- Self-Study Course

MICROPROCESSOR
SOFTWARE & HARDWARE

Workbook /Text Volume 2

®

Self-Study Course

Course 525A:

MICROPROCESSOR
SOFTWARE & HARDWARE

Workbook/Text Volume I

‘DEVELOPED & PUBLISHED BY:

INTEGRATED COMPUTER SYSTEMS
Course Development Division
© Copyright 1980

SENIOR AUTHOR:
Edward Dillingham, M.EE, MSEE.

ASSISTED BY:

Dr. Daniel M. Forsyth
Dr. Rudolf Hirschmann
Ms. Ruth H. Savoie
Dr. David C. Collins

EDUCATION IS OUR BUSINESS™

Allmaterlals © copyright 1980 by Integrated Computer Systems.
Not to be reproduced without prior written consent.

© Copyright 1980 by INTEGRATED COMPUTER SYSTEMS.
Allrights reserved.

No part of this publication may be reproduced, stored in aretrleval systern, or transmitted in any form or
by any means, slectronic, mechanical, photocopylng, recording or otherwise, or translated Into any
tanguage, without the prior written permission of the publisher.

MICROPROCESSOR SOFTWARE & HARDWARE
Two Volumes
ISBN O-89438-009-5
Volume |
ISBN O-89438-010-9
Volume ll
ISBN O-89438-O11-7

TABLE OF CONTENTS

VOLUME 1

~INSTRUCTIONS - SYSTEM SETUP AND TEST PROCEDURE

RECEIVING INSPECTIONS
ASSEMBLY

POWER CONNECTION
INITIAL TEST

KEYBOARD TEST

PROGRAM LOADING TEST
SINGLE STEP TEST

PROM CHECKSUM TEST
READ-WRITE MEMORY TEST

0 SYSTEM EXPANSION

Pt bt e b b
= OO0 LD

HARDWARE AND SOFTWARE FUNDAMENTALS

BASIC CONCEPTS

Definition of a Computer

Basic Hardware Structure of a Computer
Basic Software Concepts

The ICS Self-Study Microcomputer
Training Course

NUMBER SYSTEMS AND REPRESENTATIONS
The Representation of Numbers
The Decimal Number System

The Binary Number System

Binary Addition and Counting
Hexadecimal Representation

THE ORGANIZATION OF MEMORY
Memory Words

Memory Module

Memory Access

Varieties of Memory

STRUCTURE OF THE CPU

Functional Units

The Execution of Instructions
Instruction Cycles

The Program Counter

The Instruction Register

The Accumulator

The Clock

“ s o
b pd ek ek ek

[N S Y
L I)
DWW DN -

L[] e = o ® o e e ° @ *® e »

BB PR RABRAOWWWWNDNN NN
* e * o " & o e e

W N Qb W N =

® e e o o
JOU D W =

Pt bbbk b b b ok pt bd b bd e ek e b bbb ek ek

b e el e e P
|
— e OB WN N =

TABLE OF CONTENTS

ii

THE MTS MONITOR

Monitor Software

The MTS Keyboard and Display

Using the MTS

Inspecting Memory Contents

Changing Memory Contents

PREPARING A PROGRAM

Instructions to Be Used

Program Specification

Writing (Coding) the Program

Loading Your Program in the MTS

Verifying and Correcting the Stored Program
Executing Your Program

Instruction Execution: Detailed Examination
SUMMARY

QU O

D ONONONONONONO RO NS NG NS R)|

N0 AW

Pt h b bk b ek bt b pd ek ek ek bt b

TWO AND THREE BYTE INSTRUCTIONS

PROGRAM EXERCISE 2

The ADI Instruction

The STA Instruction
Instruction Execution Details
Writing the Program

Loading and Executing the Program
DATA STORAGE CONVENTIONS
PROGRAM EXERCISE 3

The LDA Instructions

The JMP Instruction

Writing the Program

SUMMARY OF INSTRUCTIONS
REVIEW OF COMMAND KEYS

pNNNDNDNDNNNDNDNNDNDNDN

O G OO DD M b e
. e o L] . e e L]
[SS R\ Db W -

PROGRAM LOOPS

PROGRAM LOOPS AND FLOW CHARTS
The Monitor RUN Command

The Conditional Jump

Flow Charts

PROGRAMMED MONITOR ENTRY
ADDITION BY COUNTING

EXERCISE

SUMMARY

SUMMARY OF INSTRUCTIONS

WWWWwwW WWwW W
O I WM M- =
W =

1-41
1-41
1-43
1-45
1-46
1-48
1-50
1-51
1-53
1-53

1-55

1-57
1-58
1-61
1-65

TABLE OF CONTENTS

THE OTHER REGISTERS AND MEMORY ADDRESSING 4-1
4.1 THE MOV INSTRUCTION 4-2
4.2 THE ADD INSTRUCTIONS 4-4
4.3 THE CARRY AND ZERO FLAGS 4-6
4.3.1 Carry 4-7
4.3.2 Multiple Precision - The ADC Instruction 4-11
4.3.3 Exercise 4-16
4.3.4 Subtraction - SUB and SBB 4-18
4.3.5 Review and Self Test 4-23
4.4 IMMEDIATE INSTRUCTIONS 4-25
4.4.1 Move Immediate Instruction (MVI r) 4-25
4.4.2 Immediate Arithmetic Instructions 4-28
4.4.3 Multiplication by Repetitive Addition 4-30
4.4.4 Multiplication - Exercise 4-34
4.4.5 Table of Instructions 4-36
4.5 CONDITIONAL JUMPS 4-40
4.6 TRANSFER NOTATION 4-43
4.6.1 Instruction Definitions 4-44
4.6,2 Review and Self Test 4-48
4.7 THE MTS DISPLAY 4-53
4.7.1 Displaying a Bit Pattern 4-53
4.7.2 Display Digit Addresses 4-55
4.8 REGISTER PAIRS AND MEMORY ADDRESSING 4-57
4.8.1 The LDAX and STAX Instructions 4-59
4.8.2 Copy a List to Display - Exercise 4-63
4.8.3 Display of Eight Characters 4-67
4.8.4 Register Pair Loading - LXI 4-69
4.8.5 Register Pair Counting - INX, DCX 5-71
4.8.6 Delay Loops 4-73
4.8.7 Breakpoints 4-77
4.8.8 Review and Self Test 4-84
4.9 USE OF A MEMORY LOCATION AS A REGISTER 4-87
4.9.1 Memory Reference Instructions 4-88
4.9.2 Four Bye Addition Exercise 4-91
4.9.3 Counting in the Display - Exercise 4-95
4.10 INDIRECT ADDRESSING 4-96
4.10.1 Load and Store HL Direct 4-97
4.10.2 LHLD and SHLD - Example 4-99
4.10.3 Examining a Register Pair 4-103
4.10.4 Review and Self Test 4-106
4.11 COMPARISONS AND CONDITIONAL JUMPS 4-110
4.11.1 Comparison Instructions - CMP 4-111
4.11.2 Compare Immediate Instruction - CPI 4-112
4.11.3 Moving Message - Exercise 4-113
4.11.4 List of Intructions 4-118
4.12 SENSOR CORRECTION EXERCISE, VERSION 1 4-125
4.12,1 Sensor Characteristics 4-126
4,12.2 Organizing the Data Structure 4-130
4.12.3 Organizing the Program 4-131
4.12.4 Testing Sensor Correction 4-136
4.12.5 Review 4-139

iii

TABLE OF CONTENTS

iv

4

MEMORY

mmmwmmmmmmmmwmmmmmmmcﬁm

4.
4.13.2
4.13.3
4.13.4
4.13.5
4.
4.

QTN OT OO WD D DGO W W LD s = b e

13
13.1

14
15

e e o @
Qb W N

« o o o
UL QWO =

W N =

W=

MULTIPLE TABLES WITH A DIRECTORY
Directory to Data Structures
Organizing the Program

Testing Sensor Numbers

Using the Directory

Testing Multiple Sensor Correction
SUMMARY

INSTRUCTION CHART

AND CONTROL HARDWARE

SYSTEM CONTROLLER

Control Signals

Status Byte

Decoded Control Signals

MTS System Controller Logic
Intel 8228 System Controller
MEMORY TECHNOLOGY

CHIP SELECT LOGIC

Memory Enabling

RAM Chip Selection

ROM Chip Selection

Partial Decoding

Alternative Memory Addresssing
DATA BUS CONNECTIONS

Tri-State Circuits

Read-Write Control

DMA and Interrupts - Introduction
MEMORY SIGNALS AND TIMING
Machine States and Transitions
First State (T1)

Second State (T2) and Wait (TW)
States T3, T4 and TS

MODULES, SUBROUTINES AND THE STACK

[LEONORoNORONONON Neol

NNONDNNDNE -~

W N =

PROGRAM MODULES

In-Line Programming

Creating Program Modules

Module Specification

SUBROUTINES

Subroutine Entry and Return

Tracing Subroutine Entry and Return
CALL Execution

Return Instructionn

Subroutine Nesting

4-140
4-141
4-142
4-145
4-148
4-153
4-157
4-158

[y 1
H=O OO0 Ww

Qoo aumotor O
|

== 0010 O LN~

e & o & 6 6 ® o o o o & o o s o &
e o o o o o
= QO

[NV \ I

ONONONONORONoNoNONONONON o NONONORONONONoRoNO N N N i)
OO UGB WWWWWLWWWWWWWW

[y

e o o o

bW

OV W~

b=t b b s = e 0D €O €O D OO 00 00 00 00

@« o ® 2 ® ® o ¢ 6 o o o ¢ s e o &
COOOOQOOO ¢ « o &

oo = U WN =

[
o

[>N} o)) [oNONORONORONONONORONONORO RO NN Ne)l
-
[oNe)

TABLE OF CONTENTS

SUBROUTINE SPECIFICATION 6-29
Program Development - Sensor Correction 6-29
Main Program 6-33
Input Subroutine 6-36
Conditional Calls 6-51
Subroutine DISPLAYRESULT 6-61
Subroutine SEARCHDIRECTORY 6-64
Program Data Initialization 6-67
Subroutine TABLELOOKUP 6-73
Stubs for Subroutines 6-75
Register Pair Addition 6-78
Program Integration 6-83
REVIEW AND SELF TEST 6-84
ADDITIONAL EXERCISES 6-88
Clear Result Display 6-97
Store and Recover Table Address 6-97
Two Byte Table Addresses 6-98
Empty Sensor Numbers 6-98
USING THE STACK FOR DATA 6-99
Testing Stack Usage 6-100
Using the Stack Inside a Subroutine 6-104
Processor Status Word (PSW) 6-105
Exchange Instructions 6-107
TEST DRIVER FOR MULTIPLY-EXERCISE _ 6-110
STACK POINTER INSTRUCTIONS AND RULES 6-116
Instructions that Affect Only the

Stack Pointer 6-116
Stack Operation Rules 6-119
Monitor Usage of the Stack 6-120
The Growing Stack Problem 6-125
Review and Self Test 6-128
SUBROUTINE CLASSIFICATION 6-133
Global Subroutines 6-133
Local Subroutines 6-134
Re-Entrant Suroutines 6-134
Interrupt Service Routine 6-134
Subroutine Transparency 6-134
MONITOR SUBROUTINES 6-136
Monitor Keyboard Scan Subroutine (SCAN) 6-137
Monitor Key Entry Subroutine (GETKY) 6-138
Monitor Data Byte Input Subroutine (ENTBY) 6-140
Monitor Data Word Input Subroutine (ENTWD) 6-141
Monitor Display Digit Subroutine (DISPR) 6-142
Monitor Display Byte Subroutine -

DMEM, DBYTE, DBY2 6-144
Monitor Display Word Subroutine -

DWORD DWD2 6-146
Monitor Subroutine CLRGT, CLEAR, CLRLP 6-147
Monitor Subroutine DELAY, DELYA 6-148

TABLE OF CONTENTS

O

COOCOUARRRARRRARR AR R VO WOWWWN = == Q
a

AND BIT MANIPULATION

ROTATE COMMANDS

Rotate Exercise

Rotate Instructions for Control Functions
I1f-Then-Else Construct

Arithmetic Substitutes for RAL
Logical Rotate

BINARY ENTRY AND DISPLAY EXERCISE
LOGIC FUNCTIONS

Complement (CMA)

AND (ANA)

Inclusive OR (ORA)

Exclusive OR (XRA)

Immediate Logic Functions

Set and Complement Carry

LOGIC FUNCTIONS EXERCISE

Data Byte and Bit Marker

Keyboard Functions

Register Assignments

Subroutines for Logic Functions Exercise
Main Program for Logic Functions Exercise
Stubs for COMMAND and FUNCTION
Logic Functions DISPLAY Subroutine
Logic Functions DATA Subroutine
Additional Specifications for DATA
Logic Functions COMMAND Subroutine
Subroutine FUNCTION

Exercising Logic Functions

FLOW CONTROL TECHNIQUES

REVIEW AND ADDITIONAL EXERCISES
Traffic Control Exercise

Extended Traffic Control Exercises
Fire and Burglar Alarm

Model Railroad Simulator

U b N -

U WM -

H == QOO U WK

INERNENENEFNENENEN RN ENEN ENENENEN RN N ENER PN IEN ERIER RN IENIENIENIEN IR IES IS RS IEN B oy
BN -
N —=O

vi

TABLE OF CONTENTS

VOLUME 11

INPUT/OUTPUT TECHNIQUES

ISOLATED INPUT/OUTPUT

1/0 Ports

Programmable 1/0 Ports

Keyboard Input

Subroutine KYIN

Keyboard Display Exercise

Other 1/0 Interfaces

MEMORY MAPPED INPUT/OUTPUT
DIRECT MEMORY ACCESS

Repetitive Direct Memory Access
DMA Input and Output

I/0 INITIATION

Programmed 1/0

Interrupt Driven 1/0

The MTS Interrupt System
INTERRUPT SERVICE ROUTINES
Preserving the Environment
Identifying the Source of the Interrupt
Vectored Interrupt Systems
Priority Interrupt Systems
Timed Interrupt Systems

USING INTERRUPTS WITH THE MTS
Interrupt Dispatch

Interrupt Service Routine Exercise
Interrupt Service Routine Test
Memory Change Breakpoints
Interrupt Service Operation
Combining Interrupt Service with
monitor Functions

External Interrupt

Interrupt Handling -Summary

OO OUUN OGO O R R IR WWWE =
OO WM =

o o
N =

¢ o o e o »
e ¢ o e o »
Ord LoD = LN ==

00 CO 00 00 00 00 0O 0O 00 00 GO G0 0O 09 00 GO 00 00 G0 00 00 00 00 GO 08 00 60 OO

> o o o s o
YU WN =

oo 00
. .
[}
. .
[e ol N |

DATA FORMAT

9.1 PARALLEL INPUT/OUTPUT

9.1.1 Paper Tape Reader Example
9.1.2 Computer to Computer Interface
9.2 SERIAL INPUT/OUTPUT

9.2.1 Signal Coding

9.2.2 Synchronous Communication
9.2.3 Asynchronous Communication

TABLE OF CONTENTS

8-99
8-100
8-101

(OQDCDL'OKD!DQ
— et et s ad GO O

<
[
pte

TABLE OF CONTENTS

10

11

viii

€O (O €O O €O (O (O O (O €O O (D (O (O O (O €O © OO

- L] - L]
DN

NGO U0 PAWLWWWW

® o o @ ® o o o o o o o
o o o o o « o o
bW W N W=

BINARY

10.1
10.1.1
10.2
10.3
10.4
10.5
10.6
10.7
10.7.1
10.7.2
10.7.3
10.7.4

REVIEW

11.1
11.2
11.3
11.4
11.4.1
11.5
11.6
11.7
11.8
11.8.1
11.8.2
11.8.3

ASYNCHRONOUS TRANSMITTING AND RECEIVING
Serial Transmission Exercise

Character Data Pattern

Interrupt Service Routine

Main Program

ASYNCHRONOUS RECEIVING

Wait for Start Bit

Receive Data Bits

Receive Main Loop _ v
MONITOR TAPE PROGRAMS AND SUBROUTINNES
Tape Recording Program

Tape Reading Program

Error Checking Character (LRC)

MONITOR SEND AND RECEIVE SUBROUTINES
SOTBT (0382)

Program Entry and Removal of Brekpoints
Subroutine BKMEM (01D3)

Subroutine SINWS (03CF) ,
Transmit/Receive with Monitor Subroutines
CALCULATING DELAY TIMES

AND DECIMAL ARITHMETIC

BINARY ADDITION

Multiple Precision

FOUR BYTE ADDITION

BINARY SUBTRACTION

DECIMAL ADDITION AND SUBTRACTION
BINARY MULTIPLICATION

DECIMAL MULTIPLICATION

OTHER REPRESENTATIONS OF NUMBERS
Negative Binary Numbers

Change Sign, Add, Subtract Exercise
Signed Decimal Numbers
Fractional Numbers

DATA TRANSFER

COUNTING INSTRUCTIONS
ACCUMULATOR/CARRY INSTRUCTIONS
ARITHMETIC AND LOGICAL INSTRUCTIONS
The Flags

BRANCH INSTRUCTIONS
INPUT/OUTPUT

UNDEFINED INSTRUCTIONS

OTHER MICROPROCESSORS

NEC 808A and NEC 8080AF

INTEL 8085

Z1LOG Z-80

10~2

10-2

10-6

10-13
10-25
10-33
10-39
10-44
10-45
10-53
10-59
10-83

11-2
11-5
11-7
11-9
11-10
11-13
11-15
11-16
11-17
11-17
11-17
11-18

APPENDIX A

APPENDIX B

APPENDIX C

_APPENDIX D

APPENDIX E

APPENDIX F

THE ICS MONITOR

BINARY/DECIMAL CONVERSIONS

CALCULATING TRIGONOMETRIC FUNCTIONS

THE S-100 ADAPTER CARD

AMTS SCHEMATICS

DIGITAL LOGIC

TABLE OF CONTENTS

ix

LIST OF ILLUSTRATIONS

FIGURE

)b)brbnhhhrlhtbvhﬁhhh
= OO0 Uk W -

4-11

LIST OF ILLUSTRATIONS

VOLUME 1

TITLE

Read-Write Memory Test

MTS Board Layout
MTS Board Layout
MTS Board Layout

LDA Instruction Cycle
LDA Instruction Cycle (continued)
DA Instruction Cycle (continued)
JMP Instruction Cycle
JMP Instruction Cycle (continued)

Conditional Jumps Flow Chart
Addition by Counting - Flow Chart
Addition by Counting - Program

Double Precision Addition

Double Precision Subtraction

MVI Instruction Cycle

Multiplication by Repetitive Addition
Bit Patterns for MTS Display

Instruction Cycle for STAX D Instruction
Hex Codes and Characters

Copy List to Display

Copy List to Display

Gradual Display with Clear

Four Byte Addition in Memory - Flow Chart
Four Byte Addition in Memory - Program
Counting in the Display

Moving Message - Flow Chart

Moving Message - Program

Sensor Calibration Curves

Sensor Correction

Multiple Sensor Correction - Flow Chart
Correcting Multiple Sensors - Program

PAGE

3-10
3-14
3-15

4-17
4-22
4-27
4-38
4-52
4-61
4-62
4-66
4-72
4-76
4-90
4-93
4-94
4-116
4-122
4-129
4-134
4-144
4-150

I
OO WON =

01(.:1@()1('71010!01
1

mmc:c)c?mcucl)c'n
QOO h LW+

| 11
VO Uh Wy

NNNNNNNNN
©

|
—
(@]

7-11

NN
-
NEERY)

7-15
7-16
7-17
7-18

LIST OF

Microéomputer Training System Configuration

MTS System Controller
Memory Addressing

Internal Address Decoding in a Memory Device

Chip Select Logic
MTS Memory Addresses
Minimum Chip Select
Memory Access Timing

Modular Sensor Correction - Flow Chart
Do Nothing Program with Do Nothing Module
Do Nothing Program

Call Instructions

Call Instructions (continued)

Return Instruction

Return Instruction (continued)

Nested Subroutines

Nested Do Nothing Subroutines

Sensor Correction with Subroutines
Sensor Correction - MAIN

Test GETKY and DBY2

Sensor Correction - INPUT (not complete)
Sensor Correction - INPUT ‘complete)
Sensor Correction - NEXTSENSOR

Sensor Correction — DIRECTORY AND DATA
Sensor Correction - DISPLAYRESULT
Sensor Correction - SEARCHDIRECTORY
Sensor Correction - MAIN and INITIALIZE
Sensor Correction - TABLELOOKUP

Sensor Correction - MULTIPLY

Complete Sensor Correction Program

Test Driver for MULTIPLY

Test Driver Program

Test Driver for SHIFT Subroutines
SHIFT Subroutines

Left and Right Shift Program

Sixteen Bit Logical Rotates

Binary Entry and Display Flow Diagram
Binary Entry and Display Program
Logic Functions - Main Program

Stubs for COMMAND and FUNCTION

Logic Functions DISPLAY Subroutine - Flow
Logic Functions - Subroutine DISPLAY
Logic Functions - Subroutine DATA
Logic Functions - Revised DATA

Logic Functions Subroutine COMMAND
Logic Functions - Subroutine FUNCTION
Logic Functions - Self Test

Logic Functions with Dispatch Table
Traffic Control Program

Timer and Keyboard Scanner

ILLUSTRATIONS

5-2
5-8
5-12
5-14
5-18
5-22

LIST OF ILLUSTRATIONS

F1GURE

)
== Q00 N0 U kW~

oooooooooooloooooooocoooo

|
PN N WN

M
te
Jmte

LIST OF ILLUSTRATIONS
VOLUME I1I

TITLE

From INTEL Manual

Array of Input/Output Ports

Isolated Input/Output with the 8255
8255 Mode 0 Combinations

MTS 8255 and Key Input Scanning Circuit
Subroutine KYIN

First test for KYIN

KPRG, KTST, KYIN with Debugging Features
KPRG, KTST, KYIN with Debugging Removed
Keyboard Display Program - Flow Chart
Keyboard Display Program

Keyboard Display Program

Typical I/0 Interfaces

Memory Mapped Input/Output with the 8255
Memory Mapped Display

DMA Circuit

DMA timing

Display Circuit

Keyboard Testing in the Monitor
Programmed Input/Output

Coding and Effect of RST Instructions
Interrupt Processing

Interrupt Processing (continued)
Interrupt Processing (continued)

(From INTEL Manual)

Restart Port with 8212

Vectored Restart Port

Vectored Interrupt Using Resistors

MTS Interrupt Circuit and Timing
Interrupt Service Exercise - Main
Interrupt Service Routine

Test for Interrupt Service

Interrupt Service Exercise

8255 Mode 1 Input

High Speed Paper Tape Reader Interface

8255 Mode 2 - Bidirectional I/0.
Interprocessor Communication Using 8255

Logic and Timing for Shared Memory

Serial Data Transmit Interrupt Service Routine
Serial Transmit - Main

Serial Traunsmit - Data Entry

10-1
10-2
10-3
10-4
10-5
10-6
10-7
10-8
10-9
10-10
10-11
10-12
10-13
10-14
10-15
10-16
10-17
10-18
10-19
10-20
10-21
10-22
10-23
10-24

10-25
10-26
10-27
10-28
10-29
10-30

LIST OF ILLUSTRATIONS

Transmit - Receive Data Entry

Wait for Start Bit

Receive Data Bits

Receive Main Loop

Transmit - Receive

Transmit/Receive with Monitor Subroutines
Transmit Interrupt Service with SOTBT
Transmit Main Loop with Breakpoint Entry
Receive Main Loop with SINWS

Instruction Timing

Main Programs for Four Byte Add and Display
Multi-Byte Add Subroutine

Main Program for 4 Byte Add and Display
Multi-Byte Addition Subroutine

Modify Main to Display Halt

Multi-Byte Subtract Suroutine

Main Program for 4 Byte Subtract

Display Halt S

Multi-Byte Subtraction Subroutine

Program Modify Module

Modify Subroutine by Key Input

Multi-Byte Add/Subtract Subroutine

Modify Subroutine by Key Input

Modify Subroutine by Key Input (continued)
For Experiment with DAA

Bipnary Multiplication

Binary Multiply - Two Byte Product

Decimal Multiply Subroutine ,
Data Entry and Display for Decimal Multiply
Change Sign of Number

Change Sign by CMA, INR A

Binary and Decimal Arithmetic

Change Sign, Add, Subtract Exercise
Change Sign Exercise - Data Entry and
Command Interpretation

Command Execution

Change Sign Subroutine

Decimal Arithmetic

Two Byte Hundreds Complement

CHSIGN

SIGNMAG

9-32
9-34
9-36
9-38
9-40
9-53
9-55
9-56
9-58
9-60

10-7

10-8

10-9

10-10
10-12
10-17
10-18
10-19
10-20
10-22
10-23
10-24
10-26
10-27
10-32
10-35
10-36
10-40
10-41
10-47
10-50
10-54
10-55

10-56
10-57
10-58
10-65
10-75
10-78
10-82

xiii

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 8

INPUT/OUTPUT TECHNIQUES

8.

INPUT/OUTPUT TECHNIQUES

Various techniques and peripheral devices may be used with the 8080
to provide input and output capabilities. This chapter
describes the common methods of implementing I1I/0 and provides
exercises 1in the use of those that are readily carried out with the

MTS.

The techniques differ from each other in three major respects: how
the input or output device is addressed; what event initiates the
transfer of information; and what form the data are 1in. (The

latter will be treated in Chapter 9.)

Addressing
Isolated Input/Output
Memory Mapped Input/Output

Direct Memory Access

Initiation
Programmed Input/Output
Interrupt Driven Input/Output
Timed Input/Output

Repetitive Direct Memory Access

The MTS includes facilities for all of these in one form or another,
SO you can learn each of the processes. For some, however, you

must add external hardware.

INPUT/OUTPUT TECHNIQUES

8.1 ISOLATED INPUT/OUTPUT

The address and data buses are used to address input and output
devices and transfer data between them and the CPU. The control bus
from the system controller includes 1/0 Read and 1/0 Write commands
in addition to the Memory Read and Memory Write commands. It is the
use of these command signals, and the instructions that generate

them, that distinguish 1/0 usage from memory usage of the buses.

8.1.1 I/0 Ports

Any device with suitable electrical characteristics can be attached
to the buses. In general such devices should have high impedance
inputs from the bus and tri-state outputs to drive the bus. Intel
and others provide the 8212 Input/Qutput Port for this purpose. The
MTS includes one in the LED display circuit. A functional
description is given in Figure 8-1; more detail is provided in the
Intel 8080 Microcomputer System User's Manual. The principal
features are low leakage currents of the inputs and outputs when the

device is not selected, data latches, and control gating.

SCHOTTKY BIPOLAR 8212

INPUT/OUTPUT TECHNIQUES

Functional Description

Data Latch

The 8 flip-flops that make up the data latch are of a
“D" type design. The output (Q) of the flip-flop will
follow the data input (D) while the clock input (C) is
high. Latching will occur when the clock (C) returns
low.

The data latch is cleared by an asynchronous reset
input (CLR). (Note: Clock (C) Overides Reset (CLR).)

Output Buffer

The outputs of the data latch (Q) are connected to
3-state, non-inverting output buffers. These buffers
have a common control line (EN); this control line
either enables the buffer to transmit the data from
the outputs of the data latch (Q) or disables the
buffer, forcing the output into a high impedance
state. (3 -state)

This high-impedance state allows the designer to
connect the 8212 directly onto the microprocessor
bi-directional data bus.

Control Logic

The 8212 has control inputs DS1, DS2, MD and
STB. These inputs are used to control device selec-
tion, data latching, output buffer state and service
request flip-flop.

DS1, DS2 (Device Select)

These 2 inputs are used for device selection. When
DS1 is low-and DS2 is high (DS1 - DS2) the device is
selected. In the selected state the output buffer is
enabled and the service request flip-flop (SR) is
asynchronously set.

MD (Mode)

This input is used to control the state of the output
buffer and to determine the source of the clock input
(C) to the data latch.

When MD is high (output mode) the output buffers
are enabled and the source of clock (C) to the data
latch is from the device selection logic (DS1 - DS2).
When MD is low (input mode) the output buffer state
is determined by the device selection logic (DS1 -
DS2) and the source of clock (C) to the data latch is
the STB (Strobe) input. '

STB (Strobe)

This input is used as the clock (C) to the data latch
for the input mode MD = 0) and to synchronously
reset the service request flip-flop (SR).

Note that the SR flip-flop is negative edge triggered.

Service Request Flip-Flop

The (SR) flip-flop is used to generate and control
interrupts in microcomputer systems. It is asyn-
chronously set by the CLR input (active low). When
the (SR) flip-flop is set it is in the non-interrupting
state.

The output of the (SR) flip-flop (Q) is connected to
an inverting input of a “NOR’ gate. The other input
to the “NOR"” gate is non-inverting and is connected
to the device selection logic (DS - DS2). The output
of the “NOR” gate (INT) is active low (interrupting
state) for connection to active low input priority
generating circuits.

SERVICE REQUEST FF

\

DEVICE SELECTION DS
= | s
> bs1 N B>
@ Ds2 (ACTIVE LOW)
—En
sTB— 4 — — -Lr —
> r "1 outeur
| | | BUFFER
l | |
Bon, B S0 >
DATA LATCH | Hséi | |
o, \l | o | | BL Do, [£>
| Hes | l@
| 'y
[>p13 +T° @ | | Doy
| ted || |
|
E>01 : [5 aHH >+ o0, 5>
RSN
@>ors 5 q] L oos >
| CR I I
|
fE>D1g ; DQ ! %—{-Dod@
! 4-‘-_j°“ i |
B> D1y ++Hp @ ! l DOy
e 1L
B>o01 LGS >+ o >
RESET DRIVER | cq : |
N |
f>ciR (ACTIVE LOW) E f | |
(I S
STB | MD | (D8;-DS3) DATA:UT €0UALS | [CLR | (D%;.DS;) | STB | *SR | INT
ISTATE o 2
BATA LATEH L
ATA LATCH 0
AT :
ATA IN =
DATA IN *INTERNAL SR FLIP-FLOP
SR
{NO EFFECT ON OUTPUT BUFFER]
Figure 8-1

From INTEL Manual

INPUT/OUTPUT TECHNIQUES

AB8
STB

AB9

AB10O

Vce
DATA BUS
™~n
RP h RP
STB STB
("' il PORT 1 PORT 4 81 |
-2 2 >
e 0 I 03 |-
{13: T —— ot o
5 I 5
6 8 6
— 17 07-—>
RP—Q 7ix Nt [P ATFT CIR P—
DS2 MD DSI DS2 MD DSI|
] - T AB11 ___ | RlP ___
RP
1 |
STB STB
- RS
— PORT 2 PORT 5 e
—~ -
- > ——— > e
i __’
i —
e —
—nd —t
RP—Q INT qg o
DS2
] £ Ajr AB12 I L %
; RP
T; | R;P r__‘_STB
STB
PORT 3 PORT 6 —>
b
— >
—> : —>
—> —
—> —
— —
RP_q —— INT o)
DS2
|
& 7 U S e S |
DATA REQUEST DATA READY

I/0 READ ___|

1/0 WRITE

8-4

LDATA
ouT

Array of Input/Output Ports

Figure 8-2

INPUT/OUTPUT TECHNIQUES

A suitable arrangement for using several 8212's as input and
!

output ports 1is shown in Figure 8-2. Each is selected by a single

bit of the high address bus to the non-inverting select input DS2,

so no additional decoding 1is necessary. The input ports are enabled

by the 1/0 READ command and the outputs by the I/0 WRITE command,
to the inverting select input BEI. Output data from the CPU
enters an output port when the device is selected by BEE and DS2, and
latched by the 8212 when it is de—selecfed; the 8212 outputs are
always enabled. This behavior is set by the MODE input being pulled

high.

The STROBE input is unused for Output Ports 4 and 5. Output Port
6 receives a strobe from some external hardware to indicate a need
for new data. With the MODE input high this has no effect on the
data outputs, but it sets the INT output low, indicating a need
for service. The diagram shows that signal being input to the
processor through Input Port 3. When the CPU loads new data

to Port 6 INT will be set high again to indicate that the requested

data are ready.

INPUT/OUTPUT TECHNIQUES

Input Ports 1 and 3 are direct paths from their inputs onto the data
bus when they are selected, because their strobe inputs are
pulled high. This makes them suitable for stable data. Input Port 2
is designed to receive a fleeting input, which may be gone
before the processor can service it. An external strobe is provided
to latch the data in the 8212 and set INT low, requesting service

from the CPU when it reads Port 3.
The CPU accesses these ports with the commands:

DB IN input from port

XX port address to Register A
High address <- (Byte 2)
Low address <- (Byte 2)
(A) <~ (Data bus)

No flags are affected

D3 ouT Output to port

XX port address from Register A
High Address <- (Byte 2)
Low Address <- (Byte 2)
(A) <- (Data Bus)

No flags are affected.

These are the only instructions for isolated input and output.

They alone create the 1/0 Read and 1/0 Write commands to the ports.

INPUT /OUTPUT TECHNIQUES

Note that the port address is only one byté, not two. In response
to one of these instructions the CPU places that byte on the low
eight bits of the address bus, and duplicates it on the high eight

bits.

This duplication permits the I/0 devices to be selected from the
high address bus, which 1is typically less heavily loaded by memory

devices than the low address bus.

The addressing shown here, where a single bit on the address bus

selects a device, is called linear select. It is economical of

hardware but restricts the system size. Port addresses for the

devices in Figure 8-2 are:

Input Port 1 01 00000001
Input Port 2 02 00000010
Input Port 3 03 00000100
Output Port 4 08 00001000 ’
Output Port 5 10 00010000
Output Port 6 20 00100000

For a larger system some decoding of the address is necessary.

INPUT/OUTPUT TECHNIQUES

SYSTEM
CONTROLLER
SYSTEM DATA BUS
ADDRESS ADDRESS
BUS DECODER
MEMR 0 1
—
MEMW I
1/0 READ | ,|zp RO Al CE
1/0 WRITE —»-| WR 8255
——>
— T THETTE FT
Port B Port C Port A

Because the 8255 occupies four addresses, it receives

and internally decodes the two low bits of the address

bus. The I1/0 port address decoder examines only six

bits of the address bus (AB2-AB7) to select the 8255.

Isolated Input/Output With the 8255

Figure 8-3

INPUT/OUTPUT TECHNIQUES
8.1.2 Programmable I/O Ports

The MTS includes one 8255 Programmable Peripheral Interface Adapter
(Figure 8-3). It has 24 external connections which can be programmed
as inputs or outputs in various combinatidns. It is connected to the
microprocessor and system controller via the data bus, 1/0 Read, 1/0
Write, Reset, two address bits (ABO and AB1) and a chip select input

from the address decoder.

The 8255 accepts data from the data bus when its chip select input
and I/0 Write are both low. It delivers signals to the data bus when

chip select and 1/0 Read are both low.

Four 1/0 port addresses are occupied by one 8255. Three of these
correspond to the three groups of 8 bits provided by its 24 external
connections. The fourth address is used to write control information

to the 8255. For the 8255 on the MTS the addresses are:

00 Port A (PORTOA)
01 Port B (PORTOB)
02 Port C (PORTOC)
03 Control (CNTO)

The ICS Interface Training System contains two additional 8255's
whose ports are referred to as PORT1A, PORT2C, etc. Therefore, all

references to the MTS 8255 include 0 in the port name.

INPUT /OUTPUT TECHNIQUES

Notes| Control Byte Port A Port C Port C Port B
Hex | Binary Bits 4-7| Bits 0-3
(3) | 80 1000 0000 Out Out Out Out
(3) |81 1000 0001 Out Out In Out
(3) | 82 1000 0010 Out Out Out In
(3) |83 1000 0011 Out Out In In
88 1000 1000 Out In Out Out
89 1000 1001 Out In In Out
8A 1000 1010 Out In Out In
8B 1000 1011 Out In In In
(1) {90 1001 0000 In Out Out Out
(1) 91 1001 0001 In Out In Out
(1,2)]92 | 1001 0010 In Out Out In
(1) }J93 1001 0011 In Out In In
98 1001 1000 In In Out Out
99 1001 1001 In In In Out
9A 1001 1010 In In Out In
9B 1001 1011 In In In In

rl\

3
r b——— Port C Bits 0-3

Port B

Port C Bits 4-7

Port A

8255 Mode 0 Combinations
Figure 8-4
Notes: (1) Only the four combinations marked are suitable for use
with the MTS if the keyboard is to be used. (2) This combination is
set by the monitor whenever it controls the keyboard and display.
(3) Port A and Port C (bits 4-7) should not both be programmed for
output, since the keyboard would then short them together.

8-10

INPUT/OUTPUT TECHNIQUES

In addition to the three external ports, the 8255 has a '"control
port" addressed by 11 in the low bits of the address. This is used
to program the external ports for input or output, and to
select the mode of operation. The monitor programs the 8255

with the instructions:

3E MVI A,92 Write 10010010
92 to the control port.
D3 OUT CNTO

03

This sets Ports A and B for input and Port C for output. Ports A and
B are each eight bit ports and can be programmed independently of
each other. In the basic mode of operation (Mode O0) Port C is
divided into two four-bit ports which can be independently
programmed for input or output. Thus 16 different combinations of
input and output assignments are available in Mode 0. The bits in

the control byte are defined as follows:

7le|5|4al3]2|1]0
1{0|0 0o Port C Bits 0-3 Input or Output
A\ —— A {x A A
A Port B Input or Output
Port C Bits 4-7 Input or Output
Port A Input or Output
Mode 0 in Port B

Mode 0 in Port A

Set Mode

Figure 8-4 shows all 16 combinations.

8-11

INPUT/OUTPUT TECHNIQUES

This page intentionally left blank.

8-12

INPUT/OUTPUT TECHNIQUES

The 8255 provides a second mode of operation for Port A or Port B
or both, in which cértain bits of Port C are used for
"handshaking'" with external devices. For input in this mode the
external device places its data at the input port and gives a
strobe pulse to one bit of Port C. This stores the data in an eight
bit latch associated with the eight bit input port, and generates
other status bits in Port C which are accessible both to the CPU
(by reading Port C) and to the external world at the Port C
outputs. This allows transient signals to be input and read
subsequently by the program at its convenience. For details the
student 1is referred to the Intel 8080 Microcomputer System User's

Manual.

In the basic input mode which we have been discussing, the data
latches follow their inputs whenever the port 1is addressed.
If a port is programmed for input the IN instruction will read the
current state of the input. When a port is programmed for
output, its data 1latch is cleared, setting all outputs 1low.
Thereafter, the data latch is loaded by an UUT instruction, and the
data remain stable until the next OUT. These data can be read back
by the processor; IN will always read the content of the data latch.
This does not apply to the control port, for which the IN instruction

is not effective.

A third mode of operation is available for Port A only, in which it
is both an input and an output port suitable for connection

to a bi-directional data bus.

8-13

INPUT/OUTPUT TECHNIQUES

Address
Decoder

DB7 /\/ DB0

NSRS R

. Ay Ay TS D; Dg Dg Dy Dy D, D; Dy
IOR —»O| RD Vee +5V
10W —»-0l WR uUPD8255 ‘
RESET —»O| RESET GND [
PB, —~— PBy PC; —~——— PCy PA;, —~_PA, 5V

<

DISPLAY
-» INHIBIT
J) J))\ CONTROL
00000000 00000000 60000000
WV V VTV VOO VWP VIOV UVIVTUO YV OVTVTUVOLVTDO
IFRETTRZ ZZHXBRRZ ARKRBRCE8
PORT B PORT C PORT A

MTS 8255 and Key Input Scanning Circuit

Figure 8-5
8-14

INPUT/OUTPUT TECHNIQUES
8.1.3 Keyboard Input

To acquire familiarity with the 8255 we will develop a keyboard
input program. You have been using the MTS monitor subroutines
for this purpose. The subroutines to be developed here will be

different 1in design.

Figure 8-5 shows the connections between the 8255 and the keyboard.
The keyboard is a 3 x 8 matrix. Reset is not in the matrix but is
directly connected to the reset input. The other keys form three
columns: keys 0 through 7; 8 through F; and the command keys. Each
row has three keys and a pullup resistor and is connected to an input
bit of Port A. If no key in the row is pressed that bit of Port A
will be 1 because of the resistor. If a key is pressed the input bit
of Port A 1is connected through the key to one of three output
bits of Port - C. If that output is high the input to Port A will
still be i, but if it is low the input will be O. Thus by setting
one bit of Port C low and reading port A we can tell which, if any,
key is pressed. We can make a quick test to see whether any kej in
the keyboard is pressed if we set all three outputs (C4, C5 and C6)

low and read Port A; if the result is 1111 1111 no Kkey is pressed.

There may be a circumstance where we are interested only in a
particular key. This can be tested by setting the
corresponding column low, reading the input, and masking to exclude
all keys except the desired one. Subroutine KYIN is specified to

permit any of these functions.

8-15

INPUT/OUTPUT TECHNIQUES

8.1.4 Subroutine KYIN

Function:

Call

Test the keyboard for any desired key or keys being pressed.
Set one or more of output bits C4, C5, C6 low (without
affecting any other bits of Port C) according to a parameter
passed in the call. Read the keyboard and mask with
another byte passed as a parameter. Return with the Zero
flag set if no desired key 1is pressed; otherwise with Zero
cleared and the binary input data in Register C. Restore
the column select bit (C4, C5, or C6) to 1 before returning.

Two alternate entries provide for setting the input

parameters to test for any key, and for programming the
8255.

CD CALL KPRG
40 Program the 8255
82 and continue to KTST

CD CALL KTST
44 Test for any key
82

CD CALL KYIN

48 Test for specified key

82 or keys in specified.
column or columns

Inpu

ts

KPRG: None
KTST: None
KYIN:

a) Key column select in Register B
contains O for each desired column.
Bits 0, 1, 2, 3 and 7 must be 1

b) Key mask in Register C
contains 1 for each desired key

8-16

INPUT/OUTPUT TECHNIQUES

Outputs

Zero flag set if no desired key

Zero flag clear if desired key is pressed
Keyboard -input (00 if no keys) in Register C
Key column select in Register B is preserved
(8F for KTST).

Registers

A, B, C, D are used.

Constraints

If KPRG is called, 8255 will be programmed as follows:

Co - C3 Output
Port B OQutput, mode 0O
C4 - C7 Output
Port A Input, mode O

Outputs of all ports are cleared by KPRG.
If KTST or KYIN is called, C4 - C7 and Port A must

be programmed as shown above.

8-17

INPUT/OUTPUT TECHNIQUES

We have discussed programming the 8255 by writing to the: control
port. There 1is another function in the control port: you can set or
reset any individual bit of Port C. This is done by writing a byte

from Register A to the control port:

3E MVI A (A) <- Selected command
XX
D3 OUT CNTO

03

This sequence applies to both programming the 8255 and setting bits

in Port C. The command bytes are distinguished by the high order

bit as shown below:
Command Bytes to Control Port

90 1

0 0 1 0 O Program the 8255
y
A

0
| Set Port B for output
Set Port B to mode O
Set C4 - C7 for output
Set Port A for input
Set Port A for mode O
Mode set flag

0
I T t_______Set CO0 - C3 for output

08 0 0 0 01 0 O Reset C4 to O
—

.

t — ——Bit reset

| Bit 4

Don't Care

Bit set/reset flag

0A O 0 0 01 0 1 O Reset C5 to O

(0]6] 0O 0 o 01 1 0 O Reset C6 to O

8-18

INPUT/OUTPUT TECHNIQUES

This provides a technique for altering one output bit without
changing others. Another technique 1is to read the content of the

output data latch:

DB IN PORTC

02

will read the data latch of the port into register A even though
the port is programmed for output. Then you can use "ORA r" or
"ORI data" to set desired bits to 1; "ANA r" or "ANI data" to set
desired bits to O. For instance, to set C7, C6 and C5 to 1 and

C4 to zero, use this program segment:

06 MVI B,11101111 Set up for C4 low

EF

DB IN PORTC Read old output data

02

F6 ORI 11110000 Set C7, C6, C5, C4 to 1
FO

A0 ANA B Set selected bit to 0O
D3 OUT PORTC Write to Port C

02

Wherever several bits must be controlled this takes less program
space than the individual bit set and reset instructions.
Caution: Reading from an output port 1is not included in the
manufacturer's specification for the 8255. That it will work is
predictable from the design of the 8212, and proven by experiment

with the 8255. A redesigned 8255 might not allow it.

8-19

INPUT/OUTPUT TECHNIQUES

Programs that write to the display or to Port C, or that program
the 8255, are always difficult to debug because whenever the
monitor actuates the keyboard and display it destroys whatever your
program has done. Suggestion: at each point in the program
when an output is written, first store the data in memory. When
you read an input, immediately store the data. Being able
to recover the data at a subsequent breakpoint makes debugging
immensely easier. The additional instructions can be deleted

when the program works properly.

Keyboard reading introduces another problem: at return from the
monitor the keys are always released. You can simulate a key input
by placing a breakpoint just after the IN Instruction. When it is
executed you can load some value other than FF in the A register

to make sure that the rest of your program functions correctly.

If any peculiar condition arises while you have a key pressed, you
can press RST while the other key is held down. The program
counter will be saved. Press ADDR T MEM to see the program counter.
This 1s the last value observed by the monitor (your program must
have been running in Breakpoint mode). If your program was
executing a subroutine when you pressed RESET, the return address can

be found at (83DE, 83DF), provided no breakpoints had been entered.

8-20

INPUT/OUTPUT TECHNIQUES

Draw the flow chart and write the program for KYIN. Test it
initially with a very simple calling program. To ease debugging,
call XYIN, not KTST. The monitor leaves the 8255 programmed with

Port C for output and Port A for mode O input.

- LXI B, 8FFF Enable all keys
CALL KYIN Read keys
-« JZ Repeat until
RST 4 key is found
| «—— JMP Then call monitor
This will return to the monitor as soon as you press a key. Then

you can look in the storage locations where you have saved the

inputs and outputs to see if they are what you expect.

When you call the monitor with a key pressed, hold the key down
until you see what you have. If you are displaying PC and the
instruction, a numeric key will give the Err display as soon as you
release it. If you are displaying a register, a numeric key
will be entered into the register when you release it. You can

retrieve the old value by pressing CLR, however.

Figures 8-6 to 8-9 provide a flow chart, test program, and two

versions of KYIN, one with debugging code included.

8-21

INPUT/OUTPUT TECHNIQUES

C=z0

i

PROGRAM 8255
CNTPT ==~ 90

—

)

ENABLE ALL COLUMNS
(B) = 8F
ENABLE ALL KEYS
(C) —FF

READ OLD OUTPUTS

SET ALL COLUMNS HIGH
AND SAVE FOR EXIT

SET DESIRED

COLUMNS LOW

READ KEYS, INVERT
AND MASK TO RETAIN
ONLY DESIRED KEYS

SET ALL, COLUMNS HIGH

D

Subrouti

Figur

ne KYIN

e 8-6

FIRST TEST FOR KYIN

CODE

0

:
8
&
=l
W
W =
W M Q Q
b > Q Q|
1T I~ <% N
© S I
~
H d N[
= NN N 21D
N) h e
SN Qe XY™ Q|
0Fia4jdd/£60?
Clm|N|O|g|vioeINMNo|lo|glajlo|AjWlL |O|le|la|m|lat{wv][O|~N aljlo/lQlw|uw]|]o|(—~la|m]| < 0
Q
¥

133HS ONIAOD

W3 LSAS ONINIVHL H31LNdWOIJOHIIN

SWILSAS HILNdWOD AILVHDILNI

8-23

KYIN. WITH DEBUGGING FEATURES

KTST,

CODE

A D D R

: ﬁ mbmf %
Q
D LRGN Ak]
6an ww X .ﬂ%m AN M M ©
EEEREIIEE RRER < 1 :
SEEECCRER ENERERCE DO RRE T M R 3
XN [N S W 3 e
NG N
Q . (1 | O Q
NENEAVEESENEN N ~[|~ | -
NN NEEER <& O ASINI<IEN QX
TR TR 10 ™ [1 (™ S o [™ 1Q
X (O T [J Q] U QY QA Q] [N NI
Q _
RN g DN ~ < RN EEL
>0 (1 > > (2 N o [QID D (= | NER RN
S =S M S =R I H s ONEER
U W]] o ™~ SR S]~ ™ ¥l S] 0] W~ [o s o
DN Y YN VWA 09 YNU W 9 YNSINQIN 0 Qleg FRRNG Y
ol |m (s (wv|lo|N|o|log|lalo(]lw|w|o|lee|la|o|lslw| o|~n|owlo|<s|lalo(ojlw|w|o|l~a|m|= © 3,
N Y X
B % S

133HS DNIA0D

W3 LSAS ONINIVHL H3LNdINODOHIIW

SIWILSAS H3ILNdNOD A3 LVHOILNI

8-24

KRPG, KTST, KYIN WITH DEBUGGING REMOVED

CODE

A D D R

X \
EARRL AR RN Ry e R
N SR N
67 Mw . $ﬂvm m__ o
| ¥da R 1
GW&M N NM m/u, JWf v
I aA 4 (A R 3 :
ARNNINGT [AI 4TINS . N &
X AN EAVRYA .MA 1 W B
A Q
U Q X Q
Q (O] (4 | (O = 1O -
N W (W] [H o |of |F T|p|¥
L | ™)R Q + | Q 04 - Q
<< [V (@ [J |o (4] [4dla] [O Q|
o Q
RENEEEE Al Sl e N L
> Y (SR QR 2] ERIQQD] W
= Qs I [HIQ [sj€ol H [odes[a] [
L QU9 NN Q YNS QIRN Q™ N9 Qf N~ W 00 3™
MHINQ N AN QA JUM [olRQ QR RN Qv
0123456789A.BCDEF012345678 Bl wlujo|l=|~|m| < L]
A 1
N Y

133HS ON1dOD

W3 LSAS ONINIVHL H3LNdWODOHIINW

SWIALSAS HILNdWOD A3 LVHOILNI

8-25

INPUT/OUTPUT TECHNIQUES

8.1.5 Keyboard Display Exercise

Now we can make more interesting use of KYIN. The following
program takes any key from O - 7 (which appears as a single bit = 1
in register C) and OR's it into a display location at the
corresponding display segment Dbit. By pressing successive keys,
you may "paint" a character. It also tests for CLR and NXT, either
clearing the presently addressed display location or moving to
the next location. This demonstrates one requirement of keyboard
input: you must distinguish between a key being held down for a long
time versus repetitive depressions of the same key. The numeric
keys and CLR don't care in this program, but if you do not test
for release of NXT it will step across the display many times before

you can let go of the key.

Keyboard input programs normally provide for '"debouncing".
Many electrical switches do not change from closed +to open
perfectly, but "bounce" between the two states for some milliseconds.
This can occur in the switch contact itself, or it can be
created by a TTL circuit sensing the contact. To avoid seeing a
single closure as multiple operations there is wusually a time
delay circuit or program used to require that the key be open for 10
to 30 milliseconds before it is accepted again. Such a
provision is 1included in the MTS monitor subroutine GETKY, even
though the MTS keys seem to be completely free of bounce. Before
referring to Figures 8-10 through 8-12, try designing the program
yourself, all the way from a specification and flow charts through

the detailed coding.

8-26

INPUT/OUTPUT TECHNIQUES

KEYBOARD DISPLAY PROGRAM

#

CALL KPRG

- ADDRESS DISPLAY
@——ﬂ (HL) ~— 83F8
.
&/

SET TO READ 0-8
.——— ‘ (BC) ==— EFFF

zERO

NO

@ ‘ ENTER IN DISPLAY
(M) -— (M) + (C)

1
SET TO READ NEXT
(BC)-=—BF 20
CALL KYIN

NO

NEST DISPLAY ADDRESS
L)=—(@w + 1

Figure 8-10a

8-27

INPUT/OUTPUT TECHNIQUES

KEYBOARD DISPLAY PROGRAM (CONT'D)

®
1

SET TO READ CLR
(BC)==—-BF80
CALL KYIN

YES

NO KEY

(M)—0

Figure 8-10b

8-28

KEYBOARD DISPLAY PROGRAM

CODE

A D D R

b
,,“w Mf/% /W N NN M
N 3 an 1IN (1 &N -
3y |3 M/] . g
3 W) AM, SEAERRE :
p : 2
W % b aW,MM n%/ 3 [
o w
o) ~ W =
N 0% %) N W H Q o~
o o ~ N W > < RENE
4 Y X X ~ A4 N 1 1%
+ O o S V[T
4 | . ~J
Qo] N 3 N Q| ~ NN o
QI Q| Q| % & g 2 Q= L W Q| QI T Q
R)l) g >/ J n Z[Q ¥ =
Ql QL NN Q] Qf x| ST | N o) QN U QR] s f Sy NN ™[] Q
QX Q¥ N V1 O NN A QY Q9] O Y S SN NNV Q%[
O || N M| < n [{=] ™~ o| £ m| O (=] w] w o = | N [- n | o ~ @0 o < o (S -] w | W Qe N | M < -]
0 N
% N

133HS ONIAOD

W3ILSAS ONINIVHL HILNdINOJOHIIW

SW3LSAS H3ILNdINOD A31VHOIINI

8-~29

KEYBOARD DISPLAY PROGRAM

CODE

A D D R

q L
L § 3 S RE
igj N N J
MR . i
> N N
W f,/ Mﬂw g N m N H
T 1 Y (R Jm 3 o
~§ Wr 3 WW \(.WI.A M 3 W
LS N 3
Q . Q
X! P N 2
1\ ~ Q NN Q \§ ~ Q Q O
Q >) IN Q) > ~ Q Q
| AV R X a T AV 5 + J
89 Dy 4| So @ S < g
J J
H d XN o H N Hl |Qja Q
=< < N 2= S < X N NN Q
~J J n Hib P L U h NERE M
N QN QO S QS]] [N W QUNUNI W QIR D Q9% 9] Q QU™ Q
Q) 8] 0] I X N V0[] N 0] QN] N oy QN [U Y o N& [N QY QNS
o NMmgs| w|lo v |lolg(a|jlo|djwlwljolcrlcalm|laglv]ioIn]|o]|lold|dlololw]ju]loj=]a]|om] < © -]
N)
R N

133HS ONIAO0D

WILSAS ONINIVHL HI1NdNODOHIIW

SINILSAS H3ILNdINOD A31VHOILNI

8-30

INPUT/OUTPUT TECHNIQUES

This page intentionally left blank.

INPUT/OUTPUT TECHNIQUES

SERIAL DATA
COMMUNICATION

i

|

RD WR

8251

D,-Dy CE T/D

1/

0 gy

#2
8255

RD WR D;Dp €5 Ag A

—ET inow TA, A A,

R
=

g g4g

RD WR D;-0p T Ag Ay

#1
8255

oW @ TAZ Ag [A

170 R iT Tlﬁ'ﬁv
—

g
Aq [Ag

DATA BUS

CONTROL BUS

ADDRESS BUS

Ay

DS2

8212
#3

MD

U =

Ag
g NS
DS1 DSZ
8212
#2
MD

VCC

8212
#1

MD

|

Vee

Figure 3-16. Typical /O Interface.

‘§-32

(From INTEL 8080 User's Manual)

Figure 8-13

INPUT /OUTPUT TECHNIQUES

8.1.6 Other 1/0 Interfaces

Isolated input/output is by no means restricted to the 8255; it
is defined by the use of the IN and OUT instructions and the I/0
Read and 1/0 Write commands. The| necessary interface to the data
bus, address bus and the command signals can be built with
TTL and Tri-State circuits. Also, Intel and others offer several

other devices made for this interface.

Many computer terminals use the 8251 Programmable
Communication Interface for serial| data communications. This has an
interface to the 8080 system quite similar to that of the 8255,
except that it needs the system clock. The student is again
referred to the Intel 8080 User's Manual for detailed descriptions of
these devices. Figure 8-13 shows how a number of devices can be

connected to the system buses.

8-33

INPUT/OUTPUT TECHNIQUES

SYSTEM
CONTROLLER SYSTEM DATA BUS
Address From
bus Address
VEMR 01 Decoder
MEMW
I/0 READ s RD a0 Al CE
/0 WRITE | WR 8255
[————--
RESET PORT B PORT C PORT A

Memory Mapped Input/Output With the 8255

Figure 8-14

INPUT/OUTPUT TECHNIQUES

8.2 MEMORY MAPPED INPUT/OUTPUT

An alternative to 1isolated input/output is "memory mapped 1/0".
The input or output device is connected to the Memory Read and/or
Memory Write command signals from the system controller, instead of
the I1/0 Rgad and 1/0 write commands. Figure 8-14 shows such a
connection. Here the IN and OUT instructions are not used, since the
device is not connected to the command signals they generate.
Instead any memory read or write command can be used. LDA may be
used in place of IN, STA in place of OUT. All the convenience of
register addressing and transfer becomes available. Suppose that Port
A is addressed as memory location FFF8 and Port B as memory location

FFF9, and both are programmed for inputs. Then they can be read by:

LXI H,FFF8 Address Port A
MOV E,M (E) <~ (Port A)
INX H Address Port B
MOV D,M (D) <- (Port B)

Alternately, they can both be reaqgrgy a single instruction:

LHLD FFF8

8-35

INPUT/OUTPUT TECHNIQUES

The arithmetic and logic instructions become available for direct
use with the input port. If you want to wait for a change in the

input data you could use this:

LX1I H,FFF8 Address Port A

MOV AM (A) <- (Port A)
— CHP M (A) = (Port A)?

