
I N T E G RAT E 0

pSOS

System

PSOSYSTEM

SYSTEM CONCEPTS

Release 2.0

Document Title:
Document Number:
Part Number:
Revision Date:

~ ~n::,~rated
~tems

Copyright © 1993. All rights reserved. Printed in U.S.A.
Integrated Systems, Inc.

3260 Jay Street
Santa Clara, CA. 95054

Phone: (408) 980-1500 Telex: 757697 (soft com)
Fax: (408) 980-0400 Email: sc~suprt@isi.com

pSOSystem System Concepts
PS2-000-003
PS2000MAN
6 December 1993

LICENSED SOFTWARE - CONFIDENTIAL/PROPRIETARY

This document and the associated software contains information proprietary to Integrated
Systems, Inc., or its licensors and may be used only in accordance with the Integrated
Systems license agreement under which this package is provided. No part of this document
may be copied, reproduced, transmitted, translated, or reduced to any electronic medium
or machine-readable form without the prior written consent of Integrated Systems.

Integrated Systems, Inc., makes no representation with respect to the contents, and
assumes no responsibility for any errors that might appear in this document. Integrated
Systems specifically disclaims any implied warranties of merchantibility or fitness for a
particular purpose. This publication and the contents hereof are subject to change without
notice.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS252.227-7013 or its equivalent. Unpublished rights reserved under the copyright
laws of the United States.

TRADEMARKS

The following are trademarks of Integrated Systems, Inc.:
pHILE+, pNA +, OpEN, pREPC+, pRPC+, pSOS, pSOS+, pSOSim, pROBE+, pSOSystem,
pXll +.

UNIX is a registered trademark of UNIX System Laboratories, Inc., in the USA and other
countries.

Any questions or comments on this manual are welcome. Please fax them to the number
listed above, or send them to Technical Publications at the above address.

Contents

Preface

Purpose .. ix

Audience .. ix

Organization ... x
Related Documentation ... x
Notation Conventions ... xi

Product Overview

1. 1 What Is pSOSystem? .. 1-1
1.2 System Architecture .. 1-2
1.3 Integrated Development Environment ... 1-4

2 pSOS+ Real-Time Kernel

2.1 Overview .. 2-1
2.2 The Real-Time Design Problem ... 2-2
2.3 Multitasking Implementation .. 2-4

2.3.1 Concept of a Task .. 2-5
2.3.2 Decomposition Crtteria .. 2-6

2.4 Overview of System Operations .. 2-7
2.4.1 Task States .. 2-7
2.4.2 State Transitions ... 2-8
2.4.3 Task Scheduling .. 2-11
2.4.4 Task Priority' .. 2-11
2.4.5 Roundrobin by Timeslicing .. 2-12
2.4.6 Manual Roundrobin ... 2-14
2.4.7 Dispatch Crtterta ... 2-14
2.4.8 Objects, Names, and IDs .. 2-14

2.5 Task Management .. 2-16
2.5.1 Birth of a Task ... 2-16
2.5.2 Task Control Block .. 2-17
2.5.3 Task Mode Word .. 2-18
2.5.4 Task Stacks ... 2-19
2.5.5 Task Memoty .. 2-19
2.5.6 Death of a Task ... 2-19
2.5.7 Notepad Registers .. 2-20
2.5.8 The Idle Task ... 2-20

pSOSystem System Concepts

Contents

2.6 Storage Allocation .. 2-21
2.6.1 Regions and Segments ... 2-21
2.6.2 Special Region 0 ... 2-22
2.6.3 Allocation Algorithm ... 2-22
2.6.4 Partitions and Buffers .. 2-23

2.7 Communication, Synchronization, Mutual Exclusion 2-24
2.8 The Message Queue ... 2-24

2.8.1 The Queue Control Block ... 2-25
2.8.2 Queue Operations .. 2-26
2.8.3 Messages and Message Buffers .. 2-26
2.8.4 Two Examples of Queue Usage ... 2-27
2.8.5 Variable Length Message Queues 2-28

2.9 Events .. 2-30
2.9.1 Event Operations ... 2-30
2.9.2 Events Versus Messages .. 2-31

2.10 Semaphores ... 2-31
2.10.1 The Semaphore Control Block .. 2-32
2.10.2 Semaphore Operations .. .' 2-32

2.11 Asynchronous Signals .. 2-33
2.11.1 The ASR ... 2-33
2.11.2 Asynchronous Signal Operations 2-34
2.11.3 Signals Versus Events .. 2-34

2.12 Time Management .. 2-35
2.12.1 The Time Unit .. 2-35
2.12.2 Time and Date ... 2-36
2.12.3 Timeouts .. 2-36
2.12.4 Absolute Versus Relative Timing 2-36
2.12.5 Wakeups Versus Alarms .. 2-37
2.12.6 Timeslice ... 2-37

2.13 Interrupt Service Routines .. 2-38
2.13.1 Interrupt Entty ... 2-38
2.13.2 Synchronizing With Tasks .. 2-38
2.13.3 System Calls Allowed From an ISR 2-39

2.14 Fatal Errors and the Shutdown Procedure 2-41
2.15 Tasks Using Other Components .. 2-42

2.15.1 Deleting Tasks That Use Components 2-42
2.15.2 Restarting Tasks That Use Components 2-43

11 pSOSystem System Concepts

Contents

3 pSOS+m Multiprocessing Kernel

3.1 System Overview ~ ... 3-1
3.2 Software Architecture ... 3-2
3.3 Node Numbers ... 3-3
3.4 Objects .. 3-3

3.4.1 Global ObJects ... 3-4
3.4.2 Object ID ... 3-4
3.4.3 Global Object Tables .. 3-4
3.4.4 Ident Operations on Global Objects 3-5

3.5 Remote Service Calls .. 3-6
3.5.1 Synchronous Remote Service Calls 3-6
3.5.2 Asynchronous Remote Service Calls 3-8
3.5.3 Agents ... 3-9
3.5.4 RSC Overhead ... 3-10

3.6 System Startup and Coherency .. 3-11
3.7 Node Failures ... 3-12
3.8 Slave Node Restart ... 3-14

3.8.1 Stale Objects and Node Sequence Numbers 3-14
3.8.2 Rejoin Latency Requirements ... 3-15

3.9 Global Shutdown ... 3-15
3.10 The Node Roster ... 3-16
3.11 Dual-Ported Memory Considerations .. 3-16

3.11.1 P-Port and S-Port ... 3-17
3.11.2 Internal and External Address ... 3-17
3.11.3 Usage Within pSOS+m Services 3-18
3.11.4 Usage Outside pSOS+ ... 3-18

4 Network Programming

4.1 Overview of Networking Facilities ... 4-1
4.2 pNA+ Software Architecture .. 4-3
4.3 The Internet Model ... 4-5

4.3.1 Internet Addresses ... 4-5
4.3.2 Subnets ... 4-6
4.3.3 Broadcast Addresses .. 4-6
4.3.4 A Sample Internet .. 4-7

pSOSystem System Concepts iii

Contents

tv

4.4 The Socket I..a.yer .. 4-7
4.4.1 Basics .. 4-7
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.10

Socket Creation ... 4-8
Socket Addresses , , 4-9
Connection Establishment ... 4-9
Data 1'ransfer ... 4-10
Connectionless Sockets .. 4-11
Discarding Sockets .. 4-12
Socket Options .. 4-12
Non-Blocking Sockets .. 4-12
Out-of-Band Data .. 4-13

4.4.11 Socket Data Structures .. 4-13
4.5 The pNA+ Daemon Task .. 4-14
4.6 The User Signal Handler ... 4-15
4.7 Error Handling ... 4-16
4.8 Packet Routing ... 4-16
4.9 Network Interfaces ... 4-18

4.9.1 Maximum 1'ransmission Units (MTU) 4-19
4.9.2 Hardware Addresses .. 4-19
4.9.3 Control Flags ... 4.,.19
4.9.4 Network Subnet Mask .. 4-20
4.9.5 Destination Address ... 4-20
4.9.6 The NI Table .. 4-21

4.10 Address Resolution and ARP .. 4-21
4.10.1 The ARP Table ... 4-22
4.10.2 Address Resolution Protocol (ARP) 4-22

4.11 Memory Management ... 4-23
4.12 Memory Configuration .. 4-26

4.12.1 Buffer Configuration .. 4-27
4.12.1.1 MTU-Size Buffers .. 4-28
4.12.1.2 SeIVice-Call-Size Buffers 4-28
4.12.1.3 128-Byte Buffers ... 4 .. 28
4.12.1.4 Zero-Size Buffers ... 4-29

4.12.2 Message Blocks .. 4-29
4.12.3 funing pNA+ .. 4-29

pSOSystem System Concepts

Contents

4.13 Zero Copy Options ; .. 4-30
4.13.1 Socket Extensions ... 4-30
4.13.2 Network Interface Option ... 4-31

4.14 Internet Control Message Protocol (ICMP) 4-31
4.15 NFS Support ... 4-33
4.16 MIB-II Support ... 4-34

4.16.1 Background ... 4-34
4.16.2 Accessing Simple Variables .. 4-35
4.16.3 Accessing Tables .. 4-36
4.16.4 MIB-II Tables ... 4-39

4.16.4.1 Interfaces Table .. 4-39
4.16.4.2 IP Address Table ... 4-40
4.16.4.3 IP Route Table .. 4-40
4.16.4.4 IP Address Translation Table 4-40
4.16.4.5 TCP Connection Table 4-41
4.16.4.6 UDP Listener Table ... 4-41

4.16.5 SNMP Agents ... 4-41
4.16.6 Network Interfaces ... 4-42

4.17 Subcomponents ... 4-42
4.17.1 pRPC+ .. 4-43

4.17.1.1 pRPC+ Architecture ... 4-43
4.17.1.2 Authentication .. 4-44
4.17.1.3 Port Mapper .. 4-46
4.17.1.4 Global Variable ... 4-46

4.17.2 pX11+ .. 4-47
4.17.2.1 Error Handling and exit() ... : 4-47
4.17.2.2 Environment Variables, Files, and

Global Variables .. 4-48

5 pHILE+ File System Manager

5.1 Volume 1)rpes ... 5-1
5.2 Working With Volumes ... 5-3

5.2.1 Mounting And Unmounting Volumes 5-3
5.2.2 Naming Conventions and I/O ... 5-3
5.2.3 MS-DOS and pHILE+ Formatted Volumes 5-4
5.2.4 NFS Volumes .. 5-5

pSOSystem System Concepts v

Contents

5.3 Files. Directories. and Pathnames .. 5-7
5.3.1 Naming Files on pHILE+ Formatted Volumes 5-B
5.3.2 Naming Files on MS-DOS Volumes 5-B
5.3.3 Naming Files on NFS Volumes ... 5-9

5.4 Basic SeIVices for All Volumes .. 5-9
5.4.1 Opening and Closing Files .. 5-9
5.4.2 Reading And Writing .. 5-11
5.4.3 Positioning Within Files ... 5-11
5.4.4 Creating Files and Directories .. 5-12
5.4.5 Changing Directories ... 5-12
5.4.6 Moving and Renaming Files ... 5-13
5.4.7 Deleting Files ... 5-13

5.5 Blocking/Deblocking .. 5-13
5.6 Cache Buffers ... 5-14
5.7 Sytlchronization Modes .. 5-16

5.7.1 Immediate-Write Mode ... 5-16
5.7.2 Control~Write Mode .. 5-17
5.7.3 Delayed-Write Mode ... 5-17
5.7.4 sytlc_ vol ... 5-17

5.B pHILE+ Formatted Volumes .. 5-lB
5.B.l How pHILE+ Formatted Volumes Are Organized 5-lB

5.8.1.1 The Root Block .. 5-19
5.8.1.2 The Root Directory .. 5-19
5.B.1.3 The Volume Bitmap .. 5-20
5.8.1.4 The File DeSCriptor List 5-20
5.8.1.5 Control and Data Block Regions 5-21

5.8.2 How Files Are Organized .. 5-22
5.8.2.1 The File Number ... 5-22
5.8.2.2 The File DeSCriptor .. 5-22
5.8.2.3 File 1'ypes ... 5-23
5.8.2.4 Time of Last Modification 5-23
5.8.2.5 The File Expansion Unit 5-23
5.8 .. 2.6 Extents ... 5-23
5.B.2.7 The Extent Map ~ 5-24

5.8.3 Data Address Mapping ... 5-27
5.8.4 Block Allocation Methods ... 5-27

vi pSOSystem System Concepts

Contents

5.8.5 How Directories Are Organized ... 5-30
5.8.6 Logical and Physical File Sizes ... 5-30
5.8.7 Special Services ... 5-30

5.8.7.1 get_fn, open_fn ... 5-31
5.8.7.2 annex_f ... 5-31
5.8.7.3 lock_f .. 5-32
5.8.7.4 Direct Volume I/O .. 5-33

5.8.8 Restarting and Deleting Tasks That Use pHILE+ 5-33
5.8.7.1 Restarting Tasks That Use pHILE+ 5-34
5.8.7.2 Deleting Tasks That Use pHILE+ 5-34

6 pREPC+ ANSI C Library

6.1 Introduction ... 6-1
6.2 Functions Summary ... 6-2
6.3 I/O Overview .. 6-2

6.3.1 Files, Disk Files, and I/O Devices 6-4
6.3.2 File Data Structure .. 6-5
6.3.3 Buffers .. 6-6
6.3.4 Buffering Techniques ... 6-6
6.3.5 stdin, stdout, stderr ... 6-7
6.3.6 Streams ... 6-8

6.4 Memory Allocation .. 6-9
6.5 Error Handling ... 6-10
6.6 Restarting Tasks That Use pREPC+ ... 6-10
6.7 Deleting Tasks That Use pREPC+ .. 6-11
6.8 Deleting Tasks With exit() or abort() .. 6-11

7 I/O System

7.1 I/O System Overview .. 7-2
7.2 I/O Switch Table .. 7-3
7.3 Application-to-pSOS+ Interface ... 7-5
7.4 pSOS+-to-Driver Interface ... 7-6
7.5 Device Driver Execution Environment .. 7-8
7.6 pREPC+ Drivers .. 7-9

pSOSystem System Concepts vii

Contents

7.7 pHILE+ Drivers ... 7-10
7.7.1 The Buffer Header .. 7-11
7.7.2 I/O Transaction Sequencing .. 7-13
7.7.3 Logical-to-Physical Block Translation 7-13

7.7.3.1 pHILE+ Formatted Volumes 7-13
7.7.3.2 MS-DOS Floppy Disk Format 7-13
7.7.3.3 MS-DOS Hard Disk Format. 7-15

7.7.4 MS-DOS Hard Drive Considerations 7-15
7.8 Mutual Exclusion ... 7-15
7.9 I/O Models ... 7-15

7.9.1 Synchronous I/O ... 7-16
7.9.2 Asynchronous I/O ... 7-16

List of Figures

The pSOSystem Environment .. 1-3
Ad Hoc Software Design ... 2-2
Multitasking Approach .. 2-4
Task State Transitions ... 2-9
One Way and 1\vo Way Queue Synchronization 2-28
pSOS+m Layered Approach .. ~ 3-2
pNA + Architecture .. 4-3
A Sample Internet .. 4-7
Message Block Triplet .. 4-24
Message Block Linkage .. 4-25
pRPC+ Dependencies ... 4-43
How Software Components Talk With NFS ... 5-6
The Relationship Among a File 10. a File Control Block, and a File 5-10
Blocking Factors and Cache-Buffering ... 5-15
The Layout of an Extent Map ... 5-26
I/O Structure of pREPC+ ... 6-3
I/O System Organization ... 7-2
Sample I/O Switch Table ... 7-4
pSOS+-to-Driver Relationship .. 7-6
pHILE+ and pREPC+ Drivers ... 7-9

viii pSOSystem System Concepts

Preface

Purpose
This manual is part of a documentation set that describes pSOSystem,
the modular, high-performance real-time operating system environment
from Integrated Systems.

This manual provides theoretical information about the operation of
pSOSystem. The level of information in this manual is different than
that provided by either the pSOSystem Getting Started manual or the
pSOSystem Prograrruner's Reference. Together, the three manuals
comprise the basic documentation set for pSOSystem.

Read this manual to gain an understanding of how the various software
components in pSOSystem can be combined to create an environment
suited to your particular needs.

Audience
This manual is targeted primarily for embedded application developers
who want to gain an overall understanding of pSOSystem components.
Basic familiarity with UNIX terms and concepts is assumed.

A secondary audience includes those seeking an introduction to
pSOSystem features.

pSOSystem System Concepts ix

Preface

x

Organization
This manual is organized as follows:

Chapter 1, Product Overview, presents a brief introduction to
pSOSystem and its core components.

Chapter 2, pSOS+ Real-Time Kemel, describes the pSOS+ real-time
multitasking kernel, the heart of pSOSystem.

Chapter 3, pSOS+m Multiprocessing Kemel, describes the extensions
offered by the pSOS+m multitasking, multiprocessing kernel.

Chapter 4, Network Programming, provides a summary of
pSOSystem's networking services and describes in detail the pNA+
TCP lIP Manager component.

Chapter 5, pHILE+ File System Manager, describes pSOSystem's file
management option.

Chapter 6, pREPC+ ANSI C Library, describes pSOSystem's ANSI C
run-time library.

Chapter 7, I/O System, discusses the pSOSystem 1/0 system and
explains how device drivers are incorporated into a system.

Related Documentation
When using pSOSystem you might want to have on hand the other two
manuals included in the basic documentation set:

• pSOSystem Getting Started - explains how to create and bring up
pSOSystem-based applications. This manual also contains install
ation instructions and a number of tutorials.

• pSOSystem Programmer's Reference - contains detailed descriptions
of all pSOSystem system calls and system services, as well as other
important reference material such as error codes, configuration
tables, and memory usage.

Based on the options you have purchased, you might also need to
reference one or more of the following manuals:

• OpEN User's Manual- describes how to install and use pSOSystem's
OpEN (Open Protocol Embedded Networking) product.

pSOSystem System Concepts

Preface

• SNMP User's Manual - describes the internal structure and
operation of SNMP, Integrated System's Simple Network
Management Protocol product. This manual also describes how to
install and use the SNMP MIB (Management Information Base)
Compiler.

• pROBe+- User's Manual- describes how to use the pROBE+ System
Debugger / Analyzer.

• pSOSim User's Manual- describes how to install and use pSOSim, a
UNIX-based pSOS+ kernel simulator.

• XRAY+" User's Manual - describes how to use the XRAT Source-Level
Cross Debugger.

Notation Conventions
The following notation conventions are used in this manual:

• Function names (~recetve), filenames (pdefs.h) , keywords (tnt),
and operators (I) that must be typed exactly as shown are presented
in bold.

• Italics indicate that a user-defined value or name (drive:pathname)
can be substituted for the italicized word(s) shown. Italics also
indicate emphasis, such as when important terms are introduced.

• Keynames [Enter] are shown within square· brackets. Keynames
separated by hyphens are typed together. For example, to type [Ctrl
Shift-E], hold down the [Ctrl] and [Shift] keys and type the letter E.

• Code examples are shown in constant width.

pSOSystem System Concepts xi

Preface

(Blank Page)

xii pSOSystem System Concepts

1 Product Overview

1. 1 What Is pSOSystem?
pSOSystem is a modular, high-performance real-time operating system
designed specifically for embedded microprocessors. It provides a very
complete, multitasking environment based on open systems standards.

pSOSystem is designed to meet three overriding objectives:

• Performance

• Reliability

• Ease-of-Use

The result is a fast, deterministic, robust, yet accessible, system software
solution. Accessible in this case translates to a minimal learning curve.
pSOSystem is designed for quick startup on both custom and
commercial hardware.

pSOSystem is supported by an integrated set of cross development tools
that can reside on UNIX- or DOS-based computers. These tools can
communicate with a target over a serial or Tep lIP network connection.

pSOSystem System Concepts 1-1

Chapter 1. Product Overview

1.2 System Architecture
pSOSystem employs a modular architecture. It is built around the
pSOS+ real-time multi-tasking kernel and a collection of companion
software components. Software components are standard building
blocks delivered as absolute position-independent code modules. They
are "standard parts" in the sense that they are unchanged from one
application to another. This black box technique eliminates
maintenance by the user and assures reliability. since hundreds of
applications execute the same. identical code.

Unlike most system software. a software component is not wired down to
a piece of hardware. It makes no assumptions about the execution/
target environment. Each software component utilizes a user-supplied
configuration table that contains application- and hardware-related
parameters to configure itself at startup.

Every component implements a logical collection of system calls. To the
application developer, system calls appear as re-entrant C functions
~allable from an application. Any combination of components can be
incorporated into a system to match your real-time design requirements.
pSOSystem includes the following components:

• pSOS+ Real-time Multitasking Kernel. A field-proven.
multitasking kernel that provides a responsive. efficient mechanism
for coordinating the activities of your real-time system.

• pSOS+m Multiprocessor Multitasking Kernel. Extends the
pSOS+ feature set to operate seamlessly across multiple. tightly
coupled or distributed processors.

• pNA + TCP lIP Network Manager. A complete TCP lIP implemen
tation including gateway routing. UDP, ARP. and ICMP protocols;
uses a standard socket interface that includes stream. datagram.
and raw sockets.

• pRPC+ Remote Procedure Call Library. Offers SUN-compatible
RPC and XDR services; allows you to build distributed applications
using the familiar C procedure paradigm.

• pHILE+ FOe System Manager. Gives efficient access to mass
storage devices. both local and on a network. Includes support for
MS-DOS compatible floppy disks and a high-speed proprietary file
system. When used in conjunction with pNA + and pRPC+. offers
client-side NFS services.

1-2 pSOSystem System Concepts

Chapter 1. Product Overview

• pREPC+ ANSI C Standard Library. Provides familiar ANSI C run
time functions such as printf{), scanf{) , and so forth, in the target
environment.

• pXll+ X Window System. Allows pSOSystem machines to display
output and receive input from any X server on a network reachable
via pNA+.

Figure 1. The pSOSystem Environment

pSOSystem System Concepts 1-3

Chapter 1. Product Overview

In addition to these core components, pSOSystem includes the following:

• Networking protocols including SNMP, FTP, Telnet, TFfP, NFS, and
STREAMS

• Run-time loader

• User application shell

• Support for c++ applications

• Boot ROMs

• Pre-configured versions of pSOSystem for popular commercial
hardware

• pSOSystem templates for custom configurations

• Chip-level device drivers

• Sample applications

This manual focuses on explaining pSOSystem core components. Other
parts of pSOSystem are described in the pSOSystem Programmer's
Reference and in the pSOSystem Getting Started manual.

1.3 Integrated Development Environment
pSOSystem's integrated cross development enVironment can reside on a
UNIX- or DOS-based computer. It includes C and C++ optimizing
compilers, a target cpu simulator, a pSOS+ OS simulator, and a cross
debug solution that supports source- and system-level debugging.

pSOSystem's debugging enVironment centers on the XRAY+ Source-Level
Debugger and the pROBE+ System-Level Debugger. XRAY+ executes on
your host computer and works in conjunction with pROBE+, which runs
on a target system.

The XRAY+ /pROBE+ combination proVides a multitasking debug
solution that features:

• A sophisticated mouse and window user interface

• Automatic tracking of program execution through source code files

• Traces and breaks on high-level language statements

• Breaks on task state changes and operating system calls

1-4 pSOSystem System Concepts

Chapter 1. Product Overview

• Monitoring of language variables and system-level objects such as
tasks, queues and semaphores

• Profiling for performance tuning and analysis

• System and task debug modes

• The ability to debug optimized code

pROBE+, in addition to acting as a "back end" for XRAY+, can function
as a standalone target-resident debugger that can be delivered with a
user's final product to provide a field maintenance capability.

XRAY+, pROBE+, and pSOSystem's other development tools are
described in other manuals. See "Related Documentation" in the Preface
to this manual.

pSOSystem System Concepts 1-5

Chapter 1. Product Overview

(Blank Page)

1-6 pSOSystem System Concepts

2 pSOS+ Real-Time Kernel

2. 1 Overview
pSOS+ is a real-time, multitasking operating system kernel. As such, it
acts as a nucleus of supervisory software that

• Performs services on demand;

• Schedules. manages, and allocates resources;

• Generally coordinates multiple, asynchronous activities.

pSOS+ maintains a highly simplified view of application software,
irrespective of the application's inner complexities. To the pSOS+ kernel,
applications consist of three classes of program elements:

• Tasks

• I/O Device Drivers

• Interrupt Service Routines (ISRs)

Tasks, their virtual environment, and ISRs are the primary topics of
discussion in this chapter. The I/O system and device drivers are
discussed in Chapter 7, "I/O System."

Discussions in this section focus primarily on concepts relevant to a
single-processor system. Additional issues and considerations
introduced by multiprocessor configurations are covered in Chapter 3,
"pSOS+m Multiprocessing Kernel."

pSOSystem System Concepts 2-1

Chapter 2. pSOS+ Real-Time Kernel

2.2 The Real-Time Design Problem

2-2

A so-called real-time system is characterized, above and beyond a certain
set of quantifiable time imperatives, by its need to act upon

• Multiple asynchronous, external events,

• Multiple cyclical, external events, or

• A combination of the above.

Yet, software is by its nature synchronous: one instruction follows
another. How then to handle these externally clocked, or worse,
asynchronous,events?

The traditional method uses interrupt handlers and one all
encompassing control loop; an example is shown in Figure 2. The
interrupt handlers react to external events, then log the events using
flags and/or data buffers. Meanwhile, in the background, the
synchronous control loop successively tests the flags or feeds the
buffers, and performs whatever processing is called for.

Figure 2. Ad Hoc Software Design

pSOSystem System Concepts

Chapter 2. pSOS+ Real-Time Kernel

On the surface, this is a viable solution. It suffers, however, from
serious, intrinsic flaws, due mainly to the single-threaded nature of the
control loop.

For one thing, in a simple control loop, the worst case response time to
a given event is equal to the time it takes the loop to go around once.
Plus, there is no allowance for prioritization of event processing, whose
order is dictated instead by the static sequence built into the control
loop.

True, this behavior can be modified by conditionally altering the test
sequence within the control loop. For example, after processing event A,
if event X is present and event Y has been tasked, then do task event X,
else go on to test for event B; but it is easy to see that this can quickly
get out of hand.

A more serious flaw has to do with the non-preemptible nature of a
synchronous loop. Once the loop starts processing event A, it must
finish this action, no matter how long it takes, before it will have any
chance to deCide which event to poll or task next.

Picture a train winding through a series of tunnels. Once it enters a
tunnel, it will not see the light of day again until it exits the tunnel; but
then comes the next tunnel. In a similar manner, a single, long
computational action affects the entire system's response.

This result can be ameliorated by sectioning each long tunnel into a
series of short ones; or, more processing can be shifted to the interrupt
handlers. But the requisite pre-analysis and state tracking will add
further to the bewildering considerations a designer must address and
overcome.

And, of course, there are ubiquitous race conditions to contend with.
Data buffers, queues, flags, and other structures accessible by multiple
sources, notably interrupt handlers, must be locked with critical regions
to insure atomic operation. This is never an easy task. One oversight,
and a latent race condition will lie in wait.

These problems associated with ad hoc software design should be
familiar to most real-time software engineers. It is a very costly
proposition for designers to have to tackle them anew on every new
project or product implementation.

pSOSystem . System Concepts 2-3

.Chapter 2. pSOS+ Real-Time Kemel

2.3 Multitasking Implementation

2-4

The pSOS+ multitasking kernel, illustrated in Figure 3. provides an
alternative to the ad hoc method. In place of interrupt handlers coupled
by polling to a synchronous control loop, pSOS+ allows interrupt
handlers to directly trigger tasks that can in tum trigger other tasks.

There are two intrinsic differences between control loop and
multitasking implementations. First, a control loop is synchronous.
(One action must complete before another one can start.) In a
multitasking system, while tasks are internally synchronous, different
tasks can execute asynchronously. A task can also be stopped in mid
stream, and execution passed to another task at any time.

Second, a control loop is static -- its execution sequence is highly
dependent on the way it was programmed. By contrast, a multitasked
system is dynamic, since task switching is basically driven by temporal
events.

ISR

ISR

ISR

ISR

Figure 3. Multitasking Approach

pSOSystem System Concepts

Chapter 2. pSOS+ Real-Time Kernel

It is easy to see that a multitasked implementation is a much more
natural match to the outside world, which is mainly asynchronous and/
or cyclical as far as real-time systems are concerned. Thus, application
software developed for multitasking systems is likely to be far more
structured, race-free, maintainable, and re-usable.

Several pSOS+ attributes help solve the problems inherent in real-time
software development. They include

• Partitioning of actions into multiple tasks, each capable of executing
in parallel (I.e., overlapping) with other tasks. The pSOS+ kernel
switches on cue between tasks, thus enabling applications to act
asynchronously -- in tune with the outside world.

• Task prioritization. pSOS+ always executes the highest priority task
that can run.

• Task preemption. If an action is in progress and a higher priority
external event occurs, the event's associated action takes over
immediately.

• Powerful, race-free synchronization mechanisms available to
applications. These include message queues, semaphores,
multiple-wait events, and asynchronous signals.

• Timing functions, such as wakeup, alarm timers, and timeouts, for
servicing cyclical, external events.

2.3. 1 Concept of a Task

From the system's perspective, a task is the smallest unit of execution
that can compete on its own for system resources. A task lives in a
virtual, insulated environment furnished by the pSOS+ kernel. Within
this space, a task can use system resources or wait for them to become
aVailable, if necessary, without explicit concern for other tasks.
Resources include the CPU, I/O devices, memory space, and so on.

Conceptually, a task can execute concurrently with, and independently
of, other tasks. The pSOS+ kernel simply switches between different
tasks on cue. The cues come by way of system calls to pSOS+. For
example, a system call might cause the kernel to stop one task in mid
stream and continue another from the last stopping pOint.

Although each task is a logically separate set of actions, it must
coordinate and synchronize itself, with actions in other tasks or with
ISRs, by calling pSOS+ system services.

pSOSystem System Concepts 2-5

Chapter 2. pSOS+ Real-Time Kernel

2.3.2 Decomposition Criteria

2-6

The decomposition of a complex application into a set of tasks and ISRs
is a matter of balance and trade-offs, but one which obviously impacts
the degree of parallelism, and therefore efficiency, that can be achieved.
Excessive decomposition exacts an inordinate amount of overhead
activity required in switching between the virtual environments of
different tasks. Insufficient decomposition reduces throughput, since
actions in each task proceed serially, whether they need to or not.

There are no fixed rules for partitioning an application; the strategy used
depends on the nature of the application. First of all, if an application
involves multiple, independent main jobs (for example, control of N
independent robots), then each job should have one or more tasks to
itself. Within each job, however, the partitioning into multiple,
cooperating tasks requires much more analysis and experience.

