line numbers,
variable names, addressing modes, and RTS calls. The linklload file decoder detects the RTS
calls when the following instructions appear in a code area:

MOV AL,<function code>
!NT <RTS vector>
The following option indicates whether the decoder is using the REF file:
/R+ (default)
IR-

• Using the REF file and the MOD file, the decoded file contains the Modula-2 statements
instead of the line numbers. The following option indicates whether the decoder uses the
MOD file:

IS+ (default)
IS-

Note that the MOD file can be used only if the REF file is present.

The decoder uses the SYM files of the imported modules to find the name of the imported
procedures.

• The following option defines the search mechanism for the SYM, REF, and MOD files:
10+
10- (default)

If the option is set, the decoder will prompt for a file name; otherwise, the program first will try to
automatically find the file with the default search strategy.

If there is no need to decode the whole module, you can set an option to decode either a list of
procedures or one module.

• The following option allows you to select a list of procedures to be decoded:
IP

Separate the procedure names by a comma ",' and indicate the end of the list by typing <CR>. Type
<ESC> to exit the program. When a procedure is not visible from the module level, you must prefix
the procedure name with the nesting procedure or module name followed by a period '.'.

• The following option allows you to select a module to be decoded:
1M

You can select only one module. This option is valid for a LOD file only. Type <ESC> to exit the
program.

278

MODUIA-2/86 UTILITIES

11.2.1 Example Dialog:

A> m2decod exampl<CR>

LOGITECH MODULA-2/86 LNK/LOD file-Decoder, ReI. m.n
Copyright (C) 1985 LOGITECH
Input file: exampl.lnk
exampl: DK:exampl.REF
exampl: DK:exampl.MOD
Terminal: \M2LIB\SYM\Terminal.SYM
your decode file is: C:exampl.DCI

11.3 The Cross-Reference Utility XREF

The utility program 'XREF' generates cross reference information tables of text files, especially of
Modula-2 source texts.

The program reads a text file and generates a table with line number references to all identifiers
occurring in the text. All work symbols of Modula-2 are omitted from the table. The program also
skips strings (enclosed by single or double quotes) and comments (from ,*, to '*'). The program
prompts for an input file. The default extension is .MOD. The generated table is listed on a cross­
reference file in alphabetical order. Upper case letters are defined to be greater than lower case
letters.

If the lines on the input file start with a number, for example, if it is a listing file generated by the
compiler, XREF takes these numbers as referencing line numbers. Otherwise, XREF generates a
listing file with line numbers. The name and the pathname of the output files are the same as those of
the input file. The extensions are XRF and .LST.

The program accepts some options after the filename. The options and their meaning are:

• IS
Displays statistics on the terminal, for example, number of lines, identifiers and reference
numbers.

• IL
Generates a listing file with new line numbers.

279

UTILITIES MODUIA-2/86

• IN
Generates no listing file. The line numbers in the reference table will refer to the line
numbers on the input file. All lines on the input file without leading line numbers are
skipped.

11.3.1 Example Dialog

A>xref<CR>

LOGITECH MODULA-2/86 Cross-Reference utility, ReI. m.n
Copyright (C) 1983, 1984, 1985 LOGITECH
input file (ESC to quit) > grep.MOD/S<CR>

lines 143
identifiers 33
characters 261
refnumbers 144

input file (ESC to quit) > <ESC>
A>

11.4 The Source Versions Manager Utility VERSION
The purpose of this utility is to help administrate different versions of one program. All modifications
to such a program are made in only one source text and the various versions can be derived
automatically from that 'master copy' using Version. Note that the 'master copy' is itself the source of
one of the target versions and can be compiled without being processed by Version. Once another
version must be produced, Version is applied to the 'master copy' and generates the converted source
text.

We suggest you always modify the same version of the program and generate the other versions from
this original copy. This method will avoid confusion as to what changes were made in which versions.
Furthermore, to avoid any confusion and to save disk space, the source texts of the derived versions
can be deleted after their use.

280

MODUIA-2/86 UTILITIES

11.4.1 Marking the Version Dependent Parts

In the master copy, the portions of text that belong to a specific version are enclosed by a 'start
marker' and an 'end marker'. Both start and end markers are Modula-2 comments and they contain
the list of versions to which they belong. There are two kinds of markers: one to activate, another to
deactivate a portion of text.

Before using the markers, each version must be declared with a definition comment. Only 64 versions
can be present in a file. They are numbered from 0 to 63. The version names can be written in upper
or lower case. The Version Utility does not distinguish between upper and lower cases.

Syntax

definition Comment
activeStart Marker
activeEndMarker
inactiveStartMarker
inactiveEndMarker
version

Example 1

:=="(*V" number "=" symbol "*)".
:=="(*<" version {"," version} "*)".
:=="(*" version {" ," version} ">*)".
:=="(*<" version {"," version}.
:== version fIt,,, version} ">*)".
:== symbol number.

(*Vl=DOS Version for IBM PC-DOS*)
(*V2=CP/M Version for CP/M 86*)
PROCEDURE ReadCh (V AR ch: CHAR);
BEGIN
(*<DOS*) DOSCALL(l, ch),' (*DOS>*)
(*<CP/M CPMCALL(l, ch); CP/M>*)
If ch = CR THEN ch := EOL END;
END ReadCh,'

A portion of text may be marked as belonging to several versions. In this case, the version names in
the markers must be separated by a comma.

281

UTILITIES

Example 2

(*Vl=A*)
(*V2=B*)
(*V3=C*)
(*V4=D*)
VAR ch: CHAR;
BEGIN
(*<C,D*)

(*C,D>*)

END

INBYTE (OEOH, ch),'
(*<C*) IF ch = DC THEN RETURN END,' (*C>*)
buffer [i] := ch,'
INC(i),'

Write (ch)

MODUIA-2/86

The versions can be specified either by a version numbers or by the symbol associated to the version.
We recommend using the version name rather than the version number. The version number is
automatically replaced by the version name, if it is defined, once the file is processed by Version.

11.4.2 Invoking Utility Version

To invoke the Version utility type:

A> yersion<CR>

The program prompts the user for the file name of the master copy and for the name of the output
file (by default, it is the same file as the input file). Then Version shows the various versions defined
in the master copy.

The program then prompts for the name of the versions which have been activated. To select more
than one version, you enter a list of version numbers or version names separated by a comma. The
program asks if the unselected parts of the master copy must be deleted. Type <ESC> to exit the
program.

At the end of the processing, the Version program indicates which defined versions were
encountered in the file.

282

MODULA-2/86

11.4.3 Example Dialog

A> version<CR>

LOGITECH MODULA-2/86 Version, DOS 8086, ReI m.n
Copyright (C) 1985 LOGITECH
Input file: example1.mod<CR>
Output file: examplel.mod <CR>
Versions defined:

1: DOS
2: CP/M

Enter version names: cD/m<CR>
Suppress inactive text and brackets (y/-)? ~
Are you sure (y/-)? lli!
done

The following
referenced
in the file

yes
yes

A> type example1.mod

versions are present:
version defined
number as:

1
2

DOS
CP/M

(*Vl=DOS Version for IBM PC-DOS*)
(*V2=CP/M Version for CP/M 86*)
PROCEDURE ReadCh (VAR ch: CHAR);
BEGIN
(*<DOS DOSCALL(l, ch); DOS>*)
(*<CP/M*) CPMCALL(1, ch); (*CP/M>*)
IF ch = CR THEN ch := EOL END;
END ReadCh;

UTILITIES

283

UTILITIES MODULA-2/86

A> type examplel.bak

(*Vl=DOS Version for IBM PC-DOS*)
(*V2=CP/M Version for CP/M 86*)
PROCEDURE ReadCh (VAR ch: CHAR);
BEGIN
(*<DOS*) DOSCALL(l, ch); (*DOS>*)
(*<CP/M CPMCALL(l, ch); CP/M>*)
IF ch = CR THEN ch := EOL END;
END ReadCh;

A set of options can be specified after the input file name:

• /0+ (Default)
/0-

If the output file already exists, the programs asks whether or not the old one can be deleted.
This prompt can be suppressed by entering /Q- after input filename. The old file will be
deleted without any warnings. If the output filename is the same as the input filename, a
backup of the input file will be generated with a 'BAK' extension.

• /B+
IB- (Default)

This option indicates that the Version program is used in a batch file. This option disables
keyboard polling while the error listing writes to the screen.

11.4.4 Error Handling

The three types of error messages are warning messages, error messages and fatal error messages.

Warning and error messages are listed with five lines which surround the location where the error
was detected. To interrupt the listing, type any key and then, type any key to continue.

284

MODUIA-2/86 UTILITIES

Warning messages

The warning messages are only indicators that something is wrong. The execution is not stopped.

• warning: can't activate version because of deactivated
environment

This message occurs when a portion of text which should be activated is nested in a
deactivated one.

Error messages

The execution is not stopped but the output file will be deleted.

II error: identifier not declared

An undeclared version name is used in a marker.

• error: syntax error in version list

• error: open bracket(s) at the end of file

• error: structure error in nesting of brackets

Occurs when a nesting bracket is closed before the nested one.

• error: two consecutive open brackets with same
symbol(s)

• error: bracket terminator expected

• error: bad identifier

285

UTIUTIES MODUIA-2/86

• error: bad version number

• error: "=" required

• error: multiple definition of identifier

Fatal error messages

These messages occur when the processing cannot be continued due to an internal problem of
Version. The execution is stopped and the output file is deleted.

286

• fatal error: too long symbol

This error occurs when an identifier that is too long is encountered. The maximum length of
an identifier is 40 characters.

• fatal error: buffer full

The input buffer is full. This error occurs if there is a bracket that is too long. The maximum
length for a bracket is 256 characters.

• fatal error: can't create table

There is not enough memory to create the name table.

• fatal error: name table full

Too many versions are defined.

MODULA-2/86 SYSTEM AND UBRARY MODULES

12 SYSTEM AND LmRARY MODULES

Unlike many other programming languages, the Modula-2language does not provide standard
functions that handle input and output. In Modula-2 systems, these functions are typically provided
by library modules. Library modules that implement the typical, basic operating system functions are
also called 'system modules' or 'low level modules'.

Besides these system modules the MODULA-2/86 module library contains a number of additional,
more general library modules. Examples are modules that provide for formatted input/output, or
modules that provide functions that do not depend on the operating system, for example, string
handling.

This section provides an overview about the system and general library modules available with
MODULA-2/86. The definition parts of all library modules are given in the library section of this
manual.

12.1 The System Modules

There are a number of system modules that constitute the interface between the MODULA-2/86
system and the application programs. They provide access to the underlying operating system and to
the MODULA-2/86 system itself. These modules may be used, imported, directly by application
programs.

System modules rely on the support of the operating system. For some of the system modules, even
the definition part is operating system dependent. These system modules should be considered
internal modules of the MODULA-2/86 system. They should not be used directly by application
programs, because this would severely affect program portability.

The following is a list of highly system dependent modules of the MODULA-2/86 system that should
not be used directly. Their filenames are given in parentheses:

• DiskFiles
• Display
• Keyboard
• Reals

(DISKFILE.DEF)
(DISPLA Y.DEF)
(KEYBOARD.DEF)
(no definition module)

287

SYSTEM AND UBRARY MODULES MODUIA-2/86

Partially system dependent modules of the MODULA-2/86 system which should be used with care:

• System
• Termbase

(SYSTEM.DEF)
(TERMBASE.DEF)

System modules that are part of the interface between the MODULA-2/86 system and application
programs:

• Break
• Debug
• Devices
• DiskDirectory
• DOS3
• DOS31
• ErrorCode
• FileSystem
• LogiMouse
• Mouse
• Program
• Storage
• Terminal
• TimeDate

12.2 The General Library Modules

(BREAK.DEF) (for IBM-PC only)
(DEBUG.DEF)
(DEVICES.DEF)
(DISKDIRE.DEF)
(DOS3.DEF)
(DOS31.DEF)
(ERRORCOD.DEF)
(FILESYST.DEF)
(LOGIMOUS.DEF)
(MOUSE.DEF)
(PROGRAM.DEF)
(STORAGE.DEF)
(TERMINAL.DEF)
(TIMEDA TE.DEF)

General library modules provide features that are not typically part of operating systems. In some
cases, they provide access to operating system features through higher level concepts.

The MODULA-2/86 library includes the following general library modules. Their filenames are given
in parentheses:

• ASCII
• CardinalIO
• Conversions
• Decimals
• Directories
• FileMessage

288

(ASCII.DEF)
(CARDINAL.DEF)
(CONVERSI.DEF)
(DECIMALS.DEF)
(DIRECTOR.DEF)
(FILEMESS.DEF)

MODULA-2/86 SYSTEM AND liBRARY MODULES

• FileNames
• InOut
• MathLibO
• NumberConversion
• Options
• Processes
• ProgMessage
• RealConversions
• RealInOut
• RS232Code
• RS232Int
• RS232Polling
• Strings

(FILENAME.DEF)
(INOUT.DEF)
(MA THLIBO.DEF)
(NUMBERCO.DEF)
(OPTIONS.DEF)
(pROCESSE.DEF)
(pROGMESS.DEF)
(REALCONV.DEF)
(REALINOU.DEF)
(RS232COD.DEF)
(RS232INT.DEF)
(RS232POL.DEF)
(STRINGS.DEF)

12.2.1 Brief Descriptions of Library Modules

For quick reference, an alphabetical listing of the library modules with brief functional descriptions of
each is provided in this section. More detailed information is available in the library section of this
manual.

• MODULE ASCn
Symbolic constants for non-printing ASCn characters

• MODULE Break
Handling of <Ctrl-Break> and <Ctrl-C>. The implementation runs on the IBM-PC only.
Module 'Break' is not available for other systems.

• MODULE CardinalIO
Terminal input/output of CARDINALs in decimal and hexadecimal

• MODULE Conversions
Convert from INTEGER and CARDINAL to string

• MODULE Decimals
Provides functions for arithmetic and formatting with decimal numbers of 18 or less digits

• MODULE Debug
Provides debug information upon abnormal termination of a program

289

SYSTEM AND UBRARY MODULES

290

• MODULE Devices
Handling of interrupt driven devices

• MODULE Directories
Directory listing with wild cards

• MODULE DiskDirectory
Interface to directory functions of the underlying OS

• MODULE DiskFiles
Interface to disk file functions of the underlying OS

• MODULE Display
Low-level Console Output

• MODULE DOS3
Additional DOS 3.0 function calls

• MODULEDOS31
Additional DOS 3.1 function calls

• MODULE ErrorCode
Handle return code to the operating system

• MODULE FileMessage
Write file status/response to the terminal

• MODULE FileNames
Read a file specification from the terminal

• MODULE FileSystem
File manipulation routines

• MODULE InOut
Standard high-level formatted input/output

• MODULE Keyboard
Default driver for terminal input

MODUIA-2/86

MODUIA-2186 SYSTEM AND UBRARY MODULES

• MODULE LogiMouse
LOGITECH mouse driver interface extensions

• MODULE MathLibO
Real Math Functions

• MODULE Mouse
Mouse driver interface (Microsoft compatible)

• MODULE NumberConversion
Conversion between numbers and strings

• MODULE Options
Read a file specification, with options, from the terminal

• MODULE Processes
(pseudo-) concurrent programming with SENDIW AIT

• MODULE ProgMessage
Write program status message to the terminal

• MODULE Program
Subprogram loading and execution

• MODULE RealConversions
Conversion between REAL numbers and strings

• MODULE RealInOut
Terminal input/output of REAL values by means of module 'InOut'

• MODULE Reals
LOGITECH REAL arithmetic emulator

• MODULE RS232Code
High-speed interrupt-driven input/output via the serial port

• MODULE RS232Int
Interrupt-driven input/output via the serial port

291

SYSTEM AND UBRARY MODULES

292

• MODULE RS232Polling
Polled input/output via the serial port

• MODULE Storage
Standard dynamic storage management

• MODULE Strings
Variable-length character string handler

• MODULE System
Additional system dependent facilities

• MODULE Termbase
Terminal input/output with redirection hooks

• MODULE Terminal
Terminal Input/Output

• MODULE TimeD ate
Get/set the current time

MODULA-2/86

MODUIA-2/86 GLOSSARY

APPENDIX A - GLOSSARY

The following terms have specific meanings as used in the MODULA-2/86 manual:

• Base layer

A program which calls a subprogram is the base layer of that subprogram. For example, the
passes of the MODULA-2/86 compiler are called sequentially by the compiler base which is
their base layer.

• Compilation unit

A part of a program which is contained in a separate file and can be compiled separately. The
compilation units in Modula-2 are definition, implementation, and program modules. These
modules can be compiled separately as long as the imported definition modules have already
been compiled. Only definition modules can export objects. If objects should be exported
from a compilation unit, it must be split into a definition module and an implementation
module.

• Definition module

The definition part of a Modula-2 module. The section on basic concepts in this manual
contains a brief description of definition modules. For more information on the use of
definition modules please refer to the corresponding sections in the book Programming in
Modula-2 by Niklaus Wirth.

• Development system

The entire system, both hardware and software, used to develop a program. On the software
side, this includes the operating system and any kind of utility programs and libraries. When
used to develop MODULA-2/86 programs, it also includes the MODULA-2/86 run-time
support, as well as the MODULA-2/86 compiler,linker, debuggers, editor, utilities, and
library.

.293

GLOSSARY MODULA-2/86

294

• Language support

An assembly program, which can be seen as an extension to the hardware. It gives the target
system the ability to execute programs written in the corresponding programming language.
The language support for MODULA-2/86 is part of the MODULA-2/86 run-time support.

• Library

In general, a library is a set of functions or procedures which can be used by any program. In
MODULA-2/86 the library is equal to the set of all available MODULA-2/86 library
modules.

• Library module

A MODULA-2/86 module, consisting of a definition and an implementation part, which is
available for use by any MODULA-2/86 program.

• Implementation module

The implementation part of a Modula-2 module. An implementation module contains the
code that implements the capabilities provided by this module as they are specified by the
corresponding definition module. The section on basic concepts in this manual contains a
brief description of implementation modules. For more information on the use of
implementation modules please refer to the corresponding sections in the book
Programming in Modula-2 by Niklaus Wirth.

• Main module

The main module of a Modula-2 program is the module that is given to the linker to link the
program. The module code of the main module constitutes the main program. Usually, the
main module is a program module. It may also be an implementation module.

MODULA-2/86 GLOSSARY

• Main program

The term 'main program' has two different definitions depending on the context in which it is
used:

• When talking about a single program, it refers to a particular part of the code of that
program, the main program code. Executing the main program code is equivalent to
executing the whole program. In Modula-2, the main program code consists of the
module code of that program or implementation module, which is considered to be
the main module of a program. The execution of a program starts with the execution
of its main program code. When the execution reaches the end of the main program
code, the program terminates.

• When talking about programs and subprograms, the term 'main program' refers to a
program that is the base layer of a (set of) subprogram(s), and that is not a
subprogram itself .

• Objects

Anything that can be given a name, including constants, variables, procedures, types, and
modules .

• Overlay

A part of the code of a program is an overlay of that program, if this code is loaded at the
same memory location as some other code - the code of another overlay - of the same
program. When the code that belongs to an overlay is loaded into memory, it 'overlays' the
code of the overlay that was loaded previously. Sometimes, not only code but also data is
'overlayed' in this way.