JZ Wait until equal

Or you can test for an input of 1111 1111:

LXI H,FFF8

INR M
I__—-JZ
The INR M command is only partially effective. If Port A is
programmed for input, you cannot effectively write to it.

Nevertheless the flags will be set as though you incremented the

data.

This sequence will set zero and jump if the input is 1111 1111,
because the flags are set as if 1111 1111 is increased to 0000 Odbb.
It is, of course, not possible to complete the INR M instruction, and
store 0000 0000 because Port A is programmed for INPUT and not for

OUTPUT.

While memory mapped 1/0 has some definite advantages, it sacrifices
the two byte IN and OUT 1instructions. LDA and STA are
three byte instructions; only by maintaining the I/0 address in a

register pair do you reduce the program length.

8-36

INPUT/OUTPUT TECHNIQUES

Note that with memory mapped 1/0 the 8255 must occupy addresses that
will not conflict with any real memory. A typical scheme in small
systems 1is to use all addresses from 8000 to FFFF for input/output,
and 0000 to 7FFF for memory. Now address bus bit 15 indicates
whether an 1/0 device is to be selected. If only a few 1/0 devices
are to be used it is not necessary to fully decode the address. A

single chip 1/8 decoder can select eight different devices.

Memory mapped I1/0 is probably overused in hardware design. For most
applications isolated I/0 is more efficient in both hardware and
program space - but the difference is very small. The one severe
restriction on isolated I/0 is that the port address is fixed by the
instruction, S0 it cannot be changed under program control if the

instruction is in ROM.

8-37

INPUT/OUTPUT TECHNIQUES

SYSTEM ADDRESS BUS

JHETT
DECODER
83F3 83FF
SYSTEM DATA BUS
11NN 1HEREE LT
> 8212 < I
> Latch e
Current
Drivers
[/ N\
L 4

Memory Mapped Display

Figure 8-15

INPUT/OUTPUT TECHNIQUES
8.3 DIRECT MEMORY ACCESS

The third method of input and output is direct memory access, in
which data are written to the proéessor's memory, or read from it, by
external hardware as well as by the CPU. This is very efficient for
the program, but typically it demands more externmal hardware than
input and output ports require. 1In a Direct Memory Access system the
DMA hardware ('"channel") seizes control of the address and data buses
whenever it is ready to read or write to the computer's memory. This
briefly suspends the computer's operation, accomplishes the data
transfer, and then allows normal computer operation to continue. We
will describe in detail the DMA system used in the MTS for its

display.

Let us suppose for a moment that we did not have memory devices at
addresses 83F8 - 83FF in the MTS, but a set of 8212 output latches,
as shown in Figure 8-15. Now to display a digit we would use memory
mapped I1/0, addressing 83F8, 83F9, etc. and write to those apparent
memory locations. The data would be stored in the 8212 latches and
would drive the LED‘displays. This demands eight latches and eight
current drivers. Direct Memory Access provides an alternative which
in this case takes less external hardware and appears almost

identical to the program.

8-39

INPUT/OUTPUT TECHNIQUES

$100 HOLD
HOLD
MONITOR INTERRUPT
Ry
PORTOCT) ab—e
LS74
cpd
555
TIMER T
A—
@2 CLK } l
L%
S a K DMA ENABLE
LS74
q Q DMA ENABLE

RESET
HLDA

® 2 CLOCK J L I

DMA Circuit
Figure 8-16

555 TIMER i

HOLD ._,——1

HLDA _/ \——

az | [

DMA Timing
Figure 8-17

8-40

INPUT/OUTPUT TECHNIQUES
8.3.1 Repetitive Direct Memory Access

In using the seven segment displays of the MTS you have been
operating a repetitive direct memory access system. Data are written
into a fixed set of addresses, and the DMA hardware periodically
obtains data from these addresses and displays it. This is a very
attractive scheme for displays of the kind used here, and also for
video displays and some kinds of control systems. In each case the
same data need 'to be accessed repetitively because very little
external storage is provided. For the seven segment displays of the
MTS, only one digit 1is stored externally, while that digit is
illuminated. Then the DMA channel obtains the next digit and

displays it.

Figure 8-16 shows the circuit connections to the 8080 that are
involved in the DMA operation. The 555 timer periodically generates
a pulse which sets the flip flop Q1, provided that the enabling
signal from PORTOC7 is high. The output of this flip flop generates
a HOLD request to the 8080.’ It is gated with the monitor interrupt

signal to give priority to the interrupt, because internally the 8080

gives priority to the HOLD request, which is undesirable here.

At receipt of HOLD the 8080 suspends its operitions, gives HLDA (hold

acknowledge) and floats the address and data buses.

8-41

INPUT/OUTPUT TECHNIQUES

—|| 3T8VN3I YNNG

a1s

HO1V1
cizs

H3LNNOD

° —AWN—
——AN—
—AMA—
——AAMWV—
m:#u_mmzw%ﬁ_%mw m_ —AMV— mw%c_mz\.n
AV1dSIA L1910 8 —MW—
—AWN—
NMN—
L 1 |
IIIIIIIIIII r/#‘ AMN—
D G D G Y (bt —MAN—
- — ————MA—
IIIII —AAA— 4300030
8/L
IIIII MWV s
—-_—————AMA—
4 ANN—
MN—
:
08y H/b_
S+ /u_
Lav ~J
zav

€681

ogq
3:[¢}
caa
€aa
vaa
ssa
98d
J4: 14|

Display Circuit

H3INWIL
SSS

318VN3 ViAd

Figure 8-18

8-42

INPUT/OUTPUT TECHNIQUES

HLDA becomes true just before a #2 (Phase 2) clock. (See Figure
8-17.) Ql, HLDA and-#2 clock are gated to set Q2 when all are true.
The inverted output o¢f Q2 goes low and immediately resets Q1,
terminating the HOLD request. The processor keeps HLDA high for one

clock cycle, and then regains control of the buses.

During the single clock cycle (0.5 microsecond) that HLDA is high,
the DMA channel controls the address bus. Figure 8-18 shows the
connections to the display. A three-bit counter receives the tim@Pg
pulse from the 555 timer, so at each DMA cycle it counts. Its output
selects among the digits and memory locations. When the second flip
flop in Figure 8-16 generates DMA ENABLE,/ indicating that the
processor has released the buses, the counter data are connected to
Bits 0, 1 and 2 of the address bus. Bits 3 through 9 are pulled high
by resistors, and other logic (not shown) forces the chip select to
the memory chips representing addresses 8000 - 83FF. Thus one of the

data bytes 83F8 - 83FF is selected and is read onto the data bus.

DMA ENABLE strobes the data from the selected memory byte into an
eight-bit latch. Thus the data byte from the selected memory
locations has been copied into the single latch, and is ready to be
displayed. The DMA channel no longer needs access to the memory, and

the processor can resume its operation.

8-43

INPUT/OUTPUT TECHNIQUES

The outputs of the three-bit counter drive a 1/8 decoder, turning on
one ‘transistor to apply power to one of the eight digits. The data
latch and an eight-bit power driver allow current to flow in those
segments for which the data bit is 1. The selected digit is
illuminated in the appropriate pattern to show the desired character.’
At the next DMA cycle this digit is turned off and the next digit is
turned on, so that each digit operates for one eighth of the time. To
make a display that does not flicker visibly, each digit must be
turned on about 30 times per second or more. The MTS DMA channel
actually operates at about 1400 cycles per second, so each digit is

on 175 times per second.

8-44

INPUT/OUTPUT TECHNIQUES

8.3.2 DMA Input and Output

Direct memory access is commonly used in computer systems for both
input and output if a high data rate is required. Reading or
writing to magnetic disc memory 1is a typical example; Intel's
Microcomputer Development System/Diskette Operating System
operates at 250,000 bits per second or about 30 microseconds per
byte. The 8080 could not keep up with such a data rate on a
programmed or interrupt driven input system. In fact Intel uses

their series 3000 Bipolar Microprocessor for the disc controller.

The disadvantage of DMA is the significant amount of external
hardware required. It should seldom be used unless high data
rates are mandatory, or in specialized situations such as repetitive
DMA where the hardware is minimized. The hardware always includes

the following:

a) Address counter to store and alter the memory address to
be read or written (represented by the 74LS93 Counter in the

MTS)

b) Address Bus buffer to isolate the DMA address from the

system bus (the 74LS367 Tri-state Buffers)

c) Data Bus buffer to isolate the DMA data from the system

bus (the 8212)

8-45

INPUT/OUTPUT TECHNIQUES

This page intentionally left blank.

8-46

INPUT/OUTPUT TECHNIQUES

d) Gating circuits to appropriately command memory read or
memory write. The MTS is only concerned with memory read,
for the DMA channel, so this feature is not required in this

instance.

e) Timing or signal input to initiate the hold request

(the 555).

In any DMA system other than a repetitive DMA there must be some
means for the processor to inform the DMA channel that output data
are ready, and for the DMA channel to inform the processor that
input data have been stored or output data accepted. This can be
handled as a separate programmed 1/0, with the processor and
channel exchanging discrete signals. 1f DMA input and output
are both provided it can be done by writing a control byte into a
specified memory location as the last operation in the DMA
sequence; then the processor and channel both sample that location
periodically. The most common practice, however, is to use a
discrete output from the processor to initiate output and enable
input, and an interrupt from the channel when data transfer is

complete.

Sophisticated DMA systems generally provide for reading and writing
to variable areas of memory. For output the processor will send a
memory address and a byte count to the channel, which thereafter
takes data from the given and succeeding addresses until the
designated number of bytes have been read. For input the channel may

interrupt to request a memory address where data are to be stored.

8-47

INPUT/OUTPUT TECHNIQUES

MONITOR PROGRAM

ENTER

STORE USER REGISTER
PROGRAM COUNTER
AND STACK POINTER
T
DISPLAY PROGRAM
COUNTER AND MEMORY

OR REGISTER CONTENT

READ THE
KEY BOARD
NO
ANY
KEY ?
YES
STORE THE KEY
1
YES

PROCESS THE COMMAND
OR DATA RECEIVED
UPDATE THE DISPLAY

Keyboard Testing in the Monitor

Figure 8-19

INPUT/OUTPUT TECHNIQUES

8.4 I/0 INITIATION

8.4.1 Programmed I/0

Because a computer operates 1in sequential fashion, it is not
always ready to receive an input or produce an output. If it
is fast in comparison to the input device or the output requirement,
which it often is, the computer can sample the input or produce the
output at its own convenience. This is called "Programmed I1/0". It
is used in the MTS for the keyboard input. When the computer is
slow compared to the input or output requirement, as in a magnetic
disc system, we use direct memory access, but typically with
either programmed or interrupt 1/0 +to initiate and/or terminate the
DMA operation. Interrupts are discussed in the following sections

of this chapter.

Consider the MTS keyboard input. When the monitor is in
control (running), almost all of its time 1is spent waiting for
keyboard input. (See Figure 8-19.) The program has nothing better to
do with its time. It can process any command Yyou give it and
get Dback to reading the keyboard long before you can press another

key.

2-49

INPUT/OUTPUT TECHNIQUES

Programmed Input/Output

Figure 8-20

8-50

INPUT/OUTPUT TECHNIQUES

The processor can tell whether you have pressed a key because a
unique state exists (all inputs high) when no key is pressed. It
tests for this state after each new key input before processing the
key, to avoid processing a single key stroke repetitively, and yet
be able to react to multiple operations of the same key. In many
input applications there |is no special state which has a
significance different from all others, and the processor must know
by ofher means whether a particular input has been processed.
There are, of course, applications where it does not matter; a
digital voltmeter will process the input as fast as it can update its

display whether the data has changed or not.

In some systems the processor has lengthy functions to perform,
which must be interrupted to handle input or output. This can
be done by repeatedly calling an input subroutine during the main
processing, as suggested in Figure 8-20. This tends to be time
wasting, and it demands that the programmer consider how 1long his

processing will take in comparison to the input requirement.

We have seen that the strobed input feature of the 8212 enables
fleeting and asynchronous data to be latched, until the program is
ready to deal with it. This 1is very suitable for infrequent inputs

such as may exist in control systems.

Sometimes, however, the system may demand a very prompt response to
its occasional inputs, or it may give many inputs during the course
of other calculations, each demanding some degree of processing or at
least storage before the next input is delivered. It is for this

kind of requirement that interrupt driven systems were invented.

8-51

INPUT/OUTPUT TECHNIQUES

8.4.2 Interrupt Driven I/0

When an external event occurs that demands the processor's
immediate attention, hardware is used to cause a branch in the
program. Instead of repeated calls to an input (or output)
subroutine at predetermined intervals, as suggested 1in Figure
8-20, that call is created when and only when it is needed. The 8080

and most other microprocessors include interrupt handling capability.

We will discuss the internal and external logic required to create
an interrupt; the MTS interrupt system; and the design of interrupt

service subroutines.
8.4.2.1 Interrupt Logic

The following signals of the 8080 system are involved in the logic

handling an interrupt:

INT Interrupt. Request input to the 8080. It is driven

high by external hardware to request service.

INTE Interrupt Enable. A flip flop in the 8080 and
also an external output, signifying that an interrupt will

be accepted.

INT F/F Interrupt Accept. A flip flop in the 8080 signifying

that an interrupt has been accepted.

8-52

INPUT/OUTPUT TECHNIQUES

INTA Interrupt Acknowledge. A signal passed in the status
byte to the system controller, and also an output signal from

the controller available to external hardware.

To create anm interrupt the external logic must (in general) perform
two functions: request an interrupt by raising INT, and respond to
INTA by giving the 8080 an instruction. The instruction is usually
one of the special one-byte restart calls: RSTO, RST1, etc. These
are essentially identical to the CALL instruction except that the
address is implied by the op-code. Thereafter the processor
executes an interrupt service subroutine just as it would any other

subroutine.

Some systems have a requirement to test INTE to be sure that

an interrupt will be accepted. In other systems it can be used
as an indication that an interrupt has been accepted. It is not
generally necessary to use this signal externally. It is

internally gated with the interrupt request, so that interrupts will

not be honored unless the interrupt system is enabled.
The interrupt system is enabled by a RESET, or by the instruction:
FB EI Enable Interrupt

This instruction sets the INTE flag high, but it is carefully
arranged to be too late for the next instruction to be
interrupted. It is guaranteed that one instruction (usually a
RETurn from the interrupt service subroutine) will be executed

before another interrupt 1is accepted.

INPUT/OUTPUT TECHNIQUES

The interrupt system is disabled by execution of an interrupt.
This ensures that the interrupt service subroutine can
accomplish its functions without itself being interrupted. It can

also be disabled by the instruction:
F3 DI Disable Interrupt

This is commonly used when some time dependent task is to be

executed and must not be delayed by interrupts, or when a
process 1is being performed that will affect the results of the next

interrupt.

Provided that INTE is set, the INT input sets the internal INT Flip
Flop at the end of the current instruction, which is completed before

any other action occurs.

When the next instruction cycle starts with INT F/F set, some special
events occur. The CPU starts its normal cycle, sending out the PC
content and status data. The status includes INTA, a bit on the data
bus during status strobe time which commands the system controller to
issue the INTA command instead of the MEMR command. Then an
instruction 1is placed on the data bus by éxternal logic so that this
is loaded 1into the instruction register in place of the next

programmed instruction. During this <c¢ycle the 8080 does not

increment the program counter, so the address of the instruction that
has been interrupted is preserved. The 8080 clears the INT F/F and
the Interrupt Enable Flag, so that the next instruction will not be

interrupted.

8-54

INPUT/OUTPUT TECHNIQUES

8.4.2.2 Restart Instructions

It is wusual (but not necessary) that the instruction placed on the
data bus 1in response to INTA is one of the special one-byte call
instructions, RSTO to RST7. These are equivalent to normal CALL's
except that the call address is implied by the op-code, as shown in
Figure 8-21. The diagrams of Figure 8-22 through 8-24 show the
process, and Figure 8-25 (from the INTEL 8080 User's Manual) shows

the timing.

8-55

9¢-8

INSTR BINARY CODE CORRESPONDS TO NEW PROGRAM
RSTO 11]o0o00|111 CALL 0000 0000000000
RSTI1 11{001(111 CALL 0008 0000000000
RS.T2 11010111 CALL 0010 0000000000
RST3 11[o011|111 CALL 0018 0000000000
RST4 11({100]111 CALL 0020 0000000000
RSTS5 11101111 CALL 0028 0000000000
RSTG6 11{110 111 CALL 0030 0000000000
RST7 11111111 CALL 0038 0000000000
— e fe ~ — _

SANDINHOAL INdLNo/INdNI

H H H F O O © ©
H H O O K +H O ©
H O+ O FF O K+ ©
o O O 2 O © O ©o
o O O O O o o ©
O © O O O © O ©

{
{

:

- These three bits enter the FC

These five bits signify RST Instruction

The other bits in the PC are set to 0

Coding and Effect of RST Instructions

Figure 8-21

INPUT/OUTPUT TECHNIQUES

PROCESSOR MEMORY
8 2 0 O
Interrupt occurs as CPU starts to 8 2 0 1
execute instruction at 8205
8 2 0 2
e
8 2 3
3E 0
8 2 0 4
/PC is incremented 3E 8 2 0 5
8206 —l 12 8 2 0 &6
8 2 0 7
Instruction 3E is two bytes 8 2 0 8
(MVI A) so PC is sent out
8 2 0 A
8 2 0 B
8 2 0 C
8 2 0 D
12
——== Instruction is campleted and PC N
is incremented
3E
8207
INT F/F is set at end of instruction cycle.
PC is sent out again BUT MEMR command is
not given
8 2 F F
8§ 3 0 O
8 3 0 1
12
=— \/
3E
8207

Interrupt Processing

Figure 8-22
8-57

INPUT/OUTPUT TECHNIQUES

PROCESSOR MEMORY
8 2 0
Instead of MEMR the 8 2 o
A 12 controller sends INTA
e 8 2 0
| CF |-a——— External logic 8 2 0
places an instruction 8§ 2 o
on the data bus, which
is loaded into Register 3E 8 2 o0
I. ¢
P C 8207 12 3 2 o0
s P 83D3 8 2 0
8 2 0
\
. 8 2 0
™ PC is NOT incremented 8 2 o
8 2 0
8§ 2 0
8
A 12 o 2 0
CF is interpreted as L~
/ one byte CALL
l CF
P C 8207 T PC (high) is sent as data
~N
s P 83D2 N SP is decremented and sent as address
8 2 F
8 3 0
8§ 3
A
1
83DE
83D F
P C
S P

Figure 8-23

O O @ » © ®© N 00 O & W N =2 O

PROCESSOR

12

INPUT /OUTPUT TECHNIQUES

o

One byte CALL loads
PC with special address

0008

.

83D1

Execution continues from 0008

12

0008

83p1

0009

83D1

When interrupt sexvice
subroutine is finished,
return will be to the
instruction that

was not executed

Figure 8-24

MEMORY

F5

07
82

@ @ o
W W N
o o,
- O M

83DE
83DF

INPUT/OUTPUT TECHNIQUES

INTERRUPT SEQUENCES

The 8080 has the built-in capacity to handle external
interrupt requests. A peripheral device can initiate an inter-
rupt simply by driving the processor’s interrupt (INT) line
high.

The interrupt (INT) input is asynchronous, and a
request may therefore originate at any time during any
instruction cycle. Internal logic re-clocks the external re-
quest, so that a proper correspondence with the driving
clock is established. As Figure 2-8 shows, an interrupt
request (INT) arriving during the time that the interrupt
enable. line (INTE) is high, acts in coincidence with the ¢2
clock to set the internal interrupt latch. This event takes
place during the last state of the instruction cycle in which
the request occurs, thus ensuring that any instruction in
progress is completed before the interrupt can be processed.

-The INTERRUPT machine cycle which follows the
arrival of an enabled interrupt request resembles an ordinary
FETCH machine cycle in most respects. The Mq status bit
is transmitted as usual during the SYNC interval. It is
accompanied, however, by an INTA status bit (Dg) which
acknowledges the external request. The contents of the
program counter are latched onto the CPU’s address lines
during T1, but the counter itself is not incremented during
the INTERRUPT machine cycle, as it otherwise would be,

In this way, the pre-interrupt status of the program counter
is preserved, so that data in the counter m'ay be restored by
the interrupted program after the interrupt request has been
processed.

The interrupt cycle is otherwise indistinguishable from
an ordinary FETCH machine cycle. The processor itself
takes no further Special action, It is the responsibility of the
peripheral logic to see that an eight-bit interrupt instruction
is “jammed”’ onto the processor’s data bus during state T3.
In a typical system, this means.that the data-in bus from
memory must be temporarily disconnected from the pro-
cessor’s main data bus, so that the interrupting device can
command the main bus without interference.

The 8080’s instruction set provides a special one-byte
call which facilitates the processing of interrupts (the ordi-
nary program Call takes three bytes). This is the RESTART
instruction (RST). A variable three-bit field embedded in
the eight-bit field of the RST enables the interrupting device
to direct a Call to one of eight fixed memory locations. The
decimal addresses of these dedicated locations are: 0, 8, 16,
24, 32, 40, 48, and 56. Any of these addresses. may be. used
to store the first instruction(s) of a routine designed to
service the requirements of an interrupting device. Since
the (RST) is a call, completion of the instruction also
stores the old program counter contents on the STACK.

My May M3
Ta T T2 T Hm | n Ts T[T T3 T T2 Ta
P | |
- M\ | n n
| | : | 3
a [T\ | LIS J I I VA [LAV [Y LS [VI O VA (O VAW
: ' i : A . !
Ao i PG / P lee i ; \ : / skt X[sP.2
! i i : i
: S S S S
070 ! I ?‘R‘TA\) , st / [.) X | XT e
SYNC /i U : E L/ Y /1
| /_.4.\ i i |
DBIN | z ; | : —
R i ! !
WA : g i i —f -
i i |
' d : ; !
anreanaL) - \ ; S— i ‘
; i | : |
INTE ; i E |
! i f !
wt | / A ‘ : : ; :]
N :) i :
INT F/F | . : | 3
(INTERNAL) —] l . i
INHIBIT STORE OF I ! : i

PC+1 (INTERNAL)

STATUS 1
INFORMATION

i
|
0
H
i

Ao | .Y6)

NOTE: () Refer to Status Word Chart on Page 2-6.

Figure 8-25

(From INTEL Manual)

INPUT/OUTPUT TECHNIQUES

8.4.2.3 Interfaces for RST Instruction

The restart (or other) instruction that is to be placed on the data
bus during INTA must not interfere with the data bus at other times.
It is best to buffer the data bus with a tri-state device such as the
Intel or NEC 8212, or two 74125 Quad Buffers. Figure 8-26

shows an 8212 generating RST6 in response to an external interrupt.

When more than one device is to interrupt the 8080, it is often

useful to use vectored interrupts. Each device creates a

different RST instruction, thereby calling a different service
routine. Figure 8-27 shows an arrangement with which two
independent interrupts can create three different restarts: RST5 for

INT1, RST6 for INT2, and RST4 for both at once.

In a small system, the data bus can tolerate some resistive pullup,
and tri-state or open collector inverters or gates can be used to

pull down specific bits. Figure 8-28 shows such a configuration.

8-61

INPUT/OUTPUT TECHNIQUES

vee
8212
16 06 (e
I5 05 —
I4 o4 Data Bus
Note 2
I3 03 |—oo—
- - 12 02—
- 11 ol |
10 00 |—
External T (Note 1)
Interrupt ‘T STB INT ’——_'E>‘—— INT {Note
DS2 DSl
| INTA
—
INT (Note 1)
Note 1 : If the externmal interrupt is a continuous
signal it should provide the interrupt
to the 8080. If it is a pulse, the 8212
can store it and provide the interrupt
request.
Note 2 : The configuration shown places RST 6 (F7)

on the data bus during INTA.

Restart Port With 8212

Figure 8-26

Vce

High Impedance

INT 1-

INT 2

Z =
State

EF = RST 5

F7 = RST 6

E7 = RST 4

INPUTS

INT 1

INT 2

BUS

INPUT/OUTPUT TECHNIQUES

8212
17 o7
I6 06
I5 05
14 04 P Data Bus
I3 o3
I2 02
Il 0ol
I0 00 }——
STB
D52 MD DSI
#________‘ A;I::;_____ INTA
1&:-
INT
FUNCTION
NONE INT 1 INT 2 BOTH OTHER
1 0 0 1 1 0 0 1
1 1 1 0 0 1] 0 1
1 1 0 1 0 1 0 0
0 1 1 1 1 1 1 0
Z Z EF A 7 Z E7 Z
Vectored Restart Port
Figure 8-27

8-63

INPUT/OUTPUT TECHNIQUES

Vee
15K
74125 .
_ ‘ AN
INT 1 ——e— ~AAA-
Data Bus
Y4
VIV
vV V VA~
INTA
INT

Vectored Interrupt Using Resistors

Figure 8-28

INPUT/OUTPUT TECHNIQUES
8.4.2.4 Generating RST7

For systems that need only one kind of interrupt, it is easiest to
use RST7 (code FF). Simply pulling the data bus high with resistors
will enter this instruction when the data bus is floated during INTA.
No gates or buffers are needed provided that all other devices on the

data bus are able to pull this resistive load down.

In systems that use the 8228 system controller the RST7 interrupt can
be generated by pulling the INTA output of the 8228 to +12 volts

through a 1K ohm resistor.
-8.4.2,5 HALT Instruction

Many microprocessor based systems have no function to perform while
they are waiting for input. The program can be made to cycle

indefinitely in one place with:

8200 C3 JMP 8200
00

82

Now an interrupt with an RST instruction will call an interrupt
service routine which handles all of the processing, and the return

will go back to 8200. An altermnative is the instruction:

76 HLT Halt at this address until

an interrupt occurs.

8-65

- INPUT/OUTPUT TECHNIQUES

When this instruction is executed the processor enters a WAIT state

until an interrupt occurs. Now if INTA is OR'ed with MEMR, the next

instruction in the program will be read and program execution will

continue:

Program Flow:

—» EI Enable interrupt
HLT Wait for interrupt
NOP
Next instruction Process interrupt
—— JMP Go wait for next interrupt

This avoids the need for placing a special instruction on the data
bus. Note, however, that the byte following HLT will be read twice
because the program counter is not incremented during INTA.

Therefore, this instruction should be NOP.

8.4.3 The MTS Interrupt System

When the MTS executes your program in STEP mode (whether it was
started with the STEP or RUN key) an interrupt is generated by the
MTS hardware as Qach of your instructions is executed, causing a RST7
that calls the monitor program. The monitor then operates as an
interrupt service routine, which we will describe later. The
hardware involved will show something of the timing relations of an

interrupt system.

INPUT/OUTPUT TECHNIQUES
8.4.3.1 Interrupt Circuit Details

Figure 8-29 shows the interrupt circuit and timing. Recall that an
8080 instruction cycle comprises one to five machine cycles. Each
machine cycle includes three to five c¢lock periods, or states. The

first state of each machine cycle is identified by a status strobe

signal from the 8224; this is shown in the timing diagram as STSTB.
During the first state of each machine cycle the 8080 sends out
signals on the data bus to identify the operations to be carried out.
These are latched by the system controller and provide the
information to generate all the control signals - MEMR, MEMW, I1/0
READ, I/0 WRITE and INTA. Status strobe identifies the time at which

the status data can be latched by the system controller.

Two of the status bits from the 8080 are used in the interrupt
system. M1 identifies the first (or only) machine cycle of an
instruction cycle, and appears on data bus bit 5 during status
strobe. INTA signifies that the processor acknowledges an interrupt,
and appears on data bus bit 0. These are latched by the system
controller +to be available as continuous signals, as shown in Figure
8-29. INTE (interrupt enable) is available as a continuous signal

from the 8080 itself.

8-67

89-8

+5
= ——— ENABLE DISPLAY HOLD
PORTOC1 D a
AUTO I T +5
M1 c Q ~ *
STEP
INTE ——j
ITS INTR INT (TO 8080)
$100 INTR l
}-— El 7|L< RET -}‘ MVI A 4: RST 7 ——
STSTB
1] U U U U u 1] U u U
INTE | I

m— L I 1 I
J L

INTA
@ [s
INT | |

MTS Interrupt Circuit and Timing

Figure 8-29

SHINOINHDAL ILAdINO/INANI

INPUT/OUTPUT: TECHNIQUES

The timing diagram of Figure 8-29 starts with the monitor in control.
INTE has been set low at entry to the monitor. The STEP or RUN key
has been pressed, so the monitor restores the registers, enables
interrupts, and returns to the user's program. Tﬁe timing diagram
shows EI and RET of the monitor program, one user instruction (MVI A)

and the RST7 that reenters the monitor.

At the end of the EI instruction the 8080 sets INTE high. Even if an
interrupt were already present, however, the RET instruction would
not be interrupted, because the 8080 demands that both INTE and INT
be true before the end of an instruction to allow the next to be
interrupted. This insures that EI, RET can always be executed at the
exit from an interrupt service routine. The monitor has an
additional requirement: one user instruction must also be executed.

The flip flop provides for this.

The flip flop is held reset while INTE is low. When INTE goes high
the flip flop is ready to set when M1 goes from low to high, provided
that PORTOC1, which is the monitor enable signal, is also high. M1l

does not change at the start of the RET instruction, however, because

it was already set high by the single instruction EI. During the
second and third machine cycles of RET, the M1 signal goes low. Then
at the start of the user instruction (shown as MVI A), M1 goes high,
clocks the flip flop, and generates an interrupt. This is too late
to interrupt the MVI A instruction. At the end of MVI A the 8080
acknowledges the interrupt by sending INTA on data bus bit O during
status strobe, and by setting INTE low. The flip flop is reset by

INTE 1low, removing the INT input to the 8080, until once again the

INPUT/OUTPUT TECHNIQUES

monitor execﬁ¢es EI and RET. Thus every user instruction is

interrupted before being executed.

Note that when the toggle switch AUTO/STEP is set to AUTO the monitor
interrupt 1is not generated. This allows you to write instructions
into experimental programs that enable breakpoint operation in parts
that need debugging, but to operate other portions in automatic mode.
This may be important in '"real time" programs -- where progran
running time is critical. Section 8.6.4 describes how to disable and
enable the monitor. Most of the monitor input subroutines disable
monitor interrupts while they are running and enable monitor

interrupts before they return.

Referring again to Figure 8-29, you will see that there are other
ways that you can cause an interrupt. At the upper right corner of
the MTS circuit board there are eight test points. One of these,
INT, is connected to the interrupt circuit. We will use this in the

following experiment.
8.4.3.2 External Interrupt Experiment

Enter this trivial program

8200 C3 JMP8200
8201 00
8202 82

Set the toggle switch to AUTO and press STEP (not RUN). Since the

monitor interrupts do not reach the 8080, the program will run

continuously, but an external interrupt will enter the monitor and

8-70

INPUT/OUTHUT, TECHNIQUES
. /
stop program execution. Connect a test lead to INT dnd touch it to
ground. This will create the interrupt and stop your program.

8.4.3.3 Effect of DI and EI

Experiment with the DI and EI instructions. Enter this:

8200 F3 DI
01 3C INR A
02 C2 JNZ 8201
03 01
04 82
05 FB El
06 00 NOP
07 C3 JMP 8200
08 00
09 82

The DI. instruction prevents the external interrupt from being
effective until the EI at 8205 enables interrupts again. When you
operate this, again using STEP to initiate it but in AUTO mode, your
external interrupt with the test lead will always return you to the
monitor at address 8207. The interrupt canmnot affect the instruction

immediately following the EI.

You will find that if you try to operate this program in STEP mode,
the monitor will not interrupt it. It 1is a requirement of the MTS
interrupt logic (not of the 8080) that the interrupt is not generated
until a multi-cycle instruction has been completed and the next

instruction has started. In normal operation this allows the

8-71

INPUT/OUTPUT TECHNIQUES

monitor's rethrn and one user ‘anstruction to be executed before the
monitor is called again. With this test program the single-cycle NOP
does not create an interrupt. The JMP is executed, the monitor
initiates the interrupt, but the instruction being processed at that
time is Disable Interrupt, which makes the interrupt ineffective even
though it had already been received. If you change the instruction

at 8206 from NOP to:
8206 77 MOV M,A

or any other instruction requiring two memory cycles, then the
interrupt will occur as the JMP is executed and the monitor will be

called before DI is executed at 8200.

8-72

INPUT/OUTRﬁT TECHNIQUES

. r]
L
8.5 INTERRUPT SERVICE ROUTINES
When an interrupt occurs the interrupt instruction generally calls
an interrupt service routine. This is a subroutine, but it has two

special requirements. It must:

a) Preserve the environment.

b) Find out why it was called.
8.5.1 Preserving the Environment

An interrupt service routine does not use the registers to exchange
data with a calling program. On the contrary, it must preserve the
contents of all registers and flags, and restore those contents
before returning to the instruction that was interrupted. The
1nterrﬁpted program module makes no special provisions for the
interrupt, and except for the time taken by the interrupt
service its functions must not be interfered with. It may be
interrupted but not disrupted, and the service routine must be

transparent.

The first several instructions in any interrupt service routine

are almost invariably PUSH instructions to save the registers:

PUSH PSW Save A and flags
PUSH B Save B,C
PUSH D Save D,E
PUSH H Save H,L

8-73

|

INPUT/OUTPUT TECHNIQUES

|

The roLtine can now use all of the registers to perform its functions

-~ typically input and/or output. When finished it restores

the environment that existed before the interrupt by popping the

registers in reverse order:

POP H
POP D
POP B
POP PSW
EI
RET
Remember that the interrupt itself disabled the interrupt system, so

to restore the environment, allowing for another interrupt, there

must be an EI in the service routine. If this is placed immediately

before
execute
allow
is some
are di
interru
is the
modules

by a DI

the return, it is pguaranteed that the return will be
d. Placing it earlier in the interrupt routine will
another interrupt to interrupt the interrupt routine! This
times done, but usually with priority interrupt systems (which
scussed below), and requires special consideration. Many
pt service routines cannot tolerate being interrupted. This
case with the MTS monitor, for instance. Other program
may also be intolerant of interrupts. They must be protected

instructions, and at some point must also include EI.

INPUT/OUTPUT TECHNIQUES

8.5.2 Identifying the Source of the Interrupt

Commonly a system will have only one generalized interrupt
service routine to handle a variety of interrupts. For
instance an "intelligent" communications terminal might be

interrupted by a transmit next character signal, or by an
operator's Kkeystroke. Hardware can be provided to call different
interrupt service routines, as we showed earlier. This adds
cost and introduces the problem of simultaneous interrupts from
different sources. If there is not a severe time constraint
it is wusually 1less costly to use programmed I1/0 rather than
providing for vectored priority interrupts. We will define these

terms but otherwise in this course will not be concerned with them.
8.5.3 Vectored Interrupt Systems

This 1is a combination of hardware and software such that each
different source of interrupt calls a service routine specific to

the device that created the interrupt.

The prior discussion of RST instructions showed how vectored
interrupts c¢an be created by placing different instructions on
the data bus in response to INTA. Other schemes are possible, for
instance the program may store the address of a module to process

the next interrupt, if a particular sequence is expected.

8-75

INPUT/OUTPUT TECHNIQUES

8.5.4 Priority Interrupt Systems

A priority interrupt system is a combination of hardware and software
guaranteeing that an interrupt from one source is given priority
over another; the higher priority can interrupt the lower, or, if
they arrive simultaneously, will Dbe handled first. This can be

extended to many levels if necessary.

Specific hardware devices (LSI chips) are available to perform
this function. In combination with software the 8235 can also

create a priority interrupt system.

8.5.5 Timed Interrupt Systems

Systems that need to know the time of day often use a hardware
counter, operating on the computer's crystal clock, to generate an
interrupt once every millisecond (or any other desirable
interval). An interrupt service routine increments a "clock"
address in memory. The service routine may also conduct 1I/0
operations at this time, checking each input port to see if
any service is needed. This scheme provides frequent service to
all 1/0 ports without requiring each 1/0 device to create

interrupts, and is called "polling".

8.6 USING INTERRUPTS WITH THE MTS

The MTS provides for vectored

INPUT/OUTPUT. TECHNIQUES

interrupts using any of the RST

instructions except RSTO, which is the same as RESET The data bus

is pulled high by resistors,

instruction on the data

SO

bus,

interrupt acknowledge. This is

that if no external device places an
the 8080 will receive FF during

the RST7 instruction, which normaIly

enters the monitor program for a STEP or a breakpoint test. You can

connect an external device

to

enter a different RST instruction,

using any of the schemes described earlier.

8.6.1 Interrupt Dispatch

The RST instructions enter the monitor program at these iocations:

RST1
RST2
RST3
RST4
RST5

RST6
RST7

0008
0010
0018
0020
0028

0030
0038

Since all of these locations are in Read Only Memory you cannot enter

interrupt service routines

here. The monitor provides for your

interrupt service by loading an address from RAM and jumping to that

location when an interrupt occurs.

8=77

INPUT/OUTPUT TECHNIQUES

The actual instruction sequence at the RST location (for RST7) is:

0038 ES PUSH H
0039 2A LHLD 83ES8
003A E8

003B 83

003C E3 XTHL

003D C9 RET

The RST instruction pushes the program counter into the stack. PUSH
H places (HL) into the stack. Now the jump address is loaded into
(HL), wusing LHLD, i.e. the content of location 83ES8 is lpaded into
Register L and the content of location 83E9 into Register H. XTHL
exchanges the content of (HL) with the top two bytes of the stack, so
the original value of (HL) is restored and the stack now contains the
.Jump address followed by the address of the interrupted instruction.
RET pops the jump address into the program counter, so the program
continues at the address that was stored at BSES and 83E9. The same
instructions, except for different addresses in the LHLD instruction,
exist for each of the seven RST instructions. Your program can store
a Jjump address in the appropriate RAM location, and the RET
instruction will then jump to that address. Note that it arrives
there with the stack top containing the address of the interrupted
instruction, and the registers unchanged, exac;ly as though the RST
location had contained a JMP. (RST 4 also cont;ins DI because it is
used for programmed calls to the monitor, which mnust not be

interrupted.)

INPUT/OUTPUT TECHNIQUES

At RESET the monitor loads all the jump addresses. In general your
program must replace one or more of these to use interrupts. RST5
and RST6, however, are preloaded to jump into your program area.
Refer to Appendix A, Section A.4.2, for the storage location and

preset values.

In the following exercise we will develop an interrupt service
routine which will be called instead of the monitor when the RST7
interrupt occurs. This can be exercised by operating in breakpoint
mode, so that the MTS interrupt circuit will invoke your service
routine after each instruction in your main program. We will

demonstrate enabling and disabling the monitor interrupt system.

8-79

INPUT/OUTPUT TECHNIQUES

MAIN PROGRAM

Clear Counter

Store jump address

for Interrupt Service
-

| Test for BRK Key]

Not BRK

BRK

Enable Monitor Interrupts

A

Test for CLR Key

Not CLR

CLR

Disable Monitor Interrupts

-

Display High Digit of Count

Interrupt Service Exercise - Main

Figure 8-30

INPUT/OUTPUT TECHNIQUES

8.6.2 Interrupt Service Routine Exercise

The program to be developed uses the monitor interrupt circuit to
generate repeated interrupts, much like a timed interrupt system.
The interrupt will call a service routine to increment a two-byte
counter in memory. The main program will display the high digit of
the count, and test the keyboard. In response to the BRK key it will
enable the monitor interrupt system, and in response to CLR, it will

disable the monitor interrupts.

When the monitor interrupt circuit is enabled, each instruction in
your program will be interrupted, and your interrupt service routine
will be called. The dispatch program in the monitor plus your
interrupt service will take about 100 microseconds, so the fourth
digit of the count (the high digit of the second byte) will count at

about 0.4 second intervals.

The solution given used the following memory assignments:

8200 - 820F Initialize

8210 - 823F Main Loop

8248 - 8258 KYIN (Figure 8-9)

8260 - 8270 Interrupt Service

8300 - 8301 Counter

83E8 - 83E9 Store Interrupt Service Address

INPUT/OUTPUT TECHNIQUES

INTERRUPT SERVICE ROUTINE

Save All Registers

(HL.) <——— Count
Increment Count
Store Count

Restore Registers
EI, RET

Interrupt Service Routine.

Figure 8-31

INPUT/OUTPUT TECHNIQUES

8.6.3 Interrupt Service Routine Test

Figure 8-31 shows the interrupt service routine. This 1is to be
located at 8260, and the two byte counter will occupy addresses 8300,
8301. For a preliminary test of the service routine, use a trivial
main program that calls this subroutine repeatedly. This will allow
you to step through it and check the stack usage. Write the service
routine and test program. (A solution is given in Figure 8-32.)
Step through the program. After incrementing and storing the count,
examine the stack. It is convenient to load the registers with some
easily recognized data so you can identify the stack. The pages
following the program solution show a testing procedure and the

expected results.

8-83

TEST FOR INTERRUPT SERVICE

CQODE

Figure 8-32a

“ Q

= Q

2 Ny

H N

J

N e

< 2

N)
SINININIANIA
NNNNES
Ol [N M| | O]O|N Qluw|uwl|lole-e|N|™Mm[s|O]O]~ 00| 0jWjw ||~ N|m| < (-] @
Q

R

133HS ONIAOD

W3LSAS ONINIVHL H31LNdWOIOHDINW

SWILSAS HILNdWOID A3 LVHOILNI

8-84

INTERRUPT SERVICE ROUTINE

CODE .

A D 0O R

oncl Caeindin |
dn il

ﬁizu,w(éz

Figure 8-32b

Q Q
3 Q Q
O ™ ™ R
QURQ[A X[> v

BN AN

RSN Q
nin|nlni~ ~| QA lQa(a| [~
NEERR 2L Qi Q|| Q| H[W
o llalA] g Nl Q Qa0 | W
91\ \6/ \ql Y0 [0 (™ [N[N [N Q™
AN QS| N NS W QW
Ol ID]|O|NMNMO|lOILC|jOo]0lWwWluwlo OO |0l wlw | O] ™| < -]
9 |
%

133HS ONIG0D

W3 LSAS ONINIVHL H3LNdWODOHIIW

SIN3LSAS H3LNdWOD Q3LVHOILNI

8-85

INPUT/OUTPUT TECHNIQUES

Testing Procedure

The

REG A

© =

NEXT

NEXT

Q

NEXT D
NEXT E
NEXT 7
NEXT 8
NEXT 9
ADDR, MEM

STEP

STEP

STEP

STEP

STEP

STEP

STEP

STEP

displays above assume the coding

8200
8200
8200
8200
8200
8200
8200
8200
8200
8260
8261
8262
8263
8264
8267
8268

826B

shown in Figure 8-32.

the stack after storing the new count.

8-86

A-0A
B-0B
c-0C
D-0D

E-OE

H-08
L-09
.CD
F5
C5
D&
ES5
2A
23
22

El

Examine

INPUT/OUTPUT TECHNIQUES

Testing Procedure (continued)

ADDR 1/P MEM 83D6 SP.09 Register L
NEXT 83D7 08 Register H
NEXT 83D8 OE Register E
NEXT 83D9 0D Register D
NEXT 83DA oC Register C
NEXT 83DB. 0B Register B
NEXT 83DC 07 Register F
NEXT 83DD 0A Register A
NEXT 83DE 03 Return
NEXT 83DF 82

If you have pushed the registers in some different order, their data

will be in a different sequence in the stack.

Check the registers again. Note that only H and L have been changed,
since the interrupt service routine used no others. Change the data

in the registers.

REG A 826B A-0OA
0 826B A-00
NEXT 8268 B-0B
0 826B B-00

ete.

8-87

INPUT/OUTPUT TECHNIQUES

Now step to the return instructions.

ADDR, MEM 8268 E1l
STEP 826C D1
STEP 826D C1
STEP 826E F1
STEP 826F FB
STEP 8270 C9

Check the registers again to be sure that they have been restored
properly, and check the stack top to be sure it contains the return

address.

ADDR 2/T MEM 8203 ST.C3

STEP 8203 C3

Whenever you write an interrupt service routine, it is a good idea to
test it this way. Debugging an interrupt service routine in real
time operation is difficult because the monitor is disabled when an

interrupt has occurred.

8.6.4 Memory Change Breakpoints

Before going on to the main program, we will use this test program to

demonstrate the memory change breakpoint system in the monitor.

RESET 8200 CD
ADDR 8300 8300 ??
BRK 8300 BP

Since 8300 contains data rather than an instruction, the program

counter should never reach this value. Your program will change the

8-88

data stored here, however, and the
stop your program when that occurs.

ADDR 8200 CD

RUN 8268 E1

The SHLD instruction has changed

INPUT/OUTPUT TECHNIQUES

monitor breakpoint system will

the content of 8300, and your

program is stopped after that has happened. Check the breakpoint.

BRK 8300 BP.0OO

Note that the 00 displayed here is not the content of 8300, but is

the breakpoint count. Display the memory content by:

ADDR 8300 MEM 8300 .01
NEXT 8301 ??

0 8301 00

Press ADDR 0 BRK. This automatically enters a breakpoint at the

current memory address. The display should show 8301 BP.

Now we have breakpoints at both data locations.

RUN

826B El1

8-89

INPUT/OUTPUT TECHNIQUES

The program has stopped again when (8300) was changed. Remove this

breakpoint.

BRK 8300 BP.0O
CLR 8301 BP.0O
RUN 836B El

Now your program has run until the data was changed at 8301.

BRK 8301 BP.0O
MEM 8301 01
MEM 8300 00

The content of 8301 changed when the count went from OOFF to 0100.

The memory change breakpoint is very useful in debugging programs
that use interrupts. Since most interrupt service routines store
results 1in specified memory locations, you can enter a breakpoint at
such a location. Now program execution will stop after return from

your interrupt service routine.

Another use of the memory change breakpoint protects against
unbalanced stack usage, which is one of the common errors in coding
complicated programs. If you have more PUSH's than POP's in a
repetitive loop, the program will fill the stack until it writes over
the program and destroys 1itself. When you have loaded a lengthy
program by hand, this can be extremely annoying. To protect against
this, enter a Dbreakpoint at the highest location in your program.
Now if the stack destroys the data at that point, program execution

will stop before the rest of the program is destroyed.

8-90

INPUT/OUTPUT TECHNIQUES

8.6.5 Interrupt Service Operation - Main Program

Write +the main program to fulfill the design described in Figure
8-30. Use your KYIN program (Figure 8-9) to test for the keys that
we want to recognize.

LXI B, BF40 Test for BRK

CALL KYIN Returns Not Zero if BRK

If not Zero enable monitor interrupts.
LXI B, BF80 Test for CLR

CALL KYIN Returns Not Zero if CLR
If not Zero disable monitor interrupts.

Since no other interrupts are being used, we could use EI and DI to
enable or disable the interrupts. In many real systems, however, it
is necessary to selectively enable or disable certain interrupts
while allowing others to occur. The MTS hardware allows you to
switch the monitor interrupt circuit on or off by setting PORTOC1

high or low.

MVI A, 03 Set PORTOC1 high

OUT CNTO To Enable Monitor
or

MVI A, 02 Set PORTOC1 low

OUT CNTO To Disable Monitor

Use this procedure here. Note that the solution given for KYIN
(Figure 8-9) carefully preserves all of the 1low bits of PORTOC so
that it will not affect the monitor enablement. THIS IS NOT TRUE OF
THE MONITOR 1/0 SUBROUTINES.

INPUT /OUTPUT TECHNIQUES

To display the high digit of the count we will use the only monitor

display subroutine that does not affect monitor interrupts:
DISPR (02A8)

DISPR displays the low digit of (A) at the display position addressed

by (DE). Call with:

(A)
(DE)

digit to be displayed, right justified

display position

Copies (A) into (C). Loads (HL) with a table address (02B2) and adds
(A) 1into (HL). Copies a seven-segment code from this table into (A)
and ((DE)). Decrements (DE). Copies (C) into (A) to restore the

entry value.

Since we want to display the high digit of (8301) we must right

justify that digit. This can be done by:

LDA 8301 Load high byte
RRC Move high digit
RRC To low digit
RRC

RRC

CALL DISPR (02A6)

The program solution given in Figure 8-33 follows the flow chart of

Figure 8-30.

8-92

Laragas

INTERRUPT SERVICE rAnKC.LOmn —

CODE

A D o] R

N
WJM un wa
Q&
e 3 } ,.u
L AR S T
N w.? % W@ -
~ N N o
3 135 q &
N SRR EE RS w YR z
Q . Q Q ,
Q Q| N S X3 X
Q Q N \{ 1 ~ N ™ (Q
Q o S © Q > & Q |~
1 oy N S | Y, < L2
BN X | Q| SYIRES,
A Q)
~ ~ N J Qla|Q|a.|H ~ | MO~ |Qlaa
> BN % T QIQI Q> X NS D ISIQIQ
~) - < YDA J H I QL RIRR
~QQ [Voo N Qo [™ 9] Q[[QN QW] Alxy] Qi Q] w3l Wy [m[Q]Q[Q
N] O] ¥\] N Q] 9 L QN RV N VU QIQ[Q QRN
el |slwioIno|leolgolo|l0fw|u om0~ |o|lo(dla|lOjlQjw(luw|{o|c|a|m| o
0 ~
R N

133HS ONIAOD

WILSAS ONINIVHL H3LNdINODOHDINW

SW31SAS H3LNdWOD A3LVHOILNI

8-93

INTERRUPT SERVICE EXERCISE - MAIN (continued)

CODE

A D D R

Y M W . M
N , J a
/W m . - uu ,M @
N NEE - R Amﬂ :
J) .
w y%é S wb MM} 3
Q R 04
SN P4 N Qa
@ o Q VIR ~ ™ %) Q
Y > o) Ql [~ Q Qq M ~
~ X, X F (= o) i Q ~
m S < | 5 A O
w N
H J MO~ |ajo]al< QY[VH N o
< & N RERENNNE WV |) AN >y
< U b NEREE R RN]| N b
N QLAY Y QUSR] W] ¥ ™0 QEQ[QRN QT WU SN [D[QIND M QN
Q] N RV XN N YU D[N QI QO [O ™ Q| Q{ Q[Q Of N WIS RV N\
SlmiN|m| V| (rMololgla|lo|0jlW|w|o|-n|m|s(w[o(Nloleo|d a|lo|lojlw|lw|O|(~| o< © -]
A M
J =

133HS ONI1AO0D

W3LSAS ONINIVHL H3LNdWODOHIIW

SINTLSAS HILNdWOD A3 LVHOILNI

8~94

KTST, KYLN WLlLN ULDUGGILING 1w Vi

cooe KPRG,

A D D R

o
Oy
: 3 Ul ||
33 I Y g
N\ Bl o
W EEENEERY S 3 R ;
SERNNUHERERE N M , MM anE :
Q NI\ V,m‘ N d g 3 Q 5
SREBCSSRERERRRRNN Q] || [834 :
J J| | N) ~
Q Q| O Q JdiHu
QIS W |4 |- SIS ~ & g H
NENESENEE < | | <|Q]a NIENES
1R 1T N [Q] IS 1 {Q IQ LA Hl o1 e
NENENEEESSE NN R SR RNN [Q
>«
H O] A S H|l - CICINDA] N w| O
s [l I DR [« Rl [SRIQIQ?] W Aoy L
S QLT IS H QSN H [OX[E=EQ X
(Wl QM ™\ QU WL [N Q) N M) Q] QNN ™ QY
YN AV VXN USRS QUL R Q QN T[N Q[)
N |
¥ A

133HS BDNIAOD

INILSAS ONINIVHL H3LNdIWOOOHIIN

SINILSAS H31NdINOD d31VHOILNI

8-95

INTERRUPT SERVICE ROUTINE

CODE

A D D R

e Aep-erand nder’

; ,WM :
.M/ M
| : m
&
R [
Q Q
3 Q Q
)) ™ 3
QLNQ[T[>S % v
RN QR
RYENERAl A
NN n] | J QUAAQA] [~
NEBRIRES BN QIQIQ|Q[H[W
Q[A]a Al Hle alajala Wy
,,of,éfﬁ033403////80,
NS EIRES AT RIRIAN ARSI ENENES
o|lr|lalm | g | v o|No|lo|lalaljlojo|lw|w]|o||a]lm|a]lo]loe|~ mjlol0|jlwjlunu|oj=|la|m|< © -]
N N
R 7

133HS ONIA0D.

W31SAS ONINIVHL H31NdNODOHIIN

SINILSAS H31NdWOD A3 LVHOILNI

O
(=)]
!
[=<]

INPUT/OUTPUT TECHNIQUES

For an initial test of your program, start after the initialization
sequence by:

ADDR 8210 STEP

This permits normal monitor operation instead of us{ng your interrupt
service routine. You can step through to test program flow and the
display function. Observe Register A as you step through 8230 - 823A
and DISPR. Then RUN (still avoiding the initialization) and observe
the display. Since your interrupt service routine is not called the

count will not change.

Reset, and set a breakpoint at each of the OUT CNTO instructions in
the main program. Then ADDR 8210 RUN, again avoiding initialization.
ADDR 821B BRK 821B BP.

ADDR 822B BRK 822B BP.

ADDR 8210 RUN

The program will be stopped the first time you press BRK, and if you
press BRK repeatedly it will stop each time. Because you will still
be pressing BRK when the monitor keyboard functions are enabled, the
breakpoint will be displayed.

BRK 821B BP.0OO

Now RUN and press CLR. The monitor will give the usual display.of
the program counter instruction.

CLR 822B D3

REG 822B A-02

8-97

INPUT/OUTPUT TECHNIQUES

When your program writes 02 to CNTO at the next instruction, the
monitor interrupt system will be disabled, just as if you had
switched to AUTO mode. Press STEP, and observe that your program
runs continuously. CLR will no 1longer stop at the breakpoint,
because the monitor is not enabled to test for the breakpoint. BRK

will reenable the monitor and your program will be stopped.

Now that both the main program with its monitor controls and the
interrupt service routine have been tested, they can be operated
together.

RESET

RUN

The interrupt system is enabled, your interrupt service routine is
called to count in the memory locations 8300 and 8301, and the count
is displayed. CLR will disable the interrupts and counting will

stop. BRK will enable interrupts and counting will proceed.

8-98

INPUT/OUTPUT TECHNIQUES
8.6.6 Combining Interrupt Service with Monitor Functions

In the preceding exercise the monitor breakpoint functions are not
available, since the monitor interrupt has called your interrupt
service instead of calling the monitqr. You can have both functions,
however. Replace the EI, RET instructions in your interrupt service
routine with JMP O06A. Now after your interrupt service has been
processed and the registers have been restored, normal monitor
functions will be resumed. You can step through your main program,
or enter breakpoints in your main program (but not in your interrupt
service routine), or enter breakpoints at data storage locations. Set
a breakpoint at 8301. The program will be stopped each time the high
byte of your counter is incremented. The monitor will show the
address of the interrupted instruction as the program counter. The
address will vary because the program is only stopped after 256
instructions have been executed. Clear the breakpoint and observe
that counting is much slower than it was with only your own interrupt
service. This illustrates the amount of time required by the monitor

in checking for breakpoints.

8-99

INPUT/OUTPUT TECHNIQUES

8.6.7 External Interrupt

You <can introduce an external interrupt instead of using the monitor
interrupt source. Switch to AUTO mode and connect a clip lead to the
INT pin at the upper right corner of the circuit board. Each time
you ground it your interrupt service routine will be called. Modify

your program to display the entire two-byte counter.

8230 2A LHLD 8300
8231 00

8232 83

8233 CD CALL DWORD
8234 D1

8235 02

8236 C3 JMP 8230
8237 30

8238 82

You will see a number of different counts each time you ground the
clip lead. The grounding will not make a single clean connection,

but will open and close many times.

8-100

INPUT/OUTPUT TECHNIQUES

8.6.8 Interrupt Handling - Summary

In this exercise you have written and tested an interrupt service

routine, and used three important monitor features related to

interrupt operations:

a) Storing a jump address for dispatch of an
interrupt to your service routine. This is

available for any of seven RST instructions.

b) Enabling and disabling monitor interrupts

while leaving other interrupts enabled.

c) Entering a data change breakpoint. This
permits stopping program execution whenever

an interrupt has been serviced.

Other ICS courses deal much more extensively with interrupt systems,

and are recommended for students concerned with more detailed

treatment of interrupt hardware and programming.

8-101

INPUT /OUTPUT TECHNIQUES

This page intentionally left blank.

8-102

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 9

DATA |FORMAT

-

oo

90

DATA FORMAT

In Chapter 8 you used only discrete inputs and outputs, each bit being
essentially 1independent of all others. An output at C4, C5 or C6
selects a column of the keyboard; an input at any bit of Po;t A comes
from one key. The timing of inputs and outputs, apart from their
sequence, has no meaning. We will now consider parallel 1/0, where a
data byte representing a number is transferred, and serial I/0, where

the timing of signals carries information.

