
DOS DATABUS
COMPILER

DBCMP
User's Guide

Version 2

February, 1977

Model Code No. 50182

~TAPOINT JION

The leader in dispersed data processing ™

COPYRIGHT- 18,. BY DATAPOINT CORPORATION. PRINTED IN U.S.A.

DOS. DATABUS COMPILER
DBCMP

User's Guide

Version 2

February, 1977

Model Code No. 50182

DATAPOINT CORPORATION

April 1, 1977

Addendum to: DBCMP User's Guide
Version 2
February, 1977
50182

Reference: Chapter 8, after the second paragraph.

Add: ...
"When the result causes the OVER flag to be set the LESS,ZERO
flags are indeterminate."

Reference: Chapter 8, section 8.1, at the bottom of page 8-2.

Delete: ...
", ZERO"

Add:
"The LESS,ZERO flags are indeterminate."

9725 DATAPOINT DRIVE SAN ANTONIO, TEXAS 78284 (512) 699-7000

Reference: Chapter 8, section 8.2, in the middle of page 8-4.

Change:
"The following flag will be set: OVER, LESS"

To:
"The following flags will be set: OVER"

Add:
"The LESS,ZERO flags are indeterminate."

Reference: Chapter 8, section 8.3, at the bottom of page 8-5.

Delete: ...
", LESS"

Add: ...
"The LESS,ZERO flags are indeterminate."

keference: Chapter 8, section 8.4, in the middle of page 8-8.

Delete: ...
", Z£RO"

Add: ...
"Tne LESS,ZERO flags are indeterminate."

Delete: ...
", ZERO"

Add: ...
"The LESS,ZERO flags are indeterminate."

Reference: Chapter 8, section 8.5, in the middle of page 8-9.

Add: ...
"The LESS,ZERO flags are indeterminate."

Reference: Chapter 8, section 8.6, on page 8-10.

Change: ...
"The LESS and ZERO "

To: ...
"The LESS, OVER and ZERO ... "

Delete: ...
"_- Since the result is not moved to the destination variable,
the format of the result is not taken inot consideration when
setting the condition flags. This means that the OVER
condition flag can never be set by the COMPARE instruction."

Reference: Chapter 15, section 15.7, at the bottom
of page 15-11.

Replace:
"-- c) Since UPDATE modifies logical records instead of
physical records, it is possible to tab across pyhsical record
boundaries."

With:
"-- c)
DELETE.

It is an illegal operation to follow an UPDATE with a
This operation can destroy your file."

Reference: Chapter 15, section 15.9, at the top
of page 15-14.

Add: ...
"-- It is an illegal operation to follow an UPDATE with a
DELETE. This operation can destroy your file."

CHAPTER 8. ARITHMETIC INSTRUCTIONS

The arithmetic instructions are used to perform the various
arithmetic operations upon DATABUS operands. Generally all
arithmetic instructions have the following form:

<label> <oper> <soper><prep><doper>

where: <label> is an execution label.
<oper> is the DATABUS arithmetic operation.
<soper> is the source operand.
<prep> is a valid preposition.
<doper> is the destination operand.

The DATABUS operation is performed using the source and
destination operands. The result of the operation is generally
transferred to the destination operand. The content of the source
operand is never modified. When the result causes the OVER flag
to be set the LESS, ZERO flags are indeterminate.

8.1 ADD

The ADD instruction causes the content of source operand to
be added to the content of destination operand. The result (sum)
is placed in the destination operand. This instruction has the
following formats:

1) <label> ADD <snvar><prep><dnvar>
2) <label> ADD <nlit><prep><dnvar>

Where: <label> is an execution label (see section 2.) .
<snvar> is the source numeric variable.
<prep> is a preposition.
<dnvar> is the destination numeric variable.
<nlit> is a numeric literal.

Programming Considerations:

<label> is optional.

<nlit> must be a valid numeric literal.

The source numeric operand is never modified.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-1

<dnvar> contains the result (sum) of the ADD.

The flags OVER, LESS, ZERO (or EQUAL), are set appropriately.

The rounding and truncation rules are applicable (see section
2.7).

Examples:

Example:

Example:

Example:

x
y

CAT

NOM
NUM2

N

FORM
FORM

"123.45"
"267.22"

ADD X TO Y

Y will contain 390.67
the following flag(s) will be set: None

FORM "100.50"

ADD ".005" TO CAT

CAT will contain 100.51
The following flag(s) will be set: None

FORM "-245.0000"
FORM "800.0"

ADD NUM TO NUM2

NUM2 will contain 555.0
The following flag(s) will be set: None

FORM "00.0"

ADD "100.00" TO N

N will contain 00.0
The following flag(s) will be set: OVER
The LESS,ZERO flags are indeterminate.

8-2 DOS. DATABUS COMPILER

Example:

Example:

C1
C2

NUMBR

Y1
Y2

FORM
FORM

"5.60"
"1.665"

SUB C2 FROM C1

C2 will contain 3.94
The following flags will be set: None

FORM "-345"

SUB "700.5" FROM NUMBR

NUMBR will contain 1045
The following flags will be set: OVER
The LESS,ZERO flags are indeterminate.

FORM
FORM

" 10.00"
II 20.005"

SUB Y2 FROM Y1

Y2 will contain -10.01
The following flags will be set: LESS

8.3 MULTIPLY (MULT)

The MULT instruction (the compiler will also accept a
mnemonic of MULTIPLY) causes the content of the source numeric
(multiplicand) to be multiplied by the contents of the destination
numeric operand (multiplier). The result (product) is placed in
the destination numeric operand. The instruction has the
following formats:

1)
2)
3)
4)

Where:

<label>
<label>
<label>
<label>

MULT
MULTIPLY
MULT
MULTIPLY

<snvar><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<nlit><prep><dnvar>

<label>
<snvar>
<prep)
<dnvar>
<nlit>

is an execution label.
is the source numeric variable.
is a preposition.
is the destination numeric variable.
is a numeric literal.

8-4 DOS. DATABUS COMPILER

r

Programming Considerations:

The execution label <label> is optional.

<nlit> must be a valid numeric literal.

The flags OVER, LESS, ZERO (or EQUAL) are applicable.

The source numeric operand is not modified.

The destination numeric operand contains the result (product).

The sum of the number of characters in the source operand and
the destination operand must not exceed 31. (The compiler
does not check this limit. If it is exceeded the interpreter
will produce erroneous results.)

The truncation and rounding rules are applicable.

Example:

Example:

Example:

M1
M2

X123

NEG

FORM
FORM

"010"
"012"

MULT M1 BY M2

M2 will contain 120
The following flag(s) will be set: None

FORM "12000.00"

MULT "1.1" BY X123

X123 will contain 13200.00
The following flag(s) will be set: None

FORM "-10.5"

MULT "10" BY NEG

NEG will contain 105.0

The following flag(s) will be set: OVER
The LESS,ZERO flags are indeterminate.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-5

Example:

ZERO
N

Example:

ZERO
N

Example:

N1

8.5 MOVE

FORM "000"
FORM "155.00"

DIV ZERO INTO N

N will contain 999.99
The following flag(s) will be set: OVER

FORM "00.00"
FORM "155.00"

DIV ZERO INTO N

N will contain .00
The following flag(s) will be set: OVER
The LESS,ZERO flags are indeterminate.

FORM "100"

DIV "0.1" INTO N 1

N1 will contain __ 0
The following flag(s) will be set: OVER
The LESS,ZERO flags are indeterminate.

The MOVE instruction causes the content of the source numeric
operand to replace the content of the destination numeric operand.
The instruction has the following formats:

1) <label>
2) <label>

Where: <label> is
<snvar> is
<prep> is
<dnvar> is
<nlit> is

MOVE <snvar><prep><dnvar>
MOVE <nlit><prep><dnvar>

an execution label.
the source numeric variable.
a preposition.
the destination numeric variable.
a numeric literal.

Programming Considerations:

8-8 DOS. DATABUS COMPILER

1

<label> is optional.

<nlit> must be a valid numeric literal.

The contents of the source numeric operand is never modified.

The destination numeric variable contains the result of the
MOVE operation.

The OVER, LESS, ZERO (or EQUAL) flags are applicable.

The truncation and rounding rules are applicable.

Example:

Example:

Example:

Example:

SOURCE FORM
DESTIN FORM

"12345"
6.2

D1

S
D

N

MOVE SOURCE TO DESTIN

DESTIN will contain 12345.00
The following flag(s) will be set: None

FORM 4.2
MOVE "12345" TO D1

01 will contain 2345.00
The following flag(s) will be set: OVER
The LESS,ZERO flags are indeterminate.

FORM
FORM

"12345.51"
"99999"

MOVE S TO D

D will contain 12346
The following flag(s) will be set: None

FORM "999.99"

MOVE "0.0" TO N

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-9

f

N will contain .00
The following flag(s) will be set: ZERO

8.6 COMPARE

The COMPARE instruction is used to compare two numeric
quantities. The instruction has the following formats:

1)
2)

Where:

<label> COMPARE
<label> COMPARE

<snvar><prep><dnvar>
<nlit><prep><dnvar>

<label> is an execution label.
<snvar> is the source numeric variable.
<prep> is a preposition.
<dnvar> is the destination numeric variable.
<nlit> is a numeric literal.

Programming Considerations:

<label> is optional.

<nlit> is a valid numeric literal.

The contents of the source numeric operand are never modified.

The contents of the destin~tion numeric variable are never
modified.

The LESS, OVER and ZERO (or EQUAL) condition flags are set
exactly as if a SUBTRACT instruction had been executed instead
of a COMPARE.

Rounding takes place when the COMPARE instruction is executed.

Example:

ONEH FORM "100.00"

COMPARE "100" TO ONEH

The following flag(s) will be set: ZERO (EQUAL)

8-10 DOS. DATABUS COMPILER

15.7 UPDATE

The UPDATE instruction allows tabbing while modifying an
indexed record. UPDATE allows characters to be written into any
character position of an indexed record without disturbing the
rest of the record. This instruction may have one of the
following general formats:

1)
2)

<label> UPDATE
<label> UPDATE

<ifile>;<list>
<rifile>;<list>

where: <label> is an execution label (see section 2.).
<ifile> is a file defined using the IFILE declaration (see

section 5.2).
<rifile> is a file defined using the RIFILE .declaration

(see section 5.4).
<list> is a list of items describing the information to be

written to the disk.

Programming Considerations:

<label> is optional.

UPDATE is used to modify the last indexed record accessed by
any indexed record instruction (typically a READ or READKS).

With the following exceptions UPDATE functions the same as
WRITAB.

a) All tab positions are calculated relative to the beginning
of the logical record, rather than relative to the
beginning of the physical record.

b) The initial position within the data file is determined as
described above, rather than being furnished by a
variable.

It is an illegal operation to follow an UPDATE with a DELETE.
This operation can destroy your file.

Attempting an UPDATE when no other index operation has been
performed prior to the execution of the UPDATE, will cause and
1/0 error.

It is possible to overs tore the 015 (logical end of record)
and the 003 (physical end of record) characters when using
UPDATE. If extreme care is not exercised, this can result in
more than one record being turned into a single very large

CHAPTER 15. INDEXED RECORD ACCESSING 15-11

It is illegal operation to follow an UPDATE with a DELETE.
This operation can destroy your file.

<label> is optional.

The logical string of <svar> specifies the key to be deleted.

One DELETE must be executed for each index file which will
need the key deleted.

If the key is null, an I/O error will result.

If the key cannot be found in the index, the OVER condition
flag is set.

The indexed record is deleted by overstoring every character
in the record with an 032 (octal). This includes the logical
end of record character (015).

Both the DOS REFORMAT utility and the Databus interpreters
ignore all 032 characters while reading. Therefore, while
reading these characters do not appear to exist.

The DOS REFORMAT utility may be used to eliminate the 032
control characters from the data file.

If the indexed record to be deleted has already been deleted,
then the only action taken is to delete the key from the index
file.

15-14 DOS. DATABUS COMPILER

PREFACE

The DOS DATABUS Compiler (DBCMP) is the compiler to be used

to compile DATABUS programs for the ~TASHARE 3, DATASHARE 4, and

DATABUS 11 interpreters. This compiler is compatible with all .
current Datapoint DOS releases. This manual provides the

reference material required by users of the DATABUS language. It

is designed to be used as reference only, and not as a tutorial.

i

TABLE OF CONTENTS

1. INTRODUCTION

2. STATEMENT STRUCTURES
2.1 Comments
2.2 Compiler Directives
2.3 Data Area Definition
2.4 Program Execution
2.5 Literals
2.6 The Forcing Character
2.7 Numeric Definitions

2.7.1 Integer/Fraction
2.7.2 Rounding/Trucation
2.7.3 Rounding Rules

2.8 Character String Definitions
2.9 A Sample Program

3. COMPILER DIRECTIVES
3.1 EQUATE (EQU)
3.2 INCLUDE (INC)

4. DATA DEFINITION
4.1 Numeric String Variables
4.2 Character String Variables
4.3 Common Data Areas
4.4 FORM
4.5 DIM
4.6 INIT
4.7 COMLST

5. FILE DECLARATION
5.1 FILE
5.2 IFILE
5.3 RFILE
5.4 RIFILE

6. PROGRAM CONTROL INSTRUCTIONS
6.1 Condition Flags
6.2 GOTO
6.3 BRANCH
6.4 CALL
6.5 RETURN
6.6 ACALL
6.7 STOP

ii

page
1-1

2-1
2-3
2-3
2-4
2-4
2-4
2-6
2-7
2-7
2-8
2-9
2-9

2-10

3-1
3-1
3-2

4-1
4-1
4-2
4-3
4-4
4-5
4-6
4-7

5-1
5-1
5-2
5-3
5-3

6-1
6-1
6-1
6-2
6-3
6-5
6-6
6-7

6.8 CHAIN 6-8
6.9 TRAP 6-11
6.10 TRAPCLR 6-14
6.11 ROLLOUT 6-14
6.12 PI 6-18
6.13 TABPAGE 6-20
6.14 DSCNCT 6-21

7. CHARACTER STRING HANDLING INSTRUCTIONS 7-1
7.1 MOVE 7-1

7.1.1 MOVE (character string to character string) 7-1
7.1.2 MOVE (character string to numeric string) 7-4
7.1.3 MOVE (numeric string to character string) 7-5

7.2 APPEND 7-7
7.3 MATCH 7-8
7.4 CMOVE 7-10
7.5 CMATCH 7-12
7.6 BUMP 7-13
7.7 RESET 7-14
7.8 ENDSET 7-17
7.9 LENSET 7-18
7.10 CLEAR 7-18
7.11 EXTEND 7-19
7.12 LOAD 7-20
7.13 STORE 7-22
7.14 CLOCK 7-23
7.15 TYPE 7-25
7.16 SEARCH 7-26
7.17 REPLACE 7-28

8. ARITHMETIC INSTRUCTIONS 8-1
8.1 ADD 8-1
8.2 SUBTRACT (SUB) 8-3
8.3 MULTIPLY (MULT) 8-4
8.4 DIVIDE (DIV) 8-6
8.5 MOVE 8-8
8.6 COMPARE 8-10
8.7 LOAD 8-11
8.8 STORE 8-13
8.9 CHECK11 (CK11) 8-14
8.10 CHECK10 (CK10) 8-17

9. INTERACTIVE INPUT/OUTPUT 9-1
9.1 KEYIN 9-2

9.1.1 Character String Variables (KEYIN) 9-3
9.1.2 Numeric String Variables (KEYIN) 9-4
9.1.3 List Controls 9-6

9.1.3.1 *P<h>:<v> (Cursor Positioning) 9-6

iii

9.1.3.2 *EL (Erase to the End-of-Line)
9.1.3.3 *EF (Erase from Cursor Position)
9.1.3.4 *ES (Erase the Screen)
9.1.3.5 *C (Carriage Return)
9.1.3.6 *L (Line Feed)
9.1.3.7 *N (Next Line)
9.1.3.8 *R (Roll the Screen)
9.1.3.9 *+ (KEYIN Continuous On)
9.1.3.10 *- (KEYIN Continuous Off)
9.1.3.11 *T (KEYIN Timeout)
9.1.3.12 *W (Wait)
9.1.3.13 *EOFF (Echo Off)
9.1.3.14 *EON (Echo On)
9.1.3.15 *IT (Invert Text)
9.1.3.16 *IN (Invert to Normal)
9.1.3.17 *JL (Justify Left)
9.1.3.18 *JR (Justify Right)
9.1.3.19 *ZF (Zero Fill)
9.1.3.20 *DE (Digit Entry)

9.1.4 Literals (KEYIN)
9.1.5 Special Considerations

9.1.5.1 BACKSPACE and CANCEL
9.1.5.2 NEW LINE
9.1.5.3 INTerrupt

9.2 DISPLAY
9.2.1 Character String Variables (DISPLAY)
9.2.2 Numeric String Variables (DISPLAY)
9.2.3 List Controls

9.2.3.1 *P<h):<v) (Cursor Positioning)
9.2.3.2 *EL (Erase to End-of-Line)
9.2.3.3 *EF (Erase to End-of-Frame)
9.2.3.4 *ES (Erase the Screen)
9.2.3.5 *C (Carriage Return)
9.2.3.6 *L (Line Feed)
9.2.3.7 *N (Next Line)
9.2.3.8 *R (Roll the Screen)
9.2.3.9 *+ (DISPLAY Blank Suppression On)
9.2.3.10 *- (DISPLAY Blank Suppression Off)
9.2.3. 11 *W (Wai t)
9.2.3.12 *IT (Invert Text)
9.2.3.13 *IN (Invert to Normal)

9.2.4 Literals (DISPLAY)
9.3 CONSOLE
9.4 BEEP
9.5 DEBUG

10. PRINTER OUTPUT
10.1 PRINT

iv

9-7
9-7
9-7
9-8
9-8
9-8
9-8
9-8
9-9
9-9
9-9
9-9

9-10
9-10
9-11
9-11
9-13
9-14
9-15
9-15
9-16
9-16
9-16
9-17
9-18
9-18
9-19
9-20
9-20
9-20
9-20
9-20
9-20
9-21
9-21
9-21
9-21
9-22
9-22
9-22
9-22
9-22
9-23
9-25
9-25

10-1
10-2

10.1.1 Character String Variables
10.1.2 Numeric String Variables
10.1.3 List Controls

10.1.3.1 *F (Form Feed)
10.1.3.2 *C (Carriage Return)
10.1.3.3 *L (Line Feed)
10.1.3.4 *N (Next Line)
10.1.3.5 *<n> (Tab To Column (n»
10.1.3.6 ; (Supress new line function)
10.1.3.7 *ZF (Zero Fill)
10.1.3.a *+ (Blank Supression On)
10.1.3.9 *- (Blank Suppression Off)

10.1.4 Literals
10.2 RPRINT
10.3 RELEASE
10.4 Printer Considerations

11. COMMUNICATIONS INPUT/OUTPUT
11.1 SEND
11 .2 RECV
11.3 COMCLR
11.4 COMTST
11.5 COMWAIT

12. DISK INPUT/OUTPUT
12.1 File Structure

12.1.1 Record Structures
12.1.1.1 Physical Records
12.1.1.2 Logical Records
12.1.1.3 Indexed Records

12.1.2 Space Compression
12.1.3 End of File Mark

12.2 Accessing Methods
12.2.1 Physical Record Accessing
12.2.2 Logical Record Accessing
12.2.3 Indexed Record Accessing

12.3 General Instructions (Disk I/O)
12.3.1 OPEN (General)
12.3.2 CLOSE (General)
12.3.3 READ (General)

12.3.3.1 Character String Variables (READ)
12.3.3.2 Numeric String Variables (READ)

12.3.4 WRITE (General)
12.3.4.1 Character String Variables (WRITE)
12.3.4.2 Numeric String Variables (WRITE)
12.3.4.3 List Controls (WRITE)

12.3.4.3.1 *+ (Space Compression On)
12.3.4.3.2 *- (Space Compression Off)

v

10-3
10-3
10-4
10-4
10-4
10-4
10-4
10-5
10-5
10-5
10-5
10-6
10-6
10-6
10-7
10-8

11-1
11-1
11-3
11-6
11-7
11-9

12-1
12-2
12-3
12-3
12-3
12-5
12-8
12-9
12-9
12-9

12-10
12-11
12-12
12-12
12-16
12-17
12-20
12-21
12-22
12-24
12-24
12-25
12-25
12-25

12.3.4.3.3 *ZF (Zero Fill)
12.3.4.3.4 *MP (Minus Overpunch)

12.3.4.4 Octal Control Characters
12.3.4.5 Literals

13. PHYSICAL RECORD ACCESSING
13.1 OPEN (Physical)
13.2 PREPARE (PREP) (Physical)
13.3 CLOSE (Physical)
13.4 READ (Physical)

13.4.1 Tab Control
13.5 WRITE (Physical)
13.6 WRITAB

13.6.1 Tab Control
13.7 WEOF

14. LOGICAL RECORD ACCESSING
14.1 OPEN (Logical)
14.2 PREPARE (Logical)
14.3 CLOSE (Logical)
14.4 READ (Logical)
14.5 WRITE (Logical)
14.6 WRITAB (Logical)
14.7 WEOF (Logical)

15. INDEXED RECORD ACCESSING
15.1 OPEN (Indexed)
15.2 CLOSE (Indexed)
15.3 READ (Indexed)
15.4 WRITE (Indexed)
15.5 WE OF (Indexed)
15.6 READKS
15.7 UPDATE
15.8 INSERT
15.9 DELETE

16. PROGRAM GENERATION
16.1 Preparing Source Files
16.2 Compiling Source Files

16.2.1 File Specifications
16.2.2 Output Parameters

16.3 Compilation Diagnostics
16.4 Disk Space Requirements

Appendix A. INSTRUCTION SUMMARY

Appendix B. INPUT/OUTPUT LIST CONTROLS

vi

12-25
12-26
12-26
12-27

13-1
13-1
13-2
13-5
13-5
13-7
13-9

13-10
13-11
13-12

14-1
14-1
14-1
14-1
14-1
14-3
14-4
14-4

15-1
15-1
15-3
15-4
15-6
15-9
15-9

15-11
15-12
15-13

16-1
16-1
16-1
16-2
16-3
16-6
16-7

A-1

B-1

Appendix C. SAMPLE DATASHARE SYSTEM
C.l SYSTEM PROGRAMS

C.l.l Sample ANSWER Program
C.l.2 Sample MASTER Program
C.l.3 Sample DATASHARE MASter MENU
C.l.4 Sample Program Selection MENU
C.l.5 Chain Files for System Generation

C.l.5.l Compile the System Programs
C.l.5.2 Re-organize System Log File

C.2 SYSTEM INCLUSION FILES
C.2.l COMMON User's Data Area
C.2.2 Log File Data Area Definition
C.2.3 Log File Input/OutputRoutines

C.3 SUPLEMENTAL SYSTEM PROGRAMS
C.3.l Re-organize the List of Authorized Users
C.3.2 Program to Generate New Menus

Appendix D. COMMON FILE ACCESS CONSIDERATIONS

Appendix E. COMPILER ERROR CODES

Appendix F. INDEX FILE SIZE COMPUTATION

Appendix G. SERIAL BELT PRINTER CONSIDERATIONS

Appendix H. GLOSSARY

vii

C-l
C-4
C-5

C-15
C-18
C-22
C-28
C-29
C-37
C-39
C-40
C-4l
C-43
C-45
C-46
C-57

D-l

E-l

F-l

G-l

H-l

CHAPTER 1. INTRODUCTION

The DATABUS language is an interpretive, high level language
designed for business applications. It has been designed to run
under the Datapoint Disk Operating System and takes advantage of
all of its file handling capabilities (dynamic file allocation,
random or sequential files, and the powerful Indexed Sequential
Access Method).

Verbs are provided to permit simple yet flexible operator
interaction with the program, thus enabling levels of data entry
and checking ranging from simple keypunch to extremely
sophisticated intelligent data entry. A complete set of string
manipulation verbs are available, along with a flexible arithmetic
package. An extensive set of file manipulation verbs complete a
powerful business-oriented language.

The complete DATABUS language may not be compatible with all
DATASHARE 3, DATASHARE 4, and DATABUS 11 Interpreters. The
following is a brief description of the current DATASHARE 3,
DATASHARE 4, and DATABUS 11 interpreters. Refer to the
appropriate user's guide for more detailed information about the
interpreters.

DS3A3360

DS3A3600

DS3B3360

DS3B3600

PSDS3

DATASHARE 3 Interpreter supporting up to eight 3360
terminals on a 2200 DOS.A system.

DATASHARE 3 Interpreter supporting up to eight 3600
terminals on a 2200 DOS.A system.

DATASHARE 3 Interpreter supporting up to eight 3360
terminals on a 2200 DOS.B system or a 2200 DOS.A
system with a 4K disk controller.

DATASHARE 3 Interpreter supporting up to eight 3600
terminals on a 2200 DOS.B system or a 2200 DOS.A
system with a 4K disk controller.

DATASHARE 3 Interpreter supporting up to sixteen
3360 or 3600 terminals on a 5500 DOS.D or DOS.E
system. (This interpreter will execute in either
partition of the Partition Supervisor.)

CHAPTER 1. INTRODUCTION 1-1

DS42200

DS42200X

DS45500

DB11

DBML11

1-2

DATASHARE 4 Interpreter supporting up to four 3360
terminals on a 2200 DOS.A or DOS.B system.

DATASHARE 4 Interpreter supporting up to four 3600
terminals on a 2200 DOS.A or DOS.B system.

DATASHARE 4 Interpreter supporting up to 16 3360 or
3600 terminals on a 5500 DOS.D or DOS.E system. In
addition this interpreter can be configured to
support remote diskette stations via dial-up
telephone lines in a networking configuration
(replacing DS3NET). It may also be configured for
external communications through a MULTILINK
configuration.

DATABUS 11 Interpreter executing DATABUS code
programs from the processor console on a 2200,
Diskette 1100, or 5500, DOS.A, DOS.B, DOS.C, DOS.D,
or DOS.E systems.

DATABUS MULTILINK 11 interpreter executing two
DATABUS code programs. The primary program was the
processor console and the secondary (or utility)
program may be used for utility functions.
Internal (between primary and secondary program)
and external (with a remote or host processor)
communications are support. The interpreter
executes on a Datapoint 1150 DOS.C system.

DOS. DATABUS COMPILER

CHAPTER 2. STATEMENT STRUCTURES

There are four basic types of statements in the DATABUS
language: comment, compiler directive, data area definition and
program execution. All of the statements (except comments) use the
following basic format:

<label> <operation> <operands> <comment>

where: each of the fields above is separated from the others by
at least one space,

<label> is a letter, followed by any combination of up to
seven letters and digits, (this does not include
special characters),

<operation> denotes the operation to be performed on the
following operands,

<operands> are any operands required by the <operation>,
and

<comment> is any comment the user wants to make about the
instruction or about program execution.

The label field is considered empty if a space appears in the
first column of the line. The following are examples of valid
labels:

A
ABC
A1BC
B1234
ABCDEF
BIG LABEL

The following are examples of invalid labels:

HI,JK
4DOGS

(contains an invalid character)
(does not begin with a letter)

The compiler keeps track of two distinct sets of labels; data
labels and execution labels. Data labels are those present on
data area definition statements. Execution labels are those
labels used by the program control instructions (see chapter 6.)
to alter the normal flow of program execution.

Data labels must be unique among themselves; that is, no data
label can be the same as any other data label. Execution labels

CHAPTER 2. STATEMENT STRUCTURES 2-1

must also be unique among themselves. However, a label may be
used both as a data label and also as an execution label.

Although there are exceptions (for more details see the
sections that describe the instructions individually), the operand
field for most of the instructions has the following general
format:

<source operand><separator><destination operand>

where: <source operand> is the first operand required by the
operation,

<destination operand> is the second operand required by
the operation, and

<separator> must be a comma or a valid preposition.

If a comma is used as the separator it cannot be preceded by
any spaces, but may be followed by any number of spaces (including
none). The prepositions that may be used as separators are BY,
TO, OF, FROM, USING, WITH, or INTO. If one of these prepositions
is used as the separator, it must be preceded and followed by at
least one blank. Note that any of these preposition may be used
even if it does not make sense in English.

The following are all examples of valid statements:

LABEL1 ADD PCS TO TOTAL
LABEL2 ~D PCS OF TOTAL THIS IS A COMMENT
LABEL3 ADD PCS, TOTAL
LABEL4 ~D PCS,TOTAL
LABEL5 ADD PCS TO TOTAL

The following are examples of invalid statements:

LABEL1
LABEL2

ADD
~D

PCS TOTAL
PCS ,TOTAL

(missing separator)
(space before comma)

Some of the operations require a list of items in the operand
field. Such a list is typically made up of variable names,
literals, and list controls separated by commas. This list can be
longer than a single line, in which case the line must be
continued. This is accomplished by replacing the comma that would
normally appear in the list with a colon and continuing the list
on the following line. Comments may be included after the colon
used for continuation.