The following discussion presents a set of reasonably sufficient criteria,
whereby a job with multiple actions can be divided into separate tasks.
~~~ote that there are no necessary conditions for combining two tasks into 
one task, though this might result in a loss of efficiency or clarity. By 
the same token, a task can always be split into two, though perhaps also 
with some loss of efficiency. 

Terminology: 

In this discussion, ajob is defined as a group of one or more tasks, and 
a task is defined as a group of one or more actions. 

An action (act) is a locus of instruction execution, often a loop. 

A dependent action (dact) is an action containing one and only one 
dependent condition; this condition requires the action to walt until the 
condition is true, but the condition can only be made true by another 
dact. 

Decomposition Criteria: 

Given a task with actions A and B, if anyone of the following criteria are 
satisfied, then actions A and B should be in separate tasks: 

Time -- dact A and dact B are dependent on cyclical conditions 
that have different frequencies or phases. 

Asynchrony -- dact A and dact B are dependent on conditions that 
have no temporal relationships to each other. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

Priority -- dact A and dact B are dependent on conditions that 
require a different priority of attention. 

Clarity /Maintainability -- act A and act B are either functionally or 
logically removed from each other. 

pSOS+ imposes essentially no limit on the number of tasks that can 
coexist in an application. You simply specify in the pSOS+ Configuration 
Table the maximum number of tasks expected to be active 
contemporaneously, and pSOS+ allocates sufficient memory for the 
requisite system data structures. 

2.4 Overview of System Operations 
pSOS+ services can be separated into the following categories: 

• Task Management 

• Storage Allocation 

• Message Queue Services 

• Event and Asynchronous Signal Services 

• Semaphore Services 

• Time Management and Timer Services 

• Interrupt Completion Service 

• Error Handling Service 

• Multiprocessor Support Services 

Detailed descriptions of each system service call are provided in the 
pSOSystem Programmer's Reference manual. The remainder of this 
chapter, which provides more details on the principles of pSOS+ 
operation, is highly recommended reading for first-time pSOS+ users. 

2.4.1 Task States 

A task can be in one of several execution states. A task's state can 
change only as result of a system call made to pSOS+ by the task itself, 
or by another task or ISR. From a macroscopic perspective, a 
multi tasked application moves along by virtue of system calls into 
pSOS+, forcing pSOS+ to then change the states of affected tasks and, 
possibly as a result, switch from running one task to running another. 

pSOSystem System Concepts 2-7 



Chapter 2. pSOS+ Real-Time Kemel 

Therefore. gaining a complete understanding of task states and state 
transitions is an important step towards using pSOS+ properly and fully 
in the design of multitasked applications. 

To pSOS+. a task simply does not exist either before it is created. or after 
it is deleted. A created task must be started before it can execute. A 
created-but-unstarted task is therefore in an innocuous. embryonic state. 

Once started. a task resides in one of three major states: 

1. Ready 

2. Running 

3. Blocked 

A ready task is runnable (not blocked). and waits only for higher priority 
tasks to release the CPU. Since a task can be started only by a call from 
a running task. and there can be only one running task at any given 
instant. a new task always starts in the ready state. 

A running task is simply a ready task that has been given use of the CPU. 
There is always one and only one running task. In general. the running 
task has the highest priority among all ready tasks; however. there are a 
few user-selectable exceptions. 

A task becomes blocked only as the result of some deliberate action on 
the part of the task itself. usually a system call that causes the calling 
task to wait. Thus. a task cannot go from the ready state to blocked. 
because only a running task can send system calls. 

2.4.2 State Transitions 

Figure 4 depicts the possible states and state transitions for a pSOS+ 
task. Each state transition is described in detail below. Note the 
following abbreviations: 

• E for Running (Executing) 

• R for Ready 

• B for Blocked 

2-8 pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

Figure 4. Task State Transitions 

(E->B) A running task (E) becomes blocked when: 

1. It requests a message (~receive/~vreceive with wait) from an 
empty message queue; or 

2. It waits for an event condition (ev _receive) that is not presently 
pending; or 

3. It requests a semaphore token (sm--p with wait) that is not presently 
available; or 

4. It requests memory (m--,etseg with wait) that is not presently 
available; or 

5. It pauses for a time interval (tm_ wkafter) or until a particular time 
(tm_ wkwhen). 

(B->R) A blocked task (B) becomes ready when: 

1. A message arrives at the message queue (~send/ ~ vsend, 
~urgent/ ~ vurgent, ~broadcast/ ~ vbroadcast) where B has 
been waiting, and B is first in that wait queue; or 

2. An event is sent to B (ev_send), fulfilling the event condition it has 
been waiting for; or 

3. A semaphore token is returned (sm_ v), and B is first in that wait 
queue; or 

pSOSystem System Concepts 2-9 



Chapter 2. pSOS+ Real-Time Kernel 

2-10 

4. Memory returned to pSOS+ (m_retseg) now allows a memory 
segment that has been waiting in the memory region's wait queue to 
be allocated to B; or 

5. B has been waiting with a timeout option for events, a message, a 
semaphore, or a memory segment, and that timeout interval 
expires; or 

6. B has been delayed, and its delay interval expires or its wakeup time 
arrives; or 

7. B is waiting at a message queue, semaphore or memory region, and 
that queue, semaphore or region is deleted by another task. 

(B->E) A blocked task (B) becomes the running task when: 

1. Anyone of the (B->R) conditions occurs, and B also has higher 
priority than the last running task, provided that task has 
preemption enabled. 

(R->E) A ready task (R) becomes running when the last running 
task (E): 

1. Blocks; or 

2. Re-enables preemption, and R has higher priority than E: or 

3. Has preemption enabled, and E changes its own, or R's, priority so 
that R now has higher priority than E and all other ready tasks; or 

4. Runs out of its timeslice, its roundrobin mode is enabled, and R has 
the same priority as E. 

(E->R) The running task (E) becomes a ready task when: 

1. Anyone of the (B-> E) conditions occurs for a blocked task (B) as a 
result of a system call by E or an ISR; or 

2. Anyone of the conditions 2-4 of (R->E) occurs. 

A fourth, but secondary, state is the suspended state. A suspended task 
simply cannot run, until it is explicitly resumed. Suspended is very 
similar to blocked, but there are fundamental differences. 

First, a task can only block itself, but it can suspend other tasks as well 
as itself. One result is that a ready task can be removed from the ready 
state by suspension. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

Second, a blocked task can also be suspended. In this case, the effects 
are additive -- that task must be both unblocked and resumed, the order 
being irrelevant, before the task can become ready or running. 

NOTE: The task states discussed above should not be confused with 
user and supervisor program states that exist in MC68000-
based systems. The latter are hardware states of privilege. A 
task can run in the user state, or the supervisor state, or switch 
at will between the two -- its hardware state has nothing to do 
with its task state. 

2.4.3 Task Scheduling 

pSOS+ employs a priority-based, preemptive scheduling algorithm. In 
general, pSOS+ ensures that, at any point in time, the running task is the 
one with the highest priority among all ready-to-run tasks in the system. 
However, you can modify pSOS+ scheduling behavior by selectively 
enabling and disabling preemption or time-slicing for one or more tasks. 

Each task has a mode word (see section 2.5.3, "Task Mode Word"), with 
two settable bits that can affect scheduling. One bit controls the task's 
preemptibility. If disabled, then once the task enters the running state, 
it will stay running even if other tasks of higher priority enter the ready 
state. A task switch will occur only if the running task blocks, or if it re
enables preemption. 

A second mode bit controls time slicing. If the running task's timeslice 
bit is enabled, pSOS+ automatically tracks how long the task has been 
running. When the task exceeds the predetermined timeslice, and other 
tasks with the same priority are ready to run, pSOS+ switches to run one 
of those tasks. Timeslicing only affects scheduling among equal priority 
tasks. For more details on time slicing, see section 2.4.5, "Roundrobin by 
Timeslicing. " 

2.4.4 Task Priority 

A priority must be assigned to each task when it is created. There are 
256 priority levels -- 255 is the highest, 0 the lowest. Certain priority 
levels are reserved for use by special pSOSystem tasks. Level 0 is 
reserved for the IDLE daemon task furnished by pSOS+. Levels 240 - 255 
are reserved for a variety of high priority pSOSystem tasks, including the 
pSOS+ ROOT task, which runs at level 240. A task's priority, including 
that of system tasks, can be changed at runtime by calling the t_setpri 
system call. 

pSOSystem System Concepts 2-11 



Chapter 2. pSOS+ Real-Time Kernel 

When a task enters the ready state, pSOS+ puts it into an indexed ready 
queue, behind tasks of higher or equal priority. As noted earlier, all 
ready queue operations, including insertions and removals are achieved 
in fast, constant time. No search loop is ever needed. 

During dispatch, when it is about to exit and return to the application 
code, pSOS+ will normally run the task at the top of the ready queue. If 
this is the same task that was last running, then pSOS+ simply returns 
to it. OtheIWise, the last running task must have either blocked, or one 
or more ready tasks now have higher priority. In the first (blocked) case, 
pSOS+ will always switch to run the task currently at the top of the 
indexed ready queue. In the second case, technically known as 
preemption, pSOS+ will also perform a task switch, unless the last 
running task has its preemption mode disabled, in which case the 
dispatcher has no choice but to return to it. 

Note that a running task can only be preempted by a task of higher or 
equal (if time slicing enabled) priority. It should be obvious that 
assignment of priority levels is crucial in any application. A particular 
ready task simply cannot run, unless all tasks with higher priority are 
blocked. By the same token, a running task can be preempted at any 
time, if an interrupt occurs and the attendant ISR unblocks a higher 
priority task. 

2.4.5 Roundrobin by Timeslicing 

2-12 

In addition to priority, pSOS+ can use time sliCing to schedule task 
execution. However, time sliced (roundrobin) scheduling can be turned 
on/ off on a per task basis, and is always secondary to priority 
considerations. 

You can specify the timeslice quantum in the Configuration Table using 
the parameter kc_ticks2slice. For example, if this value is 6, and the 
clock frequency (kc_ticks2sec) is 60, a full slice will be 1/10 second. 

Each task carries a timeslice counter, initialized by pSOS+ to the 
times lice quantum when the task is created. Whenever a clock tick is 
announced to pSOS+, the pSOS+ time manager checks the running task's 
mode bits. If the task's roundrobin bit or the preemption bit are 
disabled, then its timeslice counter is untouched and ignored. If the 
running task's roundrobin bit and preemption bit are enabled, then 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

pSOS+ decrements its timeslice counter, unless it is already zero. If the 
count is 0, there are two possible outcomes, as follows: 

1. If all other presently ready tasks have lower priority, then no special 
scheduling takes place. The task's timeslice counter stays at zero, 
so long as it stays in the running or ready state. 

2. If one or more other tasks of the same priority are ready, pSOS+ 
moves the running task from the running state into the ready state, 
and re-enters it into the indexed ready queue behind all other ready 
tasks of the same priority. This forces the pSOS+ dispatcher to 
switch from that last running task to the task now at the top of the 
ready queue. The last running task's timeslice counter is given a 
full timeslice, in preparation for its next turn to run. 

Regardless of whether or not its roundrobin mode bit is enabled, when a 
task becomes ready from the blocked state, pSOS+ always inserts it into 
the indexed ready queue behind all tasks of higher or equal priority. At 
the same time, the task's timeslice counter is refreshed with a new, full 
count. 

NOTE: The preemption mode bit takes precedence over roundrobin 
scheduling. If the running task has preemption disabled, then 
it will preclude roundrobin and continue to run. 

In general, real-time systems rarely require time-slicing, except to insure 
that certain tasks will not inadvertently monopolize the CPU. Therefore, 
pSOS+ always initializes each task with the roundrobin mode disabled. 
For certain applications, automatic roundrobin based on timeslice might 
not be desirable. 

For example, shared priority is often used to prevent mutual preemption 
among certain tasks, such as those that share non-reentrant critical 
regions. In such cases, roundrobin should be left disabled for all such 
related tasks, in order to prevent pSOS+ from switching tasks in the 
midst of such a region. 

To maximize efficiency, a task's roundrobin should be left disabled, if: 

1. it has a priority level to itself, or 

2. it shares its priority level with one or more other tasks, but 
roundrobin by timeslice among them is not necessary. 

pSOSystem System Concepts 2-13 



Chapter 2. pSOS+ Real-Time Kernel 

2.4.6 Manual Roundrobin 

As noted earlier, automatic roundrobin by timeslice might not be 
suitable for certain applications. However, there might still be a need to 
perform roundrobin manually -- that is, the running task might need to 
explicitly give up the CPU to other ready tasks of the same priority. 

pSOS+ supports manual roundrobin, via the tm_ wkafter system call 
with a zero interval. If the running task is the only ready task at that 
priority level, then the call simply returns to it. If there are one or more 
ready tasks at the same priority, then pSOS+ will take the calling task 
from the running into the ready state, thereby putting it behind all ready 
tasks of that priority. This forces pSOS+ to switch from that last running 
task to another task of the same priority now at the head of the ready 
queue. 

2.4.7 Dispatch Criteria 

Dispatch refers to the exit stage of pSOS+, where it must decide which 
task to run upon exit; that is, whether it should continue with the 
running task, or switch to run another ready task. 

If pSOS+ is entered because of a system call from a task, then pSOS+ will 
definitely exit through the dispatcher, in order to catch up with any state 
transitions that might have been caused by the system call. For 
example, the calling task might have blocked itself, or made a higher 
priority blocked task ready. On the other hand, if pSOS+ is entered 
because of a system call by an ISR, then pSOS+ will not dispatch, but will 
instead return directly to the calling ISR, to allow the ISR to finish its 
duties. 

Since a system call from an ISR might have caused a state transition, 
such as readying a blocked task, a dispatch must be forced at some 
paint. This is the reason for the I_RETURN entry into pSOS+, which is 
used by an ISR to exit the interrupt service, and at the same time allow 
pSOS+ to execute a dispatch. 

2.4.8 Objects, Names, and IDs 

2-14 

pSOS+ is an object-oriented operating system kernel. Object classes 
include tasks, memory regions, memory partitions, message queues, and 
semaphores. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

Each object is created at runtime and known throughout the system by 
two identities -- a pre-assigned name and a run-time ID. An object's 32-
bit (4 characters, if ASCII) name is user-assigned and passed to pSOS+ 
as input to an Obj_CREATE (e.g. t_create) system call. pSOS+ in turn 
generates and assigns a unique, 32-bit object ID (e.g. Tid) to the new 
object. Except for Obj_IDENT (e.g. ~ident) calls, all other system calls 
that reference an object must use its ID. For example, a task is 
suspended using its Tid, a message is sent to a message queue using its 
Qid, and so forth. 

The run-time ID of an object is of course known to its creator task -- it is 
returned by the Obj_ CREATE system call. Any other task that knows 
an object only by its user-assigned name can obtain its ID in one of two 
ways: 

1. Use the system call Obj_IDENT once with the object's name as 
input; pSOS+ returns the object's ID, which can then be saved away. 

2. Or, the object ID can be obtained from the parent task in one of 
several ways. For example, the parent can store away the object's 
ID in a global variable -- the Tid for task ABCD can be saved in a 
global variable with a name like ABCD_TID, for access by all other 
tasks. 

An object's ID contains implicitly the location, even in a multiprocessor 
distributed system, of the object's control block (e.g. TCB or gCB) , a 
structure used by pSOS+ to manage and operate on the abstract object. 
This is an important notion, since using the ID to reference an object 
eliminates the need for pSOS+ to search for its control structure. 

Objects are truly dynamic -- the binding of a named object to its 
reference handle is deferred to runtime. By analogy, pSOS+ treats 
objects like files. A file is created by name. But to avoid searching, read 
and write operations use the file's ID returned by create or open. Thus, 
t_create is analogous to File_Create, and t_ident to File_Open. 

As noted above, an object's name can be any 32-bit integer. However, it 
is customary to use four-character ASCII names, since ASCII names are 
more easily remembered, and pSOSystem debug tools will display an 
object name in ASCII, if possible. 

pSOSystem System Concepts 2-15 



Chapter 2. pSOS+ Real-Time Kernel 

2.5 Task Management 

2.5.1 

In general, task management provides dynamic creation and deletion of 
tasks, and control over task attributes. The available system calls in this 
group are: 

t_create Create a new task. 
t_ident Get the ID of a task. 
t_start Start a new task. 
t_restart Restart a task. 
t_delete Delete a task. 
t_suspend Suspend a task. 
t_resume Resume a suspended task. 
t_setpri Change a task's priority. 
t_mode Change calling task's mode bits. 
t_setreg Set a task's notepad register. 

t-ietreg Get a task's notepad register. 

Birth of a Task 

Task creation refers to operations that pass a task and its attributes to 
the pSOS+ kernel, so that pSOS+ can schedule the task for execution and 
allow it to compete for other system resources. 

The code segment of a task must be memory resident. It can be in ROM, 
or loaded into RAM either at startup or at the time of its creation. A 
task's data area can be statically assigned, or dynamically requested 
from pSOS+. Memory considerations are discussed in detail in the 
pSOSystem Programmer's Reference manual. 

Task creation requires two system calls -- t_create and t_start. A parent 
task creates an offspring task by calling t_create, and passing the 
following as input parameters: ' 

• A user-assigned name 

• A priority level for scheduling purposes 

• Sizes for one or two stacks 

• Several flags 

2-16 pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

One flag is meaningful only in a multiprocessor system (see Chapter 3, 
"pSOS+m Multiprocessing Kernel"). A second flag specifies whether the 
task uses the FPU coprocessor. 

t_create acquires and sets up a Task Control Block (TCB) for the 
newcomer. then it allocates a memory segment (from Region 0) large 
enough for the task's stack(s) and any necessary extensions. Extensions 
are extra memory areas required for optional features. For example: 

• An FPU save area for systems with co-processors 

• Memory needed by other system components (such as pHILE+. 
pREPC+' pNA+. and so forth) to hold per-task data 

This memory segment is linked to the TCB. t_create returns a task 
identifier assigned by pSOS+. 

The t_start call must be used to complete the creation. t_start supplies 
the starting address of the new task, a mode word that controls its initial 
execution behavior (see section 2.5.3, ''Task Mode Word"), and an 
optional argument list. Once started, the task is ready-to-run. and is 
scheduled for execution based on its assigned priority. 

With two exceptions, all user tasks that form a multitasking application 
are created dynamically at runtime. One exception is the ROOT task. 
which is created and started by pSOS+ as part of its startup initialization. 
Mter startup, pSOS+ simply passes control to the ROOT task. The other 
exception is the default IDLE task. also provided as part of startup. All 
other tasks are created by explicit system calls to pSOS+. when and as 
needed. 

In some designs, ROOT can simply initialize the rest of the application 
by creating at once all the other tasks. In other systems, ROOT might 
create a few tasks, which in tum can create a second layer of tasks, 
which in turn can create a third layer. and so on. The total number of 
active tasks in your system is limited by the KC_NTASK specification in 
the pSOS+ Configuration Table. 

2.5.2 Task Control Block 

A task control block (TCB) is a system data structure allocated and 
maintained by pSOS+ for each task after it has been created. A TCB 
contains everything the kernel needs to know about a task, including its 
name. priority. remainder of timeslice, and of course its context. 
Generally, context refers to the state of machine registers. When a task 

pSOSystem System Concepts 2-17 



Chapter 2. pSOS+ Real-Time Kernel 

is running, its context is highly dynamic and is the actual contents of 
these registers. When the task is not running, its context is frozen and 
kept in the TCB, to be restored the next time it runs. 

There are certain overhead structures within a TCB that are used by 
pSOS+ to maintain it in various system-wide queues and structures. For 
example, a TCB might be in one of several queues -- the ready queue, a 
message queue wait queue, a semaphore wait queue, or a memory region 
wait queue. It might additionally be in a timeout queue. 

At pSOS+ startup, a fIXed number of TCBs is allocated reflecting the 
maximum number of concurrently active tasks specified in the pSOS+ 
Configuration Table entry kc_ntask. A TCB is allocated to each task 
when it is created, and is reclaimed for reuse when the task is deleted. 
Memory considerations for TCBs are given in the pSOSystem 
Programmer's Reference manual. 

A task's Tid contains, among other things, the encoded address of the 
task's TCB. Thus, for system calls that supply Tid as input, pSOS+ can 
qUickly locate the target task's TCB. By convention, a Tid value of 0 is 
an alias for the running task. Thus, if 0 is used as the Tid in a system 
call, the target will be the calling task's TCB. 

2.5.3 Task Mode Word 

2-18 

Each task carries a mode word that can be used to modify scheduling 
decisions or control its execution environment: 

• Preemption Enabled/Disabled -- If a task has preemption disabled, 
then so long as it is ready, pSOS+ will continue to run it, even if 
there are higher priority tasks also ready. 

• Roundrobin Enabled/Disabled -- Its effects are discussed in 
section 2.4.5, "Roundrobin by Timeslicing." 

• ASR Enabled/Disabled -- Each task can have an Asynchronous 
Signal Service Routine (ASR) , which must be established by the 
as_catch system call. Asynchronous signals behave much like 
software interrupts. If a task's ASR is enabled, then an as_send 
system call directed at the task will force it to leave its expected 
execution path, execute the ASR, and then return to the expected 
execution path. See section 2.11.1, ''The ASR," for more details on 
ASRs. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

• Interrupt Mask Level -- A task can execute optionally at a non-zero 
interrupt mask level, although this is advisable only for short 
instruction paths. 

A task's mode word is set up initially by the t_start call, and can be 
changed dynamically using the t_mode call. 

NOTE: To ensure correct operation of your application, you should 
avoid direct modification of the interrupt mask level in the CPU 
status register. Use Cmode for such purposes, so that pSOS+ is 
correctly informed of such changes. 

2.5.4 Task Stacks 

pSOS+ switches stacks whenever it switches from one running task to 
another. A task must have at least a supervisor stack. A task must also 
have a user stack, if it (ASR included) ever executes in the user state; 
otherwise it will crash. The CPU automatically selects and uses the right 
stack. 

For more information on stack usage, refer to the pSOSystem 
Programmer's Reference manual. 

2.5.5 Task Memory 

pSOS+ allocates and maintains a task's stacks, but it has no explicit 
knowledge of a task's code or data areas. 

For most applications, application code is memory resident prior to 
system startup, being either ROM resident or bootloaded. For some 
systems, a task can be brought into memory just before it is created or 
started; in which case, memory allocation and/or location sensitivity 
should be considered. 

2.5.6 Death of a Task 

A task can terminate itself, or another task. The t_delete pSOS+ Service 
removes a created task by reclaiming its TCB and returning the stack 
memory segment to Region O. The TCB is marked as free, and can be 
reused by a new task. 

pSOSystem System Concepts 2-19 



Chapter 2. pSOS+ Real-Time Kernel 

The proper reclamation of resources such as segments, buffers, or 
semaphores should be an important part of task deletion. This is 
particularly true for dynamic applications, wherein parts of the system 
can be shutdown and/or regenerated on demand. 

In general, t_delete should only be used to perfonn self-deletion. The 
reason is simple. When used to forcibly delete another task, t_delete 
denies that task a chance to perfonn any necessary cleanup work. A 
preferable method is to use the t_restart call, which forces a task back 
to its initial entry point. Since t_restart can pass an optional argument 
list, the target task can use this to distinguish between a t_start, a 
meaningful t_restart, or a request for self-deletion. In the latter case, 
the task can return any allocated resources, execute any necessary 
cleanup code, and then gracefully call t_delete to delete itself. 

A deleted task ceases to exist insofar as pSOS+ is concerned, and any 
references to it, whether by name or by Tid, will evoke an error return. 

2.5.7 Notepad Registers 

Each task has 16 software notepad 32-bit registers. They are carried in 
a task's TCB, and can be set and read using the t_setreg and t-cetreg 
calls, respectively. The purpose of these registers is to provide to each 
task, in a standard system-wide manner, a set of named variables that 
can be set and read by other tasks, including by remote tasks on other 
processor nodes. 

Eight of these notepad registers are reserved for system use. The 
remaining eight can be used for any application specific purposes. 

2.5.8 The Idle Task 

2-20 

At startup, pSOS+ automatically creates and starts an idle task, named 
IDLE, whose sole purpose in life is to soak up CPU time when no other 
task can run. This task, which runs at priority 0, executes only one 
instruction -- STOP. 

Nevertheless, IDLE is an important task. It must not be tampered with 
via t_delete, t_suspend, t_setpri, or t_mode, unless you have provided 
an equivalent task to fulfill this necessary idling function. In certain 
cases, IDLE must be replaced. One such instance is if your hardware or 
test setup cannot properly support the STOP instruction. 

IDLE runs in supervisor mode with a supervisor stack allocated from 
Region ° with a size equal to kc_rootsstk. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

2.6 Storage Allocation 
pSOS+ storage management services provide dynamic allocation of both 
variable size segments and fixed size buffers. The system calls are 

m_create 
m_ident 
m_delete 
m-letseg 
m_retseg 
pt_create 
pt_ident 
pt_delete 
pt-letbuf 
pt_retbuf 

Create a memory region. 
Get the ID of a memory region. 
Delete a memory region. 
Allocate a segment from a region. 
Return a segment to a region. 
Create a partition of buffers. 
Get the ID of a partition. 
Delete a partition of buffers. 
Get a buffer from a partition. 
Return a buffer to a partition. 

2.6. 1 Regions and Segments 

A memory region is a user-defined, physically contiguous block of 
memory. Regions can possess distinctive implicit attributes. For 
example, one can reside in strictly local RAM, another in system-wide 
accessible RAM. Regions must be mutually disjoint and can otherwise 
be positioned on any long word boundary. 

Like tasks, regions are dynamic abstract objects managed by pSOS+. A 
region is created using the m_create call with the following inputs -- its 
user-assigned name, starting address and length, and unit_size. The 
pSOS+ system call m_ create returns a region ID (RNid) to the caller. For 
any other task that knows a region only by name, the m_ident call can 
be used to obtain a named region's RNid. 

A segment is a variable-sized piece of memory from a memory region, 
allocated by pSOS+ on the m-letseg system call. Inputs to m-letseg 
include a region ID, a segment size that might be anything, and an option 
to wait until there is suffiCient free memory in the region. The m_retseg 
call reclaims an allocated segment and returns it to a region. 

A region can be deleted. although this is rarely used in a typical 
application. For one thing. deletion must be carefully considered, and is 
allowed by pSOS+ only if there are no outstanding segments allocated 
from it, or if the delete override bit was set when the region was created. 

pSOSystem System Concepts 2-21 



Chapter 2. pSOS+ Real-Time Kemel 

2.6.2 Special Region 0 

pSOS+ requires at least one region in order to function. The start address 
and length of this special region, with the name RN#O and RegioD_id 0, 
are specified in the pSOS+ Configuration Table. During pSOS+ startup, 
pSOS+ first carves a pSOS+ Data Segment from the beginning of Region 
o for its own data area and control structures such as TCBs, etc. A 
formula to calculate the exact size of this pSOS+ Data Segment is given 
in the pSOSystem Programmer's Reference manual. The remaining block 
of Region 0 is used for task stacks, as well as any user m-Jetseg calls. 

pSOS+ pre-allocates memory for its own use. That is, after startup, 
pSOS+ makes no dynamic demands for memory. However, when the 
t_create system call is used to create a new task, pSOS+ will internally 
generate an m-Jetseg call to obtain a segment from Region 0 to use as 
the task's supervisor and user(optional) stacks. Similarly, when 
~vcreate is used to create a variable length message queue, pSOS+ 
allocates a segment from Region 0 to store messages pending at the 
queue. 

Note that pSOS+ keeps track of each task's stack segment and each 
variable length message queue's message storage segment. When a task 
or variable length queue is deleted, pSOS+ automatically reclaims the 
segment and returns it to Region O. 

Like any memory region, your application can make m-Jetseg and 
m_retseg system calls to Region 0 to dynamically allocate and return 
variable-sized memory segments. Region 0, by default, queues any tasks 
waiting there for segment allocation by FIFO order. 

2.6.3 Allocation Algorithm 

2-22 

pSOS+ takes a piece at the beginning of the input memory area to use as 
the region's control block (RNCB). The size of the RNCB varies, 
depending on the region size and its unit_size parameter, described 
below. A formula giving the size of an RNCB is given in the pSOSystem 
Programmer's Reference manual. 

Each memory region has a unit_size parameter, specified as an input to 
m_create. This region-specific parameter is the region's smallest unit of 
allocation. This unit must be a power of2, but greater than or equal to 
16, bytes. Any segment allocated by m-Jetseg is always a size equal to 
the nearest multiple of unit_size. For example, if a region's unit_size is 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

32 bytes, and an rn-ietseg call requests 130 bytes, then a segment with 
5 units or 160 bytes will be allocated. A region's length cannot be greater 
than 32,767 times the unit_size of the region. 

The unit_size specification has a significant impact on (1) the efficiency 
of the allocation algorithm, and (2) the size of the region's RNCB. The 
larger the unit_size, the faster the m-,etseg and m_retseg execution, 
and the smaller the RNCB. 

The pSOS+ region manager uses an efficient heap management 
algorithm. A region's RNCB holds an allocation map and an heap 
structure used to manage an ordered list of free segments. By 
maintaining free segments in order of decreasing size, an m-,etseg call 
only needs to check the first such segment. If the segment is too small, 
then allocation is clearly impossible. The caller can wait, wait with 
timeout, or return immediately with an error code. If the segment is large 
enough, then it will be split. One part is returned to the calling task. The 
other part is re-entered into the heap structure. 

When m_retseg returns a segment, pSOS+ always tries to merge it with 
its neighbor segments, if one or both of them happen to be free. Merging 
is fast, since the neighbor segments can be located without searching. 
The resulting segment is then re-entered into the heap structure. 

2.6.4 Partitions and Buffers 

A memory partition is a user-defined, physically contiguous block of 
memory, divided into a set of equal-sized buffers. Aside from having 
different buffer sizes, partitions can possess distinctive implicit 
attributes. For example, one can reside in strictly local RAM, another in 
system-wide accessible RAM. Partitions must be mutually disjoint. 

Like regions, partitions are dynamiC abstract objects managed by pSOS+. 
A partition is created using the pt_create call with the following inputs 
-- its user-aSSigned name, starting address and length, and buffer_size. 
The system call pt_create returns a partition ID (PTid) assigned by 
pSOS+ to the caller. For any other task that knows a partition only by 
name, the pt_ident call can be used to obtain a named partition's PTid. 

pSOS+ takes a small piece at the beginning of the input memory area to 
use as the partition's control block (PTCB). The rest of the partition is 
organized simply as a pool of equal-sized buffers. Because of this simple 
organization, the pt-ietbuf and pt_retbuf system calls are highly 
efficient. 

pSOSystem System Concepts 2-23 



Chapter 2. pSOS+ Real-Time Kernel 

A partition has the following limits -- it must start on a long-word 
boundary and its buffer size must be a power of 2, but greater than or 
equal to 4 bytes. 

Partitions can be deleted, although this is rarely used in a typical 
application. For one thing, deletion must be carefully considered, and is 
allowed by pSOS+ only if there are no outstanding buffers allocated from 
it. 

Partitions can be used, in a tightly-coupled multiprocessor 
configuration, for efficient data exchange between processor nodes. For 
a complete discussion of shared partitions, see Chapter 3, "pSOS+m 
Multiprocessing Kernel." 

2.7 Communication, Synchronization, Mutual Exclusion 
A pSOS+ based application is generally partitioned into a set of tasks and 
interrupt service routines (ISRs). Conceptually, each task is a thread of 
independent actions that can execute concurrently with other tasks. 
However, cooperating tasks need to exchange data, synchronize actions, 
or share exclusive resources. To service task-to-task as well as ISR-to
task communication, synchronization, and mutual exclusion, pSOS+ 
provides three sets of facilities -- message queues, events, and 
semaphores. 

2.8 The Message Queue 

2-24 

Message queues provide a highly flexible, general-purpose mechanism to 
implement communication and synchronization. The related system 
calls are listed below: 

q..create 
q..ident 

q..delete 

q..receive 

q..send 

q..urgent 

q..broadcast 

Create a message queue. 

Get the ID of a message queue. 

Delete a message queue. 

Get / wait for message from a queue. 

Post a message at end of a queue. 

Put a message at head of a queue. 

Broadcast a message to a queue. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

Like a task, a message queue is an abstract object, created dynamically 
using the ~create system call. ~create accepts as input a user
assigned name and several characteristics, including whether tasks 
waiting for messages there will wait first-in-first-out, or by task priority, 
whether the message queue has a limited length, and whether a set of 
message buffers will be reserved for its private use. 

A queue is not explicitly bound to any task. Logically, one or more tasks 
can send messages to a queue, and one or more tasks can request 
messages from it. A message queue therefore serves as a many-to-many 
communication switching station. 

Consider this simple many-to-l communication example. A server task 
can use a message queue as its input request queue. Several client tasks 
independently send request messages to this queue. The server task 
waits at this queue for input requests, processes them, and goes back for 
more -- a simple single queue, single server implementation. 

The number of message queues in your system is limited only by the 
kc_nqueue specification in the pSOS+ Configuration Table. 

A message queue can be deleted using the ~ delete system call. If one 
or more tasks are waiting there, they will be removed from the wait queue 
and returned to the ready state. When they run, each task will have 
returned from their respective ~receive call with an error code (Queue 
Deleted). On the other hand, if there are messages posted at the queue, 
then pSOS+ will reclaim the message buffers and all message contents 
are lost. Message buffers are covered in section 2.8.3, "Messages and 
Message Buffers." 

2.8. 1 The Queue Control Block 

Like a Tid, a message queue's Qid carries the location of the queue's 
control block (QCB), even in a multiprocessor configuration. This is an 
important notion, since using the Qid to reference a message queue 
totally eliminates the need to search for its control structure. 

A QCB is allocated to a message queue when it is created, and reclaimed 
for re-use when it is deleted. This structure contains the queue's name 
and ID, wait -queueing method, and message queue length and limit. 
Memory considerations for QCBs are given in the pSOSystem 
Programmer's Reference manual. 

pSOSystem System Concepts 2-25 



Chapter 2. pSOS+ Real-Time Kernel 

2.8.2 Queue Operations 

A queue usually has two types of users- sources and sinks. A source 
posts messages, and can be a task or an ISR. A sink consumes 
messages, and can be another task or (with certain restrictions) an ISR. 

There are three different ways to post a message -- CLsend, CLurgent, 
and CLbroadcast. 

When a message arrives at a queue, and there is no task waiting, it is 
copied into a message buffer taken from either the shared or (if it has 
one) the queue's private, free buffer pool. The message buffer is then 
entered into the message queue. A CLsend call puts a message at the 
end of the message queue. CLurgent inserts a message at the front of 
the message queue. 

When a message arrives at a queue, and there are one or more tasks 
already waiting there, then the message will be given to the first task in 
the wait queue. No message buffer will be used. That task then leaves 
the queue, and becomes ready to run. 

The CLbroadcast system call broadcasts a message to all tasks waiting 
at a queue. This provides an efficient method to wake up multiple tasks 
with a single system call. 

There is only one way to request a message from a queue -- the CLreceive 
system call. If no message is pending, the task can elect to wait, wait 
with timeout, or return unconditionally. If a task elects to wait, it will 
either be by first-in-first-out or by task priority order, depending on the 
specifications given when the queue was created. If the message queue 
is non -empty, then the first message in the queue will be returned to the 
caller. The message buffer that held that message is then released back 
to the shared or the queue's private free buffer pool. 

2.8.3 Messages and Message Buffers 

2-26 

Messages are fIXed length, consisting of 4 long-words. A message's 
content. is entirely dependent on the application. It can be used to carry 
data, pointer to data, data size, the sender's Tid, a response queue Qid, 
or some combination of the above. In the degenerate case where a 
message is used purely for synchronization, it might carry no 
information at all. 

When a message arrives at a message queue and no task is waiting, the 
message must be copied into a message buffer that is then entered into 
the message queue. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

A message buffer is 6 long words. The extra two long-words are used as 
a link field and a message length field by pSOS+. At startup, pSOS+ 
allocates a shared pool of free message buffers; the size of this pool is 
equal to the kC_Dmsgbuf entry in the pSOS+ Configuration Table. 

A message queue can be created to use either a pool of buffers shared 
among many queues or its own private pool of buffers. In the first case, 
messages arriving at the queue will use free buffers from the shared pool 
on an as-needed basis. In the second case, a number of free buffers 
equal to the queue's maximum length will be taken from Region 0 and 
set aside for the private use of the message queue. 

2.8.4 Two Examples of Queue Usage 

The examples cited below, and depicted in Figure 5, illustrates the ways 
in which the generalized message queue facility can be used to 
implement various synchronization requirements. 

The first example typifies the straightforward use of a message queue as 
a FIFO queue between one or more message sources, and one or more 
message sinks. Synchronization provided by a single queue is one-way 
and non-interlocked. That is, a message sink synchronizes its activities 
to the arrival of a message to the queue, but a message source does not 
synchronize to any queue or sink condition -- it can elect to produce 
messages at its own pace. 

The second example utilizes two queues to close the synchronization 
loop, and provide interlocked communication. A task that is a message 
sink to one queue is a message source to the other, and vice-versa. Task 
A sends a message to queue X, and does not continue until it receives a 
message from queue Y. Task B synchronizes itself to the arrival of a 
message to queue X, and responds by sending an acknowledgment 
message to queue Y. The result is that tasks A and B interact in an 
interlocked, coroutine-like fashion. 

pSOSystem System Concepts 2-27 



Chapter 2. pSOS+ Real-Time Kernel 

TASK A: TASK B: 

TASK A: TASK B: 

Figure 5. One Way and Two Way Queue Synchronization 

2.8.5 Variable Length Message Queues 

2-28 

Recall that ordinary message queues use fixed-length 16-byte messages. 
While 16 bytes is adequate for most purposes, in some cases it is 
convenient to use messages of differing sizes, particularly larger 
messages. pSOS+ supports a special type of message queue called a 
variable length message queue. A variable length message queue can 
accept messages of any length up to a maximum specified when the 
queue is created. 

Internally pSOS+ implements variable length message queues as a 
special type of ordinary queue. That is, ordinary and variable length 
message queues are not different objects, but rather, different forms of 
the same object. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

Although they are implemented using the same underlying object, pSOS+ 
provides a complete family of services to create, manage, and use 
variable length message queues. These services are as follows: 

~vcreate 

~vident 

~vdelete 

~vreceive 

~vsend 

~vurgent 

~ vbroadcast 

Create a variable length message queue 

Get the 1D of a variable length message queue 

Delete a vaIiable length message queue 

Get or wait for message from a variable length 
message queue 

Post a message at end of a variable length 
message queue 

Put a nlessage at head of a variable length 
message queue 

Broadcast a message to a variable length 
message queue 

A variable length queue is created with the ~ vcreate service call. In 
addition to name and flags the caller provides two additional input 
parameters. The first specifies the queue's maximum message length A 
message of any length up to this maximum can be sent to the queue. 
Any attempt to send a message larger than a queue's maximum message 
length results in an error. The second parameter specifies the queue's 
maximum message queue length. This is the maximum number of 
messages that can be waiting at the queue simultaneously. 

Unlike ordinary queues, which use buffers from the system~wide buffer 
pool for message storage, variable length queues always store messages 
in buffers that are allocated from region 0 when the queue is created. 
These buffers are then available for the exclusive use of the queue. They 
are never shared with other queues and they are only returned to region 
o if and when the queue is deleted. Note, this is the only time when 
storage for a pSOS+ object is allocated from region O. 

Once a variable length message queue has been created, variable length 
message are sent and received using the Q.... vsend, Q.... vurgent, 
Q.... vbroadcast, and Q.... vreceive service calls. The calls operate exactly 
like their ordinary counterparts (Q....send, Q....urgent, q...broadcast. and 
Q.... vreceive), except the caller must provide an additional parameter that 