DATA FORMAT
SILICON GATE MOS 8255

Input Control Signal Definition
STB (Strobe Input)

A “low’ on this input loads data into the input latch.
IBF (Input Buffer Full F/F)

A “high” on this output indicates that the data has been
loaded into the input latch; in essence, an acknowledgement.
IBF is set by the falling edge of the STB input and is reset
by the rising edge of the RD input.

INTR (Interrupt Request)

A “high” on this output can be used to interrupt the CPU
when an input device is requesting service. INTR is set by
the rising edge of STB if IBF is a “one” and INTE is a
“one”. It is reset by the falling edge of RD. This procedure
allows an input device to request service from'the CPU by
simply strobing its data into the port.

INTE A
Controlled by bit set/reset of PC,.
INTEB
Controlled by bit set/reset of PC,.

MODE 1 (PORT A)

CONTROL WORD
D7 DG D5 Dd DJ DZ D1 Dll
(DL XXX

PCE'7

1= INPUT
0=0UTPUT

RD ———»0}

l«—— 578,

PA,-PA,
r——=
| 1
| INTE | pc,
L
1 P

— IBF,

PCy

INTR,

PCs,7

2
<—7— 1/0

MODE 1 (PORT B)

CONTROL WORD
D; Dg Dy Dy Dy D, Dy Dy

[XXX X

PB,-PB,

1
| INTE 1 P,

Mode 1 Input

MODE 1 (STROBED INPUT)}

BASIC TIMING
IBF /
(INPUT BUFFER FULL) \
—ﬂ B ———————————
STROBE K %ZZZZZZ%
NO PROTECTION
FOR THIS OPERATION
DATA \
INPUT \
INTERNAL / 1\
INPUT LATCH] e e o] F —
o ./
INTR \
y.
Figure 9-1

9-2

Basic Timing Input

DATA FORMAT

9.1 PARALLEL INPUT/OUTPUT

Clearly the 8255 data ports are principally intended for 8-bit, parallel
data transfer. Such data might come from a paper tape reader, an analog
to digital converter, another computer, a keyboard that includes
built-in scanning and decoding, or a communications device that includes
serial to parallel conversion. A usual characteristic of such devices
is that they generate a strobe signal indicating that am input byte is
ready for the computer. When Port A or Port B of the 8255 is programmed
to Input Mode 1, it uses some bits of Port C to handle the strobe and
give an interrupt to the 8080, and responds with an acknowledgement to
the input device when the computer has accepted the data. Some input
devices are designed to demand such an acknowledgement before entering

the next byte, or to recognize an error condition if it is not received.
9.1.1 Paper Tape Reader Example

Figure 9-1 shows bit assignments and timing for Mode 1 input through an
8255. Consider how this would be used with a high-speed paper tape

reader.

DATA FORMAT

PAPER DATA > PORT B s SYSTEM DATA BUS
TAPE - 8255
STROBE
READER —C2
< Cl ADDRESS
IBF co
% INTR
SPROCKET g
BRAKE
BUFFER —
"FULL ' p MOTOR RUN
D Q STROBE
C n ALARM \—/

MOTOR.

ry A }
17
RON COAST /RN \ coasT | e
BRAKE » by [sTor \ ‘s
SPROCKET——/ DATA PRESENT __,,__/ DATA PRESENT \ 4o/ DATA PRESENT

READER ===\ e ccec— e cce e o —- — | fr— - —— — —— - -_———— - - 5§
pata __XOALID T X T b 5
STB V <4 v 7 ALARM

8255 = mme=emmp———— e ~§5-—— -—-f .
DATA —mmee VALID _”___:X VALID _y
LEF /BUFFER FULL \ READY / BUFFER FULL _,

- = ——— o —— -
INTR —JINTERRUPT \ s .
INTA _/ —5% \ / #

r-READ L y
I/0 RD _/)7 \—/_’

High Speed Paper Tape Reader Interface

Figure 9-2

DATA FORMAT

The photoelectric reader senses holes in the paper tape. The sprocket
hole (which is present at every character position even though there may
be no other holes) is sensed to indicate that the data holes are in
position to be read. The sprocket hole signal provides the strobe to
latch data into the 8255. The logic and timing diagram of Figure 9-2
shows the sprocket hole signal clocking a D flip-flop. The IBF signal
is taken into the D input. Since it 1is (presumably) low, indicating
that the buffer 1is ready +to take data, the flip-flop is reset. Its
output is the strobe signal; this enters the data into the 8255 data
latch and sets IBF high. IBF high sets the D flip-flop through the
asynchronous set input, ending the strobe pulse and latching the data.
The end of strobe sets the 8255's interrupt request output. The 8080
acknowledges the interrupt, calls the interrupt service routine, and

reads the data from the 8255.

The act of reading (I/O RD) resets IBF, indicating that the buffer is
again available. All of this 1is normally accomplished while the
sprocket hole is still visible to the reader. (At 1000 characters per
second it lasts for about 200 microseconds, time enough for a reasonable
interrupt service routine). While the IBF signal is high the reader's

motor is allowed to coast; when IBF is reset it runs again.

DATA FORMAT

This page intentionally left blank.

DATA FORMAT

In the second segment of the timing diagram the CPU is not available to
read the data promptly. Either it has disabled the 8255 interrupt, or
its program has disabled all interrupts. The IBF signal stays high
beyond the sprocket hole signal. This signals the paper tape reader

that, although the 8255 has accepted and latched the present character,
it may not be ready in time for the next. The mechanism now applies a
brake to stop paper motion before the next character. When the data are

finally accepted by the CPU by an I/0 Read, the motor can run again.

The final segment of the timing diagram shows a failure: IBF is not set
by the strobe (perhaps the 8255 has been reprogrammed). Strobe goes low
but fails to rise again. This can generate a visible alarm signal to

indicate a loss of data.
9.1.2 Computer to Computer Interface

Some applications overburden a microprocessor, particularly when two or
more tasks require fast interrupt service response. One solution, of
course, is to use a faster or more powerful computer such as a bipolar
bit-slice machine, whose instruction time may be a small fraction of the
8080's. Often it is more economical to divide the task between two
microprocessors. They will then need to communicate with each other.

This can be handled in three ways:

a) Through input/output ports
b) Direct memory access

¢) Memory sharing

DATA FORMAT
SILICON GATE MOS 8255

CONTROL WORD

D, Dg D D, Dy D, D, D

1 1 1/0 { 1/0 [1/0

— PCyy

1=INPUT
0=0UTPUT

— PORTB

1= INPUT
0=0UTPUT

‘——— > GROUP B MODE
0=MODE 0
1=MODE 1

P, |—— INTR,

PA,-PA,

PC, OBF,

PCs f«——— AcK,

'N;" E{] peyfe——5T8,
L1
PCg IBF,
WA ———0
3
RD ———0) PCoq | —F— 10

Mode 2 Control Word

Operating Modes
Mode 2 (Strobed Bi-Directional Bus 1/0)

This functional configuration provides a means for com-
‘municating with a peripheral device or structure on asingle
8-bit bus for both transmitting and receiving data (bi-direc-
tional bus 1/0). “"Handshaking"” signals are provided to main-
tain proper bus flow discipline in a similar manner to Mode
1. Interrupt generation and enable/disable functions are
also available.

Mode 2 Basic Functional Definitions:

® Used in Group A only.

® One 8-bit, bi-directional bus Port (Port A) and a 5-bit
control Port (Port C).

® Both inputs and outputs are latched.

® The 5-bit control port {Port C) is used for control
and status for the 8-bit, bi-directional bus port (Port
A).

Bi-Directional Bus 1/0 Control Signal Definition
INTR {Interrupt Request)

A high on this output can be used to interrupt the CPU for
both input or output operations.

9-8

Mode 2

Output Operations

OBF (Output Buffer Full)

The OBF output will go ““low" to indicate that the CPU has
written data out to Port A.

ACK (Acknowledge)

A “low" on this input enables the tri-state output buffer of

Port A to send out the data. Otherwise, the output buffer

will be in the high-impedance state.

INTE 1 (The INTE Fli'p-Flop associated with OBF)
Controlled by bit set/reset of PCg.

Input Operations

STB (Strobe Input)

A “low” -on this input loads data into the input latch.

IBF (Input Buffer Full F/F)

A “high” on this output indicates that data has been loaded
into the input latch.

INTE 2 (The INTE Flip-Flop associated with IBF)
Controlled by bit set/reset of PCy.

Figure 9-3

DATA FORMAT
9.1.2.1 1/0 Port Interface

One computer can write to a data latch (such as the 8212) and create
an interrupt to another computer, which can read the data through a
similar port or through a tri-state buffer. The 8255 can operate
Port A as a tri-state, bi-directional bus interface, avoiding the
need for a second device between the systems. The 8255 is connected
as an I/0 port to one 8080 (the master) and Port A is connected to
the data bus of the other (the slave). Five bits of Port C are used
for handshaking Dbetween the processors; the slave needs additional

gating to enable Port A to interact with its bus.

Figure 9-3 defines Mode 2 of the 8255, and Figure 9-4 shows the
connection between two processors through the 8255. The master
writes and reads Ports A and B as in any other use of the device.
The slave is connected to Port A. It can address the 8255 through an
I1/0 Read or Write with a port address that gives the "Select'" signal.
1/0 Write and Select generate an 'STB input to C4, latching the
slave's data bus content into the Port A input latch, to be read by
the master. 1/0 Read and Select generate an XEE input to C6, which
places the output latch content onto the port A outputs and so onto
the slave's data bus. Otherwise Port A is in the high impedance
Sstate. IBF (Port C5) goes low when the input buffer is empty. OBF
(Port C7) goes low when the output buffer is full. Either of these
will generate an interrupt to the slave CPU to indicate that the 8255
needs service. These two signals may also be taken to other input

ports of the slave, so that it can determine which kind of service is

needed.

0T-6

-6 2an31yg

cggzg IJUIS) UOTIROTUNWWO) J0Sseooadiojul

SYSTEM 1 SYSTEM 2

8255

DataBusﬁ > Bus Port A < S Data Bus

STB I/0 WR
INTR -] C3 c4 ..____.OC_

_ :]____ Select
ACK .
—_— e AO C6
a1 - I/ORD
———
Address Al 1BF
_ . k} INTR
I/0 B ——— el RD c7
I/0 WR — e WR OBF
/! o= I/0
P

PORTS

LVRY04d VIVa

DATA FORMAT

9.1.2.2 Direct Memory Access Interface

Clearly a DMA channel can be established between two processors. It
may be handled by 1/0 ports with one processor given direct memory
access to the other processor, or there may be separate hardware to
operate DMA to both processors. This subject will not be covered

further since DMA has been extensively discussed.
9.1.2.3 Shared Memory

A power ful but somewhat expensive technique for interfacing
two processors is shown in Figure 9-5. Some part of memory
is fully accessible to both processors, and either can address it at
any time. As the figure shows, ten logic chips are needed to share
512 bytes (four chips) of RAM. The interesting point is the ready
access each processor has to the data: it is simply addressed like
any other part of memory. The timing diagram in Figure 9-5 shows what
happens if both processors address the memory at the same
time. Whoever gets there first has immediate access, while the other
must enter a WAIT state for one clock period. If the first
processor uses the memory for two consecutive reads or writes (with
an INR M or SHLD instruction, for instance), the other must wait
for two machine cycles. It is guaranteed access within one full
instruction cycle, however, unless the other processor is
executing a program stored in the shared memory. (That operation is
not wunreasonable. A master CPU might pass some lengthy task to a

slave by loading a program into the shared memory).

9-11

DATA FORMAT

37 s
JEMR l 74LS
E 165
=
Low
ADDRESS 74LS
3US 365
Nl —i | 220 ADDR ADDR ADDR
- oD 4 op Ll o L op
L s L] ru L— RW L] e . -
= —_ —] | — :
: s s cs cs i~
2 DA DA DATA DATA =
- w
- >
> I ~ m n
o
8216 3216
DATA DATA
BUS 1 I__ 305
—
fed R
8216 = 326
 — —
systex 1 oSt REQ 1
52
82 READY 1
. d 7470
z Q ENZ
7 N
>jL
Q ENL
= K
sysTey 2z OS1 READY 2
cs2 REQ 2
ck o1\ !/-\
ck ¢2 |t \T—j (- HJ \j_ll (i _1
+ SYSTEY 2
SEL F/F J/ sYstEM 1]\
SYSTEM 1
STATE 11 12 3 11
Req Lt/ \
READY
N+ [rrapy
WALT
SYSTEM 2
STATE E3! 2 ™ ™3 11
REQ ! \
REaDY
AN [READY
WALT HALT N

Logic and Timing for Shared Memory

Figure 9-5

DATA FORMAT

The shared memory is accessible to both processors, but it is vitally
important that one does not alter data that the other is using, or
unforeseen results are likely to occur. A typical convention is to
reserve certain locations for flags and addresses to be passed
between the two processors. System 1 writes (in a reserved location)
a byte that indicates: "I have stored a message for you to process”.
The next two bytes identify the starting location of the message, and
another two bytes indicate its length. Once having written these
data, System 1 must not alter the data until System 2 responds by
writing (in the same reserved location) a byte that indicates "1 have
finished processiang this message'. Thereafter System 2 must not
alter the data in that message until it has been acknowledged by

System 1.

In general one of the two systems must be responsible for allocating
storage areas, or else each system must have some portion of the
shared memory allocated to it. In a typical system, however, only
one of the processors initiates messages, while the other always
responds. In this case the initiator would generally be responsible

for coatrol of memory allocation.

9-13

DATA FORMAT

9.2 SERIAL INPUT/OUTPUT

We can attach a meaning to the time of arrival of a data bit, just as
we attach a meaning to its position in a binary number. To
communicate an eight bit number from one machine to another, the
sender outputs a discrete signal on one bit of a' data port,
thereafter sending successive bits at fixed time intervals. Ian the
early days of computers it was common to send a data signal and

two timing signals as discrete outputs.

9.2.1 Signal Coding

These signals are easy to generate ‘and interpret. The sender
switches the clock signal at some convenient time interval.
Each time it is switched low, a new data bit is sent on a separate
line. The receiver observes the clock and reads the data bit when
the clock switches high. The first bit of each word is
accompanied by a word mark. This delineates characters so

that if an occasional bit is lost the entire message will not be

garbled.

DATA FORMAT

This scheme is simple, but transmitting it over 1long distances
is extravagant as the timing signals carry very little
information. If both transmitter and receiver have accurate timing
sources, the bit clock 1is wunnecessary. The receiver can recreate
it, starting from the edge of the word mark. There are several ways
of transmitting the word mark on the same wires with the data,

thereby greatly reducing the cost.

011.01110 11110100

We can put time intervals between words on the data line and fit
the word marks into the intervals. If they can be distinguished
from the data bits: (by a narrower or wider pulse, or a different

frequency, for instance) they will still serve the same function.

9-15

DATA FORMAT

9.2.2 Synchronous Communication

A technique which 1is in common wuse is to send word wmarks
ohly infrequently, maintaining a well synchronized clock over a long
message. The word mark is now transmitted not as a single pulse for
each word, but as a special, recognizable pattern called an Idle

character.

we ||| []]] L
orh || HHHIH\II||IIlVlII|HI\IIIHU

This 1is merged into the normal data stream as though it were part of
the message. It fulfills the role of a word mark in
controlling synchronization of the bit clock and in marking the
boundary of a character. When the receiver 1is seeking
synchronization, it collects eight bits and compares the pattern with
that of the known idle. If the pattern is wrong it discards the
oldest bit and shifts in the next. This continues until the idle
pattern 1is recognized, indicating that synchronization has been
achieved and communication can begin. It is common in such systems
to have at least some degree of reverse communication or
feedback from the receiver to the sender, which is used to say "OK"
or "HELP". This is called a supervisory channel and is only used to

operate the communication system, not to transmit messages.

DATA FORMAT

This method is referred to as "synchronous communication" because of
the requirement for continuously synchronized send and receive
signals. After the initial period of seeking synchronization, the
receiver stays synchronized by observing signal transitions in
the data stream. 1Its crystal clock is able to maintain sync even if
long strings of data are all ones or all zeros, of if the signal

is temporarily lost. Thus all the signals on the communications line

are part of the message being sent. If there 1is a break in
the message, the sender must fill the spaces with idle characters so
that the time from the beginning of one word to the beginning of

the next is always exactly one word time.
9.2.3 Asynchronous Communication

An alternative method is especially suited to devices such as
the. teletype, whose characters are transmitted and received
asynchronously. There may be long pauses between characters, but

occasionally one character will quickly follow another.

The transmission rate for a teletype is wusually 10 characters per
second or approximately 120 words per minute (a very fast typing

speed) . The same signal format has been adopted for faster

electronic communication devices.

9-17

DATA FORMAT

In asynchronous communication each character is independent and
carries its own word mark. The adopted convention is for each data
character to be preceded by a zero, followed by one or more bit-times

(intervals) of the '"one'" signal.

[] I T

11100110 0 01 11111

STOP STOP
START START

After some period of time with no data, (i.e. constant "one"

signals) the receiver will see a transition to zero. This signals

the start of a character, and the receiver synchronizes its clock.

TRANSITION DETECTED
g st O 11 0 1 1 1 0 SIoP
CLOCK CHECK :

SYNCHRONIZED START BIT BIT STOP
BIT

9-18

DATA FORMAT

One half bit-time later the receiver checks the start bit. If it is
not zero, an error has been made. Thereafter the receiver
accepts eight bits, reading them at one bit-time intervals, then
tests the stop bit to see that it is a "one". Now the receiver waits

until another transition to zero marks the start of next character.

Within a character the data are transmitted least significant bit

first, so the sequence is:

Start Bit
Bit O

Bit 7
Stop Bit

(optional addiitional stop bits)

This data format has been adopted for asynchronous communication by
the American National Standards Institute and by CCITT. The data
content 1is also coded in a standardized form. These standards were
promulgated by the American Standards Committee on Information

Interchange (ASCII).

9-19

DATA FORMAT
9.3 ASYNCHRONOUS TRANSMITTING AND RECEIVING

A special purpose communications device, the 8251, is available as a
peripheral to the 8080. This is a "Universal Synchronous -
Asynchronous Receiver - Transmitter" (UART). It is a very capable
device, and in any busy system its wuse is well justified. Often,
however, the microprocessor has little enough to do that it can
readily handle serial communications by "bit banging" - processing
and timing each bit under program control. In this and the next
exercises we will program the MTS +to send and receive 1in the

asynchronous format.

The tape cassette modem circuit on the MTS provides for recording and
reading serial data. Connect an audio cable from the IW connector to
the earphone connector of a cassette recorder, and from the OUT
connector of the MTS to the microphone or auxiliary connection of the
recorder. The programs to be developed will then record and read

tapes in the same format used by the monitor read and record program.

The output from the writing program must be at PORTOCO (the least
significant bit of port address 02) and the input is received at

PORTOBO (the least significant bit of port address 01).

DATA FORMAT
9.3.1 Serial Transmission Exercise

For practice in handling interrupts, we will write an interrupt
service routine that will transmit one bit each time it is entered.
If 'a timer were available we could use it to generate the interrupt
at the appropriate intervals. In this program we will call a timing
loop subroutine to generate the time delay, and use a programmed call

to the interrupt service at the end of the delay period.

The main program loads successive bytes from memory and passes them
to the interrupt service routine. Since in a real interrupt system
the main program has no knowledge of when an interrupt occurs, the
data must be passed through some fixed location in memory, and
interrupt service must indicate when it has finished with one byte

and needs another.

The interrupt service routine must send start and stop bits as well
as data bits. A simple way of handling this is to store the full
data pattern in 12 bits. This will be shifted out, one bit at a
time, by the interrupt service routine. When the pattern is empty
(0000), both the interrupt service routine and the main program will
know that the character has been sent. No more bits will be sent

until the main program stores a new pattern.

9-21

DATA - FORMAT

This page intentionally left blank.

9-22

DATA FORMAT
9.3.2 Character Data Pattern

The data pattern is stored as two bytes, as follows:

High byte Low byte
0000111h gfedchbao
— = v -
Stop Data byte Start

This is loaded and stored by the main program by:

MOV L,A Data byte
MVI H,07 Stop bits
DAD H Enters start bit

Interrupt service will shift the data pattern right and output each

successive bit until the data pattern is empty (all zero).

DATA FORMAT

(ENTER ’

Save Registers

Load data pattern

Test for empty pattern

Empty

Shift pattern right
(MSB)<4— 0 CY «—1SB

Store pattern

Move carry to bit 0 and
to bit 2, Set bit 1.

Output Data to PORTOCO

<

4

Restore registers

EI, RET

Serial Data Transmit Interrupt Service Routine

Figure 9-6

9-24

DATA FORMAT

9.3.3 Interrupt Service Routine

The interrupt service routine is shown in Figure 9-6. Write this
routine and test it as described in Section 8.6.2. Note that the
output 1is to be PORTOCO, which 1is connected to the tape cassette
modem. Also copy the data bit to PORTOC2, which controls the Carry

Indicator.

oF SBB A Copy CY to all bits

E6 AN1 05 Mask for bits 0,2

05 , .

F6 ORI 02 Set Bit 1 to enable monitor
02

D3 OUT PORTOC

02

This will cause the carry indicator to display each bit as it is

transmitted.

We will wuse RST5 to call the interrupt service routine. You can

store a jump address at 83EC,ED.

LXI H (interrupt service address)

SHLD 83EC

Since the monitor automatically stores the address 8228 as a jump
address for RST5, you can avoid the need for these instructions by

locating your interrupt service routine at 8228,

9-25

DATA FORMAT

(START ’

>

CALL ENTWD for memory address
Store address at 83E4,ES

CALL ENTWD for byte count
(DE) <— (HL) byte count
(C) =— 7D delay time

L Jump past interrupt service

'MAIN LOOP
Load memory address
(A) =—data byte

Increment and store address
(L) <—data byte
(H) =—stop bits

y

Shift data pattern left to
insert start bit

Store data pattern at 8300,01

>

Call Interrupt Service (RST5)
Call Delay Subroutine (03EB)

Load data pattern

Test for empty

Not Zero $

Decrement byte count, test
for zero

Not Zero

RST4

Serial Transmit - Main

9-26 Figure 9-7

DATA FORMAT
9.3.4 Main Program

After testing your interrupt service routine, write the main program
shown in Figure 9-7. This will not fit in the space from 8200 -
8227, and the following locations are used by interrupt service. It
is convenient to place initialization functions (in this case the two
data entry calls) before interrupt service, and the main loop beyond

it, say at 8259.

We can save both effort and program space by sharing a delay

subroutine between this transmit program and the receive program of
the next exercise. The monitor contains a suitable delay subroutine,

which includes data input:

DELYT (03EB)

Delays for a time set by Register C.
106 + 148(C) system clocks, including CALL
All registers preserved. Zero Set.

Returns Carry = input bit from PORTOBO.

Load Register C with 7D to make this delay compatible with the tape

cassette program of the monitor.

9-27

DATA FORMAT

.The solution given in Figure 9-8 also wuses another monitor

subroutine:

SHLRT (022D)

This tests the content of (HL) and then shifts (HL) right one bit. It
returns the least significant bit of (HC) in Carry. Zero is set if

the entry value of (HL) was 0000.

You can wuse your program to record a tape, which the monitor tape
reading program can then read back. In the next exercise we will

create a serial input program which will read tapes recorded by this

program or by the monitor.

SERIAL TRANSMIT - DATA ENIRY

CODE

A D D R

(DE) e— Lty taecrl

C) e 4,00, Cocrt
OLW M

Figure 9-8a

ENM|T|W|D at,&;ﬁ,w

CIAIL|L] |EMTIWID| Yt atartena

SIHILID| |PI3E 4 4‘544454@3‘

Q
Sl 1Y
A
Qy
\)
< \H
| TN o
T V> =
J x| |
QN ™) O X0 |Q [N\ W[W QM| %
O S WS NR QLUN N o’
01.23456739.ABCDEF01234567 ol 0jlwiluw ol ©
Q
3

133HS 9NIAOD

WILSAS ONINIVHL HI3LNdWODIOHIIW

SIW3L1SAS H3LNdWOD QI LVHOILN I

9-29

SERIAL TRANSMIT - INTERRUPT SERVICE

A D [s] R

ol bla |

Sl

enalds pnonilor
s Lo
and C¥ endecalZro

CODE

M
\a.m M/z /M W/ﬂ/a a
N \ Q IM J T
A\ M M/ S @M @
h ~
NEESHEE R BRRNE Wmmu 3 :
BN D S Q N 2
~ J
Q K Q Ql
RIEEN d N Q |~
vl | I s ™ A% 2
QLS 9 < A 5 x| Q [
O LQ | | [N
X J _
Y| L ~ N i S (AN S
nEINES N M NN VI (X (D | QQHu
QN | — Q > <y VY QS A&
O ool [0| QIS [| 0] D[Q™[4 [N3] o Ny 00 YN N [NQ N
W S U O] 8 R0]] S S QU™ QU SIRIQ NN v
Mmoo Nlo|lolg|ln|jlo]0jlw|ln |o|l~rln]mlglv]olNn|oleo|d|a|lOo|0|lwle|ol|lN]m]| = © 0
R)
R B

133HS DNIAOD

W3LSAS ONINIVHL H31NdIWODOYHIIN

SINILSAS H31NdNOD A3 LVHOILNI

9~30

SERIAL TRANSMIT - MAIN LOOP

CODE

A D D R

N
N RE M) W M 3
MY % ; 3 a SRR
3 N %/Lw § o
W R ARRRFERERRCE RN
X | R R LR R 3} :
=
X R Q > Q N
W W N Q ~ Q S 5 9
N S ™ SN ™ W I |y Al [y Q
S 1 L oo Q | | 1 IS I N
<X NIEEES , </ AW S
[a) S A Y J A 3
J RN 4] NinERAN A~ o ~ ESGShY >[N ~Q
X QIR Qx| [Lfx Q| < X Q2 J| QY= 21b3
- = |H NEHERZ NN - 2Qlh RIRIEN) Xl
<] X 0] W ™| o oo WS N] [| QW[Q[0 M|t [Q[0] Yo N Q| g] 0| ¥ Q| N W[Q| <%
SO ™Y N |] W o o] Y x|] QS| QW] 0] W] Qo ©f S D =g o o N N RN 9V R
\ S N
2 N N\

9~31

133HS ONIGOD

WILSAS ONINIVHL H31NdWODOHDIW

SWILSAS HILNJWOD AILYHDOILNI

DATA FORMAT

Return from Main Loop —

(man - pata ENTRY)

Y
CALL ENTWD for starting address

Store address at 83E4,E5

CALL ENTWD for byte count
(DE) <+— byte count
(HL) «— starting address

(C) =e—Dbit time

Byte Count Entered

l

To Transmit
Main Loop

No Byte Count
entered

To Receive
Main Loop

Transmit - Receive Data Entry

Figure 9-9

DATA FORMAT

9.4 ASYNCHRONOUS RECEIVING

Modify the keyboard data entry section of the previous main program
to select between recording and receiving according to whether a byte
count is entered at the second <call to ENTWD (Note that ENTWD
returns the Zero flag set if no hex keys are entered.) Figure 9-9
shows this program segment. It will allow you to record data from

memory to tape, then stop and rewind the tape and read it back.

It is somewhat more complex to receive thanm to transmit in the serial
format because two input functions are needed:
a) Wait for a start bit

b) Receive successive data bits

The start bit 1is initially detected when the received data bit
changes from one to zero —- from a stop or no data condition to a
start bit. This must be recognized promptly in order to obtain
synchronization between the incoming data and the receiver's timing

device or programmed timing loop.

To wuse interrupts for receiving data we would need to generate an
interrupt at the leading edge o0f the start bit to obtain
syachronization, delay one half bit time to the middle of the start
bit, and then delay one bit time to the middle of each successive bit
until the entire character has been received. In this exercise we
will use a loop that repeatedly tests the input until it becomes low.

Then a timing loop will be used to accept successive bits.

DATA FORMAT

‘ ENTER)

>

4

Read Input

HIGH
Low

Delay half bit time

Read input to carry

Wait for Start Bit

Figure 9-10

9-34

DATA FORMAT

9.4.1 Wait for Start Bit

The subroutine shown in Figure 9-10 repeatedly reads the input from

PORTOBO and waits for a start bit:

—> IN PORTOBO

RAR

— JC

The three instructions above take 24 clock times or about 12
microseconds. This gives adequate precision for detecting the edge

of the start bit at low data rates.

Now we delay one half bit time and check to be sure that the input is
still 1low. This avoids synchronizing the receive timing to a
momentary '"glitch". There is good confidence that if the falling
edge has been seen and the signal is 1low half a bit time later, the

signal received is a legitimate start bit.

Recall from Section 9.3.4 that the delay subroutine DELYT delays for
one bit time and returns with the 1input bit in Carry. An alternate
entry delays half a bit time:
DELYC (03F0)
Delays for a time set by Register C:
48 + 74 (C) system clocks, including CALL.
All registers preserved. Zero set.

Returns Carry = input bit from PORTOBO.

Using the DELYC entry avoids any need for changing the entry value in

(C) between the half bit time and full bit time delays.

9-35

DATA FORMAT

9-36

(ENTER)

Clear (A)
Set Carry for bit mark

Shift new bit into MSB

CY

Delay full bit time

Read data bit to Carry

Data byte complete

Y

Delay full bit time

Read stop bit to Carry

Y

(RETURN)

Receive Data Bits

Figure 9-11

DATA FORMAT
9.4.2 Receive Data Bits

After the start Dbit has been recognized we must receive and store
eight successive data bits at full bit time intervals. Figure 9-11
shows a suitable process. Register A is used both for saving the
received data and for counting bits. The start bit is marked by
shifting a one into Bit 7. When that bit is shifted out from Bit O

we know that the eight data bits have been shifted in.

It 1is possible to misread the start bit and synchronize improperly.
If this happens, the data received will be garbage. Some protection
against this is obtained by testing to make sure that a proper stop
bit is received. If characters are received at léngthy intervals, as
from a manually operated keyboard, this test has little, if any,
value. When a continuous string of characters is being received,
however, any timing error is likely to propagate to the following
characters. Now synchronization will occur, not on a start bit but
when a one— zero transition occurs in the data. Fairly soon this is
likely to result in a zero data bit appearing when the program

expects a stop bit. The stop bit test detects such an error.

The subroutine of Figure 9-11 returns with the data byte in (A) and
the stop bit in Carry. Thus, if Carry is not set at return, an error
has been detected. The Zero flag is set by DELYT, and so returned by

the receive subroutine.

DATA FORMAT

@NTER)

CALL WAITS

to wait for start bit

CALL RCV for data

byte and stop bit

Not Carry - Error

Compare with stored data

Not Equal

Increment memory address

|

Yy

Store memory address
at 83E4, E5

Enter monitor (RST4)

Receive Main Loop

Figure 9-12

DATA FORMAT
9.4.3 Receive Main Loop

In the previous exercise we recorded a program on a tape cassette.
Now we will read it back. Rather than storing the program, however,
we will compare it with the program already in memory. Thus, if the
recording or receiving program is bad, or if the two are not
compatible, we will not have destroyed the. programs and will quickly

detect the problem.

If an error is detected, either by lack of a stop bit or by
disagreement between the received data and the previously stored
data, store the memory address and enter the monitor by RST4, as

shown in Figure 9-12.

The monitor uses the content of 83E4, 83E5 as the memory address, so
MEM will display the location and the data byte that was recorded or

reread incorrectly. REG A displays the received data byte.

Since the delay subroutine returns with Zero set, if the error was
detected by‘a missing stop bit the Zero indicator will be on. 1If the

error was detected by the comparison, Zero will be off.

As long as data bytes or a continuous "one" input signal are
received, there 1is no exit from the receive 1loop. When the tape
reaches the place where you stopped it during recording, an error is

bound to occur. MEM will display the address beyond the last byte

that was recorded.

9-39

CODE

A D D R

TRANSMIT - RECEIVE DATA ENTRY

—
k|
3
NREE W.Ma,m w W ule
. & ulo 8
| M q Aam 3 N RS T
/& &,F g EnVLa/)
J N A J MM ARG 2
Ma S M Wy) 3 H Ul | o)
N < 3 SIS 2
al |- I BER of |1
B B B R ™ w| H v &
~ W ~ W Q N Q a2
2 ™ 2 D) Q S D) o|t|v
E nva E nvo ™~ »}Q Ad OR\K—L._
9 S S n||H
N A < NIfa) NTE
J J J I 1 N . o LAl
SHEBE < NES > N s NEE
N
QN 0] [X ™ Al w0l o N QR[] | w [Q
N AR NN NN SN N N NN NN N
0123456789ABCDEF0123.456789ABCDEF01234 © L]
0 ~N
™ 2

133HS SNIAOD

W3LSAS ONINIVHL H31NdWODOHIIN

SINFLSAS H31NdWOID A31VHOILNI

9-40

133HS ONIA0D

W3LSAS ONINIVHL H31NdWODOHDIW

SWILSAS H3LNdWOD AILVHDILNI

AN
$,
AERE R EE
31 3 3 8
3 R EER: Y B s
NN [M r,‘mxcﬁm /w W
N 3
9) 4
= N ~ N A Q
2 [S (W N S Q
Sl) % X D & 5
z|'3 a4 S Qo [N DY g
: by X X
BiJ L Q
@ | L) QN xla| | |J ~a
8 [t < P 2= RNE x 2p3
J U 2 JIN Hi| | [o[
ol QI QL DR Q] 93N O Syl YN K00 Q| S HM N | QY
8 VR Ay U 0 Q[0 04 0 [N QY 0]) Q] N Wil O Wy V[Q[B
glolcin|m|s|vlo|no|lo/dlalojojw|e|ole|a|o|s|[v]|o]l~ glo|/ojlw|lw|o||a|n]|« ® ©
DOd 0/0/
DJ 44
aj o 890 [-]

9-41

WAIT FOR START BIT (WAITS)

Figure 9-13c¢

Q Q

Q Q Bt Q

~ < < AN

SHECSEENEER

Q & Q o

Q

|
X < N

NS X) W

Hl [P V £ X
wl QN N QWY MY O
RN N AR NV W I_QR[NY
glOj=IN M| WO |INo|lo|gdld|lo(O|lw|lw|Ole=|la]lo|lsclv]o]|~ o|lo|lolwlw{ol~n|m]| < © -]
N
o "

(-~

0

133HS DNIAOD

W3LSAS ONINIVHL H3LNdWODJOHIIW

SINILSAS H3LNdWOI GILVHOILNI

9«42

RECEIVE DATA (RCV)

CODE

A D D R

~
Mm
ﬁ. w Y
Mﬁ% RN 3
wMM» MWM& o
RNk i ;
LB RMES :
3 3 X :
b~ N
N} >) >
Q J Q <
% W) W
SN Q Q Q
Ny
J J
< X J Qa J W~
MINSSN <X s < W
X[U ¢ N, NS
WA [0 Y Q0[M| 0 oy x| QN ™[>
R N QR V| W QIR W QY
3 5 3
o« Vo mvd -] -]

133HS ONIQOD

W3LSAS ONINIVYHL H31NdINODOHIIN

SWILSAS H31NdWOD Q3LVHOILNI

9-43

DATA FORMAT

9.5 MONITOR TAPE PROGRAMS AND SUBROUTINES

The modules you have developed in the preceding exercises are
available 1in different form in the monitor. We have already used
DELYT, DELYC, and SHLRT. Before defining the other subroutines we

will describe the use of the monitor tape recording functions.
9.5.1 Tape Recording Program

The normal monitor function of recording a program on the tape is

accomplished by:

Set toggle switch to AUTO.
Turn recorder on.

RESET

ADDR (starting address) MEM
ADDR (stopping address) BRK

ADDR 0371 RUN

The tape recording program uses the breakpoint system to terminate
the transmission. It is important that no other breakpoints be

entered while this is running.

While the program is running, the display is disabled. When the data
have been recorded, the display will show: 0382 CD. Wait about two
seconds before turning the recorder off. Note that the content of
the stopping address is not recorded on the tape. Instead, an error
check character is recorded. Therefore, the stopping address must be
the next location past the end of the program you want to record.

When you read the program back, the error check character will be

9-44

DATA FORMAT

written to this location. When you have finished recording you can
observe this character by pressing BRK. It will display the stopping

address, the BP. symbol, and the error check character.

The tape is recorded at a data rate of 110 baud. This means 110 bit
intervals .per second. Since the tape program sends 12 bits per
character, the data rate is 9.17 bytes per second. Each page (256
bytes) of memory recorded takes 28 seconds. If you wish, you may
increase the data rate by loading a different delay count in Register
C, and enter the program at 0373. A value of 2D in Register C

generates 300 baud or 25 characters per second.

If you operate this program in STEP mode the tape will be recorded
correctly but the final display of the breakpoint count will not show

the recorded check character accurately.
9.5.2 Tape Reading Program

To read back and store in memory a program that has been recorded on
tape, listen to the +tape until you hear the steady tone that was
recorded before you started the recording program. Stop the tape,
connect the recorder earphone output to the modem input, set the

toggle switch to AUTO, and enter:

ADDR (starting address) MEM
ADDR 03AE
Start the tape player

RUN

9-45

DATA FORMAT

It is important that the recorded tape have a few seconds of
continuous tone before the data starts, to give you time enough to
hear it, stop the recorder, and press RUN after starting it again.
The tape must be giving the continuous tone when you press RUN. If
data has already started before RUN, an error will be detected and

the display will show Err.

While the tape is being read the display will be disabled. At the
end of the tape the display will show O03CF C5. Register pair HL will
contain the stopping address. ADDR 8/H MEM will display the error
check character recorded when the tape was made. The reading program
has also calculated the error check character, and if the two agree,

Register A will contain 00. If it does not, an error has occurred.

9.5.3 Error Check Character (LRC)

The error check character, also called "longitudinal redundancy
check" (LRC) character, is the exclusive OR of all data bytes sent or
received. The reading program receives each data Dbyte from a

subroutine, stores it, and calculates the LRC.

MOV M, A Store data byte
INX H Address next byte
XRA E Calculate LRC
MOV E, A Save LRC

The 1last character recorded is the LRC of all preceding characters.
This character is included in the LRC calculated in receiving, which

therefore must be zero if no errors have occurred.

9-46

DATA FORMAT
9.6 MONITOR SEND AND RECEIVE SUBROUTINES

The subroutine used by the monitor for sending and receiving are also
available to your programs. We have already defined the delay
subroutines DELYT and DELYC (see Sections 9.3.4 and 9.4.1).
Additional subroutines are defined here. In the exercise of Section
9.6.5 we will use these monitor subroutines to record and read

cassette tapes.
9.6.1 SOTBT (0382)

This monitor subroutine combines the testing and shifting function
for the data pattern with the process of loading the next byte when
the pattern is empty. You can call this subroutine from an interrupt
service routine or at intervals set by a programmed timing loop. It
must be entered with the data pattern in (HL). It returns with the
data pattern shifted right, and the data bit to be output in bit 0 of
Register A. Carry and Zero flags are both cleared. When the
pattern is empty SOTBT loads the memory address from (83E4, 83E5) and
tests whether this address has been entered as a breakpoint. If not,
it loads the content of this address to the data pattern, stores the
next memory address, and returns a start bit. This is marked by Zero,

Not Carry.

SOTBT also calculates an LRC character (see Section 9.5.3) for the
message being transmitted. When the breakpoint address |is
encountered, SOTBT 1loads the LRC instead of the data byte into the
data pattern. When the LRC has been transmitted, SOTBT returmns Carry,

Not Zero, and (A) = FF to indicate the end of transmission.

9-47

DATA FORMAT

The starting address must be stored at (83E4, 83E5). The stopping
address may be entered as a breakpoint either by monitor command or
by calling a monitor subroutine. Section 9.6.2 describes entry and

removal of breakpoints under program control.

SOTBT Data Entry and Return

Enter with
(HL) = data pattern
(83DE-83E3) loaded by entering stopping ‘address as a
breakpoint.
(83E4-83E5) memory address for data byte.
Return

(a) If the data pattern (HL) was not empty (zero)
at entry, SOTBT returns:
(4) 0000010X where X is the data
bit to be output.
(HL) shifted right
Not Carry, Not Zero.

(b) If the data pattern (HL) was empty at entry,
and more data remains to be sent, SOTBT returns:
(A) = 00000000O0 to send start bit
(L) data byte
(H) = 00000111 to send 3 stop bits
Not Carry, Zero

(c) If the data pattern (HL) was empty and the stopping
address has been reached, return as in (b) except
that

(L) = LRC for message
(83E0) changed to mark end of message

(d) After the LRC has been transmitted SOTBT returns
(A) = FF
(L) = FF
(H) = 07

Carry, Not Zero

In all cases SOTBT preserves (BC).

9-48

DATA FORMAT

Note that during data transmission the data returned in (A) by SOTBT,
which will be written to PORTOC, disables monitor interrupts. At the
end of transmission SOTBT returns (A) = FF which enables monitor
interrupts when written to PORTOC. If the AUTO/STEP toggle switch is

set to STEP a RST7 interrupt will occur.
9.6.2 Program Entry and Removal of Breakpoints

The breakpoint system can be controlled by user programs. This might
be wused in debugging a complicated program, to enter a breakpoint
within some subroutine only when it is called by one of several
modules. Another use is to let the breakpoint system terminate a

memory search, as is done in the serial output module of the monitor.

Three monitor subroutines are used in such a process. BKLOC finds a
breakpoint that exists in the table. BKENT enters a breakpoint into

the table, and BKRMV deletes it from the table. It is important that
BKLOC.be used in conjunction with the other two subroutines, and that

monitor interrupts be disabled while these subroutines are in use.

Their addresses are:

BKLOC 01C3
BKENT 01A3

BKRMV 0186

9-49

DATA FORMAT

Given an address in (HL), it can be entered as a breakpoint by:

DI

XRA A
CALL BKLOC
CNC BKENT
El

The address can be removed by:

DI

XRA A
CALL BKLOC
cC BKRMV
EI

Subroutine BKLOC finds the location in the breakpoint table of the
given address, and returns Carry set if the address exists. Then it
can be entered or removed. The conditional calls to BKENT and BKRMV
prevent duplicating an existing breakpoint or removing a non-existing
breakpoint. Since these subroutines lengthen or shorten the stack it

is wvital that they not be used improperly. The procedures shown
above protect against stack errors. BKLOC must be entered with Carry

clear.

9-50

DATA FORMAT
9.6.3 Subroutine BKMEM (01D5)

This is the subroutine used by the monitor breakpoint system to test
for a change in the data stored at a memory location that has been
entered as a breakpoint. SOTBT marks the end of transmission of the
message by changing the data stored 1in the breakpoint memory table
(rather than that in the main memory), which allows BKMEM to detect

the end of transmission.
To be effective, BKMEM must be entered with Carry cleared.

If no breakpoint data has changed, BKMEM returns:
Not Carry, Not Zero
(A) = Data byte from oldest breakpoint
(BC)

Address of oldest breakpoint
(DE) Preserved

(HL)

Address of count byte of oldest breakpoint

If breakpoint data has been changed, BKMEM returns:
Carry, Not Zero
(4)
(BC)

i

Data byte that has changed

Address of data byte that has changed
(DE) Preserved

(HL)

Address of count byte for breakpoint

whose data has changed

9-51

DATA FORMAT
9.6.4 Subroutine SINWS (O3CF)

This subroutine waits for a start bit and then for successive data
bits. It includes calls to the delay subroutine. SINWS returns with
the received data byte in (A), stop bit in Carry, and Not Zero if a
character has been received. If a long delay expires without a start

bit SINWS returns with Zero set.

The delay times must be loaded to Registers C and B before the call

to SINWS.

(C) = Bit time delay count
Bit time = 106 + 148 (C) system clocks
(B) = Delay to wait for start bit

Delay 9.375 milliseconds for each count in (B).

All registers except (A) are preserved.

9-52

DATA FORMAT

‘ START)

Accept starting address
CALL ENTWD
Store starting address

(83E4, E5) —=—— (HL)

Accept stopping address
or command

CALL ENTWD

Zero

<ZTO Transmit:> To Receive

Transmit/Receive With Monitor Subroutines

Figure 9-14

DATA FORMAT
9.6.5 Transmit/Receive with Monitor Subroutines

This exercise uses the subroutine described above to record data on
tape and read it Dback, comparing the received data with that

recorded.

A starting address must be entered via ENTWD. (See Figure 92-14.)
Another <call to ENTWD accepts a stopping address for transmission,
but if none is entered the receive function is performed. ENTWD

returns Zero set after a command.

9.6.5.1 Transmission

Monitor subroutine SOTBT is called by an interrupt service routine,
activated by a programmed RST6 after the time delay subroutine DELYT.
At the end of the transmission the service routine stores FF as the
high byte of the data pattern, indicating completion as a signal to

the main loop. Interrupt service and the transmit loop. are shown in

Figures 9-15 and 9-16.

9-54

Save all registers
Load Data Pattern

CALL SOTBT
CY Set - Finished
Output to PORTOC (HY «<—— (A7)

\

Store Data Pattern
Restore Registers
EI, Return

Transmit Interrupt Service With SOTBT

Figure 9-15

DATA FORMAT

9-55

DATA FORMAT

(:Enter if Stopping Location Enteréé)

Enter stopping location

as breakpoint

3

[

Load time delay to (C)

CALL DELYT

RST 6

Test for end

(n) =—— (8301)

Not End

(8301) # FF
(8301) = FF

DI

Display LRC (83E1)
Display symbol Lr
Display final address
Remove breakpoint

EI

Transmit Main Loop With Breakpoint Entry

Figure 9-16

9-56

DATA :FORMAT

The main transmit loop uses the procedures of Section 9.6.2 to enter
the stopping dddress as a breakpoint and remove it when transmission
is finished (Figure 9-16). It recognizes the end of the message by
finding FF at address 8301, which otherwise contains stop bits or
ZEeros. The final address and the LRC generated by SOTBT are
displayed, along with a symbol, Lr. Since the display subroutines
enable monitor interrupts, it is necessary here to disable interrupts
until the Dbreakpoint has been removed. Otherwise the monitor will
detect a data change at the breakpoint, because SOTBT changes the

data in the breakpoint table to indicate that the LRC has been sent.

9.6.5.2 Receiving

The receive loop calls SINWS in three different places (Figure 9-17).
The first call is repeated indefinitely wuntil 'a data byte is
received. Data bytes are compared with successive data locations in
memory, and the address and data are displayed until one of two
possible events terminates the operation.
a) SINWS returns Zero set, to indicate the end of the
?ecording.

b) Received data is different from the memory data.

In the latter case, there may be an error, or the LRC recorded on
tape may have been received. If an error has occurred, more data
will be received, but if the LRC has been received SINWS should
return Zero set. This is tested by the final call to SINWS. If there

is an error, Err is displayed. If the end of message is found, Lr is

displayed to signify the LRC character.

9-57

DATA FORMAT

Enter if No Stopping Location Entered

Disable Interrupts

Load memory address

(HL) <— 83E4, E5

Load Timing Data

(BC) =— 207D

—>

Wait for first input

CALL SINWS

Zexo £>

Display Received Data
Save Received Data
Display Address
Recover Received Data

Compare Memory

<::i::> Not Equal ;{E:)

Increment Address
Receive next input
CALL SINWS

Not Zero

Figure 9-17a

,/’;i\\\\, Zero
\/

Receive Main Loop With SINWS

)

DATA FORMAT

End of Message

Set symbol LR

<

Display symbol left
of received data

EI

(Data Entry)

Q Data Not Egual

to Memory

Test for end

CALL SINWS

zero

Set symbol = Er

Receive Main Loop With SINWS

Figure 9-17b

9-59

DATA FORMAT

INSTRUCTION TIMING
Clock Periods

MOV x,r o .5
MOV r,M; MOV M,r 7
MVI r 7
MVI M 10
LXT rp 10
LDA; STA 13
LDAX; STAX 7
LHLD; SHLD 16
SPHL; PCHL [
XCHG 4
XTHL 18
POP 10
PUSH 11
INR x; DCR 4 5
INR M; DCR M 10
INX rp; DCX rp 5
DAD rp 10
ADD r; ADC r; SUB r; SBB r 4
ANA r; XRA r; ORA r, CMP r
ADD M, etc 7
ADI etc 7
RLC; RRC; RAL; RAR 4
DAA; CMA; STC; CMC
JMP; JNZ; etc 10
CALL 17
CNZ etc - executed 17
o - not executed 11
RET 10
RNZ etc - executed 11
- not executed 5
HLT (1f interrupted immediately) 7
NOP 4
IN; OUT 10
EI; DI 4
RST 11

Figure 9-18

DATA FORMAT

9.7 CALCULATING DELAY TIHES

In the previous exercises we have used the monitor subroutine DELYT
and DELYC. When you design delay 1loops with critical time
requirements, it is necessary to calculate the timing. Figure 9-15
lists the number of clocks for each 8080 instruction. As an exercise
design a delay subroutine to replace DELYT in the transmit program.

Calculate the timing and the necessary delay value.

9-61

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 10

BINARY AND DECIMAL ARITHMETIC

10. BINARY AND DECIMAL ARITHMETIC

A number of the exercises presented in earlier chapters have
included some arithmetic functions, including (in Chapter
4) addition, subtraction and multiplication. In this chapter we
review the basic concepts of binary arithmetic and the arithmetic
instructions. We shall write programs for decimal arithmetic and
signed numbers. The multiplication by repetitive addition technique
used in Chapter 4 would be very slow for multi-byte numbers; we shall
write a fast multiplication program using shifting. Fractions and

floating point numbers are also discussed.

10-1

BINARY AND DECIMAL ARITHMETIC

10.1 BINARY ADDITION

The rules for binary addition were presented in Chapter 1,
Section 1.2.4, and a quick review of that material is suggested.

The complete addition table for binary arithmetic is:

0O + 0= 0
0 + 1= 1

1 + 0= 1

—
-~

—
]

10

Addition of two bit numbers produces carries into the third

position. This extends to full eight bit addition:

1111 1111
+ 1111 1111

= 11111 1110

Eight bit addition can generate a carry into the ninth position.
The addition of two numbers of any size may produce a carry into
the next bit position. When a carry is generated, however, the sum
never has ones in all positions. The example above shows the
addition of the two largest possible eight bit numbers. A carry is
generated but the least significant bit is zero. This 1is of

fundamental importance for multiple precision addition.

10.1.1 Multiple Precision:

The use of more than one word to represent a number is termed

multiple precision. If the number is an integer, this permits a

10-2

BINARY AND DECIMAL ARITHMETIC

greater value than can be represented in a single word. If the
number is a fraction it permits greater precision than can be
represented in a single word. The number of words used often serves
‘to describe the operation. Thus, double precision refers to
arithmetic operations using two words, triple precision to three

words, etc.

Consider a double precision addition in which each number is

represented by two memory words (or bytes in an eight bit machine):

More Significant Byte Less Significant Byte

01100110 11100010
+11010010 10001101
1

A
100111001 \\~———-0 1101111

We add the two less significant bytes, and if a carry is generated,
as above, it must be added in with the more significant bytes.
Even if every bit in all four bytes was one, only a single
carry bit 1is generated from the complete addition. This permits a

multiple precision addition to proceed as follows:
a) Add the two less significant bytes.

b) Add the next two bytes, and if a carry resulted from the

preceding addition add it into the sum.

c) Repeat (b) for as many bytes as are required.

10-3

BINARY AND DECIMAL. ARITHMETIC

The ‘ADC instruction is used for multiple precision arithmetic. As’
with the other arithmetic and logical instructions there is a

version of ADC using each of the registers as a source:

8F ADC A Add. the content of the

88 ADC B named register and the

89 ADC C Carry flag to the content
8A ADC D of Register A, and place
8B ADC E the result in Register A.
8C ADC H

8D ADC L All flags are set or reset
8E ADC M according to the result.

A double precision add of the content of register pairs B,C and

D,E could be done by:

MOV A,C (A) <~ Less significant byte

ADD E Ignore previous carry on first addition
MOV E,A Store less significant byte

MOV A,B (A) <- More significant byte

ADC D Add with carry

MOV D,A Store more significant byte

BINARY AND DECIMAL ARITHMETIC

The 8080 includes a separate double precision add function,
however, allowing two register pairs to be added directly. The

above could have been performed by:

XCHG Move (D,E) into (H,L)
DAD B Add (B,C) to (H,L)
XCHG Put the result in (D,E)

Of course if one number had been in HL originally and we wanted
the result in HL, a single DAD instruction would do the job.

Therefore, double precision is usually done with DAD rafher than ADC.

For convenience in discussing these functions we will refer to
the augend (a2 number to which another will be added to generate a
sum) and the addend (a number to be added to an augend to generate a

sum).

10-5

BINARY AND DECIMAL ARITHMETIC

10.2 FOUR BYTE ADDITION
We will use the following specification for this exercise:

a) To a four byte number in memory locations 8380 - 8383 add

the four byte number in 8390 - 8393.

b) Place the result in 8380 - 8383 and clear 8390 - 8393.

c) Display the result.

Write a subroutine for the addition, to be called with addresses

and byte count already loaded. Note that you can modify addresses

and count bytes without affecting the Carry flag, because INR and DCR

affect all flags except carry.

Figures 10-1 through 10-4 present flow charts and coding sheets for

this exercise.

BINARY AND DECIMAL ARITHMETIC

A

LOAD ADDRESSES
LOAD BYTE COUNT

1

ommn 3

\

(HL) =— 8380
(DE)=—— 83FF

(A) =——((HL))

< ammm D

1

(HLyw— (HL) +1
TEST DISPLAY ADDRESS

Main Programs for Four Byte Add and Display

Figure 10-1
10-7

BINARY AND DECIMAL ARITHMETIC

AUGEND ADDRESS
ADDEND ADDRESS
BYTE COUNT

(ENTER) (DE)

(HL)
#

©
CLEAR CARRY

|

|

(A)=—— AUGEND BYTE
A)s—— (A) + (CY) +
ADDEND BYTE

RESULT BYTE<—(3)

INCREMENT ADDRESSES
DECREMENT BYTE COUNT

YES

Multi Byte Add Subroutine

Figure 10-2
10-8

A D D R

cooe MAIN PROGRAM FOR 4 BYTE ADD AND D1bFLAY

AR WW /W
X % Y Yy
/w/ LBERRNEER ST -
Gl
N 3N o
BRAR ~ RSER s
m/w /T/M,, MY ~ T N \\)
AR NRRNSSARSSHESEREREERREY z
Q Q A W
N AN A w 2
0 S ¥ & ™ > \) Q
vy oy Q W o9 T/ LU ~ Q
+ D./ .1M I~ ;D /ad AL A/m
Q X |V NI AASSLVERES 0y
BN J |
QL[H bl N (3] QN NN <3N [QA
QI [> D> AN Q| | QXL 2AQQ (=2 QN =
2 Q|- = N Qi =0 ~ISI) (b SNEENle
SN N T N S EN N N N A N R N N AN BN
Q| VN Q] X S| S QI W W N NN sy N AR N QRN Y QY
0123456789.,ABCDEF0123456789ABCDEF01234 -]
Q N \
! R Ry

133HS ONIA0D

W3LSAS ONINIVHL H3LNdWOOOHDIW

SW3LSAS H3LNdINOD d31vHDILNI

10-9

cope MULTI-BYTE ADDITION SUBROUTINE

A D D R

T 1A
a3
1119 |8 ¢
-
& Dm_
N & |l 7
\ H RMKHF v
JW_\ a BVARIRT RS =
MMM@ APFEE m
o~ W R u vl | o &
S ﬂ@ | f.J.M | wl o wl Wl w =
Wi o O™
MAAA | =
Q N 21 AR(A o>
Q W Wl =
Al nl 1 8 1 T 1\
€| | |2 |AlTUS ol |~
X Wil 4| |~
||| H | x|x[LN = A | (v
AAQI~ > WA Hlw QIN I [N
Q< [HHIQ[W N[2
W] W N QY | MR N R
QO] N[Qf N O] QI[N S W U
Ol N | Oo|N|o|lo|lgc|la|lo|O|lw|luw|ole=ea]om|a|w|oi~N ol ajlw|lw|[Oo|~| N| ™| < © @
\
Ay

133HS ONIAO0D

W3ILSAS ONINIVHL H31LNdWODO0HIIW

SWILSAS H3ILNdWOI A3LVHOILNI

10-10

BINARY AND DECIMAL ARITHMETIC

The calling program uses a feature that is seldom convenient with
the monitor - the HLT instruction. After displaying the result, your
taskis finished until you load new data, so it is reasonable to HLT
until an interrupt occurs. As long as the STEP/AUTO toggle switch
is in the STEP position, however, the monitor interrupts at every
instruction, so you cannot really halt. You will be interrupted,
go back to the start and do the addition and display again. Since
the augend now contains the result and the addend is cleared,
the result will be the same and the display will be fixed, as though
the halt had been effective. Now if you turn the switeh to
AUTO, the processor will indeed halt until you press RST or introduce
an interrupt some other way. The difference 1is not visible
unless you watch with an oscilloscope. The modification shown in
Figure 10-5 uses a trick to make it visible. We turn on the
decimal point at the right hand digit just before the halt, and turn
it off immediately afterward, so it is only illuminated during the

halt. Try it in both STEP and AUTO modes.