2-2 DOS. DATABUS COMPILER

For example, the two statements:

DISPLAY

DISPLAY

A,B,C,D:
E,F,G
A,B,C,D,E,F,G

will perform the same function.

2.1 Comments

Comment lines have a period, asterisk, or plus sign in the
first column, and may appear anywhere in the program. Comments
are useful in making it easier for someone reading through the
program to understand program logic, subroutine function,
subroutine parameterization, etc.

Comments that begin with a period are simply copied from the
source program to any listing requested by the user.

Comments that begin with an asterisk are treated like
comments that begin with a period, unless there are fewer than 12
lines at the bottom of the current page. If there are fewer than
12 lines, comments that begin with an asterisk will be printed at
the top of the next page. This allows comments to appear on the
same page as the program instructions that are being described by
the comments. Use of the asterisk at the beginning of each
section or subroutine description is encouraged since this greatly
enhances program readability.

Comments that begin with
at the top of the next page.
program to be started at the
be used cautiously, since it
paper.

2.2 Compiler Directives

a plus sign will always be printed
This allows major sections of the

top of a page. The plus sign should
can easily waste great quantities of

Compiler directives are provided to make the compilation
process easier and more flexible.

There is a compilation directive which allows a programmer to
include other files in the current compilation. This directive
allows large programs to be broken into several smaller,
easier-to-edit files. It also allows a single file to be used for
a set of subroutines or data definition blocks which are common to
more than one program.

CHAPTER 2. STATEMENT STRUCTURES 2-3

There is also a compilation directive which allows the
absolute value of a symbolic name to be defined. A name defined
in this manner may then be used for tab positioning in disk 1/0
statements or cursor positioning in KEYIN, DISPLAY and CONSOLE
statements.

2.3 Data Area Definition

The user's data area must be defined by using file
declaration or data definition statements. File declaration
statements are used to reserve space for the system information
needed for all disk accessing, while data definition statements
are used to describe the format of any variables used in a
program. For information about the size of the user's data area,
see the user's guide of the appropriate interpreter. All of these
statements must have labels which are used to reference the
variable or logical file defined. All labels used with data
definition and file declaration statements are data labels (see
section 2.).

2.4 Program Execution

The program execution statements are those that actually do
the data manipulation and must conform to the following rules:

They must appear after any data area definition statements.

They mayor may not have labels.

Any label used on one of these statements is an execution
label (see section 2.).

Program execution always begins with the first executable
statement.

2.5 Literals

Literals are useful when a constant value is needed as one of
the operands of an instruction. Using literals will save user's
data area.

2-4 DOS. DATABUS COMPILER

A literal has one of the following formats:

"<string>"
<dnum>
"<char>"
<occ>

where: <string> is any sequence of characters with the exceptions
described below in the section on the forcing
character (#). This string may be either a
numeric string (see section 4.1) or a character
string (see section 4.2).

<dnum> is a decimal number between -128 and 127.
<char> is any single character. (The forcing character

rules do not apply.)
<occ> is an octal control character.

See the sections describing the individual instructions for the
format that may be used with those instructions allowing literals.

The following criteria apply to literals with the "<string>"
format:

The string may be from 1 through 40 characters in length
(excluding the quotes).

The string must be enclosed in double quotes.

When the literal is used as a character string the formpointer
is always equal to 1.

When the literal is used as a character string the logical
length pointer always pOints to the last character of the
literal.

Most instructions that make use of these literals require that
the literal be the first operand of the instruction (for more
details see the sections that describe the instructions
individually).

Some examples of instructions that may use literals of the
"<string>" format follow:

STORE
ROLLOUT
CHAIN
OPEN

"APPLES" INTO X OF S1,S2,S3
"CHAIN FIX22"
"NEXTPROG"
FILE1,"DATAFILE"

CHAPTER 2. STATEMENT STRUCTURES 2-5

PREPARE
MOVE
MOVE
APPEND
MATCH
ADD
SUBTRACT
MULTIPLY
DIVIDE,
COMPARE

FILE1,"USERDATA"
"MESSAGE" TO M3442
"100.55" TO VALUE
"." TO STR1
"YES" TO ANSWER
"23.46" TO TOTAL
"1" FROM COUNT
".1" BY TAX
"33.3333" INTO FACTOR
"10" TO LINENUMB

The following criteria apply to octal control characters:

The octal control character must be between 000 and 037,
inclusive.

The first character of an octal control character must be a
zero.

Note that some of these octal control characters are used for
control purposes in disk files (000, 003, 011, 015) and others
are used as control characters in DISPLAY, KEYIN and CONSOLE
statements. Improper use of these control characters can
result in invalid program execution.

2.6 The Forcing Character

Since the second double quote is used to indicate the end of
the string, any literal of the form "<string>" needs a special
technique to include a double quote as a character within the
<string>. The technique used by the Databus language is to define
the pound sign (#) to be a forcing character.

Putting the pound sign within a string tells the compiler
that the next character in the string should be included within
the string. The character following the pound sign is not checked
for any special significance, it is simply picked up and put into
the string. The pound sign used·as a forcing character is not put
into the string. This means that to put the pound sign itself
into a string you must do so by using a previous pound sign as a
forcing character.

2-6 DOS. DATABUS COMPILER

For example,

DISPLAY "CUSTOMER" SHOULD BE '"2222'""

would display exactly:

CUSTOMER' SHOULD BE "2222"

on the screen.

Note that the forcing character convention does not apply to
literals of the "<char>" format. <char> may be any character,
including the double quote character and the pound sign character.
For example,

CMOVE """ TO STRING

would be used to move a double quote sign into the variable
STRING. However, the use of a literal in a MOVE instruction would
require the use of the forcing character (even in a single
character move) since the quoted item can be a mutiple character
quote. For example:

MOVE "4f"" TO STRING

would be used to move a double quote sign into the variable
STRING.

2.7 Numeric Definitions

The following definitions will be established so that the
ensuing discussion in subsequent chapters will be more meaningful.

2.7.1 Integer/Fraction

Numeric String Variables (or literals) are composed of two
parts.

a) Integer - The integer portion of a numeric variable is
the portion of the numeric string that exists to the left
of the decimal point. If the decimal point does not
exist explicitly, the decimal point is implied to be to
the right of the rightmost digit of the numeric string.

b) Fractional - The fractional portion of a numeric variable

CHAPTER 2. STATEMENT STRUCTURES 2-7

is the portion of the numeric string that exists to the
right of the decimal point.

For example consider the following:

A
B
C

FORM
FORM
FORM

"123.45"
"678."
"90"

A has a value of 123 for the integer portion and 45 for the
fractional portion. B has a value of 678 for the integer portion~
C has a value of 90 for the integer portion (the decimal point is
implied to the right of the zero).

2.7.2 Rounding/Trucation

When the result of an arithmetic operation consists of more
characters than can be contained in the destination variable, the
result is truncated, rounded or both truncated and rounded so that
it will "fit" in the destination variable.

Truncation is the process of eliminating those characters
that will not fit in the destination variable. Truncation may
occur either on the right or on the left. Right truncation means
some of the least significant digits of the result are lost, while
left truncation means that some of the most significant characters
are lost. Usually, the arithmetic instruction that causes left
truncation of the result will set the OVER condition flag to
indicate arithmetic overflow.

Rounding is a modified form of right truncation. For details
on rounding, see section 2.7.3. Unless specificly mentioned
otherwise, rounding will be used instead of right truncation.

The following rules are used to determine which characters
will be lost if truncation or rounding is necessary:

a) If the destination variable is defined to contain a decimal
point, the result (of the arithmetic operation) is aligned so
that its decimal point will overstore the destination
variable's decimal point. Any characters that will not fit
after this alignment are lost.

b) If the destination variable is defined without a decimal
point, alignment occurs as if there were a decimal point just
after the least significant digit of the destination variable.

2-8 DOS. DATABUS COMPTT~D

2.7.3 Rounding Rules

To determine when rounding is necessary, see section 2.7.2.
The following rules should be used to distinguish between right
truncation and rounding. To understand the following rules the
distinction between the rounding digit and the rounded digit must
be clear. The rounding digit is the most significant of the
digits lost when rounding a number, while the rounded digit is the
least significant of the digits that are not lost.

a) If the rounding digit is a digit from 0 to 4, then the rounded
digit remains unchanged.

b) If the rounding digit is the digit 5:

1) If the rest of the digits that will be lost are zero (0):

a. If the result (of the arithmetic operation) is a
negative number, then the rounded digit remains
unchanged.

b. If the result (of the arithmetic operation) is a
positive number, then the rounded digit is incremented
by one (1).

2) If any of the rest of the digits that will be lost are
non-zero, then the rounded digit is incremented by one
(1).

c. If the rounding digit is a digit from 6 to 9, then the rounded
digit is incremented by one (1).

2.8 Character String Definitions

The following terms will be used in the description of
character string variables.

character string variable -- made up of four parts; the logical
length pointer, the formpointer, the physical string and
the ETX.

IIp I fp I physical string ETX

physical string -- made up of three parts; the prefix, the
(logical) string and the suffix.

CHAPTER 2. STATEMENT STRUCTURES 2-9

: prefix (logical) string : suffix :

logical string -- the string usually modified by the instructions.
It is defined by the formpointer and the logical length
pointer. The first character in the logical string is the
head (the character pointed to by the formpointer). The
last character in the logical string is the tail (the
character pointed to by the logical length pointer).

: head : tail :

null string -- a string with the formpointer and the logical
length pointer both set to zero.

2.9 A Sample Program

+
. PROGRAM TO UISPLAY A MULTIPLICATION TABLE

COUNT1
COUNT2
PROD
*

FORM
FORM
FORM

"0"
"0"
2

. HERE IS THE START OF THE EXECUTABLE CODE

START
LOOP

DISPLAY
MOVE.
MULT
DISPLAY
ADD
GOTO
DISPLAY
ADD
GOTO
STOP

*ES,"MULTIPLICATION TABLE:",*N
COUNT1 TO PROD
COUNT2 BY PROD
COUNT1,"X",COUNT2,"=",PROD," ";
"1" TO COUNT2
LOOP IF NOT OVER
*N
"1" TO COUNT1
LOOP IF NOT OVER

2-10 DOS. DATABUS COMPILER

CHAPTER 3. COMPILER DIRECTIVES

Two directives are available to give the user more control
over the compilation process. One is the EQU statement and the
other is the INCLUDE statement.

3.1 EQUATE (EQU)

The EQU statement allows a label to be assigned a decimal
numeric value from 1 through 249.

This is particularly useful when one defines the format of
disk records to be used in a data base. If all item positions
within the record are defined using the EQU directive, then
changes in item positions can be achieved by simply changing the
one directive value. If the EQU were not used, changing the
record format would mean changing all disk I/O statements that
depend on this format. The user would have to hunt through all
programs using this format to change all disk I/O statements to
conform to the new record format.

The general format of the EQU statement is as follows:

<label> EQU <dnum>

where: <label> is a data label (see section 2.)
<dnum> is the decimal number to be substituted for any

occurance of the label within the program being
compiled.

For example:

LM EQU 5

A label which is defined in this manner may be used as tab values
in disk I/O statements and as cursor positions in KEYIN, DISPLAY,
and CONSOLE statements.

CHAPTER 3. COMPILER DIRECTIVES 3-1

3.2 INCLUDE (INC)

This statement allows another text file to be included, at
the point where the INCLUDE statement appears, as if the lines
actually existed in the main file being compiled. Note that the
INCLUDE directive can be used to include a file containing any EQU
directives and data variable definitions which are needed to
define the record format of a data base. This allows the
programmer to enter the information about the data base into only
one file instead of entering it into every program that needs to
know about the data base. Modification of the format also becomes
easier, since the programmer need modify only one file before
compiling all of the programs again.

The INCLUDE statement can have one of the following formats:

<label> INCLUDE
<label> INC

<DOS file specification>
<DOS file specification>

where: <label> is a data label (see section 2.).
<DOS file specification> is a DOS compatible specification

of the file to be included in the program.

Programming Considerations:

Including a file will cause all of the lines in that file to
be scanned as if they existed in place of the INCLUDE line.

The assumed extension on included files is TXT but may be
specified to be any extension.

If no drive is specified, all drives starting with drive zero
will be scanned for the file.

Inclusions may be nested up to four deep, with a maximum of 16
included files.

For example:

INC RECDEFS

would oause all of ~ne lines from file RECDEFS/TXT to be scanned
as if they existed instead of the INC statement.

3-2 DOS. DATABUS COMPILER

CHAPTER 4. DATA DEFINITION

There are two types of data used within the DATABUS language.
They are numeric strings and character strings. The arithmetic
operations are performed on numeric strings and string operations
are performed on character strings. There are also operations
allowing movement of numeric strings into character strings and
vice versa.

Whenever a data variable is to be used in a program, it must
be defined at the beginning by using one of the data definition
statements. The data definition statements reserve space in the
user's data area for the data variable whose name is given in the
label field. (This space is always reserved using one of the
formats described below.) Note that all variables must be defined
before the first executable statement in the program and that once
an executable statement is given, no more variables may be
defined.

4.1 Numeric String Variables

Numeric strings have the following memory format:

octal ascii ascii ascii ascii octal
0200 1 2 3 0203

The leading character (0200) is used as an indicator that the
string is numeric. The trailing character (0203) is used to
indicate the location of the end of the string (ETX).

Programming Considerations:

The format of a numeric string is set at definition time and
does not change throughout the execution of the program.

Negative numbers are represented by using one of the
characters before the decimal point for a minus sign.

The physical length of a numeric string is limited to 21
characters (including the decimal point and minus sign, but
excluding the 0200 and 0203 characters).

Numeric items always keep their proper format internally.

CHAPTER 4. DATA DEFINITION 4-1

To be a valiq numeric string, the following must be true.

a. Spaces are acceptable only when they are leading spaces.

b. Only one minus sign is allowed.

c. The minus sign must be next to the most significant
character.

d. Only one decimal point is allowed.

e. Except for the cases mentioned above, only digits are
allowed.

f. A string made up of any combination of spaces, decimal
pOints and minus signs without at least one digit is not
allowed.

Whenever a new value is assigned to a numeric variable, it
is reformatted to have the format of that variable.

4.2 Character String Variables

Character strings have the following memory format:

oct oct asc asc asc asc asc asc asc asc asc asc asc asc asc oct
011 005 THE B ROW N FOX 0203

The first byte is called the logical length pointer and points to
the last character currently being used in the string (N in the
above example). The second byte is called the formpointer and
points to the first character currently being used in the string
(B in the above example). The use of the logical length pointer
and the formpointer in character strings will be explained in more
detail in the explanations of each character string handling
instruction. Basically, however, these pointers are the mechanism
through which the programmer deals with individual characters
within the string.

Programming Considerations:

The term physical length will be used to mean the number of
possible data characters in a string (13 in the above
example) •

The physical length of string variables is limited to 127.

4-2 DOS. DATABUS COMPILER

The logical length pointer will never be greater than the
physical length of the string.

The formpointer will always be between zero and the logical
length pointer.

A zero formpointer indicates a null string.

In the case of character string variables, the actual amount
of user's data area reserved is three bytes greater than the
physical length of the variable.

4.3 Common Data Areas

Since the interpreter has the prov~s~on to chain programs so
that one program can cause another to be loaded and run, it is
desirable to be able to carry common data variables from one
program to the next. The procedure for doing this is as follows:

a. Identify those variables to be used in successive
programs and in each program define them in exactly the
same order and way, (preferably at the beginning of each
program). The point in this is to cause each common
variable to occupy the same locations in each program.
Strange results in program execution usually occur if a
common variable is misaligned with respect to the
variable in the previous program.

b. For the first program to use the variables, define them
in the normal way. Then, for each succeeding program,
place an asterisk in each FORM, DIM, or INIT statement,
as illustrated below, to prevent those variables from
being initialized when the program is loaded into memory.

Examples:

MIKE
JOE
BOB

FORM
DIM
INIT

*4.2
*20
*"THIS STRING WON'T BE LOADED"

File declarations may not be made common between programs.
Mis-alignment in file declarations could easily cause catastrophic
destruction of the file structure under DOS. Therefore, whenever
a program is loaded, all logical files are initialized to being
closed and must be opened before any file 1/0 can occur. When
chaining between programs, one should always close all files in

CHAPTER 4. DATA DEFINITION 4-3

which new space could have been allocated and then re-open the
files in the next program.

4.4 FORM

This instruction is used to define numeric string variables.
They may be defined using one of the formats shown below:

1)
2)
3)
4)
5)

<label>
<label>
<label>
<label>
<label>

FORM
FORM
FORM
FORM
FORM

<dnum1>.<dnum2>
<dnum1>.
.<dnum2>
<dnum1>
<nlit>

where: <label> is a data label.
<dnum1> is a decimal number indicating the number of

digits that should precede the decimal point.
<dnum2> is a decimal number indicating the number of

digits that should follow the decimal point.
<nlit> is a literal of the form "<string>" (see section

2.5).

Programming Considerations:

<nlit> must be a valid numeric string (see section 4.1).

The initial value of variables defined using formats (1), (2),
(3) and (4) above will be zero.

A decimal point will be included as part of any value assigned
to variables defined using formats (1), (2) and (3) above.

The initial value of a variable defined using format (4) above
will be the value of the numeric string between the quotes.
(A decimal point found between the quotes will be included as
part of the initial value.)

The number of digits preceding the decimal point of a variable
defined using format (5) above, will be the same as the number
of digits preceding the decimal point in <nlit>.

The number of digits following the decimal point of a variable
defined using format (5) above, will be the same as the number
of digits following the decimal point in <nlit>.

Examples:

4-4 DOS. DATABUS COMPILER

FRACPART FORM
RATE FORM
AMOUNT FORM

O. 1
4.3
" 382.40 "

In these examples, the FORM instruction used to define RATE
will reserve space for four places before the decimal point, the
decimal point itself, and three places after the decimal point.
RATE can have as its value a numeric string which can cover the
range from 9999.999 to -999.999. The value of RATE will be
initialized to zero.

The FORM instruction used to define AMOUNT will reserve space
for four places ~before the decimal point, the decimal point
itself, and three places after the decimal point. AMOUNT can have
as its value a numeric string which can cover the range from
9999.999 to -999.999. The value of AMOUNT will be initialized to
382.400.

4.5 DIM

This instruction is used to define character string
variables. They may be defined using the format shown below:

<label> DIM <dnum>

where: <label> is a data label (see section 2.).
<dnum> is a decimal number indicating the number of

characters to be reserved for the variable.

Programming Considerations:

All of the characters of a variable defined with a DIM
statement will be initialized to spaces (octal 040).

The formpointer and logical length pointer will be initialized
to zero to indicate a null string.

Example:

STRING DIM 25

STRING will be defined to have a physical length of 25 and will
consume 28 bytes of the user's data area.

CHAPTER 4. DATA DEFINITION 4-5

4.6 INIT

This instruction is used to define character string variables
with an initial value. They may be defined using one of the
formats shown below:

1)
2)

<label> INIT
<label> INIT

<slit>
<list>

where: <label> is a data label (see section 2.).
<slit> is a literal of the form "<string>" (see section

2.5).
<list> is any combination Qf <slit> and <occ> (see section

2.5) elements separated by commas.

Programming Considerations:

<slit> must be a valid character string (see section 4.2).

The characters in the variable will be initialized to the
string appearing between the quotes.

The formpointer will point to the first character of the
string.

The logical length pointer will point to the last character of
the string.

Use of a colon for continuation of the statement on the next
line is not allowed.

Examples:

TITLE INIT "PAYROLL PROGRAM"

TITLE will be defined to have a physical length of 15 bytes and
will consume 18 bytes of user's data area. The formpointer will
be set to 1 (pointing to the P) and the logical length pointer
will be set to 15 (pointing to the M).

TITLE INIT "PAYROLL PROGRAM",015,"A,B,C"

would initialize a string with a logical and physical length of 21
characters. The octal control character, 015, would appear after
the M in PROGRAM and before the characters A, comma, B, comma, C.

The octal control character feature is included mainly for
message switching applications and for allowing control of ASR

4-6 DOS. DATABUS COMPILER

Teletype compatible terminals. It is the responsibility of the
programmer to remember that some of these characters (000, 003,
011, and 015) are used for control purposes in disk files. More
importantly, these characters are used as control characters in
DISPLAY, KEYIN, and CONSOLE statements; and improper use of these
characters in such statements can result in invalid program
execution.

4.7 COMLST

This instruction is used to reserve space in the user's data
area to contain information for a RECV or SEND DATABUS
instruction. The general format of the statement is:

<label) COMLST <dnum)

where: <label) is a data label.
<dnum) is a decimal number between 1 and 64. This number

specifies the maximum number of variables that may
appear in a SEND or RECV instruction referencing
this COMLST variable.

Programming Considerations:

<dnum) must be a decimal number between 1 and 64 inclusive. A
<dnum) of 5 specifies that space is reserved in the user data
area variable to contain information for 5 variables.

The space allocated is 8+2*(dnum) bytes. The eight bytes are
used to contain status and control information and the
2*(dnum) bytes are used to contain the addresses of the
variables (2 bytes each) that may appear in SEND or RECV
statement referencing this COMLST.

Example:

A COMLST 5 (reserves 8+2*5= bytes of user data area.)

CHAPTER 4. DATA DEFINITION 4-7

CHAPTER 5. FILE DECLARATION

A file declaration statement defines a logical file by
reserving space in the user's data area for the DOS system
information about the disk file being used. Note that since
logical file information is stored in the user's data area, the
user may have any number of logical files active at anyone time
providing his data area will contain all of the necessary
information.

5.1 FILE

This is the instruction which is used to reserve space in the
user's data area for files that will be used for physically or
randomly sequential aCQessing. The general format of the
statement is as follows:

<label> FILE

where: <label> is a data label (see section 2.).

Programming Considerations:

The <label> must be used in all disk 1/0 statements that will
reference this particular logical file.

Each use of this statement causes 17 bytes of data area to be
consumed. This area is used to store:

a) the 15 bytes used in the DOS logical file table,

b) a space compression counter, and

c) a flag indicating that these are physically-random or
sequential-access-only files.

Example:

INFILE FILE

The label INFILE will be used in all disk 1/0 statements that are
to use this particular logical file.

CHAPTER 5. FILE DECLARATION 5-1

5.2 IFILE

This is the instruction which is used to reserve space in the
user's data area for files that will be used for
indexed-sequential file accessing. The general format of the
statement is as follows:

<label> IFILE

where: <label> is a data label (see section 2.).

Programming Considerations:

The <label> must be used in all disk 1/0 statements that will
reference this particular logical file.

Each use of this statement causes 26 bytes of data area to be
consumed. This area is used to store:

a) the information that the FILE declaration stores,

b) three 3-byte pointers for use by the indexed-sequential
access method. These pointers point to:

Example:

1. the beginning of the last record accessed (for
updating operations),

2. the next sequential key (for sequential by key
accessing), and

3. information in the DOS R.I.B. of the index file (used
in all accessing operations).

ISAMFILE IFILE

The label ISAMFILE will be used in all disk 1/0 statements which
are to use this particular logical file.

5-2 DOS. DATABUS COMPILER

5.3 RFILE

This instruction is identical to the FILE declaration except
that the RFILE instruction defines a logical file that will
reference a file at a remote station instead of at the central
station.

5.4 RIFILE

This instruction is identical to the IFILE declaration except
that the RIFILE instruction defines a logical file that will
reference a disk file at a remote station instead of at the
central station.

CHAPTER 5. FILE DECLARATION 5-3

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS

The interpreter normally executes statements starting with
the first executable statement and sequentially from there. The
program control instructions allow this flow of control to be
altered. Some of these instructions may be executed conditionally
depending on whether a condition flag is set to true or false (see
section 6.1).

6.1 Condition Flags

There are four condition flags set by the interpreter: OVER,
LESS, ZERO (the mnemonic EQUAL is also accepted), and EOS. These
flags are set to true or false, depending on the results of some
of the instructions. For more details on which flags are set and
when they are set, see the sections that describe the instructions
individually.

6.2 GOTO

The GOTO statement causes the flow of program control to jump
to the place in the program indicated in the GOTO statement. The
format of the .statement may be one of the following:

1)
2)
3)

<labeI1> GOTO
<labeI1> GOTO
<labeI1> GOTO

<labeI2>
<labeI2> IF <flag>
<labeI2> IF NOT <flag>

where: <labeI1> is an execution label (see section 2.).
<labeI2> is an execution label.
<flag> is one of the condition flags (see section 6.1).

Programming Considerations:

<labeI1> is optional.

<labeI2> must be a label on the executable statement where
program control is to be transfered.

The condition flags are unchanged by the execution of this
statement.

A GOTO statement with format (2) will transfer control (to the

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-1

statement with <labe12» only if the specified condition flag
is set to true; otherwise, program control continues in a
sequential fashion.

A GOTO statement with format (3) will transfer control only if
the specified condition flag is set to false.

Example:

GOTO CALC

causes control to be transferred to the instruction labeled CALC.

Example:

GOTO CALC IF OVER

will transfer control to the instruction labe~ed CALC if the OVER
flag is set to true. Otherwise, the instruction following the
GOTO is executed.

Example:

GOTO CALC IF NOT OVER

meaning control is transferred only if the OVER flag is set to
false.

6.3 BRANCH

The BRANCH instruction transfers control to a statement
specified by an index. The general form of the statement is as
follows:

<label> BRANCH <index><prep><list>

where: <label> is an execution label (see section 2.).
<index> must be a numeric variable.
<prep> may be any valid preposition (see section 2.).
<list> is a list of execution labels separated by commas.

Programming Considerations:

The label is optional.

The condition flags are unchanged by the execution of this
instruction.

6-2 DOS. DATABUS COMPILER

The value of the index is unchanged by the execution of this
instruction.

The index points to the label in the list where control is to
be transfered.

If the index is n, then control is transfered to the nth label
in the list. For example: if the index is 1, control is
transfered to the first label in the list; if the index is 2,
control is transfered to the second label in the list; and so
on.

If the index is negative, zero, or larger than the number of
labels in the list; then control continues in a sequential
fashion.

If the index is a non-integer number, then only the digits
preceding the decimal point are used while indexing into the
list. For example: 1.50 is treated as if it were a 1, 1.99
is treated as if it were a 1, 2.00 is treated as if it were a
2, and 2.49 is treated as if it were a 2.

The list may be continued on the next line by using a colon in
place of one of the commas.

Example:

BRANCH N OF START,CALC,POINT

If N = 1, then this BRANCH would be equivalent to a GOTO START. N
= 2 would mean GOTO CALC while N = 3 would mean GOTO POINT.

6.4 CALL

The CALL instruction causes a subroutine to be executed after
saving a pointer to the instruction immediately following the CALL
instruction. When the subroutine is finished executing, it may
then use the pointer that was saved to continue execution where it
left off (see section 6.5). Using subroutines allows the same
group of statements to be executed at many places in the user's
program, simply by CALLing the subroutine. The format of the
statement may be one of the following:

1)
2)
3)

<labe11> CALL
<label1> CALL
<labe11> CALL

CHAPTER 6.

<labe12>
<labe12> IF <flag>
<labe12> IF NOT <flag>

PROGRAM CONTROL INSTRUCTIONS 6-3

where: <labeI1> is an execution label (see section 2.).
<labeI2> is an execution label.
<flag> is one of the condition flags (see section 6.1).

Programming Considerations:

<labeI1> is optional.

<labeI2> must be a label on the first instruction of the
subroutine to be executed.

The condition flags are unchanged by the execution of this
statement.

The return address (the pOinter to the instruction immediately
following the CALL statement) is saved by pushing it onto the
subroutine call stack.

The subroutine call stack is eight levels deep. This means
that, unless an entry is cleared from the stack (typically by
a RETURN instruction), a stack overflow error will occur when
the ninth CALL instruction is executed.

Note that if a page swap is invoked by the subroutine CALL,
then CALLing the subroutine is considerably more time
consuming than executing the code in line. The space used for
Databus programs is virtual in nature to allow very large
programs. This means that pages of the user's program must be
swapped in and out of memory. If a subroutine happens to be
on a different page than a CALL to that subroutine, then a
page swap may become necessary. Therefore, in many cases it
can be better to put code in line instead of making it a
subroutine, especially if the amount of code is quite small
(say, less than a dozen lines). This is a trade-off which
should be considered when one is dealing with code that will
be executed very often.

Execution of a CHAIN statement will clear the subroutine call
stack.