specifies the length of the message. 

pSOSystem System Concepts 2-29 



Chapter 2. pSOS+ Real-Time Kernel 

The remaining two variable length message queue services. ~ vident 
and ~ vdelete are identical to their ordinary counterparts (~ident and 
~delete) in every respect. 

Note that although ordinary and variable length message queues are 
implemented using the same underlying object, service calls cannot be 
mixed. For example, ~send cannot be used to post a message to a 
variable length message queue. Similarly. ~vsend cannot be used to 
send a message to an ordinary queue. There is one exception -- ~ident 
and ~ vident are identical. When searching for the named queue, both 
return the first queue encountered that has the specified name, 
regardless of the queue type. 

2.9 Events 
pSOS+ provides a set of synchronization-by-event facilities. Each task 
has thirty-two events flags it can wait on, bit-wise encoded in a 32-bit 
word. The high 16 bits are reserved for system use. The lower 16 event 
flags are completely user definable. 

Two pSOS+ system calls provide synchronization by events between 
tasks and between tasks and ISRs: 

ev_receive 

ev_send 

Get or wait for events. 

Send events to a task. 

ev _send is used to send one or more events to another task. With 
ev _receive, a task can wait for, with or without timeout, or request 
without waiting, one or more of its own events. One important feature of 
events is that a task can wait for one event, one of several events (or), or 
all of several events (and). 

2.9. 1 Event Operations 

2-30 

Events are independent of each other. The ev_receive call permits 
synchronization to the arrival of one or more events, qualified by an AND 
or OR condition. If all the required event bits are on (Le. pending), then 
the ev_receive call resets them and returns immediately. Otherwise, the 
task can elect to return immediately or block until the desired event(s) 
have been received. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

A task or ISR can send one or more events to another task. If the target 
task is not waiting for any event, or if it is waiting for events other than 
those being sent, ev _send simply turns the event bit(s) on, which makes 
the events pending. If the target task is waiting for some or all of the 
events being sent, then those arriving events that match are used to 
satisfy the waiting task. The other non-matching events are made 
pending, as before. If the requisite event condition is now completely 
satisfied, the task is unblocked and made ready-to-run; otherwise, the 
wait continues for the remaining events. 

2.9.2 Events Versus Messages 

2.10 

Events differ from messages in the following sense: 

• An event can be used to synchronize with a task, but it cannot 
directly carry any information. 

• Topologically, events are sent point to point. That is, they explicitly 
identify the receiving task. A message, on the other hand, is sent to 
a message queue. In a multireceiver case, a message sender does 
not necessarily know which task will receive the message. 

• One ev _receive call can condition the caller to wait for multiple 
events. ~receive, on the other hand, can only wait for one message 
from one queue. 

• Messages are automatically buffered and queued. Events are 
neither counted nor queued. If an event is already pending when a 
second, identical one is sent to the same task, the second event will 
have no effect. 

Semaphores 
pSOS+ provides a set of familiar semaphore operations. In general, they 
are most useful as resource tokens in implementing mutual exclusion. 
The related system calls are listed below: 

sm_create 
sm_ldent 
sm_delete 
sm-p 
sm_v 

Create a semaphore. 

Get the ID of a semaphore. 

Delete a semaphore. 

Get / wait for a semaphore token. 

Return a semaphore token. 

pSOSystem System Concepts 2-31 



Chapter 2. pSOS+ Real-Time Kernel 

2.10.1 

Like a message queue, a semaphore is an abstract object, created 
dynamically using the sm_create system call. sm_create accepts as 
input a user-assigned name, an initial count, several characteristics, 
including whether tasks waiting for the semaphore will wait first-in-first
out, or by task priority. The initial count parameter should reflect the 
number of available "tokens" at the semaphore. sm_create assigns a 
unique ID, the SMid, to each semaphore. 

The number of semaphores in your system is limited only by the 
kc_nsema4 specification in the pSOS+ Configuration Table. 

A semaphore can be deleted using the sm_delete system call. If one or 
more tasks are waiting there, they will be removed from the wait queue 
and returned to the ready state. When they run, each task will have 
returned from their respective sm-p call with an error code (Semaphore 
Deleted). Any attempt to return tokens to it (sm_v calls) will be rejected. 

The Semaphore Control Block 

Like a Qid, a semaphore's SMid carries the location of the semaphore 
control block (SMCB), even in a multiprocessor configuration. This is an 
important notion, since using the SMid to reference a semaphore 
eliminates completely the need to search for its control structure. 

A SMCB is allocated to a semaphore when it is created, and reclaimed for 
re-use when it is deleted. This structure contains the semaphore's name 
and ID, the token count, and wait-queueing method. It also contains the 
head and tail of a doubly linked task wait queue. 

Memory considerations for SMCBs are given in the pSOSystem 
Programmer's Reference manual. 

2.10.2 Semaphore Operations 

2-32 

pSOS+ supports the two traditional P and V semaphore primitives. The 
sm-p call requests a token. If the semaphore token count is non-zero, 
then sm-p decrements the count and the operation is successful. If the 
count is zero, then the caller can elect to wait, wait with timeout, or 
return unconditionally. If a task elects to wait, it will either be by first
in-fIrst-out or by task priority order, depending on the specifications 
given when the semaphore was created. 

pSOSystem System Concepts 



2.11 

2.11.1 

Chapter 2. pSOS+ Real-Time Kernel 

The sm_ v call returns a semaphore token. If no tasks are waiting at the 
semaphore, then sm_ v simply increments the semaphore token count. 
If tasks are waiting, then the first task in the semaphore's wait list is 
released from the list and made ready to run. 

Asynchronous Signals 
Each task can optionally have an Asynchronous Signal Service Routine 
(ASR). The ASR's purpose is to allow a task to have two asynchronous 
parts -- a main body and an ASR. In essence, just as one task can 
execute asynchronously from another task, an ASR provides a similar 
capability within a task. 

Using signals, one task or ISR can selectively force another task out of 
its normal locus of execution -- that is, from the task's main body into its 
ASR. Signals provide a "software interrupt" mechanism. This 
asynchronous communications capability is invaluable to many system 
designs. Without it, workarounds must depend on synchronous services 
such as messages or events, which, even if possible, suffer a great loss 
in efficiency. 

There are three related system calls: 

as_catch Establish a task's ASR. 
Send signals to a task. 
Return from an ASR. 

An asynchronous signal is a user-defined condition. Each task has 32 
signals, encoded bit-wise in a long word. To receive signals, a task must 
establish an ASR using the as_catch call. The as_send call can be used 
to send one or more asynchronous signals to a task, thereby forcing the 
task, the next time it is dispatched, to first go to its ASR. At the end of 
an ASR, a call to as_return allows pSOS+ to return the task to its original 
point of execution. 

The ASR 

A task can have only one active ASR, established using the as_catch call. 
A task's ASR executes in the task's context -- from the outside, it is not 
possible to discern whether a task is executing in its main code body or 
its ASR. 

pSOSystem System Concepts 2-33 



Chapter 2. pSOS+ Real-Time Kernel 

The as_catch call supplies both the ASR's starting address and its initial 
mode of execution. This mode replaces the mode of the task's main code 
body (see section 2.5.3, 'Task Mode Word") as long as the ASR is 
executing. It is used to control the ASR's execution behavior, induding 
whether it is preemptible, whether it executes in the user or supervisor 
state, and whether or not further asynchronous signals are accepted. 
Typically, ASRs execute with asynchronous signals disabled. Otherwise, 
the ASR must be programmed to handle re-entrancy. 

The details of how an ASR gains control is processor-specific; this 
infonnation can be found in the pSOSystem Programmer's Reference 
manual. 

A task can disable and enable its ASR selectively by calling t_mode. Any 
signals received while a task's ASR is disabled are left pending. When re
enabled, an ASR will receive control if there are any pending signals. 

2. 11.2 Asynchronous Signal Operations 

The as_send call simply makes the specified signals pending at the target 
task, without affectlng its state or when it will run. If the target task is 
not the running task, its ASR takes over only when it is next dispatched 
to run. If the target is the running task, which is possible only if the 
signals are sent by the task itself or, more likely. by an ISR, then the 
running task's course changes immediately to the ASR. 

2. 11.3 Signals Versus Events 

Despite their resemblance, asynchronous signals are fundamentally 
different from events, as follows: 

• To synchronize to an event, a task must explicitly call ev _receive. 
ev_send by itself has no effect on the receiving task's state. By 
contrast, as_send can unilaterally force the receiving task to execute 
its ASR. 

• From the perspective of the receiving task, response to events is 
synchronous; it occurs only after a successful ev _receive call. 
Response to signals is asynchronous; it can happen at any point in 
the task's execution. Note that, while this involuntary-response 
behavior is by design, it can be modified to some extent by using 
t_mode to disable (I.e. postpone) asynchronous signal processing. 

2-34 pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

2. 12 Time Management 

2.12.1 

Time management provides the following functions: 

• Maintain calendar time and date. 

• Timeout (optional) a task that is waiting for messages. semaphores. 
events or segments. 

• Wake up or send an alarm to a task after a deSignated interval or at 
an appOinted times. 

• Track the running task's timeslice. and mechanize roundrobin 
scheduling. 

These functions depend on periodic timer interrupts. and will not work 
in the absence of a real-time clock or timer hardware. 

The explicit time management system calls are: 

tm_tick Inform pSOS+ of clock tick arrival. 
tm_set Set time and date. 

tm~et 

tm_wkafter 
tm_wkwhen 
tm_evafter 
tm_evwhen 
tm_cancel 

The Time Unit 

Get time and date. 
Wakeup task after interval. 
Wakeup task at appOinted time. 

Send event to task after interval. 
Send event to task at appOinted time. 

Cancel an alarm timer. 

The system time unit is a clock tick. defined as the interval between 
tm_tick system calls. This pSOS+ call is used to announce to pSOS+ the 
arrival of a clock tick -- it is normally called from the real-time clock ISR. 
on each timer interrupt. The frequency of tm_tick determines the 
granularity of the system time-base. Obviously. the higher the 
frequency. the higher the time resolution for timeouts. etc. On the other 
hand. processing each clock tick takes a small amount of system 
overhead. 

You can specify this clock tick frequency in the pSOS+ Configuration 
Table as kc_ticks2sec. For example. if this value is specified as 100. the 
system time manager will interpret 100 tm_tick system calls to be one 
second. real-time. 

pSOSystem System Concepts 2-35 



Chapter 2. pSOS+ Real-Time Kernel 

2. 12.2 Time and Date 

pSOS+ maintains true calendar time and date. including perpetual leap 
year compensation. A pair of simple pSOS+ system calls. tm_set and 
tm-,et. allows you to set and obtain the date and time of day. Time 
resolution is accurate to system time ticks. 

No elapsed tick counter is included. since this can be easily maintained 
by your own code. For example. your real-time clock ISR can. in addition 
to calling tm_tick on each clock interrupt. increment a 32-bit global 
counter variable. 

2. 12.3 Timeouts 

Implicitly, pSOS+ uses the time manager to provide a timeout facility to 
other system calls. e.g. ~receive. ev _receive, sm-p. and m-,etseg. 

pSOS+ uses a proprietary timing structure and algorithm. which. in 
addition to being efficient. guarantees constant-time operations. Both 
task entry into and removal from the timeout state are performed in 
constant ~me -- no search loops are required. 

If a task is waiting. say for message (~receive). with timeout. and the 
message arrives in time, then the task is simply removed from the timing 
structure. given the message. and made ready to run. If the message 
does not arrive before the time interval expires. then the task will be 
given an error code indicating timeout. and made ready to run. 

Timeout is measured in ticks. Ifkc_ticks2sec is 100. and an interval of 
50 milliseconds is required, then a value of 5 should be specified. 
Timeout intervals are 32 bits wide, allowing a maximum of 232 ticks. A 
timeout value of n will expire on the nth forthcoming tick. Since the 
system call can come anywhere between two ticks. this implies that the 
real-time interval will be between n-l and n ticks. 

2. 12.4 Absolute Versus Relative Timing 

2-36 

There are two ways a task can specify timing -- relative or absolute. 
Relative timing is specified as an interval, measured in ticks. Absolute 
timing is specified as an aPPOinted calendar date and time. The system 
calls tm_wkafter and tm_evafter accept relative timing specifications. 
The system calls tm_wkwhen and tm_evwhen accept absolute time 
specifications. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

Note that absolute timing is affected by any tm_set calls that change the 
calendar date and time, whereas relative timings are not affected. In 
addition, use of absolute time specifications might require additional 
time manipulations. 

2. 12.5 Wakeups Versus Alarms 

There are two distinct ways a task can respond to timing. The first way 
is to go to sleep (Le. block), and wake up at the desired time. This 
synchronous method is supported by the tm_ wkafter and tm_ wkwhen 
calls. The second way is to set an alarm timer, and then continue 
running. This asynchronous method is supported by tm_evafter and 
tm_evwhen. When the alarm timer goes off, pSOS+ will internally call 
ev _send to send the designated events to the task. Of course. the task 
must call ev _receive in order to test or wait for the scheduled event. 

Alarm timers offer several interesting features. First, the calling task can 
execute while the timer is counting down. Second, a task can arm more 
than one alarm timer, each set to go off at different times, corresponding 
to multiple expected conditions. This multiple alarm capability is 
especially useful in implementing nested timers, a common requirement 
in more sophisticated communications systems. Third, alarm timers can 
be canceled using the tm_ cancel call. 

In essence, the wakeup mechanism is useful only in timing an entire 
task. The alarm mechanism can be used to time transactions within a 
task. 

2. 12.6 Timeslice 

If the running task's mode word (see section 2.5.3, "Task Mode Word") 
has its roundrobin bit and preemptible bit on, then pSOS+ will 
countdown the task's assigned timeslice. If it is still running when its 
timeslice is down to zero, then roundrobin scheduling will take place. 
Details of the roundrobin scheduling can be found in section 2.4.5, 
"Roundrobin by Timeslicing." 

You can specify the amount of time that constitutes a full timeslice in the 
pSOS+ Configuration Table as kc_ticks2sHce. For instance, if that value 
is la, and the kc_ticks2sec is lOa, then a full timeslice is equivalent to 
about one-tenth of a second. The countdown or consumption of a 
timeslice is somewhat heuristic in nature, and might not exactly reflect 
the actual elapsed time a task has been running. 

pSOSystem System Concepts 2-37 



Chapter 2. pSOS+ Real-Time Kernel 

2.13 

2.13.1 

Interrupt Service Routines 
Interrupt service routines (ISRs) are critical to any real-time system. On 
one side, an ISR handles interrupts, and performs whatever minimum 
action is required, to reset a device, to read/write some data, etc. On the 
other side, an ISR might drive one or more tasks, and cause them to 
respond to, and process, the conditions related to the interrupt. 

An ISR's operation should be kept as brief as possible, in order to 
minimize masking of other interrupts at the same or lower levels. 
Normally, it simply clears the interrupt condition and performs the 
necessary physical data transfer. Any additional handling of the data 
should be deferred to an associated task with the appropriate (software) 
priority. This task can synchronize its actions to the occurrence of a 
hardware interrupt, by using either a message queue, events flag, 
semaphores, or ASR. 

Interrupt Entry 

Interrupts should be directly vectored to the user-supplied ISRs. pSOS+ 
does not interfere with interrupt entry, in order to achieve the fastest 
response possible. 

2. 13.2 Synchronizing With Tasks 

2-38 

An ISR usually communicates with one or more tasks, either directly, or 
indirectly as part of its input/output transactions. The nature of this 
communication is usually to drive a task, forcing it to run and handle the 
interrupting condition. This is similar to the task-to-task type of 
communication or synchronization, with two important differences. 

First, an ISR is usually a communication/synchronization source -- it 
often needs to return a semaphore, or send a message or an event to a 
task. An ISR is rarely a communication sink -- it cannot wait for a 
message or an event. 

Second, a system call made from an ISR will always return immediately 
to the ISR, without going through the normal pSOS+ dispatch. For 
example, even if an ISR sends a message and wakes up a high priority 
task, pSOS+ must nevertheless return first to the ISR. This deferred 
dispatching is necessary, since the ISR must be allowed to complete. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

pSOS+ allows an ISR to make any of the synchronization sourcing system 
calls, including ~send, ~urgent and ~broadcast to post messages to 
message queues, sm_ v to return a semaphore, and ev _send to send 
events to tasks. 

A typical system implementation, for example, can use a message queue 
for this ISR-to-task communication. A task requests and waits for a 
message at the queue. An ISR sends a message to the queue, thereby 
unblocking the task and making it ready to run. The ISR then exits the 
interrupt level using the I_RETURN entry into pSOS+. Among other 
things, I_RETURN causes pSOS+ to dispatch to run the highest priority 
task, which can be the interrupted running task, or the task just 
awakened by the ISR. The message, as usual, can be used to carry data, 
pOinters to data, or simply for synchronization. 

In some applications, an ISR might additionally have the need to 
dequeue messages from a message queue. For example, a message 
queue might be used to hold a chain of commands. Tasks needing 
service will send command messages to the queue. When an ISR finishes 
one command, it checks to see if the command chain is now empty. If 
not, then it will dequeue the next command in the chain and start it. To 
support this type of implementation, pSOS+ allows an ISR to make 
~receive system calls to obtain messages from a queue, and sm-p calls 
to acquire a semaphore. Note, however, that these calls must use the no
wait option, so that the call will return whether or not a message or 
semaphore is available. 

2. 13.3 System Calls Allowed From an ISR 

The restricted subset of pSOS+ system calls that can be issued from an 
ISR are as follows: 

as_send Send asynchronous signals to a task (local task). 

ev_send Send events to a task (local task). 

k_fatal Abort and enter fatal error handler. 

k_terminate Terminate a failed node (pSOS+m only). 

pt-ietbuf Get a buffer from a partition (local partition). 

pt_retbuf Return a buffer to a partition (local partition). 

pSOSystem System Concepts 2-39 



Chapter 2. pSOS+ Real-Time Kernel 

2-40 

~broadcast Broadcast a message to an ordinary queue (local 
queue). 

~receive Get a message from an ordinary message queue 
(no-wait and local queue). 

~send Post message to end of an ordinary message 
queue (local queue). 

~urgent Post message at head of an ordinary message 
queue (local queue). 

~vbroadcast Broadcast a variable length message to queue 
(local queue). 

~ vreceive Get a message from a variable length message 
queue (no-wait and local queue). 

~ vsend Post message to end of a variable length message 
queue (local queue). 

~ vurgent Post message at head of a variable length message 
queue (local queue). 

sm-p 

t-ietreg 

t_setreg 

tm-iet 

tm_set 

tm_tick 

Acquire a semaphore (no-wait and local 
semaphore) . 

Return a semaphore (local semaphore). 

Get a task's software register (local task). 

Resume a suspended task (local task). 

Set a task's software register (local task). 

Get time and date. 

Set time and date. 

Announce a clock tick to pSOS+. 

As noted earlier, since an ISR cannot block, a ~receive, ~vreceive, or 
sm-p call from an ISR must use the no-wait, i.e. unconditional return, 
option. Also, since remote service calls block, the above services can only 
be called from an ISR if the referenced object is local. 

All other pSOS+ system calls are either not meaningful in the context of 
an ISR, or can be functionally served by another system call. Making 
calls not listed above from an ISR will lead to dangerous race conditions, 
and unpredictable results. 

pSOSystem System Concepts 



2.14 

Chapter 2. pSOS+ Real-Time Kernel 

Fatal Errors and the Shutdown Procedure 
Most error conditions resulting from system calls, for example 
parametric and temporary resource exhaustion errors, are non-fatal. 
These are simply reported back to the caller. A few error conditions 
prevent continued operation. This class of errors, known as fatal errors, 
include startup configuration defects, internal resource exhaustion 
conditions, and various other non-recoverable conditions. In addition, 
your application software can, at any time, generate a fatal error by 
making the system call k_fatal. 

Every fatal error has an associated failure code that defines the cause of 
the fatal error. The pSOSystem Prograrruner's Reference lists failure 
codes that are generated by pSOSystem. Note that all pSOSystem
generated failure codes are of the form OxXFXX where X is a hexadecimal 
digit (that is, the third nibble is always F and the code never exceeds 
OxFFFF). Failure codes equal to or greater than Ox 1 0000 are reserved 
for use by application code. In this case, the failure code is provided as 
an input parameter to k_fatal or k_terminate (in multiprocessor 
systems). 

When a fatal error occurs, whether generated internally by pSOSystem 
or by a call to k_fatal or k_terminate, pSOS+ passes control to an 
internal fatal error handler. In single processor systems, the fatal error 
handler simply performs the shutdown procedure described below. In 
multiprocessor systems it has the additional responsibility of removing 
the node from the multiprocessor system (see Chapter 3, "pSOS+m 
Multiprocessing Kernel"). 

The shutdown procedure is a procedure whereby pSOS+ attempts to halt 
execution in the most orderly manner possible. pSOS+ first examines the 
pSOS+ Configuration Table entry kc_fatal. If this entry is non-zero, 
pSOS+ jumps to this address. If kc_fatal is zero, and the pROBE+ 
System Debug/ Analyzer is present, then pSOS+ simply passes control to 
the System Failure entry of pROBE+. Refer to the pROBP;+ User's Manual 
for a description of pROBE+ behavior in this case. Finally, if pROBE+ is 
absent, pSOS+ internally executes a divide-by-zero to cause a deliberate 
divide-by-zero exception. This will hopefully pass control to a ROM 
monitor or other low-level debug tool. 

In all cases, pSOS+ makes certain information regarding the nature of 
the failure available to the entity receiving control. Refer to the 
pSOSystem Prograrruner's Reference for a detailed description of this 
information. 

pSOSystem System Concepts 2-41 



Chapter 2.· pSOS+ Real-Time Kernel 

2.15 

2.15.1 

2-42 

Tasks Using Other Components 
Integrated Systems offers many other system components that can be 
used in systems with the pSOS+ kernel. While these components are 
easy to install and use, they require special consideration with respect to 
their internal resources and multitasking. 

During normal operation, components internally allocate and hold 
resources on behalf of calling tasks. Some resources are held only 
during execution of a service call, while others are held indefinitely on 
based the state of the task. For example: in pHILE+, control information 
is kept whenever files are open. The pSOS+ service calls t_restart and 
t_delete asynchronously alter the execution path of a task and present 
special problems relative to management of these resources. 

The next subsections discuss deletion and restart-related issues in detail 
and present recommended methods for performing these operations. 

Deleting Tasks That Use Components 

To avoid permanent loss of component resources, pSOS+ does not allow 
deletion of a task that is holding any such resource. Instead, t_delete 
returns an error code, which indicates that the task to be deleted holds 
one or more resources. 

The exact conditions under which components hold resources are 
complex. In general, any task that has made a component service call 
might be holding resources. But all components provide a facility for 
returning all of their task-related resources, via a single service call. We 
recommend that these calls be made prior to calling t_delete. 

pHILE+, pNA+ and pREPC+ can hold resources that must be returned 
before a task can be deleted. These resources are returned by calling 
close_f(O), close (0) and fclose(O) respectively. Since pREPC+ calls 
pHILE+, and pHILE+ calls pNA+ (ifNFS is in use), these services must be 
called in the correct order. Below is a sample code fragment that a task 
can use to delete itself: 

fclose(O); '* return pREPC resources *' 
close_f(O); '* return pHILE resources *' 
close(O); '* return pNA resources *' 
t_delete(O); '* and commit suicide *' 

ObViously, calls to components not in use should be omitted. 

pSOSystem System Concepts 



Chapter 2. pSOS+ Real-Time Kernel 

Since only the task to be deleted can make the necessary close calls, the 
simplest way to delete a task is to restart the task, passing arguments to 
it that indicate that the task should delete itself. (Of course, the task 
code must be written to check its arguments and behave accordingly.) 

2. 15.2 Restarting Tasks That Use Components 

pSOS+ allows a task to be restarted regardless of its current state. Check 
the manual for each component to determine its behavior under restart. 

It is possible to restart a task while the task is executing code within the 
components themselves. Consider the following example: 

1. Task A makes a pHILE+ call. 

2. While executing pHILE+ code, task A is preempted by task B. 

3. Task B then restarts task A. 

In such situations, pHILE+ will correctly return resources as required. 
However, a file system volume might be left in an inconsistent state. For 
example, if t_restart interrupts a create_f operation, a file deSCriptor 
(FD) might have been allocated but not the directory entry. As a result, 
an FD could be permanently lost. But, pHILE+ is aware of this danger, 
and returns a warning, via the t_restart. When such a warning code is 
received from pHILE+ , verify_vol should be used to detect and correct 
any resulting volume inconsistencies. 

All components are notified of task restarts, so expect such warnings 
from any of them. 

pSOSystem System Concepts 2-43 



Chapter 2. pSOS+ Real-Time Kernel 

(Blank Page) 

2-44 pSOSystem System Concepts 



3 pSOS+m Multiprocessing Kernel 

pSOS+m is the multiprocessing version of the pSOS+ real-time 
multitasking operating system kernel. It extends many of the pSOS+ 
system calls to operate seamlessly across multiple processing nodes. 

This chapter is designed to supplement the information provided in 
Chapter 2, "pSOS+ Real-Time Kernel." It covers those areas in which the 
functionality of pSOS+m differs from that of pSOS+. 

3. 1 System Overview 
The pSOS+m kernel is designed so that tasks that make up an 
application can reSide on several processor nodes and still exchange 
data, communicate, and synchronize exactly as if they are running on a 
single processor. To support this, pSOS+m allows systems calls to 
operate across processor boundaries, system-wide. Processing nodes 
can be connected via any type of connection; for example, shared 
memory, message-based buses, or custom links, to name a few. 

pSOS+m is designed for functionally-divided multiprocessing systems. 
This is the best model for most real-time applications, given the 
dedicated nature of such applications and their need for deterministic 
behavior. Each processor executes and manages a separate. often 
distinct. set of functions. Typically, the decomposition and aSSignment 
of functions is done prior to runtime, and is thus permanent (as opposed 
to task reaSSignment or load balancing). 

pSOSystem System Concepts 3-1 



Chapter 3. pSOS+ Multiprocessing Kernel 

The latest version of pSOS+m incorporates facilities that support the 
following: 

Soft Fail A processing node can suffer a hardware or software 
failure, and other nodes will continue running. 

Hot Swap New nodes can be inserted or removed from a system 
without shutting down. 

3.2 Software Architecture 

3-2 

pSOS+m implements a master - slave architecture. As shown in Figure 
6, every pSOS+m system must have exactly one node, called the master 
node, which manages the system and coordinates the activities of all 
other nodes, called slave nodes. The master node must be present when 
the system is initialized and must remain in the system at all times. In 
addition to the master, a system may have anywhere between zero and 
16382 slave nodes. Unlike the master node, slave nodes may join, exit, 
and rejoin the system at any time. 

pSOS+m 

MASTER 
#1 

KI } 

APPLICATION 

pSOS+m 

SLAVE 
#n 

KI } 

• • • 

• • • 

• • • 

pSOS+m 

SLAVE 
#m 

KI } 

h 

Figure 6. pSOS+m Layered Approach 

pSOSystem System Concepts 



Chapter 3. pSOS+ Multiprocessing Kernel 

pSOS+m itself is entirely hardware independent. It makes no 
assumptions about the physical media connecting the processing nodes, 
or the topology of the connection. This interconnect medium can be a 
memory bus, a network, a custom link, or a combination of the above. 
To perform interprocessor communication, pSOS+m calls a user
provided communication layer called the Kernel Inteiface (KI). The 
interface between pSOS+m and the KI is standard and independent of 
the interconnect medium. 

In addition to the KI and the standard pSOS+ Configuration table, 
pSOS+m requires a user-supplied Multiprocessor Configuration Table 
(MPCT) that defines application-specific parameters. 

3.3 Node Numbers 
Every node is identified by a user-assigned 32-bit node number. A node 
number must be unique; that is, no two nodes can have the same 
number. Node numbers must be greater than or equal to 1 and less than 
or equal to the maximum node number speCified in the Multiprocessor 
Configuration Table entry mc_nnode. Since node numbers must be 
unique, mC_DDode also determines the maximum number of nodes that 
can be in the system. However, a system may have less than mc_nnode 
nodes if not all node numbers are in use. 

Node number 1 designates the master node. All other nodes are slave 
nodes. One node in your system must be assigned node number 1. 

3.4 Objects 
pSOS+ is an object-oriented kernel. Object classes include tasks, 
memory regions, memory partitions, message queues, and semaphores. 
In a pSOS+m multiprocessor system, the notion of objects transcends 
node boundaries. Objects (e.g. a task or queue) can be reached or 
referenced from any node in the system exactly and as easily as if they 
are all running on a single CPU. 

pSOSystem System Concepts 3-3 



Chapter 3. pSOS+ Multiprocessing Kernel 

3.4. 1 Global Objects 

On every object-creation system call, there is a flag parameter, EXPORT, 
which can be used to declare whether the object will be known only 
locally, or globally to all other nodes in the system. Task, message 
queue, and semaphore objects can be declared as local or global. 
Memory partitions can also be declared as global, although this is useful 
only in a shared memory multiprocessor system where the partition is 
contained in an area addressable by multiple nodes. Memory region 
objects can only be local. 

An object should be exported only if it will be referenced by a node other 
than its node of residence, since an exported (Le. global) object requires 
management and storage not only on the resident node but also on the 
master node. 

3.4.2 Object 10 

Each object, local or global, is known system-wide by two identities -- a 
user-assigned 32-bit name and a unique pSOS-assigned 32-bit run-time 
10. This 10, when used as input on system calls, is used by pSOS+m to 
locate the object's node of residence as well as its control structure on 
that node. 

This notion of a system-wide object 10 is a critical element that enables 
pSOS+m systems calls to be effective system-wide; that is, transparently 
across nodes. The application program never needs to possess any 
explicit knowledge, a priori or acquired, regarding an object's node of 
residence. 

3.4.3 Global Object Tables 

3-4 

Every node running pSOS+ or pSOS+m has a Local Object Table that 
contains entries for local objects. In a multiprocessor system, every node 
also has a Global Object Table. A slave node's Global Object Table 
contains entries for objects that are resident on the slave node and 
exported for use by other nodes. The master node's global object table 
contains entries for every exported object in the system, regardless oj its 
node oj residence. 

On a slave node, when an object is created with the EXPORT option, 
pSOS+m enters its name and 10 in the Global Object Table on the 
object's node of residence. In addition, pSOS+m passes the object's 
name and 10 to the master node for entry in the master node's Global 
Object Table. 

pSOSystem System Concepts 



Chapter 3. pSOS+ Multiprocessing Kernel 

Thus, every global object located on a slave node has entries in two 
Global Object Tables -- the one on its node of residence, and the one on 
the master node. On the master node, when an object is created with the 
EXPORT option, the global object's name and ID are simply entered in 
the master node's Global Object Table. 

Similar operations occur when a global object is deleted. When a global 
object is deleted, it is removed from the master node's Global Object 
Table and its own node's Global Object Table if the object resides on a 
slave node. 

The maximum number of objects (of all types) that can be exported is 
specified by the Multiprocessor Configuration Table entry, mc_nglbobj. 
During pSOS+m initialization, this entry is used to pre-allocate storage 
space for the Global Object Table. Note that the master node's Global 
Object Table is always much larger than Global Object Tables on slave 
nodes. 

Formulae for calculating the sizes and memory usage of Global Object 
Tables are provided in the pSOSystem Programmer's Reference. 

3.4.4 Ident Operations on Global Objects 

The pSOS+m Object Ident system calls (e.g. t_ident or qJdent) perform 
run-time binding by converting an object's name into the object's ID. 
This may require searching the object tables on the local node and/or the 
Global Object Table on the master node. To search the master node's 
Global Object Table, slave nodes must post an IDENT request to the 
master node. On receiving this request, pSOS+m on the master node 
searches its Global Object Table and replies to the slave node with the 
object's ID, or an indication that the object does not exist. 

Because objects created and exported by different nodes may not have 
unique names, the result of this binding may depend on the order and 
manner in which the object tables are searched. The table search order 
may be modified using the node input parameter to the Object Ident 
system calls. In particular, 

1. If node equals 0, pSOS+m first searches the Local Object Table and 
then the Global Object Table on the caller's node. If the object is 
not found, a request is posted to the master node, which searches 
its Global Object Table, beginning with objects exported by node 
number 1, then node 2, and so on. 

pSOSystem System Concepts 3-5 



Chapter 3. pSOS+ Multiprocessing Kernel 

2. If node equals the local node's node number, then pSOS+m 
searches the Global Object Table on the local node only. 

3. If node is not equal to the local node number, a request is posted to 
the master node, which searches its Global Object Table for objects 
created and exported by the specified node. 

Typically, object binding is a one-time only, non-time-critical operation 
executed as part of setting up the application or when adding a new 
object. 

3.5 Remote Service Calls 
When pSOS+m receives a system call whose target object ID indicates 
that the object does not reside on the node from which the call is made, 
pSOS+m will process the system call as a remote service call (RSC). 

In general, an RSC involves two nodes. The source node is the node from 
which the system call is made. The destination node is the node on 
which the object of the system call resides. To complete an RSC, the 
pSOS+m kernels on both the source and destination nodes must carry 
out a sequence of well-coordinated actions and exchange a number of 
internode packets. 

There are two types of RSC, synchronous and asynchronous. Each is 
described in the follOwing sections. 

3.5. 1 Synchronous Remote Service Calls 

3-6 

A synchronous RSC occurs whenever any of the follOwing pSOS+m 
service calls are directed to an object that does not reside on the local 
node: 

as_sendO 
fLbroadcastO 
fLreceiveO 
fLsendO 
fLurgentO 
pt-letbuf() 
sm~O 

t-ietregO 
t_resumeO 
t_setpriO 

ev_sendO 
fLvbroadcastO 
fL vreceiveO 
fLvsendO 
fLvurgentO 
pt_retbuf() 
sm_vO 
t_setregO 
t_suspendO 

pSOSystem System Concepts 



Chapter 3. pSOS+ Multiprocessing Kernel 

Consider what happens when a task calls ~send to send a message to 
a queue on another node: 

1. On the source node. pSOS+m receives the call. deCiphers the QID. 
and determines that this requires an RSC; 

2. pSOS+m calls the Kernel Interface (KI) to get a packet buffer. loads 
the buffer with the ~send information. and calls the KI to send the 
packet to the destination node; 

3. If the KI delivers the packet successfully. pSOS+m blocks the calling 
task. and then switches to run another task; 

4. Meanwhile. on the destination node. its KI senses an incoming 
packet (typically from an ISR). and calls the pSOS+m Announce
Packet entry; 

5. When the KI's ISR exits. pSOS+m calls the KI to receive the packet. 
deciphers its contents. and generates an internal ~send call to 
deliver the message to the resident target queue; 

6. If the ~send call is successful, then pSOS+m uses the packet 
buffer it received in Step 5 to build a reply packet. and calls KI to 
send the packet to the source node; 

7. If the KI delivers the reply packet successfully, pSOS+m simply 
executes a normal dispatch to return to the user's application; 

8. Back on the source node. its KI senses an incoming packet (typically 
from an ISR). and calls the pSOS+m Announce-Packet entry; 

9. When the KI ISR exits. pSOS+m calls the KI to receive the packet. 
deciphers its contents. recognizes that it is a normal conclusion of 
an RSC. returns the packet buffer. unblocks the calling task. and 
executes a normal dispatch to return to the application. 

This example shows a completely normal operation. If there is any error 
or abnormal condition at any level, the results may vary from a system 
shutdown to a simple error code being returned to the caller. 

Certain pSOS+m system calls are not supported as RSCs. Most of these 
are excluded because they can never be RSCs -- for instance. calls that 
can only be self-directed at the calling task (for example. t_mode. 
ev _receive, and tm_ wkafter). tm_set and tm..l(et are not supported 
because they affect resources, in this case time, that are otherwise 
strictly local resources. 

pSOSystem System Concepts 3-7 



Chapter 3.· pSOS+ Multiprocessing· Kernel 

Some calls are excluded because their implementation as RSCs would 
have meant compromises in other important respects. At present, object 
creation and deletion calls are not supported, for performance and 
robustness reasons. Notice that every system call thatmay be useful for 
communication, synchronization and state control is included. 

Furthermore, note that RSCs are supported only if they are called from 
tasks. Calls from ISRs are illegal since the overhead associated with 
internode communication makes it unacceptable for use from an ISR. 

In summary, in the event of an RSC, pSOS+m on the source and 
destination nodes use their respective KI to exchange packets which, in 
a manner completely transparent to the user's application, "bridge the 
gap" between the two nodes. 

3.5.2 Asynchronous Remote Service Calls 

3-8 

When a task makes a synchronous remote service call, the task is 
blocked until a reply is received from the destination node. This allows 
errors and return values to be returned to the calling task and is 
essential to transparent operation across nodes. However, some service 
calls such as q..sendO return only an error code and if the caller knows 
an .. error is not possible, then waiting for a reply needlessly delays 
execution of the calling task and consumes CPU resources with the 
processing of two context switches, as the task blocks and then 
unblocks. 

For faster operation in these cases, pSOS+m offers asynchronous 
versions for the following pSOS+ system calls: 

pSOS+ Synchronous Service 

q..sendO 

q..urgentO 

q..vsendO 

q..vurgentO 

sm_vO 

ev_sendO 

pSOS+m Asynchronous Call 

q..asendO 

q..aurgentO 

q..avsendO 

q..avurgentO 

sm_avO 

ev_asendO 

pSOSystem System Concepts 



Chapter 3. pSOS+ Multiprocessing Kernel 

Asynchronous calls operate like their synchronous counterparts, except 
that the calling task does not wait for a reply and the destination node 
does not generate one. 

An asynchronous RSC should be used only when an error is not 
expected. If an error occurs, however, pSOS+m on the destination node 
will send a packet to the source node describing the error. Since the 
state of the calling task is unknown (e.g. it may have been deleted), the 
source pSOS+m does not attempt to directly notify the calling task. 
Instead, it checks for a user-provided callout routine by examining the 
Multiprocessor Configuration Table entry mc_asyncerr. If provided, this 
routine is called. 

What themc_asyncerr callout routine does is up to the user. However, 
a normal sequence of events is to perform further error analysis and then 
shut down the node with a k_fata1() call. Other alternatives are to delete 
or restart the calling task, send an ASR or event to the calling task, or 
ignore the error altogether. 

If an mc_asyncerr routine is not provided (mc_asyncerr = 0), pSOS+m 
generates an internal fatal error. 

Note that an asynchronous service may operate on a local object. In this 
case, the call is performed synchronously since all relevant data 
structures are readily available. Nonetheless, should an error occur, it 
is handled as if the object were remote. Thus, mc_asyncerr is invoked 
and no error indication is returned to the caller. This provides consistent 
behavior regardless of the location of the referenced object. 

Asynchronous calls are only supported in pSOS+m. If called when using 
pSOS+ (the single processor version), an error is returned. 

3.5.3 Agents 

Certain RSCs require waiting at an object on a remote node. For 
example, ~receive and sm...]) may require the calling task to wait for a 
message or semaphore, respectively. If the message queue or semaphore 
is local, then pSOS+m simply enqueues the calling task's TCB to wait at 
the object. What if the object is not local? 

Suppose the example in section 3.5.1 involves a ~recelve, not a ~send, 
call. The transaction sequence is identical, up to when the destination 
node's pSOS+m deciphers the received packet, and recognizes the 
~receive. pSOS+m uses a pseudo-object, called an Agent, to generate 

pSOSystem System Concepts 3-9 



Chapter 3. pSOS+ Multiprocessing Kernel 

the ~receive call to the target queue. If the queue is empty, then the 
Agent's Control Block, which resembles a mini-TCB. will be queued at 
the message wait queue. The destination node then executes a normal 
dispatch and returns to the application. 

Later, when a message is posted to the target queue. the Agent is simply 
dequeued from the message wait queue. pSOS+m uses the original RSC 
packet buffer to hold a reply packet containing among other things the 
received message; it then calls the KI to send the reply packet back to the 
source node. The Agent is released to the free Agent pool, and all 
remaining transactions are again identical to that for ~send. 

In summaIY. Agents are used to wait for messages or semaphores on 
behalf of the task that made the RSC. They are needed because the 
calling tasks are not resident on the destination node. and thus not 
available to perform any waiting function. 

The Multiprocessor Configuration Table entJY. mc_nagent, specifies the 
number of Agents that pSOS+m will allocate for that node. Since one 
Agent is used for eveIY RSC that reqUires waiting on the destination 
node, this parameter must be large to support the expected worst case 
number of such RSCs. 

3.5.4 RSC Overhead 

3-10 