Using overlays, a program that otherwise would require a large amount of memory can run
on a computer with much less memory. MODULA-2/86 provides a simple overlay concept in
the form of subprograms.

295

GWSSARY MODUIA-2/86

296

• Program

A Modula-2 program consists of all the modules which are imported directly or indirectly by
its main module. When a program is linked, all these modules are included in the resulting
load file. A MODULA-2/86 program may also call another MODULA-2/86 program, a
subprogram. A program that calls a subprogram, but is not a subprogram itself is also called
a main program. In this context, the term 'program' is also used to refer to the entity
consisting of one main program and the set of all its subprograms.

• Program module

A Modula-2 module which does not have a definition module and is not declared inside of
any other module. The module code of a program module constitutes a main program. The
section on basic concepts in this manual contains a brief description of program modules.
For more information on program modules please refer to the corresponding sections in the
book Programming in Modula-2 by Niklaus Wirth.

• Run-time support (RTS)

An assembly program which includes the language support and further configuration­
dependent functions. These functions include typical operating system features such as
setting up the memory configuration, loading programs, and dumping memory to disk.

• Separately compiled module (SCM)

A compilation unit which is either an implementaion or a program module, and has been
compiled separately.

• Subprogram

A MODULA~2/86 program which is called by another MODULA-2/86 program. A
subprogram consists of all the modules which are imported directly or indirectly by its main
module, and which are not part of its base layer. A subprogram can use objects exported by
the modules of the calling program. A subprogram may also call other subprograms.
Subprograms in MODULA-2/86 provide a very simple overlay concept. For information on
how to call subprograms, please refer to the definition module 'Program' in the library
section of this manual. For information on the memory use of subprograms please refer to
the appendix on memory organization.

MODUIA-2/86 GLOSSARY

• System module

A library module that provides access to operating system functions such as memory
management, overlay loading, terminal IJO and file handling. The term 'system module' also
indicates that the implementation of such a module is system dependent. If even the
definition module of a system module is system dependent, it is called a low level module.
Low level modules should not be used directly by application programs.

• Target system

The system, both hardware and software, on which you execute your application programs.
In most cases the target system is the same as the development system. However, this is not a
requirement. The hardware configuration of a target system for MODULA-2/86 or
MODULA-2NX86 does not require a terminal or disks. The software configuration may be
reduced to the MODULA-2/86 run-time support and your program.

• Workspace

The region of memory allocated to a process for stack, program variables, heap, and
subprograms. When a MODULA-2/86 program is started, it begins execution as the 'main
process', and it claims the largest available region of memory as its workspace. A subprogram
shares the workspace of its base layer. However, when a new process is created (see the
section on system dependent facilities and the appropriate section of the book Programming
in Modula-2) it must be assigned a workspace. The workspace may be in a module's data
area, on the heap, or even in a procedure's local data area on the stack. Just make sure that
the process doesn't have a longer lifetime than its workspace!

297

BIliLIOGRAPHY OF MODULA-2 BOOKS

APPENDIX B BmLIOGRAPHY OF MODULA-2 BOOKS

MODVIA-2 FOR PASCAL PROGRAMMERS

Author:
Publisher:

Richard Gleaves
Springer-Verlag

SOFfWARE ENGINEERING WITH MODULA-2 AND ADA

Authors:
Publisher:

Richard Wiener, Richard Sincovec
John Wiley and Sons

MODULA-2 SOFtWARE DEVELOPMENT APPROACH

Authors:
Publisher:

Gary A. Ford, Richard Wiener
John Wiley and Sons

INTRODUCTION TO MODULA-2

Author:
Publisher:

Paul M Chirlian
Matrix Publisher

MODULA-2 SEAFARER'S GUIDE AND SHIPYARD MANUAL

Author:
Publisher:

298

Edward Joyce
Addison Wesley

MODULA-2/86

INTRODUCTION TO COMPUTER SCIENCE WITH MODULA-2

Author: Lewis Pinson
Publisher: John Wiley and Sons

MODULA-2 WITH DATA STRUCTURES

Author:
Publisher:

MODULA-2

Authors:
Publisher:

A GUIDE TO MODULA-2

Author:
Publisher:

B.K. Walker
Wadsworth

John Beidler, Paul Jackowitz
PWS

Kaare Christian
Springer-Verlag

DATA STRUCTURES USING MODULA-2

Author:
Publisher:

Richard Wiener
John Wiley and Sons

299

LIBRARY
MODULES

ASCII

DEFINITION MODULE ASCII;
(*

MODULA-2/86

symbolic constants for non-printing ASCII characters.
This module has an empty implementation.

*)

EXPORT QUALIFIED
nul, soh, stx, etx, eot, enq, ack, bel,
bs, ht, If, vt, ff, er, so, si,
dIe, del, dc2, dc3, dc4, nak, syn, etb,
can, em, sub, esc, fs, gs, rs, us,
del,
EOL;

CONST
nul = OOC; soh = OlC; stx = 02C; etx = 03C;
eot = 04C; enq = 05C; ack = 06C; bel = 07C;
bs == lOC; ht == llC; If == l2C; vt == l3C;
ff == l4C; cr == l5C; so == l6C; si == l7C;
dIe == 20C; dcl == 21C; de2 == 22C; dc3 == 23C;
de4 == 24C; nak == 25C; syn == 26C; etb == 27C;
can == 30C; em == 31C; sub == 32C; esc == 33C;
fs == 34C; gs == 35C; rs == 36C; us == 37C;
del == l77C;

CONST
EOL == 36C;
(*
- end-of line character

300

MODUIA-2/86 Ascn

This (non-ASCII) constant defines the internal name
of the end-of-line character. Using this constant has
the advantage, that only one character is used to
specify line ends (as opposed to cr/lf).

The standard I/O modules interpret this character
and transform it into the (sequence of) end-of-line
code(s) required by the device they support. See
definition modules of 'Terminal' and 'FileSystem'.
*)

END ASCII.

301

Break

DEFINITION MODULE Break;
(*

Handling of the Ctrl-Break interrupt

MODUIA-2/86

This module provides an interrupt handler for the
Ctrl-Break interrupt lBH of MS-DOS and PC-DOS on the
IBM-PC. This module depends on the ROM BIOS of the
IBM-PC and will not run on any machine which is not
compatible to an IBM-PC at this level.

Module 'Break' installs a default break handler, which
stops the execution of the current program with
'system.Terminate(stopped), when Ctrl-Break is typed.
This produces a memory dump for the stopped program.

Module 'Break' allows a program to install its own break
handler, and to enable or disable the break handler
which is currently installed.
*)

EXPORT QUALIFIED
EnableBreak, DisableBreak, InstallBreak, UnlnstallBreak;

PROCEDURE EnableBreak;
(*
- Enable the activation of the current break handler

If Ctrl-Break is detected, the currently installed break
handler will be called.
*)

302

MODULA·2/86 Break

PROCEDURE DisableBreak;
(*
- Disable the activation of the current break handler

If a Ctrl-Break is detected, no action takes place. The
Ctrl-Break is ignored.
*)

PROCEDURE InstallBreak (BreakProc: PROC);
(*
- Install a break handler

in: BreakProc break procedure to be called upon
Crtl-Break

A program can install its own break handler. Module
'Break' maintains a stack of break procedures. The break
procedure on top of the stack (i.e. the one which was
installed most recently) will be called upon the
occurence of a ctrl-break. The default break handler
which is installed initially terminates the program with
a call to 'System.Terminate(stopped) '.

Up to four user defined break procedure may be installed
at the same time.
*)

303

Break

PROCEDURE UnlnstallBreak;
(*
- Uninstall the current break handler

MODUlA-2/86

Removes the break procedure which is currently on top of
the stack. So the last installed break procedure will be
deactivated, and the one installed previously becomes
active again.
*)

END Break.

304

MODUIA-2/86 CardinaIIO

DEFINITION MODULE CardinalIO;
(*

Terminal input/output of CARDINALs in decimal and hex

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. wirth at ETH Zurich, switzerland.
*)

EXPORT QUALIFIED
ReadCardinal, WriteCardinal, ReadHex, WriteHex;

PROCEDURE ReadCardinal (VAR c: CARDINAL);
(*
- Read an unsigned decimal number from the terminal.
out: c the value that was read.

The read terminates only on ESC, EOL, or blank, and the
terminator must be re-read, for example with Terminal.Read.

If the read encounters a non-digit, or a digit which would
cause the number to exceed the maximum CARDINAL value, the
bell is sounded and that character is ignored. No more
than one leading '0' is allowed.
*)

PROCEDURE WriteCardinal (c: CARDINAL; w: CARDINAL);
(*
- write a CARDINAL in decimal format to the terminal.
in: c value to write,

w minimum field width.

The value of c is written, even if it takes more than w
digits. If it takes fewer digits, leading blanks are
output to make the field w characters wide.
*)

305

CardinalIO

PROCEDURE ReadHex (VAR c: CARDINAL):
(*

MODULA-2/86

- Read a CARDINAL in hexadecimal format from the terminal.
[see ReadCardinal above]

*)

PROCEDURE WriteHex (c: CARDINAL: digits: CARDINAL):
(*
- write a CARDINAL in hexadecimal format to the terminal.

[see writeCardinal above]
*)

END CardinalIO.

306

MODUlA·2/86

DEFINITION MODULE Conversions:
(*

Convert from INTEGER and CARDINAL to string

Conversions

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, switzerland.
*)

EXPORT QUALIFIED
ConvertOctal, ConvertHex,
Conve.rtCardinal, ConvertInteger:

PROCEDURE ConvertOctal(num, len: CARDINAL:
VAR str: ARRAY OF CHAR):

(*
- Convert number to right-justified octal representation

in:

out:

num
len
str

value to be represented,
minimum width of representation,
result string.

If the representation of 'num' uses fewer than 'len'
digits, blanks are added on the left. If the representa­
tion will not fit in 'str', it is truncated on the right.
*)

PROCEDURE ConvertHex(num, len: CARDINAL:
VAR str: ARRAY OF CHAR):

(*
- Convert number to right-justified hexadecimal

representation.
[see convertoctal]

*)

307

Conversions MODUIA-2/86

PROCEDURE convertcardinal(num, len: CARDINAL:
VAR str: ARRAY OF CHAR):

(*
- Convert a CARDINAL to right-justified decimal

representation.
[see ConvertOctal]

*)

PROCEDURE ConvertInteger(num: INTEGER: len: CARDINAL:
VAR str: ARRAY OF CHAR):

(*
- Convert an INTEGER to right-justified decimal

representation.
[see ConvertOctal]

Note that a leading I_I is generated if num < 0, but never
a I + I.
*)

END Conversions.

308

MODULA-2/86

DEFINITION MODULE Debug;
(*

Helps analyze unsuccessful program execution

Debug

If the module 'Debug' is linked to the application program,
no dump file is generated. Instead, the system generates a
list of the call sequence within the current process that
lead to the termination displayed on the terminal.
If the necessary reference files are available in the
current directory, each line displays the name of the
procedure, its module and the source line number, where
the next procedure is called or (in case of the first line)
where the program was stopped.

If there are missing reference files, the procedure names
are replaced by procedure numbers within the module, and
the line numbers are replaced by the value of the
instruction pointer. The module body (module
initialization code) is referred to as procedure zero.
It is followed, in the order of their declaration, by the
procedures declared in the definition module, if any, and
then by the other procedures of the module.

.309

Debug

Sample Terminal Output:

===> halt called

MODULE · Demo PROCEDURE •
MODULE · Demo PROCEDURE · MODULE Demo PROCEDURE
MODULE · Demo PROCEDURE · MODULE · Demo PROCEDURE ·
===> halt called

LastOne
RecursiveOne
RecursiveOne
Firstone

: Demo

LINE
LINE
LINE
LINE
LINE

MODULA-2/86

48
37
38
24
57

To be able also to debug all initialziation codes of
imported modules, module 'Debug' should be forced to be
initialized as the first module. This can be accomplished
by importing it as the first module in the main module of
the application program.
*)

END Debug.

310

MODULA-2/86 Decimals

DEFINITION MODULE Decimals;
(*

Decimal Arithmetic
*)

EXPORT QUALIFIED
DECIMAL, DecDigits, DecPoint, DecSep, DecCur,
DecStatus, DecState, DecValid, StrToDec, DecToStr,
Neg Dec , CompareDec, AddDec, SubDec, MulDec,DivDec,
Remainder,DecRepr;

CONST
DecDigits = 18;
DecRepr = 10;
DecCur = , $, ;
DecPoint = , , . . ,
DecSep = , , . , ,

TYPE
DECIMAL = ARRAY [O .. DecRepr-l] OF CHAR;

(* WARNING : Representation is
implementation dependent!

*)

DecState = (NegOvfl,
Minus,
Zero,
Plus,
PosOvfl,
Invalid

) ;

311

Decimals

VAR
DecValid: BOOLEAN;
(* set after every operation *)

Remainder: CHAR;
(* remainder digit - set after DivDec *)

PROCEDURE StrToDec (String: ARRAY OF CHAR;
Picture: ARRAY OF CHAR;
VAR Dec: DECIMAL);

(*

MODUlA-2/86

Converts a DECIMAL number from an external format to an
internal format; after checking and matching between the
picture and the input string. The result is placed in
variable Dec.
*)

PROCEDURE DecToStr (Dec: DECIMAL;
Picture: ARRAY OF CHAR;
VAR Rsl tStr: ARRAY OF CHAR);

(*
Converts a DECIMAL number from an internal format to an
external format; after checking and matching between the
picture and the DECIMAL number. The result is placed in
variable RsltStr.
*)

PROCEDURE DecStatus (Dec: DECIMAL): DecState;
(*
Detects the state of the number represented as DECIMAL
and returns one of the following states :

312

MODULA-2/86 Decimals

- Negative overflow --> NegOvfl
- Negative --> Minus
- Null --> Zero
- positive --> Plus
- Positive overflow --> PosOvfl
- Invalid representation --> Invalid

*)

PROCEDURE CompareDec (DecO,Dec1: DECIMAL): INTEGER;
(*
Compares two DECIMAL numbers and returns an integer value
indicating the comparison result:

-1 if DecO is less than Dec1
o if DecO equals Dec1
1 if DecO is greater than Dec1

*)

PROCEDURE AddDec (DecO,Dec1: DECIMAL; VAR Sum: DECIMAL);
(*
Adds two DECIMAL numbers (DecO and Dec1) together and
places the result in the variable Sum.
*)

PROCEDURE SubDec (DecO,Dec1: DECIMAL; VAR Sub: DECIMAL);
(*
Subtracts Dec1 from DecO and places the result in Sub.
*)

PROCEDURE MulDec (DecO,Dec1: DECIMAL; VAR Prod: DECIMAL);
(*
Multiplies two DECIMAL numbers and places the result in
the variable Prod.
*)

313

Decimals MODUIA-2/86

PROCEDURE DivDec (DecO,Decl: DECIMAL; VAR Quot: DECIMAL);
(*
DecO is divided by Decl. The quotient is placed in the
variable Quot and the remainder is placed in the global
variable Remainder.
*)

PROCEDURE NegDec (Dec: DECIMAL; VAR NDec: DECIMAL)
(*
The negative DECIMAL value of Dec is placed in the
variable NDec.
*)

END Decimals.

314

MODULA-2/86 Devices

DEFINITION MODULE Devices;
(*

Additional facilities for device and interrupt handling

The MODULA-2/86 run-time support maintains a device mask
that indicates from which devices interrupts are enabled.
The bits of the device mask have the same meaning as the
bits in the mask register of the interrupt controller.

Module 'Devices' provides access to the device mask.
It allows a program to inquire and change the status of
a device (interrupts enabled or disabled). The device
numbers used by module 'Devices' and by the run-time
support are equal to the number of the bit in the
device mask, that indicates whether interrupts from
this device are enabled or disabled.

When a program is running at no priority, the mask
register of the interrupt controller is identical to this
device mask. When a program is running at some priority,
then the mask register of the interrupt controller is set
to the logical OR of the device mask and the corresponding
priority mask. When the priority or the device mask
changes, the MODULA-2/86 run-time support sets the
mask register of the interrupt controller accordingly.
At any point in time, all the interrupts masked out,
either in the device mask or in the current priority mask,
are disabled. The priority mask for 'no priority' does not
mask out any interrupt, i.e. its value is all zeros.

When writing interrupt handlers in MODULA-2/86, it is
strongly recommended to use only the procedures provided
by module 'Devices', and not to access directly the mask
register of the interrupt controller.

315

Devices MODULA-2/86

The following should be performed in order to install an
interrupt handler: First save the old interrupt vector,
then set up the interrupt handler (IOTRANSFER), and if
necessary, save the current device status (interrupts
enabled or disabled) and enable interrupts from the
device.

Before the program terminates, or in order to remove an
interrupt handler, the following sequence of procedure
calls should be performed: If necessary, restore the old
device status or disable interrupts from the device, and
then restore the old interrupt vector.

At the end of a program the MODULA-2/86 run-time support
resets the mask register of the interrupt controller to
its initial value.

In general, a call to IOTRANSFER in Modula-2 associates
a process with only the next occurence of the specified
interrupt. The procedure 'InstaIIHandler' provided by
module 'Devices' allows to install an interrupt handler
permanently. It associates a process, the interrupt
handler, permanently with a certain interrupt.

While it is not required to install an interrupt handler
in'this way, it may be useful for handling time critical
interrupts. Installing an interrupt handler permanently
improves the performance of IOTRANSFER and of the implicit
coroutine transfer that takes place when the interrupt
occurs by about 20 percent.

'InstaIIHandler' must only be called after the process has
been created (by means of NEWPROCESS) and before the
process has called IOTRANSFER. For instance, it may be
called right at the beginning of the code of the process.
*)

316

MODUlA-2/86 Devices

FROM SYSTEM IMPORT ADDRESS, PROCESS;

EXPORT QUALIFIED
GetDevicestatus, SetDeviceStatus,
SaveInterruptVector, RestoreInterruptVector,
InstallHandler, UninstallHandler;

PROCEDURE GetDevicestatus(deviceNr: CARDINAL;
VAR enabled: BOOLEAN);

(*
- Return the status of a device in the device mask

in: deviceNr number of the device to be checked
bitnumber (0 •• 7) of bit for device in
interrupt controller 8259 mask

out: enabled TRUE if interrupts from the device are
enabled, FALSE otherwise

*)

PROCEDURE setDevicestatus(deviceNr: CARDINAL;
enable: BOOLEAN);

(*
- Set the status of a device in the device mask

in: deviceNr number of the device to enable or disable
bitnumber (0 .. 7) of bit for device in
interrupt controller 8259 mask

enable if TRUE, enable interrupts from the
device, otherwise disable them

The mask register of the interrupt controller will
be updated according to the current priority and
the new device mask.
*)

317

Devices MODUIA-2/86

PROCEDURE SaveInterruptVector(vectorNr: CARDINAL;
VAR vector: ADDRESS);

(*
- Save the current value of an interrupt vector

in: vectorNr

out: vector
*)

interrupt vector number

value of current interrupt vector

PROCEDURE RestoreInterruptVector(vectorNr: CARDINAL;
vector: ADDRESS);

(*
- Restore the value of an interrupt vector

in:

*)

vectorNr
vector

interrupt vector number
value to restore (previously saved
with 'SaveInterruptVector')

PROCEDURE InstallHandler(process: PROCESS;
vectorNr: CARDINAL);

(*
- !nstall an interrupt handler permanently

in: process

vectorNr

process associated with the interrupt
handler
interrupt vector number

The process is associated permanently to the given
interrupt vector number. This improves the performance
of IOTRANSFER and of the implicit coroutine transfer
that takes place when the interrupt occurs. A process
may be associated to at most one interrupt, and at most
one process may be associated to the same interrupt.