A CALL statement with format (2) will call the subroutine only
if the specified condition flag is set to true; otherwise,
program control continues in a sequential fashion.

A CALL statement with format (3) will call the subroutine only
if the specified condition flag is set to false.

6-4 DOS. DATABUS COMPILER

Example:

CALL FORMAT

will execute the subroutine FORMAT.

Example:

CALL XCOMP IF LESS

will execute the subroutine XCOMP if the LESS flag is set to true.

6.5 RETURN

The RETURN instruction is used to return from a subroutine
when execution of that subroutine is completed. This statement
may have one of the following formats:

1)
2)
3)

<label>
<label>
<label>

RETURN
RETURN IF <flag>
RETURN IF NOT <flag>

where: <label> is an execution label (see section 2.).
<flag> is a condition flag (see section 6.1).

Programming Considerations:

<label> is optional.

Control is returned to the instruction pointed to by the top
element on the subroutine call stack.

The condition flags are unchanged by the execution of this
statement.

A RETURN with format (2) will return control only if the
specified condition flag is set to true; otherwise, program
control continues in a sequential fashion.

A RETURN with format (3) will return control only if the
specified condition flag is set to false.

Example:

RETURN

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-5

will transfer control to the instruction pointed to by the top
element of the subroutine call stack.

Example:

RETURN IF ZERO

will transfer control to the instruction pointed to by the top
element of the subroutine call stack only if the ZERO flag is set
to true.

6.6 ACALL

The ACALL instruction is used to invoke an Assembler language
routine. The individual interpreter manual should be consulted
for the particular implementation. The format of the instruction
is:

<label> ACALL <svar><prep><nslist>

where: <label> is an execution label.
<svar> is a string variable.
<prep> is a preposition.
<nslist>is a list of numeric or character string variables

separated by a comma (,). The list may be
continued on another line by placing a colon (:)
after the last variable on the line to be
continued. These variables are available to the
Assembler routine.

Programming Considerations:

<label> is optional.

<svar> may be any string variable defined in the user's
program. This variable is used by the interpreter before
execution of the user's Assembler routine takes place.

<nslist> is optional.

<nslist> must consist of character string or numeric variables.

Example:

A DIM 10

6-6 DOS. DATABUS COMPILER

B
C

6.7 STOP

INIT
FORM
ACALL

"12345"
"6.725"
A,B,C

The STOP instruction is the normal manner of terminating the
execution of a Databus program. See the manual on the interpreter
that you are using for more details on the action taken when a
STOP is executed. Typically, executing a STOP instruction is
equivalent to executing a CHAIN to the MASTER program for the port
executing the STOP. This statement may have one of the following
formats:

1)
2)
3)

<label>
<label>
<label>

STOP
STOP IF <flag>
STOP IF NOT <flag>

where: <label> is an execution label (see section 2.).
<flag> is a condition flag (see section 6.1).

Programming Considerations:

<label> is optional.

Typically executing a STOP is equivalent to executing a CHAIN
to the MASTER program for the port executing the STOP.

See the manual on the interpreter executing the STOP
instruction for the details on the action taken when the STOP
is executed.

A STOP with format (2) will terminate only if the specified
condition flag is set to true; otherwise, program control
continues in a sequential fashion.

A STOP with format (3) will terminate only if the specified
condition flag is set to false.

Example:

STOP

will cause program execution to terminate normally.

Example:

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-7

STOP IF NOT EQUAL

will cause program execution to terminate normally only if the
ZERO flag is set to false. Note that EQUAL is just another name
for the ZERO flag.

6.8 CHAIN

This instruction is used to cause a Databus program (other
than the one currently being executed) to be loaded and executed.
One of the following general formats may be used:

1)
2)

<label> CHAIN
<label> CHAIN

<slit>
<svar>

where: <label> is an execution label (see section 2.).
<slit> is a literal of the form "<string>" (see section

2.5).
<svar> is a string variable (see section 4.2).

Programming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

The value of <svar> is unchanged by the execution of this
instruction.

Only those DOS files that have an extension of IDBC can be
loaded and executed.

Control is passed to the first executable statement of the
program that is to be loaded and executed.

The string literal, when using format (1), specifies the DOS
name of the Databus program to Ibe executed.

The string variable, when using format (2), specifies the DOS
name of the Databus program to be executed.

The extension is not furnished by the string literal or string
variable. (/DBC is assumed as the extension.)

One of the following rules is used to build the DOS name from
the string in the string variable or string literal:

6-8 DOS. DATABUS COMPILER

a) The characters used start with the formpointed character
and continue until eight characters have been obtained, or

b) if the logical end of string is reached before eight
characters have been obtained, the remainder of the eight
characters are assumed to be blanks.

The character used to specify the drive number is obtained
from the string variable or string literal using one of the
following rules:

a) If (a) above is used to obtain the name, then the
character after the eighth character is used as the drive
specification, or

b) If (b) above is used to obtain the name, then the
character following the one pointed to by the logical
length pointer is used as the drive specification, or

c) If the last character obtained from the string is
physically the last character in the string, then the
drive number is unspecified.

If the character used as the drive specification is not an
ASCII digit (0 through 9), then all drives will be searched
for the file (starting with drive 0 and ending with the
highest numbered drive that is on-line).

If the drive number is unspecified, all drives will be
searched for the file (starting with drive 0 and ending with
the highest numbered drive that is on-line).

If the character used as the drive specification is an ASCII
digit, then only the drive with that number will be searched
to find the file.

Shift key inversion is enabled when a CHAIN instruction is
executed (see section 9.1.3.15).

The trap locations are cleared after a CHAIN instruction is
executed (see section 6.9).

The condition flags are all set to false by the execution of
this statement.

All logical files that are open when a CHAIN instruction is
executed, are closed without space deallocation (see section
12.3.2). Closing the files does not automatically write an

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-9

end-of-file mark.

The subroutine call stack is cleared by the execution of this
statement (see section 6.4).

Assume that the following statement is used to define NXTPRGM
for all of the following examples:

NXTPRGM INIT "PAYROLL11"

Example: ,

RESET NXTPRGM TO 9 SET THE LOGICAL
LENGTH POINTER TO 9

RESET NXTPRGM TO 4 SET THE FORMPOINTER TO 4
CHAIN NXTPRGM

this CHAIN instruction will try to load and execute a program
named ROLL11/DBC from any drive on which it can be found.

Example:

RESET
LEN SET

RESET
CHAIN

NXTPRGM TO 8
NXTPRGM

NXTPRGM TO 4
NXTPRGM

SET THE LOGICAL
LENGTH POINTER TO 8

SET THE FORMPOINTER TO 4

this CHAIN instruction will try to load and execute a program
named ROLL1/DBC from drive 1.

Example:

RESET
LENSET

RESET
CHAIN

NXTPRGM TO 8
NXTPRGM

NXTPRGM TO
NXTPRGM

SET THE LOGICAL
LENGTH POINTER TO 8

SET THE FORMPOINTER TO 1

this CHAIN instruction will try to load and execute a program
named PAYROLL1/DBC from drive 1.

6-10 DOS. DATABUS COMPILER

Example:

RESET

RESET
CHAIN

NXTPRGM TO 9

NXTPRGM TO 1
NXTPRGM

SET THE LOGICAL
LENGTH POINTER TO 9

SET THE FORMPOINTER TO 1

this CHAIN instruction will try to load and execute a program
named PAYROLL1/DBC from drive 1.

Example:

RESET
LEN SET

RESET
CHAIN

NXTPRGM TO 7
NXTPRGM

NXTPRGM TO
NXTPRGM

SET THE LOGICAL
LENGTH POINTER TO 7

SET THE FORMPOINTER TO 1

this CHAIN instruction will try to load and execute a program
named PAYROLL/DBC from drive 1.

Example:

RESET
LEN SET

RESET
CHAIN

NXTPRGM TO 3
NXTPRGM

NXTPRGM TO
NXTPRGM

SET THE LOGICAL
LENGTH POINTER TO 3

SET THE FORMPOINTER TO 1

this CHAIN instruction will try to load and execute a program
named PAY/DBC from any drive on which it can be found.

6.9 TRAP

TRAP is a unique instruction; because rather than taking
action at the time it is executed, it specifies a transfer
location for an event which mayor may not occur during later
execution. This statement has the following general format:

<labeI1> TRAP <labeI2> IF <event>

where: <labe11> is an execution label (see section 2.).
<labeI2> is an execution label.
<event> is one of the following: PARITY, RANGE, FORMAT,

CFAIL or IO.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-11

Programming Considerations:

<labeI1> is optional.

<labe12> must be the label on the statement where control will
be transfered if the specified event occurs.

The condition flags are unchanged by the execution of this
instruction.

The following trapable events may occur:

a) PARITY - this event is caused by a disk CRC error during a
READ (see section 12.3.3) or the verification phase of a
WRITE (see section 12.3.4). DOS retries several times to
get a good CRC before causing this event.

b) RANGE - this event occurs when a record number is out of
range. Typically this occurs when an attempt is made to
read a record that has never been written. The DOS RANGE
and FORMAT traps will cause a Databus RANGE trap.

c) FORMAT - this event occurs when an attempt
Don-numeric data into a numeric variable.
at the list item in error so that the rest
items will not be changed. Note that this
not the same as the DOS FORMAT trap.

is made to read
The read stops
of the list
FORMAT trap is

d) CFAIL - this event occurs when an attempt to CHAIN to
another program cannot be completed or when an attemot to
execute a ROLLOUT cannot be completed. Typically this
occurs when attempting to CHAIN to a program that does not
exist.

e) 10 - this event occurs when a disk 1/0 error occurs (for
more details about these 1/0 errors, see the user's guide
of the appropriate interpreter). Typically this trap is
used only for detecting whether a file exists or not. It
is a good idea to keep this trap clear whenever it is not
being used specifically to detect the presence of a file.
This will prevent confusion if one of the other conditions
occurs.

Example:

TRAP PREP IF 10
OPEN FILE,"DATA"

6-12 DOS. DATABUS COMPILER

PREP

NSI

GOTO
PREPARE
RETURN
TRAPCLR

NSI
FILE,"DATA"

10

The only action taken at the time that the TRAP instruction is
executed is to save a pointer to the statement with <labeI2>.
<event> specifies which trap.

Any traps that have been set, remain set until they are
cleared.

If an event occurs and the trap is not set, the action taken
depends upon the interpreter (see the user's guide for the
interpreter you are using). Typically an error message is
displayed and a CHAIN to that port's MASTER program occurs.

If an event occurs and the trap is set, then the action taken
is as follows:

a) The control transfer is equivalent to executing a
CALL <labeI2>

instruction.

b) This pseudo-CALL statement is executed as if it had been
inserted immediately after the statement which caused the
event to occur.

Whenever a certain event is trapped, the trap for that event
is cleared. This- means that, if the event is to be trapped
again, another TRAP instruction will have to be executed to
reset the trap.

Note that all of the traps are cleared whenever a CHAIN
occurs. Therefore, each program must initialize all of the
traps it wishes to use.

Example:

TRAP EMSG IF PARITY

specifies that control should be transferred to EMSG if a parity
failure is encountered during a READ or WRITE instruction.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-13

6.10 TRAPCLR

This instruction will clear the specified trap. This
statement has the following general format:

<label> TRAPCLR <event>

where: <label> is an execution label (see section 2.).
<event> is one of the following: PARITY, RANGE, FORMAT,

CFAIL or 10. (For an explanation of each of the
events, see section 6.9.)

Programming Considerations:

<label> is optional.

The condition flags are unchanged by the execution of this
instruction.

Example:

TRAPCLR PARITY

will clear the parity trap previously set.

6.11 ROLLOUT

The ROLLOUT feature allows the execution of all programs to
be temporarily suspended while a DOS command line is executed.
This instruction is particularly useful when 1) a file needs to
be sorted using the DOS SORT utility, 2) an index file needs to
be created using the DOS INDEX utility, or 3) a file needs to be
re-indexed using the DOS INDEX utility. This statement may have
one of the following formats:

1)
2)

<label> ROLLOUT
<label> ROLLOUT

<svar>
<slit>

where: <label> is an execution label (see section 2.).
<svar> is a string variable (see section 4.2).
<slit> is a literal of the form "<string>" (see section

2.5).

Programming Considerations:

<label> is optional.

6-14 DOS. DATABUS COMPILER

<slit> must be a valid character string (see section 4.2).

The value of <svar> is unchanged by the execution of this
instruction.

The string variable, when using format (1), specifies the DOS
command line to be executed.

The string literal, when using format (2), specifies the DOS
command line to be executed.

Since there are some minor differences in the way the ROLLOUT
instruction is executed, the user should consult the user's
guide of the interpreter he is using.

The characters used to build the DOS command line are taken
one at a time from the string; from the first character to the
last character, as defined below.

a) The first character of the DOS command line is the
formpointed character.

b) The last character of the DOS command line precedes the
first occurance of one of the following characters:

1. a character with a value less than 040 (octal), or

2. the vertical bar character (0174 octal), or

3. a character with its sign bit set. The physical
end-of-string character, 0203 (octal), fits into this
category.

In the normal case, this means the string used will be that
from under the formpointer up through the physical end of the
string. To use a string that is shorter than the physical
length of the variable, a vertical bar should be stored in the
appropriate position.

A CFAIL trap will occur if the string variable is nUll.

See the user's guide of the appropriate interpreter for other
causes of CFAIL traps when attempting a ROLLOUT.

When the ROLLOUT instruction is executed the following actions
are taken:

a) Everything necessary to restore the interpreter to its

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-15

previous state is saved on disk.

b) DOS is then brought up at the console.

c) The operator at the console loses the information that was
on the screen at the time of the ROLLOUT.

d) The DOS command line (obtained f~om the string variable or
literal) is then supplied to the DOS command interpreter
exactly as if it had been keyed in from the console.

To return the interpreter to the state it was in previous to
the ROLLOUT, the interpreter's rollout return program should
be executed. (For more details about the rollout return
program, see the user's guide of the appropriate interpreter.)
In the remainder of this manual the rollout return program
will be refered to as DSBACK/CMD, or more simply DSBACK.

To execute the rollout return program, the name of the DSBACK
command should be entered as a DOS command line. Generally
this will cause the following actions:

a) DSBACK re-initializes the console screen. This does not
return the screen to the display condition it was in
before the ROLLOUT. That screen image is lost.

b) The information that was saved on disk by the ROLLOUT is
then used to restore the interpreter to its previous
state.

c) All ports are returned to their previous point of
execution when the ROLLOUT occurred.

d) Execution of the program that caused the ROLLOUT is
continued with the instruction follow~ng the ROLLOUT
instruction.

The condition flags are restored by DSBACK.

The execution of a ROLLOUT may be very inconvenient to the
users at other ports since execution of their programs will be
suspended for an indefinite period of time. Unless told that
a ROLLOUT has occured, users at the other ports will not know
what is happening. Since their terminals appear inactive,
they may think the system has gone down for some other reason.
Thus, consideration of other system users should be kept in
mind when a ROLLOUT is used.

6-16 DOS. DATABUS COMPILER

The system clock is restored to the value it had before the
ROLLOUT occured. This means that every time a ROLLOUT occurs
the clock will lose time. In those environments where it is
necessary for the system clock to be accurate, the rollout
return program which includes time and date initialization
should be used instead of DSBACK. In the remainder of this
manual the rollout return program which includes time and date
initialization will be refered to as DSBACKTD/CMD or more
simply DSBACKTD (for more details see the user's guide of the
appropriate interpreter). Note that, DSBACKTD functions the
same as DSBACK with the exception that the new time and date
are requested before restoring the interpreter. This rollout
return program requires the operator to be at the console to
enter the time and date.

** WARNING ** The operations that were taking place under the
interpreter must not be modified in any way. One of the items
saved on disk when a ROLLOUT occurs is an image of the DOS
file structure as it was under the interpreter. If the DOS
file structure is changed by a program executing under DOS,
then the image saved on disk may not be accurate any longer.
If this image is no longer accurate when the interpreter is
restored, terrible things may happen to the DOS file structure
as well as the interpreter system. Some precautions that
should be considered while executing under DOS are listed
below.

a) The MASTER and ANSWER programs must not be re-compiled.

b) Any file that is open at the time when a ROLLOUT occured
must not be modified or deleted.

c) The object code of any program that was executing when the
ROLLOUT occured must not be changed.

d) The disks that contain any files in use by the interpreter
must not be moved to another disk drive.

e) The disks that contain any files in use by the interpreter
must not be removed from the disk drive.

Other operators using a Datashare system should be notified
when a ROLLOUT is about to occur. This courtesy' will prevent
frustration when the other operators begin getting no
response.

Rolling out to the configuration program (for details see the
appropriate interpreter manual) has no effect on the system

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-17

configuration when DSBACK is used to restart the interpreter.

Example:

Assume that a Databus program has built two files, AFILE/TXT and
CFILE/TXT. Also, assume that these files need to be sorted.

This can be accomplished by building the following file named
ROLCHAIN/TXT.

SORT AFILE,BFILE
SORT CFILE,DFILE
DSBACK

then executing the following instruction.

ROLLOUT "CHAIN ROLCHAIN"

This would cause execution of the interpreter to be suspended, and
the following DOS command to be executed (for more details on the
DOS CHAIN command, see the DOS user's guide).

CHAIN ROLCHAIN

Executing this command would then cause the commands in the file
ROLCHAIN/TXT to be executed one after another. First, the file
AFILE/TXT would be sorted and and then written into file
BFILE/TXT. Second, the file CFILE/TXT would be sorted and then
written into file DFILE/TXT. And last, the DSBACK command would
be executed to cause execution of the interpreter to be continued.

Note that if DSBACK had not been included in the chain file
the operator would have had to restore the system. Also note that
if, for any reason, the chain file did not go to completion; theri
the operator would have had to execute the DSBACK command from the
console.

6.12 PI

This instruction (Prevent Interruptions) enables the
programmer to prevent his background program from being
interrupted for up to 20 Databus instruction executions. It is
particularly useful in preventing any other port from modifying a
disk record while that record is in the process of being updated
(see appendix D). This instruction has the following general
format:

6-18 DOS. DATABUS COMPILER

<label> PI <dnum>

where: <label> is an execution label (see section 2.).
<dnum> is a decimal number.

Programming Considerations:

<label> is optional.

<dnum> must be between 1 and 20, inclusive.

<dnum> specifies the number of Databus instructions to be
executed before allowing an interuption. The PI instruction
is not included as one of these instructions.

The PI instruction may be used to postpone any of the
following background interuptions:

a) the keyboard interruption procedure (see section 9.1.5.3),

b) by a higher priority execution being requested on another
port (caused by the termination of a foreground process),
or

c) by the port using up its share of the background time.

This instruction has no effect upon the hardware one
millisecond interrupt used to perform all port and printer
I/O.

The number of instructions specified in the PI instruction is
always a fixed decimal number (it may not be a numeric
variable).

If interrupts are prevented; the execution of any instruction
that causes background to wait for I/O to finish will cancel
the effect of the PI instruction. DISPLAY, KEYIN, CONSOLE and
PRINT are examples of instructions that cause background to
wait for I/O to finish.

If a PI instruction is executed while interruptions are
already prevented, execution of that program is aborted. This
prevents a program from being able to prevent interruptions
for more than 20 instruction executions.

Note that the PI instruction can only prevent those interrupts
that are under control of the interpreter. The PI instruction
cannot be used to prevent interruptions such as power failures

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-19

or the system operator restarting the processor. This means
-that when designing complex data file structures, the
programmer should take care that any interruptions will do as
little harm as possible. The PI instruction is primarily
useful in preventing interruptions (such as the typist bumping
the interupt key or a different port modifying the critical
record) while modifying records that are critical to
maintaining the file structure. .

Example:

PI
READ
SUB
GOTO
UPDATE

4
F,KEY;PN,QTYONH,LOD
QTYFROM GTYONH
NOTNUFF IF LESS
F;PN,QTYONH,LOD

Interruptions will be prevented from the PI instruction through
the UPDATE instruction. Note that no other Datashare port can
modify the record being updated until this port has completed its
modification of the record. Using this technique, more than one
port can reference the "QuanTitY ON Hand" and receive an
up-to-date answer.

6.13 TABPAGE

This instruction is used to force sections of a program to
begin at the first of an object code page. Execution speed can be
enhanced in this way by reducing object code page accesses. This
instruction has the following general format:

<label> TABPAGE

where: <label> is an execution label (see section 2.).

Programming Considerations:

<label> is optional.

A page of object code is 250 bytes long. Page boundaries can
be detected in the listing of a program by looking at the
three least significant digits of the location counter and
noting one of the following:

a) a location counter change from 772 (octal) to 001 (octal),
or

6-20 DOS. DATABUS COMPILER

b) a location counter change from 372 (octal) to 401 (octal).

Compilation of a TABPAGE instruction forces the instruction
following the TABPAGE to be put at the first of the next page
of object code.

Execution of a TABPAGE instruction causes control to be
transferred to the first byte of the next page.

Note that liberally scattering TABPAGE instructions throughout
a user program will in general not result in an increase in
execution speed. Instead, the usual effect is to increase the
ra~e of thrashing of the program.

TABPAGE is best used to force tight loops to reside entirely
within one or two pages.

6.14 DSCNCT

The DSCNCT instruction is the normal method for a program to
terminate when executing as a remote slave port. This instruction
has the following general format:

<label> DSCNCT

where: <label> is an execution label (see section 2.).

Programming Considerations:

<label> is optional.

The DSCNCT instruction causes the following actions:

a) All telephone communication activities are terminated.

b) The telephone is hung up.

c) The remote station is returned to DOS.

d) The equivalent of a CHAIN to the ANSWER program is
executed.

CHAPTER 6. PROGRAM CONTROL INSTRUCTIONS 6-21

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS

The character string handling instructions are used to change
the contents of character strings, or the string attributes
(Logical Length, Formpointer). Generally all string handling
instructions have 'the following form:

<label> <opel"> <soper><prep><doper>

where: <label> is an execution label.
<opel"> is the string operation.
<soper> is the source operand.
<prep> is a preposition.
<doper> is the destination operand.

The reader should be familiar with the various DATABUS data
types. This information is contained in chapter 4. and should be
read before continuing.

7.1 MOVE

The MOVE instruction transfers the contents of the source
string into the destination string. Four (4) different types of
move operations are defined:

1) MOVE character string to character string.
2) MOVE character string to numeric string.
3) MOVE numeric string to character string.
4) MOVE numeric string to numeric string.

The first three (3) MOVE operations will be discussed in this
chapter, the fourth type will be discussed in Chapter 8 on
Arithmetic Instructions.

7.1.1 MOVE (character string to character string)

This MOVE instruction transfers the contents of the source
operand into the destination operand. ,This instruction has the
following formats:

1)
2)

<label> MOVE
<label> MOVE

<ssvar><prep><dsvar>
<slit><prep><dsvar>

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-1

where: <label>
<ssvar>
<prep)
<dsvar>
<slit>

is an execution label.
is the source string variable.
is a preposition.
is the destination string variable.
is the source string literal.

Programming Considerations:

<label> is optional.

Transfer from the source string starts with the character
under the formpointer and continues through the logical length
of the source string.

Transfer into the destination string starts at the first
physical character. When transfer is complete, the
formpointer of the destination string is set to one and the
logical length points to the last character moved.

The EOS flag is set if the ETX in the destination string would
have been overstored. Transfer stops with the character that
would have overstored the ETX.

A null source string (formpointer=O) will cause:

a. the destination variable formpointer to be set to zero.

b. no characters are moved.

c. the length pointer of the destination variable is not
changed.

Example:

VAR LL FP Contents

STRING1
STRING2

6 1
6 1

ABCDEF
DOGCAT

ETX
ETX

MOVE STRING1 TO STRING2

The following variable(s) will be changed:
STRING2 6 1 ABCDEF ETX
The following flag(s) will be set: None

Example:

7-2 DOS. DATABUS COMPILER

STRING1
STRING2

4 2
6 3

ABCDXLM
DOGCAT

ETX
ETX

MOVE STRING1 TO STRING2

The following variable(s) will be changed:
STRING2 3 1 BCDCAT ET~
The following flag(s) will be set: None

Example:

STRING1
STRING2

4 2
6 3

ABCDXLM
DOGCAT

ETX
ETX

MOVE "HELLO" TO STRING2

The following variable(s) will be changed:
STRING2 5 1 HELLOT ETX
The following flag(s) will be set: None

Example:

STRING1
STRING2

7 2
4 3

ABCDEFG
HIJKL

ETX
ETX

MOVE STRING1 TO STRING2

The following variable(s) will be changed:
STRING2 5 1 BCDEF ETX
The following flag(s) will be set: EOS

Example:

STRING1
STRING2

7 0
4 3

ABCDEFG
HIJKL

ETX
ETX

MOVE STRING1 TO STRING2

The following variable(s) will be changed:
STRING2 4 0 HIJKL ETX
The following flag(s) will be set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-3

7.1.2 MOVE (character string to numeric string)

This MOVE transfers the contents of the source character
string to the destination numeric string. The instruction has the
following formats:

1)
2)

where:

<label> MOVE
<label> MOVE

<ssvar><prep><dnvar>
<sslit><prep><dnvar>

<label>
<ssvar>
<prep>
<dnvar>
<sslit>

is an execution label.
is the source string variable.
is a preposition.
is the destination numeric variable.
is the source string literal.

Programming Considerations:

<label> is optional.

A character string will be moved to a numeric string only if
. the portion of the character string from the formpointer
through the logical length is of valid numeric format (at most
one decimal point, sign, and digits only).

The transfer from the source string starts at the formpointer
and proceeds through the logical length of the source string.

The source character string will be reformatted and rounded to
fit the destination numeric string.

If any of the most significant digits or sign is lost in the
process of truncation, then the OVER flag is set and the
destination numeric variable is not changed.

A null source string (formpointer=O) will result in the
destination variable not being changed.

Example:

VAR LL FP Contents

STRING
NU~1BER

9 3
0200

AB100.327
_39.00

MOVE STRING TO NUMBER

ETX
ETX

The following variable(s) will be changed:
NUMBER 0200 100.33 ETX

7-4 DOS. DATABUS COMPILER

The following flag(s) will be set: None

Example:

STRING1
NUMBER

9 3
0200

AB10X.327
_39.00

ETX
ETX

MOVE STRING1 TO NUMBER

The following variable(s) will be changed: None
The following flags will be set: None

Example:

NUMBER 0200 12345.3 ETX

MOVE "935" INTO NUMBER

The following variable(s) will be changed:
NUMBER 0200 935.0 ETX
The following flag(s) will be set: None

Example:

STRING
NUMBER

5 0
0200

ABCDE
_935.0

MOVE STRING TO NUMBER

ETX
ETX

The following variables will be changed' None
The following flag(s) will be set: None

7.1.3 MOVE (numeric string to character string)

This instruction transfers the contents of the source numeric
string to the destination character string. The instruction has
the following formats:

1)
2)

where:

<label> MOVE
<label> MOVE

<snvar><prep><dsvar>
<nlit><prep><dsvar>

<snvar>
<prep>
<dsvar>
<nlit>

is the source numeric variable
is a preposition.
is the destination character string variable.
is a numeric literal.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-5

Programming Considerations:

<label> is optional.

Transfer from the source numeric string starts with the first
character of the string and continues until the ·source numeric
ETX is reached or until the ETX of the destination string is
about to be overstored.

Transfer into the destination character string begins with the
first physical character and continues until either the source
string ETX is encountered or the destination character string
ETX is about to be overstored.

The formpointer is set to one (1) and the logical length is
set to point to the last character transferred into the
destination string.

The EOS flag is set if the ETX would have been overstored in
the destination character string. The transfer stops with the
character before the one that would have overstored the ETX.

Example:

VAR LL FP Contents

NUMBER
STRING2

0200
9 3

100.33
AB100.327

ETX
ETX

MOVE NUMBER TO STRING2

The following variable(s) will be changed:
STRING2 6 1 100.33327 ETX
The following flag(s) will be set: None

Example:

NUMBER
STRING2

0200
5 3

10.35789
ABCDE

ETX
ETX

MOVE NUMBER TO STRING2

The following variable(s) will be changed:
STRING2 5 1 10.35 ETX
The following flag(s) will be set: EOS

7-6 DOS. DATABUS COMPILER

7.2 APPEND

APPEND appends the source string (character or numeric) to
the destination string. The instruction has the following
formats:

1)
2)
3)

<label>
<label>
<label>

APPEND
APPEND
APPEND

<ssvar~<prep><dsvar>
<snvar><prep><dsvar>
<slit><prep><dsvar>

where: <label> is an execution label.
<ssvar> is the source string variable.
<prep> is a preposition.
<dsvar> is the destination string variable.
<snvar> is the source numeric variable.
<slit> is the source string literal.