In comparison to a system call whose target object is resident on the 
node from which the call is made. an RSC reqUires several hidden 
transactions between pSOS+m and the KI both on the source and 
destination nodes, not to mention the packet transit times. The exact 
measure of this overhead depends largely on the connection medium 
between the source and destination nodes. 

If the medium is a memoIY bus, the KI operations will be quite fast, as is 
the packet transit time. On the other hand, if the medium is a network. 
especially one that uses a substantial protocol, the packet transit times 
may take milliseconds or more. 

pSOSystem System Concepts 



Chapter 3. pSOS+ Multiprocessing Kernel 

3.6 System Startup and Coherency 
The master node must be the first node started in a pSOS+m 
multiprocessor system. Mter the master node is up and running, other 
nodes may then join. A slave node should not attempt to join until the 
master node is operational and it is the user's responsibility to ensure 
that this is the case. In a system in which several nodes are physically 
started at the same time (for example when power is applied to a VME 
card cage) this is easily accomplished by inserting a small delay in the 
startup code on the slave nodes. Alternately, the ki_init service can 
delay returning to pSOS+m until it detects that the master node is 
properly initialized and operational. 

Slave nodes may join the system any time after the master node is 
operational. Joining requires no overt action by application code 
running on the slave node. pSOS+m automatically posts a join request 
to the master node during its initialization process. On the master node, 
pSOS+m first performs various coherency checks to see if the node 
should be allowed to join (see below) and if so, grants admission to the 
new node. Finally, it notifies other nodes in the system that the new 
node has joined. 

For a multiprocessor pSOS+m system to operate correctly, the system 
must be coherent. That is, certain Multiprocessor Configuration Table 
parameters must have the same value on every node in the system. In 
addition, the pSOS+m versions on each node must be compatible. There 
are four important coherency checks that are performed whenever a 
slave node joins: 

1. The pSOS+m version on each slave node must be compatible with 
the master node. 

2. The maximum number of nodes in the system as specified in the 
Multiprocessor Configuration Table entry mc_nnode must match 
the value specified on the master node. 

3. The maximum number of global objects on the node as specified by 
the Multiprocessor Configuration Table entry mc_nglbobj must 
match the value specified on the master node. 

4. The maximum packet size that can be transmitted by the KI as 
specified by the Multiprocessor Configuration Table entry 
mc_kimaxbuf must match the value specified on the master node. 

pSOSystem System Concepts 3-11 



Chapter 3. pSOS+ Multiprocessing Kernel 

All of the above conditions are checked by the master node when a slave 
node attempts to join. If any condition is not met, the slave node will not 
be allowed to join. The slave node then aborts with a fatal error. 

Joining nodes must observe one important timing limitation. In 
networks with widely varying transmission times between nodes, it is 
possible for a node to join the system, obtain the ID of an object on a 
remote node and post an RSC to that object, all before the object's node 
of residence has been notified that the new node has joined. When this 
occurs, the destination node simply ignores the RSC. This may cause 
the calling task to hang or, if the call was asynchronous, to proceed 
believing the call was successful. 

To prevent such a condition, a newly joining node must not post an RSC 
to a remote node until a sufficient amount of time has elapsed to ensure 
the remote node has received notification of the new node's existence. 

In systems with similar transmission times between all master and slave 
nodes, no special precautions are required, since all slaves would be 
informed of the new node well before the new node could successfully 
IDENT the remote object and post an RSC. 

In systems with dissimilar transmission times, an adequate delay should 
be introduced in the ROOT task. The delay should be roughly equal to 
the worst case transmission time from the master to a slave node. 

3.7 Node Failures 

3-12 

As mentioned before, the master node must never fail. In contrast. slave 
nodes may exit a system at any time. Although a node may exit for any 
reason. it is usually a result of a hardware or software failure. Therefore. 
this manual refers to a node that stops running for any reason as afailed 
node. 

The failure of a node may have an immediate and substantial impact on 
the operation of remaining nodes. For example. nodes may have RSCs 
pending on the failed node. or there may be agents waiting on behalf of 
the failed node. As such. when a node fails. all other nodes in the system 
must be notified promptly. so corrective action can be taken. 

pSOSystem System Concepts 



Chapter 3. pSOS+ Multiprocessing Kernel 

The following paragraphs explain what happens when a node fails or 
leaves a system. In general. the master node is responsible for 
coordinating the graceful removal of a failed node. There are three ways 
that a master may learn of a node failure: 

1. pSOS+m on the failing node internally detects a fatal error 
condition. which causes control to pass to its fatal error handler. 
The fatal error handler notifies the master and then shuts itself 
down (as described in Chapter 2. "pSOS+ Real-Time Kernel"). 

2. An application calls k_fata10 (without the k-ilobal attribute). On a 
slave node. control is again passed to the pSOS+m internal fatal 
error handler. which notifies the master and then shuts itself down. 

3. An application on any node (not necessarily the failing node) calls 
k_terminateO. which notifies the master. 

Upon notification of a node failure. the master does the following: 

1. First. if notification did not come from the failed node. the master 
sends a shutdown packet to the failed node. If the failed node 
receives it (that is. it has not completely failed yet). it performs the 
shutdown procedure as described in Chapter 2. "pSOS+ Real-Time 
Kernel." 

2. Second. it sends a failure notification packet to all remaining slave 
nodes. 

3. Lastly. it removes all global objects created by the failed node from 
its global object table. 

pSOS+m on all nodes. including the master. perform the next 4 steps 
after receiving notification of a node failure: 

1. pSOS+m calls the Kernel Interface (KI) service ki_roster to notify 
the KI that a node has left the system. 

2. pSOS+m calls the user-provided routine pOinted to by the 
Multiprocessor Configuration Table entry me_roster to notify the 
application that a node has left the system. 

3. All agents waiting on behalf of the failed node are recovered. 

4. All tasks waiting for RSC reply packets from the failed node are 
awakened and given error ERR_NDKLD. indicating that the node 
failed while the call was in progress. 

pSOSystem System Concepts 3-13 



Chapter 3. pSOS+ Multiprocessing Kernel 

Mter all of the above steps are completed, unless notified by your 
mc_roster routine, it is possible that your application code may still use 
object IDs for objects that were on the failed node. If this happens, 
pSOS+m returns the error ERR_STALEID. 

3.8 Slave Node Restart 
A node that has failed may subsequently restart and rejoin the system. 
pSOS+m treats a rejoining node exactly like a newly joining node, that is, 
as described in section 3.6. In fact, internally, pSOS+m does not 
distinguish between the two cases. However, a rejoining node introduces 
some special considerations that are discussed in the following 
subsections. 

3.S.1 Stale Objects and Node Sequence Numbers 

3-14 

Recall from section 3.7 that when a node exits, the system IDs for objects 
on the node may still be held by task level code. Such IDs are called stale 
IDs. So long as the failed node does not rejoin, detection of stale IDs is 
trivial since the node is known not to be in the system. However, should 
the failed node rejoin, then, in the absence of other protection 
mechanisms, a stale ID could again become valid. This might lead to 
improper program execution. 

To guard against use of stale IDs after a failed node has rejoined, every 
node is assigned a sequence number. The master node is responsible for 
assigning and maintaining sequence numbers. A newly joining node is 
assigned sequence number = 1 and the sequence number is incremented 
thereafter each time the node rejoins. All object IDs contain both the 
node number and sequence number of the object's node of residence. 
Therefore, a stale ID is easily detected by comparing the sequence 
number in the ID to the current sequence number for the node. 

Object IDs are 32-bit unsigned integers. Because only 32 bits are 
available in a node number, the number of bits used to encode the 
sequence number depends on the maximum number of nodes in the 
system as specified in the Multiprocessor Configuration Table entry 
mc_nnode. If mC_DDode is less than 256, then 8 bits are used to encode 
the sequence number and the maximum sequence number is 255. If 
mc_nnode is greater than or equal to 256, then the number of bits used 
to encode the sequence number is given by the formula 

16 - ceUnog2(mc_nnode + 1)) 

pSOSystem System Concepts 



Chapter 3. pSOS+ Multiprocessing Kernel 

For example, in a system with 800 nodes, 6 bits would be available for 
the sequence number and the maximum sequence number would 
therefore be 63. In the largest possible system (recall mc_nnode may not 
exceed 16383), there would be 2 bits available to encode the sequence 
number. 

Once a node's sequence number reaches the maximum allowable value, 
the next time the node attempts to rejoin, the action taken by pSOS+m 
depends on the value of the Multiprocessor Configuration Table entry 
mc_flags on the rejoining slave node. If the SEQWRAP bit is not set, then 
the node will not be allowed to rejoin. However, ifSEQWRAP is set, then 
the sequence number will wrap around to one. Since this could 
theoretically allow a stale ID to be reused, this option should be used 
with caution. 

3.8.2 Rejoin Latency Requirements 

When a node fails, considerable activity occurs on every node in the 
system to ensure that the node is gracefully removed from the system. If 
the node should rejoin too soon after failing, certain inter-nodal activities 
by the new instantiation of the node may be mistakenly rejected as relics 
of the old instantiation of the node. 

To avoid such errors, a failed node must not rejoin until all remaining 
nodes have been notified of the failure and have completed the steps 
described in section 3.7. In addition, there must be no packets 
remaining in transit in the KI, either to or from the failed node, or 
reporting failure of the node, or awaiting processing at any node. This is 
usually accomplished by inserting a small delay in the node's 
initialization code. For most systems communicating through shared 
memory, a delay of I second should be more than adequate. 

3.9 Global Shutdown 
A global shutdown is a process whereby all nodes stop operating at the 
same time. It can be caused for two reasons: 

1. A fatal error occurred on the master node. 

2. A k_fatal() call was made with the global attribute set. In this case, 
the node where the call was made notifies the master node. 

In either case, the master node then sends every slave node a shutdown 
packet. All nodes then perform the normal pSOS+m shutdown 
procedure. 

pSOSystem System Concepts 3-15 



Chapter 3. pSOS+ Multiprocessing Kernel 

3.10 

3.11 

3-16 

The Node Roster 
On every node, pSOS+m internally maintains an up-to-date node roster 
at all times, which indicates which nodes are presently in the system. 
The roster is a bit map encoded in 32-bit (long word) entries. Thus, the 
first long word contains bits corresponding to nodes 1 - 32, the second 
nodes 33 - 64, etc. Within a long word, the rightmost (least significant) 
bit corresponds to the lowest numbered node. 

The map is composed of the minimum number of long words needed to 
encode a system with mc_nnode, as specified in the Multiprocessor 
Configuration Table. Therefore, some bits in the last long word may be 
unused. 

Application code and/or the KI may also need to know which nodes are 
in the system. Therefore, pSOS+m makes its node roster available to 
both at system startup and keeps each informed of any subsequent 
roster changes. The application is provided roster information via the 
user-provided routine pOinted to by the Multiprocessor Configuration 
Table entry mc_roster. The KI is provided roster information via the KI 
service ki_roster. For more information on KI service calls or the 
Multiprocessor Configuration Table, see the pSOSystem Programmer's 
Reference. 

Dual-Ported Memory Considerations 
Dual-ported memory is commonly used in memory-bus based 
multiprocessor systems. However, it poses several unique problems to 
the software: any data structure in dual-ported memory has two 
addresses, one for each port. Consider the problem when one processor 
node passes the address of a data structure to a second node. If the data 
structure is in dual-ported memory, the address may have to be 
translated before it can be used by the target node, depending on 
whether or not the target node accesses this memory through the same 
port as the sender node. 

To overcome this confusion over the duality of address and minimize its 
impact on user application code, pSOS+m includes facilities that 
perform address conversions. But first, a few terminology definitions. 

pSOSystem System Concepts 



3.11.1 

Chapter 3. pSOS+ Multiprocessing Kernel 

P-Port and S-Port 

A zone is a piece of contiguously addressable memory, which can be 
single or dual ported. The two ports of a dual-ported zone are named the 
p-port and the s-port. The (private) p-port is distinguishable in that it is 
typically reserved for one processor node only. The (system) s-port is 
normally open to one or more processor nodes. 

In a typical pSOS+m configuration, the multiple nodes are tied via a 
system bus, e.g. VME or Multibus. In this case, each dual-ported zone's 
s-port would be interfaced to the system bus, and each p-port would be 
connected to one processor node via a private bus that is usually, but not 
necessarily, on the same circuit board. 

If a node is connected to the p-port of a dual-ported zone, then three 
entries in its pSOS+m Multiprocessor Configuration Table must be used 
to describe the zone. mc_dprext and mc_dprlnt specify the starting 
address of the zone, as seen from the s-port and the p-port, respectively. 
mc_dprlen specifies the size of the zone, in bytes. In effect, these entries 
define a special window on the node's address space. pSOS+m uses 
these windows to perform transparent address conversions for the user's 
application. 

If a node is not connected to any dual-ported zone, or accesses dual
ported zones only through their s-ports, then the three configuration 
table entries should be set to O. Notice that the number of zones a 
processor node can be connected to via the p-port is limited to one. 

NOTE: A structure (user or pSOS+m) must begin and end in a dual port 
zone. It must not straddle a boundary between single and 
dual ported memory. 

3.11.2 Internal and External Address 

When a node is connected to a dual-ported zone, any structure it 
references in that zone, whether it is created by the user's application 
code or by pSOS+ (e.g. a partition buffer), is defined to have two 
addresses: 

1. The internal address is defined as the address used by the node to 
access the structure. Depending on the node, this may be the p
port or the s-port address for the zone. 

2. The external address is always the s-port address. 

pSOSystem System Concepts 3-17 



Chapter 3. pSOS+ Multiprocessing Kernel 

3. 11.3 Usage Within pSOS+m Services 

Any address in a dual ported zone used as input to pSOS+m or entered 
in aConfiguration Table must be an internal address (to the local node). 
Similarly, when a pSOS+m system call outputs an address that is in a 
dual ported zone, it will always be an internal address to the node from 
which the call is made. 

Consider in particular a partition created in a dual ported zone and 
exported to enable shared usage by two or more nodes. A pt--,etbuf call 
to this partition automatically returns the internal address of the 
allocated buffer. In other words, pSOS+m always returns the address 
that the calling program can use to access the buffer. If the calling node 
is tied to the zone's p-port, then the returned internal address will be the 
p-port address. If the calling node is tied to the s-port, then the returned 
internal address will be the s-port address. 

3. 11.4 Usage Outside pSOS+ 

3-18 

Often, operations in dual-ported zones fall outside the context of pSOS+. 
For example, the address of a partition buffer or a user structure may be 
passed from one node to another within the user's application code. If 
this address is in a dual ported zone, then the two system calls, 
m_int2ext and m_ext2int, may need to be used to perform a necessary 
address conversion. 

Observe the following simple rule: 

When an address within a dual-port zone must be passed from one node 
to another, then pass the external address. 

The procedure is quite simple. Since the sending node always knows the 
internal address, it can call m_int2ext to first convert it to the external 
address. On the receiving node, m_ext2int can be used to convert and 
obtain the internal address for that node. 

pSOSystem System Concepts 



4 Network Programming 

4. 1 Overview of Networking Facilities 
pSOSystem provides an extensive set of networking facilities for 
addressing a wide range of interoperability and distributed computing 
requirements. These facilities include 

TCP lIP Support - pSOSystem's TCP lIP networking capabilities 
are constructed around the pNA+ software component. pNA+ 
includes TCP, UDP, IP, ICMP, and ARP accessed through the 
industry standard socket programming interface. pNA + offers 
services to application developers as well as to other pSOSystem 
networking options such as RPC, NFS, FTP, and so forth. 

In addition,pNA+ supports the Management Information Base for 
Network Management of TCP/IP-based Internets (MIB-II) 
standard. pNA+ also works in conjunction with pSOSystem's cross 
development tools to provide a network-based download and 
debug environment for single- or multi- processor target systems. 

SNMP - Simple Network Management Protocol, is a standard used 
for managing TCP lIP networks and network devices. Because of 
its flexibililty and availability, SNMP has become the most viable 
way to manage large, heterogeneous networks containing 
commercial or custom devices. 

FTP, Telnet, TFTP - pSOSystem includes support for the well 
known internet protocols FTP and Telnet (client and server Side), 
and TFTP. FTP client allows you to transfer files to and from 

pSOSystem System Concepts 4-1 



Chapter 4. Network Programming 

4-2 

remote systems. FTP server allows remote users to read and write 
files from and to pHILE+ managed devices. Telnet client enables 
you to login to remote systems, while. Telnet server offers login 
capabilities to pSOSystem's shell, pSH, from remote systems. 
TFTP is used in pSOSystem Boot ROMs and is normally used to 
boot an application from a network device. 

RPCs - pSOSystem fully supports Sun Microsystem's Remote 
Procedure Call (RPC) and eXternal Data Representation (XDR) 
specifications via the pRPC+ software component. pRPC+ allows 
you to construct distributed applications using the familiar C 
procedure call paradigm. With pRPC+, pSOS+ tasks and UNIX 
processes can invoke procedures for execution on other 
pSOSystem or UNIX machines. 

NFS - pSOSystem offers both NFS client and NFS server support. 
NFS server allows remote systems to access files stored on pHILE+ 
managed devices. NFS client facilities are part of pHILE+ and allow 
your application to transparently access files stored on remote 
storage devices. 

STREAMS - is an extremely flexible facility for developing system 
communication services. It can be used to implement services 
ranging from complete networking protocol suites to individual 
device drivers. Many modern networking protocols, including 
Windows NT and UNIX System V Release 4.2 networking services, 
are implemented in a STREAMS environment. pSOSystem offers a 
complete System V Release 4.2 -compatible STREAMS environ
ment called OpEN (Open Protocol Embedded Networking). 

The following documents published by Prentice Hall provide more 
detailed information on UNIX System V Release 4.2: 

• Operating System API Reference (ISBN# 0-13-017658-3) 

• STREAMS Modules and Drivers (ISBN# 0-13-066879-6) 

• Network Programming Interfaces (ISBN# 0-13-017641-9) 

• Device Driver Reference (ISBN# 0-13-042631-8) 

X Windows Support - pSOSystem contains a complete implemen
tation of MITs X Windows client-side Xlib library via the pXll + 
component. pXII + allows an application to display output and 
read input from any X server located on an Internet network. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

This chapter describes the pNA+, pRPC+, and pXll + network 
components. The ITP, Telnet, pSH, TITP, and NFS server facilities are 
documented in the pSOSystem Programmer's Reference manual. NFS 
client services are described along with pHILE+ in Chapter 5, "pHILE+ 
File System Manager." 

Detailed information on SNMP is available in the SNMP User's Manuat 
and STREAMS is documented in the OPEN User's Manual, which 
describes pSOSystem's OPEN (Open Protocol Embedded Networking) 
product. 

4.2 pNA+ Software Architecture 
pNA+ is organized into four layers. Figure 7 illustrates the architecture 
and how the protocols fit into it. 

Socket Layer 

UDP Tep 

IP 

Network Interfaces 

Figure 7. pNA + Architecture 

The socket layer provides the application programming interface. This 
layer provides services, callable as re-entrant procedures, which your 
application uses to access Internet protocols; it conforms to industry 

pSOSystem System Concepts 4-3 



Chapter 4. Network Programming 

4-4 

standard UNIX 4.3 BSD socket syntax and semantics. In addition, this 
layer contains enhancements specifically for embedded real-time 
applications. 

The transport layer supports the two Internet Transport protocols, 
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP). 
These protocols provide network independent transport services. They 
are built on top of the Internet Protocol (IP). 

TCP provides reliable, full-duplex, task-to-task data stream connections. 
It is based on the Internet layer, but adds reliability, flow control, 
multiplexing, and connections to the capabilities provided by the lower 
layers. 

UDP provides a datagram mode of packet-switched communication. It 
allows users to send messages with a minimum of protocol overhead. 
However, ordered, reliable delivery of data is not guaranteed. 

The IP layer is used for transmitting blocks of data called datagrams. 
This layer provides packet routing, fragmentation and reassembly of long 
datagrams through a network or internet. 

The Network Interface (NI) layer isolates the IP layer from the physical 
characteristics of the underlying network medium. It is hardware 
dependent and is responsible for transporting packets within a single 
network. Because it is hardware dependent, the network interface is not 
part of pNA+ proper. Rather, it is a provided by the user, or by lSI as a 
separate piece of software. 

In addition to the protocols described, pNA+ supports the Address 
Resolution Protocol (ARP) and the Internet Control Message Protocol 
(lCMP). 

ICMP is used for error reporting and for other network-management 
tasks. It is layered above IP for input and output operations, but it is 
logically a part of IP, and is usually not accessed by users. See 
Section 4.14, "Internet Control Message Protocol {ICMP)." 

ARP is used to map Internet addresses to physical network addresses; it 
is described in Section 4.10.2, "Address Resolution Protocol (ARP)." 

pSOSystem System Concepts 



Chapter 4. Network Programming 

4.3 The Internet Model 
pNA+ operates in an internet environment. An internet is an 
interconnected set of networks. Each constituent network supports 
communication among a number of attached devices or nodes. In 
addition, networks are connected by nodes that are called gateways. 
Gateways provide a communication path so that data can be exchanged 
between nodes on different networks. 

Nodes communicate by exchanging packets. Every packet in transit 
through an internet has a destination Internet address, which identifies 
the packet's final destination. The source and destination nodes can be 
on the same network (Le. connected), or they can be on different 
networks (Le. indirectly connected). If they are on different networks. the 
packet must pass through one or more gateways. 

4.3. 1 Internet Addresses 

Each node in an internet has at least one unique Internet (IP) address. 
An Internet address is a 32-bit number that begins with a network 
number. followed by a node number. There are three formats or classes 
of Internet addresses. The different classes are distinguished by their 
high-order bits. The three classes are defined as A. B and C. with high
order bits of 0. 10. and 110. They use 8. 16, and 24 bits, respectively, 
for the network part of the address. Each class has fewer bits for the 
node part of the adddress and thus supports fewer nodes than the 
higher classes. 

Externally, an Internet address is represented as a string of four 8-bit 
values separated by dots. Internally, an Internet address is represented 
simply as a 32-bit value. For example, the internet address 90.0.0.1 is 
internally represented as Ox5aOOOOO 1. This address identifies node 1 on 
network 90. Network 90 is a class A network. 

In the networking literature, nodes are sometimes called hosts. However, 
in real-time systems, the term host is normally used to refer to a 
development system or workstation (as opposed to a target system). 
Therefore, we choose to use the term node rather than host. 

Note that a node can have more than one Internet address. A gateway 
node, for example. is attached to at least two physical networks and 
therefore has at least two Internet addresses. Each Internet address 
corresponds to one node-network connection. 

pSOSystem System Concepts 4-5 



Chapter 4. Network Programming 

4.3.2 Subnets 

As mentioned above, an Internet address consists of a network part and 
a host part. To provide additional flexibility in the area of network 
addressing, the notion of subnet addressing has become popular, and is 
supported by pNA+. 

Conceptually, subnet addressing allows you to divide a single network 
into multiple sub-networks. Instead of dividing a 32-bit Internet address 
into a network part and host part, subnetting divides an address into a 
network part and a local part. The local part is then sub-divided into a 
sub-net part and a host part. The sub-division of the host part of the 
Internet address is transparent to nodes on other networks. 

Sub-net addressing is implemented by extending the network portion of 
an Internet address to include some of the bits that are nonnally 
considered part of the host part. The specification as to which bits are 
to be interpreted as the network address is called the network mask. The 
network mask is a 32-bit value with ones in all bit positions that are to 
be interpreted as the network portion. 

For example, consider a pNA+ node with an address equal to 
128.9.01.01. This address defines a Class B network with a network 
address equal to 128.9. If the network is assigned a network mask equal 
to OxffffffOO, then, from pNA+'s perspective, the node resides on network 
128.9.01. 

A network mask can be defined for each Network Interface (NI) installed 
in your system. 

4.3.3 Broadcast Addresses 

4-6 

pNA+ provides an optional broadcast capability, if the underlying 
network supports it. An Internet address with a node number (i.e. host 
part) conSisting of either all ones or all zeros is designated a broadcast 
address. A broadcast address is used to refer to all of the nodes on a 
given network. 

For example, you can broadcast a packet to all of the nodes on the Class 
B network 128.1 by sending a packet to address 128.1.255.255. 
Similarly the broadcast address of a node with IP address 128.1.200.1 
and netmask of OxffffffOO is 128.1.200.255. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

4.3.4 A Sample Internet 

Figure 8 depicts an internet consisting of two networks. 

Node A 

90.0.0.1 

100.0.0.3 

Node B 

90.0.0.2 

100.0.0.4 

NodeC 

Figure 8. A Sample Internet 

100.0.0.5 

NodeD 

Note that since node B is on both networks, it has two Internet addresses 
and serves as a gateway between networks 90 and 100. For example, if 
node A wants to send a packet to node D, it sends the packet to node B, 
which in tum sends it to node D. 

4.4 The Socket Layer 
The socket layer is the programmer's interface to pNA+. It is based on 
the notion of sockets and designed to be syntactically and semantically 
compatible with UNIX 4.3 BSD networking services. This section is 
intended to provide a brief overview of sockets and how they are used. 

4.4.1 Basics 

A socket is an endpoint of communication. It is the basic building block 
for communication. Tasks communicate by sending and receiving data 
through sockets. 

pSOSystem System Concepts 4-7 



Chapter 4. Network Programming 

Sockets are typed according to the characteristics of the communication 
they support. pNA + provides three types of sockets supporting three 
different types of service: 

• Stream sockets use the Transmission Control Protocol (TCP) and 
provide a connection-based communication service. Before data is 
transmitted between stream sockets, a connection is established 
between them. 

• Datagram sockets use the User Datagram Protocol (UDP) and 
provide a connectionless communication service. Datagram sockets 
allow tasks to exchange data with a minimum of protocol overhead. 
However, reliable delivery of data is not guaranteed. 

• Raw sockets provide user level access to the IP and ICMP (see 
section 4.14) layers. This enables you to implement transport 
protocols (other than TCP/UDP) over the IP layer. They provide 
connectionless and datagram communication service. 

4.4.2 Socket Creation 

4-8 

Sockets are created via the socketO system call. The type of the socket 
(stream, datagram, or raw) is given as an input parameter to the call. A 
socket deSCriptor is returned, which is then used by the creator to access 
the socket. An example of socketO used to create a stream socket is as 
follows: 

s = socket (AF_INET, SOCK_STREAM, 0); 

The returned socket deSCriptor can only be used by the socket's creator. 
However, the shr_socketO system call can be used to allow other tasks 
to reference the socket: 

ns = shr_socket (8, tid); 

The parameter s is a socket deSCriptor used by the calling task to 
reference an existing socket [s is normally a socket descriptor returned 
by socketO]. The parameter tid is the task ID of another task that wants 
to access the same socket. shr_socketO returns a new socket deSCriptor 
ns, which can be used by tid to reference the socket. This system call is 
useful when designing UNIX-style server programs. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

4.4.3 Socket Addresses 

Sockets are created without addresses. Until an address is assigned or 
bound to a socket, it cannot be used to receive data. A socket address 
consists of a user-defined I6-bit port number and a 32-bit Internet 
address. The socket address functions as a name that is used by other 
entities, such as tasks residing on other nodes within the internet, to 
reference the socket. 

The bindO system call is used to bind a socket address to a socket. 
bindO takes as input a socket descriptor and a socket address and 
creates an association between the socket and the address specified. An 
example using bindO is as follows 

bind (s, addr, addrlen); 

4.4.4 Connection Establishment 

When two tasks wish to communicate, the first step is for each task to 
create a socket. The next step depends on the type of sockets that were 
created. Most often stream sockets are used; in which case, a connection 
must be established between them. 

Connection establishment is usually asymmetric, with one task acting as 
a client and the other task a server. The server binds an address (i.e. a 
32-bit Internet address and a I6-bit port number) to its socket (as 
described above) and then uses the UstenO system call to set up the 
socket, so that it can accept connection requests from clients. The 
UstenO call takes as input a socket deSCriptor and a backlog parameter. 
backlog specifies a limit to the number of connection requests that can 
be queued for acceptance at the socket. 

A client task can now initiate a connection to the server task by issuing 
the connectO system call. connectO takes a socket address and a 
socket deSCriptor as input. The socket address is the address of the 
socket at which the server is listening. The socket deSCriptor identifies a 
socket that constitutes the client's endpoint for the client-server 
connection. If the client's socket is unbound at the time of the connectO 
call, an address is automatically selected and bound to it. 

In order to complete the connection, the server must issue the acceptO 
system call, specifying the deSCriptor of the socket that was specified in 
the prior UstenO call. The acceptO call does not connect the initial 
socket, however. Instead, it creates a new socket with the same 

pSOSystem System Concepts 4-9 



Chapter 4. Network Programming 

properties as the initial one. This new socket is connected to the client's 
socket, and its descriptor is returned to the server. The initial socket is 
thereby left free for other clients that might want to use connectO to 
request a connection with the server. 

If a connection request is pending at the socket when the acceptO call is 
issued, a connection is established. If the socket does not have any 
pending connections, the server task blocks, unless the socket has been 
marked as non-blocking (see section 4.4.9), until such time as a client 
initiates a connection by issuing a connectO call directed at the socket. 

Although not usually necessary, either the client or the server can 
optionally use the getpeemameO call to obtain the address of the peer 
socket, that is, the socket on the other end of the connection. 

The following illustrates the steps described above. 

SERVER CLIENT 

socket (domain, type, protocol);socket(domain, type, protocol); 

bind(s, addr, addrlen); 

accept(s, addr, addrlen); 

listen(s, backlog); 

connect(s, addr, addrlen); 

4.4.5 Data Transfer 

4-10 

Mter a connection is established, data can be transferred. The sendO 
and recvO system calls are designed specifically for use with sockets that 
have already been connected. The syntax is as follows: 

send(s, buf, buflen, flags); 

recv(s, buf, buflen, flags); 

A task sends data through the connection by calling the sendO system 
call. sendO accepts as input a socket descriptor, the address and length 
of a buffer containing the data to transmit, and a set of flags. A flag can 
be set to mark the data as "out-of-band," that is, high-priority, so that it 
can receive special handling at the far end of the connection. Another 
flag can be set to disable the routing function for the data; that is, the 
data will be dropped if it is not destined for a node that is directly 
connected to the sending node. 

The socket specified by. the parameter s is known as the local socket, 
while the socket at the other end of the connection is called the foreign 
socket. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

When send() is called, pNA+ copies the data from the buffer specified by 
the caller into a send buffer associated with the socket and attempts to 
transmit the data to the foreign socket. If there are no send buffers 
available at the local socket to hold the data, sendO blocks, unless the 
socket has been marked as non-blocking. The size of a socket's send 
buffers can be adjusted with the setsockoptO system call. 

A task uses the recvO call to receive data. recvO accepts as input a 
socket deSCriptor specifying the communication endpoint, the address 
and length of a buffer to receive the data, and a set of flags. A flag can 
be set to indicate that the recv() is for data that has been marked by the 
sender as out-of-band only. A second flag allows recvO to "peek" at the 
message; that is, the data is returned to the caller, but not consumed. 

If the requested data is not available at the socket, and the socket has 
not been marked as non-blocking, recvO causes the caller to block until 
the data is received. On return from the recvO call, the server task will 
find the data copied into the specified buffer. 

4.4.6 Connectionless Sockets 

While connection-based communication is the most widely used 
paradigm, connectionless communication is also supported via 
datagram or raw sockets. When using datagram sockets, there is no 
requirement for connection establishment. Instead, the destination 
address (i.e the address of the foreign socket) is given at the time of each 
data transfer. 

To send data, the sendtoO system call is used; 

sendto(s, buf, buflen, flags, to, tolen); 

The s, buf, butten, and flags parameters are the same as those in sendO. 
The to and tolen values are used to indicate the address of the foreign 
socket that will receive the data. 

The recvfromO system call is used to receive data: 

recvfrom(s, bUf, buflen, flags, to, tolen); 

The address of the data's sender is returned to the caller via the to 
parameter. 

pSOSystem System Concepts 4-11 



Chapter 4. Network Programming 

4.4.7 Discarding Sockets 

Once a socket is no longer needed, its socket descriptor can be discarded 
by using the closeO system call. If this is the last socket descriptor 
associated with the socket, then closeO de-allocates the socket control 
block (see section 4.4.11) and, unless the LINGER option is set (see 
section 4.4.8), discards any queued data. As a special case, close(O) 
closes all socket descriptors that have been allocated to the calling task. 
This is particularly useful when a task is to be deleted. 

4.4.8 Socket Options 

The setsockoptO system call allows a socket's creator to associate a 
number of options with the socket. These options modify the behavior of 
the socket in a number of ways, such as whether messages sent to this 
socket should be routed to networks that are not directly connected to 
this node (the DONTROUTE option); whether sockets should be deleted 
immediately if their queues still contain data (the LINGER option); 
whether packet broadcasting is permitted via this socket (the 
BROADCAST option), and so forth. A detailed description of these 
options and their effects is given in the pSOSystem Progrwnmer's 
Reference manual. 

Options associated with a socket can be checked via the getsockoptO 
system call. 

4.4.9 Non-Blocking Sockets 

4-12 

Many socket operations cannot be completed immediately. For instance, 
a task might attempt to read data that is not yet available at a socket. In 
the normal case, this would cause the calling task to block until the data 
became available. A socket can be marked as non-blocking through use 
of the ioctlO system call. If a socket has been marked as non-blocking, 
an operation request that cannot be completed without blocking does not 
execute and an error is returned to the caller. 

The selectO system call can be used to check the status of a socket, so 
that a system call will not be made that would cause the caller to block. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

4.4.10 Out-of-Band Data 

4.4.11 

Stream sockets support the notion of out-of-band data. Out-of-band 
data is a logically independent transmission channel associated with 
each pair of connected sockets. The user has the choice of receiving out
of-band data either in sequence with the normal data or independently 
of the normal sequence. It is also possible to "peek" at out-of-band data. 
A logical mark is placed in the data stream to indicate the point at which 
out-of-band data was sent. 

If multiple sockets might have out-of-band data aWaiting delivery, for 
exceptional conditions selectO can be used to determine those sockets 
with such data pending. 

To send out-of-band dat.a, the MSG_OOB flag should be set with the 
sendO and sendtoO system calls. To receive out-of-band data, the 
MSG_OOB flag is used when calling recvO and recvfromO. The 
SIOCATMARK option in the ioctlO system call can be used to determine 
if out-of-band data is currently ready to be read. 

Socket Data Structures 

pNA+ uses two data structures to manage sockets: socket control blocks 
and open socket tables. 

A socket control block (SeB) is a system data structure used by pNA+ to 
maintain state information about a socket. During initialization, pNA+ 
creates a fIxed number of seBs. An seB is allocated for a socket when 
it is created via the socketO call. 

Every task has an open socket table associated with it. This table is used 
to store the addresses of the socket control blocks for the sockets that 
can be referenced by the task. A socket descriptor is actually an index 
into an open socket table. Since each task has its own open socket table, 
you can see that one socket might be referenced by more than one socket 
descriptor. New socket descriptors for a given socket can be obtained 
with the shr_socketO system call (see section 4.4.2). 

pSOSystem System Concepts 4-13 



Chapter 4. Network Programming 

4.5 The pNA + Daemon Task 

4-14 

When pNA + system calls are made, there are three possible outcomes: 

1. pNA + executes the requested service and returns to the caller. 

2. The system call cannot be completed immediately, but it does not 
require the caller to wait. In this case, pNA + schedules the 
necessruy operations and returns control to the caller. For example, 
the send() system call copies data from the user's buffer to an 
internal buffer. The data might not actually be transmitted until 
later, but control returns to the calling task, which continues to run. 

3. The system call cannot be completed immediately and the caller 
must wait. For example the user might attempt to read data that is 
not yet available. In this case, pNA+ blocks the calling task. The 
blocked task is eventually rescheduled by subsequent 
asynchronous activity. 

As the above indicates, the Internet protocols are not always 
synchronous. That is, not all pNA+ activities are initiated directly by a 
call from an application task. Rather, certain "generic" processing 
activities are triggered in response to external events such as incoming 
packets and timer expirations. To handle asynchronous operations, 
pNA+ creates a daemon task called pNAD. 

pNAD is created during pNA + initialization. It is created with a priority 
of 255 to assure its prompt execution. The priority of pNAD can be 
lowered with the pSOS+ t_setpri call. However, its priority must be 
higher than the priority of any task calling pNA +. 

pNAD is normally blocked, waiting for one of two events, encoded in bits 
30 and 31. When pNAD receives either of these two events, it is 
unblocked and preempts the running task. 

The first event (bit 31) is sent to pNAD by pNA + upon receipt of a packet 
when the pNA+ ANNOUNCE-"oPACKET entry is called, either by an ISR or 
ni...,poll. Based on the content of the packet, pNAD takes different 
actions, such as waking up a blocked task, sending a reply packet, or, if 
this is a gateway node, forwarding a packet. The last action should be 
particularly noted; that is, if a node is a gateway, pNAD is responsible for 
forwarding packets. If the execution of pNAD is inhibited or delayed, 
packet routing will also be inhibited or delayed. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

The second event (bit 30) is sent every 100 milliseconds as a result of a 
pSOS+ tm_evevery system call. When pNAD wakes up every lOOms, it 
performs time-specific processing for TCP that relies heavily on time
related retries and timeouts. After performing its time-related 
processing, pNAD calls ni-poll for each Network Interface that has its 
POLL flag set. 

4.6 The User Signal Handler 
pNA + defines a set of signals, which correspond to unusual conditions 
that might arise during normal execution. The user can provide an 
optional signal handler, which is called by pNA + when one of these 
"unusual" or unpredictable conditions occur. For example, if urgent 
data is received, or if a connection is broken, pNA+ calls the user
provided signal handler. 

The address of the user-provided signal handler is provided in the pNA+ 
Configuration Table entry NC_SIGNAL. When called by pNA+, the 
handler receives as input the signal type (i.e. the reason the handler is 
being called), the socket deSCriptor of the affected socket, and the TID of 
the task that "owns" the affected socket. When a socket is first created, 
it has no owner; it must be assigned one using the ioctlQ system call. 

It is up to the user to decide how to handle the signal. For example, the 
handler can call the pSOS+ as_send system call to modify the execution 
path of the owner. A user signal handler is not required. The user can 
choose to ignore signals generated by pNA + by setting NC _SIGNAL equal 
to zero. In addition, if the socket has no "owner," the signals are 
dropped. The signals are provided to the user so that the application can 
respond to these unpredictable conditions, if it chooses to do so. 

The following is a list of the signals that can be generated by pNA +: 

SIGIO 

SIGPIPE 

SIGURG 

Ox40000000 

0x20000000 

OxlOOOOOOO 

I/O activity on the socket 

Connection has been disconnected 

Urgent data has been received 

The pSOSystem Programmer's Reference manual describes the calling 
conventions used by pNA+ when calling the user-provided signal 
handler. 

pSOSystem System Concepts 4-15 



Chapter 4. Network Programming 

4.7 Error Handling 