318

MODULA-2/86 Devices

'InstaIIHandler' must only be called after the process has
been created (by means of NEWPROCESS) and before the
process has called IOTRANSFER. For instance, it may be
called right at the beginning of the code of the process.
Except for the call to 'InstaIIHandler', the code of a
permanently installed interrupt handler is identical to
the code of a regular interrupt handler.
*)

PROCEDURE UninstaIIHandler(process: PROCESS);
(*
- Uninstall an interrupt handler which has been

installed permanently

in: process process associated with the interrupt
handler

In general, there is no need to call this procedure.
The MODULA-2/86 run-time support automatically uninstalls
interrupt handlers upon termination of a (sub-) program.
*)

END Devices.

319

MODUIA-2/86 Directories

DEFINITION MODULE Directories;
(*

Additional directory operations
*)

EXPORT QUALIFIED
DirQueryProc, DirResult, DirQuery,
Delete, Rename;

TYPE
DirQueryProc = PROCEDURE(ARRAY OF CHAR, VAR BOOLEAN);

DirResult = (OK,
ExistingFile,
NoFile,
OtherError) ;

(* rename to existing name *)
(* file not found *)

PROCEDURE DirQuery(wildFileName ARRAY OF CHAR;
DirQueryProc;
DirResult);

DirProc
VAR result

(*
- Apply the a procedure to all matching files

in:

out:

wildFileName
DirProc

result

file name, wild-characters are allowed
procedure to be called for each file
matching 'wildFileName'

result of directory operation

'DirQuery' executes 'DirProc' on each file which satisfies
the specification of 'wildFileName' where wild-characters
are allowed. If no more files are found, or as soon as
'DirProc' returns FALSE, the execution is stopped.

320

MODULA·2/86 Directories

If an incorrect filename is passed, this may return a
'result <> OK', and 'DirProc' will not be called.

possible results are OK, NoFile, or OtherError.
*)

PROCEDURE Delete(FileName ARRAY OF CHAR;
DirResult) ; VAR result

(*
- Delete a file.

in: FileName name of the file to delete

out: result result of directory operation

Possible results are OK, or NoFile.
*)

PROCEDURE Rename (FromName ARRAY OF CHAR;
ARRAY OF CHAR;
DirResult) ;

(*
- Rename a file.

in: FromName
ToName

out: result

ToName
VAR result

name of the file to rename
new name of the file

result of directory operation

321

MODULA·2/86

Possible results are OK, NoFile, ExistingFile, or
OtherError.
*)

END Directories.

322

Directories

MODUlA-2/86 DiskDirectory

DEFINITION MODULE DiskDirectorYi
(*

Interface to directory functions of the underlying OS

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, switzerland.
*)

EXPORT QUALIFIED
CurrentDrive, SelectDrive,
CurrentDirectory, ChangeDirectory,
MakeDir, RemoveDir,
ResetDiskSys, ResetDrive;

PROCEDURE CurrentDrive (VAR drive: CHAR);
(*
- Returns the current default drive.

out:

*)

drive name of the default drive, given in
character format (e.g. 'A').

PROCEDURE SelectDrive (drive: CHAR; VAR done: BOOLEAN);
(*
- Set default drive.

in: drive name of drive to make default, specified
in character format (e.g. 'A').

out: done TRUE if operation was successful.

The default drive will be used by all routines referring
to OK: •
*)

323

DiskDirectory MODUIA-2/86

PROCEDURE CurrentDirectory (drive: CHAR;
VAR dir: ARRAY OF CHAR);

(*
- Gets the current directory for the specified drive.

in: drive

out: dir

name of the drive, specified in
character format (e.g. 'A'); blank or
OC denotes the current drive.

current directory for that drive.

Because CP/M-86 does not support named directories,
dir[o] will always be set to nul (OC) under CP/M-86.
*)

PROCEDURE ChangeDirectory (dir: ARRAY OF CHAR;
VAR done: BOOLEAN);

(*
- Set the current directory

in:

out:

dir

done

drive and directory path name.

TRUE if successful; FALSE if the
directory does not exist.

Because CP/M-86 does not support named directories,
this function has no effect and 'done' returns always
FALSE under CP/M-86.
*)

324

MODULA-2/86 DiskDirectory

PROCEDURE MakeDir (dir: ARRAY OF CHAR;
VAR done: BOOLEAN);

(*
- Create a sub-directory

in:

out:

dir

done

drive, optional pathname and name of
sub-directory to create.

TRUE if successful; FALSE if path or
drive does not exist.

Because CP/M-86 does not support named directories,
this function has no effect and 'done' returns always
FALSE under CP/M-86.
*)

PROCEDURE RemoveDir (dir: ARRAY OF CHAR;
VAR done: BOOLEAN);

(*
- Remove a directory

in:

out:

dir

done:

drive and name of the sub-directory
to remove.

TRUE if successful; FALSE if directory
does not exist.

The specified directory must be empty, otherwise 'done'
returns FALSE and the directory is not removed.

Because CP/M-86 does not support named directories,
this function has no effect and 'done' returns always
FALSE under CP/M-86.
*)

325

DiskDirectory

PROCEDURE ResetDiskSys;
. (*
- MS-DOS or CP/M-86 disk reset
*)

PROCEDURE ResetDrive (d: CHAR): CARDINAL;
(*
- CP/M-86 reset drive.

MODULA·2/86

in: drive name of drive to make default, specified
in character format (e.g. 'A').

out: returns always zero under CP/M-86

Under DOS this function has no effect and returns always
the value 255.
*)

END DiskDirectory.

326

MODUlA-2/86

DEFINITION MODULE DiskFiles;
(*

DiskFiIes

Interface to disk file functions of the underlying os.
[Private module of the MODULA-2/86 system.]

The default drive 'DK:', and drives 'A:' through 'P:'
are supported under DOS or CP/M-86. This driver provides
buffering. The maximum number of open files is 12.

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. wirth at ETH Zurich, Switzerland.
*)

FROM FileSystem IMPORT File;

EXPORT QUALIFIED
InitDiskSystem,
DiskFileProc, DiskDirProc;

PROCEDURE InitDisksystem;
(*
- Initialize mediums for further disk file operations

This procedure has to be imported by FileSystem. This has
the side-effect, that this module is referenced and will
therefore be linked to the user program.
*)

327

DlskFlles

PROCEDURE DiskFileProc (VAR f: File);
(*

MODUlA-2/86

- low-level interface for disk operations within a file

This procedure is passed as a parameter to the procedure
CreateMedium in FileSystem.
*)

PROCEDURE DiskDirProc (VAR f: File;
name: ARRAY OF CHAR);

(*
- low-level interface for disk operations within a

directory

This procedure is passed as a parameter to the procedure
CreateMedium in FileSystem.
*)

END DiskFiles.

328

MODUI.A-2/86 Display

DEFINITION MODULE Display;
(*

Low-level Console Output
[Private module of the MODULA-2/86 system]

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. wirth at ETH Zurich, switzerland.
*)

EXPORT QUALIFIED write;

PROCEDURE Write (ch: CHAR);
(*
- Display a character on the console.

in: ch character to be displayed.

The following codes are interpreted:

ASCII.EOL (36C) = go to beginning of next line
ASCII.ff (14C) = clear screen and set cursor home
ASCII.del (177C) = erase the last character on the left
ASCII.bs (lOC) = move 1 character to the left
ASCII.cr (lSC) = go to beginning of current line
ASCII.lf (12C) = move 1 line down, same column

write uses direct console I/O.
*)

END Display.

329

DOS3

DEFINITION MODULE DOS3;
(*

MODUIA-2/86

Additional DOS 3.0 functions

*)

FROM SYSTEM IMPORT
BYTE, WORD, ADDRESS;

EXPORT QUALIFIED
GetExtendedError,
CreateTemporaryFile,
CreateNewFile,
LockUnlockFileAccess,
GetProgramSegmentPrefix;

(* DOS 3.0 function 59H *)
PROCEDURE GetExtendedError(version: WORD;

(* BX *)
VAR extendedError: WORD;
(* AX *)
VAR errorClass: BYTE;
(* BH *)

VAR suggestedAction: BYTE;
(* BL *)
VAR locus: BYTE);
(* CH *)

330

MODULA-2/86

(* DOS 3.0 function SAH *)
PROCEDURE CreateTemporaryFile(path: ADDRESS;

(* DS:DX *)
attribute: WORD:
(* CX *)
VAR errorCode: WORD:
(* AX,CF *)

VAR handle: WORD:
(* AX,CF *)

DOS3

VAR pathAndName: ADDRESS):
(* DS:BX *)

(* DOS 3.0 function SBH *)
PROCEDURE CreateNewFile(pathAndName: ADDRESS:

(* DS:BX *)
attribute: WORD:
(* CX *)

VAR errorCode: WORD:
(* AX,CF *)
VAR handle: WORD):
(* AX,CF *)

(* DOS 3.0 function SCH *)
PROCEDURE LockUnlockFileAccess(lock: BYTE:

(* AL *)
handle: WORD:
(* BX *)
offsetHigh: WORD:
(* CX *)
offsetLow: WORD:
(* DX *)
lengthHigh: WORD;
(* SI *)
lengthLow: WORD;
(* DI *)

VAR errorCode: WORD):

331

DOS3 MODULA-2/86

(* AX,CF *)

(* DOS 3.0 function 62H *)
PROCEDURE GetProgramSegmentPrefix(VAR PSPsegment: WORD);

(* BX *)

END DOS3.

332

MODUIA·2/86 DOS31

DEFINITION MODULE DOS31;
(*

*)

Additional DOS 3.1 functions

FROM SYSTEM IMPORT
BYTE, WORD, ADDRESS;

EXPORT QUALIFIED
GetMachineName,
SetPrinterSetup,
GetPrintersetup,
GetRedirectionListEntry,
RedirectDevice,
CancelRedirection;

(* DOS 3.1 function 5EOOH *)
PROCEDURE GetMachineName(computerName: ADDRESS;

(* DS:DX *)
VAR nameNumberIndFlag: BYTE;
(* CH *)

VAR nameNumber: BYTE;
(* CL *)

VAR errorCode: WORD);
(* AX,CF *)

(* DOS 3.1 function 5E02H *)
PROCEDURE SetPrinterSetup(redirectionListIndex: WORD;

(* BX *)
setupStringLength: WORD;
(* CX *)
setupBuffer: ADDRESS;
(* DS:SI *)

VAR errorCode: WORD);
(* AX,CF *)

333

DOS31 MODULA-2/86

334

(* DOS 3.1 function 5E03H *)
PROCEDURE GetPrinterSetup(redirectionListIndex: WORD;

(* BX *)
setupBuffer: ADDRESS;
(* ES:DI *)

VAR setupStringLength: WORD;
(* CX *)
VAR errorCode: WORD);
(* AX,CF *)

(* DOS 3.1 function 5F02H *)
PROCEDURE GetRedirectionListEntry

(redirectionIndex: WORD;
(* BX *)
localDeviceName: ADDRESS;
(* DS:SI *)
networkName: ADDRESS;
(* ES:DI *)
VAR deviceStatusFlag: BYTE;
(* BH *)

VAR deviceType: BYTE;
(* BL *)
VAR storedParmValue: WORD;
(* CX *)

VAR errorCode: WORD);
(* AX,CF *)

(* DOS 3.1 function 5F03H *)
PROCEDURE RedirectDevice(deviceType: BYTE;

(* BL *)
valueToSaveForCaller: WORD;
(* CX *)
deviceName: ADDRESS;
(* DS:SI *)
networkPath: ADDRESS;
(* ES: DI *)
VAR errorCode: WORD);
(* AX,CF *)

MODUIA-2/86

(* DOS 3.1 function 5F04H *)
PROCEDURE CancelRedirection(deviceName: ADDRESS;

(* DS:SI *)

END DOS31.

VAR errorCode: WORD);
(* AX,CF *)

00831

335

ErrorCode MODULA-2/86

DEFINITION MODULE ErrorCode;
(*

*)

handle return code to operating system

EXPORT QUALIFIED
SetErrorCode, GetErrorCode, ExitToOS;

PROCEDURE SetErrorCode(value: CARDINAL);
(*

*)

sets the error return code that will be
used on normal termination; but it doesn't
terminate the program immediately.

PROCEDURE GetErrorCode(VAR value: CARDINAL);
(*

Allows to inspect the set return code
*)

PROCEDURE ExitToOS;
(*

*)

Terminate current program and return to operating
system. set the error code corresponding to value
defined by a previous call to SetErrorCode.
implementation restriction: if the program is

using overlays, only
the current overlay will be terminated.

END ErrorCode.

336

MODUlA-2/86 FileMessage

DEFINITION MODULE FileMessage;
(*

write file status/response to the terminal
*)

FROM FileSystem IMPORT Response;

EXPORT QUALIFIED WriteResponse;

PROCEDURE WriteResponse (r: Response);
(*
- Write a short description of a FileSystem response on

the terminal.

in: r the response from some FileSystem
operation.

The actual argument for 'r' is typically the field 'res'
of a variable of type 'File'. The printed message is up
to 32 characters long.
*)

END FileMessage.

337

FileNames

DEFINITION MODULE FileNames;
(*

Read a file specification from the terminal.

MODULA-2/86

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. wirth at ETH Zurich, switzerland.
*)

EXPORT QUALIFIED
FNParts, FNPartSet, ReadFileName;

TYPE
FNParts = (FNDrive, FNPath, FNName, FNExt);
FNPartSet = SET OF FNParts;

PROCEDURE ReadFileName(VAR resultFN: ARRAY OF CHAR;
defaultFN: ARRAY OF CHAR;
VAR ReadInName: FNPartSet);

(*
- Read a file specification from terminal.

in:
out:

defaultFN
resultFN
ReadInName

default file specification,
the file specification read,
which parts are in specification.

Reads until a <cr>, blank, <can>, or <esc> is typed.
After a call to ReadFileName, Terminal.Read must be called
to read the termination character. The format of the
specification depends on the host operating system.
*)

END FileNames.

338

MODULA·2/86 FiIeSystem

DEFINITION MODULE FileSystem;
(*

File manipulation routines

This implementation is based on the underlying operating
system for file handling. It distinguishes between BINARY
files and TEXT files.

File structure:

After any file operation the result should be checked
for errors, by testing the field 'res' of the file
variable (see type declarations for 'File' and
'Response').

The BOOLEAN field 'eof' in a file variable (variable of
type 'File)' allows to determine the end-of-file. It ~s
set to TRUE after the first unsuccessful attempt to read
information from the file. This first attempt to read
beyond end-of-file does not set any error condition; the
field 'res' of the file variable still indicates 'done'.
However, the character (or other data) returned is
not valid.

Binary files:

A file is a sequence of bytes with no other structure
implied.

Under some operating systems (e.g. CP/M-86) the file
may be organized in records (128 bytes each), and
therefore, the length of a file will always be a
multiple of this record size.

Text files:

339

FileSystem MODUIA-2/86

A file is a sequence of characters. The character code
32C (Ctrl-Z) indicates end-of-file). All other
character codes from OC to 377C are legal. When reading
a text file, 'eof' becomes TRUE when encountering the
character 32C, or at the pysical end of the file. When
closing a text file that has been modified, the
character 32C is written on the file.

When reading from a text file (by means of procedure
'ReadChar'), the character ASCII.EOL is returned for
the sequence <CR, LF>, or for a single <CR> or <LF>.
When writing to a text file (by means of procedure
'WriteChar'), the character ASCII.EOL is changed to
the sequence <CR,LF>.

An open file is in one of the states 'opened', 'reading',
'writing', or 'modifying'. These states have the following
meaning:

340

opened

reading
writing

modifying

= Content of file buffer is undefined and not
associated with a position in the file.
When starting to read or write from a file
that is in state open, the state is changed
implicitly to reading or writing.

= No writing is allowed.
= No reading is allowed. writing always takes

place at the end-of-file position.
When writing on an existing file, which is
(physically) longer than the current write
position, it is undefined, whether the file
is truncated upon a close.

= Reading and writing are allowed. Writing an
element inside of a file means 'overwriting'
the value of the element with a new value.
Upon a close, the file is not truncated.

MODULA-2/86 FileSystem

The state of the file is given by the field 'flags' of
a file variable. By means of the procedures SetRead,
SetWrite, SetModify, and SetOpen, it is possible to change
the state of an open file.

To every file is associated a 'current position'. This
corresponds to the number of the current byte inside the
file, starting with zero for the first byte. The next
reading or writing takes place at the current position.
This position is updated automatically after reading or
writing. It can also be inquired or set through the
procedure GetPos or SetPos.

After the opening of a file (by means of Lookup or Create)
it is state 'opened' and positioned at the beginning
(low = 0, high = 0).

Conventions for filenames:

For the procedures Lookup and Rename, a filename has to be
given, including a medium name (drive name), a file name
and an optional file type. For the procedure Create, a
medium name has to be given. The medium name is up to
three characters long (alphanumeric, starting with a
letter). It is separated from the file name by a colon
(1:1). If no medium name is given, the current default
medium (drive) is assumed. The default medium may also
be denoted by IDK:I.

Depending on the operating system, the file name may
include a path name, specifying the the directory where
the file exists. The length of the file (and path) name,
and the characters legal for file names, depend on the
operating system.

By default, the mediums (i.e. disk drives) handled by
module IDiskFiles' are installed.

341

FileSystem MODULA-2/86

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, switzerland.
*)

FROM SYSTEM IMPORT ADDRESS, WORD, BYTE;

EXPORT QUALIFIED
File, Response, Command,
Flag, FlagSet,

(* basic file operations: *)
Create, Close, Lookup, Rename, Delete,
SetRead, Setwrite, SetModify, SetOpen,
Doio,
SetPos, GetPos, Length,

(* stream-like I/O: *)
Reset, Again,
ReadWord, ReadChar, ReadByte, ReadNBytes,
writeWord, WriteChar, WriteByte, WriteNBytes,

(* medium handling: *)
MediumType,
FileProc, DirectoryProc,
CreateMedium, RemoveMedium,

FileNameChari

TYPE

342

MediumHint = CARDINAL;
(*- medium index used in DiskFiles *)

MediumType = ARRAY [0 •• 2] OF CHAR;
(*- medium name (A, B ••.) *)

MODUIA·2/86 FileSystem

Flag = (er, ef, rd, wr, ag, txt);
(*
- status flag for file operations:

er = error occured, ef = end-of-file reached,
rd = in read mode, wr = in write mode,
ag = "Again" has been called after last read,
txt = text-file (the last access to the file was a
'WriteChar' or 'ReadChar').
*)

FlagSet = SET OF Flag;
(*- status flag set *)

Response = (done,

(*

notdone, not supported , callerror,
unknownmedium, unknownfile, paramerror,
toomanyfiles, eom, userdeverror);

- result of a file operation

done:
FileSystem routine successfully terminated

notsupported:
for internal purposes only

callerror:
a) You tried to write to a file currently in

state reading. Use setwrite to change a
file's state from reading to writing.

b) You tried to read from a file currently in
state writing. Use SetRead to change a
file's state from writing to reading.