10-11

M
. NS
.n § . 1
I3 1 ff K :
AU RENRAKE RN :
W”, uww.m, Mﬁw 5
NP TR AN &
AN
N
MQu Q
H [= T [T T
m,, FQ 1 I 1%
oI SN 1] g (T
E
MT_ SHOISINH |G-
s Q| |old|Q¥ Q=
Ba] =X pA = A =
8
=
N ol QNN W W QS [
8] | W g N Wy O A N iy} &y N[Qf
rlo|lm(N|M|s | o NololgdldjlolO|lW|w @l |®m|s|B]|O®|N lol0|lwluw|olr| | ™| < © 0
1%
o| %

133HS ONIAOD

W3LSAS ONINIVHL H3LNJWODOHIIW

SIWI1SAS H31NdWOD d31VHOILNI

10-12

BINARY AND DECIMAL ARITHMETIC

10.3 BINARY SUBTRACTION

The process of subtraction is defined by these equations:

If A = B + C
then A - B = C
and A - C = B

This can be expressed in terms of 8080 instructions:

MOV A,B
ADD C (A) <- (B) + (L)
SUB B (A) <- (A) - (B) result is equal to C

Successive ADD and SUB of the same values cancel each other, except
that flags may be affected. The subtract instruction is again one

of a set which includes one for each register:

97 SUB A Subtract the content of the named

20 SUB B register from the content of

21 SUB C Register A. If the content of the
92 SUB D named register was greater than

93 SUB E Register A, set the carry flag. Set
924 SUB H or clear the other flags according
95 SUB L to the results of the subtraction.
96 SUB M

10-13

BINARY AND DECIMAL ARITHMETIC

Like ADD, SUB ignores and destroys the previous content of the Carry

flag. Another set of instructions SBB r, includes the Carry flag:

SBBr (A) (A) <= (r) - (CY)

Example: 98 SBB B (A) (A) <= (B) - (CY)

The result of SUB or SBB sets or clears the Carry flag, which is
meant to be passed to the next more significant byte. In
subtraction, it becomes a borrow flag. It is set if the subtrahend (
(B, in the example) is greater than the minuend (A), and in:
mul ti-byte subtraction the borrow is subtracted from A when the next

byte 1is processed. This is done by the subtract with borrow

instruction:
9F SBB A Subtract from the content
98 SBB B of the Register A
99 SBB C content of the Carry
9A SBB D flag and the content
9B SBB E of the named register.
9C SBB H Place the result in
9D SBB L Register A. Set or clear
9E SBB M all flags according to the result.

10-14

A double precision

MoV
SUB
MOV
MOV
SBB

MOV

The .result

would use the SBB M

LDAX B
SBB M
STAX D
INX B
INX D

INX H

in (DE) is (BC)

BINARY AND DECIMAL ARITHMETIC

subtraction can be done by:

A,C
L
E,A (E) <= (C) - (L)
A,B
H
D,A (D) <= (B) - (H) - (CY)
= (HL). Multiple precision subtraction
instruction:

((DE)) <= ((BC)) - ((HL)) - (CY)

next addresses

10-15

BINARY AND DECIMAL ARITHMETIC

Note tha% we have used three register pairs for addresses, and
Register %A for the subtraction, leaving no register available to
count by%es. We can keep a byte counter in a fixed memory location
and use %LDA, DCR A, STA to count, or we can use the stack. But be
careful: EPOP PSW to bring a counter into Register A will destroy the
Carry flag, which is needed. This is a place where the XTHL
1nstructi$n is very useful. Write a subroutine for a general purpose

multi-byte subtraction, entering with:

e ®—

(4) = number of bytes
| (B,C) = address for minuend
% (D,E) = address for difference
% (H,L) = address for subtrahend

We can u%e the same calling program as for the addition, except that
we nmust QOad an address to (B,C) and initialize a byte counter in A,
and the éall will be to the subtract subroutine at 82D0O. Place the
minuend dfrom which the subtrahend will be subtracted) at 8370 - 73;
the diff&rence at 8380 - 83, and the subtrahend at 8390 - 93. Since
they are &o be kept separate, do not clear any of these areas during
the opera&ion. For convenience in an exercise of the following

section, lkave a NOP immediately after the SBB M instruction.

10-16

BINARY AND DECIMAL ARITHMETIC

LOAD MINUEND

SUBTRACT SUBTRAHEND
STORE DIFFERENCE

LFAVE NOP HERE

i

INCREMENT ADDRESSES

DECREMENT BYTE COUNT

Multi-Byte Subtract Subroutine
Figure 10-6

10-17

cope MAIN PROGRAM FOR 4 BYTE SUBTRACT

i
A D D R

T
N
: . N

MZ ww k) z%u w 5
N) AR W W& 8 °
‘ERER IRERER & o
Amw R /u /EF. \U,,\F/_7 \J.,M/ N m,
SRERA 3|3 SREESE K i
Q N Q i) W

N S N S Q X

D)) N XX N >)

S5 % o Qo |™ Y =m Wy ~

N] D 9 N M N A ? »d
Q A X Ss T < YW [

_ %) J

H N 21 HO|d Q| =~ *NINf {0 Q|

> * NE S0 Qf > Ql< 2(QIQA| |= Q0

< J alJd g |0 Q| = HIE®O b QR
/03/035/&3£¢DD3//F&ED/J35£143400

QL AN S N Q[N N M| Q Vfsy]] M N WUV Qf | N[Q] NN

Ol N®MmM I x| O([MNMo|lo|d|loa|lo/O|lwWwW|w | Ol Oo|N|oleo | |||l w|lwfo|~|la]|m]| < © -
‘0 - L [PR S — e o i?“/\ — e e = —_— — R - I

L 3

133HS ONIA0D

W3LSAS ONINIVHL H31NdWOIOHIINW

SIWILSAS H31NdWOD A3LVHOILNI

10-18

A
N3 |
T
«) V m
S M 0}
~ H
4 o
N 3 3
\
N
) Q
S 5 x| |Z LS
”., Q T) 1<%
(1 ARSI RN
)
[H NEHENSEEER
> Qg |Qd|| Q=
- =X [ZHEX [F)b
wl U0 W QRN W W QN[N
of S o AN WD W N DS
R0123456789ABCDEF01234567 N0 jw|lw|{o|j~|N]{m]| = [--]
of &Y
of %

133HS ONIAO0D

W31SAS ONINIVYHL H3LNdWOOOHIINW

SW3LSAS H31NdWOD A3LVHOILNI

10-19

MULTI-BYTE SUBTRACTION SUBROUTINE

CODE

A D D R

C’éﬂaﬂ C}/d/mf M

o

a/E)

Lo Caven

Lotitivst SodBiodoed |

Lo bt traecd Lalin

(STDe—(HL)

A)e— LBtz

M

*@7AMA£

P
A D
[

Ze

{ Figure 10-9

3 ~
V) T N
olm)] 3
ay > QAR |E|ds
(%l | > d
A ||| OO X %[XK[X[>] ol QO
YN ol Q=2 =N Q0lu| T
Qe d[w=lnHHH[®[Z|a Q[P
NN NN N R R NN NN
6CF090/§/&£7£56DM
Ol IN|®M| | WjOo N[l (/oW (Ol ™| OO©]|N ool wjw | o= N| ™| [T -
N . 0 1 R O e B I Tl I I
B

133HS ONIAOD

W3ILSAS ONINIVHL H31NdWOIOHIIN

SWILSAS H3LNdINOD A3LVHOILNI

10-20

BINARY AND DECIMAL ARITHMETIC

The subroutine can be changed from subtraction to additionm by

altering one instruction (at 82D4):

9E SBB M to subtract

8E ADC M to add

We now introduce a scheme that is not available to programs stored
in ROM but can be very convenient for programs in RAM. The
program can modify itself by altering the instruction in response
to an input. After the display, and before jumping back to the
start, take a key input for a command to add or subtract. Use NEXT
(=15) for add; STEP (=13) for subtract. For any undefined key
enter NOP instead of either ADC or SBB. Use the monitor subroutine
GETKY, which waits for a key to be entered. Figures 10-10 through

10-12 show a coding example.

10-21

|
BINARY ANp DECIMAL ARITHMETIC

(ENTER) AFTER DISPLAY

IN SUBROUTINE

| (EwcutE)
| .

|
| ENTER INSTRUCTION
|
i

Program Modify Module

i Figure 10-10
10-22 |

CODE

A D D R

N ;% @/
K .w.u
1 MAJ TN g | /rM .
5 1y | W.M 5 3 u -
Q ¥ N\ |
| bR DEREIPERR M S
TN 19 2 @a NS pOE RN 2
= AR i w \BER Am M 2
N ‘ . . \ -
CEE SERERNEREESESEEAEN w : :
> 3+
Y A
b Q Dd m T W T Q N
w 4 SN Oy |) N ™ Q @l Q
\O % ™ ~ /O Jﬂ N 3 N ¢ I 1%
S % o [\ [> Q N o =%
J
d ~ H N N N N>
BS N, > >0 (W LSRRI D olQlE
Q ! Jdl T N |y = IO Y=<l
QLR] Q[8]] W] W) W g o [s S R Q[Q[
Y QR] [N Qlag] W N U] M 0] QI 4| N My | 9 QI[N
OQlr|N|m|slvwlo|INolo|lga|lp]|]o|OjlWw L |O|le=|ln]|o|lsgs|lw][fo|N|[o]lo|d|la|lo|l0lw|luw]|o|=] || < ©
R Oy
Ry ¥

J133HS ONIAO3

W3LSAS ONINIVHL H3LNJNOJOHIIW

SIW3LSAS H31NdWOD 031LVHOILNI

10-23

BN LHRE
h . N W/ o
3 RRCRERE 1
N A /&7 MM
O 3 A\ it N :
AERRRRIERSNERENE :
3 >3 N SN\ 3y i
2
m
2
w \.w I~
S 2 x ~
m ﬁleM1 D. -~ &
o | Qlalx] [<txfc|~
m I/ > -
o |l [l o= x<|%|X] s a]e|Q
MQZUDOOTNMNTOOCM
L Ola] 2] 2enH|H NI X Slolqlh
B4
=
2
Jf NN\ Qf Qf x| w0 oo o] G] ™~ [
QU W Q Qf Q] N N s\] oo AR
R0123456789ABCDEF01234567 (OOl w({uw]|]Oo|| N || < 1] co
of QU | b i . .
of ™Y

133HS ONI1A0D

W3LSAS ONINIVHL H3LNdWODOHIINW

SWILSAS H31NdNOD A3 LVHOILNI

10-24

BINARY AND DECIMAL ARITHMETIC

10.4 DECIMAL ADDITION AND SUBTRACTION

Often. the microprocessor will have a human interface for its
arithmetic results, and decimal input and output will be
reduired. The 8080 provides amn instruction to convert a binary

result to a decimal result:
27 DAA Decimal Adjust Accumulator

‘This tests the result of an arithmetic instruction and corrects
the content of the accumulator to create a '"packed decimal" result,
in thé form of two decimal digits. Before exploring the operation in
detail we will insert the instruction into the subroutine of
the previous exercise. To compare results of decimal versus Dbinary
arithmetic, we will provide for inserting or deleting this
instruction under keyboard confrol as we did the ADC and SBB
instructions. Use the key RUN to invoke .binary and ADDR to
invoke decimal results, and interpret them as you did NEXT or STEP .
Insert NOP after ADC or SBB for binary, DAA for decimal. As
before, any undefined key should place a NOP in place of the ADC or
SBB.

If the numbers used generate no carries, the binary and decimal
results are alike. Try putting 33 33 33 33 at 8370 - 73 for
the augend or minuend and 22 22 22 22 at 8390-93 for the addend or
subtrahend. Then addition Will produce 55 55 55 55; subtraction,
11 11 11 11. Try your program with those numbers to make sure it

works. Coding examples are shown in Figures 10-13 and 10-14.

10-25

MODIFY SUBROUTINE BY KEY INPUT

CODE

N\
s Y N4

I3 %Lm SIS N 2
W M SRR I Mm -
T Mwm /m N zm SN :
) N . N NN A)/ mJ
NEESNERERREE R R REE R SRS 3
> RS
b4 _
= Q Y W BN N NN NEEREEN
m ~ ™ S ™ o~ ™ S
\D N \ NEE I ™ I J X

N S NS Q@ [N [Oy < (G
J
J N NN H (N a NiQ
AN J Do Q) [N Q) VW = N
g h - x| [V [k s O] |n €] N
SRR NI R R R R T R A S I I N RIS R T RIN R RN ASNAS
VD] SQUS] N SS N AIS] QN L N D N QUU N N VRN ™V
Ol ||t |w|o[{No]lal | o Qjuwlw |||l |m|s|[O |~ Mowxq.vliA @lOol0|wlulojr|ofo|<|w |~ [oo
o L I \\ 5 -
Ry 3

133HS ONIAOD

WILSAS ONINIVHL H31NdWOD0HIIN

SWILSAS H31LNdWOD Q3 LVHOILNI

10-26

N
N, % "
N] . w
x| Q N
RBEEERRRRE R R EE 4
ﬂ% M N ol X T
N | K S /Mf Ip °
Wm § 1 L
DR BECEE Q
N AN N AN Q X
N D D) NER)
™Y L1 s LSy
Y [N S Q N s Y [
<N (N NN x|H |a
=2 X N > O\ Jdi~ >
R (9O |k = Y |k AlE| |
o O NN\ Q| W YT N N TN W R QYN Q[M
RN NN RN ERENNERER NSRS
ddolelajm|as|w]|o|N|ew |loa|lo|lojlw|w|lo|lr|njm|s]|w]o|~ n|lolo|wlujolela|m| < (-]
I 4
15y R

133HS ONIAOD

WILSAS ONINIVHL H3LNdWOJOHIIN

SIWILSAS H3LNdWOD G31VHOILNI

10-27

|
i
1

BINARY AN¢ DECIMAL ARITHMETIC
|

!
Now compare the binary and decimal operations. Enter these data:

|
!

837d 43 low byte
7£ 65 Augend or
7% 87 Minuend
73 09 high byte

8390 78 low byte
91 77 Addend or

92 77 Subtrahend

93 07 high byte

Run your program using the steps shown below:
|

RUN, NEXT | Augend 09876543
(binary add) Addend 07777778
| Sum 10FEDCBB

E

No carries@have occurred except for 09 + 07.
i
i

ADDR, NEXT | Augend 098760543
|
(decimal add) Addend 07777778

i Sum 17654321
@

i
Carries have occurred from all digits.
|

RUN, STEP . Minuend 098766543
(binary subtract) Subtrahend 07777778
| Di fference 020FEDCB

Borrows ha?e occurred from the first and second bytes.

10-28

BINARY AND DECIMAL ARITHMETIC

ADDR, STEP Minuend 09876543
(decimal subtract) Subtrahend 0777777178

Correct difference 02098765

The computer generats an incorrect result! Decimal Adjust only works
for addition, not for subtraction. We will see what is necessary for

decimal subtraction in Section 10.7.3.

The binary to decimal correction process for addition works as
follows: the addition 1is performed, and a flag called Auxiliary
Carry 1is set if a carry occurs from Bit 3 to Bit 4 - that is, from
the first digif to the second. When DAA is executed, the content of
the Accumulator and both Carry (CY) and Auxiliary Carry (AC) flags

are tested. Then the following is done:

If the value of the low four bits exceeds 9, or if the AC is set, add

06 to the Accumulator. These corrections occur:

ADC 07 + 08 -> Or no carry
DAA OF + 06 -=> 15

ADC 08 + 08 -> 10 AC set
DAA 10 + 06 -> 16

10-29

'
t

BINARY AN]? DECIMAL ARITHMETIC

After this correction to the low digit,

four bité exceeds 9 or if CY is set,

These corrections are made:

ADC

i
| DAA

ADC
. DAA

i
i
|
i
;

70 + 80

FA + 60

80 + 80
00 + 60

-> FO

-> 50

=> 00
-> 60

if the value of the high

add 60 to the Accumulator.

no carry

CY set

CY set

CY still set

Note thaﬂ when 60 is added it may set the CY but will not clear it.

The foll&wing examples taken from the experiment with the program

1

|

show the correction process in operation:

ADC

DAA

ADC
t DAA

DAA
|
. ADC
|

DAA

10-30

ADC

43 + 78 -> BB

BB

C1

65
DD

E3

87

FF

05

09

11

+

+

06 -> C1
60 -> 21
77 + CY -
06 -> E3
60 -> 43
77 + CY -
06 -> 05
60 -> 65
07 + CY -
06 =-> 17

DD

FF

11

no carry

sets CY

QO carry
sets AC

sets CY

no carry
sets CY

CY still set

sets AC

BINARY AND DECIMAL ARITHMETIC

Caution: The DAA instruction only works correctly while the CY and
AC flags are still set or cleared in response to the arithmetic
instruction that produced the binary result. Any intervening
arithmetic or logical instruction, or INR or DCR, affects its
operation. The safe procedure is always to place DAA immediateiy

after the instruction whose result is to be corrected.

Note that DAA corrects the result of additioa of decimal numbers to
give a decimal result. It does‘NOT convert a binary number to a

decimal equivalent.

If you want to investigate the DAA command further, the program shown
in Figure 10-15 will let you try different instructions and view the

results.

10-31

FOR EXPERIMENT WITH DAA

CODE

b__=r

A D

i llw,;a(v .

i)

, @f
i |- | "
m_,m M T
8 N \| M N o
e R UEE RN SRR L
N ' :I S o)
N /W/ . .m
W SRR ~REEN DR .
w >
~ Y
> - Q 9
-J | N Ql | | [d]|9
7 YA V) % - R
T L d i) SN
_ J J
S Qo> o ~J Q) ST
O R[Q| 0|o|c|ol« < = ol o=
NEEERERE 3 b s[%[Z[bh
QU QR[N QNG XR[Q[[QR WA ™[=
N N QY] Q[V[YV ™ QR[S [NV QY]
Ofl=(N|M|g VIO |IN O L|O]|O[OjJWIL | O|~| N ||| O|O©]N 0|0 |lw|u|Oofl=|lN|[®|< © ©
Q- 1 N S S N Y Y N Y [. ol -
¥ =

133HS ONIAOD

WNILSAS ONINIVHL H31NdWODOHDIIW

SIW3LSAS HILNJNOD A3 LVHOILNI

l1l0-32

BINARY AND DECIMAL ARITHMETIC

10.5 BINARY MULTIPLICATION

Multiplication of integers is a process of repeated addition, or a

substifute process that gives the same results.

Wé‘ have préviously performed multiplication by repetitive
addition. This 1is the easiest way, and the required program can be
very short and easy to write, but it is very slow when the multiplier
is large. The usual computer multiplication process is similar to

what we do by hand.

Multiplicand 362
Multiplier X 426
1972 = 6 x 362
7240 = 20 x 362
144800 = 400 x 362
Product 154012 = 426 x 362

In our familiar multiplication process we simply multiply
the multiplicand by each component of the multiplier and add the
individual products. Multiplication becomes trivially easy if

the multiplier happens to comprise only ones and zeros:

10-33

|
I

BINARY ANb DECIMAL ARITHMETIC

1

362
o
[362 1 x 362
‘ 0 0 x 362
3 36200 100 x 362
E 36562

With binary numbers, of course, multiplication is that easy.
According. to whether each bit in the multiplier is zero or one, the

multiplicand, appropriately shifted, is added 1into a partial

product. | Figure 10-16 shows the process, with an example of two
8-bit nu&bers. The flow chart shows one approprite procedure. The
only dif%erence from paper and pencil multiplication 1is that the
addition iis performed after each shift, instead of writing the

numbers down and adding the column later. Write a program to

implementithe process. A solution is provided in Figure 10-17a.

10-34

BINARY AND DECIMAL ARITHMETIC

MULTIPLICAND 01100010
MULTTIPLIER 0010011 0-——]

0
01100010
01100010
0

01100010
0
0

O O H O © K H O

000111010001100

SHIFT NEXT BIT
OF MULTIPLIER
INTO CARRY

ADD MULTTPLICAND
TO PARTIAL PRODUCT

|

SHIFT MILTTPLICAND
LEFT ONE BIT

FINISHED
YES

Binary Multiplication
Figure 10-16

10-35

Q
| 3 3 g LI 3 N
IR AR AR 3 X & ’
..f/ . N : .:M/ ﬁ /M:fl m_w
3 3 SINECREEE SN R ;
5 3 YUY 8 SHR bR I3 N :
) 3)uw AIJ I J .g
al N ,M A % W M § 3 -
21X | N NNNEEL N D 3
e [> S i Wy
> [Q N . N ~
o L b~ & < N > > Q
E > NEENESEREEEEN O | [Jiw] | =% | 1S
Wy SNET IR L[y D iR Q) <
> QX Ql N Al Ix] [N < < (N
AN AN NN, ~ <
mL 2N NN NI AlxQlxx|N NI NN Qa
= [AX Ql Q| QX[= <otV = ol Q< s
mc QA SNV Ve Ql>=<|IQ[%|Q|H =V NS @)
=
m
Jf Qg Y QN[N | S W o]] [Qo[I [QS Q] [[Qo [w] Q[
S0] N[] UV] NN NN 0]] Q[S NV X/ QIN YN QU QIS
R0123456789.ABCDEF0123456789ABCDEF01234 © [--]
Q)| : N - sy | -
o| Y N)

133HS ONIA0D

WILSAS ONINIVHL HI1NdWODOHDIW

SINILSAS H31NdWOD G31VHOILNI

10-36

BINARY AND DECIMAL ARITHMETIC

There 1is an alternate scheme, sometimes more convenient, in which

the multiplication is done backwards:

‘F“"'DAD H Double Product
ADD A Next MSB to CY
— JNC Skip add if bit =0
DAD D Add multiplicand
—> DCR C Count bits
——— JNZ

The product 1is developed from most significant position toward
least significant, and instead of shifting the multiplicand we
shift the product. The result is identical. This requires a bit
counter, since the product must be shifted eight times, whereas
the previous program can stop as soon as the multiplier reaches 'a

value of zero. Figure 10-17b shows the program.

10-37

ALTERNATE BINARY MULTIPLY

CODE

A D D R

S N
SRNEE M ERNE X
N . Y .
) 8 N : '\ N Q
N %ﬂ,wm7 3 . .J % m/ -
] mﬂu 3 ﬂ AN A Mﬁ N =
. M :(ﬂ /A m m /n, AN mr o
SRREERRUEERRRERE S SS RERRS AR RS SRR RNANE
=B RESEN 9 m 3 S
> > Q w
Q Q Q N - !
g ~ AN N 9 0 | > Q
R B NS X Q ~ Q ~jm x| m Q
Wi HﬂE N + ~ D 4 T) _.b ﬁd
SNEE QY [Al <t { 09
< AW iy <
L)~ N Q| YH AV QXN (- >y n.
< QY QQ X A~ [FI_Q= (V= QX Q| P
N} al = 4 NEREERNE) AP =) > h
NN SN AN NN N N TN NN RIS NSNS N A SN AN E NS
™ QU™ QI NN] Qf Qf A N3] N QIR0)] B AN VU N QN VRN QY QB
Ol o|~N|lololgalalo|Qlwlw [l (g {v]o|l~]o0|o|< ol ojlw|lu|o|=|~lm © o
Q QI ~ %Y
N | ™ R %
o ﬂﬂoo 70 _ ©

133HS ON1Aa0D

W3ILSAS

Q

N

NivH1l H31INdINODOHIIIN

SWILSAS H31NdWOD d3LVHDILNI

10-38

BINARY AND DECIMAL ARITHMETIC

10.6 DECIMAL MULTIPLICATION

Basically the same procedure is used for decimal multiplication, but
it must be done digit by digit instead of a byte at a time, and
since decimal adjustment is necessary the additions must take place
in the Accumulator. It is common, but not necessary, to use
unpacked decimal arithmetic (one decimal digit per byte) if
multiplication and division are to be done, because it is
more efficient. The decimal multiplication subroutine developed
here is for packed decimal, with two digit multiplier and
multiplicand and four digit result. This 1is the largest value that

can be handled without storing data in the memory.

Figure 10-18 shows a flowchart of the subroutine, and Figure
10-19 the code. Like the first binary multiplication method, this
shifts the multiplier right and doubles the multiplicand for each
bit, stopping when the multiplier reaches zero. It also requires a
bit counter, initialized to four bits, because after the first digit
of the multiplier has been handled the original multiplicand must

be recovered and multiplied by ten for the second digit.

The program used for the binary multiplication provides the input
and display functions, calling this subroutine instead of

doing the arithmetic itself.

10-39

BINARY AND DECIMAL ARITHMETIC

10-40

1

CLEAR CARRY
TEST MILTIPLIER FOR ZERO

ZERO

(ST)mpo— MUL/2TPLICAHD
(C)=e——BIT COUNT = 4

1

SHIFT MULTIPLIER RIGHT
(B) ——— MULTIPLIER

SET

MULTIPLIER

BIT =0

MULTIPLIER BIT = 1

ADD MULTTPLICAND
TO PRODUCT WITH
DECIMAL ADJUST

(TWO BYTE ADDITION)

—

A

ADD MULTIPLICAND
TO ITSELF WITH
DECIMAL ADJUST
(ITWO BYTE ADDITION)

(I

CLEAR CARRY
(a) MULTTPLIER
DEARCMENT BIT OOUNT.

<

(DG)e— ORIGINAL
MULTIPLICAND
(D) ;g————a=(HL)
DAD H FOUR TIMES
TO MULTIPLY BY 10
(DE) s#————a=(HL,)

T

Decimal Multiply Subroutine

Figure 10-18

(ML)
(D)
®)
(a)

I W

0000

00
Multiplicand
Multiplier

DATA ENTRY AND DISPLAY FOR DECIMAL MULTIPLY

CODE

A D D R

. N\
3 JN %
l -
| SEEECEAEREE
. : .V/.n/ ,]“ ,a mv
N N) O | u -
. JJY 8 g A M/
AR . o
3| Y| Medi g .
B > Q D
@ Q N by [R
b~ ~ Q J \N > > Q
=2 2 NN BN ~ J4|Q 3|® Q
E HE ~ .E Ad ..D 13 7&
ENEIES S 5 <& N oS
J I J _ < < <
- vl S| M N[~ Q N NN Q
< DT Q| X o< b2 Q| QT =
N X[) = Q- s | 9) [AR ¥
RNINY M S QN QNN QIR QD[RlQ] s v QNS w | Qf
] QU VW] SN Q] R[] Qo VXV N N V] QN Y[Q)] Yy
Ol=|lN[OO i D]|OINP|lOO|lgc|ld|]O|OJlW|L|jO|e=lN|{O||WO]|O|N o|d|lon|lo|ld|wlu|[o|l=|a|[m] < o
N N A
% 2 “

133HS ONIGOD

W3LSAS ONINIVHL H31NdWOD0OHIIN

SW3LSAS H31NdWOD d31vHYO3ILNI

10-41

Packed Decimal Multiply Sub

Q
mr. ,M JW .W MM . +w,MW/ MW
SR ERE SN u . ¢ %
IR m Al M
S Il
959 |49 g CERREE :
A
Ry ! PR
N N d RN <\ A o | ¥ D
Q| 1N 1 IS T 3 LISy 2
T) Q™ <yl [HYQ] [¥|w [wd Al N
X ~
< VN [y QI NSO NS N K 2N =
VN[[N Q= QR AQQIF A AL QIR QK| Q= Q
ST [T|h slHQE R SsdQaS sHdASXIQN)
of DNl Wy [] s][[N W v [[D N[oo | N S g ™S Q)] s o
S SN A RN N Y A N N NN S NN R N S R R N AR N T Y
R0123456789.ABCDEF0123456789ABCDEF01234 © -]
o A W N
of RN
o ol | o

133HS ONIA0D

AW3ILSAS ONINIVHL H31NdWOD0HIIW

SINILSAS H3aLNdWOD 31VHOILNI

10-42

PACKED DECIMAL MULTIPLY SUBROUTINE (continuea)

CODE

A D o] R

©

5

N
&
3
&
N i
S
2
<X
AR Y
V))
SRS AT
NSIESEIEIES N B3
LIXIQAIBIAIXH
~ 19 NN M| Q| O]
S AVRRINIRIEYNSIERIAS
01,23456789 olw|lwujo|lrv|la|m|s|w|o]|~ njo(lo|lw|lw|{o|=|a|m]| < o
\y
¥

133HS SNIAO0D

WILSAS ONINIVHL H3I1LNdWOJOHDIN

SIW3LSAS H3LN4WOD A31VHOILINI

10-43

BINARY AND DECIMAL ARITHMETIC

10.7 OTHER REPRESENTATIONS OF NUMBERS

There are many ways of storing numeric values in a computer, and. we
have used only two: binary unsigned integer and packed decimal

unsigned integer. There are numerous others, including:

Binary Number Representations

Unsigned integer
Twos complement (signed binary)
Fractional, fixed binary point

Floating point

Decimal Number Representation

Packed, unsigned integer

Unpacked, unsigned integer

Sign and magnitude (packed or unpacked)
Hundreds complement (signed decimal)
Tens complement (signed, unpacked)
Fractional, fixed decimal point

Floating Point

We will discuss the representation of signed numbers using twos

or hundreds complement, and both fixed and floating point fractiomns.

10-44

BINARY AND DECIMAL ARITHMETIC
10.7.1 Negative Binary Numbers

When we represent negative numbers on paper, we use a separate sign
indicator attached to the corresponding positive value: e.g. - 232.
This procedure is sometimes used in computers. It is called '"sign and
magnitude" representation. For in#eger arithmetic it is more

efficient to use a different representation, called "twos

complement".

Consider the sequence of hexadecimal values generated by decrementing
a register, and the corresponding signed values that would be

generated by repeatedly subtracting 1 from a number:

Count Signed Value
03 +3
02 +2
01 +1
00 0
FF -1
FE -2

Here we can see that a hexadecimal value with O in the high digit can
be considered positive, and an F in the high digit somehow represents

a negative number.

10-45

BINARY AND DECIMAL ARITHMETIC

If we add two numbers in this representation according to the‘rules

of binary addition, we will obtain a correct result:

00000011 03 +3
11111110 + FE + (-2)
=00000001 = 01 = 41

This 1is the advantage of '"twos complement" representation of signed
numbers: They can be added (or subtracted) without separately

considering their signs.
10.7.1.1 Changing the Sign

A positive number is changed to a negative number by subtracting it
from zero:

00 - 02

FE which represents -2

Similarly:

00 - FE

02

The following program accepts a number and changes its sign. Try it,

and find the representations fpr various negative numbers.

10-46

10-47

Q
/W/ T
@ 0
Y| |3 2l
a . L - ./ M
> W

&l N N

2= N PN N)

“l= AN Q N

8 [w) o

& g (4

[y J

o ~H Qd] | e

mﬂ. NEELS =

°l % [0 b

ol Q18] B Wl Qo Q[¥] Y| O

V(M N[N V[VNV Y

gl O} o~ ™ < wn L -] ~ 8. ()] L4 | Q w 'S (=] - | N ™| < n|]w ™~ [++] Q (=] w F.o - ~N ™ < (-}

ol

o| Y

q| oo -] ©

133HS ONIA0D

WILSAS ONINIVHL H31NdWOJOHIIN

SWILSAS HILNdWOI J3LVHOILNI

BINARY AND DECIMAL ARITHMETIC

10.7.1.2 Range of Signed Numbers

Since we only need a single bit to indicate the sign of a number, we
can define the most significant bit to represent the sign, and the

other seven bits to represent the magnitude.

01111111 +7F (4127 decimal)
0000O0O0O01 101
00000O0O0OO 0
11111111 -01
10000001 =7F (-127 decimal)
10000000 -80 (-128 decimal)

The list above demonstrates that a single byte can represent a signed

number from =80 through +7F.

Note that the twos complement of zero is still zero. Also, the twos
complement of 80 (hex) is still 80, but all other values change from
positive to negative (or vice versa) when subtracted from zero.
Numbers expressed in this form can be added or subtracted provided

that the result can be expressed in seven bits.

10-48

BINARY AND DECIMAL ARITHMETIC
10.7.1.3 Changing Sign by Complementing

A different procedure for changing the sign of a number is more
convenient in many instances: Complement the number and increment

the result:

00000O0OO01 +1
11111110 Complement
11111111 Increment

The result is the same as obtained by subtracting from zero. The
advantage appears when the value was already in the Accumulator,
since no other register needs to be used. Aiso, the Carry flag is not
affected. Satisfy yourself that the following program gives the same

result as the preceding program.

10-49

N
M/
w m/ S
S s
9 —
) F M/ nm
i
N 7
o[> W .
% [SR
=S > Q
SR a0 T [
oYy 4 Y ™,
a g |
z[J _ 4
MI_ I (R N =3 (<72 IR P SO < I e O s e v Attt e E e S I H A A
8t QIERX =
210 > RN H
5
o[SN AN ERNE
31 N QN Q[QS
x] © ™ < 1] w ™~ [+ -} N A om (=] w w o - N ™ <t w [{<] ™~ m (&] (o) w w o - (y'] ™M < [Te] [i=] ~ 0
AN
of °%

133HS ONIA0D

NIL1SAS ONINIVHL H31NdWOJOHIINW

SIW31SAS HILNdWOD G3LVHOILNI

10-50

BINARY AND DECIMAL ARITHMETIC

10.7.1.4 Sign Flag

Using

can

twos complement representation, negative and positive numbers

be added and subtracted to obtain a signed result in twos

complement notation. The sign of the result 1is also available in

the

Sign flag. This is set if the high bit of the result of an

arithmetic, 1logical or counting operation is 1, reset if the result

is

Zero. Like the Zero flag and the Carry flag, it will

control the action of several conditional instructions.

Like

F2 Jp Jump if Plus

b $.4 low address (if high bit is 0)
vy high address

FA IM Jump if Minus

XX low address (if high bit is 1)
vy high address

F4 cp Call if Plus

b.$.4 low address

yy high address

FC CM Call if Minus

XX low address

vy high address

FO RP Return if Plus

F8 RM Return if Minus

the other conditional instructions, these respond to a flag set

10-51

BINARY AND DECIMAL ARITHMETIC

by one of the arithmetic or logical instructions (also DAA, INR and

DCR), not to the present content of the Accumulator.

10.7.1.5 Overflow

Twos complement representation permits addition, subtraction,
multiplication and division of signed numbers, giving correct results
in twos complement form, correctly signed, provided that the
magnitude of the result does not exceed the allowed range for the
number of bits used (-128 to +127 for one byte). In many
applications the programmer can be certain that the limits will
not be exceeded. If results reach the 1limits, however, an

"arithmetic overflow" will occur.-

40 0100 0000O0
+ 40 0100 0000O0
-80 1000 0000
negative
There are two ways of treating this problem. One is simply to

provide additional capacity. If two byte numbers are used, only the
highest bit of the high byte represeats the sign, and values from O

to + 32767 and - 1 to - 32768 can be represented.

40 0000 0000 O100 OOCGOO
+ 40 0000 0000 0100 0000
80 0000 0000 1000 OOOO

t____ still positive

10-52

BINARY AND DECIMAL ARITHMETIC

With multiple precision arithmetic this can be carried to as many

bytes as are necessary.

Another way of handling arithmetic overflow is to test for it. If
two positive numbers are added and the result is negative, an
overflow has occurred. If two negative numbers are added producing a
positive result, an overflow has occurred. Subtraction of

numbers with the same sign or addition of numbers with different

signs cannot produce overflow. In most cases where

only

addition and subtraction are required, it is easier to provide

additional storage capacity so that overflow cannot occur,

but

for multiplication and division the test for overflow is likely to

be necessary.

10.7.2 Change Sign, Add, Subtract Exercise

Write a program that will accept a binary number of two bytes,

on command do one of the following:

NEXT key: Store the number as entered.

STEP key: Change the sign of the number and store it.

RUN Kkey: Subtract the number from the previously
stored value.

ADDR key: Add the number to the previously stored value.

CLR key: Clear the stored value.

and

After each entry display 'the result. If the result is negative,

display its twos complement with a minus sign. A flow chart and

coding sheets are presented in Figure 10-22 through 10-26.

10-53

BINARY AND DECIMAL ARITHMETIC

10-54

CLEAR
KEY

—

CLEAR H,L FOR INITIAL
VALUE OR CLEAR KEY

1

STORE (HL) AT 8300,01
CLEAR DISPLAY
10AD (HL) FROM 8300,01

TEST FOR MINUS

CALL CHANGE SIGN SUBROUTINE
RETURNS TWOS COMPLEMENT
INHL; 40 in A

P

I

SAVE SI@ ((ST)et—— (3))
(A)e@e——(L) ; CALL. DBYTE
(A)es——(H) ; CALL DBY2
(A) w——— RECOVER SIGN
DISPLAY —— SIQN

|

CALL ENTWD FOR
VALUE IN H,L AND
aMaND IN A

LOOK UP JUMP ADDRESS
IN TARLE

LOAD PREVIOUS RESULT
TC DE

JUMP TO EXECUTE COMMAND

(HL)=—— (CE) - (HL)]——@

Figure 10-22

CIOANUL DDLU, AULD, JUUDLINACL lariise waias

CODE

A D D R

133HS ONIAOD

WILSAS ONINIVHL HI1NdWODOHIIW

N
\ i%
3 EALRRRNEN
N A\ N N\
.M NS N IRR N o
\ L A | —~ . N
rERERER I 3o N ¢
\ 3 /,,A . J)
IY |33 Y |- I :
m N 3 SNES qy g
> N 3 // N N f
Q X 4y
Q Q % Q =z ~ <y
Q N Y Q Q b 3 [> ~
N o J ™ Q M SR A 3
L0 \Y S L] |& o IR la ©[3
% T X 4 <X Q
S ~ A o RN ~ <
N < ~ N /AN |6 I > AR L
> Ny < SY Nals| N NN Qlk QN[
~) N N XY s =RV A0 DS, RIS
NI R o [QIN [][® [W Q[QU] Y[D [w0 R 5N [Q
SR Q] QI VN QY] o R v] Q f WO QYN0 QU NQ
Ol N|oo|lo|g|ln|lo|l0jWw|lwlo|l ||| Njo|lo(dd|lo(alw|lu|lol|la|m| = o
A N
A P
. T SW3LSAS mul_.Dn:\,_MO J31VHOILNI

10-55

CODE

CHANGE SIGN EXERCISE - DATA ENTRY AND COMMAND INTERPRETATION
D_D_R

A

MEEEREELF
43| : %M/ "
N \ <
SRENERERRLEE ;
N ™ R N . =
IRCEREERSREDRCEREE :
I~ AN — A H
@1% J//Z NS \@mﬂ@w/w/ N ﬂ S .m
@/ @ ﬂ/@/u/m QNN Y (W E A DA~ B
A Q VW) |
= % Q e P 4R
b~ % Q TV O |
S S x| (™ Ao |
q [1 A\ (% S
3 |] IR U N
~ \b A o) Q|
J 3 H AIS>ln| o =X | =Y QW2 x| MK
oy | K Q) Ol Q| i\l DM Y
< > | SBRERE x| o] =] | e | =m0
Ay QN o] W W] 0 [NN NS o[y
SO M QWY 3 S 5| O N NS W ¥ QN) QNN QI Q) ©
Ol |w]|o|N|o|lo|gla|jlo(jdjwluw ol w|ed|v|fo|nN]ojeo|djg|lolQ|lw|luw{ole=|la|m|< © ©
R ™
¥ 3

133HS ONIAO0D

WILSAS ONINIVHL HI1INdWODOHIIN

SIW3LSAS HILNdWOD AILVHOILNI

10-56

U AJLSLLLOAUNLY, 360N v b e iy

CODE

A D D R

s
Dﬁm
. R g b
AR ARGk ;
N Te}
) ‘D :,/L\UT =)
AT i 5
N DNGI D &
b
I
VA ™ \p) B
BN Q W) T Q 0] Sufal Q
J <% 4 it L% L 1+ 1
a4 B3R <) [Jdee] S
L
~ Q AN BN DNEJI N NN Y Q>0 > > MmO o] Qg
SN)Y QR AAVNQ = Q DV QO MQQT Q[
)) SNERERSERE RN (2=
Q] ¥] QN W N0 [Q N ™ w5 Q) & QLU [V W[0[] Q[Q[Q
N V[Q& N QPN X[Q 602079067?0660/000
Ol v ~Nlo|o|jgd|lm|jlo|lA|lW|(w|lolc|la|m|s|w[o|l~N|[olo|<ln|lo|lojuw|lwlol~la]|lm]| < ©
N NN
< % ¥

133HS ONIAOD

WN3LSAS ONINIVHL H3LNJdWODOHIIN

SWILSAS H31NdWOID d31VHOILNI

10-57

CHANGE SIGN SUBROUTINE

CODE

A D D R

AN
m| 3
(af) - / W
SRS KRR -
AENERENEp
* w.ﬁ/) w I &
< \SIN S B
A\
u, NN TRy
™ ~ ~ 4 & + <+
& QNN (X<t
Sl >N BH (-
QA (TN (O (W
TG (sl 1T x
RN NS WY QI Wy S
W 0 QNN TN (<)) QN [(=)
Ol M| /o ~Nolo|ld|lgjo([OjlW|lLlOo|le=lNn[|a|w]O N pmlo|ldjlwlu| ol N < © @©
AN
%

133HS OSNIAOD

WILSAS ONINIVHL H31NdWOI0HIIW

SWILSAS H3LNdWOD A3 LvHOILNI

10-58

BINARY AND DECIMAL ARITHMETIC

10.7.3 Signed Decimal Numbers

Decimal numbers are commonly represented in "sign and magnitude" form

in computers as well as on paper. Often one bit in a number

occupying two or more bytes is used to designate the sign:

+ 1327 0 001 0011 0010 0111

- 1327 1 001 0011 0010 0111

A signed two byte packed decimal number then has a possible range of

+ 7999 to -7999.

This representation 1is convenient for several reasons. A number
expressed in sign and magnitude form is easily displayed, with the
sign bit controlling only the display of a minus sign. Similarly at
data entry, if a minus key or change sign key is pressed it is easy
to complement the high bit. Also, multiplicaton is easy, since the
magnitudes can be multiplied without regard to sign and the signs

combined by the exclusive OR function.

Unfortunately, this representation is not convenient for addition and
subtraction of signed decimal numbers. The Decimal Adjust
Accumulator (DAA) instruction of the 8080 does not work correctly for
the result of a subtraction. Therefore, it is necessary to convert
signed decimal numbers into "hundreds complement" form before

addition. Subtraction is performed by changing the sign of the

number to be subtracted, and adding the negative number.

"Hundreds complement" properly should refer only to a two digit

number : It is the sum of 100 (decimal) plus or minus the number,

10-59

BINARY AND DECIMAL ARITHMETIC

with the carry discarded:

100 + 16 16

100 - 16 = 84

In this form signed numbers can be added, giving correct results in

hundreds complement form.

36 = 100 + 36 = 36
- 14 =100 - 14 = 86
=22 =100 + 22 = (1) 22

This is also effective when the result is negative:

- 3 =100 - 36 = 64
+ 14 =100 + 14 = 14
=-22 =100 - 22 = 78

Provided that 78 is recognized as a negative value, this answer is
correct. Because of the limited range of .a one byte signed number,
decimal values almost always require more than one byte; typically at

least three and often as many as seven bytes are used.

A two byte decimal number in "hundreds complement” form is really
10000 plus or minus the number. A three byte number in hundreds

complement is 1,000,000 plus or minus the number.

1327 = 1000000 + 1327 = 00 OO0 13 27
- 6564 = 1000000 - 6564 = 99 99 33 36
= - 5237 = 1000000 - 5237 = 99 99 46 63

When enough bytes are allocated for the number it becomes reasonable

10-60

BINARY AND DECIMAL ARITHMETIC

to define as negative any number whose high bit is one. This gives

an unbalanced range of possible values:
+ 799999 to - 199999

In general, hundreds complement numbers must occupy one more byte
than their sign and magnitude representation. Sometimes this byte is
assigned in memory and used for the sign; then the other bytes can

have a full range of decimal values:
+ 999999 to -~ 999999
10.7.3.1 Signed Decimal Arithmetic Exercise

We shall develop a program to accept a six digit decimal number from
the keyboard, change its sign if desired, add it to a previously

stored value, and display the result.

The new data and the result will be stored in memory in this form:

Result New Data
8300 8304 Sign Byte
8301 8305 High Byte
8302 8306 Mid Byte
8303 8307 Low Byte

Note that we have reversed the usual storage sequence here. The only
disadvantage to this is that LHLD and SHLD would not load these data
into HL in the normal high-low sequence; with multi-byte numbers we
would be unlikely to load variable data that way. The sequence given

is sometimes more convenient than the normal sequence.

10-61

BINARY AND DECIMAL ARITHMETIC

We shall define a group of subroutines +to handle the data process
requirements. Most of these operate on only one set of data; they
are to be entered with (HL) addressing the sign byte of the number to

be processed and must return that address unchanged.
CLRMEM: Clear the four bytes of memory from (HL) through (HL) + 3.

SIXKEY: Accept and display six decimal keys. Pack the entered data
into three bytes from (HL) + 1 through (HL) + 3. Ignore keys
A-F. Return when a command is entered with (A) = command

key.

DISPLAY: Display a three byte packed decimal number. If the

sign byte is negative display a minus sign.

CHSIGN: Change the sign of a number in sign and magnitude form by

complementing the high bit of its sign byte.

HUNCP: Convert a three byte magnitude with a one byte sign into a

four byte hundreds complement.

DECADD: Add two decimal numbers in four byte hundreds complement form,

replacing the augend with the sum:

(HL) addresses the augend

(DE) addresses the addend

SIGNMAG: Convert a four byte hundreds complement numer to three byte

sign with one byte magnitude.

10-62

BINARY AND DECIMAL ARITHMETIC

The main program will provide the addresses to be used by the subroutines,

exchanging (HL) with the stack top as required.

The main program is shown

in a functional form below.

START: CALL CLRMEM (addressing result)

LOOP: CALL SIXKEY (addressing new data)
IF COMMAND = STEP
CALL CHSIGN (addressing new data)
IF COMMAND = CLR
CALL CLRMEM (addressing result)
CALL HUNCP (addressing result)
CALL HUNCP (addressing new data)
CALL DECADD (addressing both)
CALL SIGNMAG (addressing result)

CALL DISPLAY (addressing result)

JMP LOOP

Use the top down approach, coding and testing the main program first,
and then each of the subroutines. It 1is suggested that DISPLAY be
the first subroutine, since it can be used by SIXKEY to display the
new data.

We have not yet described the process for generating a hundreds
complement; this is covered in Section 10.7.3.2. The data entry,
display and addition subroutines require only reasonably familiar
‘programming techniques. Two hints that may be useful in your
development:

Entering keys: Use GETKY (023D) to obtain a key. This returns Not

10-63

BINARY AND DECIMAL ARITHMETIC

Carry if a command is entered; use RNC or JNC after GETKY. The key
value 1is returned in Register A and in C; Register B is cleared.
Shift the old data left four bits and enter the new key. You can
keep the data in registers while it is being entered, and store it
only at the command key, but the given solution always keeps the data

in memory.

Displaying data: Address the low byte and the right display digit.
Load the byte, decrement HL, and call DBY2 (0298) three times to

display the three data bytes. Register B can be used as a counter.

At exit from this loop, register pair DE addresses the next blank
digit, and HL again addresses the sign byte. Its high bit is 1 if

the number is negative. This will display a minus sign or a blank:

MOV A,M
RAR

ANI 40
STAX D

Without subroutine CHSIGN, HUNCP and SIGNMAG this program will work

for positive numbers. Develop the program using stubs for these

three subroutines. A solution is given on the following pages.

10-64

i \ Q| |3 MRS
M R NERE Q NN £
\ - I\]
O _ Q I
1] 1A RHR
) ' 0]
R | /(, 5
nﬂww 3 Q13 cRRRre
b3 X > J w J N s
Q W % W) 2 < Q Q A
3 N Q v O o1 <)) Wt
= & o0y X e | = < >
1 {Os < . N Wi | v (& > S 2
L [x[L) ~X NENEEES X N
= % 9l O NS Y| |~
: ~d ny ~ N < 4| N 2
1 [H ~ NN N N TN < X[LY (9
i N N B A IN T TR N < NS Q] U
1[N N Q) NHENEN NN V N X9 o
o <SR[<[[A oSy oS [N [o s /R[] B[ass [~
S X <9] 0 By |] <9 Sl U] Ny O N~ IRQ Oy W NI 0] 8]] S0l L) |] 8 Wi Wy
glo|~|N|™m .4 W o|~N|o|o| 0O|lw!w ,AO |||l v/fo|N|[o|lo|d|aflo[lalwlw]|]o|~| ™| < ©
Dn,& '€ / A/w
ol VY R _)
7. o R .

133HS ONIAO0D

W3 LSAS ONINIVHL HI1NdWODOHIINW

SW3I1SAS H31LNdINOD G31VHDILNI

10-65

coDEDECIMAL ARITHMETIC (continued)

R

P21

Figure 10-27b -

D >
A q &
Q > |
< > o N
0 b 1) D
W H M
Q © A B
4 J d
d ~d N Q
< L SN =
V N) P,
QIQINR] QARSI N\
IR O V]] 8RO QS

-]

133HS ONIAOD

W31LSAS ONINIVHL H31NdWODOHIIN

SIW31SAS H3LNdNOD A31vdO3LINI

10-66

e
A s g0) P50 4 sv TP

Lot Locwsert Loy Zo
oo 90
CﬁuAApZZA%7g6:M

10-67

Fiqure 10-27c

Bl o0 | lrans # Bile’

CLRMEM

0
Q oy
Q <%
ﬂ N - {
QX J Q
X
V)| Al XNl [x[N Q| =
S| L[] [Ul2 Ol
NN Rl Ak %
al O]~ [Q[QA [o Sy [~ [ON
SNENNERNNENEN NN

N[iwlo|MNo|loa|lgclnjo|lolw(unlo|l -l o|N][o|lo|<[|l olw|ln]lol=la|lm] <
o : ©

A D D R
8 7. F 0

133HS ONIAOD INILSAS ONINIVHL H3LNdNODJOHDINW SWILSAS H3LNdINOD Q3LVHOILNI

1| KR
N M AN A N
W LRES
/._M .. . NN -
NN ES LN N
\Afw_ S \, ﬂ N :
W,/_\Mwﬁ// ﬁ W/W%W o
J9N | | I 3
Y | S NS ;
N9 W
Q — A Q
= Q N > RSN
) Q N b} X N >
Nal | IS {_ 59 SN)
2 < | YA N Y [B
al X = ~ P
AlAfA IS QAN | | U™ Y NYLE nﬁD,oloL,l
N R SN Q<c NINIES QT2 Qo Qlik
N {a Y] Al s v &lQH 3| [oolAla|X
TS50 [Qo= o [[A [N o [R WS [QYN [~ [N
W[NV QI N o] W ORI st ORI N N W NI U
R0123456789ABCDEF40123456789ABCDEF01234 © ©
DMf 4, 9
o™ N)
q] Vny © 0

133HS ONIA0D

W3 LSAS ONINIVHL H31NdWOJ0HIINW

SINFLSAS H31NdWOD dI1VHOILNI

10-68

SIXKEY

CODE

A D D R

| REEEAN) 3 Wf /Lm/ M
9 NN [MOJ
) N @_ﬁ W K
N NN RA M ™ 2
3 RESAERE AR X N :
m MM@ . _\ |4 W F \._\/ @JM ﬂ
) 'my T,%f S BERENERR :
3 m& ARREN W NERERNN g
58 NS @(ﬂ NENENERON{ES i
W > 1
< X D2 0),
W t~ 9) X
~ Ny R NEEYRI W A A ¥
< S SYES L L& s S &
N T YA W Y = R R RIR NN
< ~ O & 4
~J < Al [# o |2 > XA A A QA<D X > x| 0
< 2 = Q3 Q| 2 Q[H I < FH Y] Jo] J o[k >
) N U |b SIHENE XAMAUQ XRIYAIX IO [X A)
SIQN[A][A]N] o WL [9] 3]] W 0 |8 0] g QU SN o [O[S RO 0| R 3 RoIN [Q[N W00
o N B RN g N ™ D | "o x| o] L S/ NN SR~ N~ < i N SN SN S o[<0 B
Ol || IND|ldOgd|lo|Q(lWw|kL (o=l jwm(le|lv]|o|N|o|lo|d|a|lo|log|lwujulo|l=| vt/ v]o|N]| @
AN N N Qy
YBEN Y N

133HS ONI1AOD

W3 LSAS ONINIVHL H31LNdWOIOHIIW

SWILSAS H3LNdWOD A3 LVYHOILNI

10-69

DECADD

CODE

A D D R

=

3 | B
8 N F ﬁm
MM N
W[-
YRR CHEEERE s
N N Mww i
N : NAE —
INERRRERSCR
\.C/ .7/.,/11,, m,_m N oy
<
Q \Sy
AN O
N I =
N A + S
W R Al (= (Fu
NI X ‘
I Al QT <[X0 > | N ~
> < Ul U | VORI Al | Ul = 1y
~ A< X O L |AE|Ab L
NN QI ONQS QY QG] WD A | O] 3 [N
Q) Q Q I Wy QPR NS o g DN QL D YD
O|lr|N|o|ld|w|[o|~Nolo|lg|ln|lo|la|lw|lw|o|l~|l|mlasiwv]lo]|~ glojlolw|lw|oj~la|lom| < © L]
N N T
) R Y
© Qd 8, ©

133HS ONIAOD

W3LSAS ONINIVHL H31NdWODOHDIW

SINILSAS H31LNdINOD A31VHDILNI

10-70

STUBS

CODE

B S
2 < s
5 L DY ~
N 9 3 :
N N 3 :
N N N g
) X W
_/ ~ T
m N)
' N4 K
o~ > S
Ny \S) S
o [y} < wn w ™~ [a] w w o [l N [\ < wn © ™~ o Q o w (VS o - N [y} < o«
\ Q) \
™ X ™

133HS ONIAOD

WILSAS ONINIVHL H3LNdWODOHIINW

SWIALSAS HILNdNWOI Q3 LVYHOILNI

10-71

BINARY AND DECIMAL ARITHMETIC

This page intentionally left blank.

10-72

BINARY AND DECIMAL ARITHMETIC
10.7.3.2 Hundreds Complement

The decimal arithmetic program as developed so far is useful for
demonstrating hundreds complement arithmetic. Run the program and

enter a number:

RUN

1 2 2 NEXT 00 0122
Add 1 to this number:

1 NEXT 00 0123
Now add 999999 to this result:

9 9 9 9 9 9 NEXT 00 0122

We can see here that 999999 is equivalent to -1. Try other values
close to this. You can see that a negative number is equivalent to

1,000,000 minus the magnitude of the number.

The reason for using hundreds complement is in part the fact that the
8080 cannot do a decimal subtraction. Therefore we cannot perform

the conversion in the simple way that we did a twos complement.

The conversion of a negative decimal number to hundreds complement
form involves a series of steps. First the decimal number is
subtracted from decimal 100, represented as 94 (= 90 + 10). Now to
make the following DAA correct we must add zero to this value,
because the subtraction has improperly set the Auxiliary Carry flag,
which controls the DAA operation. Adding zero clears the flag and DAA

generates a correct hundreds complement decimal value. If the value

10-73

BINARY AND DECIMAL ARITHMETIC

is greater than 99 a carry is generated.

For successive bytes the carry is added to 292 (without DAA) to give
99 or 9A. Then the next byte is subtracted from this value; oace
again zero is added and DAA 1is executed. The program segment below

makes the conversion for a four digit (two byte) decimal number in

(HL).
MVI A,9A (A) < - 100 decimal
SUB L Subtract low byte
ADI 00 Correct flags
DAA Decimal adjust
MOV L,A (L) < - low byte _
MVI A,99 (A) < - 99
ACI 00 (A) < - 9A if Carry
SUB H Subtract high byte
ADI 00 Correct flags
DAA Decimal adjust
MOV H,A (H) < - high byte

This is coded, with calls to data entry and display subroutines, in
Figure 10-28. You may want to experiment with this before going on

to a multi-byte subroutine for the decimal arithmetic program.

10-74

TWO BYTE HUNDREDS COMPLEMENT

CODE

A D D R

LY W’
M/ M% @VW ERRER L3R

, Y NN 3 | \
SECEE SR R :
_@.M/ N S ,M/Z RELRIRER S :
-J ...\nJ MW ..uL_.u. .1/.. /M/JJJM &C . .MWM/ m
SRR ELERC R _/,m BES E
ShcEcRnEs SIRRESSRANECECE :
N A ES
E % w Y Q
M~ R N{ ON ™ A Q
= ERES T O N o O O
NEEA Q BESNERE (KT AT S

AQ NSNENEE S Sya

N L B [RH] [>H W 9N DA < L
. > Sel =92 o [3Aal [l < <
J | o 2] [ad [AFEs] (Y (o9 |als]d J b
SR ARNE RN NN S A YNNG AN SINEN
O O[] S0 S D] R NS N N N[O
Ol (|| low|N|lo|c|lmd|jo|l0jwWw|w ||| m|ad|lv]olNlo|lo(d| nlo|0lw|luw]lel-lalm| < ©
0 N
X Q

133HS ONIAOD

W3 LSAS ONINIVHL H31LNdWODOHOIW

SW31SAS H31NdWOD A31VHDOILNI

10-75

BINARY AND DECIMAL ARITHMETIC

10.7.3.3 Subroutine HUNCP and CHSIGN

Now let wus see how this technique will be applied for the data
structure we have adopted for the decimal arithmetic program. First
we shall test the sign byte; if it is positive no conversion is
needed except that the sign byte must be set to zero. If the number
is marked negative we must make the conversion; here also the sign
byte should be set to zero, to be converted to 99 in the four byte

hundreds complement number.