pNA+ uses the UNIX BSD 4.3 socket level error reporting mechanisms. 
When UNIX detects an error condition, it stores an error code into the 
internal variable ermo and returns -1 to the caller. ·To get the error code, 
the calling task simply reads ermo prior to making another system call. 

pNA + implements the UNIX error reporting mechanisms, but with two 
variations. First, pNA + uses a function rather than a variable to return 
the error code. Second, the corresponding pNA+ function is named 
pna_ermo instead of errno. Thus, if pNA+ returns an error code of -1, 
your application sho.uld call pna_ermoO to determine the exact cause of 
the error. 

4.8 Packet Routing 

4-16 

pNA + includes complete routing facilities. This means that, in addition 
to providing end-to-end communication between two network nodes, a 
pNA+ node forwards packets in an Internet environment. When pNA+ 
receives a packet addressed to some other node, it attempts to forward 
the packet toward its destination. 

pNA + forwards packets based on routes that define the connectivity 
between nodes. A route provides reachability information by defining a 
mapping between a destination address and a next hop within a 
physically attached network. 

Routes can be classified as either direct or indirect. A direct route defines 
a path to a directly connected node. Packets destined for that node are 
sent directly to the final destination node. An indirect route defines a 
path to an indirectly connected node (see section 4.3). Packets 
addressed to an indirectly connected node are routed through an 
intermediate gateway node. 

Routes can be classified further as either host or network. A host route 
specifies a path to a particular destination node, based on the complete 
destination node's IP address. A network route specifies a path to a 
destination node, based only on the network portion of the destination 
node's IP address. That is, a network route specifies a path to an entire 
destination network, rather than to a particular node in the network. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

Direct routes provide a mapping between a destination address and a 
Network Interface (NI). They are added during NI initialization. When an 
NI is added into the system (see section 4.9.6), pNA+ adds a direct route 
for that NI. If the network is a point-to-point network, a pNA+ node is 
connected to a single node (see section 4.9.5), and the route is a host 
route. Otherwise, it is a network route. 

Indirect routes provide a mapping between a destination address and a 
gateway address. Unlike direct routes, indirect routes are not created 
automatically by pNA+. Indirect routes are created explicitly, either by 
entries in the pNA + Configuration Table, or by using the pNA + system 
calls chng_route() or loctl(). 

pNA + supports one final routing mechanism, a default gateway, which 
can be specified in the pNA + configuration table. The default gateway 
specifies the address to which all packets are forwarded when no other 
route for the packet can be found. In fact, in most pNA+ installations, a 
default route is the only routing information ever needed. 

In summary, pNA + uses the following algorithm to determine a packet 
route: 

1. pNA+ first looks for a host route using the destination node's 
complete IP address. If one exists and is a direct route, the packet is 
sent directly to the destination node. If it is an indirect route, the 
packet is forwarded to the gateway specified in the route. 

2. If a host route does not exist, pNA+ looks for a network route using 
the network portion of the destination node's IP address. If one 
exists and is a direct route, the packet is sent directly to the 
destination node. If it is an indirect route, the packet is forwarded 
to the gateway specified in the route. 

3. If a network route does not exist, pNA+ forwards the packet to the 
default gateway, if one has been provided. 

4. Otherwise, the packet is dropped. 

Routes can be configured into pNA+ during initialization. The 
configuration table entry NC_IROUTE contains a pointer to an Initial 
Routing Table (see the pSOSystem Programmer's Reference manual). 
They can also be added or altered dynamically, using the pNA + function 
calls chnLrouteO and loctlO. For simplicity, most systems use a 
default gateway node. A default gateway is specified by the configuration 
table entry NC_DEFGN. 

pSOSystem System Concepts 4-17 



Chapter 4. Network Programming 

4.9 Network Interfaces 

4-18 

pNA+ accesses a network by calling a user-provided layer of software 
called the Network Interface (NI). The interface between pNA+ and the NI 
is standard and independent of the network's physical media or topology; 
it isolates pNA+ from the network's physical characteristics. 

The NI is essentially a device driver that provides access to a 
transmission medium. (The terms network interface, NI, and network 
driver are all used interchangeably in this manual.) A detailed 
description of the interface between pNA+ and the NI is given in the 
pSOSystem Programmer's Reference manual. 

There must be one NI for each network connected to a pNA+ node. In the 
simplest case, a node is connected to just one network and will have just 
one NI. However, a node can be connected to several networks 
simultaneously and therefore have several network interfaces. Each NI 
is assigned a unique IP address. 

Each network connection (NI) has a number of attributes associated with 
it. They are as follows: 

• The address of the NI entry point 

• The IP address 

• The maximum transmission unit 

• The length of its hardware address 

• Control flags 

• The network mask 

• Destination IP address (point-to-point links) 

pNA + stores these attributes for all of the network interfaces installed in 
your system in the NI Table, discussed in Section 4.9.6, 'The NI Table." 
NI attributes can be modified using ioctlO. The first two attributes are 
self-explanatory. Maximum transmission units, hardware addresses, 
control flags, network subnet mask, and destination IP address are 
discussed in the following subsections. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

4.9.1 Maximum Transmission Units (MTU) 

Most networks are limited in the number of bytes that can be physically 
transmitted in a single transaction. Each NI therefore has an associated 
maximwn transmission unit (MTU). which is the maximum packet size 
that can be sent or received. If the size of a packet exceeds the network's 
MTU. the IP layer fragments the packet for transmission. Similarly. the 
IP layer on the receiving node reassembles the fragments into the original 
packet. 

The minimum MTU allowed by pNA+ is 64 bytes. There is no maximum 
limit. A larger MTU leads to less fragmentation of packets. but usually 
increases the internal memory reqUirements of the NI. Generally. an 
MTU between 512 bytes and 2K bytes is reasonable. For example. the 
MTU for Ethernet is 1500. 

4.9.2 Hardware Addresses 

In addition to its Internet address. every NI has a hardware address. The 
Internet address is used by the IP layer. while the hardware address is 
used by the network driver when physically transferring packets on the 
network. The process by which Internet addresses are mapped to 
hardware addresses is called address resolution and is discussed in 
section 4.10. 

Unlike an Internet address. which is four bytes long. the length of a 
hardware address varies depending on the type of network. For example, 
an Ethernet address is 6 bytes while a shared memory address is usually 
4 bytes. pNA+ can support hardware addresses up to 14 bytes in length. 
The length of a NI's hardware address must be specified. 

4.9.3 Control Flags 

Each NI has a set of flags that define optional capabilities, as follows: 

ARP 

BROADCAST 

pSOSystem System Concepts 

This is used to enable or disable address 
resolution (see section 4.10). 

This is used to tell pNA+ if the NI supports 
broadcasting. If you attempt to broadcast a 
packet on a network with this flag disabled, 
pNA + returns an error. 

4-19 



Chapter 4. Network Programming 

EXTLOOPBCK If this is disabled, pNA+ "loops back" packets 
addressed to itself. That is, if you send a packet 
to yourself, pNA+ does not call the NI, but the 
packet is processed as if it were received extern
ally. If this flag is enabled, pNA+ calls the NI. 

POLL If this is set, the ni-poll service is called by the 
pSOS+ daemon task pNAD. This flag is normally 
used in conjunction with pROBE+ and XRAY+. 

POINTTOPOINT If this is set, the NI is a point-to-point interface. 

RAWMEM If this is set, pNA+ passes packets in the fonn of 
mblk (message block) linked lists (see 
Section 4.11, "Memory Management. ") 
Similarly, the driver announces packets by 
passing a pOinter to the message block. 

UP If this is set, the intial mode of the NI is up. 

Note that if the ARP flag is enabled, the BROADCAST flag must also be 
set (see section 4. 10). 

4.9.4 Network Subnet Mask 

A network can have a network mask associated with it to support subnet 
addressing. The network mask is a 32-bit value with ones in all bit 
pOSitions that are to be interpreted as the network portion. See section 
4.3.2 for a discussion on sub net addressing. 

4.9.5 Destination Address 

4-20 

In point .. to-point networks, two hosts are joined on opposite ends of a 
network interface. The destination address of the companion host is 
speCified in the pNA+ NI Table entry DSTIPADDR for point-to-point 
networks. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

4.9.6 The NI Table 

pNA + stores the parameters described above for each NI in the NI Table. 
The size of the NI Table is determined by the pNA + Configuration Table 
entry NC_NNI, which defines the maximum number of networks that can 
be connected to pNA +. 

Entries can be added to the NI Table in one of two ways: 

1. The·pNA+ Configuration Table entry NC_INI contains a pOinter to an 
Initial NI Table. The contents of the Initial NI Table is copied to the 
actual NI Table during pNA+ initialization. 

2. The pNA+ system call add_niO can be used to add an entry to the NI 
Table dynamically, after pNA+ has been initialized. 

4.10 Address Resolution and ARP 
Every NI has two addresses associated with it -- an Internet address and 
a hardware address. The IP layer uses the Internet address, while the 
network driver uses the hardware address. The process by which an 
Internet address is mapped to a hardware address is called address 
resolution. 

In many systems, address resolution is performed by the network driver. 
The address resolution process, however, can be difficult to implement. 
Therefore, to simplify the design of network drivers, pNA + provides the 
capability of resolving addresses internally. To provide maximum 
flexibility, this feature can be optionally turned on or off, so that, if 
necessary, address resolution can still be handled at the driver level. 

pNA + goes through the following steps when performing address 
resolution: 

1. pNA+ examines the NI flags (see section 4.9.3) to determine if it 
should handle address resolution internally. If not (i.e. the ARP flag 
is disabled), pNA+ simply passes the Internet address to the network 
drtver. 

2. If the ARP flag is enabled, pNA+ searches its ARP Table (see section 
4.10.1) for an entry containing the Internet address. If an . entry is 
found, the corresponding hardware address is passed to the NI. 

3. If the Internet address is not found in the ARP Table, pNA+ uses the 
Address Resolution Protocol (see section 4.10.2) to obtain the 
hardware address dynamically. 

pSOSystem System Concepts 4-21 



Chapter 4.· Network Programming 

4.10.1 The ARP Table 

pNA + maintains a table called the ARP Table for obtaining a hardware 
address, given an Internet address. This table consists of <Internet 
address, hardware address> tuples. 

The ARP Table is created during pNA + initialization; the pNA + 

Configuration Table entry NC_NARP specifies its size. Entries can be 
added to the ARP Table in one of three ways: 

1. An Initial ARP Table can be supplied. The pNA + Configuration Table 
entry NC_IARP contains a pOinter to an Initial ARP Table. The 
contents of the Initial ARP Table are copied to the actual ARP Table 
during pNA + initialization. 

2. Internet-to-hardware address associations can be determined 
dynamically by the ARP protocol. When pNA + uses ARP to 
dynamically determine an Internet-to-hardware address mapping, it 
stores the new <Internet address, hardware address> tuple in the 
ARP Table. This is the normal way that the ARP Table is updated. 
The next section explains how ARP operates. 

3. ARP Table entries can be added dynamically by using ioctl(). 

4.10.2 Address Resolution Protocol (ARP) 

4-22 

pNA + uses the Address Resolution Protocol (ARP) to detennine the 
hardware address of a node dynamically, given its Internet address. ARP 
operates as follows: 

1. A sender, wishing to learn the hardware address of a destination 
node, prepares and broadcasts an ARP packet containing the 
destination Internet address. 

2. Every node on the network receives the packet and compares its 
own Internet address to the address specified in the broadcasted 
packet. 

3. If a receiving node has a matching Internet address, it prepares and 
transmits to the sending node an ARP reply packet containing its 
hardware address. 

ARP can be used only if all· nodes on the network support it. If your 
network consists only of pNA + nodes, this requirement is of course 
satisfied. Otherwise, you must make sure that the non-pNA+ nodes 
support ARP. ARP was originally developed for Ethernet networks and is 
usually supported by Ethernet drivers. Networks based on other media 
might or might not support ARP. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

pNA+ treats Internet packets differently than ARP packets. When pNA+ 
calls an NI, it provides a packet type parameter, which is either IP or 
ARP. Similarly, when pNA + receives a packet, the NI must also return a 
packet type. All network drivers that support ARP must have some 
mechanism for attaching this packet type to the packet. For example, 
Ethernet packets contain type fields. For NIs that do not support ARP, 
the packet type parameter can be ignored on transmission, and simply 
set to IP for incoming packets. 

4. 11 Memory Management 
As packets move across various protocol layers in pNA + they are subject 
to several data manipulations, including 

• Addition of protocol headers 

• Deletion of protocol headers 

• Fragmentation of packets 

• Reassembly of packets 

• Copying of packets 

pNA + is designed with specialized memory management so that such 
manipulations can be done optimally and easily. 

pNA + allows configuratlon of its memory management data structures 
via the pNA + Configuration Table. These structures are critical to its 
performance; hence, understanding the basics of pNA + memory 
management is crucial to configuring your system optimally. 

The basic unit of data used internally by pNA + is called a message. 
Messages are stored in message structures. A message structure 
contains one or more message block triplets, linked via a singly-linked 
list. Each message block triplet contains a contiguous block of memory 
defining part of a message. A complete message is formed by linking 
such message block triplets in a singly-linked list. 

Each message block triplet contains a Message Block, a Data Block. and 
a Buffer. Figure 9 illustrates the message block triplet. 

pSOSystem System Concepts 4-23 



Chapter 4. Network Programming 

4-24 

Message Block 

I I
----------...... ~ Next Message 

mblk_t ~ Data Block 

I dblU I Data Buffer 

Figure 9. Message Block Triplet 

A message block contains the characteristics of· the partial message 
defined by the message block triplet. A data block contains the 
characteristics of the buffer to which it pOints. A btiffer is a contiguous 
block of memory containing data. 

A data block may be contained in several message block triplets. 
However, there is a one-to-one correspondence between data blocks and 
buffers. The C language definitions of the data structures, for message 
blocks and data blocks, are in the header file <pna.h>. 

Figure 10 illustrates a complete message formed by a linked list of 
message block triplets. 

The basic unit of transmission used by protocol layers in pNA + is a 
packet. A packet contains a protocol header and the data it 
encapsulates. Each protocol layer tags a header to the packet and 
passes it to the lower layer for transmission. The lower layer in tum uses 
the packet as encapsulated data and tags its protocol header and passes 
it to its lower layer. Packets are stored in the form of messages. 

The buffers in pNA + are used to store data, protocol headers, and 
addresses. Data is passed into pNA + via two interfaces. At the user level, 
data is passed via the sendO, sendto() and sendmsgO service calls. At 
the NI interface, data is passed via the "Announce Packet" call (See 
Section 4.9, "Network Interfaces"). 

pSOSystem System Concepts 



Chapter 4. Network Programming 

Message Block 1 Message Block 2 Message Block 3 

b_cont -. 

b_cont - --... b_rptr I---

- b_rptr 
mblk t mblk_t 

mblk t b_rptr 

.- b_wptr r--- b_wptr b_wptr 

b_datap 1- b_datap b_datap 

Data Block 1 , r, " Data Block 2 

.---- db_base ....-- db_base 

dblk t dblk t 

db_lim .- db_lim 

Data Buffer - Data Buffer ... -... 
- ~ -... -

-... 
- --- -

- -... -
Figure 10. Message Block Linkage 

pSOSystem System Concepts 4-25 



Chapter 4. Network Programming 

4-26 

pNA + allocates a message block triplet and copies data from the external 
buffer to the buffer associated with the triplet. The message is then 
passed to the protocol layers for further manipulation. As the data 
passes through various protocol layers, additional message block triplets 
are allocated to store the protocol headers and are linked to the message. 
pNA + also allocates temporary message block triplets to store socket 
addresses during pNA + seIVice calls. 

As the messages pass through the protocol layers, they are subjected to 
various data manipulations (copying, fragmentation, and reassembly). 
For instance, when preparing a packet for transmission, the TCP layer 
makes a copy of the packet from the socket buffer, tags a TCP header, 
and passes the packet to the IP layer. Similarly, the IP layer fragments 
packets it receives from the transport layer (TCP, UDP) to fit the MTU of 
the outgoing Network Interface. 

pNA +'s memory management is optimized to perform such operations 
efficiently and maximize performance by avoiding physical copying of 
data. For instance, copying of message block triplets is achieved by 
allocating a new message block, associating it with the original data 
block, and increasing the reference count to the original data block. This 
avoids costly data copy operations. 

Memory Configuration 
During the initialization of pNA +, various memory structures are created 
and initialized. The initialization sequence creates message blocks, data 
blocks, and data buffers of multiple sizes. The number of each is 
configurable in the pNA + Configuration Table. pNA + provides entries in 
the configuration table to specify the number of message blocks and data 
buffers. Since there is a one-to-one relationship between data blocks 
and data buffers, pNA + allocates a data block for every buffer configured 
in the system. 

The memory configuration of pNA + is critical to its performance. 
Configuring too few buffers or wrong sizes leads to reduced performance. 
Configuring too many buffers wastes memory. 

pSOSystem System Concepts 



4.12.1 

Chapter 4. Network Programming 

Optimal performance can be achieved empirically by tuning the following 
configurable elements: 

• Number of message blocks 

• Buffer configuration 

• MTU-size buffers 

• 128-byte buffers 

• Zero-size buffers 

The following sections give general configuration guidelines. 

Buffer Configuration 

Buffer configuration is specified via the nc_bcfg element in the pNA' 
Configuration Table (See the pSOSystem Programmer's Reference). It 
allows you to configure application-specific buffer sizes into the system. 
There are two attributes associated with a buffer configuration -- buffer 
size and the number of buffers. 

pNA+ copies data into its internal buffers via two interfaces. It copies 
data from the user buffers to its internal buffers during send(), sendto(), 
and sendmsgO service calls. It copies data from the NI buffers to its 
internal buffers during "Announce Packet" calls. 

pNA + allows buffers of multiple sizes to be configured into the system. In 
order to allocate a buffer to copy data, it first selects the buffer size, using 
the following best-fit algorithm: 

1. pNA + first tries to find an exact match for the data buffer. 

2. If there is no such buffer size available, pNA+ .searches for the 
smallest sized buffer that can contain the requested size. 

3. If there is none, pNA + selects the maximum buffer size configured. 

Once a size is selected, pNA + checks for a free buffer from the selected 
size's buffer list. If none are available, pNA+ blocks the caller on a 
blocking call, or returns null on a non-blocking call. If the size of the 
buffer is not sufficient to copy all of the data, pNA + copies the data into 
multiple buffers. 

For optimal configuration, pNA + should always find an·exact match when 
doing buffer size selection. Thus, the configuration should have buffer 

pSOSystem System Concepts 4-27 



Chapter 4. Network Programming 

4-28 

sizes equal to the MTU of the NI's configured in pNA + to satisfy the 
requirement at the NI interface, and buffer sizes equal to the user buffer 
sizes specified in the sendO, sendtoO, and sendmsgO sexvice calls to 
satisfy user interface requirements. The number of buffers to be 
configured for each size depends on the socket buffer size and incoming 
network traffic. 

pNA +'s flexible memory configuration provides multiple buffer sizes. 
However, 128-byte and zero-size buffers have special meanings. 128-
byte buffers are used internally by pNA + for storing protocol headers and 
for temporary usage. These buffers must always be configured for pNA + 
to function. Zero-size buffers are used to create message block triplets 
with externally specified data buffers (See Section 4.13, "Zero Copy 
Options," and pna_esballoc() in the pSOSystem Programmer's 
Reference) . 

4. 12. 1. 1 MTU-Size Buffers 

When a non-zero copy NI is configured in pNA+, data is copied from the 
NI buffers to pNA+ internal buffers. Hence, it is optimal to have MTU-size 
buffers configured in the system. The number of buffers that should be 
configured depends on the incoming network traffic on that NI. 

4.12. 1.2 Service-Call-Size Buffers 

Data is copied from user buffers to pNA + internal data buffers during 
sendO. sendtoO. and sendmsgO seIVice calls. For optimal performance. 
pNA + should be configured with buffer sizes specified in the service calls. 
The optimal number of buffers depends on the buffer size of the socket. 

4.12. 1.3 128-8yte Buffers 

pNA+ uses 128-byte buffers to store protocol headers and addresses. 
The number of protocol headers allocated at any given time depends on 
the number of packets sent or received Simultaneously by the protocol 
layers in pNA+. The number of packets sent or received by pNA+ varies 
with the number of active sockets and with socket buffer size. The 
number of packets that can exist per active socket is the socket buffer 
size divided by the MTU of the outgOing NI. pNA + sexvice calls also use 
128-byte buffers for temporary purposes; they use a maximum of three 
buffers per call. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

4. 12. 1.4 Zero-Size Buffers 

Zero-size buffers are used during pna_esballoc service calls to attach 
externally supplied user buffers to a message block and a data block. 
When zero-size buffers are specified, pNA + allocates only a data block; 
that is, the associated buffer is not allocated. 

The optimal number of zero-size buffers to be configured depends on the 
number of externally specified buffers that can attached to pNA + 

message blocks; that is, the number of times pna_esballoc is used. (For 
more details, see Section 4.13, "Zero Copy Options.") 

4. 12.2 Message Blocks 

The memory manager in pNA + is highly optimized for data copy and 
fragmentation. During these operations, pNA + allocates an additional 
message block and reuses the original data block and buffer. The 
number of copy or fragmentation operations done by pNA + per buffer 
depends on the size of the buffer and on the MTU size of the NI's 
configured in the system. 

The maximum number of fragments for buffers of sizes less than the 
smallest M1U is two, and the maximum number of fragments for all 
other buffers is the buffer size divided by the M1U. 

The number of message blocks configured in the system should equal 
the total number of fragments that can be formed from the buffers 
configured in the system. In most cases, it is sufficient to configure the 
total number of message blocks to be twice the total number of buffers 
configured in the system. 

4. 12.3 Tuning pNA + 

pNA + also provides statistics for buffer and message block usage via the 
loctlO service call. The SIOCGDBSTATcommand can be used to return 
buffer usage, and SIOCGMBSTAT can be used to get message block 
usage. 

These commands provide information on the number of times tasks 
Waited for a buffer, the number of times a buffer was unavailable, the 
number of free buffers, and the total number of buffers configured in the 
system. You can use this information to tweak the message block and 
data buffer configuration. 

pSOSystem System Concepts 4-29 



Chapter 4. Network Programming 

4. 13 Zero Copy Options 

4.13.1 

4-30 

Copying data is an expensive operation in any networking system. 
Hence, eliminating it is critical to optimal performance. pNA + performs 
data copy at its two interfaces. It copies data from the user buffer to 
pNA+ internal buffers during send() , sendtoQ, and sendmsgO service 
calls, and vice versa during recvO, recvfromO, and recvmsgQ calls. A 
data copy is performed between the NI and pNA + buffers when data is 
exchanged. 

Because the pNA + memory manager is highly optimized to eliminate data 
copy, data is copied only at the interfaces during data transfers. In order 
to maximize performance, pNA+ provides options to eliminate data copy 
at its interfaces, as well. These options are referred to as "zero copy" 
operations. pNA + extends the standard Berkeley socket interface at the 
user level and provides an option at the NI level to support zero copy 
operations. 

Zero copy is achieved in pNA + by providing a means of exchanging data 
at interfaces via message block triplets and by enabling access to its 
memory management. The zero copy operations provided at the 
interfaces are independent of each other; that is, an application can 
choose either one, or both. In most cases, the NI interface is optimized 
to perform zero copy, while retaining the standard interface at the socket 
level. 

Socket Extensions 

The sendto(), send(), recvO, and recvfromQ service calls are extended to 
support the zero copy option. An option is provided in the calls allowing 
data to be exchanged via message block triplets. An additional flag 
(MSG_RAWMEM) is provided in these service calls. When the flags 
parameter in these service calls is set to MSG_RAWMEM, the buf 
parameter contains a pointer to a message block triplet. (See the 
pSOSystem Programmer's Reference.) 

When the zero copy option is not used, a buffer always remains in the 
control of its owner. For example, during a sendQ call, the address of the 
buffer containing data to be sent is passed to pNA +. As soon as the call 
returns, the buffer can be reused or de-allocated by its owner. pNA + has 
copied the data into its internal buffers. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

When the zero copy option is used, control of the buffer triplet passes to 
pNA +. When pNA + finishes using the message block triplet, the triplet i~ 
freed. Similarly, on a recvO call, control of the buffer passes to the 
application, which is responsible for freeing the message block triplet. 

Four service calls are provided to access pNA + memory management. 
They are as follows: 

pna_freebO 

pna_freemsgO 

pna_ esballocO 

allocates a message block triplet that contains a 
data buffer of the size passed in as a parameter. The 
data buffer is internal to pNA+. 

frees a single message block triplet. 

frees a message. 

associates a message block and a data block with an 
externally specified buffer. pna_esballocO returns a 
pOinter to a message block triplet that contains a 
message block and a data block allocated by pNA +. 
The data buffer in the triplet is passed in as a 
parameter to the call. 

4.13.2 Network Interface Option 

The pNA + network interface definition supports data exchange between 
pNA + and an NI via message block triplets. If the RAWMEM flag is set in 
the NI flags, it indicates that the interface supports the zero copy 
operation, and the exchange of data between NI and pNA+ is in the form 
of message block triplets. 

The pOinters to the pna_allocbO, pna_freebO, pna_freemsgO, and 
pna_esballocO functions are passed to the NI driver during its ni_init 
function call. (See Section 4.9, "Network Interfaces.") These functions 
are used by the NI to gain access to pNA+ memory management routines. 

4.14 Internet Control Message Protocol (ICMP) 
ICMP is a control and error message protocol for IP. It is layered above 
IP for input and output, but it is really part of IP. ICMP can be accessed 
through the raw socket facility. pNA + processes and generates I CMP 
messages in response to ICMP messages it receives. 

pSOSystem System Concepts 4-31 



Chapter 4. Network Programming 

4-32 

ICMP can be used to detennine if pNA+ is accessible on a network. For 
example. some workstations (such as SUN) provide a utility program 
called ping. which generates ICMP echo requests and then waits for 
corresponding replies and displays them when received. pNA + responds 
to these I CMP messages sent by ping. 

ICMP supports 7 unique message types. with each reserved to designate 
specific IP packet or network status characteristics. as follows: 

1YPE 

1 

2 

3 

4 

DESCRIPTION 

ECHO REQUEST AND REPLY. This type is used to test/ 
verify that the destination is reachable and responding. 
The ping utility relies on this ICMP message type. 

DESTINATION UNREACHABLE. This message type is 
generated when an IP datagram cannot be delivered by a 
node. This type is further delineated by ancilliary codes 
defined as follows: 

CODE 

o 
1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

EXPLANATION 

Network unreachable. 

Host unreachable. 

Protocol unreachable. 

Port unreachable. 

Fragmentation needed and DF is set. 

Source route failed. 

Destination network unknown. 

Destination host unknown. 

Source isolated. 

Communication with destination network is 
administratively prohibited. 

Communication with destination host is 
administratively unknown. 

Network unreachable for type of service. 

Host unreachable for type of service. 

SOURCE QUENCH. This type is generated when buffers 
are exhausted at an intennediary gateway or end-host. 

REDIRECT. This type is generated for a change of route. 

pSOSystem System Concepts 



4.15 

5 

Chapter 4. Network Programming 

DESCRIfYfION 

TIME EXCEEDED FOR DATAGRAM. This type is 
generated when the datagram's time to live field has 
exceeded its limit. 

6 TIMESTAMP REQUEST AND REPLY. This type if 
generated to request a timestamp. 

7 ADDRESS MASK REQUEST AND REPLY. This type is 
sent to obtain a subnet address mask. 

NFS Support 
pNA + can be used in conjunction with pHILE+ and pRPC+ to offer NFS 
support. To support NFS, pNA+ allows you to assign a hostname to your 
pNA + system, and a user ID and group ID to each task. The hostname 
and user and group IDs are used when accessing NFS servers. Every 
task that uses NFS services must have a user ID and a group ID. These 
values are used by an NFS server to recognize a client task and grant or 
deny services based on its identity. Refer to your host system (NFS 
server) documentation for a further discussion of NFS protection 
mechanisms. 

The pNA+ Configuration Table entry NC_HOSTNAME is used to define 
the hostname. This entry points to a null terminated string of up to 32 
characters, which contains the hostname for the node. 

The pNA+ Configuration Table entries NC_DEFUm and NC_DEFGID can 
be used to define default values for a task's user ID and group ID, 
respectively. Subsequent to task creation, the system calls set_idO and 
get_idO can be used to change or examine a task's user and group ID. 
Note that Similar system calls [setid_uO and getid_uO) are provided by 
pHILE+. We recommend, however, that you use the set_idO and get_idO 
system calls provided in pNA + for future compatibility. 

pSOSystem System Concepts 4-33 



Chapter 4. Network Programming 

4.16 

4.16.1 

4-34 

MIB-II Support 
pNA+ supports a TCP/IP Management Infonnation Base, commonly 
known as MIB-II, as defined in the Internet standard RFC 1213. 
pSOSystem's optional SNMP (Simple Network Management Protocol) 
package uses this MIB-II to provide complete turn-key SNMP agent 
functionality . 

pNA+'s MIB-II can also be accessed directly by application developers 
who have their own unique reqUirements. This section describes how 
this MIB can be accessed. 

Background 

RFC 1213 groups MIB-II objects into the following categories: 

• System 

• Interfaces 

• Address Translation 

• IP 

• ICMP 

• TCP 

• UDP 

• EGP 

• Transmission 

• SNMP 

pNA+ contains built-in support for the IP, ICMP, TCP, and UDP groups. 
The Interfaces group is supported by pNA+ NIs. pSOSystem's SNMP 
library provides support for the System and SNMP groups. The Address 
Translation group is being phased out of the MIB-II specification. Its 
functionality is provided via the IP group. The Transmission group is not 
yet defined, and pNA+ does not include EGP, so neither of these groups 
are supported. 

MIB-II objects, regardless of which category they fall into, can be 
claSSified as simple variables or tables. Simple variables are types such 
as integers or character strings. In general, pNA+ maintains one instance 
of each simple variable. For example, ipInReceives is a MIB-II object 
used to keep track of the number of datagrams received. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

Tables correspond to one-dimensional arrays. Each element in an array 
(that is, each entty in a table) has multiple fields. For example, MIB-L 
includes an IP Route Table where each entty' in the table consists of the 
following fields: ipAdEntAddr, ipAdEntIfIndex, ipAdEntNetMask, 
ipAdEntBcastAddr, ipAtiEntReasmMuSize. 

4.16.2 Accessing Simple Variables 

All MIB-II objects, regardless of type, are accessed by using the pNA+ 
ioctl(int s, int command, int *arg) system call. The parameter s can be 
any valid socket deSCriptor. 

The command argument specifies a MIB-II object and the operation to 
be performed on that object. Per the SNMP standard, two operations are 
allowed. You can set the value of a MIB-II object (Set command) or 
retrieve an object's value (Get command). A valid command parameter 
is an uppercase string equal to the name of a MIB-II object prep ended by 
either SIOCG or SIOCS for Get and Set operations, respectively. A 
complete list of permissable commands is provided in the pSOSystem 
Programmer's Reference. 

The way ioctlO is used differs, depending on whether you are accessing 
simple variables or tables. For simple variables, arg is a pointer to a 
variable used either to input a value (for Set operations) or receive a value 
(for Get operations). arg must be typecast based on the MIB-II object 
type. 

The following table shows the C language types used by pNA + to 
represent different types of MIB-II objects. 

MIB-II Object Type 

INTEGER 

OBJECT IDENTIFIER 

IpAddress 

Counter 

Gauge 

TimeTicks 

DisplayString 

PhysAddress 

pSOSystem System Concepts 

pNA+ Representation 

long 

char * (as an ASCII string) 

struct in_addr (defined in pna.h) 

unsigned long 

unsigned long 

unsigned long 

char * 

struct sockaddr (defined in pna.h) 

4-35 



Chapter 4. Network Programming 

4.16.3 

4-36 

The following code fragments demonstrate how to set and get the objects 
ipInReceives, and ipForwarding, respectively: 

1* Get the value of iplnReceives *1 
long s; 

unsigned long ip_input-pkts; 

1* socket type in following call is irrelevant *1 
s = socket(AF_INET, SOCK_STREAM, 0); 

ioctl(s, SIOCGIPINRECElVES, &ip_input-pkts); 

close(s); 

printf("%lu IP datagrams recvd\n", ip_input-pkts); 

1* Set the value of ipForwarding *1 
int s; 1* already open socket descriptor *1 

long forwarding; 

1* get current status first *1 

ioctl(s, SIOCGIPFORWARDING, &forwarding); 

if (forwarding == 1) puts("Forwarding was on"); 

else 1* forwarding == 2 *1 puts("Forwarding was offll); 

forwarding = 2; 1* corresponds to not-forwarding *1 
ioctl(s, SIOCSIPFORWARDING, &forwarding); 

puts("Forwarding turned off"); 

Accessing Tables 

Accessing information stored in tables is more complicated than 
accessing simple variables. The complexity is primarily due to the SNMP 
specification and the fact that table sizes vary over time, based on the 
state of your system. 

pNA + defines C data structures for each MIB-II table. These definitions 
are contained in <pna_mib.h> and are shown in section 4.16.4. A table 
usually consists of multiple instances of the entries shown. pNA+ allows 
you to access any field in any entry, add table entries, and delete entries. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

The key to understanding how to manipulate tables is to recognize that 
MIB-II table entries are not referenced by simple integers (like norma' 
programming arrays). Rather one or more fields are defined to be index 
fields. and entries are identified by specifying values for the index fields. 
The index fields were selected so that they identify a unique table entry. 
The index fields are indicated in the MIB-II tables shown. 

This raises the question. how do you know what are valid indices at any 
time. You obtain them with ioctlO the following way. First. declare a 
variable of type mib_args (this structure is defined in <pna_mib.h» 
using the following syntax: 

struct mib_args { 

long len;/* bytes pointed to by buffer */ 
char *buffer;/* ptr to table-specific struct array */ 

} ; 

buffer pOints to an array of structures with a type corresponding to the 
table you want to access. len is the number of bytes reserved for buffer. 
The buffer should be large enough to hold the maximum possible size of 
the particular table being accessed. 

Call ioctlO with command equal to the MIB-II object corresponding to 
the name of the table. arg is a pOinter to the mib_args variable. 

Upon return from ioctlO. the array pOinted to by arg will have all of its 
index fields set with valid values. In addition. there will be one other field 
set with a valid value. This field is indicated as default in the tables 
shown. 

After you obtain a list of indices. you may set or retrieve values from 
fields in the tables. You issue an ioctlO call with command 
corresponding to the name of a field and arg pointing to a table-specific 
data structure. 

The following code fragment illustrates how all of this works by 
traverSing the IP Route Table: 

int s; 1* already opened socket descriptor *1 

struct mib_iproutereq *routes; 1* the array of routes *1 
struct mib_args arg; 
int num_routes, len, i; 

pSOSystem System Concepts 4-37 



Chapter 4. Network Programming 

4-38 

num_routes = 50; 1* default number of routes in array *1 
routes = NULL; 1* to insure it is not free ( )d before it is allocated *1 

1* loop until enough memory is allocated to hold all the routes *1 
do { 

if (routes) 

free(routes); 

1* if not the first iteration *1 
1* free memory from the previous iteration *1 

num_routes *= 2; 1* allocate more space for the next try *1 

len = sizeof(struct mib_iproutereq) * num_routes; 1* # of bytes *1 
routes = (struct mib_iproutereq *)malloc(len); 1* array itself *1 
arg.len = len; 

arg.buffer = (char *)routes; 

ioctl(s, SIOCGIPROUTETABLE, (int *)&arg);· 

}while (arg.len == len); 1* if full there may be more routes *1 

num_routes = arg.len 1 sizeof(struct mib_iproutereq); 1* actual # *1 
puts ( "Destination Next hop Interface" ) ; 

for (i = 0; i < num_routes; i++) { 1* loop through all the routes *1 
printf("Ox%OeX ox%oex", routes[i].ir_idest.s_addr, 

routes[i].ir_nexthop.s_addr); 

ioctl(s, SIOCGIPROUTEIFINDEX, (int *)&routes[i]); 

printf(" %d\n", routes[i].ir_ifindex); 

free(routes); 

You can insert a new entry into a table by specifying an index field with 
a nonexistent value. The following code fragment shows an example of 
how to add an entry into the IP Route Table. 

int s; /* already opened socket descriptor */ 
void add_route(struct in_addr destination, 

struct in_addr gateway) 

} 

struct mib_iproutereq route; 

route.ir_idest = destination; 
route.ir_nexthop = gateway; 
ioctl(s, SIOCSIPROUTENEXTHOP, &route); 

You can delete a table entry by setting a designated field to a prescribed 
value. These fields and values are defined in RFC 1213. The following 

pSOSystem System Concepts 



4.16.4 

Chapter 4. Network Programming 

code fragment provides an example of deleting a TCP connection from the 
TCP Connection Table so that the local port can be re-used: 

int s; 1* already opened socket descriptor */ 

void delete_tcpcon(struct in_addr remote_addr, struct in_addr 
local_addr, short remote-port, short local-port) 

struct mib_tcpconnreq tcpconn; 

tcpconn.tc_localaddress = local_addr; 
tcpconn.tc_remaddress = rem_addr; 
tcpconn.tc_localport = local-port; 
tcpconn.tc_remport = rem-port; 
tcpconn.tc_state = TCPCS_DELETETCB; 
ioctl(s, SIOCSTCPCONNSTATE, &tcpconn); 

MIB-II Tables 

This section presents the MIB-II tables supported by pNA + and their 
corresponding C language representations. 

4. 16.4. 1 Interfaces Table 

Structure and Elements 
struct mib_ifentry 

ie_iindex 
ie_descr 
ie_type 

ie_mtu 
ie_speed 
ie-physaddress 
ie_adminstatus 
ie_operstatus 
ie_lastchange 
ie_inoctets 
ie_inucastpkts 
ie_nucastpkts 
ie_indiscards 
ie_inerrors 
ie_inunknownprotos 

MIB-II Objeqt 

if Index 
ifDescr 
if Type 

ifMtu 
if Speed 
ifPhysAddress 
ifAdminStatus 
ifOperStatus 
ifLastChange 
ifInOctets 
ifInUcastPkts 
ifInNUcastPkts 
ifInDiscards 
ifInErrors 

ifInUnknownProtos 

index 

default 

pSOSystem System Concepts 4-39 



Chapter 4. Network Programming 

Structure and Elements 

ie_outoctets 

ie_outucastpkts 

ie_outnucastpkts 

ie_outdiscards 

ie_outerrors 

ie_outqlen 

ie_specific 

4. 16.4.2 IP Address Table 

Structure and Elements 

struct mib_ipaddrreq 

ia_iaddr 

ia_ifindex 

ia_netmask 

ia_bcastaddr 

ia_reasmmaxsize 

4.16.4.3 IP Route Table 

Structure and Elements 

struct mib_iproutereq 

ir_idest 

ir_ifindex 

ir_nexthop 

ir_type 

ir-proto 

ir_mask 

MIB-II Object 

ifOutOctets 

ifOutUCastPkts 

ifOutNUcastPkts 

ifOutDiscards 

ifOutErrors 

ifOutQLen 

if Specific 

MIB-II Object 

ipAdEntAddr 

ipAdEntlfIndex 

ipAdEntNetMask 

ipAdEntBcastAddr 

ipAdEntReasmMaxSize 

MIB-II Object 

ipRouteDest 

ipRouteIfIndex 

ipRouteNextHop 

ipRouteType 

ipRouteProto 

ipRouteMask 

4.16.4.4 IP Address Translation Table 

Structure and Elements MIB-II Objegt 

struct mib_ipnettomediareq 

inm_iifindex ipNetToMediaIfIndex 

inm_iaddr 

inm-physaddress 

inm_type 

ipNetToMediaNetAddress 

ipNetToMediaPhysAddress 

ipNetToMediaType 

index 

default 

index 

default 

index 

index 

default 

4-40 pSOSystem System Concepts 



4.16.5 

Chapter 4. Network Programming 

4. 16.4.5 TCP Connection Table 

Structure and Elements MIB-II Object 

struct mib_tcpconnreq 

tc_localaddress 

tc_localport 

tc_remaddress 

tc_remport 

tc_state 

4.16.4.6 UDP Listener Table 

tcpConnLocalAddress 

tcpConnLocalPort 

tcpConnRemAddress 

tcpConnRemPort 

tcpConnState 

index 

index 

index 

index 

default 

Structure and Elements MIB-II Object 

struct mib_udptabreq 

u_localaddress 

u_localport 

SNMP Agents 

udpLocalAddress 

udpLocalPort 

index 

index 

The following IP group operations must be handled within an SNMP 
agent itself, rather than through loctlO. 

MIB-II Object 

ipRouteIflndex 

ipRouteMetric* 

ipRouteAge 

ipRouteMask 

ipRouteInfo 

Operation 

Set 

Both 

Get 

Set 

Get 

ipRoutingDiscards Get 

Comment 

The value of this object cannot 
be set, since it is always 
determined by the IP address. 

An SNMP agent should return 
-1 as their value. 

An SNMP agent should return 
-1 as its value. 

The values of these objects can 
be interrogated but not 
changed. 

An SNMP agent should return 
{ 0 0 } as the value of this 
object. 

An SNMP agent should return 
o as the value of this object. 

pSOSystem System Concepts 4-41 



Chapter 4. Network Programming 

4.16.6 Network Interfaces 

Objects defined by the Interfaces group are maintained by the Network 
Interfaces configured in your system. These objects are accessed via the 
ni_ioctl() system call. 

pNA + uses ni_ioctlO when necessary to access Interfaces objects. 
ni_ioctl() is described in the pSOSystem Programmer's Reference. 

4. 17 Subcomponents 

4-42 

pNA+ can be "extended" by adding two subcomponents: pRPC+ and 
pXll +. 

A pNA + subcomponent is a block of code that extends the feature set of 
pNA +. Subcomponents are similar to all other components. with the 
caveat that they rely on pNA + for resources and services. 

pNA + initializes each subcomponent after it completes its own 
initialization sequence. Like other components, subcomponents require 
RAM, which can be allocated from Region 0 or defined in a Configuration 
Table. 

The pNA+ Configuration Table entry NC_CFGTAB pOints to a 
SUbcomponent table, which in turn contains pOinters to Configuration 
Tables for all subcomponents. 

pNA + subcomponents share the pNA + error code space for both fatal and 
nonfatal errors. 

A pNA + nonfatal error code has the form Ox50XX, where XX is the error 
value. A subcomponent error code is of the form Ox5NXX, where N is the 
SUbcomponent ID, and XX is the error value. 

A pNA + fatal error code has the form Ox5FXX, where XX is the fatal error 