343

FileSystem MODULA-2/86

*)

344

c) You tried to read from or write to a file
marked as invalid by the following operations:
unsuccessful create or Lookup
successful Close or Delete

unknownmedium:
The medium, or drive, which you addressed does
not exist or is not known to the MODULA-2/86
System (it has not been installed by means of
the CreateMedium routine).

unknownfile:
The file you specified as the parameter for the
Delete routine could not be found.

paramerror:
a) The syntax of the medium name, or drive name,

which you specified is incorrect.
b) When renaming a file, you must not change

the medium name (drive name).
c) You tried to position a file after its

physical end.
toomanyfiles:

Only 12 files can be opened at the same time.
eom:

'end of medium' - The medium (disk) holding the
file, to which you wanted to write is short of
storage space.

userdeverror:
Not used in this implementation of the FileSystem.

notdone:
a) You tried to read from a file for which the

BOOLEAN field eof of the corresponding file
variable is true.

b) You tried to open a non-existing file with
Lookup (with parameter newFile = FALSE).

c) Any other error, not covered by the above
meanings of the values of the FileSystem
Response Type.

MODUlA-2/86 FileSystem

Command = (create, close, lookup, rename, delete,
setread, setwrite, setmodify, setopen,
doio, setpos, getpos, length);

(*- commands passed to module 'DiskFiles' *)

Buff Add = POINTER TO ARRAY [O •• OFFFEH] OF CHAR;
(*- file buffer pointer type *)

File = RECORD
bufa: Buff Add;
(*- buffer address *)
buflength: CARDINAL;
(*- size of buffer in bytes. In the

current release it is always a
multiple of 128. *)

validlength: CARDINAL;
(*- number of valid bytes in buffer *)
bufind: CARDINAL;
(*- byte-index to the buffer of the

current position *)
flags: FlagSet;
(*- status of the file *)
eof: BOOLEAN;
(*- TRUE if last access was past the end

of the file *)
res: Response;
(*- result of last operation *)
lastRead: CARDINAL;
(*- the word or byte (char) last read *)
mt: MediumType;
(*- selects the driver that supports this

file *)
fHint: CARDINAL;
(*- used internally by device driver *)
mHint: MediumHint;
(*- used internally by medium handler *)
CASE com: Command OF

lookup: new: BOOLEAN;

345

FileSystem MODUlA-2/86

I setpos,
getpos,
length: highpos, lowpos: CARDINAL;

END;
END;

(*- file structure used for bookkeeping by DiskFiles *)

PROCEDURE Create (VAR f: File; mediumName: ARRAY OF CHAR) ;
(*
- create a temporary file

in: mediumName

out: f

name of medium to create file on,
in character format

initialized file structure

A temporary file is characterized by an empty name. To
make the file permanent, it has to be renamed with a
non-empty name before closing it. For subsequent
operations on this file, it is referenced by 'ft.
*)

PROCEDURE Close (VAR f: File);
(*
- Close a file

in: f structure referencing an open file

out: f the field f.res will be set appropriately.

Terminates the operations on file "f". If "f" is a
temporary file, it will be destroyed, whereas a file with
a non-empty name remains on its medium and is accessible
through "Lookup". When closing a text-file after writing,
the end-of-file code 32C is written on the file (MS-DOS
and CP/M-86 convention).
*)

346

~ODUIA-2/86 FileSystern

PROCEDURE Lookup (VAR f: File; fileName: ARRAY OF CHAR;
newFile: BOOLEAN);

(*
- look for a file

in: filename
newFile

drive and name of file to search for
TRUE if file should be created if
not found

out: f initialized file structure; f.res will
be set appropriately.

Searches the medium specified in "filename" for a file
that. matches the name and type given in "filename". If
the file is not found and "newFile" is TRUE, a new
(permanent) file with the given name and type is created.
If it is not found and "newFile" is FALSE, no action
takes place and "notdone" is returned in the result
field of "f".
*)

PROCEDURE Rename (VAR f: File; newname: ARRAY OF CHAR);
(*
- rename a file

in: f structure referencing an open file
newname filename to rename to, with

device:name.type specified

out: f file name in f will be changed and the
field f.res will be set appropriately.

The medium, on which the files reside can not be changed
with this command. The medium name inside "newname" has
to be the old one.
*)

347

FileSystem MODULA-2/8,6

PROCEDURE Delete (name: ARRAY OF CHAR; VAR f: File);
(*
- delete a file

in:

out:
*)

name

f

name of file to delete, with
dev:name.type specified

the field f.res will be set appropriately.

PROCEDURE ReadWord (VAR f: File; VAR w: WORD);
(*
- Returns the word at the current position in f

in:

out:

f

w
f

structure referencing an open file

word read from file
the result field f.res will be set
appropriately.

The file will be positioned at the next word when the
read is done.
*)

PROCEDURE writeWord (VAR f: File; w: WORD);
(*
- Write one word to a file

in:

out:

348

f
w

f

structure referencing an open file
word to write

the field f.res will be set appropriately.

MODULA·2/86 FileSystem

When overwriting, the file will be positioned at the next
word when the write is done.
*)

PROCEDURE ReadChar (VAR f: File; VAR ch: CHAR);
(*
- Read one character from a file

in: f structure referencing an open file

out: character read from file ch
f the field f.res will be set appropriately.

ReadChar returns the character contained in the referenced
file at the file's current position, with the following
exceptions:

(The symbolic constants are from the Standard Library
module ASCII.DEF)

Character Sequence
in File:

symbolic Octal

<cr, If>
<cr>
<If>
<Ctrl-z>

15C, 12C
15C
12C
32C

Character Returned

Symbolic

<EOL>
<EOL>
<EOL>
<nul>

Octal

36C
36C
36C

OC

<Ctrl-z>, i.e. 32C, indicates end-of-file.

If ReadChar encounters the end of the file or
tries to read beyond it, a nul character, or OC,
is returned.

The file will be positioned at the next character when
the read is done.

349

FiIeSystem MODUIA-2/86

*)

PROCEDURE writeChar (VAR f: File; ch: CHAR) ;
(*
- write one character to a file

in: f structure referencing an open file
ch character to write

out: f the field f.res will be set apporopriately.

writeChar writes the character to the referenced file
at the file's current position, with the following
exceptions:

(The symbolic constants are from the Standard Library
module ASCII.DEF)

Character to write

Symbolic

<EOL>
<cr>
<If>
<Ctrl-z>

Octal

36C
15C
12C
32C

Character Sequence
in File:

Symbolic Octal

<cr, If>
<cr>
<If>
<Ctrl-z>

15C, 12C
15C
12C
32C

<Ctrl-z>, i.e. 32C, indicates end-of-file.

When overwriting, the file will be positioned at the next
character when the write is done.

*)

350

MODULA-2/86 FileSystern

PROCEDURE ReadByte (VAR f: File; VAR b: BYTE);
(*
- Read one byte from a file

in: f structure referencing an open file

out: byte read from file b
f the field f.res will be set appropriately.

The file will be positioned at the next byte when the
read is completed.
*)

PROCEDURE WriteByte (VAR f: File; b: BYTE);
(*
- Write one byte to a file

in: f
b

structure referencing an open file
byte to write

out: f the field f.res will be set appropriately.

When overwriting, the file will be positioned at the next
byte when the write is done.
*)

PROCEDURE ReadNBytes (VAR f: File;

(*

bufPtr: ADDRESS;
requestedBytes: CARDINAL;
VAR read: CARDINAL);

- Read a specified number of bytes from a file

in: f structure referencing an open file
bufPtr pointer to buffer area to read bytes into
requestedBytes number of bytes to read

351

FileSystem MODUI.A-2/86

out: bufPtrA bytes read from file
f the field f.res will be set appropriately.
read the number of bytes actually read.

The file will be positioned at the next byte after the
requested sequence of bytes.
*)

PROCEDURE WriteNBytes (VAR f: File;

(*

bufPtr: ADDRESS;
requestedBytes: CARDINAL;
VAR written: CARDINAL);

- write a specified number of bytes to a file

in: f structure referencing an open file
bufPtr pointer to string of bytes to write
requestedBytes number of bytes to write

out: f the field f.res will be set appropriately.
written the number of bytes actually written

When overwriting, the file will be positioned at the next
byte after the requested sequence of bytes.
*)

PROCEDURE Again (VAR f: File);
(*
- returns a character to the buffer to be read again

in:

out:

352

f

f

structure referencing an open file

the f.res field will be set appropriately.

MODULA·2/86 FileSystem

This should be called after a read operation only (it has
no effect otherwise). It prevents the subsequent read
from reading the next element; the element just read
before will be returned a second time. Multiple calls to
Again without a read in between have the same effect as
one call to Again. The position in the file is undefined
after a call to Again (it is defined again after the next
read operation).
*)

PROCEDURE SetRead (VAR f: File);
(*
- sets the file in reading- state, without changing the

current position.

in: f structure referencing an open file

out: f f.res will be set appropriately.

Upon calling SetRead, the current position must be before
the eof. In reading state, no writing is allowed.
*)

PROCEDURE setwrite (VAR f: File);
(*
- sets the file in writing-state, without changing the

current position.

in:

out:

f

f

structure referencing an open file

f.res will be set appropriately.

353

FileSystem MODULA-2/86

Upon calling SetWrite, the current position must be a
legal position in the file (including eof). In writing
state, no reading is allowed, and a write always takes
place at the eof. The current implementation does not
truncate the file.
*)

PROCEDURE SetModify (VAR f: File);
(*
- Sets the file in modifying-state, without changing the

current position.

in:

out:

f

f

structure referencing an open file

f.res will be set appropriately.

Upon calling SetModify, the current position must be
before the eof. In modifying-state, reading and writing
are allowed. Writing is done at the current position,
overwriting whatever element is already there. The file
is not truncated.
*)

PROCEDURE SetOpen (VAR f: File);
(*
- Set the file to opened-state, without changing the

current position.

in: f structure referencing an open file

out: f f.res will be set appropriately.

354

MODULA-2/86 FileSystem

The buffer content is written back on the file, if the
file has been in writing or modifying status. The new
buffer content is undefined. In opened-state, neither
reading nor writing is allowed.
*)

PROCEDURE Reset (VAR f: File);
(*
- Set the file to opened state and position it to the

top of file.

in:

out:
*)

f

f

structure referencing an open file

f. re.s will be set appropriately.

PROCEDURE SetPos (VAR f: File; high, low: CARDINAL);
(*
- Set the current position in file

in:

out:

f
high
low

f

structure referencing an open file
high part of the byte offset
low part of the byte offset

f.res will be set appropriately.

The file will be positioned (high*2 A 16 + low) bytes from
the top of file.
*)

PROCEDURE GetPos (VAR f: File; VAR high, low: CARDINAL);
(*
- Return the current byte position in file

in: f structure referencing an open file

355

FileSystem

out: high
low

high part of byte offset
low part of byte offset

MODUlA-2/86

The actual position is (high*2 A 16 + low) bytes from the
top of file.
*)

PROCEDURE Length (VAR f: File; VAR high, low: CARDINAL);
(*
- Return the length of the file in bytes.

in:

out:

f

high
low

structure referencing an open file.

high part of byte offset
low part of byte offset

The actual length is (high*2 A 16 +low) bytes. Depending on
the operating system, this length may always be a multiple
of some record size reflecting the physical length of the
file and maybe not the true logical file length.
*)

PROCEDURE Doio (VAR f: File);
(*

Do various read/write operations on a file

in:

out:

f

f

structure referencing an open file

f.res will be set appropriately.

The exact effect of this command depends on the state of
the file (flags):

356

MODULA-2/86

opened
reading

writing

FileSystem

= NOOP.
= reads the record that contains the current

byte from the file. The old content of the
buffer is not written back.

= the buffer is written back. It is then
assigned to the record, that contains the
current position. Its content is not
changed.

modifying = the buffer is written back and the record
containing the current position is read.

Note that 'Doio' does not need to be used when reading
through the stream-like I/O routines. Its use is limited
to special applications.
*)

PROCEDURE FileNameChar (c: CHAR): CHAR;
(*
- Check the character c for legality in a filename.

in: c charater to check

out: OC for illegal characters and c otherwise;
lowercase letters are transformed into
uppercase letters.

Which characters are leagl in a filename depends on the
host operating system.
*)

TYPE
FileProc = PROCEDURE (VAR File);
(*- Procedure type to be used for internal file

operations

357

FileSystcm MODULA-2/86

A procedure of this type will be called for the following
functions (see TYPE 'Command'): setread, setwrite,
setmodify, setopen, doio, setpos, getpos, and length.
*)

DirectoryProc = PROCEDURE (VAR File, ARRAY OF CHAR):
(*- Procedure type to be used for operations on

entire files

A procedure of this type will be called for the following
functions (see TYPE 'Command'): create, close, lookup,
rename, and delete.
*)

PROCEDURE CreateMedium (mt: MediumType;
fproc: FileProc:
dproc: DirectoryProc:
VAR done: BOOLEAN):

(*
- Install the medium "mt" in the file system

in:

out

mt
fproc

dproc

done

medium type to install
procedure to handle internal file
operations
procedure to handle operations on an
entire file

TRUE if medium was installed successfully

Before accessing or creating a file on a medium, this
medium has to be announced to the file system by means
of the routine CreateMedium. FileSystem calls "fproc"
and "dproc" to perform operations on a file of this
medium. Up to 24 mediums can be announced.
*)

358

MODUlA-2/86 FileSystem

PROCEDURE RemoveMedium (mt: MediumType; VAR done: BOOLEAN);
(*
- Remove the medium "mt" from the file system

in: mt medium type to remove

out: done TRUE if medium was removed successfully

Attempts to access a file on this medium result in an
error (unknownmedium).
*)

-END FileSystem.

359

InOut

DEFINITION MODULE InOut;
(*

standard high-level formatted input/output,
allowing for redirection to/from files

From the book 'Programming in Modula-2' by Prof.
N. Wirth.
*)

FROM SYSTEM IMPORT WORD;
FROM FileSystem IMPORT File;

EXPORT QUALIFIED
EOL, Done, in, out, termCH,

MODULA-2/86

OpenInput, OpenOutput, CloseInput, CloseOutput,
Read, ReadString, ReadInt, ReadCard, ReadWrd,
Write, writeLn, WriteString, WriteInt, WriteCard,
Writeoct, WriteHex, writeWrd;

CONST
EOL = 36C;

VAR

360

(*- end-of-line character *)

Done: BOOLEAN;
(*
- set by several procedures; TRUE if the

operation was successful, FALSE otherwise.
*)

MODUlA-2/86 InOut

termCH: CHAR;
(*
- terminating character from ReadString, ReadInt,

ReadCard.
*)

in, out: File;
(*
- The currently open input and output files.

Use for exceptional cases only.
*)

PROCEDURE OpenInput(defext: ARRAY OF CHAR);
(*
- Accept a file name from the terminal and open it for

input (file variable 'in').

in: defext default filetype or 'extension'.

If the file name that is read doesn't end with '.', and it
doesn't have an extension, then 'defext' is appended to
the file name.

If OpenInput succeeds, Done = TRUE and subsequent input is
taken from the file until CloseInput is called.
*)

PROCEDURE OpenOutput(defext: ARRAY OF CHAR);
(*
- Accept a file name from the terminal and open it for

output (file variable 'out').

in: defext default filetype or 'extension'.

361

InOut MODUIA-2/86

If the file name that is read doesn't end with '.', and it
doesn't have an extension, then 'defext' is appended to
the file name.

If OpenOutput succeeds, Done = TRUE and subsequent output
is written to the file until CloseOutput is called.
*)

PROCEDURE Closelnput;
(*
- Close current input file and revert to terminal for

input.
*)

PROCEDURE CloseOutput;
(*
- Close current output file and revert to terminal for

output.
*)

PROCEDURE Read(VAR ch: CHAR);
(*
- Read the next character from the current input.

out: ch the character read; EOL for end-of-line

Done = TRUE unless the input is at end of file.
*)

PROCEDURE Readstring(VAR s: ARRAY OF CHAR);
(*
- Read a string from the current input.

362

MODULA-2/86

out: s the string that was read, excluding
the terminator character.

Leading blanks are accepted and thrown away, then
characters are read into's' until a blank or control
character is entered. ReadString truncates the input
string if it is too long for's'. The terminating
character is left in 'termCH'. If input is from the
terminal, BS and DEL are allowed for editing.
*)

PROCEDURE ReadInt(VAR x: INTEGER);
(*

InOut

- Read an INTEGER representation from the current input.

out: x the value read.

ReadInt is like Readstring, but the string is converted to
an INTEGER value if possible, using the syntax:
["+"1"-"] digit { digit }.
Done = TRUE if some conversion took place.
*)

PROCEDURE ReadCard(VAR x: CARDINAL);
(*
- Read an unsigned decimal number from the current input.

out: x the value read.

ReadCard is like ReadInt, but the syntax is:
digit { digit }.
*)

"d

363

InOut

PROCEDURE ReadWrd(VAR w: WORD);
(*
- Read a WORD value from the current input.

out: w the value read.

MODUIA-2/86

Done is TRUE if a WORD was read successfully. This
procedure cannot be used when reading from the terminal.
Note that the meaning of WORD is system dependent.
*)

PROCEDURE Write(ch: CHAR);
(*
- Write a character to the current output.

in: ch character to write.
*)

PROCEDURE WriteLn;
(*
- write an end-of-line sequence to the current output.
*)

PROCEDURE Writestring(s: ARRAY OF CHAR);
(*
- Write a string to the current output.

in:
*)

364

s string to write.

MODUIA-2/86 InOut

PROCEDURE WriteInt(x: INTEGER; n: CARDINAL);
(*
- write an integer in right-justified decimal format.

in: x
n

value to be output,
minimum field width.

The decimal representation of 'x' (including '_I if x is
negative) is output, using at least n characters (but
more if needed). Leading blanks are output if necessary.
*)

PROCEDURE WriteCard(x, n: CARDINAL);
(*
- Output a CARDINAL in decimal format.

in: x
n

value to be output,
minimum field width.

The decimal representation of the value 'x' is output,
using at least n characters (but more if needed).
Leading blanks are output if necessary.
*)

PROCEDURE WriteOct(x, n: CARDINAL);
(*
- output a CARDINAL in octal format.

[see writeCard above]
*)

365

InOot

PROCEDURE WriteHex(x, n: CARDINAL):
(*
- Output a CARDINAL in hexadecimal format.

in: x
n

value to be output,
minimum field width.

MODULA-2/86

Four uppercase hex digits are written, with leading
blanks if n > 4.
*)

PROCEDURE writewrd(w: WORD):
(*
- Output a WORD

in: w WORD value to be output.

Note that the meaning of WORD is system dependent, and
that a WORD cannot be written to the terminal.
*)

END InOut.