Programming Considerations:

<label> is optional.

The portion of the source defined by one of the following:

1) For source character strings, the formpointed
character through the logical length of the source
character string.

2) For numeric strings, the first character through the
physical end of string (ETX)

is appended to the destination character string.

The source string is appended starting after the formpointed
character in the destination string.

The source string pointers are not changed.

The destination string formpointer and logical length point to
the last character transferred.

The EOS flag is set if the portion of the source string that
is to be moved cannot be contained in the destination string.
All of the characters that will fit, will be appended.

Example:

VAR LL FP Contents

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-7

STRING1
STRING2

8 6 JOHN_DOE ETX
11 11 MARY_JONES ______ ETX

APPEND STRING1 TO STRING2

The following variable(s) will be changed:
STRING2 14 14 MARY JONES DOE ETX
The following flag(s)-will be set: None

Example:

STRING2 08 09 MARY_JON ES ___ , ___ ETX

APPEND ".XX.YY." TO STRING2

The following variable(s) will be changed:
STRING2 15 15 MARY JONE.XX.YY. ETX
The following flag(s)-will be set: None

Example:

NUMBER
STRING2

0200
9 2

100.33
ABCDEFGHI

ETX
ETX

APPEND NUMBER TO STRING2

The following variable(s) will be changed:
STRING2 8 8 AB100.33I ETX
The following flag(s) will be set: None

7.3 MATCH

MATCH compares two character strings. The instruction has
the following formats:

1)
2)

<label> MATCH
<label> MATCH

<svar><prep><svar>
<slit><prep><svar>

where: <label> is an execution label.
<svar> is a string variable.
<prep> is a preposition.
<slit> is a string literal.

Programming Considerations:

<label> is optional.

7-8 DOS. DATABUS COMPILER

MATCH compares two character strings starting at the
formpointer of each string and stopping when the end of either
operand's string is reached.

The formpointers and length pointers of both strings are
unchanged.

The length of each string is defined to be:

length =,logical length - formpointer +

If all of the characters that are compared match, then the
EQUAL flag is set and the following computation is made:

L = (length of destination string) -
(length of source string)

The LESS flag is set to indicate that L is negative.

If all of the characters that are compared do not match, then
the following computation is made:

D = (octal value of first non matching destination
character) -
(octal value of first non matching source character)

The LESS flag is set if D is less than zero.

If either the source or destination string formpointer is zero
before the operation, then the LESS and EQUAL flags are
cleared and the EOS flag is set.

Example:

VAR LL FP Contents

STRING1 5 1 ABCDE ETX
STRING2 4 1 ABCD ETX

MATCH STRINGl TO STRING2

The following flag(s) will be set: EQUAL, LESS

Example:

STRING1 3 1 ABC ETX
STRING2 1 1 Z ETX

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-9

MATCH STRING1 TO STRING2

The following flag(s) will be set: None

Example:

STRING1 3 1 ZZZ ETX
STRING2 3 1 AAA ETX

MATCH STRING1 TO STRING2

The following flag(s) will be set: LESS

Example:

STRING1 6 4 XXXABC ETX
STRING2 5 3 YYABC ETX

MATCH STRING1 TO STRING2

The following flag(s) will be set: EQUAL

Example:

STRING2 5 1 ABCDE ETX

MATCH "ABCD" TO STRING2

The following flag(s) will be set: EQUAL

Example:

STRING2 5 0 ABCDE ETX

MATCH "ABCDE" TO STRING2

The following flag(s) will be set: EOS

7.4 CMOVE

The CMOVE instruction moves a character from the source
operand into the destination character string. The instruction has
the following formats:

1)
2)

<label> CMOVE
<label> CMOVE

<ssvar><prep><dsvar)
<char><prep><dsvar>

7-10 DOS. DATABUS COMPILER

where: <label> is an execution label.
<ssvar> is the source string variable.
<prep> is a preposition.
<dsvar> is the destination string variable.
<char> is the one character source literal string.

Programming Considerations:

<label> is optional.

Transfer from the source string starts with the character
under the formpointer.

Transfer into the destination string starts with the character
under the formpointer.

Only one character is moved.

The source string logical length and formpointer are not
modified.

If either variable has a formpointer of zero (0), then the EOS
flag is set and no transfer occurs.

Example:

VAR LL FP Contents

STRING1
STRING2

5 3
3 2

ABCDE
XXX

ETX
ETX

CMOVE STRING1 TO STRING2

The following variable(s) will be changed:
STRING2 3 2 XCX ETX
The following flag(s) will be set: None

Example:

STRING2 3 2 1234 ETX

CMOVE "X" TO STRING2

The following variable(s) will be changed:
STRING2 3 2 1X34 ETX
The following flag(s) are set: None

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-11

7.5 CMATCH

CMATCH compares a single character from the source string to
a character in the destination string. The instruction has the
following formats:

1)
2)
3)
4)
5)

where:

<label>
<label>
<label>
<label>
<label>

CMATCH
CMATCH
CMATCH
CMATCH
CMATCH

<ssvar><prep><dsvar>
<char><prep><dsvar>
<ssvar><prep><char>
<occ><prep><dsvar)
<ssvar><prep><occ>

<label>
<ssvar>
<prep>
<dsvar>
<char>
<occ>

is an execution label.
is the source string variable.
is preposition.
is the destination string variable.
is a one character string literal.
is an octal control character.

Programming Considerations:

<label> is optional.

The character compared from the source string is the character
from under the formpointer.

The character compared from the destination string is the
character from under the formpointer.

If the two characters match, then the EQUAL flag is set.

If the two characters do not match then the LESS flag is set
if the following difference (D) is negative:

D = (octal value of destination character) - (octal
value of source character).

If a literal or octal control character is used in the source
string then that character is the one used for the CMATCH
operation.

If either operand has a formpointer of zero (0), then the EOS
flag is set.

Example:

7-12 DOS. DATABUS COMPILER

VAR LL FP Contents

STRING1
STRING2

5 3
3 1

ABCDE
CX

ETX
ETX

CMATCH STRING1 TO STRING2

The following flag(s) are set: EQUAL

Example:

STRING2 4 2 XACD ETX

CMATCH "B" TO STRING2

The following flag(s) are set: LESS

Example:

ST 8 0 ABCDEFGH ETX

CMATCH "Y" TO ST

The following flag(s) are set: EOS

7.6 BUMP

The BUMP instruction increments or decrements the formpointer
of a variable. The instruction has the following formats:

1)
2)

<label> BUMP
<label> BUMP

<svar>
<svar><prep><dcon>

where: <label> is an execution label.
<svar> is a string variable.
<prep> is a preposition.
<dcon> is a signed decimal constant.

Programming Considerations:

<label> is optional.

<dcon> is added to the formpointer and the result becomes the
new string variable formpointer if the new formpointer is
valid. Note that a valid formpointer must be in the range (1
to n) where n is the logical length for the string.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-13

If <dcon> is not specified, then the string variable's
formpointer is incremented by one (1).

The EOS flag is set if the BUMP instruction would have caused'
an invalid formpointer. The formpointer is not changed in
this case.

Example:

VAR LL FP Contents

CAT 5 2 ABCDE ETX

BUMP CAT

The following variable(s) will be changed:
CAT 5 3 ABCDE ETX
The following flag(s) will be set: None

Example:

CAT 5 4 ABCDE ETX

BUMP CAT BY -2

The following variable(s) will be changed:
CAT 5 2 ABCDE ETX
The following flag(s) will be set: None

Example:

CAT 5 3 ABCDE ETX

BUMP CAT BY 3

The following variable(s) will be changed:
CAT 5 3 ABC DE ETX
The following flag(s) will be set: EOS

7-14 DOS. DATABUS COMPILER

7.7 RESET

RESET changes the value of the formpointer of the destination
string to the value indicated by the second operand. The
instruction has the following formats:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

RESET
RESET
RESET
RESET

<dsvar><prep><dcon>
<dsvar>
<dsvar><prep><ssvar>
<dsvar><prep><snvar>

where: <label> is an instruction label.
<dsvar> is the destination string variable.
<prep> is a preposition.
<dcon> is a decimal constant.
<ssvar> is the source string variable.
<snvar> is the source numeric variable.

Programming Considerations:

<label> is optional.

RESET changes the value of the formpointer of the destination
string to the value indicated by the second operand. If the
second operand is not specified the formpointer will be reset
to one (1).

If the second operand is a quoted character the formpointer of
the destination string is changed to the following:

FP = (OCTAL value of ASCII character) - 037

If the second operand is a character string the character
under the formpointer is accessed. The formpointer of the
destination string is changed to the following:

FP = (OCTAL value of ASCII character) - 037

If the second operand is a numeric string the number is used
as the value for the new formpointer.

If the new formpointer is past the logical length of the first
operand, the logical length will be set to the value of the
new formpointer. Note that under no circumstances will the
logical length or formpointer be set outside the physical
structure of the string.

The EOS flag will be set when any change in the logical length

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-15

of the destination string occurs.

The RESET instruction is very useful in code conversions and
hashing of character string values as well as large string
manipulation.

Example:

VAR LL FP Contents

XDATA 5 3 ABCDEFGHIJ ETX

RESET XDATA

The following variable(s) will be changed:
XDATA 5 1 ABCDEFGHIJ ETX
The following flag(s) will be set: None

Example:

XDATA 5 2 ABCDEFGHIJ ETX

RESET XDATA TO 4

The following variable(s) will be changed:
XDATA 5 4 ABCDEFGHIJ ETX
The following flag(s) will be set: None

Example:

XDATA
NUMBER

10 2
0200

ABCDEFGHIJ
8

RESET XDATA TO NUMBER

ETX
ETX

The following variable(s) will be changed:
XDATA 10 8 ABCDEFGHIJ ETX
The following flag(s) will be set: None

Example:

XDATA
NUMBER

6 2
0200

ABCDEFGHIJ
8

RESET XDATA TO NUMBER

ETX

The following variable(s) will be changed:
XDATA 8 8 ABCDEFGHIJ ETX

7-16 DOS. DATABUS COMPILER

The following flag(s) will be set: EOS

Example:

XDATA
STRING

10 8
5 4

1234567890
ABC!E

RESET XDATA TO STRING

ETX
ETX

The following variable(s) will be changed:
XDATA 10 2 1234567890 ETX
Note: The ASCII value of a ! is a octal 041.
The following flag(s) are set: None

7.8 END SET

ENDSET causes the operand's formpointer to be changed to the
value of the logical length. This instruction has the following
format:

<label> ENDSET <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:

<label> is optional.

<dsvar> must be a string variable.

Example:

VAR LL FP Contents

CAT 10 4 1234567890 ETX

ENDSET CAT

The following variable(s) will be changed:
CAT 10 10 1234567890 ETX
The following flag(s) will be set: None

Example:

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-17

DOG 6 4 1234567890 ETX

ENDSET DOG

The following variable(s) will be changed:
DOG 6 6 1234567890 ETX
The following flag(s) will be set: None

7.9 LENSET

LENSET changes the operand's logical length to the value of
the formpointer. The instruction has the following format:

<label> LEN SET <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:

<label> is optional.

<dsvar> must be a string variable.

Example:

VAR LL FP Contents

STRING 8 4 1234567890 ETX

LEN SET STRING

The following variable(s) will be changed:
STRING 4 4 1234567890 ETX
The following flag(s) will be set: None

Example:

XDATA 6 2 1234567890 ETX

LENSET XDATA

The following variable(s) will be changed:
XDATA 2 2 1234567890 ETX
The following flag(s) will be set: None

7-18 DOS. DATABUS COMPILER

7.10 CLEAR

CLEAR sets the logical length and formpointer of the operand
to zero. This instruction has the following format:

<label> CLEAR <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:

<label> is optional.

<dsvar> must be a string variable.

Example:

VAR LL FP Contents

STRING 8 3 ABCDEFGHIJ ETX

CLEAR STRING

The following variable(s) will be changed:

STRING 0 a ABCDEFGHIJ ETX
The following flag(s) will be set: None

7.11 EXTEND

EXTEND increments the string variable's formpointer by one
and stores a space into the new formpointed character. The
logical length is set to the value of the new formpointer. This
instruction has the following format:

<label> EXTEND <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-19

<label> is optional.

<dsvar> must be a string variable.

The formpointer of the string variable is incremented by one.
The logical length is set to the value of the new formpointer.

If the new formpointed character is the ETX, then the EOS flag
is set and the formpointer and logical length are left as they
were before the EXTEND instruction was executed.

Example:

VAR LL FP Contents

STRING 10 3 ABCDEFGHIJ ETX

EXTEND STRING

The following variable(s) will be changed:
STRING 4 4 ABC EFGHIJ ETX
The following flag(s) will be set: None

Example:

STRING 10 10 ABCDEFGHIJ

EXTEND STRING

ETX

The following variable(s) will be changed:
STRING 10 10 ABCDEFGHIJ ETX
The following flag(s) will be set: EOS

7.12 LOAD

LOAD performs a MOVE from the selected character string
(using an index for selection) to the destination character
string. The instruction has the following formats:

where:

<label> LOAD <dsvar><prep><index><prep><list>

<label>
<dsvar>
~prep>

<index>

is an execution label.
is the destination string variable.
is a preposition.
is a numeric string used for selecting a string
variable from the <list>.

7-20 DOS. DATABUS COMPILER

<list> is a list of string variables.

The LOAD instruction to use when <list> is a set of numeric
variables is covered in Chapter 8 on Arithmetic Instructions.
This discussion deals only with the case when <list> is a set of
string variables.

Programming Considerations:

<label> is optional.

<dsvar> must be a string variable.

<index> is a numeric variable. If this variable is not an
integer, then the quantity is truncated and the integer
portion used as the index for list selection.

If the <index> does not correspond to a variable in the
<list>, then the LOAD instruction is simply ignored.

<list> must contain string variables only. The <list> may be
continued if necessary by using the colon (:) instead of the
comma (,) after the last variable used on the line to be
continued.

This instruction works exactly like the MOVE instruction
(character string to character string) after the variable has
been selected from the list.

An <index> quantity of one (1) corresponds to the first
variable in the <list> and an <index> quantity of n
corresponds to the nth variable in the <list>.

Example:

VAR LL FP Contents

DESTIN 10 5 ABCDEFGHIJ ETX
INDEX 0200 _2.9 ETX
S1 5 1 11111 ETX
S2 5 2 22222 ETX
S3 5 3 33333 ETX

LOAD DESTIN FROM INDEX OF S1,S2:
S3

The following variable(s) will be changed:
DESTIN 4 1 2222EFGHIJ ETX

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-21

The following flag(s) will be set: None

Example:

DESTIN
INDEX
S1

5 1
0200
6 1
7 1
8 1
9 1

ABCDE
3.7

111111
2222222
33333333
444444444

ETX
ETX
ETX
ETX
ETX
ETX

S2
S3
S4

LOAD DESTIN FROM INDEX OF S1,S2,S3,S4

The following variable(s) will be changed:
DESTIN 5 1 33333 ETX

The following flag(s) will be set: EOS

7.13 STORE

STORE selects a variable from a list (using an index for
selection) and performs a MOVE operation from the source string
operand to the selected destination string variable. The
instruction has the following formats:

1)
2)

where:

<label> STORE
<label> STORE

<ssvar><prep><index><prep><list>
<slit><prep><index><prep><list>

<label>
<ssvar>
<prep>
<index>

<list>
<slit>

is an execution label.
is the source string variable.
is a preposition.
is the numeric variable which specifies which
variable from <list> is to be selected as the
destination variable for the MOVE operation.
is a list of string variables.
is a string literal.

Programming Considerations:

<label> is optional.

<list> is a list of string variables, separated by commas (,).
The list may be continued on the following line by using a
colon (:) instead of a comma (,) after the last variable on
the line to be continued.

7-22 DOS. DATABUS COMPILER

<index> must be a numeric variable. If the <index> is not an
integer, it is truncated and the integer portion is used as
the index for list selection.

If the <index> does not correspond to a variable in the
<list>, then the STORE instruction is simply ignored.

An <index> quantity of one (1) corresponds to the first
variable in the <list> and an <index> quantity of n
corresponds to the nth variable in the <list>.

All of the rules of the MOVE instruction apply after the list
selection has been performed.

Example:

VAR LL FP Contents

SOURCE 8 5 12345678 ETX
I 0200 _2.3 ETX
D1 5 2 11111 ETX
D2 6 3 222222 ETX
D3 7 4 3333333 ETX

STORE SOURCE INTO I OF D1,D2:
D3

The following variable(s) will be changed:
D2 4 1 567822 ETX
The following flag(s) will be set: None

Example:

IND
D1
D2

0200
5 1
4 2

3
12345
ABCD

ETX
ETX
ETX

STORE "890" INTO IND OF D1,D2

The instruction would not be executed because the index is out
of range.

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-23

7.14 CLOCK

CLOCK allows a DATABUS program access to the interpreter's
time clock, day, and year. The instruction has the following
formats:

<label> CLOCK <item><prep><svar>

where: <label> is an execution label.
<item> may be one of the following:

1) TIME to access the time of day clock.
2) DAY to access the day of the year.
3) YEAR to access the year.

<prep> is one of the prepositions <,> or <TO>.
<svar> is a string variable that is to receive the

requested information.

Programming Considerations:

<label> is optional.

Only the prepositions <,> and <TO> are valid.

<svar> must be a string variable.

The time clock (TIME) has the following format:

hh:mm:ss

where:

hh = hours tens and units digits with range (00 to
23).

mm = minutes tens and units digits with range (00
59)

ss = seconds tens and units digi,ts with range (00
59) •

The day of the year (DAY) has the following format:

ddd representing the hundreds, tens, and units
digits of the day of year with range (001 to
366). The day expressed in this form is
commonly termed the "Julian" day.

The year (YEAR) has the following format:

7-24 DOS. DATABUS COMPILER

to

to

yy representing the tens and units of the year
with range (00 to 99).

The CLOCK instruction simply performs a MOVE operation on
information requested into the destination string variable.

The DATABUS programmer must be careful when using the CLOCK
instruction to avoid getting erroneous results. When
obtaining both the TIME and DAY, the program should first
access the DAY and then the TIME. The program should then
access the DAY again and insure that the DAY has not changed.
If the DAY has changed, then the process should be repeated.
When this procedure is followed, then the TIME and DAY
correspond to each other.

The TIME, DAY, and YEAR are placed into the interpreter when
the system is brought up. The CLOCK items are kept updated
while the interpreter is running and are available to DATABUS
programs.

The TIME is accurate to approximately 0.005 percent or five
(5) seconds per day.

VAR LL FP Contents

TIME
DAY
TEMP
YEAR

TIMEOK

8 2
3 3
3 2
2 2

XXXXXXXX
YYY
ZZZ
ZZ

CLOCK DAY TO DAY
CLOCK TIME TO TIME
CLOCK YEAR TO YEAR
CLOCK DAY TO TEMP
MATCH DAY TO TEMP
GOTO TIMEOK IF EQUAL
CLOCK DAY TO DAY
CLOCK TIME TO TIME

The following variable(s) will
TIME 8 1 13:10:52
DAY 3 1 134
YEAR 2 1 76
TEMP 3 1 134

ETX
ETX
ETX
ETX

be changed:
ETX
ETX
ETX
ETX

The above would be correct if the time was 13 hours, 10
minutes, 15 seconds, the day of the year was the 134th, and the

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-25

year number was 76.

7.15 TYPE

This instruction checks the format of a character string
variable for valid numeric string format. This instruction has
the following format:

<label> TYPE <dsvar>

where: <label> is an execution label.
<dsvar> is the destination string variable.

Programming Considerations:

<label> is optional.

<dsvar> must be a string variable.

Only the logical string of <dsvar> is checked for valid
numeric format (see section 4.1).

The EQUAL flag is set to true only when the logical string is
a valid numeric string.

A null logical string is not a valid numeric string.

7.16 SEARCH

SEARCH compares a variable <key> to a list of variables
<list> and yields an index <index> which indicates which variable
in the <list> matched. The instruction has the following format:

where:

<label> SEARCH <key><prep><blist><prep><nlist><prep><index>

<label>
<key>
<prep>
<blist>

is an execution label.
is the key variable.
is a preposition.
is the first variable in a list of contiguous
variables.

<nlist> is a numeric variable which specifies the number
of variables in the list to be searched.

<index> is a numeric variable produced by the interpreter
which specifies which variable in the list (the

7-26 DOS. DATABUS COMPILER

first of which was <blist» matched the <key>.

Programming Considerations:

<label> is optional.

<key> and the variables in the list (the first of which is
<blist» should be of the same data type, either both string
variables or both numeric variables.

<blist> is the name of the first variable in the list of
contiguous variables to be used.

<nlist> is a numeric variable which specifies the number of
variables in the list (the first of which is <blist».

The logical string of <key> is compared to the logical string
of a variable from the list (of which <blist> is the first).
If the logical string length of <key> is less than the logical
string length of the variable being compared (from the list),
the match stops when the <key> logical string is exhausted.
Therefore, it is not possible to get a match on a <key>
variable whose logical string is longer than the logical
string of the list variable.

The logical string lengths of the variables in the list may be
different.

If the variable <nlist> is larger than the number of variables
in the list, the search proceeds until the count <nlist> is
exhausted.

<index> contains a one (1) if the first variable in the list
matched <key>. A value of n for <index> indicates the nth
variable in the list matched <key>. The EQUAL flag is also
set if a match is found.

If none of the list variables matched <key> then a value of
zero (0) is returned for <index> and the OVER flag is set.

Example:

VAR LL FP Contents

KEY
VAR1
VAR2

CHAPTER 7.

5 3
8 1
6 2

ABCDE
12345678
XCDE12

ETX
ETX
ETX

CHARACTER STRING HANDLING INSTRUCTIONS 7-27

VAR3
NVAR
INDEX

4 3
0200
0200

FGHI
03
00

ETX
ETX
ETX

SEARCH KEY IN VAR1 TO NVAR WITH INDEX

The following variable(s) will be changed:
INDEX 0200 2 ETX
The following flas(s) will be set: EQUAL

Example:

KEY 5 3 ABCDE ETX
V1 5 1 XXXXX ETX
V2 3 1 YYY ETX
V3 4 1 ZZZZ ETX
N 0200 _3 ETX
I 0200 99 ETX

..:;EARCH KEY IN V1 TO N USING I

The following variables will be changed:
I 0200 0 ETX
The following flas(s) will be set: OVER

7.17 REPLACE

REPLACE (the compiler will also accept a mnemonic of REP)
allows replacement of an ASCII character in a string variable by
another ASCII character. The instruction has the following
formats:

1)
2)
3)
4)

where:

<label>
<label>
<lab~l>
<label>

REPLACE
REP
REPLACE
REP

<ssvar><prep><dsvar>
<ssvar><prep><dsvar>
<slit><prep><dsvar>
<slit><prep><dsvar>

<label>
<ssvar>
<prep>
<dsvar>
<slit>

is an execution label.
is the source string variable.
is a preposition.
is the destination string variable.
is a source string literal.

Programming Considerations:

7-28 DOS. DATABUS COMPILER

<label> is optional.

The logical string of the source variable <ssvar> or literal
<sslit> must contain pairs of characters defined as follows:

1) The first character of the pair is the character
to be replaced in the destination string.

2) The second character of the pair is the character
that is to replace the first of the pair wherever
it appears in the destination string.

The source string is not modified.

The destination variable logical string is modified.

The EOS flag is set if the logical string length of the source
operand is not even.

Example:

VAR LL FP Contents

DVAR
ABVAR

10 1
4 1

ABCDABCDAB
AXDY

REPLACE ABVAR IN DVAR

ETX
ETX

The following variable(s) will be changed:
DVAR 10 1 XBCYXBCYXB ETX
The following flag(s) will be set: None

Example:

DVAR
ABVAR

10 5
4 3

ABCDABCDAB
AXDY

REPLACE ABVAR IN DVAR

ETX
ETX

The following variable(s) will be changed:
DVAR 10 5 ABCDABCYAB ETX
The following flag(s) will be set: None

Example:

DESTIN 6 1 A1B2C3 ETX
REPLACE "A1B2C3" IN DESTIN

CHAPTER 7. CHARACTER STRING HANDLING INSTRUCTIONS 7-29

The following variable(s) will be changed:
DESTIN 6 1 112233 ETX
The following flag(s) will be set: None

Example:

DESTIN 7 1 AEAFZAZ ETX

REPLACE "AZZA" IN DESTIN

The following variable(s) will be changed:
DESTIN 7 1 ZEZFAZA ETX
The following flag(s) will be set: None

Example:

DESTIN
REPVAL

6 . 1
4 2

123456
ABCD

ETX
ETX

REPLACE REPVAL IN DESTIN

The following variable(s) will be changed: None
The following flag(s) will be set: EOS

7-30 DOS. DATABUS COMPILER

CHAPTER 8. ARITHMETIC INSTRUCTIONS

The arithmetic instructions are used to perform the various
arithmetic operations upon DATABUS operands. Generally all
arithmetic instructions have the following form:

where:

<label> <oper> <soper><prep><doper>

<label>
<oper>
<soper>
<prep>
<doper>

is an execution label.
is the DATABUS arithmetic operation.
is the source operand.
is a valid preposition.
is the destination operand.

The DATABUS operation is performed using the source and
destination operands. The result of the operation is generally
transferred to the destination operand. The content of the source
operand is never modified.

8.1 ADD

The ADD instruction causes the content of source operand to
be added to the content of destination operand. The result (sum)
is placed in the destination operand. This instruction has the
following formats:

1) <label> ADD <snvar><prep><dnvar>
2) <label> ADD <nlit><prep><dnvar>

Where: <label> is an execution label (see section 2.) •
<snvar> is the source numeric variable.
<prep> is a preposition.
<dnvar> is the destination numeric variable.
<nlit> is a numeric literal.

Programming Considerations:

<label> is optional.

<nlit> must be a valid numeric literal.

The source numeric operand is never modified.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-1

<dnvar> contains the result (sum) of the ADD.

The flags OVER, LESS, ZERO (or EQUAL), are set appropriately.

The rounding and truncation rules are applicable (see section
2.7) •

Examples:

Example:

Example:

Example:

x
y

CAT

NUM
NUM2

N

FORM
FORM

"123.45"
"267.22"

ADD X TO Y

Y will contain 390.67
The following flag(s) will be set: None

FORM "100.50"

ADD " .005" TO CAT

CAT will contain 100.51
The following flag(s) will be set: None

FORM "-245.0000"
FORM "800.0"

ADD NUM TO NUM2

NUM2 will contain 555.0
The following flag(s) will be set: None

FORM "00.0"

ADD "100.00" TO N

N will contain 00.0
The following flag(s) will be set: OVER, ZERO

8-2 DOS. DATABUS COMPILER

8.2 SUBTRACT (SUB)

The SUB instruction (The compiler will also accept a mnemonic
of SUBTRACT) is used to perform a subtract operation. The
contents of the source numeric operand (minuend) is subtracted
from the destination numeric operand (subtrahend) and result
(difference) is placed in the destination numeric operand.

The instruction has the following formats:

1)
2)
3)
4)

Where:

<label>
<label>
<label>
<label>

SUB
SUBTRACT
SUB
SUBTRACT

<snvar><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<nlit><prep><dnvar>

<label>
<snvar>
<prep>
<dnvar>
<nlit>

is an execution label.
is the source numeric variable.
is a preposition.
is the destination numeric variable.
is a numeric literal.

Programming Considerations:

<label> is optional.

<nlit> must be a valid numeric literal.

The flags OVER, LESS, ZERO (or EQUAL) are applicable.

The contents of the source operand is never modified.

The destination operand contains the result (difference).

The truncation and rounding rules apply.

Example:

Example:

A
B

FORM
FORM

"123.45"
"-20.45"

SUB B FROM A

A will contain 143.90
The following flags will be set: None

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-3

Example:

Example:

C1
C2

NUMBR

Y1
Y2

FORM
FORM

"5.60"
"1.665"

SUB C2 FROM C1

C2 will contain 3.94
The following flags will be set: None

FORM "-345"

SUB "700.5" FROM NUMBR

NUMBR will contain 1045
The following flags will be set: OVER, LESS

FORM
FORM

" 10.00"
" 20.005"

SUB Y2 FROM Y1

Y2 will contain -10.01
The following flags will be set: LESS

8.3 MULTIPLY (MULT)

The MULT instruction (the compiler will also accept a
mnemonic of MULTIPLY) causes the content of the source numeric
(multiplicand) to be multiplied by the contents of the destination
numeric operand (multiplier). The result (product) is placed in
the destination numeric operand. The instruction has the
following formats:

1)
2)
3)
4)

Where:

<label>
<label>
<label>
<label>

MULT
MULTIPLY
MULT
MULTIPLY

<snvar><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<nlit><prep><dnvar>

<label>
<snvar>
<prep>
<dnvar>
<nlit>

is an execution label.
is the source numeric variable.
is a preposition.
is the destination numeric variable.
is a numeric literal.