MOV A,M (A) < - Sign byte
MVI M,00 Clear for highest byte
RAL Sign bit to Carry
RNC Exit if positive

We shall use a loop to make the conversion, so we must load a

counter. We also must address the least significant byte.

LXI B,0004

DAD B

Now Register C contains the count to convert four bytes, and (HL)

-addresses the byte beyond the least significant. We shall decrement

the address as the first step in the loop, so the conversion will be
done for the appropriate four bytes and at the end the original

content of HL will be restored.

Since we have loaded Register B with zero for the DAD B we can ADD B
and ADC B instead of ADI 00 and ACI 00. By setting Carry before

entering the 1loop we can use MVI A,99; ADC B for the least

10-76

BINARY AND DECIMAL ARITHMETIC

significant byte as well as for the higher bytes.

STC
— DCX H
MVI A
ADC B
SUB M
ADD B
DAA
MOV M,A

DCR C

—— JN2Z

RET

To use negative numbers we must also provide subroutine CHSIGN. This
is entered with HL addressing the sign byte; we are to complement the

most significant Dbit. Recall that the main program makes another
test on the command in Register A after calling CHSIGN, so this

subroutine must preserve Register A.

These two subroutines are given in Figure 10-29. HUNCP also performs
the function defined for SIGNMAG, properly converting a four byte
hundreds complement number to sign and magnitude. Figure 10-29 shows

a jump from 82E0 to 82C0 to use the same subroutine.

Experiment with the program to show that it correctly adds and
subtracts decimal numbers, provided that the sum or difference has a

magnitude no greater than 999,999.

10-77

CHSIGN

w
2| UL
| H <
Sl Q
QS o
.o,__,
D - ©
UMu ™
NS :
H &
(N %
>l 8
an,.rr
H =
2 =
RES <3 Iz
NI e Wy |t
Tlod [T B A Y]
X 2 b
i~ HED DU~ NN Tile)
NSRRI N
2| (XN A
o\l W [N N[>
of W W DY N\ [
gl O~ |N |||]| |l {o|lQlWwjw |||l Nz O]| N ol QAjlwluw ol NN|™m| < © -]
TS
o Q)
] w ©

133HS ONIA0OD

WILSAS ONINIVHL H31LNdWODOHIIW

SINILSAS H31NdINOD A31VHOILNI

10-78

10-79

HUNCP

*
, N
~ 2 Wﬁ
2) MM
W HY VR %
1= HE <IN 9
w| LD T_Y» 3|
B [P =2 o
= | | |3
O _\, (V3 /l/ 5
J o)
Q AN 2 J Q
Q Q Qs N ol J
RN Q o™ << [Al~HJx N
~ T N I Oy Euﬂﬂﬂu y
(2] Q Q (X A LHEPIN B Q| XY
A HlY
NEHNSIE QIOIXH [vi@la|T >N ~ = Jl« a
o> N U Al A QU NENENE <
2|2 . QAT [HeoHaZIR[n of [HA b
o LN QN[N RO [N | g | o | 8] QNN A 0 T RN NRIE
INRNRNEIRNN NGRS RN ERRNAS NN SN NS
glo|~|n [t w]jo|N|low|lo|qg|la|jo/ojlwjwu|o~la|wlaelv]oin]olo|d]|o|lo|alw|lu|ole=a]om|<
o) N 5
oaw R ax ﬂu

'133HS ONIQOD N3 LSAS ONINIYHL H3LNdNODOHIIN SWILSAS H3LNdWOD A3LVHOILNI

BINARY AND DECIMAL ARITHMETIC
10.7.3.4 Decimal Overflow

The possibility of overflow was discussed in Section 10.7.1.5. The
same problem obviously exists in decimal arithmetic, since we still
have a limit to the range of a number. Since we are using one more
byte for the arithmetic than for storing numbers, the highest byte
will always have a value of either 00 or 99 unless overflow has

occurred.

If the sum (or difference) is within the three byte range HUNCP will
not change the sign byte. If the sum is between zero and +999299 the
highest byte of the sum is zero; HUNCP inserts zero. If the sum is
negative, but not more negative than -999999, then the highest byte

is 99. HUNCP inserts zero but then converts it back to 99.
Now consider three cases where overflow occurs.

a) Addition of two positive numbers:

00 50 00 00
+ 00 50 00 00

=01 00 00 OO0

Here the highest byte is 1; HUNCP makes it O.

'10-80

BINARY AND DECIMAL ARITHMETIC

b) Addition of two negative numbers; sum O:

99 50 00 00 (-500000)
+ 99 50 00 00 (=500000)
=99 00 00 OO0 (-0)

Here the highest byte is 99. HUNCP makes it zero and converts this

number to all zeros.

c) Addition of two negative numbers; sum > 0:

99 50 00 00 (=500000)
+ 99 49 99 99 (=-500001)
=98 99 99 99 (-1000001)

§

Now the highest byte is 98. HUNCP inserts zero and converts this

number to -1, stored as 99 00 00 Ol1.

For each <case of overflow, HUNCP has changed the content of the
highest byte in converting the number to sign and magnitude. Figure
10-30 shows a test for this change. If there is no overflow a blank
is displayed in the left digit, but if a change occurs a symbol (E.)

is displayed to indicate "Error."

10-81

CODING SHEET

MICROCOMPUTER TRAINING SYSTEM

INTEGRATED COMPUTER SYSTEMS

10-82

SIGNMAG

8245 0 |7\E Mol vl 14, M A/;M%U/Zfaéwaz
=157 Plulsli4] 1P|s|w
oD AL || |HUnC P.,z/ﬂwum, /MMM,
& 12, @MJchrw{/J
4t fzyz,d_cmla Le_
A/ Plot?t | PlS Iw Ht,//v’(f’fé(ézea/ s
76 SUB (M cﬁdwb/érm__
P 31z SIANEIC| | b o ooiita
£|C %WM}"/&L«J
§ X p o Ll
JS\E MIVI|T /QA# A7 ;Jydfgbag¢422§¢¢¢f“
Va4 - W £
SFIAE A2 S|714 g13F |8 Mu Tl
/;«S; | b EY ﬂ/é,éqézi—
clolIRIEIT
8
ClOWVIEIRIT] |HUINDREDS
CloMIPILIEMIEWIT] 70 QTGN
AWIPl MMHGCVWIIZITIUDE, WITH
TESIT] [FlelR] Iolve R ELowW

ol lvwlo(afa|w{nv|~|lo]lnm|lojo|lw|ploe|le(N|lojalsjw|v{ialo|nimlololo|>lolw|v]lolalalw]ln] =

Figure 10-30

BINARY AND DECIMAL ARITHMETIC

10.7.4 Fractional Numbers

A fractional value in the decimal number system is expressed by

digits to the right of a decimal point:

0.1 = 1/10
0.01 = 1/100
0.11 = 1/10 + 1/100 = 11/100

In the binary number system fractional values are also expressed

by digits to the right of a binary point:

0.1 = 1/2 = 1/10
0.01 = 1/4 = 1/100
0.11 = 1/2 + 1/4 = 3/4 = 11 /100

The beauty of this representation 1is that all the arithmetic
operations of integer numbers apply equally to fractional

numbers and mixed numbers:

3 10/16 0011.1010
+ 4 7/16 +0100.0111
=8 1/16 =1000.0001

Twos complement still works with fractional values:

-3 10/16 1100.0110
+ 4 7/16 0100.0111
=0 13/16 0000.1101

Computers use two binary point systems, fixed point and floating

point. The examples above are fixed point. Each number has its

10-83

BINARY AND DECIMAL ARITHMETIC

binary point in the same place. Generally multi-byte precision
is needed in real problems, and the Dbinary point lies between
two of the bytes. A four byte number can represent any value from

- 32768.0 to 32767.9999847 with a precision of .0000152 (one part
in 65536).

For many purposes floating point numbers are much more
satisfactory. This is equivalent to scientific notation with the
number represented as a fraction times the number system base raiéed

to a power:
4
0.9876 x 10 = 9876

To avoid the difficulties of showing exponents in print this is

often shown as:
0.9876 E04
where E represents "10 with exponent'.

Scientific notation 1is very convenient for multiplication and
division. The +two fractions are multiplied (or divided) and the

exponents are added (or subtracted):

0.9000 EO4
x 0.2000 EO2

= 0.1800 EO6

10-84

BINARY AND DECIMAL ARITHMETIC

For addition and subtraction, however, the numbers must be converted

to fixed point format:

0.9000 E04 = 9000.0000
+ 0.2000 EO2 = 0020.0000
= 0.9020 E04 = 9020.0000

These same techniques.apply to.binary numbers in the computer. In a
computer as on paper, the fraction (or mantissa) must be stored
separately from the exponent. Each can be posifive or negative, and
expressed in twos complement or sign and magnitude form. Generally a
computing system that is doing floating point arithmetic will operate
in. binary forp,_converting from decimal at input and to decimal at

output. Decimal/binary/decimal conversions are treated in Appendix B.

10-85

BINARY AND DECIMAL ARITHMETIC

This page intentionally left blank.

10-86

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 11

REVIEW

11. REVIEW

You have now met all of the instructions of the 8080, and actually
used most of them. We will review the instruction set and look at

the code structure and flags. The instructions can be .divided

into several categories:
a) Data Transfer Instructions
b) Counting Instructions
c¢) Accumulator/Carry Instructions
d) Arithmetic and Logical Instructions
e) Branch Instructions

f) Input/Output Instructions

11-1

REVIEW

11.1 DATA TRANSFER

Data transfer instructions include MOV, MVI, STA, etc. All register
reference instructions in the 8080 conform to a pattern in which

three bits identify a source, or else a different three bits

identify a destination, or both.

dzviJ Q_i_3 {_2_} 5D MOV E,L
I_Source Register L
Destination Register E
L MOV Instruction
\EVQJ Q_i_} {_i_g 1E MVI E,data
I estination Register E
IMVI Instruction

Other data transfer instructions are the eight instructions that

load and store the accumulator and register pair H,L:

3A LDA VYXX 32 STA VYXX
0A LDAX B 02 STAX B
1A LDAX D 12 STAX D
2A LHLD VYXX 22 SHLD YYXX

The four LXI instructions:

01
11
21

31

LXI
LXI
LX1

LXI

SP

The stack instructions:

C5
D5
ES

F5

The register pair transfer instructions:

EB
E3
F9

E9

PUSH
PUSH
PUSH
PUSH

XCHG
XTHL
SPHL

PCHL

DSW

C1
D1
El
F1

POP
POP
POP
POP

(DE) <=> (HL)

(ST) <=> (HL)

(SP) <~

(PC) <-

(HL)
(HL)

PSW

REVIEW

11-3

REVIEW

The 8080 has an abundance of data transfer instructions, yet is
lacking three needed functions that therefore require multiple

instructions:

a) Exchange BC with HL

PUSH B (BC) <-> (HL)
PUSH H
POP B
POP H

b) Initialize the stack to a new location and push the old

stack pointer into the new stack.

LXI H,0000

DAD SP

LXI SP,new location
PUSH H

It is easier to restore the old value:

POP H
SPHL

c) Save all registers and flags.

Some microprocessors have a sihgle cominand ‘that pushes all
registers into the stack; others, such as the Intel 8048 have a
duplicate set of registers. In the 8080 four instructions are
needed. Data instrucfions do not affect any flags (Except POP PSW,

which restores the flags to the state when PUSH PSW was executed).

11-4

REVIEW

11.2 COUNTING INSTRUCTIONS

The INR and DCR instructions use the same register identification

that appears in MOV,

00,011,100, 1C INR E
o Lol Y R
L 3 ; A INR

Destination Register E

90,101,101, 20 DCR L
4 I

DCR

Destination Register L

8o, 000,100 04 INR B
? l INR

Destination Register B

The structure is modified for register pair instruction

& o0o00,011, 03 INX B

INX

Destination Pair BC

0 0,00 1,011, OB DCX B
(R, ! DCX

Destination Pair BC

- 11-5

REVIEW

The counting instructions affect flags as follows:

INX: No flags
DCX: No flags
INR: Set or clear zero, sign, parity

Does not affect carry

Set or clear auxiliary carry

DCR: Set or clear zero, sign, parity
Does not affect carry

Set or clear auxiliary carry

Zero, sign and parity flags may be used to cause a conditional branch

as a result of INR or DCR. INR or DCR may be used in a loop with

ADC or SBB instructions, since carry is preserved.

11-6

11.3 ACCUMULATOR/CARRY INSTRUCTIONS

These instructions affect

instruction format-is:

{

o

© © o o

o

o

o O O ©o© o o o

o o O O

only the

accumulator

Accumulator/Carry Group

07

OF

17

1F

27

2F

37

3F

RIC

RRC

RAL

RAR

DAA

CMA

STC

CMC

and

REVIEW

flags.

The

11-7

REVIEW

The rotate instructions shift the accumulator left or right.

RLC Copies bit 7 to bit 0 and CY and shifts other bits left.

RRC Copies bit O to bit 7 and CY and shifts other bits

right. Previous carry is lost.

RAL Copies bit 7 to CY, CY to bit O and shifts other bits

left

RAR Copies bit 0 to CY, CY to bit 7 and shifts other bits

right

STC Sets carry

cMC Complements carry

These instructions do not affect any flags except carry, even
though execution may result in the accumulator containing zero
or having a different sign or parity condition. To set or clear
the flags to correspond to the content of the accumulator you must

execute a logical or arithmetic instruction.

CMA complements the accumulator but affects no flags.

DAA corrects the result of an addition to decimal. It affects sign,
zero, parity and carry flags. It may set carry but never clears

carry.

11-8

REVIEW

11.4 ARITHMETIC AND LOGICAL INSTRUCTIONS

There are eight types of instructions and each has nine possible
sourcesf the éeVen registers, the memory location addressed by (HL),
and the program memory (the immediate instrucfions). As in the MOV
instructions the three 1low bits designate the source. The next
three bits specify which of the instructions is intended:

A A A__Source register
IL__ Operation

—Arithmetic/Logic group

110
"

‘L_Operation

=t

=
<
>
g

—
{

Immediate Arithmetic/Logic

The operations designated by bits 5, 4, 3, are:

10 000 xx x ADD (A) <~ (A) + (r)
10 001 xxx ADC (A) <- (A) + (r) + (CY)
10 010 xxx SUB (A) <~ (&) - (r)
10 011 xxx SBB (A) <~ (A) - (r) - (CY)

10 100 xxzx ANA (A) <~ (A) AND (r).
01 xxx XRA (A) <- (A) XOR (r)
10 110 xxx ORA (A) <~ (A) OR (r)

10 111 xx X CMP (see below)

The same coding for the operation applies to the immediate

instructions.

11-9

REVIEW

CMP r (or CMP M) performs

the flags appropriately,

it in the accumulator.

a subtract operationm and sets

or clears

but discards the result instead of storing

The four DAD instructions are also included in the arithmetic group.

They are:

09
19
29

39

DAD B
DAD D
DAD H
DAD SP

(HL)
(HL)
(HL)

(HL)

These instructions affect only

(- (HL) +
{- (HL) +
{- (HL) +
{- (HL) +

the carry

(BC)
(DE)
(HL)

(SP)

flag.

They can

be used

both for double precision arithmetic and to index a memory address.

The latter is especially useful when operations are to be

on bytes

distance.

performed

that are spaced from each other by some fixed or variable

11.4.1 The Flags

The flag register (Processor Status Word, PSW) contains 5 bits. These

are arranged as indicated below.

Bit

Flag

Sign

Zero

AC 0

Par

11-10

REVIEW

The following 1list summarizes how these are affected by the

various instructions:

Sign: Set 1if the high bit of the result is 1, cleared if 0, by

the following instructions:

INR, DCR, DAA
Any arithmetic or logical instruction (except DAD).

Not affected by shift or complement instructions.

Zero: Set if the result is zero, cleared if not, by:

INR, DCR, DAA
Any arithmetic or logical instruction (except DAD).

Not affected by shift or complement instructions.

Parity: Set if parity of the result is even, cleared if odd, by:

INR, DCR, DAA
Any arithmetic or logical instruction (except_DAD).

Not affected by shift or complement instructions.

11-11

REVIEW

Auxiliary Carry: Set if a carry or borrow occurs from bit 3

as

a result of:
ADD, ADC, ADI, INR; cleared if the digit carry does not occur.

Also, set if no borrow occurs from bit 3 to bit 4 as a result
of SUB, SBB, SUI, SBI, CMP, CPI, DCR; cleared if borrow

occurs.

It is cleared by logical instructions (ANA, XRA, ORA, ANI,
XRI, ORI).

Not affected by shift instructions.

Carry: -Set ‘or cleared by any shift or arithmetic operation,

including:

11-12

CMP, DAD and DAA. Cleared by any of the logical instructions
ANA, ORA, XRA.

Set by STC; complemented by CMC.

Not affected by count instructions.

REVIEW

11.5 BRANCH INSTRUCTIONS

Jump, Call, Return, Restart and PCHL are the branch instructions.

11000011 C3 JMP
11001001 C9 RET
11001101 CD CALL
11101001 E9 PCHL

All of the branch instructions include 11 as the two high bits
(bits 7 and 6) of the instruction. The three low bits distinguish
among the branch, conditional branch, and various non-branching
instructions. The conditional branches use bits 5 and 4 to
determine which flag is to be tested and bit 3 to indicate whether
the: jump is to be executed when the .flag is set or when it .is

clear.

11 xxx010 Conditional Jump
11 xxx100 Conditional Call
11 xx2x000 Conditional Return
00O If Not Zero
001 If Zero
010 If not Carry
011 If Carry
100 If Parity 0dd
101 If Parity Even
110 If Plus
111 If Minus

11-13

REVIEW

The Restart instructions use the three bits 5, 4 and 3 as part of
the address for the single byte CALL. They are copied into the

corresponding three bits of the program counter while the

remaining bits are all set to zero. For instance, RST 5 jumps to
0028:
EF RST 5 11101111
00101000

Note that a programmed RST instruction does not affect the interrupt
enable flip flop. Interrupts are disabled by acknowledgement of an

external interrupt, not by the instruction.

No flags are affected by any branch instruction.

11-14

REVIEW

11.6 INPUT/OUTPUT
DB IN
XX port address
D3 ouT
XX port address

The port address is copied to both the high eight bits and the low
eight bits of the address bus. 1/0 Read or 1I/0 VWrite is
activated. The CPU copies the data bus to (A) on input; copies

(A) to the data bus on output. No flags are affected.

FB Enable Interrupt

F3 Disable Interrupt

Set or clear the internal interrupt enabled flip-flop. EI is not
effective until one instruction following EI has been executed. No

flags are affected.

11-15

REVIEW

11.7 UNDEFINED INSTRUCTIONS

Twelve operation codes are "undefined" in.the sense that. Intel has

not specified

meanings

for them.

In fact they all translate into

defined instructions because the instruction decoder ignores certain

bits.

The following

0

0

0

8

0

© O
o

o

o © © o

0

0]

0

0

all treated as NOP.

000

000

o O o o o o

Defined as NOP

(See 11.8.2)

(See 11.8.2)

Defines NOP

Ignored

CB acts as C3, JMP (Bit 3

is ignored).

D9 acts as C9, RET (Bit 4 is ignored).

DD, ED and FD all act as CD, CALL.

11-16

(Bits 4 and 5 are ignored.)

REVIEW

11.8 OTHER MICROPROCESSORS

Various manufacturers other than Intel make exact equivalents of the
8080. In addition, there are several microprocessors that use the

8080 instruction set but are not equivalent.
11.8.1 NEC 8080A and NEC 8080AF

Nippon Electric manufactures the NEC 8080AF as an exact equivalent
to the 1Intel 8080A. The NEC 8080A has a useful added feature that
permits DAA to be effective for decimal subtraction as well as
addition. It also executes the MOV instructions in four clock
periods instead of five. Although these are desirable features the
designer must recognize +that if he uses them he will have no

alternate source of supply for the microprocessor.

11.8.2 INTEL 8085

The 8085 uses the 8080 instruction set, and any program developed
for the 8080 can be used without change. The 8085 includes the
functions of the clock generator (8224) and system controller (8228)
in the microprocessor chip. Hardware interfaces are different. In
the 8085 the data bus is time multiplexed with the low eight bits of
the address Dbus. This requires either special memory chips or

additional interface hardware.

11-17

REVIEW

The 8085 has five separate interrupt inputs. One 1is exactly
equivalent to the 8080 interrupt input. The other four are directly
vectored, and have a defined priority sequence, so RST instructions
need not be used. The interrupts can be masked independently of
each other. Two of the undefined instructions in the 8080 set (op
codes 20 and 30) are used to read and set the masks, and also to

read and transmit serial data through separate pins.

The 8085 operates with a 1.3 microsecond clock, the same speed as
the fastest version of the 8080A, but does not require high speed

memory devices. It requires only a single power supply (+ 5 volts.)

All of these features make the 8085 very attractive, especially for
small systems. Having 1learned to program the 8080, you are fully
prepared to use the 8085. Only the two additional instructions

mentioned above, and the use of the additional interrupt inputs,

will be new.
11.8.3 ZILOG Z-80

This is a very sophisticated microprocessor that greatly extends the
addressing capability of the 8080 instruction set. It is software
compatible, in that it will execute programs written for the 8080.
The undefined 8080 op-codes are used in the Z-80, in some cases for
four byte instructions. Although there are a number of features
that will be new to the 8080 programmer, use of the extended
instruction set greatly simplifies programming of arithmetic
functions. One of the most popular uses of the Z-80 is in personal

computers with BASIC interpreters.

11-18

MICROCOMPUTER TRAINING WORKBOOK

APPENDIX A

THE 1CS MONITOR

A.1

ICS ADVANCED MICROCOMPUTER TRAINING SYSTEM DESCRIPTION

1) The ICS Microcomputer Training System uses the INTEL 8080A

microprocessor, or an exact equivalent.

2) There are 1K bytes of ROM (addresses 0000 to O03FF),
expandable on the board to 4K or 8K bytes using 1K by 8 or 2K by
8 chips, and 2K bytes of RAM (addresses 8000 to 87FF),
expandable on the board to 4K bytes. With the optional S-100
bus, memory may be expanded to 64K bytes (any combination of RAM

or ROM chips).

3) An 8255 Programmable Peripheral Interface chip is provided

for Input/Output.

4) A Keyboard 1is provided with 25 keys. RESET gives a reset

signal to the 8080A. Other switches provide input to the 8255.

9) A display 1is provided with eight digit positions. This is
driven by DMA using the contents of addresses 83F8 through 83FF

for digit positions 1 through 8.

6) Two LED's display the user's carry and zero flags.

7) The complete instruction set for the 8080A is given in the
8080 Microcomputer System User's Manual, together with detailed
specifications of the machine's internal state during instruction

execution and a description of all registers.

8) The MTS board layout is shown in Figure A-1. A block diagram

is presented in Figure A-2.

THE ICS MONITOR

INTECGIAI

COVPUTER SYSTEWIS, INC.

FULLY ASSEMBLED AND TESTED MICROCOMPUTER AND POWER SUPPLY

PROCESSOR
HARDWARE

8080A Microprocessor
and Control Logic

RAM MEMORY AUDIO CASSETTE

2048 Bytes of RAM Memory for INTERFACE

Programs and Data. Expandable Audio Cassette Interface and

On-Board to 4K Bytes. Associated Software for Easy
Program Storage and Retrieval

DISPLAY
On-Board 8-Digit
LED Display

DMA

Direct Memory
Access (DMA)
Channel

FREE AREA
Space for User's
Hardware Additions

PROM MEMORY

Eraseable PROM Memory
(containing the Educational Monitor
Program) - 1024 Bytes.
Expandable On-Board to 8K Bytes.

KEYBOARD
On-Board Keyboard
with 25 Keys for
Program and Data
Entry.

PROGRAMMABLE PERIPHERAL INTERFACE
Programmable /0 Device Including Three 8-Bit Ports.

MTS Board Layout
Figure A-1

CHIP

SELECT
wair A | | 1 - | . o
0 » N R
' A1s ' 1 — ‘ >ABg 15
Lo] Al 1
WR fo-
DBIN : CS cs CE CE;
'HLDA PROM RAM
HOLD f&— P708/2716 oozluﬁ/w
8080A # 1 7y
—P{ INT MEMR o~ 10 \)' -
D _
0 < \/ .
INTE D7<%> IS [l ——>08p 7
¢ ¢, MEMW jo—t =
3 ornl) il
k}ies_ET SysTEN L'y v
: A, A.CS Dy 7 DATA
CONTROL lo-polgz 0 1 0
AUTO/STEP\O SYNC . LER RD 8256 Bd L8A2T1(.‘éH DECODER
SELECT \’ g : o—»o|WR
T 8224 stsT [~ 1 |LPBo 7PC 7PA0 7 T
' N A
~O|RESIN T 110 1
STSTB LED DISPLAY
; 3 ' 7401
AB
INTERRUPT] 24 KEYS DMA 0
GENERATOR [' CONTROL AB,
¢ " =
vV Vv JV AB,
RESET M rErnaL TORT FoR HOLD oc. —
KEY /;,7,]; PERIPHERAL HLDA a
=
S
b Microcomputer Training System Configuration -
& ‘Figure A-2 S

THE ICS MONITOR
A.2 GENERAL MONITOR FUNCTIONS

The monitor provides five general functions:
Load memory from keyboard
Store program on tape
Load program from tape
Operate program in debug:mode

Run user program
A.2.1 Load Memory from keyboard

A.2.1.1 To select a memory address, press

ADDPR. n n n n

MEM

(where nnnn is the address: e.g. ADDR 8300 MEM)

The address will appear in the left four digits, and its present
contents will appear in the right two digits preceded by a decimal

point.

A.2.1.2 To enter data to memory after pressing MEM, key in one or
two digits. They will replace the contents of the memory location
whose address 1is displayed, and the new data will appear on the

right.

THE ICS MONITOR

A.2.1.3 If an error is made, it can be corrected by pressing additional
digits. The last two digits keyed 1in will be stored and displayed.
Pressing CLR will restore the original value that was stored,

provided that no other command key has been pressed.

A.2.1.4 To proceed to the next higher memory location, press NEXT.

It is not necessary to press MEM again.
A.2.1.5 Press MEM again to access the next lower memory location.

A.2.1.6 A decimal point to the left of the two right hand digits
indicates that MEM has been pressed and data entry is enabled. If no

symbol is displayed in this position data will not be accepted.

A.2.1.7 If data entry is attempted without being enabled, or if the
memory location is in ROM or does not exist, the display will show

Err. Press MEM to restore the address and enable entry.

THE ICS MONITOR
A.2.2 Store program on tape.

The monitor program SEROT copies binary data from memory to a serial
recording medium such as an audio tape cassette. The MTS circuit
board includes an oscillator and modulator which are driven by this

program. Data are recorded in serial synchronous format as described

in Chapter 9.

A typical program will occupy 30 seconds to two minutes of tape.
Several programs may be recorded on one tape; it is advisable to
identify each program with a voice message preceding it. Then

connect a cable from the MTS audio connector labeled with an outward

arrow to the recorder Microphone or Auxiliary Input.
A.2.2.1 Operating Procedure

Press RESET. Now the modem will record a continuous tone. Let this

continue for five to ten seconds while you do the following.

Set the STEP/AUTO toggle switch to AUTO.

Store the starting address by:
ADDR (starting address) MEM

If the starting address is 8200, this step is not necessary because

RESET sets the memory address to 8200.

THE ICS MONITOR

Then store the stopping address by:

ADDR (stopping address) BRK

(If this step 1is omitted, the serial output program will continue
forever.) Note that the content of the stopping address is not
recorded, so it must be the location of the next byte beyond the end

of the program.

Start the program by:

ADDR 0371 RUN

The display will be blank. The Carry indicator will flicker, showing
that data are being transmitted. This indicator is on during all
data and stop bits; off during the start bit only. When the block of
memory specified has all been transmitted, an error check character

is recorded on the tape. Then the program reenters the monitor and
the display will show: 0382 CD. Let the recorder run for another two

or three seconds, then turm it off.

You can observe the error check character by pressing BRK. The
stopping address and the error check character will be displayed.

There is no need to observe this character, however.

THE ICS MONITOR

A.2.2.2 Data Rate for Recording

The monitor program records data at 110 baud: That 1is, 110 bit
intervals per second. (This rate 1is compatible with Teletype paper
tape punches and readers.) Since the program records 12 bits per
character, the resulting data rate is 9.17 characters per second. A

256 byte program will occupy 28 seconds of tape.

You can record at s higher data rate by entering the recording
program with a delay count in register C. A value of 2D (hex)

generates 300 baud. The procedure to use this feature is:

Turn recorder on

RESET

REG C (delay count)

ADDR (starting address) MEM
ADDR. (stopping address) BRK

ADDR 0373 RUN

Note that the entry address is different, to avoid the monitor

instruction that loads register C with 7D for 110 baud.

THE ICS MONITOR
A.2.3 Load Program from Tape

The program SERIN loads binary data from a serial recording medium
into memory. It is complementary to SEROT: it receives data in the
-format described above. A demodulator circuit 1is provided for

reading from an audio tape cassette.
A.2.3.1 Operating Procedure

Before connecting the tape player to the MTS, listen to the tape and
wait for the continuous tone. Now stop it promptly, so that when you
turn it on again the continuous tone will appear again. Connect the
recorder Earphone outpuf to the MTS audio connector labeled with an

inward arrow. Enter the starting address by:
ADDR (starting address) MEM

(This step may be replaced by RESET if the program is to start at
8200.)

Now load the program address:

ADDR O3AE

Turn the recorder on and press RUN. The display will go blank.
Indicators labeled AUDIO and DATA will flicker while data is being
received. If the continuous tone was not present the moment you
pressed RUN, the display will show Err. Then you must repeat the

procedure.

THE ICS MONITOR

When the tape has been read successfully the program will reenter the
monitor and display O3CF C5. Press MEM to display the stopping
address. The error check character resorded on the tape is stored

here. Now press REG A. The display will show 03CF A-00.

If the content of register A is not =zero, there is a discrepancy
between the error check character calculated and recorded by the
output program and that calculated by the reading program. This means
that an error exists somewhere in the data read back, but there is no

indication of which byte is incorrect.
A.2.3.2 Alternate Data Rate

I1f you have recorded a tape at a different data rate than 110 baud,
as described in A.2.2.2, you must again load register C for that data

rate before entering the reading program.

It is also necessary to load register B with a constant. This
determines the delay time before the reading program recognizes the

end of the recording. A value of 20 H gives a 0.3 second delay.

The procedure is:
REG B 20
NEXT (data rate constant)
ADDR 03Bl
turn tape player on

RUN

THE ICS MONITOR
A.2.4 Operating in Debug Mode

The monitor provides for tracing the flow and results of a user's
program. The STEP/AUTO toggle switch must be set to STEP; after each
user instruction is executed a hardware interrupt is generated. This

causes an entry to the monitor.
A.2.4.1 Step and Run

Operation of the user's program is initiated by the STEP command or
the RUN command. A flag byte (SFLAG) is stored by the monitor
when the STEP or the RUN key is operated. This flag determines
the procedure to be followed at the next interrupt entry to the
monitor. With the Mode toggle switch at STEP, either command will
result in the user's program being interrupted at each instruction,
but in RUN the return to the user program is automatic unless a
Breakpoint 1is encountered. With the Mode toggle switch at STEP,
the STEP key results in the monitor activating the keyboard and
display after each wuser instruction 1is executed. With the Mode
toggle switch at AUTO, the user's program runs without interruption,

with either command.
A.2.4.2 Breakpoint Operation

If the initiating command was RUN, the monitor tests any breakpoints

entered by the user. Two tests are made:

a) Is the user's program counter equal to any breakpoint entered?
b) Has the data changed at any memory location entered as a

breakpoint?

A-11

THE I1CS MONITOR

If neither condition is true, the monitor returns control to the
user's program. If either test is true, the monitor tests a counter
associated with that breakpoint. If non-zero, it decrements the
counter and returns to the user's program, but if the counter is

zero, the keyboard and display are activated.

Note that a breakpoint stops the user's program before executing an
instruction whose address is entered as a breakpoint, but after data
has been changed at a breakpoint. If any breakpoint is encountered,
no other breakpoint will be tested until the next instruction in the

user's program has been executed.

The breakpoint system can also be used to stop execution after a
specified number of instructions have been executed, rather than at a
specific instruction. The process of entering and removing

breakpoints is covered in Section A.3.3.8 of this appendix.
A.2.4.3 Monitor Display

When the display is active under monitor control, it shows an address
in display positions 1-4 (the left four digits) and a data byte in
positions 7 and 8 (the right two digits). At entry to the monitor
the address displayed is the program counter, and the data are either
the next instruction or the contents of a register. The latter is

identified in digits 5 and 8.

The user may request many other displays, such as another register,
another address in memory, a register pair and the coantents of the

addressed location, the stack pointer, or the user's stack top.

A-12

THE ICS MONITOR
A.3 MONITOR COMMANDS

The major sections of the monitor operate as an interrupt service
routine entered by a hardware interrupt automatically generated as
each user instruction is executed, provided that the AUTQO/STEP switch

is in the STEP position.

The wuser may program entry to the monitor by including the RST4
instruction (E7) 1in his program. He may alter addresses and flags
used by the monitor through his own program, thereby affecting
monitor functions. Various monitor subroutines are accessible to the

user by normal subroutine calls.
A.3.1 Monitor Entry

When the monitor is entered by interrupt (RST7) or by programmed call
(RST4) the user's registers, program counter, and stack pointer are

saved in memory and may be accessed by monitor commands.

The RESET key causes a hardware reset to the 8080. In general, the
user's register contents and stack are lost. The user's memory
address and program counter are set to 8200, and the user's stack
pointer is set to B83EO. All interrupt entry addresses are
initialized and all breakpoints are cleared. Some data, including
the wuser's program counter, may be recovered as described in Section

A.3.4.

A-13

THE ICS MONITOR

A.3.2 Monitor Data Storage

At entry to the monitor, the user's program counter is popped from
the stack and stored at PCADR. The registers are pushed onto the
stack. If the STEP Key was used or a breakpoint is encountered, the
Carry and Zero flags are shown in two LED's. Neither these nor the
hexadecimal display are changed unless STEP was used or a breakpoint

is encountered.

The monitor stores the following data in fixed memory locations:

BKLOW (83E2) 1is a one byte pointer to the oldest breakpoint in the
breakpoint table. If no breakpoints have been entered, it contains

E2, pointing to itself.

BKPOS (83E3) 1is a one byte pointer to the breakpoint most recently

encountered.

MADDR (83E4, E5) The address of the last memory location accessed

via the MEM or NEXT command.

PCADR (83E6, E7) The user's program counter.

SFLAG (83F6) indicates whether the user's program was last initiated
by RUN or STEP. If it contains zero, breakpoints are tested;
otherwise, the monitor keyboard and display functions are enabled at

entry to the monitor.

A-14

THE ICS MONITOR

RGNAM (83F7) The name of the register displayed by REG command, or

zero if MEM command has been used since fhe last REG command. If
this value is non-zero when the monitor keyboard and display-

functions are activated, the named register is displayed.

When the wmonitor is awaiting a command or data, register pair H,L
generally contains a display address, which points to either the
memory address, the user's program counter, a breakpoint, or an

address just keyed in by the user following the ADDR command.

Operation of the monitor commands can be described in large part by

reference to these addresses:

PCADR (the user's program counter)
MADDR (the memory location most recently addressed

with MEM or NEXT)

and the display address in (HL).

A-15

THE ICS MONITOR
A.3.3 Monitor Commands

Monitor commands are issued by pressing one of the eight command
keys: ADDR, MEM, NEXT, CLR, REG, STEP, RUN, BRK. These are discussed

below in the order listed.

A.3.3.1 ADDR

Recalls the user's program counter and makes it the display address.
The PC 1is displayed 1in the left four digits, and the content of

memory at that address in the right two digits.

If ADDR is followed by hexadecimal keys, the display address is

cleared and the hex characters are entered as the display address. In
general four characters must be entered, but this depends on the

command which follows ADDR. A count of the number of keys is
complemented and stored in register D for use by the monitor in

executing the next command .

Contents of D:

00 ADDR not used

FF ADDR used, no hex keys
FE one hex key

FD two hex keys

FC three hex keys

FB four hex keys

A-16

THE ICS MONITOR

When the first hex key is préssed, the left display digit shows that
key with three leading zeros, and the right hand display is blanked.
Additional keys are shifted into the ieft hand display. When fbur
keys have been entered, they represent an address, and the memory

content of that address is displayed at the right.

When another command key is pressed, the displayed address is passed
to .the appropriate command processing module. In some cases fewer
than four hex keys will be accepted as an address or converted to an
address. See the sections describing MEM, BRK, STEP and RUN for

details.

A.3.3.2 MEM

Calls for display of a memory address and 1its contents. If the

preceding command was not ADDR, the previously stored memory address

is used. If ADDR was used, the address in H,L becomes the memory
address. This may be the user's program counter or a newly keyed
address. If exactly one hex key followed ADDR, that is taken as the

name of a register pair, the stack pointer, or the stack top, and the

two bytes referred to thereby become the memory address.

Key Register Pair
1/SP Stack pointer
2/ST Stack top
8/H H,L

B B,C

D D,E

Other single key entries are errors.

A-17

THE ICS MONITOR

With a memory address determined, it is displayed in the four left
digits and the contents of that location are displayed in the right
two digits. If the address was derived from a register pair, a label

identifying that pair is displayed.

After the MEM command has been issued, the contents of the displayed
location can be altered by keying in one or two (or more) hex digits.

A decimal point in digit 6 indicates that data can be altered.

The NEXT command increments the memory address and displays the new

address and contents. Again, the contents can be altered.

Note that ADDR causes display of a memory address, but the contents
cannot be altered until the MEM command has been given. Assume that

the present memory address is 8300:

MEM 8300 +AF

Recalls and displays previous memory address and contents with a

decimal point. Contents can be altered by hex keys.

4 4 8300 .44

ADDR 8200 01

Recalls and displays user's PC and instruction. Contents cannot be

altered. WNo decimal point is shown.

A-18

THE ICS MONITOR

ADDR MEM 8200 .01
Now contents can be altered. 8200 is now the stored memory address.
NEXT 8201 .80

Displays the next byte in memory. 8201 is the stored memory address.

Contents can be altered.

ADDR 8 3 0 0 8300 44
Displays 8300 again and its contents again, but contents are protected.
MEM 8300 .44

Now 8300 is the stored memory address and its contents can be

altered, as indicated by the decimal point:

3 2 8300 .32
MEM 82FF .00
Repeated use of MEM with no other command intervening displays the
address and content 9f the next lower memory location. By using NEXT

or MEM, the memory content can be reviewed (and altered if desired)

in either ascending or descending order.

A-19

THE ICS MONITOR

Register pair display

ADDR B MEM 8381 %C.%5
A

BC contains 8331

Label BC

Contents of 8381

When a register pair is-displayed, its contents are stored as the
memory address, and the data addressed can be altered. The address
can be incremented or decremented by NEXT or MEM, but this changes
only the memory address, not the content of the register pair. The

register pair symbol is removed when the address is changed.
A.3.3.3 NEXT

This increments the memory address if a memory location is being
displayed. If MEM has not previously been pressed, NEXT increments
the display address and stores it as the current memory address, but

does not enable data entry.

A-20

THE ICS MONITOR

If a register pair 1is displayed, the content of that pair is the
memory address. NEXT will display the next higher address, and

‘remove the register pair symbol.

When a register 1is displayed NEXT selects the next register in

sequence: A, B, C, D, E, F, H, L, A - - - (See A.3.3.5)

When a breakpoint 1is displayed NEXT calls for display of the next
breakpoint in the list. If there is only one breakpoint in the

table; NEXT has no effect. (See A.3.3.8)
A.3.3.4 CLR

"If CLR follows entry of data (to a register or a memory location) the

previous data are restored and displayed.

If a memory location was being displayed and MEM had been pressed,
the address, pair label (if any) and data are still displayed. Data

entry is still enabled.

If a memory location was being displayed without MEM having been
pressed, CLR restores the display of the program counter. The memory

location can be recovered by MEM.

If an address was being entered, CLR restores the display of the
program counter and permits an address to be entered. (ADDR need not
be pressed again.) MEM will recover the previous memory address. CLR

is also used to remove a breakpoint. See A.3.3.8.

A-21

THE ICS MONITOR

A.3.3.5 REG

REG is followed by a hex key naming the register desired.
REG n displays the current contents of the user's program counter

and the contents of register n, with a label.

REG 8/H 8224 H-6E

User's PC

Label H

Contents of H

Legal register names are A, B, C, D, E, F, H (Key 8) and L (Key 9).

If followed by any hexadecimal key or keys the contents of the

displayed register are altered:

REG 8/H 3 2 8224 H-32

If followed by NEXT, the next register (alphabetically) is displayed:

NEXT 8224 L-13

A-22

THE ICS MONITOR

The name of the register selected for display is retained, and at
subsequent entry to the monitor the selected register will be
displayed. When.the MEM key is used, the register name is cleared;
then further entries to the monitor will display the contents of the
current address. A register name is stored (as one byte at RGNAM)
when a register is selected by REG n or by NEXT while a register is

being displayed.

If REG follows an ADDR command the effect of the ADDR command is
lost. REG always shows the program counter in the left hand four

digits.

A.3.3.6 STEP

STEP sets (SFLAG) 1 to indicate that the monitor keyboard and
display functions are to be activated at the next entry to the
monitor. All wuser registers are restored, the interrupt system is
enabled, and control is returned to the wuser's program at the

location stored in PCADR. The user's program is interrupted upon

execution of the next instruction and the monitor is reactivated.

If the STEP (or RUN) command immediately follows an ADDR command with
four (or more) hexadecimal keys, then the address entered becomes the

user's program counter, and control is passed to that location.

A-23

THE ICS MONITOR
A.3.3.7 RUN

RUN sets (SFLAG) = 0 to indicate that the RUN command was issued
and then returns to the user's program exactly as in STEP. The
user's program is interrupted at each instruction to test for
breakpoints, but the keyboard and display are not activated unless a
breakpoint 1is encountered and its count reaches zero. When this

occurs the monitor behaves as though STEP had been used.

A.3.3.8 Breakpoints

BRK displays the address of +the current breakpoint. If a
breakpoint has been encountered during execution of the user's

program, it will be displayed in response to BRK.

8222 BP.0O
——

Breakpoint T

Symbol and count

A breakpoint is "encountered" either when the user's program counter
is equal to the breakpoint, or when the user's program changes the
content of a memory location whose address has been set as a

breakpoint.

If no breakpoints have been entered, the BP. symbol will be displayed

with all other digits blank.

A-24

THE ICS MONITOR

A breakpoint is entered by:

ADDR 8 2 1 0 8210 3C
BRK 8210 B8P.0O
4 (optional count) 8210 BP.04

When RUN is pressed, this address will be encountered and executed
four times, stopping on the fifth. Then the display shows the

program counter and instruction:
8210 3C
BRK 8210 BP.0O

BRK shows the breakpoint, now counted down to zero. It may be left

with a zero count, or a new count may be entered:

)

2 4 8210 BP.24

Certain addresses can be entered as breakpoints by abbreviated

entries, as listed below.

User's program counter ADDR- BRK

Current memory address ADDR O BRK
User's stack pointer ADDR 1/P BRK
User's stack top ADDR 2/T BRK
Content of BC ADDR B BRK
Content of DE ADDR D BRK
Content of HL ADDR 8/H BRK

A-25

THE ICS MONITOR

When a breakpoint is displayed it can be cleared.

8210 BP.24

CLR BP.

The blank display shows that no breakpoints exist. If other
breakpoints are still stored, the next one in the list would now be
displayed. If more than one breakpoint is stored NEXT will display
each in turn. Whenever a breakpoint is displayed it may have a new

count entered or it may be cleared. RST clears all breakpoints.

The breakpoint system can also be used to stop execution after a
specified number of instructions have been executed, rather than at a

specific instruction:

ADDR 83E6 BRK (count)

This sets a breakpoint at the location where the monitor stores the
user's program counter. Since the content of this location is
changed at each monitor entry, the breakpoint will be encountered
after every instruction. When the count is decremented to zero,

program execution will stop.

A-26

THE ICS MONITOR

Each Dbreakpoint entered occupies four bytes of memory. These data
are entered above the user's stack, which is pushed down in memory.

The data are:

Breakpoint address (two bytes)
Breakpoint data

Breakpoint count

The oldest breakpoint is stored immediately above the user's stack
area, and BKLOW points to the 1low byte of 1its address. The
breakpoint data is a copy of the data stored in the memory location
addressed by the breakpoint; it is wupdated each time the breakpoint
is tested. The count is zero unless another value is entered when

the breakpoint is displayed.

The number of breakpoints that can be entered is limited only by the
space available in page 8300 of memory. However, it is seldom useful

to have more than four breakpoints in operation at one time.

Note that when a breakpoint is entered or removed, the entire stack
from 83El down 1is moved. If the wuser's program reinitializes the
stack pointer, no breakpoints should be added or removed

subsequently.

Breakpoints can be entered or removed by the user's program. See

Section 9.6.2 in the text for a description of this process.

A=-27

THE ICS MONITOR

A.3.3.9 Error Display

Err

may be displayed for any of the reasons listed below. CLR or

ADDR will restore the display of program counter and instruction.

MEM will recover and display the memory address and its content,

Error conditions are:

a)

b)

d)

e).

f)

g)

Attempt to write to a non-existent or ROM memory location;

or to enter data when data entry is not enabled.

REG x where x is not a register name (A, B, C, D, E, F,

H, L).

ADDR x MEM where x is not a register pair name

(B, D, H, P, T).
ADDR x BRK where x is not a register pair name nor O.

Attempt to enter a breakpoint count when no breakpoint

exists.

Numeric key pressed without a preceding legitimate

command key (ADDR, MEM, REG, BRK).

Attempt to STEP or RUN after entering a one, two or

three byte address.

The error display can be generated by the user's program using a call

to monitor subroutine ERRDS. See A.5.4.6.

THE ICS MONITOR
A.3.4 Recovering Data after RESET

Occasionally a program which has not been fully debugged will enter
an endless loop, with no input or output accomplished. Control can be

restored to. the monitor by pressing RESET.

The fixed data locations 83E8 through 83F7 are initialized with the
interrupt dispatch addresses. MADDR and PCADR are loaded with 8200.
RGNAM and SFLAG are cleared, and all breakpoints are cleared.
Provided that the program was running in breakpoint mode (toggle

switch at STEP), some useful data can be recovered.

Before PCADR 1is initialized, its content is copied to 83EO, El.
During RESET initialization, this is treated as a fixed address, but
it is subsequently treated as part of the stack. It can be viewed by

pressing ADDR 2/T MEM after a reset.

Eight bytes of the stack (83D8 - 83DF) are also preserved. If no
breakpoint had been entered and the user's stack was empty, these
contain the user's registers as last stored while the user's program
was running, and can be observed as register contents by REG A, NEXT,
etc. If the user's program was executing a subroutine when RESET was
pressed, its return address will be found at 83DE, DF. If a
breakpoint had been entered, then four bytes of the preserved stack
area will be occupied by useless data, but four bytes of the user'’'s
stack or registers will be preserved. If two breakpoints had been
entered, no useful data except the program counter can be recovered.
The following table shows the content of this area under several

conditions.

A-29

THE ICS MONITOR

A-30

83D8
D9
DA
DB
DC
DD
DE
DF
83E0

El

NO BREAKPOINTS

ONE BREAKPOINT

User Stack User User Stack User
Empty Subroutine Empty Subroutine
F E c L
A i D B H
|
E g C L Return
D ; B H Address
c % L Previous last
B H program counter
L Return Breakpoint Address
H Address

Last observed user program counter

THE ICS MONITOR
A.4 PROGRAM CONTROL OF MONITOR FUNCTIONS
A.4.1 Output Port OC

The Kkeyboard, display, modem output, and the monitor interrupts are
controlled by outputs at Port C of the 8255. (This is referred to as
PORTOC to distinguish it from ports of the ICS Interface Training

System.) The bit assignments and effects are listed below.

PORTOC Zero One_
Bit O Modem frequency low High

Bit 1 Monitor disabled Enabled
Bit 2 Carry LED off On

Bit 3 Zero LED off On

Bit 4 Keys 0-7 enabled Disabled
Bit 5 Keys 8-F enabled Disabled
Bit 6 Command keys enabled Disabled
Bit 7 Display disabled Enabled

These can be controlled by the user's program, either by writing to

PORTOC:

3Exx MVI1 A,xx

D302 OouT PORTOC

or by setting or resetting a single bit:

3Eyy MVI A,yy

D303 ouT CNTO

A-31

THE ICS MONITOR

The table below gives values to be loaded to (A) for the bit

set/reset function (using MVI A, xx; OUT CNTO).

00 Set modem frequency low
01 Set modem frequency high
02 Disable monitor

03 Enable monitor

04 Carry LED off

05 Carry LED on

06 Zero LED off

07 Zero LED on

08 Enable keys 0-7

09 Disable keys 0-7

0OA Enable keys 8-F

0B Disable keys 8-F

ocC Enable command keys

(0))) Disable command keys

OE Disable display

OF Enable display

All of these bits are controlled by the moﬂitor when its keyboard and
display functions are enabled. They are also affected by certain

monitor subroutines which may be called by the user.

The monitor sets the modem frequency high, enables monitor
interrupts, shows the wuser's carry and zero flags in the LED's,

enables all rows of the keyboard, and enables the display.

A-32

THE ICS MONITOR

Monitor subroutines DBYTE, DWORD, ENTBY, ENTWD, ENMEM, KEYS and GETKY
enable the monitor, the display and all rows of the keyboard. The
modem and LED's are not affected. During execution of all keyboard
input subroutines, the monitor interrupts are disabled to avoid

slowing the debounce delay by repeated interrupts.

Monitor subroutine SCAN reads the keyboard once. If any key is
pressed, it returns with the row containing that key enabled. If no
key 1is pressed, all keys are disabled. Monitor interfupts are

disabled.
A.4.2 Interrupt Entry Points

The MTS provides for external interrupts as well as the monitor
interrupt. A1l of the 8080 RST instructions except RSTO (which is
also RESET) are available, although RS8T7 is required for monitor

debug operation.

RST1 through RST7 are treated identically when they are detected.
Each loads a dispatch address from a different location in memory and
jumps to that address with all registers and the stack intact. The
stack top contains the address of the interrupted instruction. The

instruction sequence is:

RSTX: PUSH H
LHLD ENTX
XTHL

RET

A-33

THE ICS MONITOR

Except for timing, this is equivalent to JMP xxxx. RST4 precedes the
above sequence with DI, because it is used for programmed calls to
the monitor which must not be interrupted. The other RST enfry poinﬁs
do not disable interrupts, but if invoked by an external interrupt,

that action will have disabled interrupts.

The dispatch address locations and initial values set by the monitor

at RESET are listed below.

Interrupt Dispatch Initial
Vector Location Value
RST1 83F4, F5 0000
RST2 83F2, F3 0000
RST3 83F0, F1 0000
RST4 83EE, EF 0063
RST5 83EC, ED 8228
RST6 83EA, EB 8230
RST7 83E8, E9 006A

The wuser may change these values either by monitor commands or by
program instructions. The latter is recommended since RESET will
restore the values listed above. If it is possible for an interrupt
to occur before initialization, the user's program should disable

interrupts as its first instruction.

Note that changing the dispatch address for RST7 allows the user to

write his own monitor functions (See Section 8.6.2 in the text).

THE ICS MONITOR
A.5 INPUT/OUTPUT AND MONITOR SUBROUTINES

The hexadecimal and command keys of the MTS and the eight digit
display are accessible to the user either by direct input and output
or memory operations or through monitor subroutines. Refer to

Chapter 8 for a discussion of input and output techniques and

exercises.
A.5.1 Keyboard Input

The keyboard is connected as a 3 x 8 matrix. A row of eight keys is

enabled by setting one bit at output port 0C low.

Port 0C4 Low enables keys 0-7
Port 0CS5 Low enables keys 8-F

Port 0C6 Low enables command keys.

If one row is enabled and the other two rows are disabled, the eight

keys in that row can be sensed at input port OA.

Input Ell Key
0AO0 0 8 MEM
0Al 1 9 REG
0A2 2 A ADDR
0A3 3 B STEP
0A4 4 C RUN
0A5 5 D NEXT
0A6 6 E BRK
0A7 7 F CLR

THE .ICS MONITOR

If a key is pressed and its row is enabled, the corresponding input

bit will be low. Otherwise, the input bit will be high.

When the monitor returns control to the user's program after STEP or
RUN, all three rows of the keyboard are enabled. Several of the
monitor 1/0 subroutines also enable all three rows. In this state no
single key can be recognized, but it is easy to test whether the

keyboard is idle or in use.

DBOO IN PORTOA
3C INR A
sets the zero flag if no key is pressed. This function can be

followed by a conditional Jjump or a conditional call to an input

subroutine.
A,5.2 Monitor Input Subroutines

Six monitor subroutines are provided for keyboard input. These are
described below. Any of them can be called by user programs. Each is
identified by a name and by its address. The descriptions specify

the data returned by the subroutine, and entry data where required.

A-36

THE ICS MONITOR
A.5.2.1 SCAN (0257)

Disables monitor interrupts. Tests each row of the keyboard in turn,
until all have been tested or until an active key is found. If no
key 1is pressed, all keyboard rows are disabled. If a key is pressed,
its row 1is left enabled, and the others are disabled. It tests
command keys first, then 8-F, and finally 0-7. If two keys in
different rows are pressed, SCAN detects the key from the higher
valued row. If two keys in the same row are pressed, SCAN returns
the lower valued key. If more than two Kkeys are pressed, an
erroneous value may be returned, but it will still lie in the range

of allowed values, 00-17.
If no key is pressed, SCAN returns (A) = 00, Zero Set, No Carry.

If a key is pressed, SCAN returns (A) = key value (00-17), Carry Set.

Zero is set if the key is O.

All registers except A are preserved.

No entry data are required.

The stack is used for one level in addition to the return address.

Timing depends on the input detected:

No keys 457 clocks
Maximum (Key 7) 553 clocks
Minimum (MEM key) 200 clocks

Add 5432 clocks if the monitor was enabled at entry.

A-37

THE ICS MONITOR
A.5.2.2 GETKY (023D)

GETKY waits indefinitely for a key to be pressed, and then waits
until all keys are released for a time of 26 milliseconds to protect

against contact bounces.

GETKY calls SCAN to read the keyboard. Comments under SCAN regarding
multiple %ey depressions apply to GETKY. The first key detected is

returned by GETKY.

Returns (A) = (C) = Key
(B) = 00

Al]l other registers preserved

Carry is cleared for command keys, set for hexadecimal keys.
Zero is set for MEM, cleared for all others.

At exit monitor interrupts, display, and all rows of the keyboard are

enabled.

No entry data are required.

A-38

THE ICS MONITOR
A.5.2.3 KEYS (0365)

Subroutine KEYS accepts successive hexadecimal keys by calling GETKY
and shifting the hexadecimal values into register pair HL, to return
the last four hexadecimal digits packed into two bytes. It increments
register D and returns to the calling program after each key. KEYS
does not demand any entry data, but is usually called with (HL)
containing previous data and (D) containing the key count. Usually
(HL) is cleared and (D) = FF at the first call. The following

assumes that initialization:

Return (A) = (C) = last key pressed
(B) = 00
(D) = count of hexadecimal keys, provided

(D) was initialized to FF before the first call

(E) preserved

(HL) 1last four hexadecimal keys pressed,

with leading zeros if cleared before the first call.

Carry set if the last key is hexadecimal, clear

if command.

Zero is cleared, except zero is set after the

first key if D was initialized to FF.

A-39

THE ICS MONITOR
A.5.2.4 MENAB (0222)

Enables the monitor, display, and all rows of the keyboard, by
writing to PORTOC. Zero indicator, carry indicator, and modem

control bits are preserved. At return:
All registers and flags are preserved.

PORTOC =1 000 XX 11X
A

‘ t—-Modem (preserved)

Monitor (enabled)

Z, CY indicators (preserved)

Keyboard (enabled)

Display (enabled)

The following monitor subroutines exit via MENAB:
All display subroutines except DISPR

GETKY, which is called by all input subroutines except SCAN

A-40

THE ICS MONITOR

A.5.2.5 ENTBY (0336)

ENTBY is intended for entry of one byte. It initializes (D) = FF and

(HL) = 0000, It then calls KEYS repeatedly until Not Carry is
returned indicating that a command key has been entered. After each

hexadecimal key it calls DBYTE to display the last two keys.

At return:
(A) = (C) = command
(B) = 00
(D) = count of hexadecimal keys
(E) preserved
(HL) = 1last four hex keys

Carry clear
Zero clear, except if no hex keys

entered then Zero is set.