366

MODULA-2/86 Keyboard

DEFINITION MODULE Keyboard;
(*

Default driver for terminal input.
[Private module of the MODULA-2/86 system]

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, switzerland.
*)

EXPORT QUALIFIED Read, KeyPressed;

PROCEDURE Read (VAR ch: CHAR);
(*
- Read a character from the keyboard.

out: ch character read

If necessary, Read waits for a character to be entered.
Characters that have been entered are returned
immediately, with no echoing, editing or buffering.

- Ctrl-C terminates the current program
- ASCII.cr is transformed into ASCII.EOL
*)

367

Keyboard MODUIA-2/86

PROCEDURE KeyPressed (): BOOLEAN;
(*
- Test if a character is available from the keyboard.

out:

*)

END Keyboard.

368

returns TRUE if a character is available
for reading

MODULA-2/86

DEFINITION MODULE LogiMousei
(*

LOGITECH Mouse Driver Interface Extensions

Short description:

LogiMouse

The functions implemented in this module are a Modula-2
interface to the additional functions of LOGITECH's Mouse
Driver. For a detailed description of these functions,
please refer to LOGITECH MOUSE DRIVER PROGRAMMER'S
REFERENCE MANUAL.
Those functions which are common to the LOGITECH Mouse
Driver and to the Microsoft Mouse Driver are described in
the Mouse module. This module is to be considered an
extension of the Mouse module.

Microsoft is a registered trademark of
Microsoft Corporation

*)

FROM SYSTEM IMPORT
BYTEi

EXPORT QUALIFIED
IsLogiMouse,

DoubleChar,
GetVersion,

AccelType, AccelVector,
GetAcceleration, SetAcceleration,

SetGrid,

369

LogiMouse MODUIA-2/86

MouseMode,
GetMouseMode, SetMouseMode,

Accel, AccelPointer,
MoveStr, MoveStrPointer,
ButtonStr, ButtonStrPointer,
KybdParam, KybdConfigType,
GetKeyboardconfig, SetKeyboardConfig,

RS232Param,
GetRS232config, SetRs232Configi

VAR
IsLogiMouse: BOOLEANi

(* Flag that indicates, whether a LOGITECH mouse
driver is loaded or not. If its value is FALSE,
none of the following functions will work
properly

*)

TYPE
DoubleChar = ARRAY [0 .• 1] OF CHARi

PROCEDURE GetVersion(VAR version, release: DoubleChar)i
(* Logitech Mouse Driver System Call 28

*)

370

Input : AX = 28 System Call 28
BX <-- version
CX <-- release

Output: BX --> version code
CX --> release number

If the driver doesn't support this function, the
initial values of 'version' and 'release' are
returned. So an application can initialize them
first to spaces (or another code) in order to
detect if the driver supports this function or
not.

MODUI.A-2/86 LogiMouse

TYPE
AccelType = (defaultAcc,

userAcc,
noAcc

) ;

AccelVector = ARRAY [0 .. 127] OF BYTE;

PROCEDURE GetAcceleration(VAR accelType: AccelType;
VAR accel: AccelVector);

(* Logitech Mouse Driver system Call 29
Input : AX = 29 System Call 29

Output: BX --> acceleration type
ES:DX --> acceleration vector address

*)

PROCEDURE SetAcceleration(accelType: AccelType:
accel: AccelVector):

(* Logitech Mouse Driver System Call 30
Input AX = 30 System Call 30

BX <-- acceleration type
ES:DX <-- acceleration vector address

*)

PROCEDURE SetGrid(horizontalGrid,
verticalGrid: CARDINAL):

(* Logitech Mouse Driver System Call 31
Input : AX = 31 System Call 31

*)

BX <-- horizontal grid value
CX <-- vertical grid value

371

LogiMouse MODULA-2/86

TYPE
MouseMode = (mouseBased,

keyBased,
driverInactive

) ;

PROCEDURE GetMouseMode(VAR mousemode: MouseMode);
(* Logitech Mouse Driver System Call 32

Input : AX = 32 System Call 32

output: BX --> mouse mode
*)

PROCEDURE SetMouseMode(mousemode: MouseMode);
(* Logitech Mouse Driver System Call 33

Input : AX = 33 System Call 33
BX <-- mouse mode

*)

TYPE

372

KybdconfigType = (userConf,
defaultConf,
reservedConf,
scanCodeConf

) ;

Accel = ARRAY [0 .. 127] OF CHAR;
AccelPointer = POINTER TO Accel;

ButtonStr = ARRAY [0 .• 30] OF CHAR;
ButtonstrPointer = POINTER TO ButtonStr;

MODUIA-2/86 LogiMouse

MoveStr = ARRAY [0 .• 3] OF CHAR;
MoveStrPointer = POINTER TO MoveStr;

KybdParam = RECORD
LPButStrLength:
LPButStrPtr:
LRButStrLength:
LRButStrPtr:
MPButStrLength:
MPButStrPtr:
MRButStrLength:
MRButStrPtr:
RPButStrLength:
RPButStrPtr:
RRButStrLength:
RRButStrPtr:
UpMovStrLength:
UpMovStrPtr
DownMovStrLength:
DownMovStrPtr
LeftMovstrLength:
LeftMovStrPtr
RightMovStrLength:
RightMovStrPtr
xscale
yscale

END;

CARDINAL;
ButtonStrPointer;
CARDINAL;
ButtonstrPointer;
CARDINAL;
ButtonstrPointer;
CARDINAL;
ButtonstrPointer;
CARDINAL;
ButtonstrPointer;
CARDINAL;
ButtonstrPointer;
CARDINAL;
MovestrPointer;
CARDINAL;
MoveStrPointer;
CARDINAL;
MovestrPointer;
CARDINAL;
MoveStrPointer;
CARDINAL;
CARDINAL;

PROCEDURE GetKeyboardConfig(VAR param: KybdParam);
(* Logitech Mouse Driver System Call 34

Input : AX = 34 System Call 34
ES:DX <-- address of parameter

*)

373

LogiMouse MODUIA-2/86

PROCEDURE SetKeyboardConfig(config: KybdConfigType;
param: KybdParam);

(* Logitech Mouse Driver System Call 35
Input : AX = 35 System Call 35

BX <-- configuration type
ES:DX <-- address of parameter

*)

(* the following part is only valid for serial mice
using a RS232 interface

*)

TYPE
RS232Param = RECORD

BaudRate CARDINAL;
Protocol CARDINAL;
ReportRate CARDINAL;
RevisionNumber CARDINAL;
AutoBaud BOOLEAN;
dummy BOOLEAN;
(* for alignment reasons *)
CommunicationPort: CARDINAL;

END;

PROCEDURE GetRS232Config(VAR param: RS232Param);
(* Logitech Mouse Driver System Call 36

Input : AX = 36 System Call 36
ES:DX <-- address of parameter

*)

374

MODULA-2/86

PROCEDURE SetRS232Config(param: RS232Param);
(* Logitech Mouse Driver System Call 37

Input : AX = 37 System Call 37
ES:DX <-- address of parameter

*)

END LogiMouse.

LogiMouse

375

MathLibO

DEFINITION MODULE MathLibOi
(*

Real Math Functions

From the book 'programming in Modula-2' by Prof.
N. wirth.
*)

EXPORT QUALIFIED

MODUIA-2/86

sqrt, exp, In, sin, cos, arctan, real, entieri

PROCEDURE sqrt(x: REAL): REAL:
(*
- returns square root x

x must be positive.
*)

PROCEDURE exp(x: REAL): REALi
(*
- returns eAx where e = 2.71828 ••
*)

PROCEDURE In(x: REAL): REAL;
(*
- returns natural logarithm with base e = 2.71828 •• of x

x must be positive and not zero
*)

376

MODULA-2/86 MathLibO

PROCEDURE sin(x: REAL): REAL;
(*
- returns sin(x) where x is given in radians
*)

PROCEDURE cos(x: REAL): REAL;
(*
- returns cos (x) where x is given in radians
*)

PROCEDURE arctan(x: REAL): REAL;
(*
- returns arctan(x) in radians
*)

PROCEDURE real(x: INTEGER): REAL;
(*
- type conversion from INTEGER to REAL
*)

PROCEDURE entier(x: REAL): INTEGER;
(*
- returns the largest integer number less or equal x

Examples: entier(1.5) = 1; entier(-1.5) = -2;

If x c~nnot be represented in an INTEGER, the result is
undefined.
*)

END MathLibO.

377

Mouse

DEFINITION MODULE Mouse;
(*

Mouse Driver Interface

Short description:

MODULA-2/86

The functions implemented in this module provide a
Modula-2 interface for the LOGITECH Mouse Driver.
This driver interface is compatible with the Microsoft
Mouse Driver interface, so this module can be used with
all the compatible mouse drivers.
For detailed description of these functions, please
refer to your mouse documentation:

e.g. LOGITECH Mouse Driver Programmer's Reference Manual
Microsoft Mouse, Installation and Operation Manual

Microsoft is a registered trademark of
Microsoft Corporation

*)

EXPORT QUALIFIED
DriverInstalled,

Button, ButtonSet,

FlagReset,

ShowCursor, HideCursor,

GetPosBut,

SetcursorPos,

378

MODULA-2/86 Mouse

GetButPres, GetButRel,

SetHorizontalLimits, SetVerticalLimits,

GraphicCursor, SetGraphicCursor,
SetTextCursor,

ReadMotionCounters,

Event, EventSet, EventHandler, SetEventHandler,

LightPenOn, LightPenOff,

SetMickeysPerPixel,

ConditionalOff,

SetSpeedThreshold;

VAR
DriverInstalled: BOOLEAN;

TYPE

(* Flag that indicates, whether a mouse driver is
loaded or not. If its value is FALSE, none of
the following functions will work properly.

*)

Button = (LeftButton,
RightButton, (* not available on some mice *)
MiddleButton (* not available on some mice *)

) ;

ButtonSet = SET OF Button;

379

Mouse MODULA-2/86

PROCEDURE FlagReset(VAR mouseStatus: INTEGER;
VAR numberOfButtons:CARDINAL) ;

(* Microsoft Mouse Driver System Call 0
Input : AX = 0 System Call 0

output: AX --> mouse status
0 (FALSE): mouse hardware and software

not installed
-1 (TRUE) . mouse hardware and software .

installed
BX --> number of mouse buttons

*)

PROCEDURE ShowCursor;
(* Microsoft Mouse Driver System Call 1

Input : AX = 1 System Call 1
*)

PROCEDURE HideCursor;
(* Microsoft Mouse Driver System Call 2

Input : AX = 2 System Call 2
*)

PROCEDURE GetPosBut(VAR buttonStatus: ButtonSet;

380

VAR horizontal, vertical:INTEGER);
(* Microsoft Mouse Driver System Call 3

*)

Input : AX = 3 System Call 3

output: BX --> mouse button status
CX --> horizontal cursor position
DX --> vertical cursor position

MODULA-2/86 Mouse

PROCEDURE SetCursorPos(horizontal, vertical: INTEGER);
(* Microsoft Mouse Driver System Call 4

*)

Input : AX = 4 System Call 4
CX <-- horizontal mouse cursor position
DX <-- vertical mouse cursor position

PROCEDURE GetButPres(button: Button;
VAR buttonStatus: ButtonSet;
VAR buttonPressCount: CARDINAL;
VAR horizontal, vertical: INTEGER);

(* Microsoft Mouse Driver System Call 5
Input : AX = 5 System Call 5

*)

BX <-- button
Output: AX --> current button status

BX --> count of button presses since
last call to this function

CX --> horizontal cursor position at
last press

DX --> vertical cursor position at
last press

PROCEDURE GetButRel(button: Button;
VAR buttonStatus: ButtonSet;
VAR buttonReleaseCount: CARDINAL;
VAR horizontal ,vertical: INTEGER);

(* Microsoft Mouse Driver System Call 6
Input : AX = 6 System Call 6

*)

BX <-- button
output: AX --> current button status

BX --> count of button releases since
last call to this function

CX --> horizontal cursor position at
last press

DX --> vertical cursor position at
last press

381

Mouse MODUIA-2/86

PROCEDURE SetHorizontaILimits(minPos, maxPos: INTEGER);
(* Microsoft Mouse Driver System Call 7

*)

Input : AX = 7 System Call 7
CX <-- minimum horizontal position
DX <-- maximum horizontal position

PROCEDURE SetVerticaILimits(minPos, maxPos: INTEGER);
(* Microsoft Mouse Driver System Call 8

*)

Input : AX = 8 system Call 8
CX <-- minimum vertical position
DX <-- maximum vertical position

TYPE
GraphicCursor = RECORD

screenMask,
cursorMask: ARRAY [0 •• 15] OF BITSET;
hotX, hotY: [-16 •• 16]:

END;

(* The screenMask is first ANDed into the display,
then the cursorMask is XORed into the display.
The hot spot coordinates are relative to the
upper-left corner of the cursor image, and define
where the cursor actually 'points to'.

*)

PROCEDURE SetGraphicCursor(VAR cursor: GraphicCursor);
(* Microsoft Mouse Driver System Call 9

Input : AX = 9 System Call 9
BX <-- cursor hot spot (horizontal)
CX <-- cursor hot spot (vertical)
ES:DX <-- pointer to screen and cursor

masks
*)

382

MODUIA-2/86 Mouse

PROCEDURE SetTextCursor(selectedCursor,
screenMaskORscanStart,
cursorMaskORscanStop: CARDINAL);

(* Microsoft Mouse Driver System Call 10

*)

Input : AX = 10 System Call 10
BX <-- cursor select

0: Software text cursor
1: Hardware text cursor

CX <-- screen mask value or
scan line start

DX <-- cursor mask value or
scan line stop

For the software text cursor, the second two
parameters specify the screen and cursor masks.
The screen mask is first ANDed into the display,
then the cursor mask is XORed into the display.

For the hardware text cursor, the second two
parameters contain the line numbers of the first
and last scan line in the cursor to be shown on
the screen.

PROCEDURE ReadMotionCounters(VAR horizontal,
vertical:INTEGER);

(* Microsoft Mouse Driver System Call 11
Input : AX = 11 System Call 11

CX <-- horizontal count
DX <-- vertical count

*)

383

Mouse MODUIA-2/86

TYPE
Event = (Motion,

LeftDown,
LeftUp,
RightDown, (*
RightUp, (*
MiddleDown, (*
MiddleUp (*

) ;

EventSet = SET OF Event;

EventHandler =
PROCEDURE (EventSet,

ButtonSet,
INTEGER,
INTEGER

) ;

not available on some mice *)
not available on some mice *)
not available on some mice *)
not available on some mice *)

(* condition mask *)
(* button state *)
(* horizontal cursor pos *)
(* vertical cursor pos *)

PROCEDURE SetEventHandler(mask: EventSet;
handler: EventHandler);

(* Microsoft Mouse Driver System Call 12

*)

384

Input : AX = 12 System Call 12
CX <-- call mask
ES:DX <-- address of handler routine

Establish conditions and handler for mouse events.
After this, when an event occurs that is in the
mask, the handler is called with the event set that
actually happened, the current button status, and
the cursor x and y.

MODUIA-2/86 Mouse

PROCEDURE LightPenon;
(* Microsoft Mouse Driver system Call 13

Input : AX = 13 System Call 13
*)

PROCEDURE LightPenOff;
(* Microsoft Mouse Driver System Call 14

Input : AX = 14 System Call 14
*)

PROCEDURE SetMickeysPerPixel(horPix, verPix: CARDINAL);
(* Microsoft Mouse Driver System Call 15

*)

Input : AX = 15 System Call 15
CX <-- horizontal mickey/pixel ratio
DX <-- vertical mickey/pixel ratio

PROCEDURE ConditionaIOff(left, top,
right, bottom: INTEGER);

(* Microsoft Mouse Driver System Call 16

*)

Input : AX = 16 System Call 16
CX <-- left
DX <-- top
SI <-- right
DI <-- bottom

PROCEDURE SetSpeedThreshold(threshold: CARDINAL);
(* Microsoft Mouse Driver System Call 19

Input : AX = 19 System Call 19
DX <-- treshold in mickeys/second

*)

END Mouse.

385

NumberConversion MODUIA-2/86

DEFINITION MODULE NumberConversion;
(*

Conversion between numbers and strings

Conventions for the routines that convert a string to
a number:

- Leading blanks are skipped.
- A plus sign ('+') preceeding the number is always

accepted, a minus sign ('-') is only accepted when
converting to INTEGER.

- Blanks between the plus or minus sign and the number
are skipped.

- The last character in the string must belong to the
number to be converted. No trailing blanks or other
trailing charatcers are allowed.

- 'done' returns TRUE if the conversion is successful.

Conventions for the routines that convert a number to
a string:

- If the string is too small, the number is truncated.
- If less than 'width' digits are needed to represent

the number, leading blanks are added.
*)

EXPORT QUALIFIED
MaxBase, BASE,
StringToCard, StringToInt, StringToNum,
cardToString, IntTostring, NumToString;

CONST MaxBase = 16;

TYPE BASE = [2 .. MaxBase];

386

MODUIA-2/86 NumberConversion

PROCEDURE StringTocard(str: ARRAY OF CHAR;
VAR num: CARDINAL;
VAR done: BOOLEAN);

(*
- Convert a string to a CARDINAL number.

in:

out:

*)

str

num
done

string to convert

converted number
TRUE if successful conversion,
FALSE if number out of range,
or contents of string non numeric.

PROCEDURE stringToInt(str: ARRAY OF CHAR;
VAR num: INTEGER;
VAR done: BOOLEAN);

(*
- Convert a string to an INTEGER number.

in:

out:

*)

str

num
done

string to convert

converted number
TRUE if successful conversion,
FALSE if number out of range,
or contents of string non numeric.

PROCEDURE StringToNum(str: ARRAY OF CHAR;
base: BASE;

(*

VAR num: CARDINAL;
VAR done: BOOLEAN);

- Convert a string to a CARDINAL number.

387

NumberConversion MODULA-2/86

in: str string to convert
base the base of the number represented in

the string

out: num
done

*)

converted number
TRUE if successful conversion,
FALSE or number out of range,
or contents of string not within base.

PROCEDURE CardToString(num: CARDINAL;

(*

VAR str: ARRAY OF CHAR;
width: CARDINAL);

- Convert a CARDINAL number to a string.

in: num number to convert
width width of the returned string

out: str returned string representation of the number
*)

PROCEDURE IntToString(num: INTEGER;

(*

VAR str: ARRAY OF CHAR;
width: CARDINAL);

- Convert an INTEGER number to a string.

in: num number to convert
width width of the returned string

out: str returned string representation of the number
*)

388

MODULA-2/86 NumberConversion

PROCEDURE NumToString(num: CARDINAL;
base: BASE;

(*

VAR str: ARRAY OF CHAR;
width: CARDINAL);

- Convert a number to the string representation in the
specified base.

in: num
base
width

number to convert
the base of conversion
width of the returned string

out:
*)

str returned string representation of the number

END NumberConversion.