value. A set of32 fatal errors from the pNA+ fatal error space is allocated 
for each subcomponent beginning at Ox80 (see the pSOSystem 
Programmer's Reference manual for a complete listing of fatal and 
nonfatal pNA + error codes). 

pSOSystem System Concepts 



4.17.1 

Chapter 4. Network Programming 

pRPC+ 

pRPC+ is a pNA+ subcomponent; it provides a complete implementation 
of the Open Network Computing (ONC) Remote Procedure Call (RPC) and 
eXternal Data Representation (XDR) specifications. pRPC+ is designed to 
be source-code compatible with Sun Microsystem's RPC and XDR 
libraries. The follOwing subsections describe those aspects of pRPC+ that 
are unique to the Integrated Systems implementation. 

4. 17. 1. 1 pRPC+ Architecture 

pRPC+ depends on the services of other pSOSystem components in 
addition to pNA +. Figure 11 illustrates the relationship between pRPC+ 
and the other parts of pSOSystem. 

pREPC+ 

Devices 
Local 
Files 

Communication 
Drivers 

Disk 
Drivers 

pNA+ 

Network 
Drivers 

Figure 11. pRPC+ Dependencies 

rcp / UDP 

pSOSystem System Concepts 4-43 



Chapter 4. Network Programming 

4-44 

RPC packets use the TCP or UDP protocols for network transport. pNA+ 
provides the TCP /UDP network interface to pRPC+. 

Direct access to XDR facilities, bypassing RPC, is supported by using 
memory buffers or stdio streams as a translation source or destination. 
I/O streams are managed by pREPC+. Streams may refer to pHILE+ 
managed files or directly to devices. pHILE+ accesses remote NFS files 
by using network RPCs, utiJizing both pRPC+ and pNA+. 

In addition to the communication paths shown on the diagram, pRPC+ 
also relies on pREPC+ for support of standard dynamic memory 
allocation. Consequently, XDR memory allocation within pRPC+ uses 
the same policy when insufficient memory is available as is used by 
applications that use the pREPC+ ANSI standard interface directly. 

pRPC+ uses services provided directly by pREPC+ and PNA +. Installation 
of those components is prerequisite to the use of pRPC+. The installation 
of pHILE+ is only required if the ability to store XDR encoded data on 
local or remote disk files is desired. 

pRPC+ must be installed in any system which will use pHILE+ for NFS, 
regardless of whether custom RPC/XDR code will be used or not. This 
is necessary because NFS is implemented using RPC/XDR. XDR is 
useful in conjunction with NFS to facilitate the sharing of raw data files 
between hosts which use different native representations of that data. 
Using XDR to write data files guarantees they can be correctly read by all 
hosts. NFS has no knowledge of file contents or structure so cannot 
perform any data translation itself. 

4.17.1.2 Authentication 

The RPC protocol allows the optional use of client authentication by RPC 
servers. When authentication is being employed, servers can identify the 
client task which made a specific request. Clients are identified by 
"credentials" included with each RPC request they make. Servers may 
refuse requests based upon the contents of the their credentials. 

The representation of credentials is operating system specific because 
different operating systems identify tasks in different manners. 
Consequently, the RPC definition allows the use of custom credentials in 
addition to specifying a format for UNIX task credentials. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

In order to facilitate the porting of UNIX clients to pSOSystem and 
interoperability between pSOSystem clients and UNIX servers, pRPC+ 
fully supports the generation of UNIX-style credentials. 

The content of UNIX credentials are defined by the following data 
structure: 

struct authunix-parms 

} ; 

1* credential's creation time *1 
char *aup_machname; 1* hostname of client *1 
int aup_uid; 1* client's UNIX effective uid * I 
int aup_gid; 1* client's UNIX effective gid *1 

aup_len 

*aup_gids; 
1* element length of aup_gids *1 
1* array of groups user is in */ 

pRPC+ supports the standard RPC routines for manipulating 
UNIX compatible credentials: authunlx_createO and 
authunlx_create_defaultO. Both routines automatically set the 
value of the aup_time element. The authunix_createO routine takes as 
arguments the values of the remaining fields. The 
authunix_create_defaultO routine sets the values of the 
authunix_parms structure members from their pNA+ equivalents (the 
pNA + configuration parameters are fully documented in the pSOSystem 
Programmer's Reference manual. 

authunix-parms member Value set byauthunix_create_default() 

pSOSystem System Concepts 

pNA+ configuration parameter 

NC_HOSTNAME 

pNA+ configuration parameter NC_DEFUID, 
may be changed on a per-task basis by the 
pNA+ call set_ide). 

pNA+ configuration parameter NC_DEFGID, 
may be changed on a per-task basis by the 
pNA+ call set_ide). 

aup_Ien is always 0 so aup_gids is always 
empty. 

4-45 



Chapter 4. Network Programming 

4-46 

4.17. 1.3 Port Mapper 

RPC supports the use of the networking protocols TCP and UD P for 
message transport. Because RPC and TCP IUDP use different task 
addressing schemes, clients must translate servers' RPC addresses to 
TCP IUDP addresses prior to making remote procedure calls. RPC uses 
a "port mapper" task running on each host which performs address 
translation for local servers. Prior to making a remote procedure call, 
clients contact the server's port mapper to determine the appropriate 
TCP IUDP destination address. (The port mapper protocol is handled 
within the RPC library and its existence and use are transparent to 
application programmers.) 

At system initialization time pRPC+ automatically creates a port mapper 
task with the pSOS+ name pmap. The pmap task is started with a 
priority of 254. An application may change the priority of pmap via the 
standard pSOS+ selVice call t_setpriO. 

4. 17. 1.4 Global Variable 

pSOSystem tasks all run in the same address space. Consequently, 
global variables are accessible to and shared by every task running on 
the same processor. Whenever multiple tasks use the same global 
variable, they must synchronize access to it in order to prevent its value 
from being changed by one task while it is being used by another task. 
Synchronization can be achieved by using a mutex lock (implemented 
with a semaphore) or disabling task preemption around the regions of 
code which access the variable. 

pRPC+ eliminates the need to use custom synchronization in RPC/XDR 
applications by replacing global variables with task-specific equivalents. 
Subroutines are provided in pRPC+ to provide access to the task-specific 
variables. 

The following global variables are replaced by local variables in pRPC+: 

Global Variable Service Call Description 

svc_fdset get_fdsetO Bit mask of used 
TCP lIP socket IDs 

r.pc-letcreateerrO Reason for RPC client 
handle creation 
failure 

Use of. these pRPC+ subroutines is described in the pSOSystem 
Programmer's Reference. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

4.17.2 pXll+ 

pXll + is a pNA+ sUbcomponent that provides a complete implementation 
of MIT's X Windows Xlib client library. The pXll+ API is source code 
compatible with X Windows Version 11 Release 4. 

pXll + requires the services of pREPC+ as well as pNA+, and of courSf 
pSOS+. The following subsections explain the small number of features 
that differ from the standard MIT release. 

4.17.2.1 Error Handling and exit( ) 

The asynchronous nature of X Windows complicates error handling. 
Requests issued prior to the emergence of the error condition cannot be 
"taken back." The approach normally taken when fatal errors arise is to 
print an error message and then exit. This is standard X Window;:; 
practice for UNIX environments. This approach is inconsistent with the 
pSOS+ environment. 

Two types of error conditions can arise in pXll +: fatal and nonfatal run
time. Fatal errors force a pXll + task to terminate, while a nonfatal run
time error produces an error condition which may be handled by the 
user. Fatal errors result from internal pXll + failures (such as loss of 
display connection or state anomalies), and nonfatal run-time errors 
arise from client programming errors or server resource failures. 

Each pXll + client has two entry pOints for error reporting, one each for 
fatal and nonfatal run-time errors. The user may chose to implement a 
replacement for the default mechanisms. 

If a pXlib call generates a fatal error condition, the default fatal error 
handler prints an error message using the pREPC+ standard error 
stream followed by an exitO, which is tailored to the pSOS+ environment. 
pXll + implements exitO by first calling pX_ShutO, which returns all 
resources associated with the task, including task-specific memory, and 
then attempts a t_deleteD to terminate the task. If t_deleteO fails, 
t_suspendO is used to halt task execution. 

pSOSystem System Concepts 4-47 



Chapter 4. Network Programming 

4-48 

The user's entry point for fatal error handling is set by the pXlib library 
call XSetIOErrorHandlerO. A sample fatal error handler is: 

int MyIOErrorHandler(display) 

Display *display; 

fprintf(stderr, "Fatal error!\n"); 

pX_Shut(); 

exit(); 1* pREPC+ exit() *1 

In the case of nonfatal run-time errors, a separate entry point is provided 
that also uses the pREPC+ standard error stream. A nonfatal run-time 
error will output messages on this stream. The client task is not 
terminated unless a fatal error is encountered. The entry point for run
time error report is set by the pX11 + library call XSetErrorHandlerO. 

Both functions are described in Xlib Reference Manual. Vol. 2, O'Reilly 
and Associates, Sebastopol CA, 1990. 

4. 17.2.2 Environment Variables, Files, and Global Variables 

An embedded computer system's user environment often lacks the 
amenities and features that are common to standard UNIX platforms. 
Among these are a programmable shell for creating resource alias names 
-- environment variables -- that are globally available to any process 
through system calls. Environment variables and methods for accessing 
their values and creating equivalences -- reproducing an environment -
for application processes, are handled differently in pX11 +. The 
mechanism is tailored to the embedded nature of pSOS+. 

pX11 + defines one resource type and it is used to create environment 
variables and their equivalences. The symbol PX_RES_ENVIRONMENT 
is defined for use by three pX11 + -specific functions which manipulate 
environment variables and pX11 + resources in general. 

The function pX_InitO is used to establish these equivalence pairs at 
initialization. pX_SetArgO and pX_GetArgO can be used to alter 
equivalences during run-time. The pSOSystem Programmer's Reference 
manual provides full descriptions of each function. 

pSOSystem System Concepts 



Chapter 4. Network Programming 

The user can set or adjust the pX11 + resource type via the followinf: 
methods. A resource can be initialized by loading its value into thl 
pX11 + module configuration table. During startup, a pX11 + client 
inherits the configuration table defaults. Secondly, the pX11 + client can 
arbitrarily modify the resource values through a programmatic interface. 

The Xlib and X Toolkit libraries rely on environment variable resources 
to establish default and startup values. In the pX11 + domain, 
environment variable equivalences are set by constructing a catenated 
string containing equivalence pairs specified by type and value. pXl1+ 
looks for the following environment variables: HOME, DISPLAY, 
XAUTHORlTY, . RESOURCE_NAME, USER, and XENVIRONMENT. 

Certain functions supported by pX11 + require filenames to be used as 
arguments. If pHILE+ is configured into the pSOS+ environment, these 
references are mapped onto calls for file I/O. The pXlib code module 
handles this mapping, and returns appropriate error codes to the 
modules when no file system is available. The filenames must obey the 
pHILE+ conventions. 

Applications can access files on pHILE+ filesystem partitions, MS-DOS 
disks, or across NFS using pHILE+ with pRPC+ and pNA+. 

In pX11 +, each client possesses one complete set of the global variables 
specific to X Windows. Each set is distinct from any other peer. The 
global variables are replicated for each pXll + task. Each pX11 + task 
allocates 6110 bytes from RAM region 0 when created. This information 
should be used to size the data area for configuration purposes. 

pSOSystem System Concepts 4-49 



Chapter 4. Network Programming 

(Blank Page) 

4-50 pSOSystem System Concepts 



5 pHILE+ File System Manager 

This chapter describes pSOSystem's file management option, the pHILE+ 
File System Manager. The following topicS are discussed: 

• Volume types 

• How to mount and access volumes 

• Conventions for files, directories, and pathnames 

• Basic services for all volume types 

• Blocking and deblocking 

• Cache buffers 

• Synchronization modes 

• Organization of pHILE+ formatted volumes 

5. 1 Volume Types 
From the point of view of pHILE+, a file system is a collection of volumes 
where each volume consists of a set of files. A volume can be a single 
device (such as a floppy disk), a partition within a device (such as a 
section of a hard disk), or even a remote device (such as an NFS server). 
What constitutes a volume is entirely up to you. 

pSOSystem System Concepts 5-1 



Chapter 5. pHILE+ File System Manager 

5-2 

pHILE+ recognizes the following three types of volumes: 

• pHILE+ Formatted Volumes 

These are devices that are formatted and managed using SCG 
proprietary data structures and algorithms that are optimized for 
real-time performance. pHILE+ formatted volumes offer high 
throughput, data locking, selectable cache write-through, and 
contiguous block allocation. pHILE+ formatted volumes can be a 
wide range of devices from floppy diskettes to write-once optical 
disks. 

• MS-DOS Volumes 

These are devices that are formatted and managed according to 
MS-DOS conventions and specifications. MS-DOS volumes offer a 
convenient method for exchanging data between a pSOS+ system 
and a PC running the MS-DOS operating system. Because of its 
internal organization, an MS-DOS volume is much less efficient 
than a pHILE+ volume. In addition, MS-DOS volumes are suitable 
only for floppy diskettes. Hence, they should be used only when 
data interchange via floppy diskette is desired. pHILE+ currently 
supports five MS-DOS floppy disk formats. They are: 

o 360 Kbyte (5 1/4" double density) 

o 1.2 Mbyte (5 1/4" high density) 

o 720 Kbyte (3 1/2" double density) 

o 1.44 Mbyte (3 1/2" high density) 

o 2.88 Mbyte (3 1/2" high density). 

• NFS Volumes 

NFS volumes allow you to access files on remote systems, such as 
Sun workstations, via the Network File System Protocol (NFS). 
Files located on an NFS server may be treated exactly as though 
they were on a local disk. 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

5.2 Working With Volumes 
The following sections discuss how to access pHILE+ and MS-DOS 
volumes, what naming conventions are used, and volume fonnatting 
differences. 

5.2.1 Mounting And Unmounting Volumes 

Before a volume can be accessed, it must be mounted. The mount_ yolO 
system call is used to mount pHILE+ fonnatted volumes, while the 
pc_mountO call is used to mount MS-DOS volumes, and nfs_mountO is 
used to mount NFS volumes. 

pHILE+ maintains a mounted volume table, whose entries track and 
control mounted volumes in a system. The size of the mounted volume 
table, and hence the maximum number of volumes that can be mounted 
contemporaneously, is determined by the parameter FC_NMOUNT in the 
pHILE+ Configuration Table. 

When a volume is no longer needed, it should be unmounted by using 
the unmount_ yolO system call. When a volume is unmounted, its entry 
in the mounted volume table is removed. 

Any task can unmount a volume. It does not have to be the same task 
that originally mounted the volume. A volume cannot be unmounted if 
it has any open files. 

Detailed descriptions of mount_yolO, pcmount_voIO, nfsmount_voIO, 
and unmount_volO are provided in the pSOSystem Programmer's 
Reference manual. 

5.2.2 Naming Conventions and I/O 

When a volume is mounted, the caller provides a 32-bit pSOS+ logical 
device number, which consists of a 16-bit major device number followed 
by a 16-bit minor device number. This logical device number serves as 
the volume's name while it is mounted. A volume name is given to 
pHILE+ as a string of two decimal numbers: one for the major device 
number and one for the minor number separated by a dot. "0.1" is an 
example of a volume name. 

The interpretation of the device number by pHILE+ depends on the type 
of volume. For pHILE+ formatted volumes and MS-DOS volumes, the 
major device number identifies a user-supplied device driver associated 

pSOSystem System Concepts 5-3 



Chapter 5. pHILE+ File System Manager 

with the volume. When pHILE+ needs to read or write a volume, it makes 
a pSOS+ I/O system call specifying the volume's major device number. 
pSOS+ uses the major device number to find the device driver through 
its I/O Switch Table. The minor device number is simply passed to the 
driver. Refer to Chapter 7, "I/O System," for a discussion ofpSOS+ I/O 
and pHILE+ drivers. 

NFS volumes do not have device drivers per se. I/O requests directed to 
NFS volumes are routed through pRPC+ and pNA + rather than standard 
pSOS+ I/O mechanisms. The volume name is used only to identify the 
volume while it is mounted. 

5.2.3 MS-DOS and pHILE+ FormaHed Volumes 

5-4 

Internally, pHILE+ treats MS-DOS and pHILE+ formatted volumes 
differently than NFS volumes. Each MS-DOS and pHILE+ formatted 
volume consists of a sequence of logical blocks and a file is a named 
collection of blocks. 

In this model, a logical block is a device-independent addressable unit of 
storage. pHILE+ interacts with your device drivers in terms of logical 
blocks. On pHILE+ formatted volumes, the size of a logical block is 
defined by the pHILE+ Configuration Table entry FC_LOGBSIZE. This 
parameter has a large impact on system performance. Within limits, a 
larger logical block size will reduce data scattering on a device and 
improve throughput as a result of fewer I/O operations. On MS-DOS 
volumes, the logical block is fIXed at 512 bytes. 

Logical blocks are numbered starting with O. On pHILE+ formatted 
volumes, a block address is a 32-bit entity, so a volume may contain up 
to 232 blocks. The conversion between logical block numbers and 
physical storage units -- such as head, cylinder, and sector -- is handled 
by your device driver. 

Before an MS-DOS or pHILE+ formatted volume can be used, it must be 
initialized. Initialization consists of two distinct operations: physical 
formatting and logical formatting. 

When a device is physically formatted, markings are written on the 
storage medium (typically a magnetic surface) which delineate these 
basic storage units, usually sectors or blocks. After a device is formatted 
physically, it contains a set of readable and writable storage elements, 
but no data or other organizational information. Physically formatting a 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

device is purely a hardware operation and hence is deliberately left to 
you. 

The logical format operation provides the organization for a volume. The 
logical organization refers to the way files are managed, space is 
allocated, and so on, and is determined by the volume type. The logical 
organization of pHILE+ volumes is explained in Section 5.8, "pHILE+ 
Formatted Volumes." Popular books and articles explain the logical 
organization of MS-DOS volumes. 

The init_ volO system call is used to logically format a pHILE+ formatted 
volume while the pcinit_ volO system call is used to logically format an 
MS-DOS volume. 

The pcinit_volO system call should not be confused with the MS-DOS 
FORMAT command, which actually performs a logical and physical 
format. If you format a floppy disk or a hard disk on a PC using the 
FORMAT command, you do not need to use pcinit_ volO. To prepare a 
hard disk before mounting it as an MS-DOS volume, you must use the 
MS-DOS FDISK and FORMAT commands (or comparable utilities 
provided by some SCSI Controller Board vendors). 

5.2.4 NFS Volumes 

When used in conjunction with pRPC+ and pNA+, pHILE+ offers NFS 
(Network File System) client services. This means that pSOSystem nodes 
can access files on remote systems that support the NFS protocol (NFS 
servers) exactly as though they were on a local disk. The relationship is 
depicted in Figure 12. 

pSOSystem System Concepts 5-5 



Chapter 5. pHILE+ File System Manager 

5-6 

Application 

pHILE+ .. ~ pRPC+ .. ~ 

MS-DOS pHILE+ 

Ethernet 

NFS 
Server 

Figure 12. How Software Components Talk With NFS 

pSOS+ 

To implement NFS, you must have these software elements: 

• An application interface, to provide functions such as open_fO and 
close_f(). The application interface is provided by pHILE+. 

• XDR services to put the data in a format that can be generally 
recognized, and Remote Procedure Calls to pass requests for NFS 
service to a server. pRPC+ provides RPC and XDR services. 

• On the transport level, a socket interface that observes the User 
Datagram Protocol and the Internet Protocol, to cany the Remote 
Procedure Calls as UDP lIP messages for the server. pNA + provides 
a UDP lIP transport for communication with a server. 

For the most part, you treat remote and local files the same way. There 
are some differences, however, which you must understand when using 
NFS volumes. 

When an NFS client (for example, pHILE+) requests services from an NFS 
server, it must identify itself by supplying a user ID, group ID, and 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

hostname. These items are used by the server to accept or reject client 
requests. How these parameters are used depends on the server. 

The hostname is a string of up to 31 characters and must be supplied in 
the pNA + Configuration Table. The user ID and group 10 are 32-bit 
numbers. Default values for these quantities are supplied in the pNA+ 
Configuration Table. They may also be examined and set for individual 
tasks by using the pNA+ getid_uO and setid_uO system calls, 
respectively. 

The nfsmount_vol0 system call also has some unique features. When 
mounting an NFS volume, you must specify the IP address of an NFS 
server and the name of a directory on that server, which will act as the 
volume's root directory. 

5.3 Files, Directories, and Pathnames 
pHILE+ defines two types of files: ordinary files and directory files. An 
ordinary file contains user-managed data. A directory file contains 
information necessary for accessing ordinary and/or other (sub)directory 
files under this directory. 

Every volume contains at least one directory file called the ROOT 
directory. From it can emanate a tree structure of directories and 
ordinary files to an arbitrary depth. Of course, the ROOT directory may 
contain only ordinary files, yielding a common, one-level structure. 

Files may not cross over volumes and therefore cannot be larger than the 
volumes on which they reside. Every file is uniquely identified by using 
a pathname. A pathname specifies a path through a directory structure 
that terminates on a target file. 

Pathnames are either absolute or relative. An absolute pathname always 
begins with a volume name and specifies a complete path through the 
directory tree leading to a file, starting at the volume's ROOT directory. 
A relative pathname identifies a file by specifying a path relative to a 
predefined directory, called the current directory. The current directory 
is unique for each task. It may be set and changed with the change_dlrO 
system call. 

An example of an absolute pathname is O.3/fun/movies/tarzan. This 
pathname identifies the file tarzan in the directory movies, which is in 
the directory fun, which in tum is in the root directory on volume 0.3. 

pSOSystem System Concepts 5-7 



Chapter 5. pHILE+ File System Manager 

An example of a relative pathname is tood/fruit/apples. apples is a file 
in the directory fruit, which is in the directory food, which is a directory 
in the current directory. 

/sports/baseball (note the leading slash) is another example of a relative 
pathname. In this case, the file baseball is in the directory sports, which 
is in the root directory on the volume defined by the current directory. 

Rules for naming files and specifying pathnames vary depending on the 
type of volume. On all volumes, however, the names containing only a 
single or double dot (. and .. ) are reserved. A single dot refers to the 
current directory, while .. refers to the parent of the current directory. 

5.3.1 Naming Files on pHILE+ Formatted Volumes 

On pHILE+ formatted volumes, a file is named by an ASCII string 
consisting of 1 to 12 characters. The characters can be either upper or 
lowercase letters, any of the digits 0 - 9, or any of the special characters 
. (period), _ (underscore), $ (dollar sign), or - (dash). A name must begin 
with a letter or a period. Names are case sensitive -- ABc and ABC 
represent different files. 

When giving a pathname, the volume, directory, and filenames all are 
separated by either a forward (f) or backward (\) slash. The following 
examples show permissible pathnames for files located on pHILE+ 
formatted volumes: 

"O.l/fruit/apples" 
apples 
./apples 

5.3.2 Naming Files on MS-DOS Volumes 

5-8 

Files located on MS-DOS volumes are named according to standard MS
DOS naming conventions. Note the differences from the rules described 
above. First, MS-DOS filenames are not case sensitive (that is, abc and 
ABC name the same file). And second, MS-DOS names have two parts: 
a filename and an extension. The filename can be from one to eight 
characters and the extension may be from zero to 3 characters. 
Filenames and extensions are separated by a dot (.). 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

5.3.3 Naming Files on NFS Volumes 

On NFS volumes, a file is named by sequence of up to 64 characters. All 
characters, except backslash (\) and zero are allowed. Filenames and 
directory names are separated in pathnames by fOIWard slashes (/). If 
pHILE+ encounters a symbolic link while traversing an NFS pathname, 
it recursively expands the link up to three levels of nesting. 

5.4 Basic Services for All Volumes 
This section describes basic services that can be used with all types of 
volumes. For detailed deSCriptions of the system calls discussed in this 
section, see the pSOSystemProgrammer's Reference manual. 

5.4. 1 Opening and Closing Files 

Before a file can be read or written, it must be opened with the open_f() 
system call. open_f() accepts as input a pathname that specifies a file, 
and a mode parameter, which has meaning only when opening files 
located on NFS volumes. open_f{) returns a small integer called a file 10 
(FlO) that is used by all other system calls that reference the file. 

A file may be opened by more than one task at the same time. Each time 
a file is opened, a new FlO is returned. 

When a file is opened for the first time, pHILE+ allocates a data structure 
for it in memory called a file control block (FCB). The FCB is used by 
pHILE+ to manage file operations and is initialized with system 
information retrieved from the volume on which the file resides. 

All subsequent open calls on the file use the same FCB; it remains in use 
until the last connection to the file is closed. At that time, the FCB is 
reclaimed for reuse. The close_f{) system call is used to terminate a 
connection to a file; it should be used whenever a file connection is no 
longer needed. 

At pHILE+ startup, a fixed number of FCBs are created, reflecting the 
maximum number of permissible concurrently open files specified in the 
pHILE+ Configuration Table entry FC_NFCB. 

In addition to the FCB, pHILE+ uses a system data structure called an 
open file table to manage open files. Every task has its own open file 
table, which is used by pHILE+ to store information about all of the files 

pSOSystem System Concepts 5-9 



Chapter 5. pHILE+ File System Manager 

5-10 

that have been opened by that task. Each entry in an open file table 
controls one connection to a file. The FID mentioned above is actually 
used to index into a task's Open File Table. 

The size of these open file tables is specified in the pHILE+ Configuration 
Table entry FC_NCFILE.This parameter sets a limit on the number of 
files which a task can have open at the same time. 

Figure 13 shows the relationship between the system data structures 
discussed in this section. 

Task A 

Data Structures 
in Memory 

FlO = 1 I Pointer 1 

FID = 2 I Pointer 2~ 

FlO = 3 UNUSED 

TaskB ~ 

FlO = 1 I Pointer 1 ~ 

FlO = 2 I Pointer 2 :> 
File Open file 
IDs tables 

~ 
File Control 

Blocks 

Data Structures 
on a Device 

Figure 13. The Relationship Among a File ID, a File Control Block, and a File 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

5.4.2 Reading And Writing 

Once a file is open, it may be read or written with the read_tO and 
write_f() system calls, respectively. 

read_tO accepts as input an FlO identifying the file to read, the address 
of a user data buffer to receive the data, and the number of bytes to read. 
Data transfer begins at the byte indicated by the position pOinter, as 
explained in the next section. 

read_tU returns the number of bytes transferred from the file to the 
user's buffer. If this value is less than the number requested and the 
return code does not indicate that an error occurred, then the end -of-file 
has been reached. Attempting to read beyond the end-of-file is not 
considered an error. 

The write_fn system call is used to write data to a file. write_f() is similar 
to read_f(). It accepts as input an FlO to identify a file, the address of a 
user data buffer containing data, and the number of bytes to transfer. 
Data transfer begins at the byte indicated by the position pOinter, as 
explained in the next section. write_f{) will always transfer the number 
of bytes requested, unless the target volume runs out of space or an error 
occurs. 

5.4.3 Positioning Within Files 

From the user's point of view, a file is a numbered sequence of bytes. For 
example, if a file contains 210 bytes, they are numbered 0 through 209. 

For every connection established by open_f() , pHILE+ maintains a 
pOSition pointer that marks the next byte to read or write. The position 
pOinter is a 32-bit unSigned integer and is initialized to 0 by open_f(). 
Every read or write call advances the position painter by the number of 
bytes transferred by that operation. In this way, a file can be read or 
written sequentially. The pOSition pOinter will be equal to the number of 
bytes in the file when the end-of-file is reached. In the example cited 
above, the position marker will be 210 after the last byte is read. 

The Iseek_f() system call can be used to relocate a position pOinter. 
Iseek_tU accepts three input parameters. The first parameter is an FlO 
used to specify a file. The second parameter is an offset that specifies the 
number of bytes by which the position pointer should be "moved." 

pSOSystem System Concepts 5-11 



Chapter 5. pHILE+ File System Manager 

The third parameter specifies that the move should be relative to one of 
the following: 

• The beginning of file 

• The end of file 

• The current position 

pHILE+ does not allow positioning beyond the end of a file. Any attempt 
to do so results in an error code being returned. The position pOinter is 
left unchanged. 

5.4.4 Creating Files and Directories 

Because of the differences between ordinary files and directory files, 
separate system calls are provided for creating files and directories. The 
create_f() system call is used to create an ordinary file. make_dlr() is 
used to create directories. When an ordinary file is created, an entry for 
it is added to its parent directory. Both ordinary and directory files are 
initially empty. 

When creating an ordinary file on a pHILE+ formatted volume, you must 
specify an expansion unit. This parameter controls the incremental 
growth of the file. Details on this parameter can be found in section 
5.8.2.5. 

5.4.5 Changing Directories 

5-12 

The current directory for a task can be set and altered using the 
change_dirO system call. change_dirO accepts as input a pathname 
specifying the new directory. This pathname can be either an absolute 
or relative pathname. Once the new directory is set, all subsequent 
relative pathnames are interpreted with respect to the new current 
directory. 

pHILE+ does not assume a default current directory for any task. If a 
task intends to use relative pathnames, then it must call change_dirO at 
least once. 

On pHILE+ formatted volumes, the current directory may be deleted. The 
results of using a relative pathname after the current directory has been 
deleted is unpredictable and should never be attempted. 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

5.4.6 Moving and Renaming Files 

The move_fO system call allows a volume's directory tree structure to be 
modified by moving a file from one directory to another. On MS-DOS 
volumes, only ordinary files may be moved. On pHILE+ formatted 
volumes and NFS volumes, ordinary and directory files may be moved. 
When a directory is moved, all of the files and subdirectories are also 
moved. 

move_fO can be used to rename a file by simply "moving" it within the 
same directory. Actually, move_tO is a misnomer, because move_fO 
never really moves data, it only manipulates directory entries. 

Files may not be moved between volumes. 

5.4.7 Deleting Files 

Ordinary and directory files may be deleted (removed) by using the 
remove_f() system call. A file may not be removed if it is open or if it is 
a non-empty directory file. 

5.5 Blocking/Deblocking 
This and the following sections discuss some internal implementation 
issues that are relevant only for MS-DOS and pHILE+ formatted volumes. 
Understanding the material in these sections can help you improve the 
performance of your system. 

From the user's point of view, a file is a sequence of bytes. Internally, 
however, pHILE+ implements a file as a sequence of logical blocks, and 
interacts with your driver in units of blocks. Therefore, for each user 
I/O request, pHILE+ must map the requested data bytes into logical 
blocks. On top of this, your device driver must, in tum, translate logical 
blocks into physical storage units. This process of translating bytes into 
blocks is called blocking and deblocking. The following scenarios 
illustrate how blocking and deblocking work. 

When a read_f() operation requests bytes that are within a block, pHILE+ 
reads the entire block and then extracts the referenced bytes from it 
(deblocking) . 

When a wrlte_fO operation writes bytes that are within a block, pHILE+ 
reads the entire block, merges the new data into it (blocking), and then 
writes the updated block back to the volume. 

pSOSystem System Concepts 5-13 



Chapter 5. pHILE+ File System Manager 

When a read_fO or write_m operation references bytes that fit into an 
entire block or blocks, pHILE+ transfers the bytes as entire block(s). No 
blocking/ deblocking is necessary. 

When a read_m or write_fO operation references bytes that straddle 
multiple blocks, the operation is broken down into separate actions. The 
bytes at the beginning and end of the sequence will require blocking/ 
deblocking. The bytes that fill blocks in the middle of the sequence, if 
any, are transferred as entire blocks. 

Note that read and write operations are most efficient if they start at 
block boundaries and have byte counts that are integral multiples of the 
block size, since no blocking/ deblocking is required. 

5.6 Cache Buffers 

5-14 

pHILE+ maintains a pool, or cache, of buffers for blocking/deblocking 
purposes. The number of cache buffers in your system is determined by 
the pHILE+ Configuration Table entry FC_NBUF. The size of the buffers 
in the buffer cache is determined by the pHILE+ Configuration Table 
entry FC_WGBSIZE. Each buffer, when in use, holds an image of a 
logical block. A buffer can contain ordinary file data, directory file data, 
or system data structures. To improve system performance, pHILE+ 
uses the buffers as an in-memory cache for data recently retrieved from 
a device. 

When pHILE+ needs to access a logical block, it first checks to see if an 
image of the block is contained in a cache buffer. If yes, pHILE+ simply 
works with the cache buffer in memory. There is no need for a physical 
I/O operation, thus improving performance. 

Buffers in the cache are maintained using a least-recently-used 
algorithm. This means that if pHILE+ needs to use a buffer and they are 
all in use, then the buffer that has been untouched the longest, 
regardless of volume, is reused. 

Before reusing a buffer, pHILE+ must test to see if the data in the buffer 
has been modified (e.g. because of a write_f() operation). If the data has 
been changed, then pHILE+ must call your driver to transfer the buffer's 
data to the volume before it can be reused. If the buffer has not been 
modified (for example, the data was only read), then the data on the 
volume is identical to that in the buffer, and the buffer can be reused. 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

It is worth noting that pHILE+ does not use the buffer cache under all 
conditions. If a read or write call involves all of the bytes within a block, 
then pHILE requests your driver to transfer the data directly between the 
volume and the user buffer specified in the system call. The buffer cache 
will be bypassed. 

The following example illustrates how pHILE+ utilizes the buffer cache. 
pHILE+ receives a write_m request for a sequence of bytes that covers 6 
blocks, as follows (see Figure 14): 

• The operation starts in middle of block 24, which is not in a cache. 
A buffer is obtained. and block 24 is copied into it. The respective 
bytes are written into the buffer. 

• Blocks 25 and 26 are not in a cache. Since they are contiguous. a 
single physical write operation is used to write the bytes to blocks 
on the volume. 

• Block 27 is in a cache buffer, so bytes are transferred to it. 
overwriting its old data. 

• Block 28 is not in a cache, so a physical write operation is used to 
write the bytes to the block on the volume. 

• Block 29 is in a cache buffer, so the respective bytes are written into 
it. 

Physical 
Block 4# 

In Cache? 

24 25 26 27 28 29 30 

No No No Yes No Yes 

Figure 14. Blocking Factors and Cache-Buffering 

pSOSystem System Concepts 5-15 



Chapter 5. pHILE+ File System Manager 

5.7 Synchronization Modes 
Because of the buffer cache, a volume might not always contain the most 
recent data. The data in a cache buffer miht have been modified, but not 
written to disk. If a hardware failure occurs before the disk is updated, 
the data will be lost. 

A similar situation can arise with the system data structures used by 
pHILE+ to manage a volume (for example, FCBs, J4"'ATs, bit maps, and so 
forth). To reduce the number of disk accesses required during normal 
operation, copies of certain system data structures normally residing on 
volumes are maintained in memory. In this case, if a hardware failure 
occurs before pHILE updates a volume, then the volume will be 
corrupted. 

To deal with these situations, and at the same time to accommodate 
different application requirements, pHILE+ provides three synchroniz
ation modes that dictate when a volume is updated. The synchronization 
mode is selected when a volume is mounted. The three possible modes 
are described in Table 1 .. 

Table 1. Possible Modes for Synchronization 

Mode 

Immediate-Write 

Control-Write 

Delayed-Write 

Effect 

All changed data is flushed immediately 

Flush only control data that changed 

Flush data only as required 

5.7.1 Immediate-Write Mode 

5-16 

When. a volume is mounted with the immediate-write mode, cache 
buffers and in-memory system data structures are flushed (that is, 
written to the volume) whenever they are modified. 

Immediate-write mode is equivalent to calling sync_volO (explained 
below) after every pHILE+ operation. Unfortunately, system throughput 
can be significantly impacted since every write operation results in at 
least two I/O transactions: one for a cache buffer and one for system 
data. When using this mode, you should avoid writing less than a block 
of data with one write_f() system call. You should collect data in a local 
buffer and write at least one block at a time. 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

5.7.2 Control-Write Mode 

When a volume has been mounted with control-write mode, every time 
an in-memoxy system data structure is modified, it is flushed to disk. 
For example, if the contents of a File Control Block is changed, it is 
flushed. User data, however, is not flushed immediately and may linger 
in a cache buffer for an indefinite period of time. 

Control-write mode provides the same level of volume integrity as 
immediate-write mode, but provides less protection for your data in the 
event of a system failure. Its use, however, can significantly improve 
throughput. The difference is most dramatic when the application is 
performing write_f{) operations involving small numbers of bytes. 

5.7.3 Delayed-Write Mode 

When a volume has been mounted with delayed-write mode, pHILE+ 
flushes memory-resident data only when required by normal operation. 
File Control Blocks are flushed only when a file is closed or a volume is 
synchronized. Cache buffers are flushed only when they are reused, a 
volume is synchronized, or a volume is unmounted. 

The delayed-write mode is the most efficient of the three modes since its 
minimizes I/O. When using this mode, however, a system failure may 
leave a volume with inconsistent system data structures and old user 
data. 

Delayed-write mode is a· reasonable choice when high throughput is 
required. Normally, using the sync_volO system call periodically is 
suffiCient to maintain a consistent volume. 

5.7.4 sync_vol 

The sync_ vol() system call copies the contents of the cache buffers and 
all in-memoxy system data structures to a volume. sync_ vol() is 
automatically executed when a volume is unmounted. 

It is not needed for a volume if the volume is mounted with immediate 
write mode. 

pSOSystem System Concepts 5-17 



Chapter 5. pHR,E+ File System Manager 

5.8 pHILE+ FormaHed Volumes 
This section discusses how pHILE+ formatted volumes are organized and 
the special system calls available only for pHILE+ formatted volumes. 

5.8.1 How pHILE+ Formatted Volumes Are Organized 

5-18 

As mentioned in Section 5.5, "Blocking/Deblocking," a pHILE+ 
formatted volume consists of a sequence of logical blocks. Several blocks 
per . volume are dedicated to hold management information for the 
volume. These blocks are accessed directly by pHILE+ without going 
through normal file operations. The management blocks are defined as 
follows: 

BOOTLOAD 

ROOTBLOCK 

ROOTDIR 

BITMAP 

FLIST 

The first and second blocks (0 and 1) are never 
used by pHILE+. They are reserved in case a 
bootstrap loader is needed for the volume. 

Block 2 is always used as the root block for a 
volume. This block contains all information 
needed by pHILE+ to locate other vital 
information on the volume. 

Block 3 is always used to hold the first block of 
the root directory for the volume. As the root 
directory grows, additional blocks are allocated 
dynamically as required. 

This contiguous sequence of blocks is used to 
hold the bitmap for the volume, which uses bits 
to indicate what blocks are free. Its size and 
location are determined by parameters that you 
supply when you initialize the volume. 

This contiguous sequence of blocks is used to 
hold the file descriptors for the volume. It is 
positioned immediately following the bitmap. Its 
size is determined by parameters you supply 
when you initialize a volume. 

Thus, a volume has four initial data structures containing vital internal 
management data. Before a volume can be used, it must be initialized 
using the init_vol0 call, described in the pSOSystem Programmer's 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

Reference manual. init_ volO builds the root block, the root directory, 
the bitmap. and the FLIST structures on the volume. See the pSOSystem 
Programmer's Reference manual for C language definitions of these data 
structures. 

The bitmap can be placed anywhere on a volume and it is always followed 
by the FLIST. They need not be contiguous with the root block, root 
directory or any other data structure on the volume. Since the bitmap is 
used during write operations, and FLIST is used extensively during all 
file creation and connection, overall volume access can be improved by 
careful placement of these structures. 

5.8.1.1 The Root Block 

The root block is the starting point from which pHILE+ locates all other 
data on the volume. For this purpose, it contains the: 

FLIST _ADDRESS 

The starting block number of the volume 
bitmap 

The starting block number of FLIST 

The starting block number of data space 
(See section 5.B.1.5.) 

In addition, the root block contains the following information about the 
volume: 

INIT_TIME 

VOLUME_NAME 

VOLUME_SIZE 

NUMBEROF _FD 

The time and date of volume initialization 

The volume label 

The volume size in blocks 

The number of file descriptors (that is, the 
FLIST size) 

Confirmation 
initialization 

of successful volume 

5.8. 1.2 The Root Directory 

The volume's root directory is a directory file that forms the starting point 
from which pHILE+ locates all other files on a volume. From the root 
directory emanates the tree structure of (sub)directories and ordinary 
files. In the simplest case, the root directory may contain only ordinary 

pSOSystem System Concepts 5-19 



Chapter 5. pHILW File System Manager 

5-20 

files, thus yielding a one-level directory structure common in less 
sophisticated file systems. 

Immediately after a volume has been initialized, its root directory 
contains two files: FLIST.SYS, which is the volume's list of file 
deSCriptors, and BITMAP. SYS , which is the volume's map of occupied 
blocks. 

As with any user file, ordinary or directory, the root directory is expanded 