A-41

THE ICS MONITOR

A.5.2.6 ENTWD (0346)

ENTW2 (0349)

ENTWD is intended for entry of two bytes of data as a memory address.
AT ENTWD, (HL) is cleared. Alternate entry ENTW2 preserves (HL) if

no hex keys are entered. Register D is initialized to FF.

ENTWD calls KEYS to accept keyboard entry, and returns when a command

is entered.

When the first hex key is entered, it 1is placed in (HL) as the low
digit, with higher digits cleared. The right hand display digits are

cleared.

Subsequent hex keys are shifted into (HL) by KEYS. ENTWD calls DWORD
to display (HL) at the left after each hex key. After four or more
hex keys have been entered, representing a wmemory address, ENTWD

calls DMEM to display the content of the memory location.

At return:

(A) = (C) = command

(B) = 00

(D) = count of hex keys

(E) preserved

(iIL) = Kkeyed data. If no hex keys entered, ENTWD

entry clears (HL), but ENTW2 preserves (HL). If one, two

three or four hex keys entered, (HL) contains leading zeros.

Carry and Zero clear, except Zero set if no hex keys.

A-42

THE ICS MONITOR

Return from ENTW2 if no hex keys entered:

(A) = (C) = command
(B) = 00

(b) = 00

(E) = preserved

(HL) preserved

Carry clear, Zero set

A.5.2.7 ENMEM (O1FF)

ENME2 (0200)

ENMEM accepts keyboard entry and stores the last two hexadecimal keys
entered into the memory location addressed by (HL). After each

hexadecimal key is entered it calls DMEM to display the data.

If entry is at ENMEM (O1FF) the existing data at (HL) are displayed
before any key is entered. If entry is at ENME2 (0200) and the carry

is set, this initial display is omitted.

ENMEM returns when a command is entered. If no hexadecimal keys
precede the command, the data byte at (HL) is preserved. Also, if

RESET is pressed with no hex keys having been entered, the data have

not been changed.

When the first hex key is pressed, it is stored and displayed as the
low digit of the data byte with the high digit set to zero.
Successive keys are shifted into the data byte. The data byte is
stored in memory as each hex key is entered, so RESET following a hex

key leaves the data entered in the designated memory location.

A-43

THE - ICS MONITOR

When a command key is pressed, it is tested for CLR. If the command

is CLR, the original data found at (HL) is restored before return.

Entry Data:
(HL) = memory address
For entry at ENME2, carry set to suppress

initial display.

Return Data, after command key:

(A) = (C) = command

(B) = 00

(D) = new data entered

(E) = original data from ((HL))

(HL) preserved

If command key is not CLR:
((HL)) = new data if entered,

otherwise ((HL)) preserved

Not Zero. Carry set, except Not Carry
if command is BRK.

If command key is CLR:
((HL)) = original data

Zero Set, Not Carry

Error Detection: See next page.

A-44

THE ICS MONITOR

If data entry is attempted to a ROM or non-existent memory location,

returns via ERRDS to display Err, with:

(A) = (B) = 00

(C) = (D) = hex key
(E) = F7

(HL) preserved

Zero Set, Not Carry

Note that the (flags do not distinguish the error return from the
CLEAR return. The content of A can be tested for the error
condition: (A) = 00 only if an error return has been made. The

memory address which could not be written to is preserved in (HL).

A-45

THE ICS MONITOR
A.5.3 Display

Data stored in memory locations 83F8 - 83FF are displayed by the DMA
channel, provided the display is enabled by a high dutput at Port
0C7. The content of 83F8 controls the left digit, 83FF controls the
right digit. The data must be stored 1in seven segment code, with
each bit controlling one segment. Bit assignments, as shown in

Figure A-3, are:

Bit O Top horizontal
Bit 1 Upper right

Bit 2 Lower right

Bit 3 Bottom horizontal
Bit 4 Lower left

Bit 5 Upper left

Bit 6 Middle horizontal
Bit 7 Decimal point

Monitor subroutines are available for displaying hexadecimal data. A

table of hexadecimal symbols is in ROM at 02B3.

A-46

DiGIT
PosiTioN

1

'THE ICS MONITOR

|

il

83F8
ADDRESS

83F9 83FA 83FB 83FC 83FD 83FE

|
[40 — j
!
|

Hexadecimal Codes for LED Segments

Figure A-3

83FF

THE ICS MONITOR

A.5.4 Monitor Display Subroutines

Four display subroutines are described:

DISPR displays one digit

DBYTE displays one byte

DWORD displays two bytes

DMWD displays a memory address and its content.
Several alternate entries ars also identified. In addition, a

subroutine 1is provided to right justify the high digit of a byte to
make it ready for display by DISPR. Another subroutine clears all or

part of the display.
A.5.4.1 DISPR (02A8)

Displays one digit at a specified location. It masks register A to
obtain the 1low digit, adds this to a table address to find a
corresponding seven segment code, and stores the result at the memory
location specified by (DE). It then decrements (DE) to addreéss the

next leftward display position.

Entry (A) = digit to be displayed, right justified
(High bits need not be clear)
(DE) = display digit address
Return (A) = (C) = byte =ntered
(B) preserved

(DE) decremented

(HL) = table address for seven segment code

A-48

THE ICS MONITOR

A.5.4.1.1 DIGHI (02C3)
DIGSW (02C5)

DIGHI clears the 1low digit of the byte entered in (A) and right
justifies the high digit. DIGSW switches the two digits of the byte

entered in (A).
All other registers are preserved.
A.5.4.2 DBYTE (0295)
DMEM (0294)
DBY2 (0298)

DBYTE displays the content of register A, after loading (DE) with the
address of the right display digit, so that the data are displayed in

the two right positions.

DMEM loads the data stored at the memory location addressed by (HL)

to be displayed.

DBY2 displays the content of register A in the digit addressed by
(DE) and the next digit to the left. The translation and memory

‘write are done by:

CALL DISPR Display low digit
CALL DIGHI Get high digit
CALL DISP2 Display high digit

A-49

THE ICS MONITOR

After the second digit is displayed, the subroutine exits via MENAB

to enable the monitor, display, and all rows of the keyboard.

Entry data
DMEM (HL) "addressing memory location
DBYTE (4) contains byte to be displayed
DBY2 (A) contains byte to be displayed

(DE) addresses display digit for low

digit

Return (via MENAB)
(A) = (C) = digit displayed
(B) preserved
(DE) addressing next digit to left of high
digit displayed; for DMEM and DBYTE (DE) = 83FD.
(HL) preserved
Not zero, Not carry

Display, monitor and all rows of the keyboard are enabled.

A-50

THE ICS MONITOR
A.5.4.3 DWORD (02D1)
DWD2 (02D4)

DWORD displays the content of register pair HL as four digits at the
left, by loading pair DE with 83FB, the address of the 'fourth display
location. DWD2 displays the content of register pair HL as four

digits, placing the low digit at the location addressed by (DE).

The procedure is:

DWORD: LXI D, 83FB

DWD2: MOV A, L
CALL DBY2
MOV A, H
JMP DBY2

Note , that the exit .is from DBY2 via MENAB. See the summary of entry

and return data in Section A.5.4.4.1.

A.5.4.4 DMWD (O2CE)

DMWD displays a memory address and its content. It comprises a
single instruction, CALL DMEM, immediately preceding DWORD. The
address contained in (HL) is displayed at the left and the memory

content, ((HL)) is displayed at the right. See A.5.4.4.1 for entry

and return data.

A-51

THE ICS MONITOR

A.5.4.4.1 DYPC (02CB)

DYPC 1loads (HL) with the data stored at 83E6, E7 and enters DMWD.
These data represent the last recorded user program counter when
operating 1in breakpoint mode with interrupts enabled, so DYPC would
always display its own address and instruction. It is useful as a
debugging and analysis tool if <called by an interrupt service
routine, because it will then display the interrupted instruction and

its address.

The table below summarizes entry and return data for DYPC, DMWD,

DWORD and DWD2.

Entry Data
DYPC DMWD DWORD DWD2
(DE) - -— -- Digit Address
(HL) - ————— Memory Address
Return Data
(4) =(H) =(H) =(H) =(H)
(B) ~——— Preserved
(© =(H) =(H) =(H) =(H)
(DE) 83F7 83F7 83F7 (DE)-2
(HL) (PCADR) ~—————— Preserved

A-52

THE ICS MONITOR
A.5.4.5 Clear Display and Memory
CLRGT (0282)
CLEAR (0287)
"CLRHI (0289)
CLRLP (028C?

CLRGT clears the right hand four digits of the display; CLEAR clears

the entire display. Neither of these needs any entry data.

CLRHI starts at 83FF, the right hand display digit, and clears the
number of bytes specified by the content of register B, working

downward.

CLRLP starts at the memory location addressed by (HL) and clears the
number of bytes specified by (B), working downward. CLRLP is not
restricted to the display, but can be used to clear any desired part

of memory, up to 256 bytes.

All return with (B) = 00 and (HL) addressing the byte below the

lowest byte cleared. For CLEAR this addresses RGNAM.
Zero is set. Carry is preserved.

Registers A, C, D and E are preserved.

THE ICS MONITOR

A.5.4.6 ERRDS (00BC)

Displays Err in three left hand digits of the displays, the clears

the remaining digits. No entry data required.

Returns
Zero, Not Carry
(A) = (B) = 00
(E) = F7

C, D, H, L Preserved
A.5.5 Time Delay Subroutines
A.5.5.1 DELAY (0236)

DELYA (0238)

DELYA counts down in register A and returns at Zero. DELAY loads
register A with 83H to delay slightly less than one millisecond.

Return (A) = 00, Zero set. Carry and all other registers preserved.

Each count in (A) represents 15 clocks. Including CALL and RET, the

delay generated is given by:

t = (15 (A) + 27) system clocks

A-54

THE ICS MONITOR

Some sample values calculated from the system clock frequency of

2048000 clocks per second:

é_ Time (milliseconds)
00 1.888
87H 1.002
83H 0.973
42H 0.497
20H 0.248
OCH 0.101

A.5.5.2 DELYT (O3EB)

DELYC (O3EE)

Subroutine DELYC delays for a time period set by the content of (C)

and returns with the input from PORTOBO in the carry.

DELYT calls DELYC and then exits into DELYC, thereby doubling the

delay period. These subroutines are used in serial data transmission

and receiving, where DELYC gives a half bit time delay and DELYT a

full bit time. They are also useful for giving longer delay times

than are available from DELYA. Some delay times are tabulated below.

A-55

THE ICS MONITOR

These counts

Some typical

Enter with (C)

Return Carry

Zero set

All registers preserved

delay count

PORTOBO

The delay time is given by:

DELYC 48 + 74 X (C) system clocks

DELYT 106 + 148 X (C) system clocks

include 17 clocks for the user's call to the subroutine.

values are:

A-56

DELYC DELYT
(C) Clocks Time Clocks Time
(msec) (msec)
01 122 | .06 254 .12
1B 2046 1.00 4102 2.00
37 4118 2.01 8246 4,03
53 6190 3.02 12390 6.05
6E 8118 4.00 16386 8.00
7D 9298 4.54 18606 9.08
8A 10260 5.01 20530 10.02
FF 18913v 9.24 37846 18.48

THE ICS MONITOR

A.5.6 Shift HL Subroutine

SHLRT (022D)
SHLRZ (022E)
SHLRC (022F)

Shift the content of register pair HL right one bit, returning the
previous least significant bit in carry. SHLRZ shifts zero into the
high bit; SHLRC enters carry into the high bit. SHLRT tests the
content of (HL) before shifting, and returns Zero set if the value
was Zero. These subroutines are. useful in double precision

multiplication and division.

Enter (HL) = two byte value to be shi:ted
Return (HL) shifted right one bit

(4) (L)

Carry = previous LSB of (HL)

A.5.7 Breakpoint System Subroutines

BKLOC (01C3)

Tests whether a memory location exists in the

breakpoint table. See Section 9.6.2

BKENT (01A3)

Enters a breakpoint. See Section 9.6.2.

BKRMV (0186)

Removes a breakpoint. See Section 9.6.2.

A=-57

THE ICS MONITOR

A.5.8 Move Memory

A monitor function allows copying the contents of a memory area

either to a higher overlapping area or to a non-overlapping area.

Enter COPYL (0059) with:

(C)

number of bytes to be moved

(DE) = address of the highest byte to be moved
(HL) = new address for the highest byte.

Return is to the monitor at NORUN. Press RESET
when finished. If more than 256 bytes are to

be moved the registers must be loaded again

and a new entry made.
A.5.9 Serial Data Communications

SOTBT (0382)
Returns successive bits for serial data transmission.

Refer to Chapter 9, Section 9.6.2 for details

SINWS (O03CF)
Receives serial data, returning after each character.

Refer to Chapter 9, Section 9.6.3 for details.

A-58

MICROCOMPUTER TRAINING WORKBOOK

APPENDIX B

BINARY/DECIMAL CONVERSIONS

Appendix B

BINARY/DECIMAL CONVERSIONS

Several programs are presented for conversion of decimal data to

binary data. All of these are written as subroutines; generally the

data to be converted (or a memory address for the data) are entered

in register pair HL and the result is returned in the same, with all

other registers preserved.

B.1 DECIMAL TO BINARY INTEGER

The conversion from decimal data to binary can be done by calculating

and summing the values of the successive bits. Figure B-1 lists the

values of the bits. These can be calculated by the following
procedure:
Bit zero value =1 (1)
|
-1
Next bit = double the value (2)
Next bit = double the value (4)
Next bit = double the value (8)
Next bit = add one fourth (10)

to previous value,

or multiply by 5/8.

BINARY/DECIMAL CONVERSIONS

Decimal Hex
Bit Value Value
0] 1 0001
1 2 0002
2 4 0004
3 8 0008
4 10 000A
5 20 0014
6 40 0028
7 80 0050
8 100 0064
9 200 00C8
10 400 01920
11 800 0320
12 1000 03ES8
13 2000 07DO0
14 4000 OFAO
15 8000 1F40
16 10,000 2710
20 100,000 186A0
24 1,000,000 F4240
28 10,000,000 989680

Values of Bits in a Decimal Number

Figure B-1

BINARY/DECIMAL CONVERSIONS

The bit value can be calculated and added into the sum representing
the binary value as each bit of the decimal value is processed, or
they can be pre-calculated and stored. It is faster and simpler to
store a table of the bit values, but this requires memory for the
storage, as shown in the program of Figure B-2. The procedure of
Figure B-3 calculates the values and pushes them into the stack; then
recovers each bit value as the decimal value is shifted. Thus no
memory is permanently allocated to the bit value. The stack is used
for 38 bytes - six to save registers and 32 for bit values. Either

subroutine meets the same specification, except for length.

DECBN Convert four digit packed decimal value to two
byte binary.
Enter with decimal value in (HL)
Return with binary value in (HL)

All other registers are preserved.

The programs of Figure B-4 can be used to test either of these

programs.

DECIMAL TO BINARY WITH TABLE

CODE

A D D R

w N -
ENEANEE 3 g | |§
TN Y THREr:
Uﬁﬂ/%u.u/ N | U Al
I AN M.Q 3 A AH | |8
xR RRRERERNRRER SRR a 129 | |2
W@.ﬁ@WMU W ERRERN Ay |74 | |5
| AN N SN X w b el &
Q 1N /¥ H (& |A
Q HYAQ |2
3 Q <% N N Hlt H W >
% Q g) g [[% 3 2WalH (M
Q@ + Y B M+ T [v W=V MY
A 5 x> NCVSVEIEN SRS aalfa)fel Z| | MANQWN
x| | > S widl [ofd] |w
rn|hH H 4 %Al QN[O X[>[N TA A AN |[HT | HEHAd
N R B A2z A RIAIQ 2N]=2 J Q[QIQlw |2 [~
nlplal- 1 JH|Qlh NNENSGREENE || W |
o o NN QNS 0] O N] 0| W RN RQ R SN RGN NN ™
WQIUIN Q] Qo QXS] W 9 o) Q™[o] O N WV R
Ol BW]|jOo|N|oo o|lgd]p]o|lO|l Wk ||l || V]Oo|Nwleo|d| alojajlw|lwlol~la]|m||w] © -]
N X 9 || (o
A R R R
[--] ad [--] f (=]

133HS ONIAOD

W3I1LSAS ONINIVHL H3LNdWODOHIIN

SIW3L1SAS H31NdWOID A31vHOILNI

Bﬂ4

CODE

A D D R

Lo ol 4?45

TABLE OF BIT VALUES

‘
Y YN Y o NN N YY) ;
EREEERERRERERER :
QU U QN g 0] Q[N N QX QN Q1 QK] O V[V QAN D
NN YA W QN NG W QI QN Q QX Q[9 QINQ
s Y

133HS ONIA0D

- W3LSAS ONINIVHL H31NdWODJOHIIN

SW3LSAS H3LNdWOI A3 1VHOILNI

B«5

DECIMAL TO BINARY WITH STACK

N 9 ~
N 9
IR N | | 2
N Q : |
WS e : | g
. 9 Q Q . N
ER NER 3 >
Mm Y noe ERR m 0 |He
S SR & VI I
9| 9 Q N N
Iy 'R S 33 4 | 0 4
W \)” \&/\W,. N\ _‘_ ..n.w__
B J 5 Y | Y | |3 [SINS ad |Z*
- Q |V H |«
_ N Q ~Jlal 2]
3 X S ™ N S 4 Nl H
W | NS = A Q ~ RS AT (@
AA|Q S T = r+ 1= T N s R % n| |=2{n
¥ X T [T [QY R SNHEEERE A~ (A
LZ|x{\B | T | I I b NNEEN
i+ = N AlLI>> A A WA AN <X H H 10QJ M|
DY Doy D Q| DU > Jf X >~ [o|dl=z 2N\ Wi |
alple<s [J ala] s 5|aledglalrlalbh X = |o]lAm L x
S NN A S S A N N N N N NN N N NN RN
g Q[N o QIS o ' 0 W W S Q] <ol ¥ NN QL™ NSRS
R0123456789ABCDEF0123456789ABCDEF01.2345678
DJ 70 40 3 u/.u/
o R X R %
1 % . NN

a

133HS ONIAO0D WILSAS ONINIVHL H31NdWODOHIIW SIWILSAS H3LNJWOD A3LVHODILNI

B-6

CODE

A D D R

\
3
ER
./u
] \ M vl Y\
Mw.w.wh N AT 7
A & M..z W{W
mM@ YN I :
A
N 3
% Z
M (T QA|e.
NI \b
A TN Lo | QA ~
QlE||U= QI Q| QW)
X QXA K| Q| el
QN QAN Q] T[N
RN SR RIEVAS SIENAS!
N Mg Lo | NMoOlo|lgofOo|0OjlW|w ||l =[x |wv]o]|~ 0O |wW|lw || N|™| <)
MM N
N | N) .

133HS ONIA0D

NI LSAS ONINIVHL H3LNdIWODJOHIIN

SWILSAS mm._.Jn_S_Oo A3L1VHOILINI

B~7

TEST FOR DECIMAL TO BINARY

CODE

A D D R

Figure B-4

Al = W

E] @ W 3

- U ™ A Q

> W S 3 Q

u) A 1 A ¥
A %

- ~ -J

- J H - Q]

< <t >< <& 3

< J - < e

SINO|Q] QNN Q||| Q| f

R Q) Y o SN U NV Q)] QX

Ol (N|®M|g (W oOo|INl | ol jolQ|lW |k | Ol m|x|w]|©|N~ glo|lojlw(lw|lol ||| O|N|®

N

Ry

"133HS ONIG0D

WILSAS ONINIVHL H31NdWODOHIIIN

SINILSAS HILNdWOD A3 1LVHOILNI

B-8

BINARY/DECIMAL CONVERSIONS

A single byte conversion can use either of the foregoing procedures,
but a simpler method results from separating the two decimal digits.
The low digit, with a value from 0 to 9, is already in binary as well
as binéry coded decimal form. The high digit, 00 to 90, can be
converted by a binary multiplication by 5/8, which only takes five

steps.

RAR (4) X/2
MOV E,A (C) X/2
RAR (A) X/4
RAR (A) X/8
ADD E (A) X/2 + X/8

Figure B-5 shows the complete subroutine, which accepts the two digit

decimal number in (L) and returns the binary equivalent in (L).

DECBI - DECIMAL TO BINARY INTEGER - ONE BYTE

CODE

A D D R

[
: ”ma 2 %
ARk X J]|y e
. NN S g4 |&
) AR AN _l_ = 8] n
W/ D M g | |5 :
N . w)
R e Mo | ,m
e e S S | | 2
NESNESEENRE AlH |- b
T w\b | n|w
W viH |aH
3 MO |=RUViW
U { NN - |3 3¢ HWl
LW R] IN%) QAL Y22 g~
Q| | Al el Q| 11 | 0
= Wl D~y
VDN [DCYIX X QA A~ N]
Dol [T ga|EnlA| Q olu 2N jwN v
Q3 |3 Sixjddsia|& W o (D
olQIN] WINATN WY SR NN
W Wy Qf Nl SN N NSNS
Sl N|m|s Lo (No|lo|g(djo|ajJlw|wlo|l~|n[m|gt|[o|N|([w|(lo|d m|Oo|0|lw|w|Oor|a]lm| < © L]
R
3

133HS ONIAOD

NILSAS ONINIVHL HILNdINODOHIINW

SWILSAS H31NdWOI A3 LVHOILNI

B-10

BINARY/DECIMAL CONVERSIONS

The procedure of Figure B-5 can also be used with multi-byte values.
Almost any realistic program that requires decimal to binary
conversion will also have a binary multiplication subroutine, which
can be wused to multiply the value of the two digit number by an
appropriate power of 10 expressed in binary. These values can be
stored in a table, or they can also be calculated by binary
multiplication. This scheme is by far the best when more than four

digits are involved.
B.2 DECIMAL FRACTION TO BINARY FRACTION

Surprisingly, the conversion of a decimal fraction to a binary
fraction 1is significantly simpler than the conversion of integers.
The decimal fraction is repeatedly doubled: if a carry out of the
fraction results, a one is shifted into the binary value; if no carry
occurs, a zero is shifted in. Figure B-6 shows a 16 bit conversion
program. For larger numbers of Dbits, the data would be kept in
memory, and the procedure can then be extended to any desired

precision.

DCFBF - DECIMAL FRACTION TO BINARY FRACTION

CODE

A D D R

)
SR B
\]
3 3 3 M i .
N ‘ \ \./,T . w,.
M]w 3 RECIS RN 7
3 N N RN
~
Q
SRR \g
0l |9 ~ BN WYY YAl |/ 3
Dl$ BN -+ ™~ -~ X E ™ lr.nd. S
A <] [[(W] (Al AlQ
|+ G
N H SIAQT Y A O@IS N IS AN Q) T Q-
R QAT QA JA LR Q€] ol Q[= NINE
ale-|- YA S SCQlE svs[sigs i+ IR
T
SN N T S NN E NSNS
LT Q)N QLN S NN SN N N [N NSy [& Iy A
.0123456789ABCDEF0123456789,.BCDEF01234 © ©
A\ ! N M
X
CEERER u; N\ 3

133HS ONIA0D

NILSAS ONINIVHL H3LNdWOIOHIIW

SIWILSAS H3L1NdWOD A3 LVvHOILNI

B-12

BINARY/DECIMAL CONVERSIONS
B.3 BINARY TO DECIMAL CONVERSION

Since each bit in a binary number, either integer or fraction, has
twice the value of the preceding bit, this conversion starts with a
decimal value for the least significant bit and repeatedly doubles
that wvalue for succeeding bits. The successive bits of the binary
value are tested, and each time a one is encountered, the bit value

is summed into the decimal wvalue.

The program of Figure B-7 operates in memory rather than in
registers, and allows conversion of any number of bytes. It
demonstrates passing parameters to a subroutine through memory with a
command and address table. Five areas in memory are required:

Binary Data

Decimal Result

Temporary Bit Value

Value of Least Significant Bit

Command and Address Table

The conversion subroutine is entered with (HL) = address of the
command and address table, which contains (in this order):

Number of binary bytes to be converted

Number of decimal bytes 3

Binary data address

Result address b address

Temporary bit value address for least

LSB value address J significant
byte

B-13

BINARY/DECIMAL CONVERSIONS

The conversion program alters only the result and the temporary bit
value. None of the other data are changed, so the binary value
remains available for further processing and the other data could be

stored in ROM.

A subroutine, RECAD, recovers these addresses and places them in
registers for use in initialization and in the repetitive conversion
loop. In the initialization, the least significant bit value is
copied from its permanent location to the temporary bit value area,

and the result area is closed.

In the 1loop, RECAD 1is <called with a byte count 1in register C
(initially set to 00), and RECAD adds this value to the binary data
address from the table, returning the address of the binary data byte
now being processed. The data byte addressed is masked by the
content of register B (initially set to 01 and subsequently shifted

left), giving the value of the current bit.

If the current bit is one, another subroutine, DCADM, is called to
add the decimal value of the bit (addressed by BC) to the decimal
result (addressed by HL). Then the bit value address is duplicated
in HL and another call to DCADM adds the bit value to itself, giving

the value of the next higher bit.

At the

BINARY/DECIMAL CONVERSIONS

end of the loop, the bit mask and byfe count are recovered,

and the bit mask in register B is rotated left before repeating the

loop.

When it shifts from bit 7 back to bit 0, the byte count is

incremented and compared with the number of bytes to be converted.

The command table shown is suitable for conversion of a four byte

binary
given
value

are in

value with 16 integer bits and 16 fractional bits. The coding
is for locations 8280 to 82F4, with the command table, LSB

and scratch pad in 8300-831F; binary data and decimal result
8320-832E.

B-15

BINARY TO DECIMAL CONVERSION - INITIALIZE

CODE

A D D R

Q \
3 W 41 1R
N . N
h IM)aﬂ LL WL‘//M
: . Mﬂm 3 M M M . M _%
\SRESERERDARER u :
INEES ERRAE hE :
~ . IM\IJH\.J\/\.J 9% J | [a]
M M muw/wmmwmm 13 : W 99 5
A Q
< Q
3 Q O Q Yy N
%) NN W < RRN s Q
QAT 1 A Q 1A 1 + < g
(Y [T X x| [TAoTS AN
L+ | J X[X
NN DAXSITH] [N %] QALS S =N o+ o
AR EERERNEEEES QAN Q> [R]=[2] U= Q| X D
Qla|adH =S| [HH[H[I|dleds|=] [HIW[H[A[P EN =2
1
SN NN A S S N NN E BB N NNENE
W[y SR Q] x| ¥ | U] &) N QNN o] Q] N Q] D[0[S[8 [N[V
0123456789ABCDEF0123456789ABCDEF01234 © 0
Y N ™
IR
K N . .

133HS ONIAOD

W3 LSAS ONINIVHL H31NdIWODOHIIIN

SINILSAS HILNdWOD d3LVHOILNI

B-16

DALNARL LU VLo drinal LCUNVOLODIUN T Luure

CODE

A D D R

I ,W J
M Md . R W\Mﬁ N A : ib
‘) _ /.M) ‘ . Q
Sk 9 X SENENE :
/M M,_ /uﬁ U / A ’ W o
33N NS N R N W IN 5
m@du/ Mmﬂﬂ/w R ™) .MA 3 &
SECRRSSEEESRRRRN I RN SR g
A >
< s pa)
J A <L Q Q
W LS N[[S) QL% PARAN 3
0 [T [« L (v 4 16] sy IS U
o X T A JX Q< QY™ VLU EICI[E
Tx | |J L) J
D EIZEN SNE R ESLY > QQ>g>v RIS olela|-
NEEEESS = Q| QU Q| Q ool o= = Q3> Q| Q| 0|1w
oA HIA- | K[KO- =X kS ol gl sh Hs{olh Qo]
ff3{3zc£é/£840£?ab04///7740405?30&///9
W] W]] R [W N Wy] o] N i oy TN QIR R o QN /T RN R[] W gy
Ol (w|lo|Nlolo|gc|a|lo|l0jlw|lw|ol~({an]|o|lg|v]|jo|l~n]o]lo||lajo|la|lw|lw|o|l-|la|lm|s|w ©
NN N\ N} N
R R
3 3 . N

133HS ONIAOD

W3LSAS ONINIVHL HILNdWODOHIIW

SWI1SAS H31NdNOI A3 LVHOILNI

B-17

RECAD - RECOVER ADDRESS FROM. MEMORY

(V]
ol | A
W »n nﬁ
W AV N
14 a1 4W .
(6% =
SNERs Al g 5P N R
NAGS) %E&R A B
NS sl | 9% ew N V] v b g
4§ Al HA a2 = N 3 |)
I | 1289339 | | XS AN Y :
Sl | 1784975 VN TR 4] SR
S W) w - WDV.E — ") PN Ve = NS A -
N v v|v| ol o @
Al w > I H| -
Al Hi W L= w
<] O wja HW Ol [5] [« [Cl | 2] | [T =
Ul q 2\ Il nfn . -+ 1Q 18| T 4 L A ~
il {lallila Ve olw|EEQ Al (Ul Qx| d{x@|T
W dA (D] (W =T
N N EE R - S A SIH [R[u > x| s X[s%] > X > [@
NENEINNEENN QA =2V [IR I[Q[2] 0[O
W 4 sldsidslg [s]lalsiHs/H = Hs A |«
y W[~ o] W W Qo ™ [Ty @y oWy N o
8 N RN N S NIRRT
g O | = | N | | ([O]| O©O | N|O]|O| L volajlwiuw| ol ioiN|o|lo| | n|lo|0|lw|lw]|]o|le=la]|m]| < (] 0
a <) $
o ¥
1. 0 3 .

133HS ONIAOD

WILSAS ONINIVHL H31NdNODOHIIIN

SIW3LSAS H31NdWOD d31VHOILNI

B~18

DCADM = DECLMAL ADD LN MEMORY

CODE

A D D R

H | 5 w
«_,w._..wﬁ 9 5|12
F: > |7 Dw
N 2
N 2848+ 1AM 18 | [HE 7
N AN Xy (Wa [P H @
,/4 D 3 Vb \V«HD)
I 4 \ ol la (MY an (ZA ;
o) ~ WAAIY W [ab |4 D 4
AV J X2 v g wlE o &
Ui |(wjal |Hd w
AWl W vy L~
\Y 2 oAl [l |[H >
g T N Ja) [RfEs[as Y| - [ie]
T A 4 14 @ + <5 . nfulal |Alal |wla |~
WA [[Taxuy | [E@aT A | |22 [[u=E
T P s Wl Jjo|l~ (Wjw dJ [Wb
B SR ENE RN >alQlal|H [=Hoad [albl | x H
NE R RERENERNE o Aalalu] 2NN 14 RN EEES
Allal3 X J|C|RIS[HN AN slaln{afe] [gd] |« J
NN IR INNNNIRAENERNNNE
W o & QoY o N QS| J WY N QW U
(=} it |w|lo Nl Blo|ODjW|L Ol w|lg|vV]|joIn|lo|lo|d|djo|lajlw|u|olcla|lm]| =
1t m_a W
N < : -

133HS ONIAOD W3 LSAS ONINIVHL H31NdWODJ0HIIW SW3LSAS H3LNdNOID A3LVHOIIN

B-19

MICROCOMPUTER TRAINING SYSTEM

INTEGRATED COMPUTER SYSTEMS

B-20

A D D

0

ODE

COMMAND TABLE AND LSB VALUE

CODING SHEET

4

8 30 o |glf ¥ BIVARY BYTES
o8 U DECIMAL BYTES
2 |0 BIMARY DATH
3 1213 ADDRESS
S DECTMAL RESULT
5 |23 ___ADDRESS
s /1571 CRATCH PAD
7 |3 AYDRESS
8 O\~ ADDRESS FoR
°* |3 LSB VALUVE
£330 A |25] UALVUE OF LSB
L P (1l RYTESD
c 27
o |V
E ogd’f
F / J"'
8. 2/ 0 |00
1 O Vo
2 o0
3 2|0
4 o0 2
7/ 5 |op SCRATCH D
6 |00 (W RYTESD
7 0\0
s 1010
9 C"j
A |1D10
B 2]
c 2)'2,
D O 0
e |Olo
F o\O v
s 32 9 |00 BINBRY DATA
1 o0
2 0|0
3 o0 ¥
L3R ¢ |0 ECIMAL RESULT
5 C)gD
6 é)(?
7 o0
8

Figure B-7e

BINARY/DECIMAL CONVERSIONS
B.4 BINARY FRACTION TO DECIMAL FRACTION

The program of Figure B-8 is a shortened version of the binary to
decimal conversion, taking a two byte binary fractiom in (HL) and
returning the two byte decimal equivalent in (HL). For economy of
program space it does not save the other registers, and returns only
the two high bytes of the result in (HL). The other bytes of the
conversion are stored in memory, with the least significant at 8308
and most significant at 830F. It requires that its scratch pad and
result area occupy the lowest 16 ©bytes of the page immediately
following the least significant bit value, which is stored at
82F8-82FF. The program would work for integers or mixed
integer/fraction values if a different LSB value were stored in that

location.

B-21

BFDCF - BINARY FRACTION TO DECIMAL FRACTION

Y ICIHIG @QA—L;HaF hpotss-0)
and
A2g 2 LT Ghea)
Clrariocrateh pad
Qand. Ao lT
| (7300 ~Fi30F)

A1C Encl L
(ML) = £300

»
w]
v}
pe]
(e}
o}
o}
m

i
Q

Y

>0

CODING SHEET
IR Sk
zZolno
N (D

N E RS

=
>
H
SN]
Oy
2
N
o9

Oddcoaa) LoaZ

1)) < (G * ((BC))

7@2/4?2’&)
K s (B = P00

k%gzwﬁ,
7 waldond Ay
., E (TWM]@

J|ENS N LSB=/qdst
/ﬁ&tm ¢ (F300 -£70 7)

A hea ST (13OF -R30F)
(HL) & £300

s _Seinaniy vatece
%Y,
2D o Dzl pna”

L) b g ME |
(Z -'

FaC

o
>
-
l\
QQ
L
)
6\

8 2D

SRS

ORPRERPZR
ORISR DPO

QM

MICROCOMPUTER TRAINING SYSTEM

=lS

JoER
2RO 10
NP
~ M-
N
3

F
T
&
%
o
D
™

s E

oS e [RIOP—PIOLF)

QIO Po[S [Re SO [N RN N[T[N R [A NI PR (™ [[SR [bs R S9N R [
DD] 0[C0 | M|]2 [0 N[R[S ST BN TR |G [D]R [N RO RN B0 G

INTEGRATED COMPUTER SYSTEMS

“BINMY ERACTION
=DECTMAL ERACTION)
ERS VUSED>

B-22

PpAM=Z |0
FMz o0 Im
A ooH
cim
st
HIT[F
n[FF
— [\~

oI N|ola(dlwIN alolmmMmID]lo|ld|>lo|lo|lN]|ojou|d|lw|N]|=lo|mMm|m|O|O|m [P lo|lo(vN]o|anla|lw]Nn]

Figure B-8a

oo LiiMAL ADD LN MEMUKY FUK BFDCE

CODE

A D D R

AN
A Q
KR 3 |
O oR e 0k :
\n
a. N D 0
) ”m m ' M WI Mf/g Y @
. N) N 7 ! g
MNEREREE 3 me u NERSERIN 0
3 hERh o N3N | |3 134 &
IR I Sy | R 3 a
o ™
Q N\ Wy x| W
B L AQ)] 4 <% L
W | (5] [Txe@uS @V A
T >
VN O D X< YN S0
ol [N Q=202 Q| O QWD
A= [XHJIRAIR|IHIHIRIP S TR
o] WSS [NN o [[Q S oy s [y g N o QL ol [6] Q]9
QLN QIR Q] | D N QN0 N RNV QY QN S NN
wlioInN|w|lo(lg|lon|lo|0jlWw(ku|olen|m|[g{w]jo|N|w|lo(d[pD|lO|/d|lw|lw|]Oo||~n|m]| < © (-]
HERIE :
o || N .

133HS ONIA0D

WILSAS ONINIVHL H3LNdNODOHDIIW

SW3LSAS HILNdWOD A3 LVHDILNI

B-23

BINARY/DECIMAL CONVERSIONS

This page intentionally left blank.

B-24

MICROCOMPUTER TRAINING WORKBOOK

APPENDIX C

CALCULATING TRIGONOMETRIC FUNCTIONS

Appendix C
CALCULATING TRIGONOMETRIC FUNCTIONS

The sine of an angle (in radians) is calculated from:

3 5 7
+ EZ' -

IN

(a) sin x =x-

w

The cosine is generated by a similar series:

x2 x4 x6
(b) cosx =1-Fr*+gr-Frt -
The exponential function e is:
2 3 4
(c) ex=l+x+5!-+-3—T+-4T:—+———

All three functions can be generated simul taneously by a procedure
that calculates each successive term in the series for ex ; adds
the terms into a sum for e™ ; and adds or subtracts each term to a

sine or cosine sum. Each term is calculated from the preceding

term, the term number, and the value of x.

ty = xt, /1

CALCULATING TRIGONOMETRIC FUNCTIONS

Starting with t = 1, this gives:
Term Value Disposition
0 1 Enter to cosine
1 x/1 Enter to sine
2 x /2 Subtract from cosine
3 x /3.2 Subtract from sine
4 x /4.3.2 Add to cosine
5 X /5.4.3.2 Add to sine
6 X /6.5.4.3.2 Subtract from cosine

The value of x must be expressed in radians, and for reasonably
rapid convergence of the series large values of x should be avoided.

Since the sine of an angle is equal to the cosine of its complement:

sin X = cos (ig - X)

it is easy to restrict the angle to less than 45 , or 0.785 radians.

With this limit terms beyond 6 are not needed for 16 bit precision.

In this Appendix, we present a subroutine to calculate the sine and
cosine, given x as a value between 0.0 and 0.785 radians. A main
program (Figure C-1) will accept an angle in decimal degrees and
convert it to binary radians, call SINCOS, and display the results

in decimal.

CALCULATING TRIGONOMETRIC FUNCTIONS

The program also uses a binary multiplication subroutine and a twos
complement subroutine, presented in the following pages; the single
byte decimal to binary integer conversion of Figure B-5 and the two
byte binary fraction to decimal fraction conversion of Figure B-8, in

Appendix B. These are also duplicated here.

Memory assignments for the program are:

MAIN 8200-823F
SINCOS 8250-827F
TERM 8280-82AF
DECB1 82B0-82BF
BFDCF 82C0~-82FF

Variable Data 8300-830F
BMULT 8310-8330

TWOSC 8336-833F

CALCULATING TRIGONOMETRIC FUNCTIONS

-

CALL ENTBY

(L)< decimal angle
|
CALL DECBI

(L)< binary angle

1
(A)=— co-angle
(co~angle = 90°—ang1e)
Compare with angle

angle 4$co-angle

Replace angle-with

co-angle
Etk,

Save comparison (cy)

| X
Multiply angle by Tv/180
(=0438 hex) for fraction
of radian

|

CALL SINCOS

L
Recover comparison flag
Exchange sine and cosine
if flag is set

]
|Display sine and cosine

Main Program

Figure C-1

MAIN - ACCEPT DECIMAL ANGLE, DLSFLAY S1N, CUd

CODE

A D D R

N
S| NN R
w N \ L/ S W , . .
133 14y [IREAREIE a
Q W L_a.w/ ﬂ. wﬂ § ,_;._\ . , 0
N .cww ESANRS SEENEE - RERERS g
e MR ww,m;;ﬁ@ww@
SERESRESESRRES NEIRENERRENE BN &
> N Dy ~ S
\g) Q N | Q
N N < 34 Q ¥ » z Q
2 L 9 | Q Q| [0 5 N R
| A \ Q| Y SRR @ W co|
NSNS Ny (e Q™
S < X - bl N
3 3 =) NEEE _ X[y IS} %
NN N§ NEENEEE Q> X < [T Q= V
) J s [olalh SEEE 'S X[b *
RN ™S QIR W x| o[Qf o o] | LN QNSNS QIS [Q2N
N[%] QT QO Mo | 0] WS]\ N NN QNN WG S Q)] 85 W
S|l ||| N|ow]loigs|m|lo([0|lw|lw (ol |g|(vw]jo(N]||lo|d|d]|lo|0|lw|lw|o]l=] o] < o
QN AN
S 5y 3
o Y« Y

133HS ONIA0D

W3LSAS ONINIVHL H31LNdWOJ0OHIIN

SW3LSAS H31NdINOD A31VHOILNI

C-5

CODE

A D D R

M,.
M \ N)
v 9
Al b :
[
A NEEN
Q| | | J W N
_ Q N)) Q
q EEEENEENEEE Q
AV Q 8] = A ¥
< Q [\
U 4 J N
IJ J Ql|J H J Q
NN T Q| > N by
Qv lo] | Q] -) h
B AR AN NN N NAR RN
AU Y VU Q| Qf W U U N O VIR Y| Oy
Ol N{MIict || N oOoINlolo|lg|n]jlolalwWwIwL|O|le=|ln|M]lxsiwv]|O|N n|o|lo0jlw|lw| o~ = © (-]
R
R

133HS DNI1Q0D

W3 LSAS ONINIVHL H31NdWODOHIIW

SINFLSAS H31LNdWOD A3 LVHOILNI

(V-]
I
&)

CALCULATING TRIGONOMETRIC FUNCTIONS

Subroutines SINCOS and TERM are defined in the text below and
depicted in Figures C-3 and C-4. SINCOS adds or subtracts successive
terms, as discussed early in this Appendix. TERM generates the
terms, addressing a table of coefficients according to the term
number . These coefficients are nominally 1/2, 1/3, 1/4, 1/5, etc.
Adjustments to the coefficients for terms 5 and 6 are made as shown
in the table of Figure C-5 to correct for rounding errors and absent

higher order terms.

The table of Figure C-5 shows the results returned by this program.
Note that the adjusted coefficients affect only the least significant
digit, for angles between 40 and 50 degrees. The adjustment may be

important in some instances, to make sin 450 = CcOS 450.

CALCULATING TRIGONOMETRIC FUNCTIONS

S INCOS Find the sine and cosine of X
Enter with (HL) = X
Return with (BC) = X
(DE) = sin X
(HL) = cos X
Constraints: X must be a fractional value (i.e. 1less than 1).

cosine of zero is returned as FFFF.

TERM Find successive terms of ex
Enter with (A) = term number 1 to 8
(BC) = X
(HL) = previous term
Return with (A) = next term number

(BC) = X

(HL) = new term

Requires a table of values of 1/(A). Term is always positive.

The

CALCULATING TRIGONOMETRIC FUNCTIONS

ENTER (HL) =X

(BC)=— X for multiplicand
(ST)~— (DE)=— FFFF for cosine
(DE)-— 0000 for sine

(A) «— 01 to mark term 1

-]

(ST)=-— (HL) save positive term
Test for term 2,3,6,7
Take two's complement to
subtract these terms

(DE) «—{HL)

(HL)=<— (DE)} + (HL)

Add term to function in (HL)

(DE) «— (ST) Positive term

(HL) =—(ST) Exchange sine

and cosine in (HL), (ST)

(DE) =—{HL) (DE) -— function
(HL) -— term

CALL TERM

(A)=— (A) + 1
(HL)-— (BC) x (HL) x Coef
Set zero flag if term = 0

#0

=0

(HL) «— (ST) Sine or cosine
If term number is odd exchange
sine and cosine

Subroutine SINCOS

Figure C-3

CALCULATING TRIGONOMETRIC FUNCTIONS

c-10

(A)=—(A) + 1

Test for term beyond table
and return with zero flag
set if it is reached.

(ST)<«—(DE) Save registers
(ST)=«—(A,F) Save term no.
(ST)«—(BC) Save X

Add 2X term number to table-
address
(BC)<—coefficient

CALL BMULT
(HLe—a_, t.-1
1 1

l

(BC)=—(ST) Restore X-
CALL BMULT
(HL)=-—t, = X ¢, t,-1

i i i

Test result for zero
to return flag when further
terms = 0

(A) «— (D) -—ST

To restore term number but
preserve zero flag

(DE)«— (ST) Restore registers
Return

Subroutine Term

Figure C-4

CALCULATING TRIGONOMETRIC FUNCTIONS

Coefficients for Successive Terms

Term Nominal Value Adjusted
Decimal Hex Decimal Hex
a, 1.0000 - 1.0000 -
a2 0.5000 8000 0.5000 8000
a3 0.3333 5555 0.3333 5555
a4 0.2500 4000 0.2500 4000
ag 0.2000 3344 0.1953 3200
ag 0.1667 2AAD 0.0937 1800
a. 0.1429 2498 0 0
ag 0.1250 2000 0 0
ag 0.1111 1c72 0 0
Results of Sine/Cosine Calculation
Angle Cosine Sine
0 0.9999 0.0000
1 .9998 .0174
2 . 9993 .0349
3 .9986 .0523
4 .9975 .0697
5 .9961 .0871
10 .9847 .1736
15 .9658 .2588
20 .9396 With .3420 With
25 .9062 adjusted .4266 adjusted
30 .8659 coefficients .5000 coefficients
35 .8191 .5736
40 .7661%* .7660 .6428
44 .7195%* .7193 .6949%* .6947
45 .7073 % .7071 .7072% .7071
46 .6949 % .6947 .7195% .7193
50 .6428 .7661* .7660
60 .5000 .8659
75 .2588 .9658
90 0.0000 0.9999

*Values with error least significant digit

Results in Sine/Cosine Calculation

Figure C-5

C-11

SINCOS - SINE AND COSINE OF X (X <1 RADIAN)

CODE

A D D R

N w M .M
N MM, J N
! IN [RE RER
. N _
DY BT
A N
&e/ﬂ MW M,_\e._\ e,_\,_\ .,__/E 5
) , ~ <]
J 133 KA PerE SRS NECRNNERE :
& Ww/w@m KRR NS EEEERCRSHERERERE A |E
(w I 2(n
w S| t~ HIQ
m - Q o \ HR[[y w[Y
NEE Q n W o 3
I N Y A s Q . % p =2 afu
JnA Al 3 AlB ~ =+ E | AN A
=T T — o) b J Bl g ofJ I
> N H U] SRR N N A X[E[HAE
Q| Q| X R EERNEN NS ESRIREES > Q|| V| w| 2| WA
=4 olH[S PR_C Al | A AU X H QX |
AR N N NN S N S N NN S AN N SN RS
XN U QNN] QW[QI QA M & QW] N W IR g s Y QTS
0123456739.ABCDEF01.23456789ABCDEF0123456 o
g Y S N
y N % %

133HS ONIAOD

NFLSAS ONINIVHL H3LNdINODOHIIW

SWILSAS H3LNdWOID A3 LvHOILNI

C~1l2

'TERM - GENERATE SUCCESSIVE TERMS Ur e

CODE -

A D D R

M | Y Bk ¥
3 , S
LRGN DD I RE T ;
mm N M VUl z%@ 0 2
NN NRNENEONERNEENNEESRARNEN Z
N N ~
™ 3 _
3 X) D
) ™] <K T s BN A
SHESRNEE A 1 18] 9 W IR
L Q A Wy [NAl (Y i JIRIEA
RABNEN > > [~
X[QX AN (] Q| S A DA N
e [N A AQQIQRAIJ NN QW Q| Q[QW]
NO| AR AERERNEN ! IR
N N NSNS NN S SN S N EN A N A NN E NS
| W USO[AN [S NI Yol N NN NVINYN ORI NN QRN IR
Ol || o ([~N|olofgan|lo|ldjlwW|w|o|e={la[m|a|v/ioN|lo|lol<dla|lo]lojlwlu|[o]l~loalm| < co
\N
04
| R

133HS ONIQO0D

WILSAS ONINIVHL H31LNdWOD0HIIN

SIW3LSAS H31NdWOD A3LVvHOILNI

C-13

COEFFICIENTS FOR TERM

CODE

A D D R

>
-
2
i
NSNS t 2
N /7/ N N 2 ~
__ SN NN D ;
. A e ol [al | FU. :
R o L &
d) N o (11 H | A
NS NN NN RN al o E
J W
w
A Q
| V),
(~
78, =
) J
bl &
Al Ix
¢ W
NRANSSN AN NN
L ﬂBOQMﬂ,MﬂM&O/
QLA o0 QN 0] AR NN QY Y[&
N o o] QR 1] ™0 [o/ ™ T Qf ¥ N N
Ol N Mg | VO INO|l|gg|loajol0|lW|Ww ||l =l ™. njlolaojlw|lw|Ooje=l]| ™| < © o
NN
R

133HS ONIAO0D

W3LSAS ONINIVHL H3LNdWOJDOHIINW

SIWALSAS H31NdNOD 3LVEODILNI

C-~14

DECBI - DECIMAL TO BINAKRY LINITBGULNK = UL siau

CODE

A D D R

it T
Ah 7 >
Mw 3 @ |y |
WV %J& ~N b & G V)
EINN ZREg”
w SRR I 1Al g
A\ O 3
AL 11048 54
N _ > L
SESNESENNNS G |0 3
Tl H<El T
O HZ=2 Wb
3 Rl 3 He w
Z N S§ J<i a3 30 (@l
Q] iU 1 4 1 =S |-
Q[[N Jlxidta ol vlod wlu| e
T _ Wi~ A BlW
DI I SIE S X B|A S |A - NJH d|BlE
D QIR | ¥ Q&L| ARl o[oju LW W=
A =X el =4z W o
oA WN A WU o HUSN [N Q
N W QN N NN LN
0123456789ABCDEF017.-345678 IOl jlw|lw|OoO]~N| M| < ~ | o
Q
R

133HS ONIA0D

W3ILSAS ONINIVHL H31NdWOIJOHIIIN

SIWILSAS HILNdWOD AILVHOILNI

C-15

BFDCF - BINARY FRACTION TO DECIMAL FRACTION

CODE

A D D R

N a
N 0%
! gy
3| &
) ol B
X Alm
NI
N o
~ W o . Ly
™ 9 R i Y A Q
Sy SRS Oy N a Ty (Y VA |V 00
. 1] QA 1] + 1] Ll I B
X SRS Q <+ 1A JwS Ji Wl
B J A
X[H SNV NI N J DN S| > N[N - [oQ
N/ %4 MU= = < QT O QL |V Q Q|2 Wl o
X!\ XAlSIh < J PN RARIAN Y] 2|2 (Ol J ¥|2{=
Qo[W QN] o s N[Y] ssfst | W N0 W] Wl Vol o] o] SQ[8| R W[o 9 Q]
W] NS] N U U S QWA O[S N N g DN N o[A Wy S N\ NIV VIS S QNVN 9
OlmiN|ma WO ([Nfo|lo|lgc|la|lo|olw|Lw|loj~c|la|mlgiwjo|N|oio | <[ajolojlwljnu|jol=|lN!m|< |~ ™
N N N y
% m R Ry

133HS DNIAO0D

WILSAS ONINIVHL H31NdWODOHIIW

SWILSAS HILNAWOD A3LvHOILNI

C-~16

Duplicate

Figure B-8b

Sq \ S
N A S\ | W
O+ ™M 4 't
UESESERE NS REENE
X P
I H| O] >IX[X|[YN > o
oS> Mol o>2R|J|= Q| Q| ol WV
o= [x|diglp[ENNRIh =lp|K=R
" oo W W NN oD [Q [N o v N o e[D[5[9
8 QN Q] Oy O N ol QNS AQA U] X ™ & NN
24 wlo(N|lo|lo|lgd|lojo[O|jlw|w|oflr(n|m|slw]o|N|o|lo|d|lo(o|lalw|(w]|]o-|~]|m]| < ~N |
a W y \
o m ; £
< S © o

133HS ONIAO0D

WILSAS ONINIVHL H31NdWOD0OHIINW

SIWILSAS H31LNdWOD 3 LVHOILNI

C-~17

~-> (#4,L,D,E)

(HL) x (BC)

BMULT

CODE

A D D R

SRR .
RN 3 SRR ©
w N N A8 /8 :
A @ \ .,.W D H o1&
SRR WA \ a4 Y
3 W 3 o 1213
3. | R A H 224
AN TSR SR . By 4 1595
433 | 9 NEER 3 cn B2z
Ay SENTOEN W N HH PR
i~ [(W
o~ ™ ~ 4 4 [3w
N) N Y N HIDlo [Hl ol
T [~ ™ S N T || [S=ls| [£[HdE
L4l K) Qg A\ D.u . L 4 Y W=]
D) X Ny J 4 - b WU 4D 4| WV
TSSO H XO A J o NN RN ERNGEE R AR
VY] Q| | D = &l DN ~ol =) Q| | ol<z| o Q| | o] Wl NS W N
XX T [X[h A N} xRN AT ST | XX W A4
Q [\ N ™ 0] QI NM Q[N [™ [QS TN o [N[[N DR Y [O
W [Nl g W Sl N ST Q=g S| S]) o5 W] sy o] <] W) N sl o Ny
OSlrN[OW ||| Nowlo|lg|oljlo|a|lw|w|ole~|la|[m]|s(w]|jo|N]lo|lo|<|[o|(ojajlw|ln|{o|~[Nm|s|[w]wO|[N]®
W N N oY M L)
) ™
) 1R o R N >

133HS ONIAO0D

WILSAS ONINIVHL H31NdINODOHIIW

SINILSAS HILNdWOD 31vHOILNI

C~18

TWOSC - TWOS COMPLEMENT ur \ou)

CODE

A D D R

y —
Z
% W
b3
3 ﬁ
2 |8n ’
S o
L mTB &
& | % -
T 7/ R g
2 Qluwl
3 HH [w
nlx K4 @ 3 30 (| |V
D..n/ -~ T I :N:RE
] <] Hxle | A | A
T Wl || gl
ST SN X0 - |
DA 2| QQ IQ =2 Qf W =N NG
AlZ|olsE|J[T N | Uy |@
SIS N BINE
WL N O\ Q] s\ sy
ot vwioNloloajlgal o Ojwik | Ol ~ ool wluw|Oole=)ln|m| < -}
) ™
™ |™
. N o a

133HS S5NIA03

WILSAS ONINIVHL H31NdINOJOHIIIN

SW31SAS H31NdWOI A3 LvHOILNI

C<19

CALCULATING TRIGONOMETRIC FUNCTIONS

This page intentionally left blank,

C-20

MICROCOMPUTER TRAININA WORKBOOK
ADDENDIX D

EXPANDING YOUR MICROCOMPUTER TRAINING SYSTEM

WITH THE S-100 BUS ADAPTER

EXPANDING YOUR MICROCOMPUTER TRAINING SYSTEM

Your Microcomputer Training System (MTS) can be easily expanded to a
more complete system with floppy disk drives, printers, CRT terminals
and other peripherals as illustrated in Figure D-1. This is easily
accomplished via the S-100 Adapter Card which interfaces the MTS to
any standard S-100 mainframe, into which you can insert other S-100
compatible circuit cards. The 8S-100 bus has rapidly become the
industry standard for personal computers and as a result, has

nurtured the explosion of many compatible peripherals.

To expand your system, you will need an S-100 bus mainframe to house
the S-100 compatible cards. The mainframe should contain at least 12
- 16 slots to allow ample room for expansion. Each slot will hold
one card, for example a 16K RAM card, a disk controller card, or a
serial interface card. Note also that 1in addition to allowing one
slot for each card you have planned, it is wise to leave one empty
slot between each of the RAM cards for thermal stability. This is

especially true for static RAM cards, which dissipate considerable

heat.

THE S-100 ADAPTER CARD

FLOPPY
DISK
DRIVES
\
3 X 16K FLOPPY
STATIC PROM/RAM DISK
RAM CONTROLLER
M TS
J2
MICRO-
COMPUTER TO_ART
TRAINING RS232
SYSTEM SERTAL/
PARALLEL
\ }
y {
DIABLO CRT
TERMINAL/
PRINTER TERMINAL

Typical Expanded MTS-S100 System Configuration

Figure D-1

THE S-100 ADAPTER CARD

Generally the mainframe will contain a built-in power supply. Note

that the S-100 power supplies furnish unregulated DC power on the bus

and that each individual card in the system, including the MTS S-100
Bus Adapter, has its own on-board regulators to create the necessary
regulated voltages for that board. You should be certain that the
mainframe has a large enough power supply to power the S-100 cards.
Typical current and voltage outputs are: +8V @ 30A, +18V @ 15A, -18V
@ 15A.

TEI manufactures a mainframe which has been used in testing the MTS
S-100 adapter. (For list of distributor addresses, see Table I.)

What S-100 compatible cards and peripherals should you buy? The
answer of course is dependent on your application requirements, which
will determine the extent of memory and type of peripherals
necessary. However, almost any expanded system will involve adding
more than the 4K bytes of RAM and 8K bytes of PROM available on the
MTS itself. Thus, the first boards you will probably buy are RAM
memory cards. Most operating systems that run Basic, Fortran,
Editors, and Assemblers, require at least 32K bytes of RAM, so plan

on buying at least two 16K RAM boards.

RAM cards from many different manufacturers can be used. However, you
should select one that responds to the S-100 bus control signal named
'PHANTOM. ' As described in detail 1later, the PHANTOM signal is
issued by the S-100 Adapter card whenever a RESET occurs. The
purpose of the PHANTOM signal is to disable all memory cards and
thereby allow the S-100 adapter to force a 'JMP XXXX' instruction

onto the bus as the first instruction to be executed after the RESET.