389

Options

DEFINITION MODULE Options;
(*

MODULA-2/86

Read a file specification, with options, from the
terminal

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. wirth at ETH Zurich, switzerland.
*)

EXPORT QUALIFIED
NameParts, NamePartSet, Termination,
Fil eNameAndopt ions , GetOption;

TYPE
Termination = (norm, empty, can, esc);
NameParts = (NameDrive, NamePath, NameName, NameExt):
NamePartSet = SET OF NameParts;

PROCEDURE FileNameAndoptions(default: ARRAY OF CHAR:

(*

VAR name:
VAR term:
acceptOption:
VAR readInName:

ARRAY OF CHAR;
Termination;
BOOLEAN;
NamePartSet) :

- Read file name and options from terminal.

in: default the file specification to use if
one is not entered,

acceptOption if TRUE, allow options to be entered,

out: name

390

term
readInName

the file specification,
how the read ended,
which parts of specification are
present.

MODUlA-2/86 Options

If the current drive is specified in the default name,
and if no drive is entered, then the actual name of the
current drive is returned with the name read.

The variable 'term' indicates the status of the input
termination:

norm
empty
can
esc

normally terminated
normally terminated, but name is empty
<can> is typed, input line cancelled
<esc> is typed, no file specified

Input is terminated by a <cr>, blank, <can>, or <esc>.
<bs> and are allowed while entering the file name.
*)

PROCEDURE GetOption(VAR optstr: ARRAY OF CHAR;
VAR length: CARDINAL);

(*
- Get another option from the last call to

FileNameAndOptions.

out: optstr
length

text of the option,
length of optstr.

Calls to GetOption return the options from the last call
to Fi leNameAndOpt ions , in the order they were entered.
When there are no more options, a length of 0 is returned.
*)

END Options.

391

Processes

DEFINITION MODULE Processes;
(*

MODULA-2/86

(pseudo-) concurrent programming with SEND/WAIT

From the book 'Programming in Modula-2' by Prof.
N. Wirth.
*)

EXPORT QUALIFIED
SIGNAL, SEND, WAIT,
StartProcess, Awaited, Init;

TYPE
SIGNAL;
(*
- SIGNAL's are the means of synchronization between

processes. Any variable of type SIGNAL must be
initialized explizitly by means of procedure
'Init' before using it with any other procedure
of this module.

*)

PROCEDURE StartProcess (P: PROC; n: CARDINAL);
(*
- Start up a new process.

in: P

n

top-level procedure that will execute in this
process.
number of bytes of workspace to be allocated
to it.

Allocates (from Storage) a workspace of n bytes, and
creates a process executing procedure P in that workspace.
Control is given to the new process.

392

MODULA-2/86 Processes

caution: The caller must ensure that the workspace size is
sufficient for P.

Errors: StartProcess may fail due to insufficient memory.
*)

PROCEDURE SEND (VAR s: SIGNAL);
(*
- Send a signal

in: s the signal to be sent.

out: s the signal with one less process waiting
for it.

If no process is waiting for s, SEND has precisely no
effect. Otherwise, some process which is waiting for s
is given control and allowed to continue from WAIT.
*)

PROCEDURE WAIT (VAR s: SIGNAL);
(*
- wait for some other process to send a signal.

in: s the signal to wait for.

The current process waits for the signal s. At some later
time, a SEND(s) by some other process can cause this
process to return from WAIT.

Errors: If all other processes are waiting, WAIT
terminates the program.
*)

393

Processes

PROCEDURE Awaited (s:SIGNAL): BOOLEAN;
(*

MODUIA-2/86

- Test whether any process is waiting for a signal.

in: s
out:

*)

the signal of interest.
TRUE if and only if at least one process is
waiting for s.

PROCEDURE Init (VAR s: SIGNAL);
(*
- Initialize a SIGNAL object.

in: s the signal to be initialized

out: s the initialized signal (ready to be used
with one of the procedures declared above)

An object of type SIGNAL must be initialized with this
procedure before it can be used with any of the other
operations. After initilization of S, Awaited(s) is FALSE.
*)

END Processes.

394

MODULA-2/86 ProgMessage

DEFINITION MODULE ProgMessage;
(*

write program status message to the terminal
*)

FROM System IMPORT Status;

EXPORT QUALIFIED Writestatus;

PROCEDURE writestatus (st: Status);
(*
- write a short description of a program status on the

terminal.

in: st a status, as returned by Program. Call

The message may be up to 32 characters long.
*)

END ProgMessage.

395

Program

DEFINITION MODULE Program;
(*

Subprogram loading and execution

Under MODULA-2/86, programs can be divided into
subprograms (we call them 'programs') which are
loaded upon request.

These programs are executed like procedures:

MODUlA-2/86

- They have only one entry-point (module code of
the program's main module).

- After termination, their data do not exist any
longer. The of the program also disappears, and
will be reloaded from disk upon the next activation.

- Programs may themselves activate other programs.

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, Switzerland.
*)

FROM System IMPORT Status;

EXPORT QUALIFIED
Call, GetErrorInfo;

PROCEDURE GetErrorInfo (VAR msg: ARRAY OF CHAR);
(*
- Obtain more information about a load error.

out: msg a string related to the last error.

396

MODULA·2/86 Program

After Call (below) has returned a status value of
'modulenotfound' and 'incompatiblemodules', GetErrorInfo
will return the name of the offending module. (length is
up to 24 characters). It returns an empty string in all
other cases.
*)

PROCEDURE Call (programName: ARRAY OF CHAR;
shared: BOOLEAN;

. VAR st: status);
(*
- Load and execute a (sub) program.

in: programName
shared

file specification for the program,
whether to share resources,

out: st terminating status of the subprogram.

The file whose name is given in 'programName' is opened
loaded, and started. There is no default device or file
type; these must be supplied by the caller. The file must
contain a linked, relocatable Modula-2 (sub) program.

The load address is defined by the default allocation
schema, in which programs are loaded on top of stack and
a new stack is created for execution of the new program.

If 'shared' = TRUE then all sharable resources allocated
by the called program are owned by the calling program
(or possibly the caller of the caller •••). Shared
resources are not released upon termination of the new
program.

397

Program MODULA-2/86

Upon termination of the program, its memory is freed and
the old stack is established. All the resources used by
a terminating program are released, if they are not shared
and if they have not been released explicitly by the
program (files, heap, etc).

Any value of 'st' other than 'normal' indicates an
abnormal termination of the subprogram. In some cases
GetErrorInfo (above) will provide additional details.

cautions:

In case of abnormal termination, Call does NOT print any
kind of error message.

Do not assign a procedure in the current program to a
procedure variable which could still exist after the
current program terminates (for example, a variable in a
shared resource or in the calling program). When the
current program terminates, all procedures in it must be
considered to cease to exist.

The loader in this module is not reentrant. This means
that interrupt processes must not load overlays!
*)

END Program.

398

MODULA-2/86 RealConversions

DEFINITION MODULE RealConversions;
(*

Conversion Module for floating numbers
*)

EXPORT QUALIFIED
RealToString, StringToReal;

PROCEDURE RealToString (r: REAL;

(*

digits, width : INTEGER;
VAR str:ARRAY OF CHAR;
VAR okay: BOOLEAN);

- Convert a REAL to right-justified fixed point or
exponent representation

in:

out:

r
digits

width

real number to be represented,
number of digits to the right of the
decimal point,
maximum width of representation,

string result, str
okay TRUE if the conversion is done properly,

FALSE otherwise.

If 'digits' < 0 then exponent notation is used,
otherwise fixed point notation is used. Note that a
leading ,-, is generated if r < 0, but never a '+'.

If the representation of 'r' uses fewer than 'width'
digits, blanks are added on the left. If the
representation will not fit in 'width' then 'str' is
returned empty and 'okay' is set to FALSE.

399

RealConversions MODUlA-2/86

The minimum required 'width' is:

*)

- if 'digits' < 0: width >- ABS(digits) + 8

- if 'digits' >- 0: width >- ABS(digits) + 2 + before,
where 'before' is the number of digits before the
decimal point of 'r' in fixed point notation (e.g.
r - 123.456 --> before - 3, r - 0.012 --> before - 1)

PROCEDURE stringToReal (str:ARRAY OF CHAR;
VAR r:REAL;
VAR okay:BOOLEAN);

(*
- Convert ARRAY OF CHAR to REAL representation.

in: str string to be represented,

out: r
okay

REAL result,
TRUE if the conversion is done properly,
FALSE otherwise.

Leading blanks are skipped, control code characters and
space are considered as legal terminators. The syntax for
a legal real representation in 'str' is:

real number
fixedpointnumber
exponent
sign
digit

- fixedpointnumber [exponent].
- [sign] {digit} ['.' {digit}].
- ('e' 1 'E') [sign] digit {digit}.
- ,+, 1 '-'.
- '0'1'1'1'2'1'3'1'4'1'5'1'6'1'7'1

'8' 1 '9' .

The following numbers are legal representations of one
hundred: 100, 10E1, 100EO, 1000E-1, E2, +E2, 1E2, +lE2,
+lE+2, 1E+2 •

400

MODUlA-2/86 Real Conversions

At most 15 digits are significant, leading zeros not
counting. The range of representable real numbers is:

1.0E-307 <= ABS(r) < 1.0E308
*)

END RealConversions.

401

ReallnOut

DEFINITION MODULE RealInOuti
(*

Terminal input/output of REAL values

MODUIA-2/86

The implementation of this module uses the procedures
'ReadString' and 'WriteString' of module 'InOut' for
reading and writing of REAL values. Therefore,
redirection of i/o through 'InOut' applies, too.

From the book 'Programming in Modula-2' by Prof.
N. wirth.
*)

EXPORT QUALIFIED
ReadReal, WriteReal, writeRealOct, Donei

VAR Done: BOOLEANi

PROCEDURE ReadReal (VAR x: REAL)i
(*
- Read a REAL from the terminal.

out: x the number read.

The range of representable valid real numbers is:
1.0E-307 <= ABS(r) < 1.0E308

The syntax accepted for input is:

402

MODULA.-2/86 RealInOut

realnumber
fixedpointnumber
exponent
sign
digit

= fixedpointnumber [exponent].
= [sign] {digit} ['.' {digit}].
= ('e' I 'E') [sign] digit {digit}.
= '+' I I_I.

= '0'1'1'1'2'1'3'1'4'1'5'1'6'1'7'1
'8'1'9'.

The following numbers are legal representations of one
hundred: 100, 10E1, 100EO, 1000E-1, E2, +E2, 1E2, +lE2,
+lE+2, 1E+2 •

At most 15 digits are significant, leading zeros not
counting. Input terminates a control character or space.
DEL or BS is used for backspacing

The variable 'Done' indicates whether a valid number was
read.
*)

PROCEDURE WriteReal (x: REAL; n: CARDINAL);
(*
- write a REAL to the terminal, right-justified.

in: x
n

number to write,
minimum field width.

If fewer than n characters are needed to represent x,
leading blanks are output. At least 10 characters are
needed to write any REAL number.
*)

403

ReallnOut

PROCEDURE WriteRealOct (x: REAL);
(*

MODULA-2/86

- write a REAL to terminal, as four words in octal form

in: x number to write,
*)

END ReallnOut.

404

MODULA-2/86 RS232Code

DEFINITION MODULE RS232Code;
(*

High-speed interrupt-driven input/output via the
RS-232 asynchronous serial port

This module provides interrupt-driven I/O via the serial
port, but the Interrupt Service Routine is implemented
using in-line code (as opposed to IOTRANSFER). Charcters
received are stored in a buffer of lOOH characters.

This approach is NOT portable to other Modula-2
implementations, but it allows for treatment of interrupts
with a high frequency.

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, switzerland.
*)

EXPORT QUALIFIED
Init, StartReading, StopReading,
BusyRead, Read, Write;

PROCEDURE Init (baudRate: CARDINAL;
stopBits: CARDINAL;
parityBit: BOOLEAN;
evenParity: BOOLEAN;
nbrOfBits: CARDINAL;·
VAR result: BOOLEAN);

(*
- Initialize the serial port.

405

RS232Code

in:

out:

baudRate
stopBits
parityBit
evenParity

nbrOfBits

result

MODULA-2/86

transmission speed,
number of stop bits (usually 1 or 2),
if TRUE, parity is used, otherwise not,
if parity is used, this indicates
even/odd,
number of data bits (usually 7 or 8),

TRUE if the initialization was
C"!omn 1 ""'h:>r'! . - --~-L- - - --- ..

The legal values for the parameters depend on the
implementation (e.g. the range of supported baud rates).
*)

PROCEDURE StartReading;
(*
- Allow characters to be received from the serial port.

This procedure initializes the communication controller to
generate interrupts upon reception of a character. It also
unmasks the corresponding interrupt level in the interrupt
controller.
*)

PROCEDURE stopReading;
(*
- Disable receiving from the serial port.

A call to this procedure disables the communication
controller from generating interrupts. In addition it
terminates the coroutine which listens to the line. The
old interrupt vector as well as the old state of the
interrupt controller (mask) is restored.
*)

406

MODULA-2/86 RS232Code

PROCEDURE BusyRead (VAR ch: CHAR; VAR received: BOOLEAN);
(*
- Read a character from serial port, if one has been

received.

out: ch
received

the character received, if any,
TRUE if a character was received.

If no character has been received, then ch = OC, and
received = FALSE.
*)

PROCEDURE Read (VAR ch: CHAR);
(*
- Read a character from the serial port.

out: ch the character received.

As opposed to BusyRead, Read waits for a character to
arrive.
*)

PROCEDURE write (ch: CHAR);
(*
- write a character to the serial port.

in: ch character to send.

Note: no interpretation of characters is made.
*)

END RS232Code.

407

RS232Int

DEFINITION MODULE RS232Int;
(*

Interrupt-driven input/output via the RS-232
asynchronous serial port

MODUIA-2/86

Interrupts are treated with the standard procedure
IOTRANSFER. Charcters received are stored in a buffer of
Jlnnu ,..."' ____ -1- __ _
"'Z V VI..L v.&.t.u.. u,¥ '-~.L 10:) •

This module initializes the serial port as follows:
baudRate = 1200, stopBits = 1,
parityBit = FALSE, evenParity = don't care,
nbrOfBits = 8

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH zurich, switzerland.
*)

EXPORT QUALIFIED
Init, StartReading, StopReading,
BusyRead, Read, write;

PROCEDURE Init (baudRate: CARDINAL;
stopBits: CARDINAL;
parityBit: BOOLEAN;
evenParity: BOOLEAN;
nbrOfBits: CARDINAL;
VAR result: BOOLEAN);

(*
- Initialize the serial port.

408

MODULA·2/86

in:

out:

baudRate
stopBits
parityBit
evenParity

nbrOfBits

result

RS232Int

transmission speed,
number of stop bits (usually 1 or 2),
if TRUE, parity is used, otherwise not,
if parity is used, this indicates
even/odd,
number of data bits (usually 7 or 8),

TRUE if the initialization was completed.

The legal values for the parameters depend on the
implementation (e.g. the range of supported baud rates).
*)

PROCEDURE startReading;
(*
- Allow characters to be received from the serial port.

This procedure initializes the communication controller to
generate interrupts upon reception of a character. It also
unmasks the corresponding interrupt level in the interrupt
controller.
*)

PROCEDURE stopReadingi
(*
- Disable receiving from the serial port.

A call to this procedure disables the communication
controller from generating interrupts. In addition it
terminates the coroutine which listens to the line. The
old interrupt vector as well as the old state of the
interrupt controller (mask) is restored.
*)

409

RS232Int MODULA-2/86

PROCEDURE BusyRead (VAR ch: CHAR; VAR received: BOOLEAN);
(*
- Read a character from serial port, if one has been

received.

out: ch
received

the character received, if any,
TRUE if a character was received.

If no character has
received = FALSE.
*)

PROCEDURE Read (VAR ch: CHAR);
(*

then eh = OC, and

- Read a character from the serial port.

out: ch the character received.

As opposed to BusyRead, Read waits for a character to
arrive.
*)

PROCEDURE write (ch: CHAR);
(*
- write a character to the serial port.

in: ch character to send.

Note: no interpretation of characters is made.
*)

END RS232Int.

410

MODULA-2/86 RS232Polling

DEFINITION MODULE RS232Polling;
(*

Polled input/output via the RS-232 asynchronous
serial port

since this module does not use interrupts, it is the
responsibility of the programmer to poll (by calling
'Read' or 'BusyRead') frequently enough to ensure that
no characters are lost.

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. wirth at ETH Zurich, switzerland.
*)

EXPORT QUALIFIED
Init, BusyRead, Read, write;

PROCEDURE Init (baudRate: CARDINAL;
stopBits: CARDINAL;
parityBit: BOOLEAN;
evenParity: BOOLEAN;
nbrOfBits: CARDINAL;
VAR result: BOOLEAN);

(*
- Initialize the serial port.

in: transmission speed, baudRate
stopBits
parityBit
evenParity

number of stop bits (usually 1 or 2),
if TRUE, parity is used, otherwise not,
if parity is used,this indicates
even/odd,

nbrOfBits

out: result

number of data bits (usually 7 or 8),

TRUE if the initialization was
completed.

411

RS232Polling MODUIA-2/86

The legal values for the parameters depend on the
implementation (e.g. the range of supported baud rates).
*)

PROCEDURE BusyRead (VAR ch: CHAR; VAR received: BOOLEAN);
(*
- Read a character from serial port, if one has been

received.

out: ch
received

the character received, if any,
TRUE if a character was received.

If no character has been received, then ch = OC, and
received = FALSE.
*)

PROCEDURE Read (VAR ch: CHAR);
(*
- Read a character from the serial port.

out: ch the character received.

As opposed to BusyRead, Read waits for a character to
arrive.
*)

PROCEDURE write (ch: CHAR);
(*
- write a character to the serial port.

412

MODULA-2/86

in: ch character to send.

Note: no interpretation of characters is made.
*)

END RS232Polling.

RS232Polling

413

Storage

DEFINITION MODULE storage;
(*

standard dynamic storage management

MODULA-2/86

storage management for dynamic variables. Calls to the
Modula-2 standard procedures NEW and DISPOSE are
translated into calls to ALLOCATE and DEALLOCATE. The
standard way to provide these two procedures is to
import them from this module 'Storage'.

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, switzerland.
*)

FROM SYSTEM IMPORT ADDRESS;

EXPORT QUALIFIED
ALLOCATE, DEALLOCATE, Available,
InstallHeap, RemoveHeap;

PROCEDURE ALLOCATE (VAR a: ADDRESS; size: CARDINAL);
(*
- Allocate some dynamic storage (contiguous memory area).

in: size number of bytes to allocate,

out: a ADDRESS of allocated storage.

The actual number of bytes allocated may be slightly
greater than 'size', due to administrative overhead.

414

MODULA-2/86

Errors: If not enough space is available, or when
attempting to allocate more than 65520 (OFFFOH)

Storage

bytes at once, then the calling program is terminated
with the status 'heapovf'.
*)

-
PROCEDURE DEALLOCATE (VAR a: ADDRESS; size: CARDINAL);
(*
- Release some dynamic storage (contiguous memory area).

in:

out:

a
size

a

ADDRESS of the area to release,
number of bytes to be released,

set to NIL.

The storage area released is made available for subsequent
calls to ALLOCATE.
*)

PROCEDURE Available (size: CARDINAL) : BOOLEAN;
(*
- Test whether some number of bytes could be allocated.

in: size number of bytes

out: TRUE if ALLOCATE (p, size) would succeed.
*)

415

Storage

PROCEDURE InstallHeap;
(*
- Used internally by the loader
*)

PROCEDURE RemoveHeap;
(*

internally by the
*)

END storage.