automatically by pHILE+, as required. For directory files, such 
expansion occurs one block at a time, and the blocks are generally not 
contiguous. Contiguous expansion of directory files can be achieved 
using the annex_f{) function described in the pSOSystem Progrwnmer's 
Reference manual. 

5.8.1.3 The Volume Bitmap 

A volume's bitmap is actually a system file. It is read-only; it performs 
the critical function of tracking the usage of each block on the volume. 
One bit is used to tag each block in the volume. If a block is allocated to 
a file, then the corresponding bit is set to 1. If a block is free, the 
corresponding bit is O. 

The size of the bitmap is determined by the size of the volume. Thus, for 
example, if the volume has 32K blocks, then the bitmap uses 32K bits or 
4 Kbytes. If block size is 1 Kbyte, then 4 blocks are allocated for this 
bitmap. 

Immediately after a volume has been initialized, its bitmap shows blocks 
used by the bootloader, the root block, the bitmap itself, and FLIST.SYS. 

The bitmap can be read as <volume>/BITMAP.SYS. This file is write
protected, and hence cannot be written to directly or deleted. 

5.8.1.4 The File Descriptor List 

Every file, whether it is an ordinary or directory file, reqUires a control 
structure called a file deSCriptor (FD). Each volume contains its own list 
of file deSCriptors, called the FLIST, which is stored in a contiguous 
sequence of blocks. More details about file deSCriptors are in section 
5.8.2.2. 

You specify the number of file deSCriptors in the FLIST when you 
initialize a volume. Each file deSCriptor is 128 bytes long. Therefore, if 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

the number of file descriptors specified is 100, the FLISToccupies 12800 
bytes, or 13 blocks if the block size is 1 Kbyte. 

Note that if the number of file descriptors on a volume is specified as n, 
then the maximum number of user-created files that can exist on the 
volume is n. The number of file descriptors created will actually be (n + 
4), since four internal system files are always present: the root directory 
(/), /BITMAP.SYS, /FLIST.SYS, and a reserved null file. These system 
files are write-protected, and cannot be written to directly or deleted. 

5.8.1.5 Control and Data Block Regions 

pHILE+ formatted volumes recognize two types of file blocks: control 
blocks and data blocks. Control blocks contain pHILE+ data structures 
such as: 

• The boatload (blocks 0 and 1) 

• The root block (block 2) 

• The bitmap 

• The FLIST 

• All directory file blocks 

• Indirect and index blocks 

Indirect and index blocks are used with extent maps and are explained 
in section 5.8.2.7. 

Data and control blocks can be either intermixed or partitioned. 
Partitioning control and data blocks is a unique feature of pHILE+ 
formatted volumes and makes pHILE+ capable of working with write
once devices. When a partition is used, the logical address space of a 
volume is divided into two regions: one for control blocks and one for 
data blocks. Using this method, control blocks can be temporarily 
maintained on an erasable media while data blocks are written on a 
write-once device. After the data partition of a volume is filled, the 
information from the control blocks that had been on erasable media can 
be transferred to the write-once device, where it is permanently recorded. 

Intermixing control and data blocks means that your data and pHILE+ 
data structures will be written randomly on a device. 

pSOSystem System Concepts 5-21 



Chapter 5. pHILW File System Manager 

The manner in which control and data blocks are organized on a volume 
is determined when the volume is initialized. One of the input 
parameters to init_ volO specifies the starting block number of the 
volume's data blocks. If zero is specified, then the data and control 
blocks are intermixed. Otherwise, data blocks begin at the specified 
block. For example, if a data block starting number of 200 is specified 
on a volume containing 5000 blocks, then blocks 2 - 199 (recall blocks 0 
and 1 are not used by pHILE+) are control blocks and blocks 200 - 4999 
are data blocks. 

5.8.2 How Files Are Organized 

A file is a collection of blocks that contain data, a file deSCriptor that 
contains control information, and an entry in a parent directory file. 

The following sections outline how files are constructed and how data in 
them is used. 

5.8.2.1 The File Number 

Externally, a file is specified by its pathname. Internally, pHILE+ 
converts this pathname into a corresponding file number, which is 
indexed. With this file number, pHILE+ accesses a file deSCriptor, and 
uses its content to perform the necessary operations on the file. You 
cannot use the file number externally as a file ID. A call such as 
create_fO, for example, returns an external file 10, not the internal, 
proprietary file number. 

5.8.2.2 The File Descriptor 

Each file descriptor is 128 bytes and contains the follOwing information: 

• The logical file size in bytes 

• The physical file size in blocks 

• The file type: directory or ordinary, system or data 

• The time of last modification 

• The tHe's expansion unit 

• The file's extent map. 

5-22 pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

5.8.2.3 File Types 

There are two type attributes associated with a file. A file may be an 
ordinary or a directory file, and it may be a system file or a data file. 
Ordinary and directory files were discussed above. 

System files are created by pHILE+ when a volume is initialized. There 
are three system files per volume: 

/BITMAP.SYS 

/FLIST.SYS 

/ 

The volume's bitmap 

The volume's FLIST 

The volume's root directory 

Since system files contain vital data structures. they are protected 
against user removal and modification. Reading, however, is allowed. 

5.8.2.4 Time of Last Modification 

pHILE+ maintains the time at which a file was last modified. This field 
is initialized when a file is created; thereafter it is updated whenever a 
file is written, or when blocks are annexed to the file. 

5.8.2.5 The File Expansion Unit 

If a write_tO operation extends past the current physical size of a file, 
pHILE+ will automatically expand the file to hold the new data. This type 
of file expansion is governed by the following considerations. 

When a file is created, you supply a parameter called an expansion unit 
that determines the minimum expansion increment to use during 
write_f() operations. This parameter specifies the minimum number of 
physically contiguous blocks pHILE+ attempts to allocate when 
additional space is required by file. This is a lower-bound number, since 
the number of blocks allocated is actually determined by either the 
expansion unit, or the number of blocks needed to satisfy the current 
write_f() operation, whichever is greater. 

5.8.2.6 Extents 

A file is treated simply as a sequence of logical blocks. Each such block 
corresponds to a physical block on the volume. Since the physical blocks 
that comprise a file may be scattered throughout a volume, pHILE+ 

pSOSystem System Concepts 5-23 



Chapter 5. pHILE+ File System Manager 

5-24 

implements a structure called an extent to keep track of a file's blocks, 
and hence its data. 

An extent is a sequence of physically contiguous blocks. An extent 
consists of one or more blocks; similarly, a file with data consists of one 
or more extents. 

A file can acquire an extent in one of two ways: 

• During a write_f{) operation, when a file Is expanded; or 

• During an annex_fO operation 

These operations also might not produce a new extent, since pHILE+ may 
merge the newly allocated blocks into an existing extent (logically the last 
extent) if the new blocks are contiguous with that extent. 

An extent is described by an extent descriptor: 

< starting block number, number of blocks> 

which identifies the physical address of the blocks that make up the 
extent. 

5.8.2.7 The Extent Map 

The extent map for a file is a list of its extent descriptors. For reasons of 
efficiency, this map is organized by layers of indirection. 

The first 10 extent descriptors are located in the file's file descriptor. 
Additional extent deSCriptors, when needed, are stored in indirect blocks. 
Each indirect block is a physical block that contains up to n extent 
deSCriptors. Since an extent deSCriptor is 8 bytes, the number n of extent 
deSCriptors that can be held in an indirect block is ( blocksize / 8 ). For 
example, if blocksize is 1 Kbyte, then n is 128. Indirect blocks are 
allocated as needed for each file. 

Each indirect block is addressed via an indirect block deSCriptor which 
is also a pair of words: 

< starting block number, last logical block number + 1 > 

where the first item is a physical block number, and the second item is 
the logical number (+ 1) of the last block contained in this indirect block 
of extent descriptors. This last number is useful for quickly determining 
whether an indirect block needs to be searched. while locating a 
particular logical block within a file. 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

The indirect block descriptor for the first indirect block, if needed, is held 
in a file descriptor. If more than one indirect block is needed, as in the 
case of rather large and scattered flIes, then the second through (n + l)th 
indirect block descriptors are held in an index block. 

If allocated, this index block will contain up to n indirect block 
deSCriptors. Again, since each indirect block descriptor is 8 bytes long, 
the number n of indirect block deSCriptors in the index block is equal to 
(blocksize / 8). For example, if blocksize is 1 Kbyte, then this number 
will be 128. The physical block address of the index block is contained 
in a file descriptor. A file can have only one index block. 

The structure of the extent map ensures that, in the worst case, no more 
than two block accesses are needed to locate an extent deSCriptor. 
Moreover, the cache buffers will tend to retain frequently used index and 
indirect blocks. 

This extent map structure clearly favors file contiguity. For example. if 
a file can be covered in fewer than 10 extents, then access to any of its 
data can be accomplished via the file deSCriptor alone. 

The extent map will hold up to [ n * ( n + 1 ) + 10 ] extents. where n is ( 
blocksize / 8 ), as above. For example, if blocksize is 1 Kbyte. then the 
maximum number of extents per file is [ ( 128 * 129 ) + 10 ]. or 16522. 
In the worst case of 1 block per extent, a file can contain 16522 blocks. 
or 16 megabytes of data. However. because pHILE+ contains both 
implicit and explicit features to "cluster" many blocks into a single 
extent. the number of extents required to map a file is usually very much 
smaller. In fact, even for a very large file, the number of extents needed 
to map the file rarely exceeds 100. 

Figure 15 illustrates an example of an extent map layout. 

pSOSystem System Concepts 5-25 



Chapter 5. pHILE+ File System Manager 

Extent 0 

Size 

• 
• 
• 

Extent 9 

Size 

File Descriptor 

Indirect 1 

Last block + 1 

• 
• 
• 

Indirect n 

Last block +1 

Index Block 

Indirect 1 

Last block +1 

• 
• 
• 

Indirect n 

Last block + 1 

Indirect Block #0 

Indirect 1 

Last block + 1 

• 
• 
• 

Indirect n 

Last block + 1 

Indirect Block #1 

Indirect 1 

Last block + 1 

• 
• 
• 

Indirect n 

Last block + 1 

Indirect Block #n 

Figure 15. The Layout of an Extent Map 

5-26 pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

5.8.3 Data Address Mapping 

pHILE+ allows you to access file content down to individual bytes. For 
each file access, pHILE+ performs a number of address translations that 
convert or map your stretch of data into a volume block or blocks. 

As an example of file content access, consider a file with three extents. 
Assume its file descriptor's extent map looks like the follOwing: 

(060,5) 

(789,2) 

(556,1) 

That is, the file has 8 blocks. Assume that block size is 1 Kbyte. Ifa read 
call requests 100 bytes, starting at byte number 7000, the request is 
processed by pHILE+ as follows: 

1. Byte 7000 divided by 1024 = 6, remainder = 856. 

2. Logical file block 6 is needed, since blocks are numbered from O. 

3. According to extent map, block #6 is the 2nd block in the extent 
(789,2). 

4. pHILE+ calls your driver to read volume block #790. 

5. pHILE+ extracts bytes 855 to 955 from the 1024 bytes that were 
read in. 

5.8.4 Block Allocation Methods 

Since blocks are the basic unit of the pHILE+ volume. block allocation 
algorithms are extremely important to system throughput. Blocks must 
be allocated whenever: 

• A wrlte_f() extends the logical size of a file beyond the file's physical 
size. 

• An annex_fO call is made. 

• A new block must be added to a directory to accommodate a new 
entry. This can happen on a create_f(). make_dirO. or move_fO 
call. 

• An indirect or index block must be added when a new extent is 
added to a file. This can happen whenever blocks are allocated -- for 
whatever reason. 

pSOSystem System Concepts 5-27 



Chapter 5. pHILE+ File System Manager 

5-28 

When more blocks are needed. pHILE+ first determines the allocation 
size. This is the ideal size of the extent to be allocated. The allocation 
size for each case above is determined as follows: 

Case 1: write_fO Extends a File 

When extending an ordinary file to write data from a write_f{) call. the 
allocation size is the larger of the number of blocks needed for the data 
and the expansion unit that you specified when the file was created. For 
example. assume that a write_fO call requires two blocks. If the file was 
created with an expansion unit of five blocks. then the allocation size will 
be five blocks. On the other hand, if the file's expansion unit is one, then 
the allocation size will be two blocks. 

Case 2: annex_fO Extends a File 

The allocation size is a parameter of the annex_fO call and is thus 
provided by the calling task. 

Case 3: A New Entry Extends A Directory File 

Directories have the following properties: 

• They grow one entry at a time; 

• Each entry is 16 bytes long; and, 

• There is no expansion unit associated with a directory 

For all of these reasons, the directory allocation size is always one block. 

Case 4: An Indirect or Index Block Is Needed 

These are always single blocks. so the allocation size is one block. 
Indirect and index blocks are explained below. 

After selecting the allocation size, pHILE+ chooses the block type. 
Ordinary files use data blocks, while pHILE+ data structures use control 
blocks. 

The block type is used to decide where in the volume to search for free 
space. If the volume was partitioned into data and control regions during 
initialization, which is explained in more detail below, only the relevant 
portion of the volume will be used. 

The search does not always start with the· first block in the appropriate 
region. Rather, pHILE+ will start searching in the bitmap of the block 
last referenced. This increases the chance of scanning a block in the 
cache, and thus enhances throughput. 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

The search involves locating the first unused extent containing at least 
the required number of blocks. This search can have three outcomes: 

1. A sufficiently large extent is found and allocated, in which case the 
search is successfully completed. If the length of the extent is 
greater than the allocation size, the extent will be split. 

2. No extents equal to or greater than the allocation size are found. In 
this case, pHILE+ will allocate the largest remaining extent in the 
appropriate region. If the calling function is annex_fO, the number 
of blocks actually allocated is returned to the caller. If a wrlte_f() is 
executed, a new allocation size is calculated (depending on the 
number of blocks not yet allocated) and the operation is repeated. 
That way, one write_fO call can add several extents to a file. 

3. The volume is full; that is, there are no free blocks. In this case, a 
"volume full" error is returned to the calling task. 

The time to read and write to a file depends on how fragmented the file 
is. A file fragmented into many small and scattered extents will take 
more time to access than a file consisting of fewer and larger extents. If 
a file can be compacted into 10 or fewer extents, then all of the file's data 
blocks can be identified using an extent map stored in the File Control 
Block. This is the optimal case. If a file has more than 10 extents, 
indirect blocks or index blocks must be used, which reduces access 
times. 

Some attention should be given to a file's expansion unit specification, 
which is described in section 5.8.2.5. A larger expansion unit results in 
higher throughput, but may waste disk space, since some blocks may 
not be used. On the other hand, a smaller expansion unit uses disk 
space more efficiently, but may cause fragmentation. This fragmentation 
will be a function of: 

• The average number of bytes written per wrlte_f(); 

• The number of annex_f() calls used: and, 

• Concurrent file· activity; that is, how many tasks are usi~g the 
volume at the same time. 

When pHILE+ needs to add blocks to a file, it always checks to see if the 
new blocks can be merged into the last extent used. 

pSOSystem System Concepts 5-29 



Chapter 5. pHILE"" File System Manager 

5.S.5 How Directories Are Organized 

Directories implement the hierarchical file structure of pHILE+. A 
volume's directory tree structure is built on top of. but also out of. the 
basic data file structure. That is. directory files are treated in almost all 
respects as ordinary data files. Directory files hold data about their 
children. and the parent of a directory will hold data about the directory. 
A directory file contains an array of entries. Each entry describes a file 
in the directory. An entry is nothing more than a 2-tuple. as follows: 

Entry: < filenumber, filename >. 

filenumber is the number of the file and filename is its name. Each 
directory entry uses 16 bytes, so if the block size is 1 Kbyte. one block 
can store 64 entries. 

When a file is created. pHILE+ assigns it a file descriptor in the volume's 
FLIST. described below. and makes an entry in the directory file to which 
it belongs. 

5.8.6 Logical and Physical File Sizes 

Files occupy an integral number of storage blocks on the device. 
However. pHILE+ keeps track of the length of a file in bytes. Unless the 
length of a file is an exact multiple of the block size. the last block of the 
file will be partially used. There are therefore two sizes associated with 
every file: a logical size and a physical size. 

The logical size of a file is the number of data bytes within the file that 
you can access. This size automatically increases whenever data is 
appended to the file. but never decreases. 

The physical size of a file corresponds to the number of blocks currently 
allocated to the file. Thus the logical and physical sizes of a file are 
generally different. unless a file's logical size happens to exactly fill the 
number of physical blocks allocated to the file. As with its logical size. a 
file's physical size never decreases. except. of course. when it is deleted. 

5.8.7 Special Services 

This section discusses those services available after you create a pHILE+ 
formatted volume. These services are not available with MS-DOS or NFS 
volumes. 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

5.8.7.1 

Each time a file is opened, the pathname must be parsed and the 
directories searched. If the pathname traverses many levels of the 
directory tree, or if any directory in the path contains a large numbers of 
files, then a directory search can be time-consuming. Most applications 
open files infrequently, and the directory search time in such cases is 
unimportant. However if the same file must be frequently opened and 
closed, the parsing and searching overhead can be substantial. 

On pHILE+ formatted volumes. an alternate method of opening a file. 
open_fnO, bypasses all parsing and directory searching. Rather than 
providing a pathname, the calling task can provide instead the file 
number. The get_fnO call is used to obtain the file number. get_fnO 
accepts a pathname as input and returns the file number of the 
corresponding file. get_fnO followed by an open_fnO is functionally 
equivalent to an open_fO call. If the file is to be opened many times. it is 
more efficient to call get_fnO once, and then use open_fnO whenever the 
file must be opened. 

A second and less obvious advantage of get_fnO and open_fnO involves 
reusing pathnames. Often a pathname must be saved so a file can be 
reopened later. If a file is deeply nested, its path name can be quite long 
and may consequently require a significant amount of memory for 
storage. Even worse, if a saved pathname is expressed relative to a 
current directory and the current directory changes before the file is 
reopened. the operation will fail or the wrong file will be opened. 

In these cases. the pathname can instead be converted into a file 
number. The file can be (re)opened at a later time, independently of the 
current directory. 

5.8.7.2 

write_fO operations will automatically add new blocks to a file as 
required. but the blocks added often are not contiguous. This situation 
can be controlled to some extent on pHILE+ formatted volumes by using 
a larger file expansion unit. For even more efficient, contiguous 
grouping, the annex_fO function may be used to manually allocate or 
expand a file's physical size, in anticipation of new data. 

Call annex_f() by passing the number of contiguous blocks you wish to 
add to a file, known by a file ID; the call will return the number of blocks 
added. annex_f() does nothing, however, to the logical size of the file --

pSOSystem System Concepts 5-31 



Chapter 5. pHILE+ File System Manager 

see the cautions in the description of the call. If a file's final size can be 
estimated in advance, then annex_fO may be used to allocate a single 
contiguous extent for the file immediately after its creation. So long as 
subsequent write operations do not extend past this size. the file will be 
truly contiguous. If the file must be expanded. then this may be left 
impliCitly to write_my or performed explicitly using additional annex_m 
operations. 

5.8.7.3 

pHILE+ allows a single file to be opened and accessed by more than one 
task simultaneously. Concurrent read access is generally qUite safe: 
however. if one or more tasks perform write operations (concurrent 
update). then it may be necessary for such tasks to secure exclusive 
access to all or part of the file. 

The lock_f() function allows a task to lock a specified region of a file. As 
long as the lock is in effect. pHILE+ will prevent all other file connections 
from reading. writing or locking that region of the file. thus providing 
exclusive access to a single connection. 

lock_f() requires two parameters. The first is the position of the first byte 
to lock. The second is the number of bytes to lock. A lock may start 
andj or end beyond both the physical or logical end of a file. This allows 
a lock to anticipate future expansion of a file. Thus. lock_f() can be used 
to prevent all other connections to the file from: 

• Modifying or appending any data in the locked region of the file. and 

• Reading any data in. or being appended to. the locked region of the 
file. 

When a lock is in place. the locked region can be accessed only by the 
ta~k that placed the lock and then only via the file ID with which the lock 
was placed. 

Each connection to a file may lock only one region of a file at any time. 
If a task needs to lock two different parts of a file simultaneously, then it 
must open the file twice to obtain a second connection (via a different file 
ID). 

If a lock_f() call is issued through a connection that has an existing lock. 
then the existing lock is automatically removed and replaced by the new 
lock. This lock replacement takes place as an atomic operation. That is. 
the existing lock is removed, and the new lock is set in a single operation. 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

This precludes, in the case that the old and new regions overlap, any 
opportunity for another task to access -- or even worse, lock -- the 
overlapped region during the replacement window. 

To remove an existing lock, simply replace it with a new lock of length 
zero, using the same file 10. 

A lock prevents offending read_f(), write_f(), and lock_f() operations 
only. It does not prevent another task from adding blocks to a file with 
the annex_f() call. Nor does it prevent access to the file's data via the 
read_ volO and write_ volO calls. 

5.8.7.4 Direct Volume I/O 

While a volume's data is usually accessed through the directory 
organization provided by pHILE+, certain applications may need to 
access data via its logical address on the volume. 

Two pHILE+ system calls, read_volO and write_voIO, allow you to access 
data on a pHILE+ formatted volume by block address. Any number of 
bytes may be accessed, beginning at any byte within any logical block on 
a volume. 

These calls provide two advantages compared to calling the appropriate 
device driver directly, which bypasses pHILE+ entirely. First, if the 
volume has been mounted with some synchronization mode other than 
immediate write, data recently written to the volume may still be 
memory-resident, not having yet been flushed to the device. Calling the 
driver directly would not read the latest copy of such data. Worse, data 
written directly to the volume could be overwritten by cache data and 
thus lost entirely. 

read_ volO and write_ volO can read/write portions of a block. All the 
necessary caching and blocking/deblocking will be performed by pHILE+ 
as required. Thus read_ volO and write_ volO allow a device to be 
accessed as a continuous sequence of bytes without regard for block 
boundaries. 

5.8.8 Restarting and Deleting Tasks That Use pHILE+ 

During normal operation, pHILE+ internally allocates and holds 
resources on behalf of calling tasks. Some resources are held only 
during execution of a service call, while others are held indefinitely based 
the state of the task (for example when files are open). The pSOS+ service 

pSOSystem System Concepts 5-33 



Chapter 5. pHILE+ File System Manager 

5-34 

calls t_restartO and t_deleteO asynchronously alter the execution path 
of a task and present special problems relative to management of these 
resources. 

This section discusses deletion- and restart-related issues in detail and 
presents recommended ways to perform these operations. 

5.8.8.1 Restarting Tasks That Use pHILE+ 

pSOS+ allows a task to be restarted regardless of its current state. The 
restart operation has no effect on currently opened files. All files remain 
open and their L_ptr's are unchanged. 

It is possible to restart a task while the task is executing code with the 
pHILE+ component. Consider the following example: 

1. Task A makes a pHILE+ call. 

2. While executing pHILE+ code, task A is preempted by task B. 

3. Task B then restarts task A. 

In such situations, pHILE+ correctly returns resources as required. 
However, a file system volume may be left in an inconsistent state. For 
example, if t_restartO interrupts a create_tO operation, a file deSCriptor 
(FD) may have been allocated but not the directly entry. As a result, an 
FD may be permanently lost. t_restartO detects potential corruption 
and returns the warning code OxOD. When this warning code is received, 
verify _ volO should be used to detect and correct any resulting volume 
inconsistencies. 

5.8.8.2 Deleting Tasks That Use pHILE+ 

To avoid permanent loss of pHILE+ resources, pSOS+ does not allow 
deletion of a task that is holding any pHILE+ resource. Instead, 
t_deleteO returns error code Ox18, which indicates that the task to be 
deleted holds pHILE+ resources. 

The exact conditions under which pHILE+ holds resources are complex. 
In general, any task that has made a pHILE+ service call may hold 
pHILE+ resources. close_f(O), which returns all pHILE+ resources held 
by the calling task, should be called by the task to be deleted prior to 
calling t_deleteO. 

pNA + and pREPC+ also hold resources which must be returned before a 
task can be deleted. These resources are returned by calling close(O) 

pSOSystem System Concepts 



Chapter 5. pHILE+ File System Manager 

and fclose(O) respectively. Since pREPC+ calls pHILE+, and pHILE+ calls 
pNA+ (ifNFS is in use), these services must be called in the correct order. 
Below is a sample code fragment that a task can use to delete itself: 

fclose(O); 

close_f(O); 

close(O); 

t_delete(O); 

/* return pREPC+ resources */ 

/* return pHILE+ resources */ 

/* return pNA+ resources */ 

/* and commit suicide *1 

Obviously, close calls to components not in use should be omitted. 

Since only the task to be deleted can make the necessary close calls, the 
simplest way to delete a task is to restart the task and pass arguments 
requesting self deletion. Of course, the task being deleted must contain 
code to handle this condition. 

pSOSystem System Concepts 5-35 



Chapter 5. pHILE+ File System Manager 

(Blank Page) 

5-36 pSOSystem System Concepts 



6 pREPC+ ANSI C Library 

6. 1 Introduction 
Most C compilers are delivered with some sort of run-time library. These 
run-time libraries contain a collection of pre-defined functions that can 
be called from your application program. They are linked with the code 
you develop when you build your application. However, when you 
attempt to use these libraries in a real-time embedded system, they 
encounter one or more of the following problems: 

• The library functions are not reentrant and therefore do not work in 
a multitasking environment. 

• It is the user's responsibility to integrate library I/O functions into 
the target environment, a time-consuming task. 

• The library functions are not compatible with a published standard, 
resulting in application code that is not portable. 

pREPC+ solves all of the problems mentioned above. First, it is designed 
to work with the pSOS+ Real-Time Multitasking Kernel and the pHILE+ 
File System Manager, so all operating system dependent issues have 
been addressed and resolved. Second, it is designed to operate in a 
multitasking environment, and finally, it complies with the C Standard 
Library specified by the American National Standards Institute. 

pSOSystem System Concepts 6-1 



Chapter 6. pREPC+ ANSI C Library 

6.2 Functions Summary 
pREPC+ provides more than 85 run-time functions. Following the 
conventions used in the ANSI X3J 11 standard, these functions can be 
separated into 4 categories: 

• Character Handling Functions 

• String Handling Functions 

• General Utilities 

• Input/Output Functions 

The Character Handling Functions provide facilities for testing 
characters (for example, is a character a digit?) and mapping characters 
(for example,. convert an ASCII character from lowercase to uppercase). 

The String Handling Functions perform operations on strings. With 
these functions you can copy one string to another string, append one 
string to another string, compare two strings, and search a string for a 
substring. 

The General Utilities provide a variety of miscellaneous functions 
including allocating and deallocating memory, converting strings to 
numbers, searching and sorting arrays, and generating random 
numbers. 

I/O is the largest and most complex area of support. The I/O Functions 
include character, direct, and formatted I/O functions. I/O is discussed 
in Section 6.3, "I/O Overview." 

Detailed descriptions of each function are provided in the pSOSystem 
Programmer's Reference manual. 

6.3 1/0 Overview 

6-2 

There are several different levels of I/O supported by the pREPC+ / 
pSOS+ /pHILE+ environment, providing different amounts of buffering, 
formatting, and so forth. This results in a layered approach to I/O, since 
the higher levels call the lower levels. The main levels are shown in 
Figure 16. 

pSOSystem System Concepts 



Chapter 6. pREPC+ ANSI C Library 

~ 
, 

pREPC+ Input/Output 

+ -I pHILE+ 

+ -I pSOS+ I/O Supervisor 

+ - Device (disk, terminal, etc.) I 

Figure 16. I/O Structure of pREPC+ 

The pREPC+ I/O functions provide a unifonn method for handling all 
types of I/O. They mask the underlying layers and allow application 
programs to be hardware and device independent. A user application 
can, however, call any of the layers directly, depending on its 
requirements. 

The lowest, most primitive way of doing I/O is by directly accessing the 
hardware device involved, for example a serial channel or a disk 
controller. Programming at this level involves detailed knowledge of the 
device's registers, etc. Although all I/O eventually reaches this level, it 
is almost never part of the application program, as it is too machine
dependent. 

The next step up from the actual device is to call a device driver. Under 
pSOS+, all device drivers are called in a similar fashion, via the pSOS+ 

pSOSystem System Concepts 6-3 



Chapter 6. pREPC+ ANSI C Library 

I/O Supervisor, which is explained in Chapter 7, "I/O System." For 
reading and writing, all that is generally required is a pointer to the 
buffer to read into or write from, a character count, and a way to identify 
the device being used. 

The pSOS+ I/O Supervisor provides the fastest, most direct route for 
getting a piece of data to a device. In some cases, this is the best way. 
Generally, however, it is better to use the pREPC+ direct, character, or 
formatted I/O services. 

pHILE+ manages and organizes data as sets of files on storage devices 
and in turn does all of the actual I/O. The pHILE+ I/O path depends on 
the type of volume mounted and is described in detail in Chapter 5, 
"pHILE+ File System Manager." 

pHILE+ services (such as open_f and write_f} can be called directly. 
However, if you use the pREPC+ file I/O functions, which in turn call 
pHILE+, your application code will be more portable. 

The pREPC+ direct I/O and character I/O functions read and write 
sequences of characters. The formatted I/O functions perform 
transformations on the input and output and include the familiar 
prlntf() and scanf() functions. 

6.3. 1 Files, Disk Files, and I/O Devices 

6-4 

Under pREPC+, all I/O is directed to and from "files." pREPC+ divides 
files into two categories: I/O devices and disk files. They are treated as 
Similarly as possible, but there are intrinsic differences between the two. 

Disk files are part of a true file system managed by pHILE+. There is a 
file pOSition indicator associated with each disk file, which marks the 
current location within the file. It is advanced whenever data is read 
from or written to the file. In addition, it can be changed via function 
calls. 

pHILE+ manages three types of volumes. These are pHILE+ formatted 
volumes, MS-DOS volumes, and NFS (Network File System) volumes. 
pREPC+ does not distinguish between the underlying volume types and 
therefore works equally well with all three volume types. However, there 
are a number of small differences between the various volumes that may 
affect the results of certain pREPC+ functions. Function descriptions 

pSOSystem System Concepts 



Chapter 6. pREPC+ ANSI C Library 

indicate those cases where the volume type may affect function results 
and how those functions would be affected. 

I/O devices correspond to pSOS+ logical devices, and are usually 
associated with devices such as terminals or printers. From an 
application's standpoint, their main difference from disk files is that they 
have no position indicator. Data being read from or written to an I/O 
device can be thought of as a continuous stream. 

When reading and writing disk files, pREPC+ calls pHILE+, which in turn 
calls the pSOS+ I/O Supervisor. When reading and writing I/O devices, 
pREPC+ calls the pSOS+ I/O Supervisor directly. 

Before a file (a disk file or an I/O device) can be read or written, it must 
be opened using lopenO. One of the lopenO function's input parameters 
is a name that specifies the file to open. Disk files are designated by 
pHILE+ pathnames, while I/O devices are identified by pSOS+ logical 
device numbers. 

Examples: 

3.2 designates an I/O device with logical device number 3.2 .. 

3.2/abed designates a disk file stored on logical device 3.2. 

abed designates a disk file in the current directory. 

When lopenO opens a disk file, it generates a pHILE+ open_tO system 
call. When it opens an I/O device, lopenO calls the pSOS+ de_openO 
service. Regardless of whether lopenO opens an I/O device or a disk file, 
it allocates a FILE data structure, which is discussed in section 6.3.2. 

6.3.2 File Data Structure 

As mentioned in the previous section, when a file is opened, it is allocated 
a data structure of type FILE. In pREPC+ this is a 32-bit address of a 
pREPC+ file structure. lopenO returns a pOinter to this allocated data 
structure. All file operations require the pOinter to this structure as an 
input parameter to identify the file. If it is not expliCitly given, it is 
implied, as in the case of functions which always use the standard 
output device (See section 6.3.4). 

The FILE data structure is used to store control information for the open 
file. Some of the more important members of this structure include the 
address of the file's buffer, the current pOSition in the file, an end-of file 

pSOSystem System Concepts 6-5 



Chapter 6. pREPC+ ANSI C Library 

(EOF) flag, and an error flag. In addition, there is a flag that indicates 
whether the file is a disk file or an I/O device. 

Some of these fields have no meaning for I/O devices, such as the 
position indicator. 

6.3.3 Buffers 

Open files normally have an associated "buffer" that is used to buffer the 
flow of data between the user application and the device. By caching 
data in the buffer, pREPC+ avoids excessive I/O activity when the 
application is reading or writing small data units. 

When first opened, a file has no buffer. Normally a buffer is 
automatically assigned to the file the first time it is read or written. The 
buffer size is defined by the entry LC_BUFSIZ in the pREPC+ 
Configuration Table. pREPC+ allocates the buffer from pSOS+ region O. 
If memory is not available, the calling task may block based on the values 
in the pREPC+ configuration table entries LC_WAlTOPT and 
LC_TIMEOPT. If a buffer cannot be obtained an error is returned to the 
read or write operation. 

Note that if the default buffer assigned by pREPC+ is not appropriate for 
a particular file, a buffer may be supplied directly by calling the setbuf() 
or setvbuf() functions. 

A special case arises when a file is assigned a buffer of length O. This 
occurs if LC_BUFSIZ is zero, and as an option to the setvbuf() call. In 
this case, no buffer is assigned to the file and all I/O is unbuffered. That 
is, every read or write operation through pREPC+will result in a call to a 
device driver ofpHILE+ as the case may be. 

Finally, note that the three standard files, stdin, stdout, and stderr, are 
not affected by the value of LC_BUFSIZ. See section 6.3.5 for a 
discussion of the default buffering of these three files. 

6.3.4 Buffering Techniques 

6-6 

This section describes the buffering techniques used by pREPC+. There 
are two cases to consider, writing and reading. 

On output, data is sent to the file's buffer and subsequently transferred 
(or "flushed") to the I/O device or disk file by calling a pSOS+ device 
driver (for an I/O device) or pHILE+ (for a disk file). The time at which a 

pSOSystem System Concepts 



Chapter 6. pREPC+ ANSI C Library 

buffer is flushed depends on whether the file is line-buffered or fuUy
b4ffered. If line-buffered, the buffer is flushed when either the buffer is 
full or a newline character is detected. If fully-buffered, the buffer is 
flushed only when it is full. In addition, data can be manually flushed, 
or forced, from a buffer at any time by calling the fBushO function. 
Finally, the buffer is flushed if the data direction is reversed: that is, a 
read operation is performed immediately after a write. 

By default, I/O devices are line-buffered, whereas disk files are fully
buffered. This can be changed after a file is opened by using the setbuf() 
or setvbuf() functions. 

When reading, pREPC+ retrieves data from a file's buffer. When 
attempting to read from an empty buffer, pREPC+ calls either a pSOS+ 
driver or pHILE+ to replenish its contents. When attempting to replenish 
its internal buffer, pREPC+ reads sufficient characters to fill the buffer. 
The pSOS+ driver or pHILE+ may return fewer characters than 
requested. This is not necessarily considered as an error condition. If 
zero characters are returned, pREPC+ treats this as an EOF condition. 

Note that the buffering provided by pREPC+ adds a layer of buffering on 
top of the buffering implemented by pHILE+. 

6.3.5 stdin, stdout, stderr 

Three files are opened automatically for every task that calls pREPC+. 
They are referred to as the standard input device (stdin), the standard 
output device (stdout) and the standard error device (stderr). They can 
be disk files or I/O devices and are defined by entries in the pREPC+ 
Configuration Table. stdin, stdout and stderr are impliCitly referenced 
by certain input/output functions. For example, printf() always writes 
to stdout, and scanf() always reads from stdin. 

stdout and stderr are opened in mode w, while stdin is opened in mode 
r. Modes are discussed in the fopenO description given in the 
pSOSystem Prograrroner's Reference manual. Each file is assigned a 256 
byte buffer. LC_BUFSIZ has no effect on the buffer size of these three 
files. 

The buffering characteristics for stdin and stdout depend on the type of 
files specified for these devices. In the case of an I/O device, they are 
line-buffered. In the case of a disk file, they are fully-buffered. stderr is 

pSOSystem System Concepts 6-7 



Chapter 6. pREPC+ ANSI C Library 

an exception. Regardless of whether stderr is attached to a disk file or 
an I/O device, it is fully-buffered. 

Like any other file, the buffer size and buffering technique of these files 
can be modified with the setbuf() and setvbuf() function calls. 

pREPC+ attempts to open stdin, stdout and stderr for a task the first 
time the task issues a pREPC+ system call. If any of these files cannot 
be opened, pREPC+ calls the k_fatal service with a Ox3F03 error code as 
an input parameter. 

When opened, the pathname of the files is obtained from the pREPC+ 
configuration table. Even though each task maintains a separate file 
structure for each of the three standard files, they all use the same stdin, 
stdout, and stderr device or file. This may not be desirable in your 
application. The freopenO function can be used to dynamically change 
the pathnames of any file, including stdin, stdout, and stderr, in your 
system. For example, to change the stdout from its default value of I/O 
device 00.00 to a disk file (0 1. OO/std_out.dat) you would use the 
following function: 

freopen("O 1.00 / std_ out. datil , "w", stdout); 

When using freopen with the three standard files, two rules should be 
observed. First, the mode of the standard files should not be altered from 
their default values, and second, you should not use pathnames that 
include the strings "stdin", "stdout", or "stderr". 

6.3.6 Streams 

6-8 

Streams is a notion introduced by the X3Jll Committee. Using the 
X3Jll Committee's terminology, a stream is a source or destination of 
data that is associated with a file. The Standard defines two types of 
streams: text streams and binary streams. In pREPC+, these are 
identical. In fact, in pREPC+, a stream is identical to a file. Therefore, 
we have chosen to continue using the more familiar term "file", rather 
than the term "stream" in this manual. 

pSOSystem System Concepts 



Chapter 6. pREPC+ ANSI C Library 

6.4 Memory Allocation 
The following pREPC+ functions allocate blocks of memory: 

caUocO 
mallocO 
reaUocO 

When any of these functions are called. pREPC+. in tum. calls the pSOS+ 
region manager by generating a m~etseg call. pREPC+ always requests 
segments from Region O. Therefore. you must reserve enough space in 
Region a for the memory required by your application and for the 
memory used by pREPC+ for file buffers (see section 6.3.3). 

The m~etseg call's input parameters include wait/nowait and timeout 
options. The wait/nowait and timeout options used by pREPC+ when 
calling m-ietseg are specified in the pREPC+ Configuration Table. Note 
that if the wait option is selected. it is possible for any of the functions 
listed above to result in blocking the caller. Also note that the number 
of bytes actually allocated by each rn-ietseg call depends on Region a's 
unit_size. 

The following functions result in memory deallocation: 

free 0 
reaUocO 
fcloseO 
setbuf() 
setvbuf() 

The freeO function is called by a user for returning memory no longer 
needed. The remaining functions implicitly cause memory to be 
released. pREPC+ deallocates memory by generating a m_retseg call to 
pSOS+. 

Chapter 2. "pSOS+ Real-Time Kernel," contains a complete discussion of 
the pSOS+ region memory manager. 

pSOSystem System Concepts 6-9 



Chapter 6. pREPC+ ANSI C Library 

6.5 Error Handling 
Most pREPC+ functions can generate error conditions. In most such 
cases, pREPC+ stores an error code into an internal variable called ermo 
and return an "error indicator" to the calling task. Usually this error 
indicator takes the form of a negative return value. The error indicator 
for each function, if any, is documented in the individual function calls. 
Error codes are documented in the pSOSystem Programmer's Reference 
manual. 

pREPC+ maintains a separate copy of ermo for each task. Thus, an error 
occurring in one task will have no effect on the errno of another task. A 
task's ermo value is initially zero. When an error indication is returned 
from a pREPC+ call, the calling task can obtain the ermo value by 
referencing the macro errno. This macro is defined in the include file 
<stdio.h>. Note that the value of ermo associated with a particular 
pREPC+ call is only valid as long as no other pREPC+ services are called 
by the task. This is true whether or not the second call generates an 
error. 