8-4 DOS. DATABUS COMPILER

Programming Considerations:

The execution label <label> is optional.

<nlit> must be a valid numeric literal.

The flags OVER, LESS, ZERO (or EQUAL) are applicable.

The source numeric operand is not modified.

The destination numeric operand contains the result (product).

The sum of the number of characters in the source operand and
the destination operand must not exceed 31. (The compiler
does not check this limit. If it is exceeded the interpreter
will produce erroneous results.)

The truncation and rounding rules are applicable.

Example:

Example:

Example:

M1
M2

X123

NEG

FORM
FORM

"010"
"012"

MULT M1 BY M2

M2 will contain 120
The following flag(s) will be set: None

FORM "12000.00"

MULT "1.1" BY X123

X123 will contain 13200.00
The following flag(s) will be set: None

FORM "-10.5"

MULT "10" BY NEG

NEG will contain 105.0

The following flag(s) will be set: OVER, LESS

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-5

8.4 DIVIDE (DIV)

The DIV instruction (the compiler will also accept a mnemonic
of DIVIDE) causes the content of the source operand (divisor) to
be divided by the content of the destination operand (dividend).
The result (quotient) is placed in the destination variable.

1)
2)
3)
4)

Where:

<label>
<label>
<label>
<label>

DIV
DIVIDE
DIV
DIVIDE

<snvar><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<nlit><prep><dnvar>

<label>
<snvar>
<prep>
<dnvar>
<nlit>

is an execution label.
is the source numeric variable.
is a preposition.
'~ the destination numeric variable.
i.' a numeric Ii teral.

Programming Considerations:

<label> is optional.

<nlit> must be a valid numeric literal.

The contents of the source numeric operand (divisor) is not
changed.

The contents of the destination numeric variable <dnvar>
contains the result (quotient).

If the content of the source numeric operand is zero, then the
OVER flag is set and the content of the destination numeric
variable is determined by one of the following:

1) If the source numeric operand (divisor) is an integer
zero (contains no digits to the right of the decimal
point) then the destination numeric variable
(quotient) is set to the largest possible number that
can be represented in the destination numeric
variable.

2) If the source numeric operand (divisor) is non-integer
zero, then the destination numeric variable (quotient)
is set to zero.

If the destination numeric variable (quotient) is not large

8-6 DOS. DATABUS COMPILER

enough to contain the quotient, then one of the following
actions is taken:

1) If the source numeric operand (divisor) is integer (no
digits after the decimal point) the quotient will be
truncated to the number of places in the destination
numeric variable.

2) If the divisor is not integer (at least one decimal
place after the decimal point) the quotient will be
r.ounded to the number of places in the destination
numeric variable.

There is a restriction on the length of division operands.
The following formula is used to determine acceptable lengths
(Decimal points are not counted as characters when using the
following formula).

N:2*NR+NU+NL

Where: NR is the number of digi ts after the decimal point
in the divisor.

NU is the number of characters in the dividend.

NL is the number of characters in the divisor.

"*,, represents multiplication.

N computed by the above formula must be less than 32. The
compiler does not check this limit. If it is
exceeded the interpreter will produce erroneous
results.

The flags OVER, LESS, ZERO (or EQUAL) are applicable.

The truncation and rounding rules apply.

Example:

ONEH
TEN

FORM
FORM

"100.00"
"10"

DIV TEN INTO ONEH

ONEH contains 10.00
The following flag(s) are set: None

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-7

Example:

Example:

Example:

8.5 MOVE

ZERO
N

ZERO
N

N1

FORM
FORM

"000"
"155.00"

DIV ZERO INTO N

N will contain 999.99
The following flag(s) will be set: OVER

FORM
FORM

"00.00"
"155.00"

DIV ZERO INTO N

N will contain .00
The following flag(s) will be set: OVER, ZERO

FORM "100"

DIV "0.1" INTO N1

N1 will contain 0
The following flag(s) will be set: OVER, ZERO

The MOVE instruction causes the content of the source numeric
operand to replace the content of the destination numeric operand.
The instruction has the following formats:

1)
2)

<label> MOVE
<label> MOVE

<snvar><prep><dnvar>
<nlit><prep><dnvar>

Where: <label> is an execution label.
<snvar>
<prep>
<dnvar>
<nlit>

is the source numeric variable.
is a preposition.
is the destination numeric variable.
is a numeric literal.

Programming Considerations:

8-8 DOS. DATABUS COMPILER

<label> is optional.

<nlit> must be a valid numeric literal.

The contents of the source numeric operand is never modified.

The destination numeric variable contains the result of the
MOVE operation.

The OVER, LESS, ZERO (or EQUAL) flags are applicable.

The truncation and rounding rules are applicable.

Example:

Example:

Example:

Example:

SOURCE FORM
DESTIN FORM

"12345"
6.2

MOVE SOURCE TO DESTIN

DESTIN will contain 12345.00
The following flag(s) will be set: None

01 FORM 4.2

S
o

N

MOVE "12345" TO 01

01 will contain 2345.00
The following flag(s) will be set: OVER

FORM
FORM

"12345.51"
"99999"

MOVE S TO 0

D will contain 12346
The following flag(s) will be set: None

FORM "999.99"

MOVE "0.0" TO N

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-9

N will contain .00
The following flag(s) will be set: ZERO

8.6 COMPARE

The COMPARE instruction is used to compare two numeric
quantities. The instruction has the following formats:

1)
2)

Where:

<label> COMPARE
<label> COMPARE

<snvar><prep><dnvar>
<nlit><prep><dnvar>

<label>
<snvar>
<prep>
<dnvar>
<nlit>

is an execution label.
is the source numeric variable.
is a preposition.
is the destination numeric variable.
is a numeric literal.

Programming Considerations:

<label> is optional.

<nlit> is a valid numeric literal.

The contents of the source numeric operand are never modified.

The contents of the destination numeric variable are never
modified.

The LESS and ZERO (or EQUAL) condition flags are set exactly
as if a SUBTRACT instruction had been executed instead of a
COMPARE.

Rounding takes place when the COMPARE instruction is executed.

Since the result is not moved to the destination variable, the
format of the result is not taken into consideration when
setting the condition flags. This means that the OVER
condition flag can never be set by the COMPARE instruction.

Example:

ONEH FORM "100.00"

COMPARE "100" TO ONEH

The following flag(s) will be set: ZERO (EQUAL)

8-10 DOS. DATABUS COMPILER

Example:

OP1 FORM "0100.0"
OP2 FORM "090"

COMPARE OP 1 TO OP2

The following flag(s) will be set: LESS

Example:

CAT FORM "999"

COMPARE "-1" TO CAT

The following flag (s) will be set: none

Example:

F FORM "-99"

COMPARE "1" TO F

The following flag(s) will be set: LESS

8.7 LOAD

The LOAD instruction selects (using an index for selection) a
numeric variable from a list using an index and performs a MOVE
operation on the selected numeric variable to the destination
numeric variable. The instruction has the following formats:

<label> LOAD <dnvar><prep><index><prep><list>

Where: <label>
<dnvar>
<prep>
<index>

is execution label.
is the destination numeric variable.
is a preposition.
is a numeric variable which specifies which
of the available list is to be selected.

<list> is a list of numeric variables.

Programming Considerations:

<label> is optional.

item

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-11

<dnvar> contains the result of the LOAD instruction after
execution.

<index> is a numeric variable which specifies which item from
the available list should be selected. If the index is not an
integer, the index is truncated, and the integer portion is
used for list selection. An index numeric variable of one (1)
specifies the first item in the list and an index value of n
specifies the nth item in the list.

If the index contains a number which does not correspond to
one of the list items, then the LOAD instruction is ignored
and execution continues with the next DATABUS instruction.

<list> may be continued on the following line by use of the
colon (:).

The <index> is not modified.

None of the <list> items are modified.

The OVER, LESS, ZERO (or EQUAL) flags' are applicable.

The truncation and rounding rules are used.

Example:

Example:

DESTIN
INDEX
X1
X2
X3

y
I
S1
S2
S3

FORM
FORM
FORM
FORM
FORM

"9999"
"2"
"1111"
"2222"
"3333"

LOAD DESTIN FROM INDEX OF X1,X2,X3

DESTIN will contain 2222
The following f1ag(s) will be set: None

FORM
FORM
FORM
FORM
FORM

3. 1
"1.6"
"-11.36"
"222"
"333"

LOAD Y FROM I OF S1,£2:

8-12 DOS. DATABUS COMPILER

83

Y will contain -11.4
The following flag(s) will be set: LESS

8.8 STORE

The STORE instruction selects (using an index for selection)
a numeric variable from a list and performs a MOVE operation from
the source numeric operand to the selected destination numeric
variable. The instruction has the following formats:

1)
2)

<label> STORE
<label> STORE

<snvar><prep><index><prep><list>
<nlit><prep><index><prep><list>

Where: <label> is an execution label.
<snvar> is the source numeric variable.
<index> is the index numeric variable which specifies

which item from the available list is to be
selected.

<prep> is a preposition.
<list> is a list of numeric variables.
<nlit> is numeric literal.

Programming Considerations:

<label> is optional.

<nlit> must be a valid numeric literal.

<dnvar> contains the result of the STORE operation.

<index> is a nume~ic variable which specifies which item from
the available list should be selected. If the index is not an
integer, the index is truncated, and the integer portion is
used for list selection. An index numeric variable of one (1)
specifies the first item in the list and an index value of n
specifies the nth item in the list.

If the index contains a number which does not correspond to
one of the list items, then the STORE instruction is ignored
and execution continues with the next DATABUS instruction.

The variables contained in <list> are separated by a comma
(,) .

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-13

<list> may be continued on the following line by use of the
colon (:) in place of the comma after the last variable on the
line to be continued.

The <index> is never modified.

Only the selected numeric variable from the <list> is
modified.

The OVER, LESS, ZERO (or EQUAL) flags are applicable.

The truncation and rounding rules apply.

Example:

Example:

SOURCE
INDEX
D1
D2
D3

SOURCE
I
D1
D2

FORM
FORM
FORM
FORM
FORM

STORE

"999"
"1.9"
"111"
"222"
"333"

SOURCE INTO INDEX OF D1,D2:
D3

Dl will contain 999. The other variables D2 and
D3 will be unchanged.
The following flag(s) will be set: None

FORM
FORM
FORM
FORM

STORE

"1234"
"4"
4
4

SOURCE INTO I OF D1,D2

The contents of neither D1 or D2 is changed
because the index was out of range.
The following flag(s) are set: None

8-14 DOS. DATABUS COMPILER

8.9 CHECK11 (CK11)

The CHECK11 (the compiler will also accept a mnemonic of
CK11) instruction performs a modulo 11 check digit calculation on
two string variables. The instruction has the following formats:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

CHECK 11
CK 11
CHECK 11
CK 11

<svar1><prep><svar2>
<svar1><prep><svar2>
<svar1><prep><slit>
<svar1><prep><slit>

Where: <label> is an execution label.
<svar1> is a string variable called the base string which

contains the base number and the check digit.
<prep> is a preposition.
<svar2> is a string variable which contains the weighting

factor.
<slit> is a string literal.

The following algorithm is used to perform the CHECK11
instruction.

Let the length n of the base string be defined as n:LL-FP
where:

LL:logical length of base string.

FP:formpointer of base string.

The base string is composed of two parts:

1) The base number which is the first n digits of the
base string.

2) The check digit which is the digit following the
base number.

Let the individual digits of the base number be b(1),
b(2), ••• ,b(n) where b(1) is the formpointed left most
digit, and ben) is the right most digit of the base
number.

Let the individual digits of the weighting factor be w(1),
w(2) ••. ,w(n) with w(1) the formpointed left most digit and
wen) is the right most digit of the weighting factor.

The following sum S is formed.

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-15

S=b(1)*w(1)+b(2)*w(2)+ ..• +b(n)*w(n)

Then the computed check digit Cis:

C=11-R(S/11) where R(S/11) is the remainder from the
division S/11.

The computed check digit C is compared to the check digit
supplied in the base string. If they are equal, the EQUAL
flag is set, otherwise the OVER flag is set and the EQUAL
flag cleared.

Programming Considerations:

<label> is optional.

Neither of the variables <svar1> or <svar2> is modified.

<svar1>, <svar2>, and <slit> when used must contain digits
only.

If the length (LL-FP) of the weighting factor is less than the
length n of the base number, then the OVER flag is set and the
DATABUS instruction is not finished.

A computed check digit with a value of 10 or greater cannot be
used and causes the OVER flag to be set.

Example:

Example:

BASSTR INIT
WEIGHT INIT

"12343"
"5432"

CHECK11 BASSTR BY WEIGHT

The following flag(s) are set: ZERO (EQUAL)

BASSTR INIT
WEIGHT INIT

"12342"
"654"

RESET BASSTR TO 3
RESET WEIGHT TO 2
CHECK11 BASSTR BY WEIGHT

The following flag(s) are set: ZERO (EQUAL)

8-16 DOS. DATABUS COMPILER

Example:

B INIT "141599"
W INIT "41"

RESET B TO 4
LENSET B
RESET B TO 2
CHECK 11 B BY W

The following flag(s) are set: ZERO (EQUAL)

Example:

B INIT "141699"
W INIT "41"

RESET B TO 4
LEN SET B
RESET B TO 2
CHECK 11 B BY W

The following flag(s) are set: OVER

8.10 CHECK10 (CK10)

The CHECK10 (the compiler will also accept a mnemonic of
CK10) instruction performs a modulo 10 check digit calculation on
two string variables. The instruction has the following formats:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

CHECK10
CK10
CHECK10
CK10

<svar1><prep><svar2>
<svar1><prep><svar2>
<svar1><prep><slit>
<svar1><prep><slit>

Where: <label> is an execution label.
<svar1> is a string variable called the base string which

contains the base number and the check digit.
<prep> is a preposition.
<svar2> is a string variable which contains the weighting

factor.
<slit> is a string literal which contains the weighting

factor.

The following algorithm is used to perform the CHECK10

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-17

instruction.

Let the length of the base string be defined as n=LL-FP
where:

LL=Logical length of base string.

FP=formpointer of base string.

The base string is composed of two parts:

1) The base number which is the first n digits of the
base string.

2) The check digit which is the digit following the
base number.

Let the individual digits of the base number be b(1),
b(2), ••. b(n) where b(1) is the formpointed left most
digit, and ben) is the right most digit of the base
number.

Let the individual digits of the weighting factor be w(1),
w(2) •.. ,w(n) with w(1) the formpointed left most digit and
wen) is the right most digit of the weighting factor.

Let the following products be formed:

P (1) = b (1) *w (1)
P (2) = b (2) *w (2)

. etc . .
pen) = b(n)*w(n)

Take each P(i) and perform a "lateral" addition on the
individual digits (i.e. P(3)=32 would yield a "lateral
addition" of 5). Let the "lateral" addition of the digits
of each P(i) be SCi). Then form the following sum:

SD=S(1)+S(2)+ •.• +S(i)

Then the computed check digit Cis:

C=10-R(SD/10) Where R(SD/10) is the remainder from
the division SD/10.

The computed check digit C is compared to the check digit

8-18 DOS. DATABUS COMPILER

supplied in the base string. If they are equal, the EQUAL
flag is set, otherwise the OVER flag is set and the EQUAL
flag is cleared.

Programming Considerations:

<label> is optional.

Neither of the variables <svar1> or <svar2> is modified.

<svar1>, <svar2>, and <slit> when used must contain digits.

If the length (LL-FP) of the weighting factor is less than the
length n of the base number, then the OVER flag is set and the
DATABUS instruction is not finished.

If a computed check digit of 10 is used, it is treated modulo
10.

Example:

Example:

Example:

x
y

BASE

BASE
WEIGHT

INIT
INIT

"12340"
"5432"

CHECK10 X BY Y

The following flag(s) are set: EQUAL

INIT "1515999"

RESET BASE TO 4
LEN SET BASE
RESET BASE
CHECK10 BASE BY "515"

The following flag(s) are set: EQUAL

INIT "9653"
INIT "521"

CHECK10 BASE BY WEIGHT

CHAPTER 8. ARITHMETIC INSTRUCTIONS 8-19

Example:

The following flag(s) are set: EQUAL

BASE INIT
WEIGHT INIT

"1650"
"121"

CHECK10 BASE BY WEIGHT

The following flag(s) are set: OVER

8-20 DOS. DATABUS COMPILER

CHAPTER 9. INTERACTIVE INPUT/OUTPUT

These instructions are used to input from a keyboard and
output to a CRT screen (or output to any device used in place of
the CRT screen).

General Programming Considerations:

Typically, formatting is handled in one of the following ways.

a) By the way a variable is defined. It should be defined
with the format which is to be used for input/output.

b) Using list controls.

Normally, when execution of one of these I/O statements
terminates, the cursor position is reset to the beginning of
the next line.

If a semicolon is used after the last item in the list, the
cursor position remains where it was on statement termination.
This feature allows a second I/O statement to continue where
the first statement left off.

Example:

DISPLAY "FLAGS: " . ,
CALL NOTFLG IF NOT ZERO
DISPLAY "ZERO, " . ,
CALL NOTFLG IF NOT LESS
DISPLAY "LESS"

NOTFLG DISPLAY "NOT "i
RETURN

would display ~ of the following lines, depending on the
condition flags.

FLAGS: ZERO, LESS
FLAGS: ZERO, NOT LESS
FLAGS: NOT ZERO, LESS
FLAGS: NOT ZERO, NOT LESS

Those instructions that use a list should make use of
continuation when it is possible to do so. (For details about

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-1

using continuation, see section 2.) This not only increases
the execution speed of the program, but also decreases the
system overhead. The programmer should check his program for
any occurance of two consecutive 1/0 instructions that are the
same. These two instructions can be replaced with a single
instruction by using continuation.

Example:

DISPLAY
DISPLAY

"LINE ONE"
"LINE TWO"

should be combined to form the statement below.

DISPLAY "LINE ONE":
*N,"LINE TWO"

The condition flags are unchanged by the execution of these
statements.

9.1 KEY IN

KEYIN is used primarily to input from the keyboard, though in
some cases it can be used to output to the screen. This statement
has the following general format:

<label> KEYIN <list>

where: <label> is an execution label (see section 2.).
<list> is a list of items describing the input from the

keyboard.

Programming Considerations:

<label> is optional.

The items in the list must be separated by commas.

<list> may be made up of any combination of the following
items:

a) <svar>, a character string variable (see section 4.2).

b) <nvar>, a numeric string variable (see section 4.1).

c) <occ>, an octal control character (see section 2.5).

9-2 DOS. DATABUS COMPILER

d) <list control>, used to control the manner in which the
list is processed.

e) <slit>, a literal of the form "<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

f) <nlit>, a literal of the form "<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

9.1.1 Character String Variables (KEYIN)

When a character string variable «svar» appears in the list
of a KEYIN instruction, characters are accepted from the keyboard
and put into the variable. Unless modified by a list control, the
manner in which the characters are accepted is described below.

Programming Considerations:

When characters are being accepted from the keyboard, the
flashing cursor is on. At all other times the cursor is off.
(The *EOFF list control, see section 9.1.3.13, will cancel
this.)

Only ASCII characters are accepted.

Each character, as it is accepted, is displayed on the screen.

The horizontal cursor position is bumped by 1 for each
character accepted.

Characters are stored consecutively starting at the physical
beginning of the string.

Characters are accepted up to the physical length of the
character string variable.

A beep is sounded at the terminal for each character that will
not fit within the variable.

-- If a null string is entered (if the ENTER key is struck
without any other characters having been entered),

a) the formpointerof the variable is set to zero.

b) the logical length pointer of the variable is set to zero.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-3

c) the value of the variable will be indeterminate.

To check for a null string entry; the program can first
execute a RESET or CMATCH using the variable in question, then
check the EOS condition flag.

If the string entered is not null,

a) the formpointer of the variable is set to one.

b) the logical length pointer of the variable is set to the
last character entered.

c) the suffix of the string variable is unchanged.

Processing is continued with the next item in the list when
the ENTER key is struck. (See section 9.1.5.2 on the NEWLINE
key.)

9.1.2 Numeric String Variables (KEYIN)

When a numeric string variable «nvar» appears in the list
of a KEYIN instruction, characters are accepted from the keyboard
and put into the variable. Unless modified by a list control, the
manner in which the characters are accepted is described below.

Programming Considerations:

When characters are being accepted from the keyboard, the
flashing cursor is on. At all other times the cursor is off.

Each character, as it is accepted, is displayed on the screen.

The horizontal cursor position is bumped by 1 for each
character accepted.

The following depend on the format of the numeric variable:

a) A minus sign is accepted only if it is the first character
entered.

b) A minus sign is accepted only if there is room for at
least one character to the left of the decimal point.

c) A period is accepted only if the format calls for a
decimal point.

9-4 DOS. DATABUS COMPILER

d) Only one period will be accepted.

e) The number of characters that will be accepted before a
period is required, is equal to the number of places
preceding the decimal point in the format of the variable.

f) The number of characters that will be accepted after the
period is equal to the number of places following the
decimal point in the format of the variable.

g) If the ENTER key is the first key struck, a value of zero
is entered.

If a character is entered that is not acceptable to the format
of the numeric variable, a beep is sounded at the terminal.

The number entered will be reformatted to match the format of
the variable when the ENTER key is struck (see section 4.1).

Processing is continued with the next item in the list when
the ENTER key is struck.

Example: If the following statement is used to define NVAR;

NVAR FORM 2. 1

then when NVAR is used in a KEYIN statement, the following
characters will result in NVAR having the values shown.

ascii ascii ascii ascii ascii
ENTER

2
2
2
2
2
2

ENTER
2

2
2
2

ENTER

3
3
3

ENTER
ENTER

2 ENTER
ENTER

ENTER

ENTER
3

3 ENTER
ENTER

ENTER
4

ENTER

ENTER

value of NVAR
.0
.0
.2

-.0
-.2

-2.0
-2.0
-2.3
2.0
2.0
2.3

23.0
23.0
23.4

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-5

9.1.3 List Controls

The list controls are provided to allow more flexibility for
data entry. They may be used to control the manner in which data
is requested and input into variables. All list controls begin
with an asterisk followed by the specification of the control
function.

9.1.3.1 *P<h>:<v> (Cursor Positioning)

This list control is used to position the cursor on the
screen. The following is the general format of this control.

*P<h>:<v>

where: <h> is the horizontal cursor position.
<v> is the vertical cursor position.

Programming Considerations:

<h> and <v> may be any combination of the following:

a. <dnum>, where <dnum> is a decimal number.

b. <nvar>, where <nvar> is a numeric variable (see section
4.1).

c. <evar>, where <evar> is a data label defined using an
EQUATE (see section 3.1).

Both <h> and <v> must be specified.

The value of <h> should be between 1 and 80. (See the user's
guide of the appropriate interpreter for any exceptions or
differences.) Positions outside this range are reset to the
largest value of the range.

The value of <v> should be between 1 and 24. (See the user's
guide of the appropriate interpreter for any exceptions or
differences.) Positions outside this range are reset to the
largest value of the range.

9-6 DOS. DATABUS COMPILER

9.1.3.2 *EL (Erase to the End-of-Line)

The *EL control causes the line to be erased starting with
the current cursor position and continuing to the right. The
cursor position is unchanged by the execution of this control.

Example:

KEYIN *P50:10,*EL,"OK? (Y/N) ",REPLY

This statement would erase line 10, starting with column 50.

9.1.3.3 *EF (Erase from Cursor Position)

The *EF control performs the function of *EL and additionally
erases all screen lines below the current cursor position. The
cursor position is unchanged by the execution of this control.

Example:

KEYIN *P50:20,*EF

This statement would produce the same results as the following
statement.

KEYIN *P50:20,*EL:
* P 1 : 2 1 , * EL :
* P 1 : 22 , * EL :
*P1:23,*EL:
*P1:24,*EL:
*P50:20

9.1.3.4 *ES (Erase the Screen)

The *ES control positions the cursor to 1:1 and erases the
entire screen. The cursor is left positioned to 1:1.

Example:

KEYIN *ES

Executing the above statement is equivalent to executing the
following statement.

KEYIN *p 1 : 1 , *EF

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-7

9.1.3.5 *C (Carriage Return)

The *C control causes the cursor to be set to the beginning
of the current line. For example: if the cursor was positioned
to 40:5, executing the *C control would change the cursor position
to 1: 5.

9.1.3.6 *L (Line Feed)

The *L control causes the cursor to
line in the current horizontal position.
cursor was positioned to 20:5, executing
change the cursor position to 20:6.

9.1.3.7 *N (Next Line)

be set to the following
For example: if the

the *L control would

The *N control causes the cursor to be set to the first
column of the next line. Executing the *N control is equivalent
to executing a *C control followed by a *L control.

9.1.3.8 *R (Roll the Screen)

The *R control causes the screen to roll up by one line.
(This control has no effect when sent to a 3360 terminal. It is
included for use with 3600 terminals and the system console.) The
cursor position is unchanged by the execution of this control.

9.1.3.9 *+ (KEYIN Continuous On)

This control is used to turn on a mode of entry called keyin
continuous. This mode allows the system to react in much the same
way as a keypunch machine that is using a control card.

Programming Considerations:

This control affects data entry of all variables which follow
the *+ control in the KEYIN list.

If keyin continuous is turned on; entering the last character
acceptable to the format of a variable will cause the system
to react as if the ENTER key had been struck.

Keyin continuous may be turned off by the use of the *- list
control (see section 9.1.3.10).

9-8 DOS. DATABUS COMPILER

Keyin continuous is automatically turned off when the end of
the KEYIN list is reached.

9.1.3.10 *- (KEYIN Continuous Off)

This control turns the keyin continuous mode off. For more
details about the keyin continuous mode, see section 9.1.3.9.

9.1.3.11 *T (KEYIN Timeout)

This control causes a time out if the time between entering
two characters is too long.

Programming Considerations:

This control causes a time out if more than two seconds elapse
between entering any two characters.

If a time out occurs, the remainder of the KEYIN list is
treated as though the NEW LINE key had been struck. (For more
details about NEW LINE, see section 9.1.5.2.)

9.1.3.12 *W (Wait)

This control is an effective way of allowing a program to
pause without imposing significant overhead on the system.

Programming Considerations:

Each occurance of a *W in the KEYIN list causes a pause of one
second before continuing to the next item in the list.

Any number of seconds of pause may be achieved by simply
putting in the required number of *W controls in the list.

9.1.3.13 *EOFF (Echo Off)

This control is used to suppress the character display (echo)
of all characters accepted from the keyboard. This is useful in
message switching applications or for entry of passwords or other
seourity information.

Programming Considerations:

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-9

This control causes echo suppression for all variables which
follow the *EOFF in the KEYIN list.

The beep returned when an invalid character is entered is also
suppressed by this control.

The echo may be re-enabled by using the *EON list control (see
section 9.1.3.14).

The echo is re-enabled when the end of the KEYIN list is
reached.

Example: The following KEYIN statement could be used to enter a
password.

KEY IN *Pl:10,*EOFF,"ENTER PASSWORD: ":
PASSWORD

9.1.3.14 *EON (Echo On)

This control is used to re-enable the echoing of characters
to the screen while entering data. For more details on echo
suppression see section 9.1.3.13.

9.1.3.15 *IT (Invert Text)

This control is used to disable shift key inversion. The
normal state of the keyboard is with shift key inversion enabled.
This means that all lower case alphabetic characters are entered
and displayed as upper case characters and vice versa. Shift key
inversion disabled is the normal state of a typewriter; that is,
the shift key must be used to get upper case alphabetic
characters.

Programming Considerations:

Shift key inversion is only useful on those terminals that
have both an upper and lower case character set. For
instance, the Datapoint 3360 cannot make use of shift key
inversion while the Datapoint 3600 can.

Shift key inversion affects only the alphabetic characters and
not the numerals or punctuation.

The *IT control causes any letter entered with the SHIFT key
depressed to be entered and displayed as an upper case letter.

9-10 DOS. DATABUS COMPILER

Shift key inversion will remain disabled until a *IN control
is used (see section 9.1.3.16).

Shift key inversion will be enabled when a CHAIN instruction
is executed (see section 6.8).

9.1.3.16 *IN (Invert to Normal)

This control is used to enable shift key inversion. For more
details on shift key inversion, see section 9.1.3.15.

Programming Considerations:

Shift key inversion is only useful on those terminals that
have both an upper and lower case character set. For
instance, the Datapoint 3360 cannot make use of shift key
inversion while the Datapoint 3600 can.