416

... - - -, - -

.LUClUer

MODUlA-2/86

MODULA-2/86

DEFINITION MODULE Strings;
(*

Variable-length character strings handler.

Strings

NOTE: For most of these string handling procedures, there
is the possibility of the user not providing a variable
large enough to contain the result of a string operation.
Should this possibility arise, truncation may result, as
there will be no other error notification. The
implementation of this module does not cause a range
error, instead, it truncates silently.

String variables have the following characteristics:
- They are of type ARRAY OF CHAR.

*)

- The array lower bound must be zero.
- The length of the string is the size of the string

variable, unless a null character (DC) occurs in
the string to indicate end of string.

EXPORT QUALIFIED
Assign, Insert, Delete,
Pos, Copy, Concat, Length, CompareStr;

PROCEDURE Assign (VAR source, dest: ARRAY OF CHAR);
(*
- Assign the contents of string variable source into

string variable dest

in: source

out: dest
*)

417

Strings

PROCEDURE Insert (substr: ARRAY OF CHAR;
VAR str: ARRAY OF CHAR;
inx: CARDINAL);

(*

MODUIA-2/86

- Insert the string substr into str,starting at str[inx].

in: substr
str
inx

out: str

If inx is equal or greater than Length(str) then substr
is appended to end of dest.
*)

PROCEDURE Delete (VAR str: ARRAY OF CHAR;
inx: CARDINAL;
len: CARDINAL);

(*
- Delete len characters from str, starting at str[inx].

in:str
inx
len

out: str

If inx >= Length(str) then nothing happens. If there are
not len characters to delete, characters to the end of
string are deleted.
*)

418

MODULA-2/86 Strings

PROCEDURE Pos (substr, str: ARRAY OF CHAR): CARDINAL;
(*
- Return the index into str of the first occurrence of

the substr.

in: substr
str

Pos returns a value greater then HIGH(str) if no
occurrence of the substring is found
*)

PROCEDURE Copy (str: ARRAY OF CHARi
inx: CARDINAL;
len: CARDINAL;
VAR result: ARRAY OF CHAR);

(*
- Copy at most len characters from str into result.

in: str source string,
inx starting position in 'str',
len maximum number of characters to copy,

out: result copied string
*)

PROCEDURE Concat (sl, s2: ARRAY OF CHAR;
VAR result: ARRAY OF CHAR)i

(*
- Concatenate two strings.

in: sl
s2

left string,
right string,

419

Strings MODUIA-2/86

out: result receives left string followed by right
string.

*)

PROCEDURE Length (VAR str: ARRAY OF CHAR): CARDINAL;
(*
- Return the number of characters in a string.

in: str
*)

PROCEDURE Comparestr (sl, s2: ARRAY OF CHAR): INTEGER;
(*
- Compare two strings.

in: sl
s2

Returns an integer value indicating the comparison result:
-1 if sl is less than s2;

o if sl equals s2;
1, if s1 is greater than s2

*)

END strings.

420

MODULA-2/86

DEFINITION MODULE SYSTEM;
(*

SYSTEM

The interface of the standard module SYSTEM cannot be
described completely with a regular Modula-2 definition
module. Module SYSTEM offers some features which expand
the language itself. Therefore, the following description
does not comply everywhere with the syntactic and semantic
rules of Modula-2, and this pseudo definition module
cannot be compiled. This description just intendeds to
give a brief overview of the capabilities provided by
the standard module SYSTEM in MODULA-2j86.

For additional information please refer to the
corresponding section of the MODULA-2j86 USER'S MANUAL and
the corresponding sections of the Modula-2 language report
in 'Programming in Modula-2'.

*)

EXPORT QUALIFIED
AX, BX, CX, DX, SI, DI, ES, DS, CS, SS, BP, SP,
RTSVECTOR,
BYTE, WORD, ADDRESS, PROCESS,
ADR, SIZE, TSIZE,
NEWPROCESS, TRANSFER, IOTRANSFER, LISTEN,
GETREG, SETREG,
CODE, SWI, ENABLE, DISABLE,
INBYTE, OUTBYTE, INWORD, OUTWORD,
DOSCALL (* DOS only *), CPMCALL (* CPjM-86 only *);

421

SYSTEM MODULA-2/86

CONST

AX, CX, DX, BX, SP, BP, SI, DI, ES, CS, SS, DSi
RTSVECTORi
(*
Programs should refer to these registers and to the
RTS interrupt vector through these constants only.
The values listed below should never be used directly
in any program. The values used by the compiler are
listed here for documentation purposes only:

AX = Oi CX = 1i DX = 2i BX = 3i
SP = 4i BP = 5i SI = 6i DI = 7i
ES = 8i CS = 9; SS = 10; DS = 11;

RTSVECTOR = 228i
*)

TYPE

422

BYTE;
WORDi
(*
Assignements and passing as parameters are the only
operations possible with objects of type BYTE or WORD.

*)

ADDRESS = POINTER TO WORDi
ADDRESS = RECORD

(*

OFFSET, SEGMENT: CARDINALi
ENDi

Type ADDRESS can be used as if these two different
type declarations were existing at the same time.

*)

MODULA-2/86

PROCESS;
(*
Type PROCESS is used for process handling.

*)

PROCEDURE ADR (AnyVariable): ADDRESS;
(*
Return the ADDRESS of the variable.

*)

PROCEDURE SIZE (AnyVariable): CARDINAL;
(*
Return the size of the variable.

*)

PROCEDURE TSIZE (AnyType): CARDINAL;
PROCEDURE TSIZE (AnyVariantRecordType,

SYSTEM

TaglConst, Tag2Const, ..•): CARDINAL;
(*
Return the size of a variable of this type.

*)

PROCEDURE NEWPROCESS (ProcessBody: PROC;
WorkspaceAddr: ADDRESS;
WorkspaceSize: CARDINAL;
VAR Process: PROCESS);

(*
Create a new PROCESS.

*)

PROCEDURE TRANSFER (VAR FromProcess: PROCESS;
VAR ToProcess: PROCESS);

(*
Transfer control from one PROCESS to another PROCESS.

*)

423

SYSTEM MODULA-2/86

424

PROCEDURE IOTRANSFER (VAR InteruptHandler: PROCESS;

(*

VAR InterruptedProcess: PROCESS;
InterruptVectorNumber: CARDINAL);

Set up an interrupt PROCESS and transfer control.
*)

PROCEDURE LISTEN; ,.
\ ..
Lower the priority temporarily.

*)

PROCEDURE GETREG (Register: CARDINAL;
VAR Value: BYTEorWORD);

(*
Get a value from a register.

*)

PROCEDURE SETREG (Register: CARDINAL;
Value: BYTEorWORD);

(*
Put a value into a register.

*)

PROCEDURE CODE (CodelConst, Code2Const, ••• : BYTE);
(*
Insert (binary) machine instructions into the code.

*)

PROCEDURE SWI (InterruptVectorNumber: CARDINAL);
(*
Issue a software interrupt.

*)

MODUlA-2/86 SYSTEM

PROCEDURE ENABLE;
PROCEDURE DISABLE;
(*
Enable or disable interrupts.

*)

PROCEDURE INBYTE (Port: CARDINAL;
VAR Value: BYTEorWORD)i

PROCEDURE OUTBYTE (Port: CADINALi
Value: BYTEorWORD)i

(*
Get or put a byte value from or to an I/O port.

*)

PROCEDURE INWORD (Port: CARDINALi VAR Value: WORD)i
PROCEDURE OUTWORD (Port: CARDINALi Value: WORD) i
(*
Get or put a word value from or to an I/O port.

*)

PROCEDURE DOSCALL (FunctionNumber: CARDINALi •..)i
(*
DOS only: Activate a DOS function.

*)

PROCEDURE CPMCALL (FunctionNumber: CARDINALi •••)i
(*
CP/M-86 only: Activate a CP/M-86 function.

*)

END SYSTEM.

425

System MODULA-2/86

DEFINITION MODULE System;
(*

Additional system dependent facilities

This module may be seen as an extension of the standard
module SYSTEM.

"'_:"' ... _...:1 .t::' ___ ~ _ T":''':~l... '1.6_..:1 ... '_ """ _ ... _"- __ ...:1 ____ , ___ -:1 1-. __ .1-'-_
U"" V ""\.4 V!" '-U"" .LJ ,-u .·.vuu ... a- &. o:>::t 0:> "Clli UC v C ... Uf:JCU J.J:t 1...l.lC

group of Prof. N. wirth at ETH Zurich, Switzerland.
*)

FROM SYSTEM IMPORT ADDRESS, PROCESS;

EXPORT QUALIFIED

426

Status, Terminate,
ProcessDescriptor, ProcessPtr, curProcess,
TermProcedure, CallTermProc,
InitProcedure, CallInitProc,

(* The following constants define the processor's
registers. These constants are exported here for
reasons of compatibility with older versions and
they should not be used any more. Instead, the
corresponding constants (AX, BX, etc) from the
standard module SYSTEM should be used.

*)
RegAX, RegBX, RegCX, RegDX, RegSI, RegDI,
RegES, RegDS, RegCS, RegSS, RegBP, RegSP;

MODULA·2/86 System

TYPE
status =

(*

(normal, warned,
(*

*)

considered non-fatal; no dump is produced for
the first two cases

stopped, asserted, halted,
caseerr, stackovf, heapovf,
functionerr, addressoverflow,
realoverflow, realunderflow, badoperand,
cardinaloverflow, integeroverflow,
rangeerr, dividebyzero,
coroutineend,
loaderr, callerr, programnotfound,
modulenotfound, incompatiblemodule,
filestructureerr, illegalinstr,
RTSfunctionerr, interrupterr) ;

- This type defines the possible values for a program's
status. The meaning of these values can be printed to
the terminal by means of ProgMessage.WriteStatus •

*)

PROCEDURE Terminate (st: status) ;
(*
- Terminate the current (sub) program.

in: st terminating status.

If the value of 'st' is different from 'normal' or
'warned', memory is dumped on the disk file MEMORY.PMD,
which can be used for subsequent debugging. The value of
'st' will be returned to the caller of the terminating
program by means of the parameter 'st' of the procedure
'Program.Call'.

427

System

This procedure never returns to the caller.
*)

(*$A+*)

MODULA-2/86

(* Make sure, that the following declaration is compiled
with alignment, in order to allocate a dummy byte
after the field 'status'.

*)
TYPE

ProcessDescriptor =
RECORD

428

AX, CX,
SP, BP,
DS, SS,
IP
flags
(*

DX, BX
SI, DI
ES, CS

CARDINAL;
CARDINAL;
CARDINAL;
CARDINAL;
BITSET;

- all the above fields denote the values of the
processor's registers for the process

*)
status
(*- status of
programId
(*

status;
the process *)

: CARDINAL;

- identifier of the current program, incremented
for every subprogram layer

*)
auxId
(*- currently
sharedId
(*

CARDINAL;
not used *)

CARDINAL;

MODULA-i/86 System

- program identifier of the last subprogram layer
which was called with parameter 'shared' = FALSE
(see module 'Program')

*)
fatherProcess
(*

: PROCESS;

- process which created this process (by means
of NEWPROCESS)

*)
unused
(*- currently not
interruptMask
(*

CARDINAL;
used *)
BITSET;

- priority mask effective while this process is
running. The mask register of the interrupt
controller is set to the logical OR of this
priority mask and of the device mask kept by
the MODULA-2/86 run-time support.

*)
debugStatus : CARDINAL;
(*- auxiliary status field used for the debugger *)
progEndStack : ADDRESS;
(*
- value of (SS,SP), used by the system for

aborting a program.
*)
intvector
(*

: CARDINAL;

- interrupt vector used by this process if it is
an interrupt handler.

*)
oldISR
(*

: ADDRESS;

- old value of interrupt vector if this process
is an interrupt handler.

*)
interruptedProcess : ADDRESS;
(*- used by IOTRANSFER *)

429

System ~()I>1JlJ\-2/86

h~apBase ADDRESS;
(*
- address of heap base, with the header of the

free-list.
*)
heapTop : ADDRESS;
(*
- address of first free byte after the last

allocated area on the heap.
~\
~J

modTable : ADDRESS;
(*
- points to the last element in a list with

module descriptors.
*)

END:
(*$A=*)
(* reset alignment option *)

TYPE
ProcessPtr = POINTER TO POINTER TO ProcessDescriptor;

VAR

430

curProcess: ProcessPtr;
(*

Points to a pointer, which in turn points at any
moment to the workspace of the current process's.
This variable is 'read-only' and should not be used
in application programs.

WARNING: Improper use of this variable may cause
unpredictable behaviour of the system.
*)

MODULA-2/86

PROCEDURE TermProcedure (p: PROC);
(*
- Declare a termination routine.

in: p termination procedure.

System

The procedure 'pi will be called upon termination of the
current program or subprogram. Typical use is for drivers,
which have to release resources used by the terminating
program. Up to 20 termination routines can be installed.
*)

PROCEDURE CallTermProc;
(*
- Call all termination procedures for the current

program.

Calls all procedures declared with 'TermProcedure' in the
current program. 'CaIITermProc' is automatically called
at the termination of a program or subprogram.
*)

PROCEDURE InitProcedure (p: PROC);
(*
- Declare an initialization routine.

in: p initialization procedure.

Analoguous to 'TermProcedure' , but for routines that have
to be called before execution of a program.
Up to 20 initialization routines can be installed.
*)

431

System MODULA-2/86

PROCEDURE CallInitProci
(*
- Call all initialization procedures for the current

program.

Analoguous to 'CaIITermProc'.
*)

CONST
RegAX = 0;
RegSP = 4;
RegES = 8;
(*

RegCX
RegBP
RegCS

= 1; RegDX = 2; RegBX =
= 5; RegSI = 6; RegDI =
= 9; RegSS = 10; RegDS =

3 ;
7;

11;

- These constants define the processor's registers.

*)

They are declared here for reasons of compatibility
with older versions and they should not be used any
more. Instead, the corresponding constants (AX, BX,
etc) from the pseudo-module SYSTEM should be used.
They may be used as parameters for the standard
procedures SETREG and GETREG (except that SP, BP,
CS, SS may not be used with SETREG).

END System.

432

MODUlA-2/86 Termbase

DEFINITION MODULE Termbase;
(*

Terminal input/output with redirection hooks
[Private module of the MODULA-2/86 system]

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. wirth at ETH Zurich, switzerland.
*)

EXPORT QUALIFIED
ReadProcedure, StatusProcedure, WriteProcedure,
AssignRead, AssignWrite, UnAssignRead, UnAssignWrite,
Read, KeyPressed, Write;

TYPE
ReadProcedure = PROCEDURE (VAR CHAR) :
(*
- To assign a private read procedure (for redirection

of input) a procedure of type 'ReadProcedure' must
be provided. This procedure returns a character
from the input device. It waits until a character
hes been entered.

*)

TYPE
StatusProcedure = PROCEDURE (): BOOLEAN;
(*
- To assign a private status-procedure (for redirection

of input) a procedure of type 'StatusProcedure' must
be provided. This procedure returns TRUE, if a
character is available to read, FALSE otherwise.

*)

433

Termbase MODULA-2/86

TYPE
writeProcedure = PROCEDURE (CHAR);
(*
- To assign a private write procedure (for redirection

of output) a procedure of type 'WriteProcedure' must
be provided. This is typically used to redirect
output to a file or to the screen and a file (log
file). Special interpretation of characters sent to
the screen can be performed in such a private driver
procedure.

*)

PROCEDURE AssignRead (rp: ReadProcedure;
sp: StatusProcedure;

VAR done: BOOLEAN);
(*
- Install read and status routines for terminal input.

in: rp read-a-character procedure,
sp is-character-available function,

out: done TRUE if the installation was done.

Initially the corresponding procedures of 'Keyboard' are
installed.

Subsequent assignments will be valid until the next
'UnAssignRead' is executed or until the (sub-)program
which has installed the procedures terminates. Upon
termination of a program, the read and status procedures
allocated by that program are removed. Read procedures
are non-sharable resources (see module 'Program').

434

MODULA·2/86 Termbase

The assignments are implemented in a stack manner. When a
read procedure is removed, the previously valid procedure
becomes valid again. Up to six levels of re-assignment are
allowed. Done = FALSE if this depth is exceeded.
During execution of a read or status procedure, this
assignments-stack is decremented, which allows an
installed routine to call recursively Terminal.Read
and/or Terminal.KeyPressed to activate the previously
installed routine. At the lowest level however, the
stack is not decremented.
*)

PROCEDURE AssignWrite (wp: WriteProcedure;
VAR done: BOOLEAN);

(*
- Install write routine for terminal output.

in: wp character output procedure,

out: done set TRUE if the installation was done.

[See AssignRead above.]
Initially the procedure Display.Write is assigned.
*)

PROCEDURE UnAssignRead (VAR done: BOOLEAN);
(*
- Undo the last AssignRead by the current program.

out: done set TRUE if there was something to unassign.

The previously valid procedures become active again.
*)

435

Termbase

PROCEDURE UnAssignWrite (VAR done: BOOLEAN);
(*

MODULA-2/86

- Undo the last AssignWrite by the current program.

out: done set TRUE if there was something to unassign.

The previously valid procedure becomes active again.
*)

PROCEDURE Read (VAR ch: CHAR);
(*
- Read a character using the current input procedure.

out: ch the character read.

Uses the current read-procedure, as assigned by
AssignRead.
*)

PROCEDURE KeyPressed (): BOOLEAN;
(*
- Test if a character is available from the current in}?ut.

Uses the current status-procedure, as assigned by
AssignRead.
*)

436

MODULA-2/86

PROCEDURE write (ch: CHAR);
(*
- write a character to the current output.

in: ch character to write.

Uses the current write-procedure as assigned by
AssignWrite.
*)

END Termbase.

Termbase

437

Terminal

DEFINITION MODULE Terminal;
(*

Terminal Input/Output

MODULA-2/86

This module uses the read and write procedures from
module TermBase, which allows to redirect the i/o.

Derived from the Lilith Modula-2 system developed by the
group of Prof. N. Wirth at ETH Zurich, switzerland.
*)

EXPORT QUALIFIED
Read, KeyPressed, ReadAgain, Readstring,
Write, Writestring, WriteLn;

PROCEDURE Read (VAR ch: CHAR);
(*
- Read a character from the terminal.

out: ch character that was read.

The character is not echoed.
The character ASCII.cr is transformed into ASCII.EOL.
*)

PROCEDURE KeyPressed (): BOOLEAN;
(*
- Test if a character is available to Read from terminal.
*)

438

MODULA-2/86 Terminal

PROCEDURE ReadAgain;
(*
- Undo the last read: Make the last character be re-read.
*)

PROCEDURE ReadString{VAR string: ARRAY OF CHAR);
(*
- Read (with echo) a line from the terminal.

out: string receives the text of the line

Characters are accepted (and echoed) from the keyboard
until <cr> is entered. The <cr> is not returned or
echoed. and <bs> can be used for editing.
Tabs may be entered, but are expanded into blanks
immediately. No other control characters may be entered.
*)

PROCEDURE write (ch: CHAR);
(*
- write a character to the terminal.

in: ch character to be written.