THE S-100 ADAPTER CARD

You can specify the jump address, XXXX, in switch settings on the

S-100 adapter card as described later in this section.

The PHANTOM signal thus allows the S-100 adapter card to override the
RAM memory at address O after a RESET, so that the processor can
automatically jump to a specified address (other than 0000) to begin
program execution. This 1is especially important since most S-100
disk operating systems have a 'Bootstrap Loader' program in a ROM
located at a high memory address. Such Bootstrap Loaders are
designed to be executed automatically following RESET. They read the
Disk Operating System 1itself into +the memory from the disk. To

implement this function, the RAM cards you select must respond to the

PHANTOM signal.

You will probably want to communicate with the microcomputer using an
ASCII keyboard entry device and a CRT (Cathode Ray Tube) display
(also commonly referred to as a VDU - Video Display Unit). Most
terminals communicate through the standard EIA RS232C serial
convention; therefore you will need a serial/parallel 1I/0 card.
Cromemco manufactures an S-100 card called the TU-ART which has two
RS232C serial ports and two parallel I/0 ports as well. You can
connect any RS232C compatible VDU terminal, printer or modem to the
TU-ART since it has software programmable communication rates. The
TU-ART has been tested with a DIABLO printer/terminal and a Lear
Siegler ADM-3A CRT terminal. Newbury Labs, a manufacturer in England,

also manufactures a low cost VDU suitable for connection.

THE S-100 ADAPTER CARD

To efficiently develop and e;ecute programs using higher-level
languages, you will ulfimately need a Disk Operating System and
therefore, disk drives. Micropolis Corporation has a diskette drive
system which includes an S-100 compatible controller card and a disk
operating system called MDOS. This system runs well with the MTS.
The MDOS software is rather powerful, and includes utility programs
to read and write files on the disk, keep a directory and other
'housekeeping' functions. The system also includes a text editor, an

assembler and a reasonably powerful version of BASIC.

Finally, you might want to include video monitors with controllers
employing memory mapped techniques for use in word processing and
limited graphics displays. You may even add speech recognition and
synthesizing capabilities are S-100 compatible Digital to
Analog/Analog to Digital converter cards, multi-channel data
acquisition systems, musical synthesizers, relay controllers and
other interesting new devices constantly appearing in the Personal
Computer market. You are limited only by your imagination, since you
can even design your 'better mouse-trap' onto blank S-100 card-size

printed circuit boards.

THE S-100 ADAPTER CARD

To keep up-to-date on these developments, you may want to subscribe
to one of the many magazines now devoted to covering the personal

computer field. Two of the leading magazines are:

BYTE MAGAZ INE
BYTE Subscriptions

P.O0. Box 590

Martinsville, New Jersey 08836

INTERFACE AGE MAGAZINE
13913 Artesia Blvd.

Cerritos, California 90701

S§-100-Module/Hardware

Micro System Main-Frame
MCs - 112

U.S. Distributor

TEI, Inc.
5636 Etheridge
Houston, Texas 77087
(713) 738-2300

TWX: 1-910-881-3639

THE S-100 ADAPTER CARD

European Distributor

(Sub=-Distributor) CMC Marketing
(Dealer) Abacus Computers

62 New Cavendish Street

London, England WIM7LD

TU-ART Digital Interface
Contains: 2 channels of
duplex data exchange. 2
channels of parallel data
exchange. 10 interval
timers.

CROMEMCO, Inc.

2400 Charleston Rd.
Mountain View, CA. 94043
(415) 964-7400

Hiltrup 4400, Munster, W. Germany
BASIS MICROCCMPUTER VERTRIEB
Von-Flotow~Strabe 5

02501-4800

16K Dynamic RAM Memory

DYNABYTE, Inc.
4020 Fabian Way
Palo Alto, CA. 94303
(415) 965-1010

BELVEDERE COMPUTERS

9 Belvedere FPlace
Scarborough North Yorkshire
England Y01122X

16K Static RAM Memory
Module

PROBLEM SOLVER SYSTEMS
20834 Lasseh Street
Chatsworth, CA. 91311
(213) 998-5100

FIMECA FA

Avenue Albert 125

1060 Brussels, Belgium
Phone: (02) 345-98-37

VDM-1 Video Display
Module

PROCESSOR. TECENOLOGY
7100 Johnson Industrial
Pleasanton, CA. 94566
(415) 829-2600

]

SPA TALTEC

Square Larousse, 5
1060 Bruxelis
Phone: (02) 345-98-95
WERNOR ELECTRONICS
Torsvagen 61

Box 72, S-133 01
Saltsjobaden

Stockholm, Sweden
Phone: 08717-6288

Disk Storage
Module - Model 1023 11
and Controller

MICROPOLIS CORP.

7959 Deering Avenue
Canoga Park, CA. 91304
(213) 703-1121

TEKELEC-AIRTRONIC
Cite des Bruyeres

rue Carle Verret

92310 Sevres, France
Phone: (1) 027-75-35

CRT Terminal

NEWBURY LABCRATORIES LID.

King Street

Odiham

Hampshire RG25 INN, UK
Telex: 858815

Manufacturers and Distributors of

Representative S-100 Compatible Equipment

Table I

THE S-100 ADAPTER CARD
S-100 ADAPTER DESIGN

The S-100 bus was originally specified by MITS, a company in
Albuquerque, New Mexico, when they designed the first computer aimed
at hobbyists - the Altair 8800A. Soon after the introduction of the
88004, other manufacturers began producing compatible memory and
peripheral boards which would operate on the 8800A bus. Various
unused lineé in the 100 line structure soon began to be defined by
those manufacturers, sometimes in conflicting ways. MITS themselves
defined new signals in their 8800B, the successor to the model A.
Despite these occasional conflicts, the S-100 is so close to a
universal standard that literally dozens of manufacturer's equipment

and software can be used together.

To achieve optimum compatibility, the S-100 Bus Adapter Card has been
designed not only to emulate the Altair 8800B definition of the S-100
bus, but also to incorporate additional signals used by othep
manufacturers (such as the PHANTOM), where these are compatible with
the 8800B and are generally useful. While some manufacturer's
equipment may not meet these standards, most will. You should have
little difficulty if you follow the guidelines presented in this

section.

The basic differenue between the MTS microcomputer bus and the S-100
bus is that the MTS uses a single bi-directional data bus, as do most
8080 systems. The S-100 bus involves two separate 8-bit data buses;
one for outbound ahd one for inbound data. The other key difference
in the S-100 bus iuvolves the status byte, placed on the data bus by

the 8080 during the first clock cycle of each bus cycle. In most

D-8

THE S-100 ADAPTER CARD

8080 systems, including the MTS, this status byte is decoded either
with an 8228 or with discrete logic, and this logic then produces
MEMR, MEMW, 1IOR, and IOW signals. Therefore, in most systems the
status byte itself is 'discarded' following decoding. However, in
the S-100 bus definitioﬂ, this status byte must be stored in a
register and made available on eight separate S-100 control lines, so
that each external card can decode 1it. Your S-100 Bus Adapter Card
does produce these status signals even though most exteranal cards do

not actually require them.

Table III at the conclusion of this section describes the S-100
signals emulated by the MTS S-100 Adapter. You will notice on the
'comments' heading that some signals are delayed. These signals are
actually double-buffered. They are buffered once before they leave
the MTS board, via the ribbon cable, and again are buffered on the
S-100 Bus Adapter. This is to minimize the length of any
single-driven signal path to eliminate noise problems. While the
double buffering results in signal delays of 20 - 40 nano-seconds
compared to the standard S-100 definition, this minimal delay should

present no timing problems.

A few signals are not emulated by the Adapter. These were unique to
the original Altair design. In particular, they were used with front
panel switch operation of the Altair computer. Since most S-100
systems today are operated through a CRT or printing terminal, they
have no front panel switches at all, except for RESET. Therefore,

those front panel related signals have not been emulated.
In addition to creating the control signals specified in the S-100

D-9

THE S=100 ADAPTER CARD

bus definition and splitting the data bus into separate in/out buses,
the Adapter Card performs several other necessary functions. First,
the Adapter Card has on it eight switches which emulate the eight
'sense' switches on the front panel of an Altair 8800B. These are
attached to an input port with device address FF. Some programs
available for S-100 systems read these switch settings to learn the
configuration of the peripherals (i.e. whether a CRT, printer, etc.
is available for 1/0). 1If you want to use the switches, they are
located in position 22 on the Adapter Card. The topmost switch
(labeled 'l1l' on the switch itself) is data bit 7 (the most
significant bit) and the bottom switch (labeled '8' on the switch
itself) 1is data bit O (the least significant bit). These are marked
on the PCB itself as D7 and DO respectively. Moving a switch to the
'on' position grounds the associated bit and creates a logic O.
Switching it to 'off' (to the left) creates a logic 1. Thus, to

create a Hexadecimal 83, the switch positions would be set as in

Figure D-2.

D-10

THE S-100 ADAPTER CARD

- =0
- |V
[l K
N -
0 E
e
P -
-
Hl= |ro

Sense Switch Positions to Create
Hexadecimal 83 on Input Port FF

Figure D-2

D-11

THE S-100 ADAPTER CARD

The Adapter Card also has on it a circuit to cause the microprocessor
to Jjump to a selected address upon RESET. This address is selectable
by setting six switches located in position 31 on the Adapter Card.
You can specify a starting address at the first location of any 1K
page, 1i.e. memory locations 0, 1024, 2048, 3072, etc. (decimal), or

in hexadecimal, 000, 0400, 0800, 0CO0, 1000, etc.

The Jump start address 1is selected wusing switches 1 through 6.
Switches 7 and 8 are unused. Switch 1 corresponds to address bit 10,
switch 2 corresponds to address bit 11, etc. (Address bits 0-9 are
always set to 0). To specify an address bit as 0, move the switch to
on. To specify an address as 1, move the switch to off. As an
example, for a jump start address of A000, the binary equivalent is
1010 0000 0000 0000. Thus the switch settings should be 101000 as

shown in Figure D-3.

D-12

—>

S1D

20

Switch Settings

for

THE S-100 ADAPTER CARD

Al0

Al5

Jump Start Address A000

Figure D-3

D-13

THE S-100 ADAPTER CARD
HOW TO IMPLEMENT AN EXPANDED SYSTEM

USING THE S-100 BUS ADAPTER

The first step in implementing an expanded system 1is to plan the
memory and I/0 device addresses. We assume there are two general
categories of expanded systems: those that incorporate disks and use
a disk operating system as the fundamental software for interfacing
with the user, and those that do not have a disk and rely on the

Microcomputer Training System's Monitor program.

Most monitor-based expanded systems simply involve additional RAM
memory. In these cases the memory on the training system can be left
in the original addresses assigned to it, and the expansion memory

assigned to other unused locations as illustrated in Figure D-4.

Most disk-based systems, however, require RAM memory at address O.
Therefore, the MTS PROMs must be relocated, and in some cases, the
MTS RAM should be relocated as well. Instructions for relocating
these memories are given in STEP 10 below. Note that if you move
either the MTS PROM or RAM, the monitor will no longer function since
it relies on being located in address 0 and having the display RAM at
locaton 83F8-83FF. A typical arrangement of memory for a disk-based

system is shown in Figure D-5.

THE S-100 ADAPTER CARD

0000
MTS
2708 4K
GFFF PROMS
1000
UNUSED §12K
3FFF
4000
16 K 1
RAM 16K
CARD ; }
7FFF
8000
MTS !
RAM 4K
8EFF .
9000 ;
16 K 16X
RAM
CFFF
D000
UNUSED }12K
FFFF

Typical Expanded Memory Configuration
with a total of 36K RAM plus 4K PROM. To
be used with the MTS MONITOR in PROM at
location O

Figure D-4

D-15

THE S-100 ADAPTER CARD

D-16

0000
16 K i
RAM 16K
3FFF
4000
16 K
RAM } 16K
7FFF
8000
RAM
8FFF _
9000 /,P’
' 4
UNUSED } R
IFFF N
A000 ' AMTS
2708 4K
PROMS
AFFF
BONO . ///#
2
UNUSED } 12X
DFFF
E009 DISK } 4R
EFFF BOOTSTRAP RAM
F0O0O0 " 4K
FRRE UNUSED }

A typical disk operating system memory
organization containing 36K RAM plus 4K
PROM on MTS board. The bootstrap PROM's
for disk operating system begin at E00O0
and are physically located on the disk
controller card itself.

Figure D-5

y - 16

THE S-100 ADAPTER CARD

After designing the memory space, you can start installing the

hardware. We suggest the following steps:

STEP 1

Do not yet change the memory addresses on the MTS. Leave the monitor
in location O and the RAM at 8000. Remove all cards from the S-100
chassis. Turn on the S-100 power and check the voltages on bus lines
1, 2, 51 and 52, relative to line 50 (ground). They should be within
a few volts of +8, +18, -8 and -18V respectively (Remember, this is

an unregulated supply). Turn the S-100 power off. Turn the MTS
power off. BEFORE CONTINUING, HEED THE FOLLOWING WARNING:

CAUTION: NEVER REMOVE OR INSERT CHIPS, S-100 CARDS, OR THE
RIBBON CABLES WHILE THE POWER IS ON. FIRST TURN POWER OFF,
WAIT 5 - 10 SECONDS FOR THE CAPACITORS TO DISCHARGE, THEN

REMOVE OR INSERT THE DEVICE.

STEP 2

Set the 'Jump Start' address to 0000 by switching all the A - A

address select switches (in position 31 of the Adapter Card) to 'ON',

which represents logic O.

STEP 3

Plug the ribbon connector into socket J2 on the MTS. This connector
is 1labeled 'S-100'. Both this connector and the connector labeled
'ITS' are keyed to prevent accidentally plugging the cable into the

wrong connector, or plugging it in backwards.

D-17

THE S-100 ADAPTER CARD

Insert the Adapter Card into the first (front) slot in your S-100
mainframe. Turn on power for both the §S-100 and MTS. Verify that
the monitor functions normaily. Try entering and executing the
following program to verify that the MTS can read the sense switches.

If you have set the sense switches to '55', you should see a pattern

of in the leftmost display on the MTS.

8000 D3 IN FF
8001 FF

8002 32 STA 83F8
8003 F8

8004 83

8005 C3 JMP 8000
8006 00

8007 80

Next, try pressing the RESET switch on the front of the S-100. It
should cause the monitor to RESET just as if you had pressed the RST

switch on the MTS keyboard.

STEP 4

Set the address on an Expansion RAM card to 4000 by following the
directions supplied by the manufacturer of the card. Also, set the
control switch on the RAM card to enable it to recognize the PHANTOM
signal (Not all cards have this switch). Finally, set the control

switch(es) to allow you to write into the RAM, i.e., set the WRITE

D-18

THE S-100 ADAPTER CARD

PROTECT switch to the 'unprotect' position. Again, some cards don't

have this switch either.

An example of setting up a typical RAM card is shown in Figure D-6
for the 16K Static RAM manufactured by Problem Solvers, Inc.
Referring to the manufacturer's documentation, the following switch

settings would activate the RAM at address 4000.

Board Protect Unprotect Protect
Address Wait Boundary
. | o L)
' S2 4 3 2 1 S3
. S t:::;:::?
No Wait
Set At Address States No Boundary Memory
4000 (HEX) Protected Unprotected
Phantom

Line Enabled

Switch positions to enable the PROBLEM

SOLVER 16K RAM at address 4000

NOTE: Refer to manufacturer's
documentation for details

Figure D-6

D-19

THE S-100 ADAPTER CARD

STEP 5

Turn off all power (both MTS and S-100). Insert the RAM card into
any open slots; however, in most S-100 mainframes, it is a good idea

t0 leave a vacant slot on each side of a RAM card for better cooling.

STEP 6

Turn on power for both the S-100 and the MTS. Using the monitor,
store data in the S-100 RAM at address 4000, 5000, 6000 and 7000, and
then check that the data is there. First, store 55, then repeat with

AA. Turn off the MTS and S-100 system power. Remove the RAM card.

STEP 7

Repeat steps 4, 5 and 6 for each RAM card you have purchased to

verify that you can store and retrieve data in it.
STEP 8

If you have purchased an RS232C serial interface card such as the
TU~-ART, read the manufacturer's directions carefully. Set up the
switches on the card as directed. Turn off all power. Insert the
TU-ART card in the S-100 frame and connect the cable to the 25-pin
'D' shaped connector, commonly used for RS232C cables (Figure D-7a).
The TU-ART to 'D' connector cable is available from Cromemco (the
TU~ART manufacturer). Now write a simple program to output characters

to the terminal. An example program is shown in Figure D-7b.

D-20

THE S-100 ADAPTER CARD

-
TERMINAL TO TU-ART CABLE
Pin = Pin 7
v TXD
2 2 TXD
3 3 RXD
; 4 RXD 4 RTS
5 5 CTS
6 GND 6 DSR
/ 7 GND
8 8 DCD
l 20 DTR
! 15 ft.
L (length optional)
I !
DB 25P DB 25pP i
Male Connector Male Connector
(Connects to Computer) (Connects to Terminal)
This is a diagram of the cable required to connect a The jumper connection between pins 4, 5, 6, 8 and
serial RS-232 1/0 device (such as a CRT terminal) from 20 may not be required since some terminals have
the DB 25-S socket of the TU-ART cable (model TRT- internal pullups on these lines.

CBL) to the DB 25-S connector of the RS-232 device.

Terminal to TU-ART Cable

Figure D-7a

D-21

THE S-100 ADAPTER CARD

ASM20 :F1:TUART.SRC DEBUG SYMBOLS PAGEWIDTH(100)

I1215-11 2020/8085 MACRDO ASSEMBLER,

vz2.0

Figure 7b;

An example program
for TU-ART card.

PAGE 1

TUART

Loc opd SEQ SOURCE STATEMENT
"1 3 SAMPLE PROGRAM TO UTILIZE CROMENCO TU=ART SERIAL/PARALLEL S100 CARD
2 3 THIS PROGRAM WILL CONFIGURE A SERIAL OUPUT PORT DEVICE A FOR
2 3 TRANSMITTING A SEQUENCE OF "A"S ONTQ THE R5232C DEVICE.
4 3
5 NAME TUART
2000 3 ORQ 2000H
3000 2E24 T 7 TUART: MVI o~ A;10000100B - -~ §1 STOF BIT5; 300 BAUD-— — -~ -
2002 0210 2 ouT 10H sDEVICE A BAUD RATE REGISTER
2004 3EZ0 9 MV1 A, 0D100000R SALLOW ONLY DEVICE As TBE
28004 D313 10 our 13H 3TO INTERRUFPT
3002 3ES1 11 MVI A, "A” sCHARACTER "A"
S00A 2E02 12 MVI A, O3H SENABLE INTA
300C D312 13~ T QUT t2H T3 COMMAND REGISTER T
200E 3E41 14 MVI A, 7A“ s CHARACTER "A“
8010 D211 15 ouT 11H i TRANSMITTER DATA REGISTER
8012 FB 14 EI - ’ ;
3013 C21320 17 SELF: JMP SELF 5WAIT FOR INTERRUFT
0023 18 0ORG 022H
0028 Caz2a82 17 INTS: — MP CIRSTS T T IRETS VECTOR ™ — 7 -7 T m T e e
azzs 20 ORi3 8223H
9222 2E41 21 IR3TS: MVI A A’ tOUTPUT A “A’
€22A D211 22 ouT 11H SDEVICE As; SERIAL TRANS DATA REGISTER
822C FD 22 EI
8z2zh 9 24 RET
25 s R e e e e e e e e =
2000 26 END TUART
FUBLIC SYMBOLS -
EXTERNAL SYMBOLS U7 TTrTT T mmmm o mmm -
USER 3YMBOLS
INTS A 0028 IRSTS A 2222 SELF A 8012 TUART A 2000
ASSEMBLY COMPLETE, NO ERRORS

An Example Program for the TU-ART Card

Figure D-7b

THE S-100 ADAPTER CARD
STEP 9

ﬁow you're ready to integrate the system. Set up the S-100 RAM
card(s) to the addresses you initially designed. Turn off all power.
Insert the cards. If you're not planning to add a disk, the system
is ready to use. If you are going to add a disk system, you should
now thoroughly study the manufacturer's hardware and software

manuals.
STEP 10

Should you want to locate an S-100 RAM in memory address 0000, as
required with most disk systems, you will need to relocate the ICS
monitor and any other PROMs which currently occupy addresses 0000 -
O3FF. To do this you will need to modify certain jumpers on the
decoding circuitry of the MTS. 1If you do, the MTS monitor will not

execute properly due to the non-relocatable code.

The MTS has the facility to locate the PROM and the RAM at any 8K
page of memory in the 64K address space, as well as to locate the
8255 at any 32 block increment of I/O in the 256 1/0 address range

from 00 - FF (Refer to Figures D-8 and D-9 and Table II).

For example, in order to relocate the address of the MTS PROMs to
C000 - CFFF, you will need to cut the existing jumper trace between
pin 16 marked '0000' on the silk-screen and pin 4 marked 'PROM'.
Next, insert a jumper wire from pin 11 marked 'C000' to pin 4 marked
'PROM' (as shown in Figure D-9). You can also perform the same type
of operation for moving the RAM or I/0 devices, if necessary for your

memory system design.

D-23

THE S-100 ADAPTER CARD

L]
TaLSCE 2
| S

13

>
ain

’

fALsoo'ﬂ

9

va_sz g

9§

: JumeeR ! ST
L) TRACES |—P
V] To Q& eul P X R)
A

4049

n

s 20 L__f\ o wl___.\ do

[+]

STANDARD MEMORY AND I/O CONFIGURATION

MTS Standard Memory and I/0 Configuration

Figure D-8

THE S-100 ADAPTER CARD

E000 RAM
€000
A000
8000
6000 PROM
4000
[en]
S
2000 O O
000u P10

Address Decoder Jumper Tracess

Figure D-9

D-25

THE S-100 ADAPTER CARD

MTS ADDRESS DECODER JUMPER SETTINGS

MTS DEVICE ADDRESS JUMPERS
EPROM 0000 1FFF "PROM" to pin 16
2000 3FFF " to pin 15
4000 5FFF " to pin 14
6000 7FFF " to pin 13
8000 9FFF " to pin 12
A000 BFFF " to pin 11
C000 - DFFF " to pin 10
E000 FFFF " to pin 9
RAM 0000 1FFF "RAM" to pin 16
2000 3FFF " to pin 15
4000 SFFF " to pin 14
6000 7FFF " to pin 13
8000 9FFF " to pin 12
AQ0OC BFFF " to pin 11
C000 DFFF " to pin 10
E000 - FFFF " to pin 9
82554 6o 03 "PIO" to pin 16
20 23 " to pin 15
Control register = X0 40 43 " to pin 14
Port A = X1 60 63 " to pin 13
Port B = X2 80 83 " to pin 12
Port C = X3 A0 A3 " to pin 11
co C3 " to pin 10
EO E3 " to pin 9
TABLE II

D-26

9 THE S-100 ADAPTER CARD
STEP 11

Set the Jump Start address on the 8S-100 Adapter Card to the address

of the Disk System bootstrap PROM.
STEP 12

Set wup the disk controller card according to the manufacturer's
directions. Turn off all power. Insert the card, connect the
cables, and the hardware is configured. Note, however, that you will
probably have to configure the disk operating system software, i.e.,
to create a version of the disk operating system that uses your
addresses for inputs and outputs to CRT terminals and printers. This

procedure will be described in the manual for your disk system.
The key elements in bringing up a complete system are:
(1) to test only one new card at a time,

(2) to read the manufacturer's literature prior to using their card,

and

(3) to carefully follow the step-by—-step procedure given above.

D-27

THE

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(3)

(2)

S-100 ADAPTER CARD

SUMMARY FOR CONFIGURING A SYSTEM
Connect the MTS to the S-=100 mainframe using the adapter
card and run the ICS monitor.
Draw a memory and I1/0 map of the proposed system.

Remove any addressing conflicts via the jumper connections

n the decoding circuit of the MTS.

Verify that the low address 0000 memory cards can recognize
the PHANTOM LINE. If so, set the appropriate switches by

referring to the manufacturer's documentation. IF NOT, DO NOT

USE.

Configure switch 31 'Jump Address' to vector to the appropriate

address upon power-up or a master reset.

Connect J4 of the S-100 Adapter to socket J2 on the MTS.
Insert the 100 pin edge connector J5 into the S-100 system.
Power-up the S-100 system.

Power-up the MTS.

D-28

(1)

(2)

(3)

(4)

will

THE S-100 ADAPTER CARD

IMPORTANT CONSIDERATIONS

If the MTS monitor is moved from starting location 0000
to another 8K page, the monitor program will not execute

properly.

If RAM locations 8000 - 8FFF are moved and the MTS

monitor 1is not, the MTS monitor will still not function because
the display locations from 83F8 to - 83FF will follow the 8000 -
8FFF block whenever it is moved; i.e., if 8000 - 8FFF is moved
to A0O0 - AFFF, display locations will now be at locations A3F8

to A3FF. The monitor assumes they will be at 83F8 - 83FF.

To use the MTS S-100 Adapter with any S-100 memory card,

the automatic Jump Address Vector switches U31 must be
configured. In addition, the lower address 0000 of any S-100
RAM card must be capable of disabling itself should the PHANTOM

signal be generated upon a master RESET or power-up.

If any memory or I/0 address conflicts occur, the MTS memory

have highest priority and therefore will be selected over S-100

memory with the same address.

D-29

oe-a

TABLE 111

S100 BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE S100 BUS ADAPTER

PIN

NUMBER SYMBOL
1 +8v
2 +18v
3 XRDY
4 VIO
5 VIl
6 VI2
7 Vi3
8 VI4
9 VI5
10 VI6

NAME

+8 VOLTS

+18 VOLTS

EXTERNAL

VECTORED

LINE #0

VECTORED
LINE #1

VECTORED
LINE #2

VECTORED
LINE #3

VECTORED
LINE #4

VECTORED
LINE #5

VECTORED
LINE #6

READY

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT

INTERRUPT

FUNCTION

UNREGULATED VOLTAGE ON BUS,
SUPPLIED TO PC BOARDS AND
REGULATED TO 5v.

POSITIVE PRE-REGULATED
VOLTAGE.

EXTERNAL READY INPUT TO CPU
BOARD'S READY CIRCUITRY.

AMTS S100 ADAPTER
IMPLEMENTATION

YES

YES
YES

NO (

NO

"

NO

NO \
NO

NO

COMMENTS

VOLTAGE
NOT SUPPLIED

VOLTAGE
NOT SUPPLIED

DELAYED

THESE SIGNALS ARE
GENERATED BY I/O
BOARDS AND ARE TO

BE PROCESSED BY A
SEPARATE PRIORITY
INTERRRUPT BOARD
WHICH THEN GENERATES
A SINGLE INTERRUPT
REQUEST (ON LINE 73)
TO THE ADAPTER CARD

All materials copyright by Integrated Computer Systems, Inc. Not to be reproduced without prior written consent.

d¥VD ¥HIdVAV 001-S HHIL

TABLE III
S100 BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE S100 BUS ADAPTER

PIN

NUMBER

11

12

13
TO
17

18

19

20

21

22

AMTS S100 ADAPTER

SYMBOL NAME FUNCTION IMPLEMENTATION COMMENTS
V17 VECTORED INTERRUPT NO "
LINE #7

*XRDY2 EXTERNAL READY #2 A SECOND EXTERNAL READY YES DELAYEL
LINE SIMILAR TO XRDY

TO BE

DEFINED

STAT DSB STATUS DISABLE ALLOWS THE BUFFERS FOR YES -
THE 8 STATUS LINES TO BE
TRI-STATED

c/C DSB COMMAND/CONTROL ALLOWS THE BUFFERS FOR THE YES -
6 OUTPUT COMMAND/CONTROL
LINES TO BE TRI-STATED

UNPROT UNPROTECT INPUT TO THE MEMORY PROTECT NO MOST MEMORY BOARDS
FLIP-FLOP ON A GIVEN MEMORY HAVE SOFTWARE CON-
BOARD TROLLABLE FLIP-FLOPS

55 SINGLE STEP INDICATES THAT THE MACHINE IS NO NOT USED
IN THE PROCESS OF PERFORMING
A SINGLE STEP (i.e. THAT SS
FLIP-FLOP ON D/C IS SET)

ADD DSB ADDRESS DISABLE ALLOWS THE BUFFERS FOR THE 16 YES -
ADDRESS LINES TO BE TRI-STATED

DO DBS DATA OUT DISABLE ALLOWS THE BUFFERS FOR THE 8 YES _
DATA OUTPUT LINES TO BE TRI-
STATED

1e-a

All materials copyright by integiated Computer Systems, Inc. Not 10 be reproduced without prior written consent.

ayyd ¥3Ldvdy 001-S HHL

¢e-a

TABLE III

S100 BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE S100 BUS ADAPTER

PIN
NUMBER

SYMBOL

24

25

26

27

28

@2
g1

PHLDA

PWAIT

PINTE

AMTS S100 ADAPTER
NAME FUNCTION IMPLEMENTATION

PHASE 2 CLOCK YES
PHASE 1 CLOCK YES

HOLD ACKNOWLEDGE PROCESSOR COMMAND/CONTROL YES
OUTPUT SIGNAL THAT APPEARS
IN RESPONSE TO THE HOLD
SIGNAL; INDICATES THAT THE
DATA AND ADDRESS BUS WILL GO
TO THE HIGH IMPEDANCE STATE
AND PROCESSOR WILL ENTER
HOLD STATE AFTER COMPLETION
OF THE CURRENT MACHINE CYCLE.

WAIT PROCESSOR COMMAND/CONTROL YES
SIGNAL THAT APPEARS IN
RESPONSE TO THE READY SIGNAL
GOING LOW; INDICATES PROCES-
SOR WILL ENTER A SERIES OF
.5 MICROSECOND WAIT STATES
UNTIL READY AGAIN GOES HIGH.

INTERRUPT ENABLE PROCESSOR COMMAND/CONTROL YES
OUTPUT SIGNAL; INDICATES
INTERRUPTS ARE ENABLED, AS
DETERMINED BY THE CONTENTS
OF THE CPU INTERNAL INTERRUPT
FLIP-FLOP. WHEN THE FLIP-FLOP
IS SET (ENABLE INTERRUPT INSTRUC-
TION), INTERRUPTS ARE ACCEPTED BY
THE CPU; WHEN IT IS RESET (DISABLE

INTERRUPT INSTRUCTION), INTERRUPTS
ARE _INHIRITED

COMMENTS

DELAYED

DELAYED

DELAYED

DELAYED

DELAYED

All materials copyright by Integrated Computer Systems, Inc. Not to be reproduced without prior written consent.

adyvd ¥ddIdVav O00I-S HHL

S100 BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR B8800B

TABLE III

& EMULATED BY THE S100 BUS ADAPTER

PIN
NUMBER

29
30
31
32
33
34
35
36
37
38
39
40
41
42

43

SYMBOL

A5

A4

A3

Al5

Al2

A9

D01

DOO

Al0

D04

DO5

DO6

DI2

DI3

D17

NAME
ADDRESS LINE #5

ADDRESS LINE #4
ADDRESS LINE #3
ADDRESS LINE #15
ADDRESS LINE #12
ADDRESS LINE #9
DATA OUT LINE #1
DATA OUT LINE #0
ADDRESS LINE #10
DATA OUT LINE #4
DATA OUT LINE #5
DATA OUT LINE #6
DATA IN LINE #2
DATA IN LINE #3

DATA IN LINE #7

(MsB)

(LSB)

(MSB)

FUNCTION

AMTS 5100 ADAPTER
IMPLEMENTATION

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

COMMENTS

DELAYED

DELAYED

DELAYED

DELAYED

DELAYED

DELAYED

DELAYED

ge-a

All materials copyright by Integrated Computer Systems, Inc. Not to be reproduced without prior written consent.

ayuvo ¥HIdVAyY 001-S HHL

ve-a

TABLE III

S100 BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE S100 BUS ADAPTER

NUMBER

SYMBOL

A

45

46

47

48

49

SML

SOuT

SINP

SMEMR

SHLTA

CLOCK

NAME

' MACHINE CYCLE 1

OUTPUT

INPUT

MEMORY READ

HALT

CLOCK

FUNCTION

STATUS OUTPUT SIGNAL THAT
INDICATES THAT THE PRO-
CESSOR IS IN THE FETCH
CYCLE FOR THE FIRST BYTE
OF AN INSTRUCTION.

STATUS OUTPUT SIGNAL THAT
INDICATES THE ADDRESS BUS
CONTAINS THE ADDRESS OF
AN OUTPUT DEVICE AND THE
DATA BUS WILL CONTAIN THE
OUTPUT DATA WHEN PWR IS
ACTIVE.

STATUS OUTPUT SIGNAL THAT
INDICATES THE ADDRESS BUS
CONTAINS THE ADDRESS OF

AMTS 5100 ADAPTER

IMPLEMENTATION

YES

YES

YES

AN INPUT DEVICE AND THE INPUT
DATA SHOULD BE PLACED ON THE
DATA BUS WHEN PDBIN IS ACTIVE.

STATUS OUTPUT SIGNAL THAT

INDICATES THE DATA BUS WILL
BE USED TO READ MEMORY DATA.

STATUS OUTPUT SIGNAL THAT
ACKNOWLEDGES A HALT
INSTRUCTION.

INVERTED OUTPUT OF THE @2
CLOCK

YES

YES

YES

COMMENTS

DELAYED

DELAYED

DELAYED

DELAYED

DELAYED

DELAYED

All materials copyright by Integrated Computer Systems, Inc. Not to be reproduced without prior written consent.

!

ddvD ¥31dvay 00I-S AHL

i

$100 BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

TABLE III

& EMULATED BY THE S100 BUS ADAPTER

PIN
NUMBER SYMBOL NAME
50 GND GROUNWD
51 +8v +8 VOLTS
52 -18v -18 VOLTS
53 SSWI SENSE SWITCH INPUT
54 EXT CLR EXTERNAL CLEAR

FUNCTION

AMTS S100 ADAPTER
IMPLEMENTATION

UNREGULATED INPUT TO 5
VOLT REGULATORS

NEGATIVE PRE-REGULATED
VOLTAGE

INDICATES THAT AN INPUT
DATA TRANSFER FROM THE
SENSE SWITCHES IS TO TAKE
PLACE. THIS SIGNAL IS USED
BY THE DISPLAY/CONTROL LOGIC
TO:

A) ENABLE SENSE SWITCH
DRIVERS

B) ENABLE THE DISPLAY/
CONTROL BOARD DRIVERS

DATA INPUT (FDI@-FDI7

C) DISABLE THE CPU BOARD
DATA INPUT DRIVERS
(DIP-DI7)

CLEAR SIGNAL FOR I/0
DEVICES (FRONT PANEL
SWITCH CLOSURE TO GROUND)

YES

YES

YES

NO

NO

COMMENTS

VOLTAGE NOT SUPPLIED
BY AMTS

VOLTAGE NOT SUPPLIED
BY AMTS

FRONT PANEL RELATED
FUNCTION

MOST S100 CARDS NOW
USE MASTER SYSTEM RESET

ge-a

All materials copyright by Integrated Computer Systems, inc. Not to be reproduced without prior written consent.

ayvo Y¥dldvay 00I-S HHL

TABLE III

5100 BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE S100 BUS ADAPTER

T
w
[»>]
PIN
NUMBER SYMBOL NAME
55 RTC REAL TIME CLOCK
56 STSTB STATUS STROBE
57 ‘DIG1 DATA INPUT GATE
#1
58 FRDY FRONT PANEL
READY
‘59 - 66 TO BE
DEFINED
67 PHANTOM PHANTOM

AMTS S100 ADAPTER
FUNCTION IMPLEMENTATION

60Hz SIGNAL USED AS TIMING

OUTPUT STROBE SIGNAL SUPPLIED
BY THE 8224 CLOCK GENERATOR.
PRIMARY PURPOSE IS TO STRCBE
THE 8212 STATUS LATCH SO THAT
STATUS IS SET UP AS SOON IN
THE MACHINE CYCLE AS POSSIBLE.
THIS SIGNAL IS ALSO USED BY
DISPLAY/CONTROL LOGIC.

OUTPUT SIGNAL FROM THE DISPLAY/
CONTROL LOGIC THAT DETERMINES
WHICH SET OF DATA INPUT DRIVERS
HAVE CONTROL OF THE CPU BOARD'S
BIDIRECTIONAL DATA BUS. IF
DIG1 IS HIGH, THE CPU DRIVERS
HAVE CONTROL; IF IT IS LOW THE
DISPLAY /CONTROL LOGIC DRIVERS
HAVE CONTROL.

OUTPUT SIGNAL FROM D/C LOCIC
THAT ALLOWS THE FRONT PANEL
TO CONTROL THE READY LINE TO
THE CPU.

SIGNAL FROM ADAPTER CARD TO
DISABLE MEMORIES AFTER RESET .
TO ALLOW JUMP START TO- ADDRESS
SPECLFIED ON ADAPTER CARD.

NO

YES

YES

YES

YES

COMMENTS

NOT NEEDED

DELAYED

DELAYED

ayvd ¥drdvav O00T1-S HHL

TABLE III
$100 BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B

& EMULATED BY THE S100 BUS ADAPTER

PIN
NUMBER

68

69

70

71

72

73

SYMBOL

MWRITE

PROT

RUN

PRDY

PINT

AMTS S100 ADAPTER
NAME FUNCTION IMPLEMENTATION

MEMORY WRITE INDICATES THAT THE DATA YES
PRESENT ON THE DATA OUT
BUS IS TO BE WRITTEN INTO
THE MEMORY LOCATION CUR-
RENTLY ON THE ADDRESS BUS.

PROTECT STATUS INDICATES THE STATUS OF THE NO
MEMORY PROTECT FLIP-FLOP ON
THE MEMORY BOARD.

PROTECT INPUT TO THE MEMORY PROTECT NO
FLIP-FLOP ON THE MEMORY BOARD
CURRENTLY ADDRESSED.

RUN INDICATES THAT THE STOP/RUN NO
FLIP-FLOP IS RESET; i.e.
MACHINE IS IN RUN MODE.

PROCESSOR READY MEMORY AND I/0 INPUT TO THE YES

CPU BOARD WAIT CIRCUITRY

INTERRUPT REQUEST THE PROCESSOR RECOGNIZES AN YES
INTERRUPT REQUEST ON THIS
LINE AT THE END OF THE
CURRENT INSTRUCTION OR WHILE
HALTED. 1IF THE PROCESSOR IS
IN THE HOLD STATE OR THE INTER-
RUPT ENABLE FLIP-FLOP IS RESET,
IT WILL NOT HONOR THE REQUEST.

DELAYED

NO FRONT PANEL LAMPS
ON WHICH TO INDICATE
STATUS

MEMORY PROTECT USUALLY
IS SWITCH SELECTABLE
ON THE RAM CARD ITSELF

NOT USED

DELAYED -

DELAYED

Le-da

Al materials copyright by Integrated Computer Systems; Inc. Not to be reproduced without prior written cpnsenl.

auyd ¥ELdVay 001-§ HHL

8€-a

TABLE III
S100 BUS SPECIFICATION AS DEFINED BY MITS‘FOR‘THEIR ALTAIR 88008

& EMULATED BY THE S100 BUS ADAPTER

PIN
NUMBER SYMBOL

74 PHOLD

75 PRESET

76 PSYNC

77 PWR

78 PDBIN

AMTS S100 ADAPTER

NAME FUNCTION IMPLEMENTATION COMMENTS

HOLD PROCESSOR COMMAND/CONTROL YES DELAYED
INPUT SIGNAL THAT REQUESTS
THE PROCESSOR ENTER THE HOLD
STATE; ALLOWS AN EXTERNAL
DEVICE TO GAIN CONTROL OF
ADDRESS AND DATA BUSES AS
SOON AS THE PROCESSOR HAS
COMPLETED ITS USE OF THESE
BUSES FOR THE CURRENT MACHINE
CYCLE.

RESET PROCESSOR COMMAND/CONTROL YES -
INPUT; WHILE ACTIVATED, THE
CONTENT OF THE PROGRAM
COUNTER IS CLEARED AND THE
INSTRUCTION REGISTER IS SET
TO O.

SYNC PROCESSOR COMMAND/CONTROL YES DELAYED
OUTPUT; PROVIDES A SIGNAL
TO INDICATE THE BEGINNING
OF EACH MACHINE CYCLE.

WRITE PROCESSOR COMMAND/CONTROL YES DELAYED
OUTPUT; USED FOR MEMORY WRITE
OR I/0 OUTPUT CONTROL. DATA ON
THE DATA BUS IS STABLE WHILE THE
PWR IS ACTIVE.

DATA BUS IN PROCESSOR COMMAND/CONTROL OUTPUT; YES DELAYED
INDICATES TO EXTERNAL CIRCUITS
THAT THE DATA BUS IS IN THE INPUT
MODE.

All materials copyright by Integrated Computer Systems, inc. Not to be reproduced without prior written consent.

ay¥vd ¥IIdVAV 00T-S FHL

'S100 BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR.8800B

TABLE II1

& EMULATED BY THE S100 BUS ADAPTER

PIN

NUMBER SYMBOL
79 AO
80 Al
81 A2
82 A6
83 A7
84 A8
&5 Al3
86 Al4
87 All
88 D02
89 DO3
90 Do7
91 D14
92 DI5
93 D16
94 D17

NAME

ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS
ADDRESS

ADDRESS

LINE

LINE

LINE

LINE

LINE

LINE

LINE

LINE

LINE

#13
#14

#11

DATA OUT LINE #2

DATA OUT LINE #3

DATA OUT LINE #7

DATA IN LINE #4

DATA IN LINE #5

DATA IN LINE #6

DATA IN LINE #1

(LSB)

FUNCTION

AMTS S100 ADAPTER
IMPLEMENTATION

YES

YES

YES

YES

YES

-YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

YES

COMMENTS
DELAYED
DELAYED
DELAYED
DELAYED
DELAYED
DELAYED
DELAYED
DELAYED

DELAYED

6e-d

All materials copyright by Integrated Computer Systems, inc. Not 10 be reproduced without prior written consent.

quvo ¥dLdvay 00T1-S HHL

TABLE 111
o .
& S100 BUS SPECIFICATION AS DEFINED BY MITS FOR THEIR ALTAIR 8800B
o
& EMULATED BY THE S100 BUS ADAPTER
PIN AMTS S100 ADAPTER
NUMBER SYMBOL NAME FUNCTION IMPLEMENTATION COMMENTS
95 DIO DATA IN LINE #0 (LSB) YES
96 SINTA INTERRUPT ACKNOWL- STATUS OUTPUT SIGNAL; YES DELAYED
EDGE ACKNOWLEDGES SIGNAL FOR
INTERRUPT REQUEST.
97 SWO WRITE OUT STATUS OUTPUT SIGNAL; YES DELAYED
INDICATES THAT THE OPER-
ATION IN THE CURRENT
MACHINE CYCLE WILL BE A
WRITE MEMORY OR OUTPUT
FUNCTION.
98 SSTACK STACK STATUS OUTPUT SIGNAL YES DELAYED
INDICATES THAT THE ADDRESS
BUS HOLDS THE PUSHDOWN STACK
ADDRESS FROM THE STACK POINTER.
99 POC POWER-ON CLEAR YES -
100 GND GROUND YES -

All materials copyright by Integrated Computer Systems, Inc. Not to be reproduced without prior written consent.

ayvd HIIdvVav 00T-S HHL

MICROCOMPUTER TRATNING WORKBOOK

APPENDIX E

AMTS SCHEMATICS

6 1] U4 |o
2::0 P ms .)| TeLsser % 3\
¢ a14 {39 i
Az 4 LIS
a2 P b s
¢l
N
a1 |40 o, U6 g
: o] s f
A0, 2 >
nf 63 L
34 12 {u
" N 14 : 13 ADDRESS
M 6 — BUS
e 22 2 3 | no—ass
61 62
_ L9t
Us5
7
as P 613 7ais367
ag |30 4, 5
a3 29 i 1 3
i 14 [1
a1 28 12{, 1
25 10 9
A0 ' J
13 61 G2
V-8 HOLD [TETT
ARG -4 HOLD 6)
o V46B-S
m—s—"—“ INT 06 : 06 yeep-11
=g nE D5 y4g8-14
2 4 D yees-2
v7-11——H a1 i By
1207 01 CLK . nz
D2 U4GB—2
T o 2 DL yapp-14
037-10 g 02 " ”
u20-9 82 01 00 0 yespont
23 wR o1 "n U4B—15
B] 1l DBI
V37~ 4 gt READY DBIN 1239
HLoa 2L li ns B S1HLDA 2—s
u37- 1 ———12 et sine H3 2 415367 |13 S1SYNC <12 3
9
uze-13 NESET wai 124 SIWAIT DR
U17-35 InTe 1€ 12 11 S1INTE 1 a
[4] 5 SIWR < 1245
§ 7 $1DBIN
2 -
U382 0203 o e < 12-48
- &
U38-14, 037 -5 \ %
U310 U134 L1
V38 ~12,050-1
L AMTS SCHEMATIC
* OMA ENABLE CENTRAL PROCESSING UNIT

PAGE T OF 10 05/79/0132

+5v

ARG-4
ST-HoLD 9 X
2-41>—
12-41 10 IJZ!J/a oo U413
u25-9 12
+5 1] 29
INT I TP4 > 11 +5Y
REQ 4 AUTO AR6—17
§ o- AAA—O+5¥ ARG -8
u17-15 $S 1K 1K
— T yse-14
U46D-5 5
L INTE___ ysq - 16
U3s-12
9
13-383— 0gy3p H
12-28>— i
AR4—8 CLK (
1K +5Y B2 CLK (TTL) 13-12
o2 ll:;?4 82 CLK 030- 3
> 1K 82
— . ' READY
6 RDY Us4-23
s U3)*{movin ui7-35
>— 13 1 RESET U24-13
- T ¢35 RESET Us4-12
Usd - 24 L 100pf a1 111 91 CLK Usq - 22
+50—AAN——1 : . —Hresin g0 B2CK 515
R0 , | §
51K CRI c2 821 u20 —
e NC\ MO T 7 Hesof—Hu a3 < 173
IN914 = 5 ouc STSTBIO— V39 —
RESET] Py qu 4 ol 182 .y
L 11 X2 u20 LS367
133- 14 —STNE 51 Uip SO g
_ Y1 6 SISTSTE :
Us4-19 LY PR I 65 DR
¢l
18.432 mH1 . ys0-11 j’_
CRYSTAL Ua6D—9 =

AMTS SCHEMATIC
CLOCK AND INTERRUPT CIRCUIT
PAGE 2 OF 10 05/79/0132

7
DI
b7
us4 -6 —27 J-—Soo U46B pg}® 0
o, 8216
D6
us4 -5 — D6 Woo “Lw
1, N
vs4 -4 —03 LI P9 pa}L3
l-‘-nl "
U543 —22 Upg osf3
DIEN ¢S
15 1
| i DATA
?BUS
1
DI
D3
use-7- 03 Sigo U46R)t
4IJI 8216
02
us4-g——02 I;no oaf
12
o1 bl 13 D1
Us4 -9 14 po DB
00 1_9,“ 10 Do
U54-10 Who DB
DIEN CS 7
LIt e
12 : WEWW
“23 11 “456 11 w
13 2| 15368 oW
14l [13
o= 15
Us4-18 LL I conTRDL
I N
11 U460 10 6 u46C 7 T0R
> s Uf; LS368 jo—trp——
6o Q 3 WEWR J
ul o8 4 e W,
4 5
D Q ;
o a2 l I M use-3
CLK CLR —
5 LIR .)3-33
B1-1 STSTB W)3-43
+5 WERW . o
| MEMR 356
025 -6 BUSEN
5
§
4
Us4-17 ke

us4-21 =__0_
HLDA

AMTS SCHEMATIC

DATA BUS CONTROL
PAGE 3 OF 10 05/79/0132

CHIP SELECTS

u1s-12—2€ 0
U15-11 DEC 4 OR 8
115-10 DE 8 OR 10
15 g DEC © OR 18
DATA BUS \ \ \ \
ADDR
s AN S \
Ao~ A9 aL 20 A0 420 L0
(] cS (1) cS
w‘g 22| A9 ~_22] A9 ~_22| A9
N2l Ul) sy U0l 7 23y V16 |11 N3y V21 |
N1y 2708 94 NI I N | 2708 nsfﬁ—/// ~1],; 2708 ps e sy 2708 |16
u.s 05_15_/ \—2‘5 nsl_s_/ _2.‘5 DSM u" 05_]5_/
M‘f’ UQU _3."-' IM_'_L/ \—1A5 |)41L/ u.s Dﬂl/
S~ 7] g B N | nfl 1 4y, i1 p3ftd 1
u” nzl_l/ \—5A3‘ DZM _51A3 nzi/ u A3 nzl_l./
v, m.lo_/ _an n[l/ _G,Az mli/ u“ nlll/
7“ nog_/ Eu 00—9—-/ u“ 009_/ u“ 009—/
~—tho Y 8no Vol ~—8ln i 8 Y
w v |° s Y Vg ¥ U
21 19 21 19 21 19 21 19
v ¢ :
e 1
v =
U9-5 PROM *D

AMTS SCHEMATIC
ROM MEMORY
PAGE 4 OF 10 05/79/0132

ADDR

BUS '
AO-A1S N\ N N A
DATA
BUS \ \ \ \
N y26 NSty y27 Sus U3l \—I”s A Y32
1618 2114 N8 2114 s 2114 N8 s 9114
17 11
N1, p3j1] Ny W‘_/ Ll 03 lT/ Ram LU ah—
N\t Nt L ae N1
u‘s D2 lz_/ QIS D6 E—/ \—2{ RS nz.lL/ \'—z‘ls D6 U
3 A4 N3 A4 N3] Ad N3 M
\——‘u Ul-“—/ N3 05 L) / N A A3 Ulu—/ N3 05 1_3_/
N N{a2 N1 a2 N2
6-‘1 nol/ \—s<|| n“ll/ § Al DOU Mll IMU
_S1a0 _51m N5 a0 N3] 50
V5—7 DEC 8C00 I I:YS WE (1) WE CS WE [WE
37 10 ?
15— ¢ DEC_B80C T j j T
y15— DEC_8400]
DEC_ 8000 5 l P! l
03-3 —
% a9 WE s &AQ WE gs & a9 WE s
P N2 U429 as U4 s U4l
CONTROL _WEMW ,
BUS l_/ \1_7." 2114 ml_/ \1_7.” 2114 031—-/ \un 2114 W_l__/
Nl g J N\ Y 1 N
——*lz \l A5 D6 12 \-—2 A5 02 12 _Z AS DG‘—’lz
N3 e N3 54 N3 as
13_/ t;ls DSU '_41‘3 Dl_l.j_/ Ela DSM
a2 A2 a2
U NN P Y LU N I TEZ S Y pall
NS3lag S1ao NSy

AMTS SCHEMATIC
RAM MEMORY
PAGE 5 OF 10 05/79/0132

A3
ADDR__|
BUS
A12
All
Al0
CONTROL
BUS

DNA ENABLE
us
,::! 16 PIN
DECODE DIP PATTERN .
" o~y 5 u24 1 12 STWEMSEL 3
0 32 1 o { he - 8 u3o 12-42
6 . 2 2
¢ 5 :
RAM 3
' U2 seLeer 198
s 3 mm Paan BENTINE
2 N 3pl—|DEC_8€00 V26,218
15|, X LS139 ,{ 6 | DEC 8800 U31,32-8
. 3 g 1% DEC_ 8400 040,413
2
A 0jo— L— 148,49 - 8
—_ | DEC 3000
MEMR 13 2708/16 15 U5 19 e conms " 2
ol s L8139 2jol0 DEC S ORT0 . o
o 7 1z B, ol DEETORE o o
ulﬂécls . obl2_ DEC 0 y21-20
1! T 1
TV~ — T
13 14 PROM
”:;"_‘ " V13 e SELECT
e — prom Yp 04,10, 16,20
= 16PIN PIN 19
DIP PATTERN ProM Vg 04,10,15,20
JUMPER
(SELEer P
13
—9 o 2 1 i ST
| —9 4| us STPIOSEL o7 6
‘c[:::>’ | PIO DECODE
U24 00-03

AMTS SCHEMATIC
ADDRESS DECODING
PAGE 6 OF 10 05/79/0132

U17-10 10PC7 +5Y

U19-9
+5¢ h26
o no 470
100K
10
8
L us o 12 uz5 9 : 6
555 D LS74 @ 3 u3o
R23 2 0MA DMA 3
1K TR CLOCK A 2 REQUEST
P14] 5 y -
T L T | 1
R oy -
0 = 7 5 ! US6- 15
O I ’ 1 $ 5 DMA ENABLE Us5-1
= 2(p LS74 q Us5—15
+5V . DMA
P10 >—4¢ ENABLE
_ DMA ENAB
82 CLK ssvo—]c U5 b | ENABLE 023-5
w1-¢ R U13-2
T 030-2
L i
Us4-21— DA 3] DMA STB
va3-11.
038-2 020
:>.Z.r_ ::Acuz W1
ACLKL _
LLLLL v19-10
S4-12 13 RESET —<13-21
U1-1 WESET - smeser <12-27
“11'35 <

AMTS SCHEMATIC
DMA CLOCK
PAGE 7 OF 10 05/79/0132

E -8

DMA
ADDRESS ~
121 U39 1 A3
+svo L5367
1 13 A2
62
Tis
‘ ADDRESS
” BUs
12 u47 11 Al
LS367
14 13 A0
.)
Tns
125 5 DA ERABLE :
DIGIT
25— 12— 2T 9) : SELECT
u17-10 u19 —
10 Llsl;%zz | 224 |
y __ I—— f USSR TV VIS | LY
5?1305 DMA CLK 1 b 2| : s Q2 01 s
. Pslgl3 n&t 13 ¢ 505_1'_ I l"—oi‘"u 5
ug0- 7 OMCKZ 1] bl 4) : 2 416
o 215 sp——3L | Y p-g
14 3 6 | 0 % por._
- 9 15 ’ 2 1 o1 o M"_:
' SR o oA
12 00———'—'\/\/\:—‘——"1—10
2 L _ |
Rl R
2§
us2-3

AMTS SCHEMATIC
DMA SELECT _
PAGE 8 OF 10 05/79/0132

E
+5¥ TIL321
iu b3 DISPLAY
R INT 138

U43
(01 2017 o7 {24 wf, 5498, L:»—vav\,—————-w Rl op
T p—1 PP 06 |2 LE P 06 bl —AnnnRL £
nsﬁ“ms 05 2 1815 7Y PPN E—
DATA. J oo E—1 P 04 |2 1214 mpl—an R 1.
BUS) ns How 3 s 0 A 4
02 LI PP 02| Bl 02 pl—AnnnE ¢
o :‘n'n 01 : i: 1" 01 : :; b
10 00 [o a
20 L 39QTIPICAL
U2~ 5 —JprsT STB 8
8212 esy :
DS1 DS2 MD DIGIT
1 Yz DRIVERS 6
i— +J> I IN3467 5
1 SV TYP
an-3 —3 4
3
a ,
1
ami-4 —2 ¢
[
0 /g I
VN
ami1-5 —8 . _ aop
Q3
mi-s —2 @‘
04
-y —2 —¢
Q5
wmi-g —3 Q_L
Q6
AR1-9 u 4@‘
Q7
ai-10 —2&
10 (9 [s {1 ls s
Qs
+5Vo- '!_______ AMTS SCHEMATIC

DISPLAY DRIVERS

PAGE 9 OF 10 05/79/0132

9

E - 10

u17
8255
PI0 +5V
f 21497 par By
28095 pag |38 6 [
294 pas |32 5 :
40
wn J 3000, PAY A |
BUS _3_103 PA3 1 2 I
32y, paz |2 3 '
iy par |2 3 :
4
L Moo PAO -+ L '
10K TYP
8
ADDR “—?“ PBT |25
8Us m—‘) pBs |24 mi—{ CLRI— F | 7
PBS |23] |
PB4 (22 |
PB3 |21 PAG BRK E [6
P62 |20
T - s -
- 1
vi9- i1 M—ago ¢ 80) PAS —{ NEXT D [5
 RESET 35 13-28
V37T -1 RESET Vitos | [
pe7 [019-9 Pe— RN ¢ — 4
pes 1L 025-12
pes |12 1 1 l
3
PC4 %7— J) pa3——] STEP B 3
Pe3 | 060-13 | |
conTroL)0 qrow ez vs-u1 l
BbS TR S, PCI %5——%0—2 pz—{ ADDR}— A —| 2
4
PCO f———<13-29
UG0-2 [|l
m— REGH 9] 1
PA0 — MEM o 8 (— 0
Ircs]rcs Im
“ J

AMTS SCHEMATIC
KEYBOARD CONTROLLER
PAGE 10 OF 10 05/79/0132

“MICROCOMPUTER TRAINING WORKBOOK

APPENDIX F

A PRIMER TO DIGITAL LOGIC

WHAT IS THE MOST BASIC LOGIC DEVICE?

Answer: a wire

ANGCT——F

Logical property of a wire:
Any voltage potential that is placed on the "A" input of the wire will

soon (very soon) appear at the "B" output. In other words, a wire can be used

to transmit voltage states from any node "A" to any node "B".

F-1

WHAT

—

An

1.
2.