Shift key inversion affects only the alphabetic characters and
not the numerals or punctuation.

The *IN control causes any letter entered with the SHIFT key
depressed to be entered and displayed as a lower case letter.

Shift key inversion will remain enabled until a *IT control is
used (see section 9.1.3.15).

Shift key inversion will be enabled when a CHAIN instruction
is executed (see section 6.8).

9.1.3.17 *JL (Justify Left)

This control is used to cause the characters entered into a
variable to be left justified within that variable.

Programming Considerations:

This control affects only the first variable following the *JL
in the KEYIN list.

When the variable affected by the *JL is a numeric string
variable, the following are true.

a) If a decimal point is not entered,

1) all digits entered are put into the leftmost positions

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-11

of the numeric variable.

2) all remaining character positions of the variable are
filled with zeros.

b) If a decimal point is entered, the *JL control has no
effect on the numeric variable.

When the variable affected by the *JL is a character string
variable, the following are true.

a) The variable is first filled with blanks.

b) The characters entered from the keyboard are put into the
variable normally (see section 9.1.1).

c) The logical length pointer points to the last physical
character in the variable.

This control may be used in conjunction with the *DE control
(see section 9.1.3.20).

Example: If the following statements are used to define SVAR and
NVAR;

NVAR
SVAR

FORM
DIM

3.3
5

then when NVAR and SVAR are used in a KEYIN statement with *JL,
the following characters will result in the variables having the
values shown below. The underline character (_) is used to
indicate a blank.

ascii ascii ascii ascii ascii value of NVAR value of SVAR
1 2 ENTER 120.000 12
1 2 ENTER 12.000 12.
1 ENTER 100.000 1

1 ENTER -10.000 -1
1 ENTER -1 .000 -1.

9-12 DOS. DATABUS COMPILER

9.1.3.18 *JR (Justify Right)

This control is used to cause the characters entered into a
character string variable to be right justified within that
variable. .

Programming Considerations:

This control affects only the first variable following the *JR
in the KEYIN list.

If a null string is entered (ENTER is the first character
entered):

a) The variable is filled with blanks.

b) The formpointer is set to zero.

c) The logical length pointer is set to zero.

If the string entered is not null:

a) The characters entered are right justified within the
variable. This means that, when the characters are put
into the variable, they are all shifted to the right until
the rightmost character entered is put into the rightmost
character position in the variable.

b) All character positions that are vacated when the string
is right justified are filled with blanks.

c) The formpointer points to the first physical character of
the variable.

d) The logical length pointer points to the last physical
character of the variable.

This control may be used in conjunction with:

a) the *ZF control (see section 9.1.3.19). When *ZF and *JR
are used together:

1) Any characters entered are right justified with zero
fill.

2) A null entry will first fill the variable with zeros,
then set the formpointer and logical length pointer to
zero.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-13

b) the *DE control (see section 9.1.3.20).

Example: If the following statement is used to define SVAR;

SVAR DIM 5

then when SVAR is used in a KEYIN statement with *JR, the
following characters will -result in SVAR having the values shown
below. The underline character (_) is used to indicate a blank.

ascii ascii ascii ascii ascii ascii value of SVAR
1 2 3 ENTER __ 123
1 2 3 4 ENTER _1234
1 2 3 4 ENTER 1234.
1 2 3 ENTER _123.
1 2 3 ENTER _12.3
1 2 3 ENTER _1.23
A B C ENTER ABC --

9.1.3.19 *ZF (Zero Fill)

This control is used to cause a character string variable to
be zero filled.

Programming Considerations:

This control is the same as the *JL control (see section
9.1.3.17) with the following exceptions:

a) *ZF applies only to character string variables.

b) The variable is filled with zeros instead of blanks.

This control may be used in conjunction with:

a) the *JR control (see section 9.1.3.18). When *ZF and *JR
are used together:

1) Any characters entered are right justified with zero
fill.

2) A null entry will first fill the variable with zeros,
then set the formpointer and logical length pointer to
zero.

b) the *DE control (see section 9.1.3.20).

9-14 DOS. DATABUS COMPILER

9.1.3.20 *DE (Digit Entry)

This control may be used to restrict input into a character
string variable to digits only (0-9).

Programming Considerations:

This control affects only the first variable following the *DE
in the KEYIN list.

An attempt to enter a non-digit will result in the character
being ignored and a beep being returned.

This control may be used in conjunction with:

a) the *JL control (see section 9.1.3.17).

b) the *JR control (see section 9.1.3.18).

c) the *ZF control (see section 9.1.3.19).

9.1.4 Literals (KEYIN)

When a literal «occ>, <slit> or <nlit» appears in the list
of a KEYIN statement, that literal is displayed on the screen.

Programming Considerations:

If the literal is an octal control character (see section
2.5), it is sent to the terminal.

If the literal is of the form "<string>", the following rules
apply.

a) All of the characters between the double quotes are
displayed as they appear in the literal.

b) The first character of the string is displayed at the
current cursor position.

c) The cursor is bumped one position to the right for every
character displayed.

d) The cursor is left positioned one position to the right of
the last character of the literal.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-15

9.1.5 Special Considerations

The following sections describe some special cases of
operator input from the keyboard.

9.1.5.1 BACKSPACE and CANCEL

The following special keys are useful in correcting typing
errors while entering data into variables that appear in a KEYIN
list.

The BACKSPACE key (control H on Teletype) may be used to
delete the last character entered. Using BACKSPACE causes the
following actions:

a) The cursor is moved one position to the left.

b) The character under the cursor is erased from the screen.

c) The character that was under the cursor is not deleted
from the variable in the KEYIN list. The KEYIN pointers
are decremented by one without restoring the original
contents of the variable.

The CANCEL key (control X on a Teletype) may be used to reset
KEYIN pointers to the beginning of the variable.

Using CANCEL is like performing repeated BACKSPACE's until the
variable has been cleared.

Neither BACKSPACE nor CANCEL overstore the contents of the
variable with blanks.

Once BACKSPACE or CANCEL has been used the contents of the
variable becomes indeterminate.

9.1.5.2 NEW LINE

Using the NEW LINE character is treated as a special case of
using the ENTER character. Using the NEW LINE character
effectively causes an automatic ENTER for all subsequent variables
in the KEYIN list. The NEW LINE character is entered by striking:

a) the NEW LINE key on Datapoint 3360 and 3600 terminals,

9-16 DOS. DATABUS COMPILER

b) control 0 on a Teletype, or

c) the DEL key (shift underline) on the system console.

Programming Considerations:

Using NEW LINE causes data entry into the current variable to
be terminated as if the ENTER key had been struck instead.

All subsequent character string variables in the KEYIN list
have their formpointer and logical length pointer set to zero.

All subsequent numeric string variables in the KEYIN list are
set to zero.

The KEYIN list is processed normally, except for the
variables, which are handled as stated above.

Control will fall through to the next Databus statement.

9.1.5.3 INTerrupt

Entering the INTerrupt character may be used to cause an
immediate CHAIN to the port's MASTER program (see section 6.8).
This allows a program to be interrupted before it runs to
completion. The INTerrupt character is entered by striking:

a) the INT key on Datapoint 3360 and 3600 terminals,

b) control shift L on a Teletype, or

c) the CANCEL key with both the KEYBOARD and DISPLAY keys
depressed on the system console.

Programming Considerations:

The program that is being interrupted will execute the
equivalent of a STOP instruction (see section 6.7).

If the PI instruction (see section 6.12) is in effect at the
time that an INTerrupt occurs, the interrupt procedure will be
postponed.

If the printer is being used by the port receiving the
INTerrupt, it will be RELEASEd (see section 10.3).

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-17

9.2 DISPLAY

The DISPLAY instruction is used to put information on the
terminal screen. This statement has the following general format:

<label> DISPLAY <list>

where: <label> is an execution label (see section 2.).
<list> is a list of items describing the information to be

put on the screen.

Programming Considerations:

<label> is optional.

The items in the list must be separated by commas.

<list> may be made up of any combination of the following
items:

a) <svar> is a character string variable (see section 4.2).

b) <nvar> is a numeric string variable (see section 4.1).

c) <occ> is an octal control character (see section 2.5).

d) <list control> is used to control the manner in which the
list is processed.

e) <slit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

f) <nlit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

9.2.1 Character String Variables (DISPLAY)

When a character string variable «svar» appears in the list
of a DISPLAY instruction, the characters saved in the variable are
displayed on the screen. Unless modified by a list control the
manner in which the characters are put on the screen is described
below.

Programming Considerations:

9-18 DOS. DATABUS COMPILER

The characters in the variable are displayed starting with the
first physical character and continuing through the logical
length.

Blanks will be displayed for any character positions that
exist between the logical length pointer and the physical end
of the variable.

The first character displayed will be displayed at the current
cursor position.

The horizontal cursor position is bumped by 1 for each
character displayed.

The cursor is left positioned one character to the right of
the last character displayed.

9.2.2 Numeric String Variables (DISPLAY)

When a numeric string variable «nvar» appears in the list
of a DISPLAY instruction, the characters that are saved in the
variable are displayed on the screen. Unless modified by a list
control, the manner in which the characters are displayed is
described below.

Programming Considerations:

The characters displayed start with the first physical
character and continue through the physical end of the
variable.

The first character displayed will be displayed at the current
cursor position.

The horizontal cursor position is bumped by 1 for each
character displayed.

The cursor is left positioned one character to the right of
the last character displayed.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-19

9.2.3 List Controls

The list controls are provided to allow more flexibility in
the way the screen is formatted. They may be used to control the
manner in which variables are displayed on the screen. All list
controls begin with an asterisk followed by the specification of
the control function.

9.2.3.1 *P<h>:<v> (Cursor Positioning)

This list control is used to position the cursor on the
screen. For details on using this control, see section 9.1.3.1.

9.2.3.2 *EL (Erase to End-of-Line)

The *EL control causes the line to be erased to the right of
the cursor position. For details on using this control, see
section 9.1.3.2.

9.2.3.3 *EF (Erase to End-of-Frame)

The *EF control erases the screen from the cursor position to
the bottom of the screen. For details on using this control, see
section 9.1.3.3.

9.2.3.4 *ES (Erase the Screen)

The *ES control positions the cursor to 1:1 and erases the
entire screen. For details on using this control, see section
9.1.3.4.

9.2.3.5 *C (Carriage Return)

The *C control causes the cursor to be set to the beginning
of the current line. For example: if the cursor was positioned
to 40:5, executing the *C control would change the cursor position
to 1:5.

9-20 DOS. DATABUS COMPILER

9.2.3.6 *L (Line Feed)

The *L control causes the cursor to
line in the current horizontal position.
cursor was positioned to 20:5, executing
change the cursor position to 20:6.

9.2.3.7 *N (Next Line)

be set to the following
For example: if the

the *L control would

The *N control causes the cursor to be set to the first
column of the next line. Executing the *N control is equivalent
to executing a *C control followed by a *L control.

9.2.3.8 *R (Roll the Screen)

The *R control causes the screen to roll up by one line.
(This control has no effect when sent to a 3360 terminal. It is
included for use with 3600 terminals and the system console.) The
cursor position is unchanged by the execution of this control.

9.2.3.9 *+ (DISPLAY Blank Suppression On)

This control is used to turn on a display mode called blank
suppression.

Programming Considerations:

This control affects the display of all character string
variables which follow the *+ control in the DISPLAY list.

If blank suppression is turned on, character string variables
are displayed on the screen as described below.

a) The characters in the variable are displayed starting with
the first physical character and continuing through the
logical length.

b) The first character will be displayed at the current
cursor position.

c) The horizontal cursor position is bumped by 1 for each
character displayed.

d) The cursor is left positioned one character to the right
of the last character displayed.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-21

Blank suppression is automatically turned off when the end of
the DISPLAY list is reached.

9.2.3.10 *- (DISPLAY Blank Suppression Off)

This control turns blank suppression mode off. For more
details about blank suppression mode, see section 9.2.3.9.

9.2.3.11 *W (Wait)

This control is an effective way of allowing a program to
pause without imposing significant overhead on the system.

Programming Considerations:

Each occurance of a *W in the DISPLAY list causes a pause of
one second before continuing to the next item in the list.

Any number of seconds of pause may be achieved by simply
putting in the required number of *W controls in the list.

9.2.3.12 *IT (Invert Text)

This control is used to disable shift key inversion. For
details on using this control, see section 9.1.3.15.

9.2.3.13 *IN (Invert to Normal)

This control is used to enable shift key inversion. For
details on using this control, see section 9.1.3.16.

9.2.4 Literals (DISPLAY)

When a literal «occ>, <slit> or <nlit» appears in the list
of a DISPLAY statement, that literal is displayed on the screen.

Programming Considerations:

If the literal is an octal control character (see section
2.5), it is sent to the terminal.

If the literal is of the form "<string>", the following rules

9-22 DOS. DATABUS COMPILER

apply.

a) All of the characters between the double quotes are
displayed as they appear in the literal.

b) The first character of the string is displayed at the
current cursor position.

c) The cursor is bumped one position to the right for every
character displayed.

d) The cursor is left positioned one position to the right of
the last character of the literal.

9.3 CONSOLE

The CONSOLE instruction is used to put information on the
console screen. This statement has the following general format:

<label> CONSOLE <list>

where: <label> is an execution label (see section 2.).
<list> is a list of items describing the information to be

put on the console.

Programming Considerations:

<label> is optional.

The items in the list must be separated by commas.

<list> may be made up of any combination of the following
items:

a) <svar> is a character string variable (see section 4.2).

b) <nvar> is a numeric string variable (see section 4.1).

c) <occ> is an octal control character (see section 2.5).

d) <list control> is used to control the manner in which the
list is processed.

e) <slit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-23

f) <nlit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

All output to the system console is inhibited if it is being
used as the terminal for port one. In this case, all CONSOLE
instructions execute, but do not actually do anything.

The output always is on the line assigned for the terminal
executing the CONSOLE instruction. This means that any
vertical positioning of the cursor is ignored.

A CONSOLE statement which begins without positioning will
start displaying at column 5.

The port number and asterisk appearing in column 1 through 4
on the CONSOLE may be overwritten by positioning to column 1.

Character string variables are handled exactly alike in
CONSOLE and DISPLAY statements (for more details, see section
9 • 2 • 1) •

Numeric string variables are handled exactly alike in CONSOLE
and DISPLAY statements (for more details, see section 9.2.2).

The only DISPLAY list
(cursor positioning).
statements works like
the vertical position
section 9.1.3.1).

control that is effective is *P<h>:<v>
The cursor positioning used for CONSOLE

it does for KEYIN statements except that
«v» is ignored (for more details, see

If the display flows over the line length limit, the extra
characters will not be displayed.

If the CONSOLE statement is not terminated by a semi-colon,
the carriage return and line feed are ignored.

Example: The CONSOLE instruction could be used to alert the
system operator (if such a person exists) by using the following
statement.

CONSOLE *P20:1,"OPERATOR ALERT"

9-24 DOS. DATABUS COMPILER

9.4 BEEP

BEEP causes a beep (ASCII "ring bell" character) to be
sounded at the terminal. This instruction has the following
general format:

<label> BEEP

where: <label> is an execution label (see section 2.). This
label is optional.

9.5 DEBUG

The DEBUG instruction is used to activate the interpreter's
debugging tool, if such a tool exists. The user's guide of the
appropriate interpreter should be consulted for details on the
operation of this too14 This instruction has the following
general format:

<label) DEBUG

where: <label> is an execution label (see section 2.).

Programming Considerations:

<label> is optional.

If the debugging tool is not available, DEBUG is treated like
"No OPeration" (NOP). That is; program execution continues as
if the DEBUG instruction had not been included in the program.

CHAPTER 9. INTERACTIVE INPUT/OUTPUT 9-25

CHAPTER 10. PRINTER OUTPUT

These instructions are used to output data to a printer and
to control the usage of the printer by a port.

General Programming Considerations:

Typically, formatting is handled in one of the following ways.

a) By the way the variable is defined. It should be defined
with the format which is to be used for output.

b) Using list controls.

Normally, when execution of PRINT (or RPRINT) statement
terminates, the print position is reset to the beginning of
the next line.

If a semicolon (;) is used after the last item in the list,
the print position remains where it was on statement
termination. This feature allows a second PRINT (or RPRINT)
statement to continue where the first statement left off.

Example:

PRINT "FLAGS: " . ,
CALL NOTFLG IF NOT ZERO
PRINT "ZERO, " . ,
CALL NOTFLG IF NOT LESS
PRINT "LESS"

NOTFLG PRINT "NOT " . ,
RETURN

would print one of the following lines, depending on the
condi tion flags.

FLAGS: ZERO, LESS
FLAGS: ZERO, NOT LESS
FLAGS: NOT ZERO, LESS
FLAGS: NOT ZERO, NOT LESS

Those instructions that use a list should make use of
continuation when it is possible to do so. (For details about
using continuation, see section 2.) This not only increases

CHAPTER 10. PRINTER OUTPUT 10-1

the execution speed of the program, but also decreases the
system overhead. The programmer should check his program for
any occurance of two consecutive PRINT statements to see if
they can be combined into a single statement.

PRINT
PRINT

"LINE ONE"
"LINE TWO"

should be combined to form the statment below.

PRINT

10.1 PRINT

"LINE ONE":
*N,"LINE TWO"

The PRINT instruction causes the contents of variables in the
list to be printed in a fashion similar to the way DISPLAY causes
the contents of variables to be displayed. The format of the
print instruction is:

<label> PRINT <list>

Where: <label> is an execution label.
<list> is a list of items describing the output to the

printer.

Programming Considerations:

<label> is optional.

The items in the list must be separated by commas.

<list> may be made up of any combination of the following
items:

a) <svar> is a character string variable (see section 4.2).

b) <nvar> is a numeric string variable (see section 4.1).

c) <occ> is a octal control character (see section 2.5).

d) <list control> is used to control the manner in which the
printing is performed.

e) <slit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

10-2 DOS. DATABUS COMPILER

f) <nlit> is a literal of the form "<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

10.1.1 Character String Variables

When a character string variable «svar» appears in the list
of a PRINT (or RPRINT) instruction, the characters stored in the
variable are printed on the printer. Unless modified by a list
control the manner in which the characters printed on the printer
is described below.

Programming Considerations:

The characters in the variable are printed starting with the
first physical character and continuing through the logical
length.

Blanks will be printed for any character positions that exist
between the logical length pointer and the physical end of the
variable.

The first character printed will be printed at the current
print position.

The print position will be incremented by one for each
character printed.

The current print position is left positioned one character to
the right of the last character printed.

10.1.2 Numeric String Variables

When a numeric string variable «nvar» appears in the list
of a PRINT instruction, the characters that are stored in the
variable are printed on the printer. Unless modified by a list
control, the manner in which the characters are printed is
described below.

Programming Considerations:

The characters printed start with the first physical character
and continue through the physical end of the variable.

The first character printed will be printed at the current

CHAPTER 10. PRINTER OUTPUT 10-3

print position.

The print position is left positioned one character to the
right of the last character printed.

10.1.3 List Controls

The list controls are provided to allow more flexibility in
the way the printer is formatted. They may be used to control the
manner in which variables are printed on the printer. All list
controls begin with an asterisk followed by the specification of
the control function.

10.1.3.1 *F (Form Feed)

The *F control causes the printer to advance to the top of
the next form and the print position to be set to the first
column.

10.1.3.2 *C (Carriage Return)

The *C control causes the print position to be set to the
beginning of the current line.

10.1.3.3 *L (Line Feed)

The *L control causes the print position to be set to the
following line in the current print position. For example: if the
print position was column 20, then the *L control would cause the
print position to be unchanged on the following print line.

10.1.3.4 *N (Next Line)

The *N control causes the print position to be set to one (1)
on the following line. Executing the *N control is equivalent to
executing a *C control followed by a *L control.

10-4 DOS. DATABUS COMPILER

10.1.3.5 *<n> (Tab To Column <n»

The *<n> control causes the print position to be set to
column (n). <n> must be an integer constant.

10.1.3.6 ; (Supress new line function)

The (;) control causes the new line function to be
supressesed. This control inhibits the *N control function which
normally occurs at the end of a PRINT instruction without the (;)
control.

10.1.3.7 *ZF (Zero Fill)

The *ZF control may be used before a numeric variable to
cause zero filIon the left, moving the sign to the left if
necessary.

10.1.3.8 *+ (Blank Supression On)

This control is used to turn on a print mode called blank
suppression.

Programming Considerations:

This control affects printing of all character string
variables which follow the *+ control in the PRINT list.

If blank suppression is turned on, character string variables
are printed on the printer as described below.

a) The characters in the variable are printed starting with
the f~rst physical character and continuing through the
logical length.

b) The first character printed will be printed at the
current print position.

c) The current print position is incremented by one (1) for
each character printed.

d) The print position is left positioned one character to
the right of the last character printed.

Blank suppression is automatically turned off when the end of

CHAPTER 10. PRINTER OUTPUT 10-5

the PRINT list is reached.

10.1.3.9 *- (Blank Suppression Orr)

This control turns blank suppression mode off. For more
details about blank suppression mode, see section 10.1.3.8.

10.1.4 Literals

When a literal «occ>, <slit> or <nlit» appears in the list
of a PRINT (or RPRINT) statement, that literal is printed on the
printer.

Programming Considerations:

If the literal is an octal control character (see section
2.5), it is sent to the printer.

If the literal is of the form "<string>", the following rules
apply.

a) All of the characters between the double quotes are
printed as they appear in the literal.

b) The first character of the string is printed at the
current print position.

c) The print position is incremented one position to the
right for every character printed.

d) The print position is left positioned one position to the
right of the last character in the literal.

10.2 RPRINT

The RPRINT instruction functions exactly as the PRINT except
that the printout physically occurs at a Remote Slave Station
instead of the Central Station where the PRINT instruction
functions. The format of the RPRINT instruction is:

<label> RPRINT <list>

Where: <label> is an execution label.
<list> is a list of items describing the output to the

10-6 DOS. DATABUS COMPILER

printer.

Programming considerations:

<label> is optional.

If the port is not a remote slave port type, then the
instruction is interpreted as a PRINT instruction.

The user should refer to section 10.1 for a discussion of the
PRINT statement.

10.3 RELEASE

The RELEASE instruction ends a user's (port's) exclusive
control of the printer and causes the printer to advance to the
top of the next form. The instruction has the following format:

<label> RELEASE

Where: <label> is an execution label.

Programming Considerations:

<label> is optional.

This instruction causes the printer to become available to
another user.

The printer is seized by a user when the user attempts to
perform a PRINT instruction and the printer is not in use by
another port.

The printer will advance to the top of the next form.

When the user disconnects from the system or keys the
interrupt procedure on the keyboard, a RELEASE is
automatically performed for that user.

This instruction has no effect upon printing being performed
at the remote slave station. ,

This instruction is ignored on non-DATASHARE Systems.

CHAPTER 10. PRINTER OUTPUT 10-7

10.4 Printer Considerations

The tabbing (*<n» in the PRINT (or RPRINT) statement can
move the carriage in the reverse direction and any sequence of
printer controls will be executed in precisely the sequence
specified.

If the servo printer is being used, the paper out condition
will be checked whenever a top of form control is given in a PRINT
(or RPRINT) statement. If after the top of form function is
performed, the paper out condition is present the console will
make a characteristic beeping sound to alert the system operator
that more paper must be placed in the printer. The beeping sound
will resume if the cover is replaced to its original position with
the paper out indicator still on. The recommended procedure is to
open the front cover, remove the last form still in the printer,
place new paper in the printer with the top of the form aligned
with the print head, and finally close the front cover.

Another feature allowed with the servo printer is minor
vertical spacing. The following list depicts the octal control
characters (OCC) which are used for the vertical minor spacing and
the horizontal column spacing. There are eight (8) minor vertical
spaces for one standard line space.

OCC FUNCTION

000 Vertical minor spacing 0 spaces (down the page)
001 Vertical minor spacing 1 space (down the page)
002 Vertical minor spacing 2 spaces (down the page)
003 Vertical minor spacing 3 spaces (down the page)
004 Vertical minor spacing 4 spaces (down the page)
005 Vertical minor spacing 5 spaces (down the page)
006 Vertical minor spacing 6 spaces (down the page)
007 Vertical minor spacing 7 spaces (down the page)

010 Vertical minor spacing a spaces (up the page)
011 Vertical minor spacing 1 space (up the page)
012 Vertical minor spacing 2 spaces (up the pajSe)
013 Vertical minor spacing 3 spaces (up the page)
014 Vertical minor spacing 4 spaces (up the page)
015 Vertical minor spacing 5 spaces ("n

\ "',.., the page)
016 Vertical minor spacing 6 spaces (up the page)
017 Vertical minor spacing 7 spaces (up the page)

020 Left carriage movement 7 columns
021 Left carriage movement 6 columns
022 Left carriage movement 5 columns

10-8 DOS. DATABUS COMPILER

023 Left carriage movement 4 columns
024 Left carriage movement 3 columns
025 Left carriage movement 2 columns
026 Left carriage movement 1 column

027 No action

030 Right carriage movement 1 column
031 Right carriage movement 2 columns
032 Right carriage movement 3 columns
033 Right car.riage movement 4 columns
034 Right carriage movement 5 columns
035 Right carriage movement 6 columns
036 Right carriage movement 7 columns
037 Right carriage movement 8 columns

These features on the servo printer allows different kinds of
underscoring and super- and/or sub-scripting in the printed
output. Note that it is the user's responsibility to keep track
of the carriage micro-position.

CHAPTER 10. PRINTER OUTPUT 10-9

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT

The following instructions are used for communications
between ports (internal communications) and for communications to
a remote or host computer (external communications).

11.1 SEND

The SEND instruction is used to transmit a list of data
variables to a specified destination. The statement has the
following format:

<label> SEND <cmlst>,<route>;<nslst>

where: <label> is an execution label.
<cmlst> is a variable with the COMLST data declaration.
<route> is a string variable that contains the routing

information for the list of variables.
<nslst> is a list of variables either numeric or character

string that are to be transmitted to the specified
destination.

Programming Considerations:

<label> is optional.

<cmlst> must be a variable with the COMLST data declaration.

<route> must be a string variable. The formpointed character
in the string must be either an "I" specifying internal
communications (between ports) or an "E" specifying external
communications (with a remote or host computer).

For internal communications (between ports), the two
characters following the "I" must be valid numeric digits and
are used as the destination port for the data contained in the
list <nslst>.

a) A port number of "01" is port 01 or the first port in the
system.

b) If there are not two valid numeric digits after the
formpointed character in the <route> variable, then the
<cmlst> variable is set to 'clear'. An I/O trap is given

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT 1 1 - 1

and the rest of the instruction is ignored. The SEND
operation is not performed.

c) If the destination port is not configured into the system,
then the 'channel unavailable' status is set into the
<cmlist>. The SEND operation is not performed.

d) If a RECV operation is 'pending' on the destination port
the data from the variable(s) in the <nslst> are
transferred to the variable(s) specified in the RECV
instruction at the destination port. The data is
transferred on a variable to variable basis. That is the
first variable in the SEND statement is transferred to the
first variable in the RECV statement and the second
variable (SEND) in the second variable (RECV) until elther
the SEND or RECV list is exhausted. If a SEND variable is
longer than the RECV variable, then the excess data is
discarded.

e) If no RECV operations are 'pending' at the destination
port, then the <cmlst> status is set to 'channel
unavailable', and the instruction is ignored. The SEND
operation is not performed.

f) For character string variables, the data is transmitted
starting with the first physical character through the
logical length.

g) For numeric variables, the data is transmitted starting
with the first through the last physical character.

h) The internal SEND operations are performed in the
background.

For external communications (to/from a host or remote
computer) the following considerations are pertinent:

a) The information after the "E" in the <route> variable is a
function of the communications process being used. The
compatible line handler user's guide should be consulted
for this information.

b) If the external communications has not been configured
into the system or is not available the instruction is
ignored and the <cmlst> status is set to 'channel
unavailable'.

c) If the external communications is available then the SEND

11-2 DOS. DATABUS COMPILER

instruction is processed and the status of .the <cmlist> is
set to 'pending' and the next DATAUS instruction is
executed. The data may not be transferred to the remote
or host computer immediately, therefore the DATABUS
programmer must not modify any of the variables mentioned
in the SEND statement until the status of the <cmlst>
indicates that the SEND is complete.

d) The data transmitted for external communications is from
the first physical character through the logical length.
Consult the communication line handler user's guide for
details.

If the routing variable <route> formpointed character contains
neither an "E" or "I" then the instruction is ignored and an
I/O trap is given.