If terminal output has not been redirected, the following
interpretations are made:

*)

ASCII.EOL
ASCII. ff
ASCII.del
ASCII.bs
ASCII.cr
ASCII.lf

(36C)
(l4C)

(l77C)
(lOC)
(lSC)
(l2C)

= go to beginning of next line
= clear screen and set cursor home
= erase the last character on the left
= move 1 character to the left
= go to beginning of current line
= move 1 line down, same column

439

Terminal

PROCEDURE WriteString (string: ARRAY OF CHAR);
(*
- write a string to the terminal.

in: string string to be written.

MODUIA-2/86

The string is terminated by its physical length or by a
null character (OC).
*)

PROCEDURE WriteLn;
(*
- Write a new-line to the terminal.

[Equivalent to Write(ASCII.EOL)]
*)

END Terminal.

440

MODULA-2/86 TimeDate

DEFINITION MODULE TimeDate;
(*

Access to the system's date and time
*)

EXPORT QUALIFIED
SetTime, GetTime, Time;

TYPE
Time = RECORD day, minute, millisec: CARDINAL: END:
(*
- date and time of day

'day' is Bits 0 .. 4 = day of month (1 •• 31),
Bits 5 .. 8 = month of the year (1 .• 12),
Bits 9 .. 15 = year - 1900.

'minute' is hour * 60 + minutes.
'millisec' is second * 1000 + milliseconds,

starting with 0 at every minute.
*)

PROCEDURE GetTime (VAR curTime: Time):
(*
- Return the current date and time.

out: curTiine record containing date and time.

On systems which do not keep date or time, 'GetTime'
returns a pseudo-random number.
*)

441

TimeDate

PROCEDURE SetTime (curTime: Time);
(*
- set the current date and time.

MODUIA-2/86

in: curTime record containing date and time.

On systems which do not keep date or time, this call has
no effect.
*)

END TimeDate.

442

INDEX

MODULA-2/86

A

abort a program: 218
absolute variables: 42, 76
ADDRESS, type: 64, 77, 81
address:

constant, 76

ADR, function: 67, 81
alignment: 170, 190, 192
ALLOCATE, procedure: 61, 170,414
ANSI.SYS: 4, 5
array type: 39
ASCII, module: 300
assembly interfacing: 130
AUTOEXEC.BAT: 7,10

B

backup:
editing, 31

base layer: 165,207,293
BCD: 147
Break, module: 219, 302
breakpoint: 259, 272
BUFFERS command: 4, 5
BYTE, type: 64,81

c

call chain: 221,229
CardinaIIO, module: 305
CASE-statement: 43

character constants: 38
CODE, procedure: 84
command line: 219, 258
comments: 37
compile:

from editor, 19
from DOS-shell, 181

compiler directives: 191
compiler options: 188

INDEX

compiier error messages: 192, 197, 199
CONFIG.SYS: 4, 5
configuration of:

editor: 18, 30
constants:

address, 76
character, 38
string, 38
integer, 38
real,38

Conversions, module: 307
convert:

Decimal to/from string, 152
numbers to/from string, 307, 386
real to/from string, 399

coroutine:
debugging, 229,233
handIing,67,167

ctrI break: 218
ctrI C: 218

D

date and time: 441
data representation: 86, 155
DEALLOCATE, procedure: 61, 170,415
Debug, module: 21, 309
debugging commands:

INDEX

PMD:225
RID: 260

Decimals, module: 147,311
decoder: 277
default names: 143
device mask: 102
Devices, module: 106,315
Directories, module: 320
directory organisation: 7, 9,10
DISABLE, procedure: 85
DiskDirectory, module: 323
DiskFiles, module: 327
Display, module: 329
DISPOSE procedure: 61, 170
DOS3, module: 330
DOS31, module: 333
DOSCALL, procedures: 85, 110 .. 129
dynamic array parameters: 49

E

editing commands:
cut and paste, 13
keystrokes, 23
menus, 13,26,27,28
replace, 16
search, 16
syntax check, 17
templates, 29
windows, 15

emulation of
REAL, 156

ENABLE, procedure: 85
enumeration type: 39
ErrorCode, module: 336
error messages:

compiler, 192, 197, 199

linker, 209
PMD,245
RID, 274
run-time support, 220
version utility, 285

EXE, generation: 216
execute:

from DOS-shell, 213
from editor, 20
from RID, 255

execution errors: 21
EXIT-statement: 45

F

file handling: 42, 339, 360
FileMessage, module: 337
FileNames, module: 338
FILES DOS-command: 4
files:

EXE,216
LNK, 183, 205
LOD,205
LST,183
MAP, 205, 208
PMD,220
REF, 183,220
SYM, 183

MODULA-2/86

FileSystem, module: 339
floating point arithmetic: 155
FOR-statement: 44
function:

declaration, 48
results, 176

MODULA-2/86

G

GETREG, procedure: 83
glossary: 293
GOTO statement: 38

H

HALT, procedure: 220
heap managment: 61, 166, 177
hidden types: 56

I

identifier, in Modula-2: 37
IF-statement: 43
INBYTE, procedure: 85
initialization of program: 431
InOut, module: 360
installation:

base language system, 4
PMD,221
RTD,254
utilities, 276

interrupt:
handling, 70,91
mask,102

INWORD, procedure: 85
IOTRANSFER, procedure: 70, 82, 92

K

Keyboard, module: 367
keystrokes, editor: 23

L

labels: 38
library modules: 287, 289
A~""TT 'Inn
~"'-'.1..L, ...Jvv

Break, 219, 302
CardinalIO, 305
Conversions, 307
Debug, 21, 309
Decimals, 147, 311
Devices, 106,315
Directories, 320
DiskDirectory, 323
DiskFiles, 327
Display, 329
DOS3,330
DOS31,333
ErrorCode, 336
FiIeMessage, 337
FileNames, 338
FiIeSystem, 339
InOut, 360
Keyboard, 367
LogiMouse, 369
MathLibO, 158, 376
Mouse, 378
NumberConversion, 386
Options, 390
Processes, 61,70, 392
ProgMessage,395
Program, 396
RealConversions, 158, 399
RealInOut, 158, 402
RS232Code, 405

INDEX

INDEX

RS232Int, 408
RS232Polling, 411
Storage, 61, 170,414
Strings, 417
S)TSllE11,61,64,76,80,421
System, 426
Termbase, 433
Terminal, 438
TimeDate, 441

library procedures:
- see special index

library search: 143
link:

from editor, 20
from DOS-shell, 205

linker:
options, 207
error messages, 209

LISllEN, procedure: 83
Logi11ouse, module: 369
LOOP-statement: 45

M

m2decod, utility: 277
11athLibO, module: 158, 376
memory dump: 21,219,220
memory organisation: 162,214,216
memory requirements: 2, 257
modify variables with RTD: 267
module: 33

definition, 34, 53, 185, 293
implementation, 35, 53, 186, 294
program, 34, 53, 183,296

monitor: 104
11ouse, module: 378

with editor, 32

N

naming conflicts: 59
NEVV,procedure: 61, 170

MODULA-2/86

NEVVPROCESS, procedure: 69, 82,168,170,
171

NIL: 79
NumberConversion, module: 386

o

opaque types: 56
Options, module: 390
options:
compiler, 188
editor, 31
linker, 207
lod2exe, 216
m2decod, 278
P11D,223
RTD,256
run-time support, 214
version, 284
xref,279

OUTB)T1lE, procedure: 85
OUTWORD, procedure: 85
overflow

address, 78, 79
heap, 170
stack, 164

overlays: 165,207,295,431,396
debugging of, 262

MODULA-2/86

P

Pascal:
comparison with, 33 .. 74

PAm command: 7, 10
pictures: 150
pointer type: 41, 79
priority, coroutines: 91, 92,103
PR or tvnp· ~? - --- - ~"r-" --
procedure:

activation record, 172
declaration, 48
call, 49,174
type, 50
variable, 50

PROCESS, type: 64, 69, 81
process: 67, 167
Processes, module: 61, 70, 392
ProgMessage, module: 395
Program, module: 165, 396

Q

query search: 145

R

real constant: 38
RealConversions, module: 158, 399
real:

arithmetic, 155
emulation, 156
using coprocessor, 156

RealInOut, module: 158, 402

record type: 39
redirection of 10: 360, 433
reentrancy: 101
registers: 80
REPEAT-statement: 44
representation, data: 86
reserved words: 37, 42
RETURN-statement: 48
RS232Code, module: 405
'DC',,)'l")T_+ _~rl •• l~. ,u)O
......... v""'..J~.L.l.lt., ,U.lVUUl"" vu

RS232Polling, module: 411

s

search strategy: 143, 189,209
SEND, procedure: 71

INDEX

SET environment variable: 7, 10, 144
set type: 38
SETREG, procedure: 83
SIGNAL, type: 71
SIZE, function:67, 81
stack organisation: 164, 171
statements: 42
status:

of program, 397, 427
of files, 343

Storage, module: 61, 170,414
string constant: 38
string type: 39
Strings, module: 417
sub-program: 165, 296
SVVI,procedure:84
symbol files: 187
system dependance: 75
SYSTEM, module: 61, 64, 76, 80, 421
System, module: 426

INDEX

T

templates: 29,31
Termbase, module: 433
Terminal, module: 438
termination of program: 431
TimeDate, module: 441
TRANSFER, procedure: 69, 82
TSIZE function: 62, 67, 82
~es:38

~e:
checking, 1
conversion, 88
transfer, 88

v

variable allocation: 169
variable declaration:

at absolute address, 42
variant record: 39,81
version checking:

at compile-time, 178
at link-time, 178
at load-time, 179

version, utility: 280

w

VVi\IT,procedure:71
'WHILE-statement: 44
windows:

editor, 221

RTD,221
WITH statement: 42
VV()FUD,~e:64,81
workspace: 168, 297

X

xref, utility: 279

80186,80286: 171, 191
8086,8088: 171, 175
8087: 155

MODULA-2/86

MODUIA-2/86

INDEX OF PROCEDURES
OF LIBRARY MODULES

in alphabetical order by procedure name

AddDec .. (Decimals)
ADR .. (SySTEM)
Again ... (FHeSystelil)
ALLOCA TE ... (Storage)
arctan .. (MathLibO)
Assign ; ... Strings)
AssignRead ... (Termbase)
Assign Write ... (Termbase)
Available ... (Storage)
Awaited ... (Processes)

BusyRead .. (RS232Code)
BusyRead ... (RS232Int)
BusyRead ... (RS232Polling)

Call ... (Program)
CallInitProc .. (System)
CallTermProc .. (System)
Cancel Redirection .. (DOS31)
CardToString .. (NumberConversion)
ChangeDirectory .. (DiskDirectory)
Close .. (FileSystem)
CloseInput .. (InOut)
CloseOutput. .. (InOut)
CODE ... (SySTEM)
CompareDec .. (Decimals)
CompareStr .. (Strings)
Concat .. (Strings)
ConditionalOff ... (Mouse)
ConvertCardinal ... (Conversions)
ConvertHex .. (Conversions)
ConvertInteger .. (Conversions)

INDEX

INDEX MODULA-2/86

ConvertOctal ... (Conversions)
Copy .. (Strings)
cos .. (MathLibO)
Create .. (FileSystem)
CreateMedium ... (FileSystem)
CreateNewFile ... (DOS3)
CreateTemporaryFile .. (DOS3)
CurrentDirectory .. (DiskDirectory)
CurrentDrive .. , (DiskDirectory)

DEALLOCA1E .. (Storage)
DecStatus .. (Decimals)
DecToStr ... (Decimals)
Delete ... (Directories)
Delete .. (FileSystem)
Delete ... (Strings)
DirQuery ... (Directories)
DISABLE .. (SYS1EM)
DisableBreak .. (Break)
DiskDirProc ... (DiskFiles)
DiskFileProc .. (DiskFiles)
DivDec ... (Decimals)
Doio ... (FileSystem)
DOSCALL .. (SYS1EM)

ENABLE ... (SYS1EM)
EnableBreak. .. (Break)
entier _ ... (MathLibO)
ExitToOS .. (ErrorCode)
exp .. (MathLibO)

FileN ameAndOptions .. (Options)
FileName Char .. (FileSystem)
F1agReset ... (Mouse)

GetAcceleration ... (LogiMouse)
GetButPres .. (Mouse)
GetButRel ... (Mouse)
GetDeviceStatus .. (Devices)

MODULA-2/86 INDEX

GetErrorCode ... (ErrorCode)
GetErrorInfo .. (program)
GetExtendedError ... (DOS3)
GetKeyboardConfig .. (LogiMouse)
GetMachineName ... (DOS31)
GetMouseMode .. (LogiMouse)
GetOption ... (Options)
GetPos ... (FileSystem)
GetPosBut ... (Mouse)
n.pt"pnntprC;:ptnn (nnc;:~ 1 \ --- '&&&'&"-"'--"-.1'" •• '~--- ... ,

GetProgramSegmentPrefix ... (DOS3)
GetRedirectionListEntry .. (DOS31)
GETREG ... (SYS1'EM)
GetRS232Config .. (LogiMouse)
Gemme .. (TimeD ate)
GetVersion ... (LogiMouse)

HideCursor .. (Mouse)

INBYTE ... (SYS1'EM)
!nit .. (Processes)
!nit ... (RS232Code)
Init .. (RS232Int)
!nit .. (RS232Polling)
InitDiskSystem .. (DiskFiles)
InitProcedure ... (System)
Insert. .. (Strings)
InstallBreak .. (Break)
INWORD .. (SYS1'EM)
InstalIHandler ... (Devices)
InstallHeap .. (Storage)
IntToString .. (NumberConversion)
IOTRANSFER .. (SYS1'EM)

KeyPressed .. (Keyboard)
KeyPressed .. (Termbase)
KeyPressed ... (Terminal)

INDEX MODULA-2/86

Length ... (FileSystem)
Length .. (Strings)
LightPenOff .. (Mouse)
LightPenOn ... (Mouse)
USTEN .. (SySTEM)
In .. (MathLibO)
LockUnlockFileAccess ... (DOS3)
Lookup .. (FileSystem)

MakeDir .. (DiskDirectory)
MulDec .. (Decimals)

NegDec .. (Decimals)
NE"WPROCESS .. (SySTEM)
NumToString .. (NumberConversion)

OpenJnput .. (InOut)
OpenOutput. .. (InOut)
OU1'BY1E .. (SySTEM)
OUTWORD ... (SySTEM)

Pos ... (Strings)

Read .. (InOut)
Read ... (Keyboard)
Read .. (RS232Code)
Read ... (RS232Int)
Read ... (RS232Polling)
Read ... (Termbase)
Read .. (Terminal)
ReadAgain .. (Terminal)
ReadByte .. (FileSystem)
ReadCard .. (InOut)
ReadCardinal ... , (CardinalIO)
ReadChar ... (FileSystem)
ReadFiIeName ... (FileNames)
ReadHex ... (CardinalIO)
ReadInt .. (InOut)

MODUIA-2/86 INDEX

ReadMotionCounters .. (Mouse)
ReadNBytes ...•...•.... (FileSystem)
ReadReal ... (RealInOut)
ReadString .. (InOut)
ReadString .. (Terminal)
ReadWord ... (FileSystem)
ReadWrd ... (InOut)
real ... (MathLibO)
RealToString .. (RealConversions)
..... _..I! ___ T"\, __ ..!__ rJ""It..,",C""1'
.l\.CUllC\..U..lCVlu:::; ••• \l..IV';).;J~)

RemoveDir ... (DiskDirectory)
RemoveHeap .. (Storage)
RemoveMedium .. (FileSystem)
Rename .. (Directories)
Rename ... (FileSystem)
Reset .. (FileSystem)
ResetDiskSys. ... (DiskDirectory)
ResetDrive .. (DiskDirectory)
RestoreInt~rruptVector .. (Devices)

SavelnterruptVector .. (Devices)
SelectDrive ... (DiskDirectory)
SEND .. (processes)
SetAcceleration ... (LogiMouse)
SetCursorPos .. (Mouse)
SetDeviceStatus ..•................ (Devices)
SetErrorCode .. (ErrorCode)
SetEventHandler ... (Mouse)
SetGraphicCursor ... (Mouse)
SetGrid ... (LogiMouse)
SetHorizontalLimits ... (Mouse)
SetKeyboardConfig ...•. (LogiMouse)
SetMickeysPerPixel ... (Mouse)
SetModify ... (FileSystem)
SetMouseMode ... (LogiMouse)
SetOpen .. (FileSystem)
SetPos .. (FileSystem)
SetPrinterSetup .. (DOS31)
SetRead .. (FileSystem)

INDEX MODUIA-2/86

SETREG .. (SYS1EM)
SetRS232Config .. (LogiMouse)
SetSpeed1breshold ... (Mouse)
SetTextCursor .. (Mouse)
SetTime ...•...................................... (TimeD ate)
SetVerticalLimits ... (Mouse)
SetWrite .. (FileSystem)
ShowCursor ... (Mouse)
sin ... (MathLibO)
SIZE .. (SYS1EM)
sqr .. (MathLibO)
StartProcess ... (processes)
StartReading .. (RS232Code)
StartReading ... (RS232Int)
Stop Reading ... (RS232Code)
Stop Reading .. (RS232Int)
StringToCard .. (NumberConversion)
StringToInt .. (NumberConversion)
StringToNum .. (NumberConversion)
StringToReal .. (Real Conversions)
StrToDec ... (Decimals)
SubDec ... (Decimals)
SWI .. (SYS1EM)

Terminate .. (System)
TermProcedure ... ~ ... (System)
TSIZE ... (SYS1EM)

UnAssignRead ... (Termbase)
UnAssignWrite .. (Termbase)
UnInstalIBreak .. (Break)
UninstalIHandler .. (Devices)

WAIT .. (processes)
Write .. (Display)
Write ... (InOut)
Write ... (RS232Code)
Write .. (RS232Int)
Write .. (RS232Polling)

MODULA-2/86 INDEX

Write .. (Termbase)
Write ... (Terminal)
WriteByte ... (FileSystem)
WriteCard ... (In Out)
WriteCardinal ... (CardinalIO)
WriteChar .. (FileSystem)
WriteHex .. (CardinalIO)
WriteHex ... (InOut)
WriteInt ... (InOut)
Wl~iteLn ... (InOut)
WriteLn ... (Terminal)
WriteNBytes .. (FileSystem)
WriteOct. ... (InOut)
Write Real ... (RealIn Out)
WriteRealOct ... (RealInOut)
Write Response .. (FileMessage)
WriteStatus ... (progMessage)
WriteString ... (InOut)
WriteString ... (Terminal)
WriteWord .. (FileSystem)
WriteWrd .. (InOut)

Read what Jerry Pournelle says
of LOGITECH MODULA-2

"Modula-2 has been getting
theoretical applause for years;
what it has needed was a good
low-cost compiler for a popular
machine. WGITECH has
remedied that defect and is to
be congratulated."

Byte
March,1986

" .. . they 'll do for Modula-2 what
Borlands Turbo did for Pascal."

InfoWorld
January 13, 1986

	0000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	074a
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	299a
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	I-00
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I-12
	I-13
	xBack