pREPC+ also maintains two error flags for each opened file. They are 
called the end-of:file flag and the error flag. These flags are set and 
cleared by a number of the I/O functions. They can be tested by calling 
the feof() and ferrorO functions, respectively. These flags can be 
manually cleared by calling the clearerrO function. 

6.6 Restarting Tasks That Use pREPC+ 

6-10 

It is possible to restart a task that uses pREPC+. Since pREPC+ can 
execute with preemption enabled, it is possible to issue a restart to a task 
while it is in pREPC+ code. Note that the t_restart operation does not 
release any memory. close any files, or reset ermo to zero. If you wish 
to have clean_ups, then have the task check for restarts and do them as 
it begins execution again. However, once the task has been created, the 
value of ermo is never reset to zero. 

pSOSystem System Concepts 



Chapter 6. pREPC+ ANSI C Library 

6.7 Deleting Tasks That Use pREPC+ 
To avoid penn anent loss of pREPC+ resources, pSOS+ does not allow 
deletion of a task which is holding any pREPC+ resource. Instead, 
t_delete returns error code Ox19 which indicates the task to be deleted 
holds pREPC+ resources. 

The exact conditions under which pREPC+ holds resources are complex. 
In general, any task that has made a pREPC+ service call may hold 
pREPC+ resources. fclose(O), which returns all pREPC+ resources held 
by the calling task, should be called by the task to be deleted prior to 
calling t_delete. 

pNA + and pHILE+ also hold resources that must be returned before a 
task can be deleted. These resources are returned by calling close(O) 
and close_f(O) respectively. Since pREPC+ calls pHILE+, and pREPC+ 
calls pNA+ (if NFS is in use), these services must be called in the correct 
order. Below is a sample code fragment which a task can use to delete 
itself: 

fclose(O»; /* return pREPC resources * / 
close_f(O); /* return pHILE resources * / 
close (0); /* return pNA resources * / 
t_delete(O); /* and commit suicide * / 

Obviously, close calls to components not in use should be omitted. 

Since only the task to be deleted can make the necessary close calls, the 
simplest way to delete a task is to restart the task and pass arguments 
requesting self deletion. Of course, the task being deleted must contain 
code to handle this condition. 

6.8 Deleting Tasks With exit( ) or abort( ) 
The exitO and abortO calls are implemented in pREPC+ as macros that 
are defined in the header file prepc.h. These macros, which the user 
needs to modify depending on which components are prep sent in the 
system, can be used to return all system resources and delete the task. 

pSOSystem System Concepts 6-11 



Chapter 6. pREPC+ ANSI C Library 

(Blank Page) 

6-12 pSOSystem System Concepts 



7 I/O System 

A real-time system's most time-critical area tends to be I/O. Therefore, 
a device driver should be customized and crafted to optimize throughput 
and response. A driver should not have to be designed to meet the 
specifications of any externally imposed, generalized, or performance
robbing protocols. 

In keeping with this concept, pSOS+ does not impose any restrictions on 
the construction or operation of an I/O device driver. A driver can 
choose among the rich set of pSOS+ system services, to implement 
queueing, waiting, wakeup, buffering and other mechanisms, in a way 
that best fits the particular driver's data and control characteristics. 

The pSOS+ kernel includes an I/O supervisor whose purpose is to 
furnish a device-independent, standard method both for integrating 
drivers into the system and for calling these drivers from the user's 
application. I/O can be done completely outside ofpSOS+. For instance, 
an application may elect to request and service some or all I/O directly 
from tasks. We recommend, however, that device drivers be 
incorporated under the pSOS+ 1/ 0 supervisor. pREPC+ and pHILE+ 
drivers are always called via the I/O supervisor. 

pSOSystem System Concepts 7-1 



Chapter 7. I/O System 

7. 1 I/O System Overview 

7-2 

Figure 17 illustrates the relationship between a device driver~ the pSOS+ 
I/O system, and tasks using I/O services. 

Application Task 

pSOS+ I/O System 

Device Driver 

Figure 17. I/O System Organization 

As shown, an I/O operation begins when an application task calls the 
pSOS+ I/O system. pSOS+ examines the call parameters and passes 
control to the appropriate device driver. The device driver performs the 
requested I/O service and then returns control to pSOS+, which in tum 
returns control back to the calling task. 

Since device drivers are hardware dependent, the exact services offered 
by a device driver are determined by the driver implementation. 
However, pSOS+ defines a standard set of six I/O services that a device 
driver may support. These services are de_init(), de_open(), de_close(), 
de_readO, de_write 0 , and de_cntrlO. A driver may support any or all 
six of these services, depending on the driver design. 

pSOSystem System Concepts 



Chapter 7. 1/0 System 

pSOS+ does not impose any restrictions or make any assumptions about 
the services provided by the driver. However, in general, the following 
conventions apply: 

de_initO is normally called once from the ROOT task to initialize 
the device. It should be called before any other I/O services are 
directed to the driver. 

de_readO and de_writ eO perform the obvious functions. 

de_openO and de_closeO are used for duties that are not directly 
related to data transfer or device operations. For example, a device 
driver may use de_openO and de_closeO to enforce exclusive use 
of the device spanning several read and/or write operations. 

de_cntrlO is dependent on the device. It may include anything 
that cannot be categorized under the other five I/O services. 
de_cntrlO may be used to perform multiple sub-functions, both 
input and output. If a device does not require any special 
functions, then this service can be null. 

Note that the pSOS+ I/O system has two interfaces -- one to the 
application, the second to the device drivers. These two interfaces are 
described in more detail later in this chapter. First, it is helpful to 
introduce the I/O Switch Table. 

7.2 I/O Switch Table 
pSOS+ calls device drivers by using the I/O switch table. The I/O switch 
table is a user-supplied table that contains pOinters to device driver entry 
paints. The pSOS+ configuration table entries, KC_IOJTABLE and 
KC_NIO describe the I/O switch table. KC_IOJTABLE points to the 
table and KC_NIO defines the number oj drivers in the table. 

The I/O switch table is a linear array of pOinters. Each contiguous group 
of eight pOinters corresponds to one driver. Within each group of eight, 
the first six point to the device driver's entry paints for the services 
de_initO, de_openO, de_closeO, de_readO, de_writeO, and 
de_cntrlO, respectively. The last two are reserved spares. 

The location of a driver's pOinters within the I/O switch table determine 
the meyor device number associated with the driver. The first eight 
entries correspond to major device 0, the second eight entries correspond 
to major device I, and so on. 

pSOSystem System Concepts 7-3 



Chapter 7. 1/0 System 

7-4 

As an example, consider a system with 2 devices. In this case, the I/O 
switch table would consist of 16 entries and KC_NIO would be 2. Figure 
18 illustrates the I/O Switch table structure for this example. 

DEVICE 0 INIT 

DEVICE 0 OPEN 

DEVICE 0 CLOSE 

DEVICE 0 READ 

DEVICE 0 WRITE 

DEVICE 0 CNTRL 

RESERVED 

RESERVED 

DEVICE 1 INIT 

DEVICE 1 OPEN 

DEVICE 1 CLOSE 

DEVICE 1 READ 

DEVICE 1 WRITE 

DEVICE 1 CNTRL 

RESERVED 

RESERVED 

Figure 18. Sample I/O Switch Table 

pSOSystem System Concepts 



Chapter 7. 1/0 System 

7.3 Application-to-pSOS+ Interface 
The Application-to-pSOS+ Interface is defined by the following six system 
calls: de_init(), de_open(), de_close(), de_read(), de_writeO, and 
de_cntr1(). The calling convention for each is as follows: 

err_code de_init(dev, iopb, &retval, &data_area) 

err_code de_open (dev, iopb, &retval) 

err_code de_close (dev, iopb, &retval) 

err_code de_read (dev, iopb, &retval) 

err_code de_write (dev, iopb, &retval) 

err_code de_cntrl(dev, iopb, &retval) 

The first parameter, dev, is a 32-bit device number that selects a specific 
device. The most significant 16-bits of the device number is the major 
device number, which is used by pSOS+ to route control to the proper 
driver. The least significant 16 bits is the minor device number, which is 
ignored by pSOS+ and simply passed to the driver. The minor device 
number is used to select among several units serviced by one driver, but 
most drivers support only one unit and therefore also ignore it. 

The second parameter, iopb, is the address of an I/O parameter block. 
This structure is used to exchange device-specific input and output 
parameters between the calling task and the driver. The length and 
contents of this I/O parameter block are driver specific. 

The third parameter, retval, is the address of a variable that receives an 
optional qUick-reference return value from the driver; for example, a byte 
count on a read operation. Use of retval by the driver is optional since 
values can always be returned via iopb. However, using retval is 
normally more convenient when only a single scalar value need be 
returned. 

de_init() takes a fourth parameter, data_area. This parameter is no 
longer used, but remains for compatibility with older drivers and/or 
pSOS+ application code. 

Each service call returns a function value that is zero if the operation is 
successful or non-zero if an error occurred. 

Note that although pSOS+ does not define them, error codes below 
Oxl0000 are reserved for use by pSOSystem components and should not 
be used. 

pSOSystem System Concepts 7-5 



Chapter 7. I/O System 

With the following exceptions, error codes are driver specific: 

• If the entry in the I/O Switch Table called by pSOS+ is -1, then 
pSOS+ returns a value of ERR_NODR, indicating that the requested 
service is not supported. 

• If an illegal major device number is input, pSOS+ returns 
ERR_IODN. 

Finally, note that if a switch table entry is null, pSOS+ returns O. 

7.4 pSOS+-to-Driver Interface 

7-6 

pSOS+ calls a device driver using the following syntax: 

xnxFunction(ioparms); 

xnxFunction is the driver entry point for the corresponding service called 
by the application. By convention, Function is the service name, while 
xxxx identifies the driver being called. For example, a console driver 
might consist of six functiuons called Cnsllnit, CnslOpen, CnslRead, 
CnslWrite, CnslClose, and CnslCntrl. Of course, this is just a 
convention -- any names can be used, since both the driver and the I/O 
switch table are user provided. Figure 19 illustrates this relationship. 

Application 

de_write( ) 

H 

I pSOS+ I 
" 

Driver 

CnslWrite( ) 

Figure 19. pSOS+-to-Driver Relationship 

pSOSystem System Concepts 



Chapter 7. 1/0 System 

ioparms is a structure used to pass input and output parameters 
between pSOS+ and the driver. It is defined as follows: 

struct ioparms 
{ 

unsigned long used; 1* Set by driver if this interface used *1 

} ; 

unsigned long tid; 1* task ID of calling task *1 
unsigned long in_dev; 
unsigned long status; 
void * in_iopb; 

1* Input device number *1 
1* Processor status of caller *1 

I * Input pnter to IO parameter block * I 
void *io_data_area; 1* no longer used *1 
unsigned long err; 1* For error return *1 
unsigned long out_retval; 1* For return value *1 

On entry to the driver, used is set to zero by pSOS+ and must be set to a 
non-zero value by the driver. It is used internally by pSOS+ when it 
receives control back from the driver. 

CAUTION: It is imperative that your driver set the parameter 
"used" to a non-zero value, or else improper operation will result. 

On entry to the driver, tid contains the task ID of the calling task. It 
should not be changed by the driver. 

On entry to the driver, in_dev contains dev as provided by the calling 
task; that is, the 32-bit device number. It should not be changed by the 
driver. 

On entry to the driver, in_iopb pOints to the iopb provided by the calling 
task. It should not be changed by the driver. 

On entry to the driver, the lower 16 bits of status contains the calling 
task's status register (SR) value prior to calling the pSOS+ I/O 
supervisor. status is nonnally not used. 

io_data_area is no longer used. 

err is used by the driver to return an error code, or 0 if the operation was 
successful. See section 7.3 for a discussion on error codes. 

out_retvalis used by the driver to return a quick-reference value to the 
calling task's retval variable. The contents of out_retval is copied into 
the variable pOinted to by the service call input parameter retval. 

pSOSystem System Concepts 7-7 



Chapter 7. I/O System 

7.5 Device Driver Execution Environment 

7-8 

Logically, a device driver executes as a subroutine to the calling task. 
Note, however, that on entry to pSOS+, the CPU enters the supervisor 
state. Thus, a device driver always executes in the supervisor state. This 
transformation can be useful on systems where the hardware restricts 
I/O address decoding to the supervisor state only. 

Other characteristics of a task's mode remain unchanged by calling a 
device driver. Therefore, if a task is preemptible prior to calling a device 
driver, it remains preemptible while executing the driver. If a driver 
wants to disable preemption, it should use t_modeO to do so, being 
careful to restore the task's original mode before exiting. Similar caveats 
apply to Asynchronous Service Routines (ASRs). 

Since a device driver executes as a subroutine to the calling task, it can 
use any pSOS+ system call. The following system services are commonly 
used by drivers: 

Function 

Waiting 

Wakeup 

Queueing 

Timing 

Mutual exclusion 

Buffer management 

Storage allocation 

System Call 

~receive(), ev _receive(), sm-p() 

~sendO, ev_sendO, sm_vO 

~receive(), ~sendO 

tm_tick(), Timeout parameters on Waits 

sm-pO, sm_vO 

pt-1(etbuf(), pt_retbuf() 

rn_createO 

In addition, a device driver usually has an ISR, which performs wakeup, 
queueing, and buffer management functions. For a complete list of 
system calls allowed from an ISR, see Chapter 2, "pSOS+ Real-Time 
Kernel." 

Note the following caveats regarding driver usage: 

1. Device drivers execute using the calling task's supervisor stack. You 
must account for device driver stack usage when determining the 
stack sizes for tasks that perform I/O. 

2. I/O calls can never be made from the pSOS+ task creation, task 
deletion, or context switch callouts. 

pSOSystem System Concepts 



Chapter 7. I/O System 

3. I/O calls can never be made from an ISR. 

4. In multiprocessor systems, I/O servIce calls can only be dIrected at 
the local node. pSOS+ does not support remote I/O calls. However, 
It Is possIble to Implement remote I/O services as part of your 
application desIgn; for example, with server tasks and standard 
pSOS+ system services. 

5. Unlike other pSOS+ calls, I/O service calls do not automatically 
preserve all regIsters. While rarely a problem, refer to the 
pSOSystem Programmer's Reference for Information on regIster 
usage by the I/O subsystem. 

7.6 pREPC+ Drivers 
As described In Chapter 6, "pREPC+ ANSI C Library," pREPC+ I/O can 
be directed to either disk files or physical devices. Disk file I/O is always 
routed via pHILE+, while device I/O goes directly to the pSOS+ I/O 
SupervIsor. An I/O device driver that Is called by pREPC+ dIrectly via 
pSOS+ is called a pREPC+ driver, while a disk driver is called a pHlJE+ 
driver, as illustrated in Figure 20. 

pREPC+ 

r ... -------.... 
I 
I 
I 

Figure 20. pHILE+ and pREPC+ Drivers 

pSOSystem System Concepts 7-9 



Chapter 7. I/O System 

This section discusses pREPC+ drivers; section 7.7 covers pHILE+ 
drivers. 

pREPC+ uses four pSOS+ I/O calls: de_openO, de_closeO, de_readO, and 
de_writeO. Therefore, a pREPC+ driver must supply four corresponding 
functions, e.g. xxxxOpenO, xxxxCloseO, xxxxReadO, xxxxWriteO. 

pREPC+ calls de_ope nO and de_closeO when fopenO and fcloseO are 
called, respectively, by your application. The corresponding driver 
functions that are called, xxxxOpenO and xxxxCloseO, are device 
specific. However, in general, xxxxOpenO will initialize a device, while 
xxxxCloseO will terminate I/O operations, such as flushing buffer 
contents. For many devices, these two routines may be null routines. 
pREPC+ does not pass an 10PB when calling de_openO and de_closeO. 

pREPC+ calls de_readO and de_writeO to transfer data to or from a 
device. The I/O parameter block (IOPB) looks like the following: 

typedef struct 

unsigned long count; 1* no of bytes to read or write *1 
void *address; 1* addr. of pREPC+ data buffer *1 

iopb; 

Recall that the 10PB is pOinted to by the in_iopb member of the ioparms 
structure passed to the driver. de_writeO results in a call to the driver 
function xxxxWriteO, which must transfer count bytes from the pREPC+ 
data buffer pointed to by address. 

de_readO causes xxxxReadO to be invoked, which transfers count bytes 
from the device to the pREPC+ buffer. xxxxReadO is usually coded so 
that characters are read until a delimiter is detected or count bytes are 
received. Also, a pREPC+ xxxxReadO driver routine usually implements 
backspace, line-erase and other line editing facilities. 

xxxxReadO and xxxxWriteO must return the number of bytes 
successfully read or written. 

7.7 pHILE+ Drivers 

7-10 

Except for NFS volumes, pHILE+ accesses a volume by calling a device 
driver via the pSOS+ I/O supervisor. A driver invoked by pHILE+ is called 
a pHILP;+- driver. 

pSOsystem System Concepts 



Chapter 7. 1/0 System 

When pHILE+ needs to read or write data, it calls the driver 
corresponding to the major/minor device number specified when the 
volume was mounted. pHILE+ uses only two of the six standard I/O 
system calls, de_readO and de_writeO. Therefore, a pHILE+ driver only 
has to supply two functions, xx.x.xReadO and xxxxWriteO. In practice, 
most pHILE+ drivers also provide an xxxxlnitO service, even though it is 
not called by pHILE+. It must be called independently by your 
application [via de_init()] prior to mounting the volume corresponding to 
the device. Similarly, even though de_openO, de_closeO, and de_cntrl() 
are not used by pHILE+, a driver can implement these operations for 
physical I/O, error sensing, formatting, and so forth. 

Like all drivers called by the pSOS+ I/O supervisor, pHILE+ drivers 
receive an ioparms parameter on input. Before a pHILE+ driver exits, it 
must store an error code indicating the success or failure of the call in 
ioparms.err. A value of zero indicates the call was successful. Any other 
value indicates an error condition. In this case, pHILE+ aborts the 
current operation and returns the error code back to the calling 
application. Error code values are driver defined. Any value can be used 
except values less than OxIOOOO, which are reserved. 

7.7.1 The Buffer Header 

When dealing with pHILE+ drivers, the 10PB parameter block pOinted to 
by ioparms.in_iopb is called a b4ffer header. A buffer header has the 
following structure: 

typedef struct buffer_header 
{ 

} ; 

unsigned long b_device; /* 

unsigned long b_blockno; /* 

unsigned short b_flags; /* 

unsigned short b_bcount; /* 

unsigned long b_devforw; /* 
unsigned long b_devback; /* 
unsigned long b_avlforw; /* 

unsigned long b_avlback; /* 

void *b_bufptr; /* 

device major/minor number */ 

starting block number */ 

block_type: data or control */ 

number of blocks to transfer */ 

system use only */ 

system use only */ 

system use only */ 

system use only */ 

address of data buffer */ 

unsigned long b_bufwaitf;/* system use only */ 

unsigned long b_bufwaitb;/* system use only */ 

void *b_volptr; /* system use only */ 

pSOSystem System Concepts 7-11 



Chapter 7. I/O System 

7-12 

A pHILE+ driver uses only four of the parameters in the buffer header. 
They are the following: 

b_blockno specifies the starting block number to read or write. 
b_bcount specifies the number of consecutive blocks to read or 
write. For more information on these parameters see section 7.7.3. 

b_bufptr supplies the address of a data area; it is either the 
address of a pHILE+ cache buffer or a user data area. During a 
read operation, data is transferred from the device to this data 
area. Data flows in the opposite direction during a write operation. 

b_flags contains a number of flags, most of which are for system 
use only. However, the low-order two bits of this field indicate the 
block type, as follows: 

Bit 1 Bit 0 EXI2lanation 

0 0 Unknown block type 

0 1 Data block 

1 0 Control block 

b_flags is used by more sophisticated drivers that take special 
action when control blocks are read or written. Most drivers will 
ignore b_flags. 

b_flags low bits = 00 (unknown type) can occur only when 
read_vol() or write_vol() is issued on a volume that was initialized 
with intermixed control and data blocks. In this case, pHILE+ will 
be unable to determine the block type. If read_ volO or wrlte_ vol() 
is used to transfer a group of blocks that cross a control block/ 
data block boundary, these bits will indicate the type of the first 
block. 

The remaining fields are for system use only. 

The contents of the buffer header should not be modified by a driver. It 
is strictly a read-only data structure. 

pSOSystem System Concepts 



Chapter 7. I/O System 

7.7.2 I/O Transaction Sequencing 

pHILE+ drivers must execute transaction (Le. read and write) requests 
that refer to common physical blocks in the order in which they are 
received. For example, if a request to write blocks 3-7 comes before a 
request to read blocks 7-10, then, because both requests involve block 
7, the first request must be executed first. 

If a pSOS+ semaphore is used to control access to a driver, then that 
semaphore must be created with FIFO queuing of tasks. Otherwise, 
requests posted to the driver might not be processed in the order in 
which they arrive. 

7.7.3 Logical-to-Physical Block Translation 

The b_blockno and b_count parameters together specify a sequence of 
logical blocks that must be read or written by the driver. However, most 
physical devices are not organized as a linear sequence of blocks. They 
are divided into sectors, tracks, cylinders, heads, and so forth. A pHILE+ 
driver must therefore translate "logical" block numbers provided by 
pHILE+ into "physical" block addresses on the device. How this is done 
depends on the type of device being accessed. 

7.7.3.1 pHILE+ Formatted Volumes 

For pHILE+ formatted volumes, a driver may implement any translation 
scheme that maps each logical block to a unique physical block. 
However, pHILE+ operates at maximum efficiency if blocks that are 
logically contiguous are also physically contiguous. Because of track to 
track transitions and other such boundaries, this usually is not entirely 
feasible, but a pHILE+ driver should minimize discontinuities. 

7.7.3.2 MS-DOS Floppy Disk Format 

For MS-DOS volumes, a driver must implement the same mapping used 
by MS-DOS; otherwise, your diskette will not be MS-DOS compatible. 
This section describes the required block mapping for each of the five 
MS-DOS floppy disk formats. 

MS-DOS floppy disks have two sides, side ° and side 1. On each side 
there are T tracks, numbered ° to T-l. Each track contains S sectors 
numbered 1 to S. A sector is 512 bytes and maps directly to a pHILE+ 
block. A diskette thus contains ( 2 * T * S ) sectors. The characteristics 
of each MS-DOS diskette are shown in Table 2. 

pSOSystem System Concepts 7-13 



Chapter 7. 1/0 System 

7-14 

Table 2. Characteristics of MS-DOS Diskettes 

CaDacit!: Track Number Sectorl Der Track 

360 Kbyte 40 9 

1.2 Mbyte 80 15 

720 Kbyte 80 9 

1.4 Mbyte 80 18 

2.8 Mbyte 80 36 

A block is mapped to a sector (head, track, sector) by the following rules: 

1. The track number is first determined by dividing the block number 
by (2* S). The remainder, Ri, is saved for Step 2. 

2. Ri is divided by S to obtain the side. 0 or 1. The remainder, R2. is 
saved for Step 3. 

3. One is added to R2 to obtain the sector number. 

These rules are summarized by the following equations: 

Track = Block / (2 * S) (remainder = Ri) 

Side = Rl / S (remainder = R2) 

Sector = R2 + 1 

An example: 

On a 360-Kbyte diskette. T = 40 and S = 9. Block 425 is mapped 
as follows: 

Track = 425 / (2 * 9) = 23 (remainder 11) 

Side = 11 / 9 = 1 (remainder 2) 

Sector = 2 + 1 = 3. 

Thus, on a 360-Kbyte floppy, logical block 425 maps to: 

Side = 1 

Track = 23 

Sector = 3 

pSOSystem System Concepts 



Chapter 7. I/O System 

7.7.3.3 MS-DOS Hard Disk Format 

The following equations apply to hard disks: 

Cylinder = block/(sectors-per-track * heads) 

Head = (block/sectors-per-track) MOD heads 

Sector = (block -((block/ sectors-per -track) *sectors-per -track)) + 1 

Under pHILE+, an MS-DOS volume can be larger than 32 Mbytes. Due 
to an MS-DOS limit, the number of clusters in a volume can be only up 
to 65,535. To support volumes larger than 32M, cluster size should be 
larger than 512 bytes. Larger cluster size can cause inefficient use of 
disk space. To avoid this, a hard disk drive can be logically divided into 
partitions. 

Each partition is used to hold one file volume. Hence, a partition can be 
either a DOS or pHILE+ volume. Partitioning allows heterogeneous file 
volumes to share a single drive. With partitions, multiple DOS volumes 
can be generated to cover large disk drives. 

When a single hard disk drive contains multiple partitions, your driver 
must read the partition table (located in the master boot sector) during 
initialization and use the information in the table to translate sector 
addresses. Your application code and driver should use the upper byte 
of the minor device number to encode the partition number. Partition 0 
should refer to the entire volume without partition translation. This 
convention allows pHILE+ and your application code to read any sector 
on the disk, including the master boot sector. Information about the 
encoding of partition numbers is explained in section 7.7.4. 

7.7.4 MS-DOS Hard Drive Considerations 

This section describes special considerations required when using MS
DOS hard drives With pHILE+. 

You must provide a driver that performs the following functions in 
addition to the functions required by an MS-DOS floppy driver: 

1. Logical-to-physical block translation. This function is required if 
the you want to create pHILE+ volumes in MS-DOS partitions, or 
MS-DOS volumes in drives with different than 512-byte sector size. 

2. Partition table block translation. 

pSOSystem System Concepts 7-15 



Chapter 7. I/O System 

7-16 

Since pHILE+ always uses a logical block size of 512 bytes when 
accessing an MS-DOS volume, your driver need not perform logical-to
physical block translations if your drive's sector size is 512 bytes. 

Your driver performs partition table block translation by reading the MS
DOS partition table from a drive's master boot sector during device 
initialization. Your driver stores this information in an internal table and 
uses it to translate a block address relative to the start of a partition into 
an absolute block address relative to the start of the drive. For example, 
if pHILE+ passes your driver a block address of 1000 and the deSired 
partition starts at absolute block number 15500, the translated block 
address is 15500 + 1000 = 16500. 

Although minor device number usage is transparent to pHILE+, you 
should use the following encoding scheme: the upper eight bits of the 
minor number contain a partition number, and the lower eight bits 
contain a drive number. MS-DOS allows a maximum of four partitions 
on anyone drive. If this scheme is implemented, the following table 
maps minor numbers to physical drive number and partition. 

Minor Number Drive Partition 

256 (100H) 0 1 

512 (200H) 0 2 

768 (300H) 0 3 

1024 (400H) 0 4 

257 (lOIH) 1 1 

513 (201H) 1 2 

769 (301H) 1 3 

1025 (401H) 1 4 

Table 3. Minor Number to Drive/Partition Mapping 

Since it is necessary for pHILE+ to read the partition table in the absolute 
sector 0 on an MS-DOS disk, your driver should recognize partition 0 as 
a partition spanning the entire disk; that is, your driver should not 
perform partition table translation on accesses in partition O. 

pSOSystem System Concepts 



Chapter 7. I/O System 

Assuming your driver follows these guidelines, prepare and make use of 
DOS hard drives in the pHILE+ environment, as follows: 

1. Your drives must be low-level formatted following the instructions 
provided with your system. In most cases, your drives have already 
been formatted by the factory. 

2. Your drives must be partitioned using the MS-DOS FDISK utility or 
other comparable utilities provided by some SCSI controller board 
venders. FDISK creates a partition table on the drive and allocates 
space for up to four partitions. You can use these four partitions to 
create any combination of MS-DOS and pHILE+ volumes. The total 
number of partitions can range from one to four. 

3. Partitions that you intend to mount as MS-DOS volumes (using the 
pHILE+ pcmount_ vol command) must also be formatted with the 
MS-DOS FORMAT command. Since FORMAT performs a high-level 
format on the partition, it is not necessary to use the pHILE+ 
pcinit_vol system call. 

Although FDISK can only create "DOS" partitions, any such partition 
can be used as a pHILE+ volume. Simply create a partition of the desired 
size using FDISK, and when your system is running pSOSystem, 
initialize it using the pHILE+ init_vol system call. Be sure to record the 
number of blocks allocated to the partition; this information is needed 
when you use init_ vol to initialize the volume. It is not necessary to 
format pHILE+ volumes using the MS-DOS FORMAT command. You can 
now mount the volume using the pHILE+ mount_vol system call. 

7.8 Mutual Exclusion 
If a device may be used by more than one task, then its device driver 
must provide some mechanism to ensure that no more than one task at 
a time will use it. When the device is in use, any task requesting its 
service must be made to wait. 

This exclusion and wait mechanism may be implemented using a 
message queue or semaphore. In the case of semaphores, the driver's 
initO service would call sm_createO to create a semaphore, and set an 
initial count, typically 1. This semaphore represents a resource token. 
To request a device service, say de_readO, a task must first acquire the 
semaphore using the system call sm-pO with SM_ WAIT attribute. If the 
semaphore is available, then so is the device. Otherwise, pSOS+ puts the 

pSOSystem System Concepts 7-17 



Chapter 7. I/O System 

task into the semaphore wait queue. When a task is done with the 
device, it must return the semaphore using sm_vO. If another task is 
already waiting, then it gets the semaphore, and therefore the device. 

In summary, a shared device may be protected by bracketing its 
operations with sm-pO and sm_ vO system calls. Where should these 
calls take place? The two possibilities, referred to later as Type 1 and 
Type 2, are as follows: 

1. sm-pO is put at the front of the read and write operation, and 
sm_vO at the end. 

2. sm-pO is put in de_openO, and sm_vO in de_closeO. To read or 
write, a task must first open the device. When it is finished using 
the device, the device must be closed. 

Type 2 allows a task to own a device across multiple read/write 
operations, whereas with Type 1 a task may lose control of the device 
after each operation. 

In a real-time application, most devices are not shared, and therefore do 
not require mutual exclUSion. Even for devices that are shared, Type 1 
is usually sufficient. 

7.9 I/O Models 
Two fundamental methods of servicing I/O requests are known; they are 
termed synchronous and asynchronous. Synchronous I/O blocks the 
calling task until the I/O transaction is completed, so that the I/O 
overlaps with the execution of other tasks. Asynchronous I/O does not 
block the calling task, thus allowing I/O to overlap with this, as well as 
other tasks. pSOS+ supports both methods. 

The following sections present models of synchronous and asynchronous 
device drivers. The models are highly Simplified and do not address 
hardware-related considerations. 

7.9. 1 Synchronous I/O 

7-18 

A synchronous driver can be implemented using one semaphore. If it is 
needed, Type 1 mutual exclusion would require a second semaphore. To 
avoid confusion, mutual exclUSion is left out of the following discussion. 

The device's inltO service creates a semaphore rdy with initial count of 
O. When a task calls read() or writeO, the driver starts the I/O 

pSOSystem System Concepts 



Chapter 7. 1/0 System 

transaction, and then uses sm-pO to wait for the rdy semaphore. When 
the I/O completion interrupt occurs, the device's ISR uses sm_vO to 
return the semaphore rdy, thereby waking up the waiting task. When 
the task resumes in readO or write(), it checks the device status and so 
forth fo'r any error conditions, and then returns. This is shown as 
pseudo code below: 

SYNC_OP: 

Begin 

startio; 

sm_p (rdy, wait); 

get status/data; 

End; 

DEV_ISR: 

Begin 

transfer data/status; 

sm_v (rdy); 

End; 

An I/O transaction may of course trigger one or more interrupts. If the 
transaction involves a single data unit, or if the hardware provides DMA, 
then there will normally only be a single interrupt per transaction. 
Otherwise, the ISR will have to keep the data transfer going at successive 
device interrupts, until the transaction is done. Only at the last 
interrupt of a transaction does the ISR return the semaphore to wake up 
the waiting task. 

7.9.2 Asynchronous I/O 

Asynchronous I/O is generally more complex, especially when error 
recovery must be considered. The main advantage it has over 
synchronous I/O is that it allows the calling task to overlap execution 
with the I/O, potentially optimizing throughput on a task basis. The 
effect that this has at the system level is less clear, since multitasking 
ensures overlap even in the case of synchronous I/O, by giving the CPU 
to another task. For this reason, synchronous I/O should be used, 
unless special considerations reqUire asynchronous implementation. 

Note that if Type 1 mutual exclusion is required, it is normally taken care 
of by the asynchronous mechanism, without the need for extra code. 

A simple, one-level asynchronous driver can be implemented using just 
one message queue. The device's initO service creates the queue rdy and 
sends one message to it. When a task calls read() or write(), the driver 
first calls ~receiveO to get a message from the queue rdy, starts the 
I/O transaction, and then immediately returns. 

pSOSystem System Concepts 7-19 



Chapter 7. I/O System 

7-20 

The device's ISR, upon transaction completion, uses q..sendO to post a 
message to the queue rdy. This indicates that the device is again ready. 
If this, or another, task calls the same device service before the last I/O 
transaction is done, then the q..receiveO puts it into the wait queue, to 
wait until the ISR sends its completion message. 

The pseudo code is as follows: 

ASYNC_OP: DEV_ISR: 

Begin Begin 

~receive (rdy, wait); transfer data/status; 

startio; ~send (rdy); 

End; End; 

This simplified implementation has two weaknesses. First, it does not 
provide a way for the device driver to return status information to more 
than one task. Second, at most only one task can overlap with this 
device. Once the device is busy, all requesting processes will be made to 
wait. Hence the term "one-level" asynchronous. 

A more general and complex asynchronous mechanism requires one 
message queue and one flag, as follows. The device's initO service 
creates an empty message queue called cmdq. It also initializes a flag to 
ready. 

The device's readO or writeO service and ISR are shown below as pseudo 
code: 

Begin 

CLsend ( cmdq) ; 

t_mode (no-preempt := on); 

if flag = ready then 

flag := busy; 

cmd := CLreceive (cmdq, no-wait); 

if cmd = empty then 

exit; 

else 

startio (cmd); 

endif; 

endif; 

t_mode (no-preempt := off); 

Bnd; 

DEV_ISR: 

Begin 

cmd := ~receive (cmdq, no-wait); 

if cmd = empty then 

flag := ready; 

else 

flag := busy; 

startio (cmd); 

endif; 

End; 

pSOSystem System Concepts 



Chapter 7. I/O System 

In essence, the queue cmdq serves as an I/O command queue for the 
device operation. Each command message should normally contain data 
or a buffer pOinter, and also the address of a variable so that the ISR can 
return status information to a calling task (not shown in the pseudo 
code). 

The flag global variable indicates whether the device is busy with an I/O 
transaction or not. 

The ~sendO system call is used to enqueue an I/O command. The 
~receiveO system call is used to dequeue the next I/O command. 

The clause cmd = empty actually represents the test for queue = empty, 
as returned by ~receiveO. 

The t_modeO call is necessary to disable preemption, to prevent race on 
the flag variable. 

There is no need to disable interrupts. 

pSOSystem System Concepts 7-21 



Chapter 7. I/O System 

(Blank Page) 

7-22 pSOSystem System Concepts 



Index 

A 
action 2-6 
address resolution 4-21 
Address Resolution Protocol 4-22 
addresses 

broadcast 4-6 
external 3-1 7 
hardware 4-19 
internal 3-1 7 
Internet 4-5 

Agents 3-9 
alanns 2-37 
application-to-pSOS+ interface 7-5 
ARP 4-4, 4-22 
ARP Table 4-22 
ASR 2-33 

operations 2-34 

asynchronous I/O 7-19 
asynchronous RSC 3-8 
asynchronous signals 2-33 

pSOSystem System Concepts 

Index 

B 
binary streams 6-8 
blocking 5-13 
broadcast address 4-6 
buffer header 7-11 
buffers 2-23, 4-24 

c 

128-byte 4-22 
zero-sized 4-23 

client 4-9 
client authentication 4-44 
clock tick 2-35 
coherency checks 3-11 
control loop 2-4 

D 
data blocks 4-24 
data buffers 4-24 
datagram sockets 4-8 
deblocking 5-13 
decomposition criteria 2-6 
default gateway 4-1 7 
dependent action 2-6 
design of real-time systems 2-2 
destination Internet address 4-5 
device drivers 

environment 7-8 
pHILE+ 7-10 
pREPC+ 7-9 

dispatch criteria 2-14 
dual-ported memory 3-16 

1-1 



Index 

E 
end -of-file flag 6- 10 

error flag 6-10 

error handling 4-16 

errors 
fatal 2-41 

events 2-30 
operations 2-30 

events versus messages 2-31 

expansion unit 5-23 

external address 3-1 7 

F 
failed nodes 3-12 

fatal error handler 2-41 
fatal errors 2-41 

FC_LOGBSIZE 5-4. 5-14 
FC_NBUF 5-14 
FC_NCFILE 5-10 
FC_NFCB 5-9 

flags 
NI4-19 

FLIST 5-20 

fully- buffered 6-7 

G 
gateways 4-5 

Global Object Table 3-4 
global objects 3-4 

global shutdown 3-15 

1-2 

H 
hardware addresses 4-19 

heap management algorithm 2-23 

hosts 4-5 

I 
1/07-1 

asynchronous 7-18 
block translation 7-13 
buffer header 7-11 
mutual exclusion 7-17 
pREPC+ 7-9 
switch table 7-3 
synchronous 7-18 
system overview 7-2 
transaction sequencing 7-13 

ICMP 4-4,4-31 
message types 4-32 

idle tasks 2-20 

internal address 3-1 7 
internet 4-5 

Internet address 4-5 
interrupt service routines 2-38 

10PB parameter block 7-11 
IP 4-4,4-5 
ISR 2-38,2-39 

ISR-to-task communication 2-24 

K 
Kernel Interface 3-3 
KI 3-3 

pSOSystem System Concepts 



L 
LC_BUFSIZ 6-6 
LC_TIMEOPT 6-6 
LC_WAITOPT 6-6 
line-buffered 6-7 
Local Object Table 3-4 

M 
major device number 7-3, 7-5 
manual roundrobin scheduling 2-14 
master node 3-2 
maximum transmission unit 4-19 
memory 

buffers 2-23 
dual-ported 3-16 
partitions 2-23 
Region 0 2-22 
regions 2-21 
segments 2-21 

memory management services 2-21 
message block triplet 4-23 
message blocks 4-24 
message queues 2-24 

ordinary 2-26 
variable length 2-28 

messages 2-26,4-23 
buffers 2-26 
length 2-29 
queue length 2-29 

MIB-II 
accessing tables 4-36 
object categories 4-34 
object types 4-35 
tables 4-39 

pSOSystem System Concepts 

minor device number 7-5 
MPCT 3-3 
MTU 4-19 

Index 

Multiprocessor Configuration Table 
3-3 

multitasking kernel 2-4 
mutual exclusion 2-24,7-18 

N 
NC_CFGTAB 4-42 
NC_DEFGID 4-33 
NC_DEFGN 4-17 
NC_DEFUID 4-33 
NC_HOSTNAME 4-33 
NC_INI4-21 
NC_IROUTE 4-17 
NC_NNI4-21 
NC_SIGNAL 4-15 
Network Interface 4-4.4-18 
network mask 4-6 
networking facilities 4-1 
NFS 4-33 
NI 4-4.4-18 

flags 4-19 
NI Table 4-21 
node failure 3-12 
node numbers 3-3 
node restart 3-14 
node roster 3-16 
nodes 4-5 

master 3-2 
slave 3-2 

notation conventions xi 

notepad registers 2-20 

1-3 



Index 

o 
object classes 2-14 
object ID 2-15. 3-4 
Object Ident system calls 3-5 
object name 2-15 
objects 3-3 

global 3-4 
stale 3-14 

open socket tables 4-13 
out-of-band data 4-13 

p 
packet type 4-23 
packets 4-5.4-16.4-24 
partition control block 2-23 
partitions 2-23 
pHILE+ 5-1 

1-4 

basic services 5-9 
block allocation 5-27 
blocking and deblocking 5-13 
cache buffers 5-14 
direct volume I/O 5-33 
drivers 7-10 
extent 5-24 
extent map 5-24 
file block types 5-21 
file deSCriptor list 5-20 
file structure 5-30 
file types 5-7 
formatted volumes 5-4. 5-18 
NFS services 5-5 
pathnames 5-7 
root block 5-19 
synchronization modes 5-16 
volume bitmap 5-20 

volume naming conventions 5-3 
volume operations 5-3 
volume types 5-1 

pHILE+ driver 7-9 
pNA+ 4-3 

address resolution 4-21 
architecture 4-3 
ARP Table 4-22 
daemon task 4-14 
environment 4-5 
error handling 4-16 
ICMP 4-31 
MIB-II support 4-34 
network interface 4-18 
NFS support 4-33 
NI attributes 4-18 
NI Table 4-21 
packet routing 4-16 
signal handling 4-15 
socket layer 4-7 

subcomponents 4-42 

pNAD 4-14 

port mapper 4-46 
p-port 3-17 
preemption bit 2-12 

pREPC+ 6-1 
buffers 6-6 
deleting ta~ks 6-11 
environment 6-2 
error handling 6-10 
file structure 6-5 
files 6-4 
functions 6-2 
I/O 7-9 
memory allocation 6-9 
restarting tasks 6-10 
streams 6-8 

pSOSystem System Concepts 



pREPC+ drivers 7-9 
pRPC+ 4-42 

architecture 4-43 
client authentication 4-44 
global variables 4-46 
port mapper 4-46 

pSOS+ 
attributes 2-5 
kernel 2-1. 2-4 
region manager 2-23 
services 2-7 

pSOS+m 3-1 
architecture 3-2 
coherency checks 3-11 
overview 3-1 
startup 3-11 

pSOS+-to-driver interlace 7-6 
pSOSystem 

architecture 1-2 
components 1-2 
debug environment 1-4 
environment 1-3 
facilities 1-4 
overview 1-1 

PrCB 2-23 
pXll+ 4-42.4-47 

Q 

environment variables 4-48 
error handling 4-47 

gCB 2-25 
queue control block 2-25 
queues 

operations 2-26 

pSOSystem System Concepts 

Index: 

R 
raw sockets 4-8 
real-time system design 2-2 
Region 0 2-22 
region control block 2-22 
region manager 2-23 
regions 2-21 
rejoin latency reqUirements 3-15 
remote service calls 3-6 
restarting nodes 3-14 
RNCB 2-22 
roundrobin bit 2-12 
roundrobin scheduling 

automatic 2-12 
manual 2-14 

routes 4-16 
direct 4-16 
host 4-16 
indirect 4-16 
network 4-16 

routing facilities 4-16 
RSC 3-6 
RSC overhead 3-10 

S 
SCB 4-13 
segments 2-21 
semaphore control block 2-32 
semaphores 2-31 

operations 2-31. 2-32 
sequence numbers 3-14 
server 4-9 
shutdown 

global 3-15 

1-5 



Index 

shutdown procedure 2-41 

signal handler 4-15 

signals 4-15 
signals versus events 2-34 

slave node 3-2 

SMCB2-32 
SNMP 4-34 

agents 4-41 

socket control blocks 4-13 

socket descriptor 4-8 
socket layer 4-3,4-7 

sockets 4-8 
addresses 4-9 
connection 4-9 
connectionless 4-11 
creation 4-8 
data structures 4-13 
data transfer 4-10 
datagram 4-8 
foreign 4-10 
local 4-10 
non-blocking 4-12 
options 4-12 
out-of-band data 4-13 
raw 4-8 
stream 4-8 
tennination 4-12 

s-port 3-17 

stale IDs 3-14 

state transitions 2-8 

stdin, stdout, stderr 6-7 
storage management services 2-21 

stream sockets 4-8 

streams 6-8 

1-6 

binary 6-8 
text 6-8 

sub nets 4-6 
synchronization 2-24 

synchronous I/O 7-18 

synchronous loop 2-3 

synchronous RSC 3-6 

system design 2-2 

T 
task 2-6 

ASR 2-33 
creation 2-16 
management 2-16 
memory 2-19 
mode word 2-18 
priority 2-11 
scheduling 2-11 
stacks 2-19 
states 2-7 
termination 2-19 

task control block 2-1 7 
task-to-task communication 2-24 

TCB 2-17 

TCP 4-4 
text streams 6-8 

time and date 2-36 

time management 2-35 

time unit 2-35 

timeout facility 2-36 

timeslice 2-37 
timeslicing 2-12 

timing 
absolute 2-36 
relative 2-36 

transport layer 4-4 

pSOSystem System Concepts 



U 
UDP4-4 

V 
variable length message queue 2-28 

W 
wakeups 2-37 

x 
XRAY + /pROBE+ combination 1-4 

pSOSystem System Concepts 

Index 

1-7 



Index 

(Blank Page) 

1-8 pSOSystem System Concepts 





Document Title: 
Document Number: 
Part Number: 
Revision Date: 

~~"v~rated 
~ms 

pSOSystem System Concepts 
PS2-000-003 
PS2000MAN 
6 December 1993 



Corporate Headquarters Integrated Systems, Inc. AB MA, Burlington 

3260 Jay Street 
Sisjo Kullegata 8 617-272-0773 phone 
S-421 32 Vastra Frolunda 617-272-3270 fax 

Santa Clara, CA 95054 
Goteburg 408-980-1500 phone 

408-980-0400 fax Sweden MA, Northborough 

pSOS_sales@isi.com e-mail +46-31-683750 phone 508-393-1231 phone 
+46-31-683332 fax 508-3.93-5194 fax 

International Offices 
Integrated Systems, Inc. NC, Raleigh 

Integrated Systems, Inc., Ltd . Tokyo Branch Office 919-846-7340 phone 
First Floor, Gate House AHM'S1 919-676-7005 fax 
43 Fretherne Road 1-18-4 Ebisu Nishi 
Welwyn Garden City Shibuya-ku, Tokyo 150 NJ, Phillipsburg 
Hertfordshire AL8 6NS Japan 908-454-8899 phone 
England +81-3-5489-0171 phone 908-454-8042 fax 
+44-707-331199 phone +81-3-5489-0174 fax 
+44-707-391108 fax OH, Cleveland 

U.S. Offices 216-779-3255 phone 
Integrated Systems, S.A. 

AZ, Tempe 216-777-4205 fax 
1 rue du Petit Robinson 
78350 Jouy-en-Josas 

602-968-8280 phone 
TX, Dallas 

France 602-967-3956 fax 
214-770-7882 phone 

+33-1-34-65-3732 phone 
CA, Burbank 214-770-7885 fax 

+33-1-34-65-0034 fax 
818-972-1747 phone 

TX, Houston 
ARS Integrated Systems 818-972-1601 fax 

713-831-6855 phone 
Starnberger Strasse 22 

CA, EI Segundo 713-831-6804 fax 
82131 Gauting, Munich 
Germany 310-364-5282 phone 

Washington, D.C. 
+49-89-850-6081 phone 310-364-5206 fax 

703-391-6027 phone 
+49-89-850-8918 fax 

CA, San Ramon 703-391-6004 fax 

Integrated Systems, S.A. 510-830-9667 phone 

Co Enator 
510-830-0950 fax 

Kronborgsgrand 1 
FL, Orlando S-16487 Kista 
407-857-5790 phone 

Sweden 
+46-8-703-6200 phone 407-857-5740 fax 

+46-8-703-6283 fax 
IL, Chicago 
708-498-7380 phone 
708-498-7384 fax 

~ ~it~ratecl 
~ems 