Example:

CMLST
ROUTE
VAR1
VAR2
VAR3

WAIT

11. 2 RECV

COMLST
INIT
INIT
FORM
INIT

COMCLR
SEND

COMTST
GOTO

DISPLAY

5
"116"
"MESSAGE NUMBER"
4
"THIS IS YOUR MESSAGE"

CMLST
CMLST,ROUTE;VAR2,VAR2:(SEND MESSAGE)
VAR3
CMLST
WAIT IF OVER

(GET CMLST STATUS)
(DESTINATION PORT NOT
READY)

"MESSAGE NUMBER",VAR2,"TRANSFERRED OK"

The RECV instruction is used to specify a list of variables
which will serve as a destination for data from a source. The
statement has the following format:

<label> RECV <cmlst>,<route>;<slist>

where: <label> is an execution label.

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT 11-3

<cmlst> is a variable with the COMLST data declaration.
<route> is a string variable which contains routing

information.
<slist> is a list of string variables which are to receive

the data.

Programming Considerations:

<label> is optional.

<cmlst> is a variable with the COMLST data declaration.

<route> is a string variable which contains the routing
information. An "I" specifies internal communication (between
ports) and an "E" specifies external communication (with a
host or remote computer).

For internal communications, the following facts are
pertinent:

a) There must exist two valid numeric characters after the
formpointed (after the "I") character in the <route>
variable. These two numeric characters specify the port
that is expected to SEND the data. If the expected
SENDing port is invalid then an 1/0 error is given and the
rest of the instruction is ignored. If the expected
SENDing port is not configured then the <cmlst> status is
set to 'channel unavailable' and the rest of the
instruction is ignored. The actual SENDing port and the
expected SENDing port numbers may be different~ The
expected SENDing port is used to simply tell the DATABUS
program if the port is configured.

b) When data is received from another port, then the two
characters following the formpointed character (the "I")
in the <route> variable are overstored with the port
number that originated the data (SENDing port number). A
port number of "01" specifies the port 1 was the SENDing
port.

c) If there is no SEND operation 'pending' on another port
with the destination for the REeVing port, then the
<cmlst> status is set to 'communications pending' or 'in
process'. Otherwise the RECV operation occurs
immediately.

d) The data is transferred from the SENDing to the RECVing
port on a variable to variable basis. That is the first

11-4 DOS. DATABUS COMPILER

SENDing variable is stored into the first RECVing variable
and the second SENDing variable to the second RECVing
variable until either the SENDing or RECVing list is
exhausted.

e) If a RECVing variable will not contain all of the data for
the SENDing variable, then the excess data is discarded.

f) If the SENDing variable list contains more variables than
the RECVing variable list, the excess variables are
discarded.

g) If the SENDing variable list contains fewer variables than
the RECVing variable list, the excess variables that did
not receive data has their formpointer and logical length
set to zero.

h) The logical length of the RECVing variables reflect the
amount of data transferred. The formpointer is reset to
1 •

For external communications, the following facts are
pertinent:

a) If the external communications has not been configured
into the system, or is not available then the instruction
is ignored and the <cmlst> status is set to 'channel
unavailable'. The next DATABUS instruction is executed.

b) The logical length is set on all RECVing variables to
reflect the quantity of data received for the variable.
The formpointer is -reset to 1.

c) The communication line handler user's guide should be
consulted for additional details on external RECV
Dperation.

If the formpointed character in the <route> variable contains
neither an "E" nor "I" then the rest of the instruction is
ignored and an I/O trap is given.

Example:

CMLIST
CMLIST1
ROUTE
ROUTE1

COMLST
COMLST
INIT
INIT

CHAPTER 11.

1
3
"108"
"108"

COMMUNICATIONS INPUT/OUTPUT 11-5

VAR1
EMPLN
DATE
HOURS

TEST

CYCLE

TEST1

IN IT
DIM
DIM
DIM

SEND
COMTST
GOTO
GOTO
COMCLR
RECV
COMTST
GOTO
GOTO

GOTO
NOTAVAL DISPLAY

11.3 COMCLR

"PLEASE SEND ME YOUR TIME REPORTS"
5
10
3

CMLIST,ROUTE;VAR1 (SEND THE MESSAGE)
CMLIST (TEST THE CMLIST)
TEST IF LESS (SEND NOT COMPLETE)
NOTAVAL IF OVER (CHANNEL NOT AVAILBLE)
CMLIST1 (CLEAR THE COMLIST)
CMLIST1,ROUTE1;EMPLN,DATE,HOURS
CMLIST1 (RECV COMPLETE)
NOTAVAL IF OVER (CHANNEL UNAVAILABLE)
TEST1 IF LESS (RECV NOT COMPLETE)

(STORE DATA)

CYCLE (GET MORE DATA)
"CHANNEL UNAVAILABLE"

The COMCLR instruction is used to clear the status of the
specified communications list <COMLST>. The instruction has the
following format:

<label> COMCLR <cmlst>

where: <label> is an execution label.
<cmlst> is a variable with the COMLST data declaration.

Programming Considerations:

<label> is optional.

<cmlst> must be a variable with the COMLST data delaration.

If the actual status of the <cmlist> is 'pending' or 'in
process', and a message is being transferred, then the message
being transferred will be truncated.

11-6 DOS. DATABUS COMPILER

If a <cmlst> appears in a SEND or RECV statement, it may not
appear in another such statement without first appearing in an
intervening COMCLR statement.

The <cmlst> status is set to 'clear' when this instruction is
executed.

Example:

5
"103"
"115"

CLIST
ROUTE1
ROUTE2
MSG

COMLST
INIT
INIT
INIT "PLEASE NOTIFY EMPLOYEES OF MEETING TODAY"

TEST

NEXT

11.4 COMTST

COMCLR
SEND
COMTST
GOTO
GOTO

COMCLR

SEND

CLIST
CLIST,ROUTE1jMSG
CLIST
TEST IF LESS
TEST IF OVER

CLIST

CLIST,ROUTE2;MSG

(CLEAR COMLIST)
(SEND MESSAGE)
(SEND COMPLETE?)
(RETRY SEND)
(RECV PORT NOT
READY.)
(SEND COMPLETE)
(CLEAR THE COMLIST
FOR REUSE)
(NEXT SEND
OPERATION)

The COMTST instruction is used to access the status
information stored in the communications list <CMLST> The COMTST
instruction has the following format:

<label> COMTST <cmlst>

where: <label> is an execution label.
<cmlst> is a variable with the COMLST data declaration.

Programming Considerations:

<label> is optional.

<cmlst> must be a variable with the COMLST data declaration.

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT 11-7

After the COMTST instruction is executed the flags are set as
follows:

EQUAL - Communication completed successfully.

OVER - 'Channel unavailable'. For internal communications
(communications between ports) this means that the
port specified to receive the data is not configured
into the system. For external communications
(communication with a remote or host computer) this
means that either the external communications was not
configured or was not available.

LESS - 'Communications pending' or 'in process'. This means
that the none of the variables specified in the SEND
or RECV instructions should be modified before a
subsequent COMTST instruction yields an EQUAL
condition signifying that the process is complete.

If all three of the above conditions (less, over, equal) are
false, the <cmlst> variable is said to be 'clear' which means

"that it is free to be used in a SEND or RECV statement.

Example:

CMLIST
ROUTE
V1
V2

WAIT

NXTMSG

COMLST
INIT
INIT
DIM

COMCLR
SEND
COMTST
GOTO

5
"105"
"THIS IS YOUR MESSAGE"
50

CMLIST
CMLIST,ROUTEjV1,V2
CMLIST
WAIT IF OVER

(GET STATUS OF CMLIST)
(DESTINATION PORT NOT
READY TO RECV)
(PROCEED WITH NEXT
MESSAGE)

11-8 DOS. DATABUS COMPILER

11.5 COMWAIT

The COMWAIT instruction is used to suspend program execution
at a DATASHARE port. Execution is suspended until either a SEND
or a RECV instruction (see sections 11.1 and 11.2) indicates I/O
completion. This instruction has the following format:

<label> COMWAIT

where: <label> is anexecut'ion label (see section 2.).

Programming Considerations:

<label> is optional.

If QQ SEND or RECV instructions have initiated communication,
the COMWAIT instruction is treated like a "No OPeration" (NOP)
instruction. That is; execution continues with the next
instruction as if the COMWAIT instruction had not been
included in the program.

If any communications ('pending' or 'in process') are active
when the COMWAIT instruction is executed, then execution of
the program is suspended. That is; program execution does not
continue with the next instruction until a signal to continue
is received. This suspension of program execution imposes
very litle overhead on a DATASHARE system.

Termination of anyone of the communication processes
indicates to the COMWAIT instruction that it should resume
execution. This allows the programmer to avoid putting the
COMTST (see section 11.4) within a tight loop to check for
termination of a communication task. Such tight loops impose
considerable overhead on a DATASHARE system.

Since any communication process may cause execution to resume,
a series of COMTST instructions must be used to determine
which process terminated. This series of tests imposes much
less overhead on the system than the tight loop method
described above.

CHAPTER 11. COMMUNICATIONS INPUT/OUTPUT 11-9

Example:

A COMLST 3
B COMLST 5
AROUTE INIT "EOO"
BROUTE INIT "EOO"
AVAR INIT "STRING1"
BVAR INIT "STRING2"

SEND A,AROUTE;AVAR
SEND B,BROUTE;BVAR

WAIT COMWAIT
COMTST A
GOTO ACOMP IF EQUAL
COMTST B
GOTO BCOMP IF EQUAL

ACOMP COMCLR A

(Modify AVAR)

SEND A,AROUTE;AVAR
GOTO WAIT

BCOMP COMCLR B

(Modify BVAR)

SEND B,BROUTE;BVAR
GOTO WAIT

11-10 DOS. DATABUS COMPILER

CHAPTER 12. DISK INPUT/OUTPUT

These instructions make use of the Datapoint DOS file
structure while reading from and writing to the disk. For more
details about this structure, see the DOS User's Guide and the
Systems Guide of the appropriate DOS. Basically, the DOS file
structure is as follows.

The smallest unit of storage on the disk is the sector. That
is; all disk I/O hardware operations affect entire sectors, never
a partial sector. Each sector is capable of saving up to 251
bytes of information (there are actually 256 bytes per sector, but
5 bytes are reserved for use by DOS).

In most cases, the information to be saved will not fit
within one sector. To handle such information, sectors are
arranged into groups called files.

The DOS file structure is made up of files arranged so that
they can be easily referenced by names associated with them. (The
name associated with a file is usually selected by the user.)

A good analogy is to think of the DOS file structure as
follows:

file structure
file
sector

= file cabinet
= folder in the cabinet
= sheet of paper in the folder

This analogy will be used later in the discussion of disk I/O.

Note that; the disk structures on the remote station disks
(diskettes) and the central station disks are identical from the
programmers point of view. The only difference depends on whether
the file was declared using RFILE or RIFILE, rather than FILE or
IFILE. If it was declared using RFILE or RIFILE, the file
accessed will be on a remote station disk (diskette). If it was
declared using FILE or IFILE, the file accessed will be on a
central station disk.

CHAPTER 12. DISK INPUT/OUTPUT 12-1

12.1 File Structure

When a,group of sectors is organized into a file; some
information, about the location of those sectors, must be kept by
DOS and the Databus interpreter.

Databus keeps its information about each file in the user's
data area. The file declaration statements (see Chapter 5.) are
used to reserve space in the user's data area for this
information.

The information kept by Databus is described below.

The drive number of the disk drive on which the file is found.

A pointer to the physical location of the file.

The following pointers which describe the current position
within the file.

a. The record number, which points to the sector currently
being referenced. A record number of 0 indicates the
first sector within the file.

b. The character pointer, which points to the byte currently
being referenced within the sector. The first byte of the
sector is indicated by the character pointer being equal
to 1.

A counter used to keep track of the number of spaces when
using space compression (for more details on space
compression, see section 12.1.2).

Two additional pointers are included for use with index files
only. These are:

a. A pointer to the logical record last referenced by using
the index file.

b. A pointer to the next key in sequence. (All of the keys
in the index file are sorted using their ASCII values.)

12-2 DOS. DATABUS COMPILER

12.1.1 Record structures

There are several ways of organlzlng records on the disk
sectors. All of them provide different methods of accessing the
information saved on the disk. The types of records that can be
used are physical records, logical records and indexed records.

12.1.1.1 Physical Records

Programming Considerations:

A physical record corresponds to exactly one sector on the
disk.

A physical record starts with the first character of the
sector.

An 003 (octal) character terminates a physical record.

There are at most 250 data characters in a physical record.
(Note: when considering physical records the logical
end-of-record character, 015, is treated as a data character.)

Analogy:

file structure
file
sector
physical record

= file cabinet
= folder in the cabinet
= sheet of paper in the folder
= page of text on the sheet of paper

12.1.1.2 Logical Records

Programming Considerations:

A logical record is terminated with an 015 (octal) character.

A logical record starts with the character immediately
following the 015 of a previous logical record.

More than one logical record may be saved on a physical
record.

Logical records may extend across physical record boundaries.

There is no restriction upon the length of a logical record.
A single logical record may extend across many physical

CHAPTER 12. DISK INPUT/OUTPUT 12-3

records. (It is a good idea to keep logical records
reasonably short to make them easy to deal with.)

Analogy:

file structure
file
sector

= file cabinet
= folder in the cabinet
= sheet of paper in the folder
= page of text on the sheet of paper physical record

logical record = paragraph of text on the sheet of paper

Example: Four logical records could appear on the di sk as
follows:

asc asc asc asc asc asc oct asc asc asc asc asc asc oct asc
L I N E 1 015 L I N E 2 015 L

asc asc asc asc asc oct asc asc asc asc asc asc oct oct
I N E 3 015 L I N E 4 015 003

oct
003

Note that the first physical record contains two logical records
as well as the first letter of a third. The third logical record
starts in the first physical record and continues into the 'second
physical record. At this point the fourth logical record starts
and continues to the end of the physical record.

Example: If the same four logical records were written to the
disk one per physical record, they would appear as
follows:

asc asc asc asc asc asc oct oct
L I N E 1 015 003

asc asc asc asc asc asc oct oct
L I N E 2 015 003

asc asc asc asc asc asc oct oct
L I N E 3 015 003

asc asc asc asc asc asc oct oct
L I N E 4 015 003

Note that it took twice as much disk space to save the same amount
of information in this example than in the previous example. It

12-4 DOS. DATABUS COMPILER

is sometimes desirable to give up this disk space to provide
faster and easier access to a logical record.

12.1.1.3 Indexed Records

An indexed record is a logical record that is named. This
makes it possible to reference a record by simply specifying the
name of the record.

Programming Considerations:

The name that is associated with the logical record is called
a key.

There is no distinction between a data file that is indexed
and one that is not.

All of the keys, associated with the records in a data file,
are saved in a separate file. This file, that contains the
keys for another data file, is called an index file.

There may be more than one index file associated with a single
data file.

Databus requires that all index files have the DOS file
extension of IISI.

The index file contains:

a. The name and extension of the data file which it indexes.

b. The keys.

c. The pointers necessary to associate the keys with the
logical records.

The DOS INDEX command is the only way that index files can be
created. For more details on INDEX, see the DOS User's Guide.

All keys put into the index file by the DOS INDEX utility will
not have any trailing spaces. (Unnecessary spaces cause
larger index files and longer access times.)

The index structure is an n-ary tree, where:

a. n is determined by the number of keys that will fit within
a sector.

CHAPTER 12. DISK INPUTIOUTPUT 12-5

b. Each node of the tree is contained within one disk sector.

c. The tree has enough levels so that the uppermost node will
fit within one disk sector.

The lowest level of the tree is a linked list. The keys in
the linked list are arranged sequentially according to .their
ASCII values.

Depending on the length and path of this linked list, the time
spent in traversing this list can lead to considerable
overhead. The INDEX utility may be used to reorganize this
list to minimize the time spent in traversing it. USE THE
INDEX UTILITY FREQUENTLY!

Analogy:

file structure
file
index file

sector
physical record
logical record

= file cabinet
= folder in the cabinet
= folder that contains the table of contents of

another folder
= sheet of paper in the folder
= page of text on the sheet of paper
= paragraph of text on the sheet of paper

12-6 DOS. DATABUS COMPILER

The following diagram demonstrates the way in which the keys are
associated with the logical records. The diagram assumes that
only 3 keys will fit per sector and that the data file was indexed
on column 6. The *'s indicate pointers. Sector boundaries are
indicated by ---.

Index file I
I Data file

========================1=======================================

A

I
I

,------+A 1

C;*----4I--~ asc asc asc asc asc asc asc oct
1) LIN E A 015
I
I

CC**----4I--~asc asc asc asc asc asc asc oct
1) LIN E B 015
I
I

* 1 asc asc asc asc asc asc ascoct
*--+-1 --t) LIN E C 0 15

I
I

D 1

A C;* __ -4I_~ asc asc asc asc asc asc asc oct
1) LIN E D 015
I

~~ I

* (* 1 asc asc asc asc asc asc asc oct
D *--+-: --+) LIN E E 0 15
* F 1
G~* 1 asc asc asc asc asc asc asc oct

~_--J _ ~ _ _ ~-_----I--~) LIN E F 0 15

*----~)J G

>-: : c::----~--~
: c:;-----!----+ I ~ I

I
I

G:-
'---~ J

I
I·
I ~
I
I
I
I
I
I
I * I) * -----+----~

*
*
*
*
*

asc
L

asc
L

asc
L

asc
L

asc asc asc asc asc asc oct
I N E G 015

asc asc asc asc asc asc oct
I N E H 015

asc asc asc asc asc asc oct
I N E I 015

asc asc asc asc asc asc oct
I N E J 015

oct
003

CHAPTER 12. DISK INPUT/OUTPUT 12-7

12.1.2 Space Compression

In some data files large numbers of contiguous spaces appear.
The disk space used by such files may be compressed by replacing
the contiguous spaces with a count of the spaces. The following
programs all produce space compressed disk files: EDIT, SORT,
REFORMAT, DBCMP (print files), several terminal emulators and all
of the Databus interpreters.

Space compression is done by counting the contiguous spaces,
then replacing them with the following: the 011 (octal) control
character followed by a byte which contains the count of the
spaces. This number will never be less than 2 (since it is
wasteful to expand one or zero spaces into two characters) and may
be as large as 255. Any program that encounters the 011 on the
disk will then look at the next byte to get the number of spaces
that should appear at that point in the record. The 011 will
never appear as the last character in a physical record. This
prevents the 003 (end of physical record) from being used as a
count of 3 spaces.

Trailing spaces are never written to space compressed
records. The 015 (end of logical record) character is always
written immediately after the last non-blank character in the
record.

If the record is to be modified in place, using space
compression is discouraged. If the number of spaces is changed by
the modification, the position of any non-blank characters may be
shifted within the physical record. This could easily cause a
FORMAT trap on subsequent reads from that record.

Example: The following a logical record is shown first without
space compression and then with space compression.

asc asc asc asc asc asc asc asc asc asc asc asc asc asc oct oct
1 2 5 X 015 003

asc asc asc oct oct
1 2 011 002 5

oct oct
011 005

asc oct oct
X 015 003

12-8 DOS. DATABUS COMPILER

12.1.3 End of File Mark

The end of file mark (EOF) is a special type of physical
record which is written to the disk as the last physical record of
a file.

The end of file mark always starts at the beginning of a
physical record and looks like the following physical record:

oct oct oct oct oct oct oct
000 000 000 000 000 000 003

The rest of the characters in the sector are of no significance.

All records between the beginning of the file and the EOF
must be in acceptable physical record format. Any record that is
not in this format will cause an I/O or FORMAT trap. An empty
file is acceptable; that is, any file which has an EOF as it~
first physical record is acceptable.

12.2 Accessing Methods

All disk I/O in Databus is based upon establishing a position
within a file. Once this position is established, all accesses
are performed by moving this position within the file. This
position within the file is completely described by the record
number and character pointer mentioned in section 12.1.

Bumping the postion in a file refers to bumping the character
pointer; with the following exception. If the character pointer
is bumped to the physical end-of-record character (003), the
following actions are taken:

a. the record number is bumped by one, and

b. the character pointer is set to one.

12.2.1 Physical Record Accessing

Physical record accessing is the fastest and simplest method
of accessing information within a file. Physical record accessing
may be used to randomly access information on the disk.

Programming Considerations:

Each physical record in a file is assigned a positive integer

CHAPTER 12. DISK INPUT/OUTPUT 12-9

number. 0 is assigned to the first physical record in the
file, 1 to the second, 2 to the third, and so on to the last
record in the file.

To access a record, the programmer must specify the record
number of the physical record he wishes to use.

The position in the file is modified to be:

a. The record number of the file is set to the number
supplied by the programmer.

b. The character pointer is set to one.

Once the position has been established, the access continues
as if it had been a logical record access (see section
12.2.2).

12.2.2 Logical Record Accessing

This is the access method used to read and write logical
records. This access method allows only sequential processing of
disk records. If random access to logical records is desired, the
slower indexed accessing must be used.

Programming Considerations:

The position within the file is not reset initially.

The position within the file is bumped by one for every
character accessed on the disk.

Bumping the position to the physical end-of-record character
is described in section 12.2.

When the logical end-of-record character (015) is
read/written, the following actions are taken:

a. record processing is terminated.

b. the position within the file is bumped past the 015.

12-10 DOS. DATABUS COMPILER

12.2.3 Indexed Record Accessing

This method is used to reference logical records randomly
rather than sequentially. While this method provides greater
flexibility in random accessing, it is also much slower. If the
time spent in accessing the disk is critical, a means of using
physical record accessing should be used.

Programming Considerations:

There are five basic indexed operations:

a. Read the named logical record.

b. Read the next record in sequence. (The keys are sorted
using the ASCII values of the keys.)

c. Insert the named logical record.

d. Delete the named logical record.

e. Modify the named logical record.

Since there can be any number of indexes into one data file,
inserting (or deleting) a record involves inserting (or
deleting) the key into (or from) all of the indexes.

In addition to the position within the data file, DATABUS
maintains another position within the index file. Once this
position has been established it is used to access the record
whose key is next in the collating sequence (the key next in
alphabetical order).

The position within the data file is established by finding
the key in the index file and using the pointers saved there
as the position. This does not apply to insertions, since the
key is not in the index file yet.

The position within the data file for insertions is always at
the end of the data file. For more details, see section 12.2.

Once the position within the data file has been established,
the access continues as if it had been a logical record access
(see section 12.2.2).

An indexed access will cause the following number of disk
sectors to be read.

CHAPTER 12. DISK INPUT/OUTPUT 12-11

a. One sector for each level of the index except the lowest
level.

b. At least one sector for the lowest level of the index.
The number of disk reads at this level can become very
large, if the index file has not been re-built recently.
This is particularly true if a large number of keys have
been inserted into the index. USE THE INDEX UTILITY
FREQUENTLY!

c. Whatever disk functions are required to perform the actual
read or write operation.

The linked list at the lowest level of the index will have a
very long and disorganized path when a data base is
initialized using insertions. This leads to considerable
overhead. If a data base must be initialized using
insertions, using the INDEX utility to clean-up the index is
particularly important.

Both physical record and logical record accesses can be made
to indexed files.

12.3 General Instructions (Disk 1/0)

There are many aspects of some of the Disk 1/0 instructions
which are common to all of the acessing methods. The following
sections discuss these common aspects of several of the
instructions.

12.3.1 OPEN (General)

This instruction is used to initialize a logical file for use
by a Databus program. The use of logical files allows a Databus
label to be associated with a file on the disk. One of the
following general formats may be used:

1) <label> OPEN <file>,<slit>
2) <label> OPEN <file>,<svar>
3) <label> OPEN <i file>, <sli t>
4) <label> OPEN <i fi Ie>, <svar>
5) <label> OPEN <rfile>,<slit>
6) <label> OPEN <rfile>,<svar>
7) <label> OPEN <rifile>,<slit>
8) <label> OPEN <rifile>,<svar>

12-12 DOS. DATABUS COMPILER

where: <label> is an execution label (see section 2.).
<slit> is a literal of the form "<string>" (see section

2.5) .
<svar> is a string variable (see section 4.2).
<file> is a file declared using the FILE declaration (see

section 5.1).
<ifile> is a file declared using the IFILE declaration

(see section 5.2).
<rfile> is a file declared using the RFILE declaration

(see section 5.3).
<rifile> is a file declared using the RIFILE declaration

(see section 5.4).

Programming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

The value of <svar> is unchanged by the execution of this
instruction.

The string literal, when using format (1), (3), (5) or (7);
specifies the DOS name of the disk file to be associated with
the label.

The string variable, when using format (2), (4), (6) or (8);
specifies the DOS name of the disk file to be associated with
the label.

The extension is not furnished by the string literal or string
variable. The following extensions are assumed:

a) /TXT for those files opened using formats (1), (2), (5)
and (6).

b) IISI for those files opened using formats (3), (4), (7)
and (8).

One of the following rules is used to build the DOS name from
the string in the string variable or string literal:

a) The characters used start with the formpointed character
and continue until eight characters have been obtained, or

b) if the logical end of string is reached before eight
characters have been obtained, the remainder of the eight

CHAPTER 12. DISK INPUT/OUTPUT 12-13

characters are assumed to be blanks.

The character used to specify the drive number is obtained
from the string variable or string literal using one of the
following rules:

a) If (a) above is used to obtain the name, then the
character after the eighth character is used as the drive
specification, or

b) If (b) above is used to obtain the name, then the
character following the one pointed to by the logical
length pointer is used as the drive specification, or

c) If the last character obtained from the string is
physically the last character in the string, then the
drive number is unspecified.

If the character used as the drive specification is not an
ASCII digit (0 through 9), then the drive number is
unspecified.

If the drive number is unspecified, all drives will be
searched for the file (starting with drive 0 and ending with
the highest numbered drive that is on-line).

If the character used as the drive specification is an ASCII
digit, then only the drive with that number will be searched
to find the file.

If the specified drive is off-line an IIO error will occur.

Any number of logical files may be open at one time.

If the specified logical file is already open, the equivalent
of a CLOSE instruction is executed before proceeding with the
OPEN.

An attempt to OPEN a file that does not exist will result in
an IIO error.

Executing the OPEN instruction initializes the logical file
without changing the disk file in any way.

Space compression is turned on by the execution of an OPEN
instruction.

12-14 DOS. DATABUS COMPILER

Assume that the following statements were included in the
program previous to the statements in all of the following
examples:

Example:

FILE FILE
FILENAME INIT "PAYROLL11"

RESET
LEN SET

RESET
OPEN

FILENAME TO 9
FILENAME

FILENAME TO 4
FILE,FILENAME

SET THE LOGICAL
LENGTH POINTER TO 9

SET THE FORMPOINTER TO 4

this OPEN instruction will find and initialize a file named
ROLL11/TXT on any drive on which it can be found.

Example:

RESET
LEN SET

RESET
OPEN

FILENAME TO 8
FILENAME

FILENAME TO 4
FILE,FILENAME

SET THE LOGICAL
LENGTH POINTER TO 8

SET THE FORMPOINTER TO 4

this OPEN instruction will try to find and initialize a file named
ROLL1/TXT from drive 1.

Example:

RESET
LEN SET

RESET
OPEN

FILENAME TO 8
FILENAME

FILENAME TO 1
FILE,FILENAME

SET THE LOGICAL
LENGTH POINTER TO 8

SET THE FORMPOINTER TO 1

this OPEN instruction will try to find and initialize a file named
PAYROLL1/TXT from drive 1.

CHAPTER 12. DISK INPUT/OUTPUT 12-15

Example:

RESET
LEN SET

RESET
OPEN

FILENAME TO 9
FILENAME

FILENAME TO 1
FILE,FILENAME

SET THE LOGICAL
LENGTH POINTER TO 9

SET THE FORMPOINTER TO 1

this OPEN instruction will try to find and initialize a file named
PAYROLL1/TXT from drive 1.

Example:

RESET
LENSET

RESET
OPEN

FILENAME TO 7
FILENAME

FILENAME TO 1
FILE,FILENAME

SET THE LOGICAL
LENGTH POINTER TO 7

SET THE FORMPOINTER TO 1

this OPEN instruction will try to find and initialize a file named
PAYROLL/TXT from drive 1.

Example:

RESET
LENSET

RESET
OPEN

FILENAME TO 3
FILENAME

FILENAME TO 1
FILE,FILENAME

SET THE LOGICAL
LENGTH POINTER TO 3

SET THE FORMPOINTER TO 1

this OPEN instruction will try to find and initialize a file named
PAY/TXT from any drive on which it can be found.