3.

5.

6.

INFORMATION MAY BE TRANSMITTED ON A WIRE?

First Answer: A voltage representing a number (an analog signal) :

Here's an example,

electrical reading scale:

Person steps on scale

Platform sags in response to person standing on scale
Causing metal wiper to change position along a resistive
material

That is connected as a potentiometer in a voltage
divider network

Whose wiper output is connected via a wire to cause a
voltage that is proportional to the weight of the person:
To be transmitted to a voltmeter that indicates the

weight of the person

)
Second Answer: A wire can also transmit a voltage representing one of

two conditions:

RESISTOR
BATTERY : —-a—~J {,.—-VVH?E

gy

A _(j)_\spb-r SwiTCH

If switch is up, voltage at end of wire will be equal to battery voltage

If switch is down, voltage at end of wire will be zero (or hearly so)

Let's look more at this setup in which the wire must carry a voltage

that represents one of two conditions:

For many kinds of electronic devices that are classified as digital

devices, the two ppssible conditions are defined as follows:

1st condition:

Wire is defined to be ON when voltage between wire and ground is between

+2.5v and +5.25v.

2nd condition:
Wire is defined to be OFF when voltage between wire and ground is

between - @.5v and +J.5v.

BUT WHAT ABOUT VOLTAGES THAT ARE NOT WITHIN ABOVE RANGES?

Answer: they are not allowed. Voltages between +A.5v and +2.5v are

unclear and therefore not to be trusted. Voltages below -f.5v or above +5,2%

volts are hazardous (may cause smoke and fire!d and are therefore expressly

forbidden !

CAN WE SIMPLIFY THE DEFINITION OF "ON" AND "OFF"™ WHEN TALKING ABOUT VOLTAGES ON
WIRES?

Answer: certainly. For sake of discussion we will simply define the ON

state as +5 volts between the wire and ground.

The OFF state we will define as ¢ volts between the wire and ground,

Definition: Digital electronics: That branch of electrionics

specializing in circuits whose signals are defined as "on" and “"off" voltages.

Actually, let's go further and define what 5 volts and @ volts are

really equivalent to:

5 volts

ON = True = One = High = "1"

volts

OFF = False = Zero = Low = "p"

So now, when we talk about the signal on a wire being ON, true, one, or
high we mean that there is approximately 5 volts on it. And when the signal is
OFF, false, zero, or low we mean the voltage is zero. (Actually, there is an

exception to these assignments but we'll talk about that laten .

Definition: the schematic symbol for a wire is as follows:

(schematic symbol for a wire)

Variations on the schematic symbol of a wire:

F=5

Other variations on the schematiec symbols for a wire:

a. (2 wires crossing but not touching each other)

b. same as a, (less commonly seen)

e.2 wires connected together

d. a wire in hiding

OKAY. BUT WHAT'S SO GREAT ABOUT A WIRE? AFTER ALL, IT'S JUST A WIRE.
Answer: yes, true. What's exciting is what we can do with more than

one of them.

WHAT?

Answer: well, take one wire.

Quiz (1) : WHAT CAN ¢ VOLTS REPRESENT?

Answer (1) : (you fill in : ’ v y OF

AND WHAT CAN 5 VOLTS REPRESENT?

Answer (2 : .y ’ i, or ..

Let's use the terms "one and "zero" to define 5 volts and @ volts
respectively in conjunction with the voltage on a wire. On the following
schematic drawing of a wire, how many different combinations of “one" and "zero"

can be true over a period of time?

Answer (3):

ony g
ysTH 10 aup ‘enil ‘NO ‘2

M0 10 ‘0397 ‘9sTey ‘440 T :saamsuy

Fe7

Now, add another wire:

(Wire 4)

(Wire B)

NOW, HOW MANY COMBINATIONS OF VOLTAGES CAN BE APPLIED TO TWO WIRES?

Answer (4):

WHAT ARE THE COMBINATIONS?

Answer (5): (fill in "1" or "O" in the table:)

Wire A Wire B

1st combination

2nd combination

3rd combination

4th combination

*J9pJo Aue ut (| pue ‘QL ‘L0 ‘00 Moys 03 pa2u nox

*gJaMSUE 3034400 9TqIssod g JO qno £ MoOys aAoqy

0]oO 011! l l
L]0 L]0 o]t
1o 10
0 l L l L 0]
Lt 010 0o S
Jnod

Let's assign numeric values to each combination:

Combination Number
00 0
01 1
10 2
11 3

So now, our two wires:

(Wire A)

(Wire B)

can define any number between § and 3.

HOW ABOUT 3 WIRES? HOW MANY COMBINATIONS OF "1" AND "O" CAN THERE BE FOR 3

WIRES?

Answer (6):

WHAT ARE THEY?(7)

’ ’ 9 ’ 1 '

(Hint: one answer is 000)

LLL ‘oLl ‘i0L ‘00L ‘LLO ‘OLO ‘TOQ ‘0CQ ST JsMsuy L

w3ty 9

F-9

Let's again assign numeric values to the combinations. As a quiz, fill

in the combinations for 3 and 6:

Combination Number
000 0
001 1
010 2
o \)8 3
100 b
101 5
¢ 1o (9) 6
111 7

Definition: a bundle of wires bunched together to define a number is

called a bus.
0 This bus has the combination 011

1. or the number 3.

OLL ST JoMsuy °6

LLO ST JemMsuy °8

F-10

Other schematic symbols for a bus:

’3
2 3 N
— — >
N [4

Indicates bus has 2 wires

-

Wire #1

Schematic often found in block diagrams

Wire #2

Wire #3

)

3

How to divide the schematiec symbol

for a bus into its individual wires

F-11

WHAT OTHER THINGS CAN YOU DO WITH WIRES?

Answer : hook electronic circuits to them

LIKE WHAT KIND OF ELECTRONIC CIRCUITS?

Answer: well, one of the simplest is an inverter. An inverter has 2

wires connected to it: one wire to its input and one to its output. The

schematic drawing is as follows;

INPVT ovTPUT

R

They can also be drawn with the little circle or bubble at the left like

this:

INPUT ovrrvrT

N

OKAY. WHAT'S AN INVERTER DO FOR A LIVING ANYWAYS?

Answer: simple. A "1" at the input causes an "0" at the output and a

"0"™ at the input causes a "1" at the output.

Quiz question: £ill in the table for the output of an inverter:

(Called a "truth table™

Input Qutput

0 (10)

1 . (1

HOW EXCITING! WHAT DO YOU USE INVERTERS FOR, FOR PETE'S SAKES?
Answer: lots of things. Some digital circuits need signals to be

inverted. Those cases will be shown later.

(L) O l tasmsuy L
(oL) / 0 P JaMsuy ‘01
ndqnQ ndug

F-13

WHAT OTHER CIRCUITS ARE USED?
Answer: an AND gate for cne. Two wires are connected to its input and

it has one output. Here's its schematic.

WIRE A INPUT 4 \purpur
WIRE 8 INPYT B / WIRE C

This circuit has the following properties:
A. When both A and B are "1", the output is one.
B. If either A or B is "0O", or if they are both "0", then the

output is "Q".

Quiz (12): Fill in the truth table for the AND circuit:

A B Output
0 0
0 1
1 0
1 1

[L l

@) 0 L

QO ! 0

O 0 0
tJaamMsuy 2|

andqng = v

F-14

CAN THE AND CIRCUIT HAVE MORE THAN TWO INPUTS?

Answer: yes. Here is the schematic for an AND gate with three inputs:

The property of the circuit is as follows:
A. If all three inputs are "1", the output is "1"

B. If any one or more inputs are low, the output is "Q"

Quiz (13): Fill in the truth table for a 3-input AND circuit:

A 0|1 011 011 c |1
B 0 jo0 (1 1 0]o 1 1
c ojo o]oO 1 1 1 1
Output) i

ol 1O |O|O|O| O] andano

L l L L 0 0 0 o o]
l l 0 0 L L 0 0 g
l 0 l 0 l 0 l 0 v cdamsuy €y

F-15

HOW ABOUT OTHER CIRCUITS?

Answer: sure, the OR circuit. It's schematic for two inputs and one

output ‘is as follows:
P ° WIRE 4

/NPVT)
WIRE &

Its electrical property is as follows:

A. If both A and B are "Q", the output is "Q"

oVTAVT

B. If either A or B is "1", or if both A and B are "1",

then the output is "1v

Quiz (14): Fill in the truth table for an OR gate:

A o111 011
B olof 1 1
Output
[| 1]1]0O] sandwo
l L o} oO g
Ll 10 L} O v s JdeMsuy iyl

F-16

CAN AN "OR" CIRCUIT HAVE MORE THAN TWO INPUTS?

Answer: yes, it can. Here 1s a schematic symbol of a 3-input OR

circuit:

A
/

Its electrical property is similar to a 2-input OR circuit:
A. If all three inputs are "0", then the output is "O"

B. 1In all other cases, the output is "1"

Quiz (15): Fill in the truth table for a 2-input OR gate:

A oj1foylv}ofp1]0¢41

B 0 0 1 1 0 0 1 0

c 0 0 0 0] 1 1 1 1

Output

Frrjprprfrjtprjof andino
L L L L]Jo]Jojojo 0
0 l 0 0 L L 0 0 g
Ljojttjoltj]jotjo v sJdemMsuy *gl

F-17

ANY OTHER CIRCUITS WE HAVEN'T SEEN?

Answer: one more. It's called an EXCLUSIVE-OR circuit, sometimes called
an XOR circuit. 1Its schematic symbol is as follows:

WIRE A
INPUT ovVTAYT

WIRE B

Its characters are as follows:
A. If A and B are different; that is, if A, is "O" when B is
" or A is "1" when B is "0", then the output is ™"
B. If A and B are the same; that is, A and B are both "0" or A

and B are both "1", then the output is "O"

Quiz (16): Fill in the truth table for the XOR circuit:

Outpu

IS THERE A 3-INPUT XOR CIRCUIT?
Answer: yes, but you don't see them very often and we won't go into them

here.

O | 1 0 ndango

L 0 L]0 Y fJemMsuy "9l

F-18

Definition: All of the circuits discussed so far, that is, the AND, OR, and XOR

circuits are called "gates."

AS OPPOSED TO WHAT?

Answer: as opposed to another circuit called a "flip-flop".

WHAT IS A FLIP-FLOP? IS THAT A MANEUVER EXECUTED BY AN ACROBAT?
Answer: No, It is a device that stores the logic condition of a wire

(nln or "g" .

WHY WOULD YOU WANT TO STORE ANYTHING?
Answer: two reasons:
A. To remember the condition of a wire at a specified time.

B. So the wire can be used for something else.

ALL RIGHT THEN, WHAT IS A FLIP-FLOP?
Answer: there are several different kinds of flip-flops. The commonest

one is the D-flip-flop and its schematic symbol is as follows:

b

PRESET

——DATA Qf—

r
o
'3}
A

(%

— S ao—

F~19

Most of ti.c time it is drawn without the words as follows:

)

CAN YOU BREAK IT DOWN SOMEWHAT TO SHOW WHAT IT DOES?

Answer: sure., The idea of a flip-flop is to be able to capture the "I1"
or "g" state of a wire at any time electronically. There are three components
needed to do this:

A. The data line. This input line is attached to the wire that

you want to capture the "1" or "@" state on.

B. The clock line. fIhis input line tells you when to capture

the state of the data line.-

C. The output. This output line holds the state "captured"” on

the data line when "told" to by the clock line.

—bATA Q—— OUTPUT

—_—>ctex [D——

F~20

~

depends on what the data line was doing at the time the clock changes from a zero to

In the following illustration, you will see that the output of the flip-flop

a one. At event A, the clock changes (transitions) from "0" to "1", and at that
time the data line happens to be "1", so the output becomes "1" also. Note: The
output is not affected by a "1" to "O" transition in the clock; the output remains
the same. So the output does not change at event B, the clock's "1" to "0" transition
Event C is a "0" to "1" clock transition when the data is "0", hence the output
becomes "0" also. Finally, note that the output does not change at event D even
though the data line is a "1". This is again because of the fact that clock "1" to
"0" transitions do not affect the output.

'Iﬁ_sumhAry;;the flip-flop's clock feature is simfle; the dutput changes to be-

come the same as the data-line whenever the clock transitions from a "0" to a "I".

DATA | l | l
cLock | L

A B C D

OVTPUT,

Quiz (17): Fill in the table below for whether the output is "0" or "1" based on
the behavior of the data line and the transtions of the clock line. The first

two time points are done for you.

nna | [| [U
o [1 U LTI Tl Ul

EVERT A gC DE F GH kL MNOP@RR

t|1lelo]i]1]ololololojo]i}i]o]oft|t]| L0dLno

alolalolnlulalsle |z lulolalalalola|v| Inaam :zemsuy °/1

)

F-21

WHAT ARE THE LITTLE CIRCLES (i.e. THE BUBBLES) FOR?

}
‘—;(urne CIReCES)

> p—

I

the little bubbles indicate that the lines connected to the

Answer :

bubbles are inverted - that is, instead of a "1", a "0" either appears or causes

something to happen. For example: there are usually two outputs to a flip-flop:

one is a "normal" output while the other is connected to a bubble and is

therefore the inverted output, the opposite of the "normal" cutput.

Example of normal vs. inverted output

Normal

| I I R
Inverted | [4* l__J 4] [-_] [-_-

Quiz (18): Fill in the values for the inverted output for a flip-flop whose

output is given. The first two are done for you.

Time interval 1 21 3] 41 5|6 7] 8

Output 1 1 0 0 1 0 1 1

Inverted Output 0 0

ololtr o]l]3i}0o]o0 qndqnQ pa3JoAul
L L 0 L 0]o L L 3ndanQ
glL]o9feln|Efje]! TEAJ2JUT BUTL : somsuy ‘8l

F-22

I NOTICED THAT THE PRESET AND RESET LINES WERE ALSO CONNECTED TO BUBBLES. WHAT

!

PRESET

DO THEY DO?

ouUTPUT

—_ O— INVERTED ouTAVT

RESEr

Answer: "Preset" causes the output to immediately change to aﬂ"lﬁ;

Jregardless of»its,previouslétate or what the“datagand plogk 1inesrd9‘y,In §hé

,same manner, "Reset" causes the output to immediately change to a "zero".

The output is left in that condition when "Preset" or "Reset" is removed
and remains there until a clock or another preset or reset occurs. Note that in
this flip-flop the "Preset" and "Reset" signals are inverted; that is, the
bubble indicates that the "preset" or "reset" function occurs when the line is

low or "g".

F-23

Now note the response of the flip-flop to the following stimulus:

INVERTEDN PRESET.

DATA “NORMAL" OUTPUT

CLOCK —b>~ [O— “INVERTED" OUTAVT

INVERTED RESET J

bara ___1
" cLock M [I
o)
J
3| mveereo rreser 1
b
INVERTED RESET _I
~
4
g ovrrYr X l
2
)
S| NvERTES oVTPUr
w
o< NOTES A B c D E F G
\
NOTES: A. "Preset" = 0 causes output to go high.
B. "Reset" = 0 causes output to go low.

C. "Data" = 1 and "Clock" cause output to go high.

D. M"Reset" causes output to go low.

E. " Data" = 1 and "Clock" have no effect because "Reset"

is still low.
F. "Reset" is released ("Reset" = 1).

G. Now "Data"™ = 1 and "Clock" cause output to go high.

F-24

Quiz (19): Fill in the values for the output of a flip-flop from the following

diagram (called a "timing diagram"). (The first 2 are done for you).

INVERTED Mfs.erj)

OATA

ouUTPYT

CLOCK mmmeet>~ O—

INVERTED REsS ET———T

DATA l

CLOCK n ﬂ ” ” ﬂ
INVERTED PRESET U l ,, |

INVERTED RESET 1J | |
EVENT b | ! 1 I ! B
A B C b E F G HN T
Event A B C D E F G H| I
Output‘; 0 1
o|olot{ot1trjofuvjo and3no
I|H |9 |d |2]a|o|a]|V Juanl P JaMSUY ‘61

J

F-25

ARE BUBBLES EVER USED WITH GATED LOGIC? THAT IS, "AND" GATES, "OR" GATES, ETC”

Answer: yes, as follows:

Definition: A "NAND" gate is equivalent to an "AND" gate followed by an

inverter in series. Schematically:

—

The truth table for a "NAND" gate yields the opposite state for the output as

for an "AND" gates:

A 0 1 0 1
B 0 o1l 1 1
Output 1 1 1 0

Definition: A "NOR" gate is equivalent to an "OR" gate followed by an inverter

= o

Quiz (20): Fill in the truth table for the output of a "NOR" gate as follows:

in series. Schematically:

A 0] 1 0 1
B o) o 1 1
Output

(o|o]0o]! andano

tJoMsuy ‘02

_F=26

I SEE THAT A BUBBLE PLACED ON THE OUTPUT OF A GATE CAUSES THE "NORMAL" OUTPUT OF

THAT GATE TO BE INVERTED. IS A BUBBLE EVER PLACED ON THE INPUT OF A GATE?

Answer: yes. As one would guess, it causes the input to be inverted

going into the gate. For example:

—0
—d

47.

Its truth table looks as follows:

A 0 1 0 1
B oyj0 1 1
Output 1 0 0 0

which is the same as that for a "NOR" gate.

F=-27

Quiz (21): Examine the following schematic symbol:

D

One of the following schematic diagrams has the same circuit behavior as the

above symbol: (Hint: draw a truth table for each circuiﬂ

S D P
e T e ﬂbt T o

e T p— =] P

WHICH ONE IS IT?

9!

]

Answer:

P :iaMsuy °1Z

F-28

~

Quiz (22): Fill in the truth table for the output of the symbol whose schematic
1

is as fbllows:

A 011 0 1
B 0 0 1A

S —
OQutput i =

DO SCHEMATIC SYMBOLS EVER USE BUBBLES ON BOTH THE INPUTS AND THE OUTPUTS?

Answer: yes. For example, the following schematic

D is equivalent to ‘2 E ’) >C

(23): Fill in the truth table for the previous schematic symbol:

Quiz

A 0 1 C 1
B 0 0 1 1
Output

{tiz (24): What previous logic gate is equivalent to the above symbol?

(multiple choice)
a. An "OR" gate
b. An "AND" gate
c. A "NOR" gate

d. A "NAND" gate

iL;

] OO0 |0 and3no @) andang
L |1]ofo g ! g
q :J49MSUy. H2 Lo L 0 v ‘¢S ! ¥ *22

F-29

WHY WOULD ANYONE DRAW A SYMBOL WITH BUBBLES ON ALL INPUTS AND OUTPUTS WHEN THERE
IS AN EQUIVALENT SYMBOL THAT DOESN'T REQUIRE ANY BUBBLES AT ALL?
Answer: to clarify the intention of the circuit. For example, on the

flip-flop,"preset" and "reset" are inverted inputs.

)

PRESET

S O
RESEr

I

If a normal signal is intended to preset the flip-flop when it is high, it must

have an inverter placed between it and the preset input.

NORMAL SIGNAL

_1

Such a signal is called an "active high" signal because it causes an

action when its state is "1V,

.F=30

~

BUT WHAT IF THE SIGNAL CAUSES AN EFFECT WHEN IT IS "g"?
Answer: such a signal is called "active low" and is denoted on a
schematic diagram in any of the following ways (presume the signal name is

"SIGNAL"™ .

a) With a bar over it or a slash in front of it

SIGNAL /SI6NAL

|
.

b) With a "=" or "#" pefore it
~ SIGNAL ._CL ¥ SIGNAL-—<L
R D— Oo—
Q

]

— .

Now, say that either of two active low signals can preset our flip-flop.

This is an "OR" function of two active low signals as follows:

SIGNALL

SIGNAL2

The above schematic directly states that if either SIGNAL1 or SIGNAL2 is

"o ("true" in an active low sense), then the flip-flop will be preset. This is

more straightforward than using the active high symbol.

SIGNAL L1

SIGNALZ

This schematic is functionaily identical to the previous one, but its
meaning is obscured by having to switch from active low signals to an active

high device back to an active low preset. In this.case, the AND gate indicates

that the preset is not activated when both SIGNAL! and STGNAL? are "" which is

logically accurate but does not .really communicate the intention of the

designer.

F~32

Quiz (2"): (multiple choice) - Given the following truth table for the. inverted

NAND:

A o
B 0
Odtput 6

Choose one:

[] a) The
[] b) The
[1 c) The

['3 d) The

following schematic?

flip-flop is preset if either *CTL1 or *CTL2 is L LU

flip-flop is preset if either ¥CTL1 or *CTL2 is "O".

flip-flop is preset if both ¥CTL1 and *CTL2 are "1".

flip-flop is preset if both *CTL1 and *CTL2 are "O".

(p ST Jamsuy

‘e

F-33

Take a breather.

connect to busses.

SPECTAL INSTRUCTIONS TO STUDENT:

In the next section we are going to look at devices that

F-34

COULD YOU REFRESH ME ON WHAT A BUS IS?
Answer: . certainly. A bus is simply a bundle of wires upon which

information may be transmitted. This information is implemented as "1" and "O"

voltages on the wire that represent a number: 4 “o”"

‘3

Above Bus has number "011" on it.

ARE THERE DEVICES THAT CONNECT TO BUSSES?

Answer: you bet. One of the most common devices is the multiplexer.

WHAT'S THAT?
Definition: A multiplexer is a digital electronic circuit that has the ability

to choose one of several bus inputs.

F«35

-

GIVE ME AN EXAMPLE OF A MULTIPLEXER

Okay: Here is a schematic that chooses orfof two 4-wire busses:

"

Yoou1" ———y— daineur

010" —m)—

SELEcCT

q

o

anmmf—qb——-ourpur
\GINrCYT

SECEcT
Ve

If SELECT = "Q", the outplit will contain the A input,in this

example "0011",

If SELECT = "1", the output will contain the B input, in this

example "1010".

Notice that multiplexers are more complex than gates or flip-flops.

The above multiplexer, not including power connections, requires 13

wires total connected to it as follows:

SELECT

AINPUT

BINPUT

OUTPUT

TOTAL

1 line
4 lines
4 lines
4 lines

13 lines

F~36

There are several ways to draw a multiplexer in a block
diagram. For instance, the previous example could be drawn as

follows:

O AINPYUT ——fq—- o)
———jﬁT—— oOUTPVUT
BINPUT —-,l;,——- |

SELE C"l'-——j

Quiz (25): If AINPUT = "1010" and BINPUT = "0010", and SELECT = "O",

what will OUTPUT be?

Answer :.

Bubbles may be used on multiplexers jus't as in gates and
flip-flops. For example, a bubble placed on the output means that all

4 output lines are inverted:

olo! ——/q——o
:}'7’.(—-00!1
1100 —f—

)

Quiz (26): If the select line in the above example is equ’fal to 0O,

then what is the output?

Answer :

0LOL ST Jomsuy °92

wOlOLu ST JamMsuy °G¢

WHAT ABOUT FLIP-FLOPS?

ARE ANY OF THEM EVER CONNECTED TO A BUS IN

SUCH A WAY AS TO BE ABLE TO STORE A NUMBER ON THE BUS?

Answer: you bet.

such a fashion form a circuit called a register. A register schematic

symbol can look like the following:

which internally is an array of flip-flops hooked up as follows:

+5v.

nrvr(o)

NOuT(’)

wPvr(e)

As a matter of fact, flip-flops connected in

Go | sutput(o)
Qo P——— oureur(a)
INPUT(O)———{D0 Qi ouTpuT (1)
INPUT (1) 1Dl Rl DT pUT (1)
INPUT (2) 62 Q2 ovrPuT(2)
INPUT (3) D3 @2pp———ouTAuT(Z)
Q3| oUTAUT(3)
CLock > R3 O O TPV T(3)
RESET
RESET

outruT (o)

ourpurZo)

@)

eurpyr(’)

ovrauvr(s)

ourPvT(2)

/nevr(3)
cLockK

RESET

o)

OUTAUTEZJ

ouTAYT (3)

ouTPUT(3)

F-38

Note the following about the flip-flops connected as a register:
1) All of the clock inputs are connected together
2) All of the reset inputs are connected together
3) The preset inputs are internally connected to a logic
"q{n 50 that they are deactivated. Therefore, the ‘user
does not have access to the preset 1lines, they are

always disabled.

Quiz (27 : How many flip-flops would the register in the schematic circuit be

likely to contain?

Do Go
——DI Go—
Al f——

.

Answer:

*Z ST Iamsuy *LZ

F-39

Registers, multiplexers and busses can be shown interconnected as in the

following schematic

BUSSES

/

REG.

CLoCK T

O.—
N
Eam— o
i
N—

RESET: J

REG.

/

\ MUX.

e
=

SELECT-

On a block diagram or simplified schematic, the above schematic would be

drawn as:

CLOCK

!

=

——]
F=>-

-

RESET

SELECT

There are many kinds of digital circuits that are used with busses:

registers, multiplexers, counters, and arithmetic logic units to name a few.

For example, a circuit to route one of two 4-bit busses (A and B to a register

might be drawn as follows:

A —#—{0

y

8 —/——-—q 4

SELEC"I"—————5

]

CLockK

7
T4

~

F-40

—

Quiz (28) : One of the following circuits selects one of two register outputs,

Which is it?
P 4P F——°

— 7z
> | P d—
a » T

L
, - e |,
78 18] 776
716
C
0 d 16
Y L .
8 ‘8 d UTER| p
i 16
16

Answer :

That completes the preparation for the course in which you are enrolled.
Thank you for reading it, and for working out the quizzes. Your knowledge of
digital fundamentals is now up to speed for the course. Please bring this

material with you when you come to the course.

*O ST JIamMsuy °gz

F-41

INDEX

8085 Microprocessor
8212 1/0 Port

8251 USART

8255 Mode 1

8255 Mode 2

8255 PIA

Azcumulator

Accumulator/Carry Instructions
ACI Instruction

ADC A as Shift Left

ADC Instruction

ADD Instruction

Addend

Addition by Counting

ADDR Command

Address Bus

Address Size

Addresses, Input/Output Ports
ADI Instruction

Alternate Subroutine Entries
Alternative Memory Addressing
AMTS Description

AMTS Setup

AMTS Test

ANA Instruction

AND Function (ANA)

ANI Instruction

A-Register

Arithmetic and Logic Unit
Arithmetic Intructions
Arithmetic Overflow
Arithmetic Shift

Array of Input/Output Ports
ASCII

Asynchronous Communication
Asynchronous Receiving Exercise
Augend

Auxiliary Carry Flag

11-17
8-2
8-33,
9-3
9-9
5-28,

9-20

8-9

1-38,
11-7
4-28,
717
4-12, 10-4
4-4, 4-46,
10-5

3-13

1-59, 2-11,
1-27
1-23
8-9
2-1,
56-68, 6-70
5-25
A-1
I-1
I1-2
7-30
7-30
7-33
1-51
1-31
4-121,
10-52,
7-2, 7-17,
8-5, 8-33
9-19
9-17
9-33
10-5
10-29,

1-51
11-9

11-9

11-1

11-9

2-29, A-16

2-28, 4-29

10-80

2

INDEX

Base
Basic Concepts
Binary Addition
Binary Entry and Display Exercise
Binary Multiplication
Binary Number System
Binary Subtraction
Binary to Decimal Conversion
Bit
Bit Manipulation
Bit Masking
Bit Position
Bit String
BKENT Subroutine
BKLOC Subroutine
BKMEM Subroutine
BKRMV Subroutine
Branch Instructions
Breakpoints
Clearing
Data Change
Entering
Program Counter
Program Entry and Removal
Protection from Growing Stack
Repetition Count
Stack Usage
To Count Instructions
BRK Command
Bus
Byte

1-12

1-2

1-16, 10-2
7-22

10-33, 10-37
1-10, 1-14, 10-44
10-13

B-1

1-18

7-1

7-34

1-18

1-18

9-49

9-49

9-51

9-49

11-13

A-24

4-82, A-26 ,
6-125, 8-88, A-11,
4-77, A-11, A-24
A-11

9-49

6-125

A-25

6-120

A-26

4-77, A-24
1-27

1-22

A-24

Calculating Delay Times

Call if Minus Instruction

Call if Plus Instruction

CALL Imnstruction

Calling Program -

Carry

Carry and Zero Flags

Carry Flag

CC Instruction

Change Sign, Add, Subtract Exercise

Change Sign Exercise

Chip Select Logic

CLEAR Subroutine

Clear Carry

Clearing Breakpoints

Clock

CLR Command

CLRGT Subroutine

CLRHI Subroutine

CLRLP Subroutine

CM Instruction

CMA Instruction

CMC Instruction

CMP Instruction

CNC Instruction

CNZ Instruction

Codes, Hex

Coding

Command Keys

Comments

Communication, Serial
Asynchronous
Synchronous
Word Mark in Serial Communication

Comparison Instructions

Complement

Computer, Definition of

Computer to Computer Interface

Conditional CALL and RET

Conditional Jump

Control of Monitor Functions

Coatrol Ports, 8255

Control Signals

Cosine

Count Instructions by Breakpoint

Counting Instructions

CP Instruction

CPE Instruction

CPO Instruction

CPU

Cycle, Machine

CZ Instruction

INDEX

9-61

10-51

10-51

6-13, 6-16, 11-13
6-12

4-6

4-6, 11-10
4-6, 7-1, 7-34, 11-7, 11-12
6-52, 11-13
10-53
10-45, 10-49, 10-53
5-17

6-147, A-53
4-47, 7-32, 7-34
4-82, A-26
1-38

4-82, A-21
6-147, A-53
A-53

6-147, A-53
10-51

7-29

7-34

4-111

6-52, 11-13
6-52, 11-13
4-159, 11-1
1-53

2-29, A-11
1-53

9-14

9-17, 9-54
9-16

9-14

4-110

7-29, 7-34
1-2

9-7

6-52

3-2, 4-40
A-31

8-18

5-3

c-1

A-26

11-5

10-51

11-13

11-13

1-2, 1-31
2-2

6-52, 11-13

INDEX

DAA Instruction

DAD Intruction

DAD SP Instruction

Data Bus

Data Change Breakpoints
Data Format

Data Rate for Recording
Data Structure

Data Transfer Instructions
DBIN Signal

DBYTE and DBY2 Subroutines
DCR Instruction

DCX Instruction

DCX SP Instruction
Debouncing

Debug Mode

Debugging 1/0 Prograus

Decimal Addition and Subtraction

Decimal Multiplication
Decimal Number System
Decimal, Packed

Decimal to Binary Conversion
Decoded Control Signals
Decoder

Decrement

Delay Loops

DELAY Subroutine

Delay Times, Calculation of
DELYA Subroutine

DELYC Subroutine

DELYT Subroutine

DI Instruction

DIGHI Subroutine

Digit

Digital Logic

DIGSW Subroutine

Direct Memory Access
Directory

Disabling Monitor Interrupts
Dispatch Table

Display Codes for Characters
Display MTS

Display Register Pair

DISPR Subroutine

DMA and Interrupts

DMA Enable Signal

DMEM Subroutine

DMWD Subroutine

Do Nothing Program

Double Precision

Double Precision Multiply
Drivers

DWORD Subroutine

10-25, 11-8

6-78, 10-5

6-116

1-27, 5-26

6-125, 8-88, A-24
9-1, 9-18

A-8

4-130

11-2, 4-119

5-4

6-38, 6-144, A-49
3-13, 3-21, 4-121, 11-5
4-71

6-115

8-26

A-11

8-20

10-25

10-39

1-12

10-25

B-1

5-6

1-26

3-13, 4-71, 4-121
4-73

6-148, A-54

9-61

6-148, A-54

A-55

A-55

8-54, 8-71

A-49

1-12

F-1

A-49

5-20, 5-28, 8-39, 8-45
4-141

8-91, A-31

7-73

4-62

4-53, 8-41, A-12, A-46, A-48
4-103

6-142, 8-92, A-48

5-28

5-20, 8-43
6-144, A-49
A-51

6-8

4-11, 4-16, 6-78, 10-2
6-48, 6-56, 10-35
6-83, 6-110

6-146, A-51

Effect of DI and EI

El Instruction

Enabling Monitor Interrupts
ENMEM Subroutine

ENTBY Subroutine
Entering Breakpoints
ENTWD Subroutine

ERRDS Subroutine

Error Checking Character
Error Display

Exchange Instructions
Exchange Stack Top
Exclusive or (XRA)
Execution

Exercise 1

Exercise 2

Exercise 3

INDEX

8-71
8-53
8-91, A-31
A-43
6-140, A-41

6-34, 6-63, A-25
6-141, A-42
A-54

9-46

A-28

6-107

6-108

1-52, 7-32
1-58

1-53

2-1, 2-10
2-16, 2-23

Exercises (see sequential listing, page i-15 of index)

Experiment with DAA
Exponential Function

External Interrupt Exercise
External Interrupt Experiment

Fetch

Fetch Cycle

Fixed Point

Flag Register

Flags

Flags Affected by Instructions
Floating Point

Flow Charts

Flow Control Techniques
Format, Data

Four Byte Addition Exercise
Four Byte Subtraction Exercise
Fractional Numbers

GETKY Subroutine
Global Subroutines
Growing Stack Problem

10-31
Cc-1
8-100
8-70

1-35
5-31
10-69
11-10
3-2, 4-6, 4-44, 11-10
11-11
10-69
3-7
7-72
9-1
10-6
10-16
10-68

6-37, 6-138, A-38
6-133
6-125

INDEX

HALT Instruction

Handshaking, 8255

Hardware

Hex Codes for 8080 Instructions
Hexadecimal

HLDA Signal

HLT Instruction
HLTA Signal

HOLD Signal
Hundreds Complement

I1f-Then-Else Construct
Immediate Instructions
Immediate Instructions
Immediate Instructions
Immediate Instructions
Immediate Instructions
IN Instruction
Inclusive Or (ORA)
Increment

Indirect Addressing
Initiation of I/0
In-Line Programming
INP Signal

Input /Output

Input/Output Instructions

Input/Output Ports
8212 1/0 Port
8251 USART
8255 Mode 1
8255 Mode 2
8255 PIA
Addresses

Arithmetic
Logical
LXI

MVI

Array of Input/Output Ports

Input/Output Techniques

Direct Memory Access
Initiation if I/0
Interrupt Driven 1/0
Isolated 1/0

Memory Mapped I/O
Parallel 1/0
Programmed I/0
Repetitive DMA
Serial Input/Output
Timed Input/Output

i-6

8-65

8-13

1-2

4-159

1-19

5-4, 8-43
8-65, 10-11
5-6

* 5-29, 8-41

10-59

7-11

4-25, 4-28

2-1, 4-28, 4-46, 4-47,
7-33

4-69 .

4-25, 4-46, 11-2
8-6

7-32

1-52, 4-71, 4-121
4-96

8-1, 8-49

6-2 '

5-6

1-3, 8-1, A-35
8-6, 11-15

8-2

8-2

8-33, 9-20

9-3

9-9

5-28, 8-9

8-9

8-5, 8-33

8-1

5-20, 5-28, 8-39, 8-45
g-1, 8-49 -

8-52

8-2, 8-8

8-35

9-3

8-49

8-41

9-14

8-76

11-9

INR Instruction
Instruction
Instruction
Instruction
Instruction
Instruction
Instruction
Instruction

Codes

Cycle

Effects on Flags
Execution '
Register

Timing

Instructions (see page i-18 :0f index for

Hex Codes
Summary

Instructions,

Instruactions,

INT Signal

INTA Signal

INTE Signal

Intel 8085 Microprocessor

Intel 8228 System Controller

Internal Address Decoding, Figure 5-4

Interrupt Driven 1/0

Interrupt Entry Points

Interrupt Logic

Interrupt Service - Combined with
‘Monitor

Interrupt Service - Main Program

Interrupt Service Routine Exercise

Interrupt Service Routines

Interrupt Service Testing.

Interrupt System, MTS

Interrupts

Interrupts and DMA - Introduction

Interrupts, Priority

Interrupts, Timed

Interrupts, Vectored

Interrupts, with MTS

INX Instruction

INX SP Instruction

I1/0 Devices

I/0 Instructions

I1/0 Ports (see also Input/Output Ports)

I1/0 Techniques (see Input/Output)

IOR Signal

IOW signal

Isolated I/0

JC Instruction
JM Instruction
JMP Instruction
JNC Instruction
JNZ Instruction
JP Instruction
JPE Instruction
JPO Instruction
JZ Instruction

INDEX

1-52, 2-28, 4-121, 11-5
1-34 ’

1-50, 4-159

1-34
11-10
1-58,
1-37
9-61
alphabetic listing)
4-159
11-1
8-52
5-6,
8-52,
11-17
5-9
5-14
8-52
A-33
8-52

2-3

8-99
8-91

8-81

6-134, 8-73, 9-21
8-83

8-67

5-28, 8-52

5-28

8-76

-2, 8-8
4-40, 4-45
10-51
2-20, 2-28
4-40, 4-45
3-3, 3-22
10-51
11-13
11-13
4-40, 4-45

INDEX

Keyboard Display Exercise
Keyboard Input

Keyboard Input Exercise
KEYS Subroutine

LDA Instruction

LDAX Instruction

Least Significant Bit

LHLD Instruction

Linear Select

Load Memory from Keyboard
Load Program from Tape
Loading a Program

Local Subroutines

Logic Functions

Logic Functions Exercise
Logic Functions - Immediate
Logic Instructions

Logical Rotate

Longitudinal Redundancy Check
Loops

LRC Character

LXI Instruction

LXI SP Instruction

M1 Signal

Machine Cycle

Machine States and Transitions
Masking

MEM Command

Memory

Memory Access

Memory Access Timing, Figure 5-8
Memory Address

Memory Addressing

Memory Change Breakpoints
Memory Contents, Changing
Memory Contents, Inspecting
Memory Enabling

Memory Location

Memory Location, Use as a Register
Memory Mapped 1/0

Memory Reference Instructions
Memory, Shared

Memory Signals and Timing
Memory Size

Memory Technology

Memory Write Cycle

MEMR Signal

MEMW Signal

MENAB Subroutine

Minimum Chip Select, Figure 5-7

i-8

8-26
8-15,
8-15
A-39

2-16,

L O
0 ©

Ll
S ©
3

[|
w o
WS-

11
-

1
== RN W =GOS

= OO0 W WO

»

m»owmqqq?ﬂmwb>mpr—p

R
N
©

A=35

2-

")
<o

>
!

11-9

5-6, 5-7, 8-67

2-2
5-31
7-34
1-48,
1-2,
1-26
5-30
1-23,
4-57,
8-88,
1-48,
1-46,
5-19,
1-23
4-87
8-35
4-88
9-11
5-31
1-23
5-11
5-33

2-29, A-17

1-20, 5-1

A-14, A-15, A-17
4-87, 4-88, 5-12
A-24
A-17
A-17
A-17

5-6, 5-7

5-7
A-40
5-24

Minuend

MINUS - see Sign Flag

Mnemonic

Module Specification

Modules,
Monitor
Monitor
Monitor
Monitor
Monitor
Monitor
Monitor
Monitor
ADDR C
Breakp

Breakpoint Operation
Breakpoint Removal

Program

Breakpoints
Commands

Data Storage
Effect on Program Speed
Enable/Disable

Entry
Functions
ommand
oint Entry

BRK Command
CLR Command

Control of Monitor Functions
Data Rate for Recording

Debug Mode

Displa
Error

Interrupt Entry Points
Load Memory from Keyboard
Load Program from Tape

y
Display

MEM Command

Monito

Monitor Data Storage

NEXT C

r Commands

ommand

REG Command

Register Pair Display
RESET, Data Recovery

RUN Command
STEP Command

Store Program on Tape

Monitor

(see also alphabetic listing,
Monitor Tape Programs
Most Significant Bit

MOV Inst
M-Regist

MTS Configuration, Figure 5-1

Subroutines

ructions
er

MTS Display

MTS Interrupt System
MTS System Controller Logic

Multiple
Multipli

Multiplication and Division by 2
Multiplication by Addition

Multipli
MVI Inst

Precision
cand

er
ruction

10-16
10-51
1-50
6-6
6-1
1-41, A-4
4-77, 6-124, A-11, A-25
A-13
6-124, A-14
4-83
8-91, A-31
3-9
A-4
1-59, 2-11, 2-29, A-16
4-77, 9-49, A-25
A-11
4-82, 9-49, A-26
4-77, A-24
4-82, A-21
A-31
A-8
A-11
1-43, A-46, A-48
A-28
A-33
A-4
A-9
1-48, 2-29, A-17
A-13
6-124, A-14
1-46, 2-30, A-20
1-58, 2-29, A-22
4-103, A-20
A-29
2-12, 3-1, A-11, A-24
1-58, 3-1, A-11, A-23
A-6
6-136
page i-17 of index)
9-44
1-18
4-2, 4-119
4-87
5-2
4-53, 8-41, A-46
8-67
5-9
4-11, 4-91, 10-2
4-30
7-3
4-30
4-30
4-25, 4-46, 11-2

INDEX

INDEX

NEC 8080 Microprocessor 11-17
Negative Numbers 10-45, 10-59
Nested Do Nothing Subroutines 6-24
NEXT Command 1-46, 2-30, A-20
NOP Instruction 1-51
Number Representations 10-44
Decimal, Packed 10-25
Fixed Point 10-69
Floating Point 10-69
Fractional Numbers 10-68
Hundreds Complement 10-59
Negative Numbers 10-45, 10-59
Packed Decimal 10-25, 10-59
Sign and Magnitude 10-45
Signed Binary Numbers 10-45
Signed Decimal Numbers 10-59
Twos Complement 10-45
Number System 1-10, 1-21
Operands 4-1
OR, Exclusive 7-32
OR, Inclusive 7-31
ORA Instruction 7-32
ORI Instruction 7-33
OUT Instruction 8-6
OUT Signal 5-6
Overflow, Arithmetic 10-52
Packed Decimal 10-25, 10-59
Paper Tape 9-3
Parallel Input/Output 9-3
Parity Flag 11-11
Partial Decoding 5-23
PCHL Instruction 6-8
Peripheral Interface Adaptor 5-27
PLUS - see Sign Flag 10-51
Polling 8-76
POP Instruction 6-99
POP PSW Instruction 6-105
Port Addresses 8-9
Power 1-12
Priority Interrupt Systems 8-76
Processor Status Word 6-105
Program 1-7
Program Counter 1-35
Program Exercises (see sequential listing, page i-15 of index)
Program Loops 3-1
Program Modification by Input Data 10-21
Program Modules 6-21

INDEX

Program Specification 1-53

Program Timing 9-61

Programmed 1/0 8-49

Programmed Monitor Entry 3-9

PSW 6-105

PUSH Instruction 6-99

PUSH PSW Instruction 6-105

RAL Instruction 7-1

RAM 1-28

RAM Chip Selection 5-19

Range of Signed Numbers 10-48

RAR Instruction 7-2

RC Instruction 6-52

Read-Write Control 5-27

READY Signal 5-4

Receiving, Asynchronous 9-20, 9-33, 9:57
Reentrant Subroutines 6-134

REG Command 1-58, 2-29, A-22
Register 1-33, 4-1
Register M 4-87

Register Pair 4-57, 4-69
Register Pair Addition 6-78

Register Pair Display 4-103, A-20
Register Pair HL 4-87, 4-97
Register Pair Instructions 4-69, 4-87, 4-97, 6-78, 6-107
Repetition Count, Breakpoints 'A-286

Repetitive DMA 8-4
Representations of Numbers 10-44

RESET Command 1-46

RESET, Data Recovery A-29

RET Instruction 6-13, 6-20
Return if Minus Instruction 10-51

Return if Plus Instruction 10-51

RLC Imnstruction 7-18

RM Instruction 10-51

RNC Instruction 6-52

RNZ Instruction 6-52

ROM 1-28

ROM Chip Selection 5-20

Rotate Exercise 7-3

Rotate Instructions 7-1, 7-18, 11-8
RP Instruction 10-51

RPE Instruction 11-13

RPO Instruction 11-13

RRC Instruction 7-18

RST 4 Instruction 3-9, 3-22, 4-47, 4-118, A-33, A-34
RST 7 Generation of 8-65

RST Command 1-46

RST Instructions 8-55

RST Interfaces 8-61

RUN Command 2-12, 3-1, A-11, A-24
RZ Instruction 6-52

INDEX

S-100 Bus
SBB Instruction
SBI Instruction
SCAN Subroutine
Sensor Correction, Version 1
Sensor Correction, Version 2
Sensor Correction, Version 3
Serial Communication
Serial Transmission Exercise
Set Carry
Shared Memory
Shift Instructions
SHLD Instruction
SHLRT Subroutine
Sign and Magnitude
Sign Flag
Signals, 8080
DBIN Signal
DMA Enable Signal
HLDA Signal
HLTA Signal
HOLD Signal
INP Signal
INT Signal
INTA Signal
INTE Signal
IOR Signal
IOW Signal
M1 Signal
MEMR Signal
MEMW Signal
OUT Signal
READY Signal
STACK Signal
STSTB Signal
SYNC Signal
WAIT Signal
WO Signal
WR Signal
Signed Binary Numbers
Signed Decimal Numbers
Signed Decimal Arithmetic Exercise
Sine
SINWS Subroutine
Software
SOTBT Subroutine
Specification, Module
SPHL Instruction
STA Instruction

i-12

D-1

4-18, 4-21, 4-47,

4-29, 11-9
6-137, A-37
4-125

4-140

6-29, 6-89
9-14

9-21

7-34

9-11

7-2, 11-8
4-97

A-57

10~-45
10-51, 11-11

5-4

5-20, 8-43
5-4, 8-43

5-6

5-29, 8-41

5-6

8-52

5-6, 5-7, 8-52
8-52, 8-67

5-7

L
~3

o]
|
(&)
©

1 11
T
ENEN

P
(o2}

)
(o]
~3

oot ot n
1
[oNF WO NONNORN N Ne)

|
IS

10-45

—
o
i
(9]
Xe]

10-59

= OO0

111

U -
N

9-47

()]
!
o

6-116
2-2, 2-28, 11-2

10-14

Stack
Stack Operation Rules
Stack, Monitor Usage of
Stack Pointer
Stack Pointer Display
Stack Pointer Instructions
STACK Signal
Stack Top
Stack, Using for Data
Start Bit
Status Byte
STAX Instruction
STC Instruction
STEP Command
Store Program on Tape
Structure, Data
STSTB Signal
SUB Instruction
Subroutines
Alternate Entry
Classification
Global
Interrupt
Local
Monitor

(see alphabetic listing,

Reentrant
Transparent
Subtraction
Subtrahend
SUI Instruction
SYNC Signal
Synchronous Communication
System. Controller

Table Lookup

Tape Programs and Subroutines

Tape Recording

Tens Complement

Timed Input/Output

Timed Interrupt Systems

Top Down Programming

Transfer Notation

Transmit/Receive with Monitor
Subroutines

Transmitting, Asynchronous

Transparency of Subroutine

Tri State Cicuits

Trigonometric Functions

Twos Complement

page i-17

INDEX

6-13, 6-99
6-119, 6-125
6-120
6-13,
6-14
6-116
5-6
6-15,
6-99
9-19,
5-5
4-60
7-34
1-58,
A-6
4-130
5-5, 8-67
4-18, 4-21,
6-1, 6-12
6-68, 6-70
6-133

6-133

6-134

6-134
6-136, A-35
of index)
6-134
6-134
4-18
10-16
4-29,
5-4
9-16
5-3,

6-1186

6-108
9-33

2-29, A-11, A-23

4-47, 10-13

11-9

5-9

4-130, 6-73
9-44, 9-47, 9-52
9-44

10-60

8-76

8-76

6-33

4-43

9-47

9-20, 9-54
6-134
5-26

c-1

10-45

INDEX

Unbalanced Usage of the Stack
Undefined Instructiomns
Unpacked Decimal

Unsigned Integer

Vectored Interrupt Systems

W, Z Registers

WAIT Signal

Wait State

WO Signal

Word

Word Mark in Serial Communication
WR Signal

XCHG Instruction
XRA Instruction
XRI Instruction
XTHL Instruction

Zero Flag
ZILOG Z-80 Microprocessor

i=14

6-119
11-16
10-59
10-44

8-75,

2-5
5-4
5-32
5-6
1-22
9-14
5-4

6-107
1-52,
7-33

6-108

3-2,
11-18

8=77

2-28, 4-47,

11-10

7-33,

11-9

PROGRAM EXERCISES - LISTED IN SEQUENCE

Exercise 1

Exercise 2

Exercise 3

Addition by Counting
Double Precision Addition
Review and Self Test

Multiplication by Repetitive Addition

Review and Self Test
Display Bit Pattern
Copy List to Display
Display Eight Characters
Delay Loops
Review and Self Test
Four Byte Addition
Counting in the Display
Review and Self Test
Moving Message
Do Nothing Program with PCHL
Nested Subroutines
Sensor Correction, Version 3
Input Subroutine
Nextsensor Subroutine
Displayresult Subroutine
Searchdirectory Subroutine
Tablelookup Subroutine
Multiply Subroutine
Clear Result Display
Store and Recover Table Address
Two Byte Table Address
Empty Sensor Numbers
Testing Stack Usage .
Test Driver for Multiply
Rotate (Arithmetic Shift)
Logical Rotate
Sixteen Bit Rotate
Binary Entry and Display
Logic Functions

Display

Data

Command

Function
Logic Functions Self Test
Dispatch Table
Traffic Control
Extended Traffic Control
Fire and Burglar Alarm
Model Railroad Simulator

1-50
2-1,
2-16,
3-13
4-11,
4-23
4-34
4-48
4-56
4-63
4-67
4-73
4-84
4-91
4-95
4-106
4-113
6-9
6-24
6-29
6-36,
6-54
6-61
6-64
6-73
6-79
6-97
6-97
6-98
6-98
6-100
6-110
7-3
7-19
7-19
7-22
7-35
7-49
7-52,
7-60
7-65
7-69
7-75
7-79
7-85
7-88
7-88

2-10
2-23

4-16

6-44

7-56

INDEX

INDEX

PROGRAM EXERCISES - Continued

Keyboard Input Exercise

Keyboard Display Exercise

External Interrupt Experiment

Effect of DI and EI

Interrupt Service Routine Exercise

Interrupt Service Testing

Interrupt Service - Main Program

Interrupt Service - Combined with
Monitor

External Interrupt Exercise

Serial Transmission Exercise

Asynchronous Receiving Exercise

Transmit/Receive with Monitor
Subroutines

Four Byte Addition Exercise

Four Byte Subtraction Exercise

Program Modification by Input Data

Decimal Addition and Subtraction

Experiment with DAA

Binary Multiplicaton Exercise

Binary Multiplication - Reversed

Change Sign Exercise

Change Sign by Complementing

Change Sign, Add, Subtract Exercise

Signed Decimal Arithmetic Exercise

i-16

8-15
8-26
8-70
8-71
8-81
8-83
8-91

8-99
8-100
9-21
9-33

9-47

10-6

10-16
10-21
10-25
10-31
10-35
10-37
10-46
10-49
10-53
10-59

BKENT
BKLOC
BKMEM
BKRMV
CLEAR
CLRGT
CLRHI
CLRLP
DBYTE
DELAY
DELYA
DELYC
DELYT
DIGHI
DIGSW
DISPR

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Suroutine

Subroutine

DMEM Subroutine
DMWD Subroutine

DWORD
ENMEM
ENTBY
ENTWD
ERRDS
GETKY

Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

KEYS Subroutine

MENAB

Suroutine

SCAN Subroutine

SHLRT
SINWS
SOTBT

Subroutine
Subroutine
Subroutine

MONITOR SUBROUTINES

9-49
9-49
9-51
9-49
6-147,
6-147,
A-53
6-147,
6-144,
6-148,
6-148,
A=55
A-55
A-49
A-49
6-142,
6-144,
A-51
6-146,
A-43
6-140,
6-141,
A-54
6-138,
A-39
A-40
6-137,
A-57
9-52
9-47

A-53
A-53
A-53
A-49
A-54
A-54

8-92, A-48
A-49

A-51

A-41
A-42

A-38

A-37

INDEX

i-17

INDEX

ACI Instruction
ADC Instruction
ADD Instruction
ADI Instruction
ANA Instruction
ANI Instruction
CALL Instruction
CC Intruction
CM Instruction
CMA Instruction
CMC Instruction
CMP Instruction
CNC Instruction
CNZ Instruction
CP Instruction
CPE Instruction
CPI Instruction
CPO Instruction
CZ Instructiion
DAA Instruction
DAD Instruction
DAD SP Instruction
DCR Instruction
DCX Instruction
DI Instruction
EI Instruction
HLT Instruction
IN Instruction
INR Instruction
INX Instruction
JC Instruction
JM Instruction
JMP Instruction
JNC Instruction
JNZ Instruction
JP Instruction
JPE Instruction
JPO Instruction
JZ Instruction
LDA Instruction
LDAX Instruction
LHLD Instruction
LXI Instruction
LXI SP Instruction
MOV Instruction
MVI Instruction
NOP Instruction
ORA Instruction
ORI Instruction
OUT Instruction

MACHINE INSTRUCTIONS

4-121, 11-9
4-46, 4-121,

’

0, 11-9

3, 11-9

6-13, 6-16, 11-13
6-52, 11-13
10-51, 11-13
7-29, 11-7

7-34, 11-7

4-111, 11-9

6-52, 11-13

6-52, 11-13
10-51, 11-13
11-13

4-112, 11-9

11-13

6-52, 11-13
10-25, 11-7

6-78, 10-5

6-116

3-13, 3-21, 4-121,

4-79, 4-120, 6-1186,

8-54, 8-71
8-53, 8-71
8-65, 10-11
8-6, 11-15

1-52, 2-28, 4-121,

4-71, 4-120, 6-116,

4-40, 4-45, 11-13
10-51, 11-13
2-20, 2-28, 11-13
4-40, 4-45, 11-13
3-3, 3-22, 11-13
10-51, 11-13
11-13

11-13

4-40, 4-45, 11-13
2-16, 2-28, 4-119,
4-59, 4-119, 11-2
4-97, 4-120, 11-2
4-69, 4-120, 11-3
6-116

4-2, 4-119, 11-2

4-25, 4-46, 4-119,
1-51, 11-15
7-32, 11-9
7-33, 11-9
8-6, 11-15

. 4-121, 10-4,

11-9
11-9
2-28, 4-29, 4-121

11-5
11-5

11-5
11-5

11-2

11-2

MACHINE INSTRUCTIONS - continued

PCHL Instruction
POP Instruction
PUSH Instruction
RAL Instruction
RAR Instruction
RC Instruction
RET Instruction
RLC Instruction
RM Instruction
RNC Instruction
RNZ Instruction
RP Instruction
RPE Instruction
RPO Instruction
RRC Instruction
RST 4 Instruction
RST Instruction
RZ Instruction
SBB Instruction
SBI Instruction
SHLD Instruction
SPHL Instruction
STA Instruction
STAX Instruction
STC Instruction
SUB Instruction
SUI Instruction
Undefined Instructions
XCHG Instruction
XRA Instruction
XRI Instruction
XTHL Instruction

3-9, 3-22,
4-18, 4-21,
4-18, 4-21,

6-8,
6-99,
6-99,
7-1,
7-2,
6-52,
6-13,
7-18,
10-51,
6-52,
6-52,
10-51,
11-13
11-13
7-18,

11-3

6-105,
6-105,

11-7
11-7

11-13
6-1¢6,
11-7

11-13

11-13
11-13

11-13

11-7

INDEX

11-3
11-3

11-13

4-47, 4-118, A-33, A-34

3-9,
6-52,
4-47,
4-29,
4-97,
6-116,
2-2,

4-50,
7-34,
4-47,
4-29,
11-16
6-107,
1-52,

7-33,

6-108,

8-55,

11-13
4-121,
4-121,
4-120,
11-3

2-28, 4-119,

4-119,
11-7

4-121,
4-121,

11-3

2-28, 4-47,

11-9
11-3

11-14, A-33

10-14,
11-9
11-2

11-9

11-2
11-2
10-13, 11-9
11-9

7-33, 11-9

INTEGIRATED COVIPUTER SYSTEZVAS

EDUCATION IS OUR BUSINESS

NORTH AMERICAN HEADQUARTERS

Integrated Computer Systems, Inc.
3304 Pico Boulevard
P.O. Box 5339
Santa Monica, California 90405 USA
Telephone: (213) 4560-2060
TWX: 910-343-6965

FRANCE
ICS France
90 Ave Albert ler
92500 Rueil-Malmaison
France
Telephone: 801) 749 40 37
Telex: 204593

NORTH AMERICA - EASTERN REGION
Integrated Computer Systems, Inc.
300 North Washington Street
Suite 103
Alexandria, Virginia 22314 USA
Telephone: 703&548—1333
TWX: 710-832-0045

GERMANY

ICSD GmbH

Leonrodstrabe 54

8000 Munich 19

West Germany
Telephone: (089) 19 80 66
Telex: 521 8

EUROPEAN HEADQUARTERS

ICSP - UK.

Pebblecoombe, Tadworth

Surrey KT20 7PA

England
Telephone: Leatherhead (03723) 79211
Telex: 915133

SCANDINAVIA

ICSP Inc. - Scandinavia

Utbildningshuset AB

Box 1719

$-221 01 Lund, Sweden
Telephone: (046) 307070
Telex: 33345