12.3.2 CLOSE (General)

This instruction is used to return any unused, newly
allocated disk space to DOS for use by another file. CLOSE may
have one of the following general formats:

1)
2)
3)
4)

<label> CLOSE
<label> CLOSE
<label> CLOSE
<label> CLOSE

<file>
<ifile>
<rfile>
<rifile>

where: <label> is an execution label (see section 2.).
<file> is a file declared using the FILE declaration (see

section 5.1).

12-16 DOS. DATABUS COMPILER

<ifile> is a file declared using the IFILE declaration
(see section 5.2).

<rfile> is a file declared using the RFILE declaration
(see section 5.3).

<rifile> is a file declared using the RIFILE declaration
(see section 5.4).

Programming Considerations:

<label> is optional.

If only reads or updates were performed on the file, the CLOSE
instruction does not need to be used.

The equivalent of a CLOSE instruction is automatically
performed when one opens a logical file that is already open.

Execution of the CLOSE instruction does not write an
end-of-file mark to the file.

Closing a file from another port could affect the file being
used at your port.

Execution of the CHAIN instruction (see section 6.8), causes
all logical files that are open to be automatically closed
without space deallocation being performed. Note that this
means files cannot be held open across program chains.

A potential problem exists when the CLOSE instruction is
performed on files that are in use by more than one port.
There is a discussion of this problem in Appendix D.

12.3.3 READ (General)

The READ instruction is used to get information saved on the
disk into variables in a Databus program. This instruction may
have one of the following general formats:

1)
2)
3)
4)
5)
6)

<label>
<label>
<label>
<label>
<label>
<label>

READ
READ
READ
READ
READ
READ

<file>,<nvar>;<list>
<ifile>,<nvar>;<list>
<ifile>,<svar>;<list>
<rfile>,<nvar>;<list>
<rifile>,<nvar>;<list>
<rifile>,<svar>;<list>

where: <label> is an execution label (see section 2.).

CHAPTER 12. DISK INPUT/OUTPUT 12-17

<nvar> is a numeric variable (see section 4.1).
<svar> is a string variable (see section 4.2).
<file> is a file defined using the FILE declaration (see

section 5.1).
<ifile> is a file defined using the IFILE declaration (see

section 5.2).
<rfile> is a file defined using the RFILE declaration (see

section 5.3).
<rifile> is a file defined using the RIFILE declaration

(see section 5.4).
<list> is a list of items describing the information to be

read from the disk.

Programming Considerations:

<label> is optional.

Forma ts (1), (2), (4) and (5) are used to read from the di sk
using one of the following access methods.

a) If the value of <nvar> < 0, a logical record is read.

b) If the value of <nvar> > ° or = 0, a physical record is
read.

Formats (3) and (6) are used to read indexed records from the
disk.

The items in the list must be separated by commas.

Space decompression is always in effect when doing READ's.

If all of the items of the list have been used before the
logical end of the record is reached, one of the following
actions take place.

a) If a semicolon is placed at the end of the list, the
position within the file is left unchanged after the last
item in the list is processed. This allows subsequent IIO
operations to pick up at the position where the READ
finished.

b) If a semicolon is not placed at ~ne end of the list, the
position within the file is bumped past the next logical
end-of-record character (015). This allows subsequent IIO
operations to pick up at the start of the next logical
record.

12-18 DOS. DATABUS COMPILER

<list> may be made up of any combination of the following
items:

a) <svar>, a character string va.iable (see section 4.2).

b) <nvar>, a numeric string variable (see section 4.1).

c) *<nvar>, a list control (see sections 13.4.1).

d) *<dnum>, a list control (see sections 12.1.3).

If an attempt is made to read a record which has never before
been written, the following actions occur.

a) The position within the file is unchanged.

b) A RANGE trap occurs.

An attempt to read an end-of-file mark (see section 12.1.3)
will cause the following actions.

a) The OVER flag will be set to true.

b) All numeric string variables in the list will be set to
zero.

c) All character string variables in the list will have:

1. the formpointer set to zero.

2. the logical length pointer set to zero.

3. all of the characters in the variable replaced with
blanks.

d) A semicolon at the end of the READ list has no effect.

e) The position within the file is reset to point to the
end-of-file mark, after processing of the READ is
complete. This means that; if the OVER condition flag is
ignored, subsequent reads will read the same end-of-file
mark.

CHAPTER 12. DISK INPUT/OUTPUT 12-19

12.3.3.1 Character String Variables (READ)

When a character string variable appears in the list of a
WRITE instruction, characters are read from the disk and put into
the variable. These characters are put into the variable as
described below.

Programming Considerations:

Characters are read from the disk starting at the current
position within the file.

Characters are stored consecutively starting at the physical
beginning of the string variable.

Characters are read and stored until the physical end of the
character string variable is reached.

The formpointer is set to one.

The logical length is set to point to the last physical
character in the string.

If the end of the logical record is encountered while filling
a character string variable, the following takes place:

a) The logical end-of-record character (015) is not stored in
the variable.

b) The logical length pointer of the variable is set to point
to the last character stored in the variable.

c) The suffix of the variable will be filled with blanks.

These actions are particularly useful when dealing with space
compressed files. The trailing blanks deleted by using space
compression are restored in this way. (b) above makes it
possible to take advantage of the *+ control with DISPLAY and
PRINTing of logical records.

If the logical end of record is encountered before all of the
character string variables in the list are filled, the
following actions are taken.

a) The formpointers of all of the remaining character string
variables are set to zero.

b) The logical length pointers of all of the remaining

12-20 DOS. DATABUS COMPILER

character string variables are set to zero.

c) All of the remaining character string variables are filled
with blanks.

12.3.3.2 Numeric String Variables (READ)

When a numeric string variable appears in the list of a READ
instruction, characters are read from the disk and put into the
variable. These characters are put into the variable as described
below.

Programming Considerations:

Characters are read from the disk starting at the current
position within the file.

Characters are stored consecutively starting at the physical
beginning of the numeric variable.

Characters are read and stored until the physical end of the
character string variable is reached.

Any non-leading spaces read will be converted to zeros (e.g.
s3s2s1, where s stands for a space, would be read as s30201).

ASCII digits are the only characters accepted with the
following exceptions. A FORMAT trap will occur if the
following rules are not satisfied.

a) Blanks are always accepted.

b) A minus sign is accepted only when it is the first
non-blank character to be read.

c) A minus sign is accepted only when there is room for at
least one character to the left of the decimal point.

d) A period is accepted only if the format of the variable
calls for a decimal point.

e) Only one period will be accepted.

f) The number of characters that will be accepted before a
period is required

equals

CHAPTER 12. DISK INPUT/OUTPUT 12-21

the number of places preceding the decimal point in the
format of the variable.

g) The number of characters that will be accepted after the
period

equals
the number of places following the decimal point in the
format of the variable.

h) The last character to be accepted may be a
"minus-overpunch" character (see section 12.3.4.3.4). If
it is, the character to the left of the most significant
digit will contain the sign. If there is already a sign
or if there is no room for the sign, a FORMAT trap will
occur.

A FORMAT trap will also occur if the variable is dimensioned
to one and the character is a negative sign.

If a FORMAT trap occurs during a read, the position within the
file is reset to what it was before the READ was attempted.

If the end of the logical record is encountered while filling
a numeric string variable, the rest of the variable is padded
with zeros. Note that if one of these locations within the
variable is the decimal point, a FORMAT trap will occur.

If the logical end of record is encountered before all of the
numeric string variable in the list are filled, all of the
remaining variables are set to zero.

12.3.4 WRITE (General)

The WRITE instruction is used to put the information to be
saved onto the disk. This instruction may have one of the
following general formats:

1)
2)
3)
JI' .J

5)
6)

<label>
<label>
<label>
<label>
<label>
<label>

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

<file>,<nvar>;<list>
<ifile>,<nvar>;<list>
<ifile>,<svar>;<list>
<rfile>,<nvar>;<list>
<rifile>,<nvar>;<list>
<rifile>,<svar>;<list>

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).

12-22 DOS. DATABUS COMPILER

<svar> is a character string variable (see section 4.2).
<file> is a file defined using the FILE declaration (see

section 5.1).
<ifile> is a file defined using the IFILE declaration (see

section 5.2).
<rfile> is a file defined using the RFILE declaration (see

section 5.3).
<rifile> is a file defined using the RIFILE declaration

(see section 5.4).
<list> is a list of items describing the information to be

written to the disk.

Programming Considerations:

<label> is optional.

Formats (1), (2), (4) and (5) are used to write to the disk
using one of the following accessing methods.

a) If the value of <nvar> < 0, a logical record is written.

b) If the value of <nvar> > ° or = 0, a physical record is
written.

Formats (3) and (6) are used to write indexed records to the
disk.

The items in the list must be separated by commas.

<list> may be made up of any combination of the following
items:

a) <svar>, a character string variable (see section 4.2).

b) <nvar>, a numeric string variable (see section 4.1).

c) <occ>, an octal control character (see section 2.5).

d) <list control>, used to control the manner in which the
list is processed.

e) <slit>, a literal of the form "<string>" (see section
2.5). <string> must be a valid character string (see
section 4.2).

f) <nlit>, a literal of the form "<string>" (see section
2.5). <string> must be a valid numeric string (see
section 4.1).

CHAPTER 12. DISK INPUT/OUTPUT 12-23

12.3.4.1 Character String Variables (WRITE)

When a character string variable appears in the list of a
WRITE instruction, the characters saved in the variable are
written on the disk. Unless modified by a list control the manner
in which the characters are put on the disk is described below.

Programming Considerations:

The characters in the variable are written starting with the
first physical character and continuing through the logical
length.

Blanks will be written for any character positions that exist
between the logical length pointer and the physical end of the
variable.

The first character written will be written at the current
position within the file.

The position within the file is bumped by 1 for each character
written. For more details on bumping the position within a
file, see section 12.2.

The character pointer is left positioned to the right of the
last character written.

The control characters (formpointer, logical length pointer
and 0203) are not written to the disk.

12.3.4.2 Numeric String Variables (WRITE)

When a numeric string variable appears in the list of a WRITE
instruction, the characters saved in the variable are written on
the disk. Unless modified by a list control the manner in which
the characters are put on the disk is described below.

Programming Considerations:

The characters in the variable are written starting with the
first physical character and continuing through the physical
end of the variable .

. -- The first character written will be written at the current

12-24 DOS. DATABUS COMPILER

position within the file.

The position within the file is bumped by 1 for each character
written. For more details on bumping the position within a
file, see section 12.2.

The character pointer is left positioned to the right the last
character written.

The control characters, 0200 and 0203 (octal), are not written
to the disk.

12.3.4.3 List Controls (WRITE)

The list controls are ~--vided to allow more flexibility in
the way records are formateu_ They may be used to control the
manner in which variables are written to the disk. All list
controls begin with an asterisk followed by the specification of
the control fUnction.

12.3.4.3.1 *+ (Space Compression On)

The *+ control may be used to enable space compression. For
more details about space compression, see section 12.1.2.

12.3.4.3.2 *- (Space Compression Off)

The *- control may be used to disable space compression. For
more details about space compression, see section 12.1.2.

12.3.4.3.3 *ZF (Zero Fill)

This control is used to cause numeric variables to be written
with zero filIon the left.

Programming Considerations:

This control affects only the first variable following the *ZF
in the WRITE list.

Zeros are written in place of any leading blanks in the
variable.

CHAPTER 12. DISK INPUT/OUTPUT 12-25

If the variable contains a leading minus sign, the minus sign
is written in the leftmost position.

The *ZF control when used in conjunction with the *MP control
(see section 12.3.4.3.4), causes the minus sign to be replaced
with a zero.

12.3.4.3.4 *MP (Minus Overpunch)

The control *MP converts a numeric variable to a "minus
over-punch" format.

Programming Considerations:

This control affects only the first variable following the
*MP.

This control affects only numeric variables that have a
negative value.

The minus sign is over punched over the right-most digit.

The right-most digit written to the disk is as follows:

a) If the right-most digit is a zero, it is converted to a
right bracket "I".

b) One through nine convert to "J" through "R". "1" becomes
"J", "2" becomes "K", "3" becomes "L", and so on.

12.3.4.4 Octal Control Characters

Octal control characters are written to the disk exactly as
they appear in the WRITE list.

Programming Considerations:

The control character will be written at the current position
within the file.

The position within the file is bumped by 1. For more details
on bumping the position within a file, see section 12.2.

Caution should be exercised when using octal control

12-26 DOS. DATABUS COMPILER

characters. Some of the control characters (000, 003, 011 and
015) have special meaning to the READ instruction and their
use can cause confusion.

12.3.4.5 Literals

When a literal «slit> or <nlit» appears in the list of a
WRITE instruction, that literal is written to the disk.

Programming Considerations:

All of the characters between the double quotes are written as
they appear in the literal.

The first character written will be written at the current
position within the file.

The position within the file is bumped by 1 for each character
written. For more details on bumping the position within a
file, see section 12.2.

The character pointer is left positioned to the right of the
last character written.

CHAPTER 12. DISK INPUT/OUTPUT 12-27

CHAPTER 13. PHYSICAL RECORD ACCESSING

The following sections discuss the aspects of the Disk 1/0
instructions that apply to accessing physical records only.

13.1 OPEN (Physical)

The following sections discuss the aspects of the OPEN
instruction that apply to accessing physical records only. For a
general discussion of the OPEN instruction, see section 12.3.1.
One of the following general formats may be used:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

OPEN
OPEN
OPEN
OPEN

<file>,<slit>
<file>,<svar>
<rfile>,<slit>
<rfile>,<svar>

where: <label> is an execution label (see section 2.).
<slit> is a literal of the form "<string>" (see section

2.5).
<svar> is a string variable (see section 4.2).
<file> is a file declared using the FILE declaration (see

section 5.1).
<rfile> is a file declared using the RFILE declaration

(see section 5.3).

Programming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

See section 12.3.1.

The position within the file is initialized to:

a. Record number = O.

b. Character pointer = 1.

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-1

13.2 PREPARE (PREP) (Physical)

This instruction is used to create and initialize a logical
file for use by a Databus program. One of the following general
formats may be used:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

PREPARE
PREPARE
PREPARE
PREPARE

<file>,<slit>
<file>,<svar>
<rfile>,<slit>
<rfile>,<svar>

where: <label> is an execution label (see section 2.).
<slit> is a literal of the form "<string>" (see sectio~

2.5).
<svar> is a string variable (see section 4.2).
<file> is a file declared using the FILE declaration (see

section 5.1).
<rfile> is a file declared using the RFILE declaration

(see section 5.3).

Programming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

The value of <svar> is unchanged by the execution of this
instruction.

The string literal, when using format (1) or (3); specifies
the DOS name of the disk file to be associated with the label.

The string variable, when using format (2) or (8); specifies
the DOS name of the disk file to be associated with the label.

PREPARE is identical to the OPEN instruction (see section
13.1) with the following exceptions:

a. PREPARE cannot be used with indexed files.

b. If the file cannot be found, then instead of giving an 1/0
error, a new file is created.

c. If a new file is to be created, it is put on the disk
drive decribed below.

1. If the drive number is specified in the string
variable or literal, it is put on that drive.

13-2 DOS. DATABUS COMPILER

2. If the drive number is unspecified, it is put on drive
o.

d. If the file to be prepared already exists and is delete or
write protected, an I/O error will occur.

If the user plans to deal with a very large file, he should
write a dummy record into the largest record number he plans
to use. This allows DOS to allocate all of the sectors for
that file in the most optimal manner possible. Physical
record accessing becomes that much faster.

Assume that the following statements were included in the
program previous to the statements in all of the following
examples:

FILE FILE
FILENAME INIT "PAYROLL11"

Also, assume that the specified files need to be created and do
not already exist.

Example:

RESET
LENSET

RESET
PREP

FILENAME TO 9
FILENAME

FILENAME TO 4
FILE,FILENAME

SET THE LOGICAL
LENGTH POINTER TO 9

SET THE FORMPOINTER TO 4

this PREP instruction will create a file named ROLL11/TXT on drive
o.

Example:

RESET
LEN SET

RESET
PREP

FILENAME TO 8
FILENAME

FILENAME TO 4
FILE,FILENAME

SET THE LOGICAL
LENGTH POINTER/TO 8

SET THE FORMPOINTER TO 4

this PREP instruction will create a file named ROLL1/TXT on drive
1.

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-3

Example:

RESET
LENSET

RESET
PREP

FILENAME TO 8
FILENAME

FILENAME TO 1
FILE,FILENAME

SET THE LOGICAL
LENGTH POINTER TO 8

SET THE FORMPOINTER TO 1

this PREP instruction will create a file named PAYROLL1/TXT on
drive 1.

Example:

RESET
LENSET

RESET
PREP

FILENAME TO 9
FILENAME

FILENAME TO 1
FILE,FILENAME

SET THE LOGICAL
LENGTH POINTER TO 9

SET THE FORMPOINTER TO 1

this PREP instruction will create a file named PAYROLL1/TXT on
drive 1.

Example:

RESET
LEN SET

RESET
PREP

FILENAME TO 7
FILENAME

FILENAME TO 1
FILE,FILENAME

SET- THE LOGICAL
LENGTH POINTER TO 7

SET THE FORMPOINTER TO 1

this PREP instruction will create a file named PAYROLL/TXT on
drive 1.

Example:

RESET
LEN SET

RESET
PREP

FILENAME TO 3
FILENAME

FILENAME TO 1
FILE,FILENAME

SET THE LOGICAL
LENGTH POINTER TO 3

SET THE FORMPOINTER TO 1

this PREP instruction will create a file named PAY/TXT on drive O.

13-4 DOS. DATABUS COMPILER

13.3 CLOSE (Physical)

This instruction is used to return any unused, newly
allocated disk space to DOS for use by another file. CLOSE is
also used along with PREPARE to delete a file from the disk file
structure. The following sections discuss the aspects of the
CLOSE instruction that apply to accessing physical records only.
For a general discussion of the CLOSE instruction, see section
12.3.2. CLOSE may have one of the following general formats:

1)
2)

<label> CLOSE
<label> CLOSE

< fi 1e>
<rfile>

where: <label> is an execution label (see section 2.).
<file> is a file declared using the FILE declaration (see

section 5.1).
<rfile> is a file declared using the RFILE declaration

(see section 5.3).

Programming Considerations:

<label> is optional.

See section 12.3.2.

CLOSE when used in conjunction with the PREPARE instruction
(see section 13.2) is used to delete a file from the DOS file
system. If the PREPARE instruction is immediately followed by
a CLOSE instruction, the file described in the PREPARE
instruction will be deleted from the DOS file system.

13.4 READ (Physical)

The READ instruction is used to get information saved on the
disk into variables in a Databus program. The following sections
discuss the aspects of the READ instruction that apply to
accessing physical records only. For a general discussion of the
READ instruction, see section 12.3.3. This instruction may have
one of the following general formats:

1)
2)

<label> READ
<label> READ

<file>,<nvar>;<list>
<rfi1e>,<nvar>;<list>

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<file> is a file defined using the FILE declaration (see

section 5.1).

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-5

<rfile> is a file defined using the RFILE declaration (see
section 5.3).

<list> is a list of items describing the information to be
read from the disk (see section 12.3.3).

Programming Considerations:

<label> is optional.

See section 12.3.3.

The first action taken by the READ instruction, is to reset
the position within the file as follows:

a) The record number is set to the value given in <nvar>.
(All digits after the decimal point are ignored.)

b) The character pointer is set to 1.

Since reading a physical record always resets the position
within the file before the READ continues, it is unnecessary
to continue scanning until the next logical record is reached.
This extra scanning for the 015 (end-of-record) is not only
unnecessary but uses extra processor time. It is a simple
matter of putting a semi-colon at the end of the read list to
eliminate this wasted processing.

Example:

FDECL
RN

FILE
FORM
OPEN
READ

" 2.6"
FDECL,"DATA"
FDECL,RNjA,B,C

This READ instruction could be used to read from file
DATA/TXT the values of variables A, Band C. The position within
file DATA/TXT would first be established at record number 2 with a
character pointer of 1. Variables A, Band C are then read. Any
remaining characters in the logical record will be ignored and the
position within the file will be left at the beginning of the next
logical record. .

Example:

FDECL
RN

FILE
FORM
OPEN
READ

" 2.6"
FDECL,"DATA"
FDECL,RNjA,B,Cj

13-6 DOS. DATABUS COMPILER

This READ instruction is similar to the one in the above
example except that the position within the file will be left at
the character after the last one read into the variable C.

Example:

FDECL
REWIND

FILE
FORM
OPEN
READ

" 0"
FDECL,"DATA"
FDECL,REWIND;;

This READ instruction will establish the same position within
the file exactly as if an OPEN or PREP instruction had just been
executed. The first action is to set the position within the file
to record 0 with the character pointer equaL to 1. Because of the
second semi-colon as the list terminator, the position will not be
bumped to the next logical record on termination of the execution
of the READ.

<list> may be made up of any combination of the following
items:

a) <svar>, a character string variable (see section 12.3.3.1).

b) <nvar>, a numeric string variable (see section 12.3.3.2).

c) <tab control>, a list control which is used to tab to the
position within the record where the data is to be
obtained.

13.4.1 Tab Control

Tabbing is a feature which can eliminate unwanted data
transfers to and from the disk controller buffer. It also allows
the programmer to save considerable space in his data area. The
tab control may have one of the following general formats:

1) *<nvar>
2) *<dnum>

where: <nvar> is a numeric variable (see section 4.1).
<dnum> is a decimal number.

When format (1) is used, the value of the numeric variable
specifies the tab position.

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-7

When format (2) is used, the decimal number specifies the tab
position.

The character pointer is set to the specified tab position.

Tabbing can be used only when the logical records do not cross
physical record boundaries. This condition can usually be
enforced through the use of the DOS REFORMAT utility and
careful use of Databus WRITE instructions.

An attempt to tab past the physical end-of-record will result
in an I/O error.

Using tabbing may cause the READ instruction to fail to
recognize an EOF mark. The EOF mark can be recognized only
when READ is positioned to character position 1, followed by
an attempt to read a variable.

Tab positioning on physical accesses is always calculated from
the first character position in the current physical record.

Example:

FDECL
RN
TAB

FILE
FORM
FORM
OPEN
READ

" 3.3"
"25"
FDECL,"DATA"
FDECL,RN;A,*100,B,*TAB,C,*50,D;

The READ instruction in this example would set the record
number to 3 and the character pointer to 1. Variable A would then
be read. Next the character pointer would be set to 100 and
variable B would be read. The character pointer would then be set
to 25 and variable C would be read. Finally, the character
pOinter would be set to 50 and variable D would be read. The
character pointer would be left pointing after the last character
read into variable D since the semicolon appears at the end of the
list.

13-8 DOS. DATABUS COMPILER

13.5 WRITE (Physical)

The WRITE instruction is used to put the information to be
saved onto the disk. The following sections discuss the aspects
of the WRITE instruction that apply to accessing physical records
only. For a general discussion of the WRITE instruction, see
section 12.3.4. This instruction may have one of the following
general formats:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

WRITE
WRITE
WRITE
WRITE

<file>,<nvar>;<list>
<file>,<nvar>;<list>;
<rfile>,<nvar>;<list>
<rfile>,<nvar>;<list>;

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<file> is a file defined using the FILE declaration (see

section 5. 1) •
<rfile> is a file defined using the RFILE declaration (see

section 5.3).
<list> is a list of items describing the information to be

written to the disk.

Programming Considerations:

<label> is optional.

See section 12.3.4.

The first action taken by the WRITE instruction, is to reset
the position within the file as follows:

a) The record number is set to the value given in <nvar>.
(All digits after the decimal point are ignored.)

b) The character pointer is set to 1.

Processing for the WRITE instruction is terminated as follows:

a) Formats (1) and (3) cause:

1) an 015 (logical end of record character) to be
written,

2) the position within the file to be-bumped by 1 , and

3) an 003 (physical end of record character) to be
written.

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-9

4) The character pointer is left pointing to the 003
character.

b) Formats (2) and (4) cause the position within the file to
be unchanged after processing the last item in the list.
This operation is useful for writing the first part of a
record where more of the record will be written later.

Tab positioning is not allowed when using WRITE instructions.
If tabbing is required while writing to the disk, the WRITAB
instruction should be used.

13.6 WRITAB

The WRITAB instruction allows tabbing while modifying a
physical record. WRITAB allows characters to be written into any
character position of a physical record without disturbing the
rest of the record. This instruction may have one of the
following general formats:

1)
2)

<label> WRITAB
<label> WRITAB

<file>,<nvar>;<list>
<rfile>,<nvar>;<list>

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<file> is a file defined using the FILE declaration (see

section 5.1).
<rfile> is a file defined using the RFILE declaration (see

section 5.3).
<list> is a list of items describing the information to be

written to the disk.

Programming Considerations:

<label> is optional.

Executing a WRITAB instruction is equivalent to executing one
of the following WRITE instruction except that tabbing is
allowed.

<label> WRITE
<label> WRITE

<file>,<nvar>;<list>;
<rfile>,<nvar>;<list>;

A separate mnemonic is required for tabbed writes because it
is necessary to do an additional disk read when tabbing is to
be used.

13-10 DOS. DATABUS COMPILER

If an attempt is made to read a record which has never before
been written, the following actions occur.

a) The position within the file is unchanged.

b) A RANGE trap occurs.

WRITAB allows tab controls to be used as items in the list.

13.6.1 Tab Control

Tabbing is a feature which can eliminate unwanted data
transfers to and from the disk controller buffer. It also allows
the programmer to save considerable space in his data area. The
tab control may have one of the following general formats:

1) *<nvar>
2) *<dnum>

where: <nvar> is a numeric variable (see section 4.1).
<dnum> is a decimal number.

When format (1) is used, the value of the numeric variable
specifies the tab position.

When format (2) is used, the decimal number specifies the tab
position.

The character pointer is set to the specified tab position.

Tabbing can be used only when the logical records do not cross
physical record boundaries. This condition can usually be
enforced through the use of the DOS REFORMAT utility and
careful use of Databus WRITE instructions.

An attempt to tab past the physical end-of-record will result
in an I/O error. Caution: While tabbing beyond the end of
record is not allowed, any other list item could cause the
logical record to extend across a physical record boundary.

Tab positioning on physical accesses is always calculated from
the first character position in the current physical record.

If the record number is bumped while processing a list item
other than a tab control, subsequent tabs will position into
the new physical record, not the original one.

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-11

Example:

FDECL
RN
TAB

WRITAB

FILE
FORM " 3.3"
FORM "25"
OPEN FDECL,"DATA"
FDECL,RN;A,*100,B,*TAB,C,*50,D;

The WRITAB instruction in this example would set the record
number to 3 and the character pointer to 1. Variable A would then
be written over those characters already iti the record. Next the
character pointer would be set to 100 and variable B would be
written. The character pointer would then be set to 25 and
variable C would be written. Finally, the character pointer would
be set to 50 and variable D would be written. The character
pointer would be left pointing after the last character written
from variable D since there is always an implied semicolon at the
end of the list. The characters already in the disk record at
those positions that were not overwritten will remain unchanged.

13.7 WEOF

The WEOF instruction allows a DOS end of file mark (see
section 12.1.3) to be written to a file. This instruction has the
following general format:

1)
2)

<label> WEOF
<label> WEOF

<file>,<nvar>
<rfile>,<nvar>

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<file> is a file defined using the FILE declaration (see

section 5.1).
<rfile> is a file defined using the RFILE declaration (see

section 5.3).

Programming Considerations:

<label> is optional.

The EOF mark is written to the record number specified in the
numeric variable. (All digits after the decimal point are
ignored.)

The position within the file is left at the beginning of the

13-12 DOS. DATABUS COMPILER

EOF that was written.

CHAPTER 13. PHYSICAL RECORD ACCESSING 13-13

CHAPTER 14. LOGICAL RECORD ACCESSING

The following sections discuss the aspects of the Disk 1/0
instructions that apply to accessing logical records only.

14.1 OPEN (Logical)

All of the aspects of opening a file for use with logical
record accessing are identical to those used with physical record
accessing (see Section 13.1).

14.2 PREPARE (Logical)

All of the aspects of preparing a file for use with logical
record accessing are identical to those used with physical record
accessing (see Chapter 13.2).

14.3 CLOSE (Logical)

All of the aspects of closing a file for use with logical
record accessing are identical to those used with physical record
accessing (see Chapter 13.3).

14.4 READ (Logical)

The READ instruction is used to get information saved on the
disk into variables in a Databus program. The following sections
discuss the aspects of the READ instruction that apply to
accessing logical records only. For a. general discussion of the
READ instruction, see section 12.3.3. This instruction may have
one of the following general formats:

1)
2)

<label> READ
<label> READ

<file>,<nvar>;<list>
<rfile>,<nvar>;<list>

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<file> is a file defined using the FILE declaration (see

section 5.1).
<rfile> is a file defined using the RFILE declaration (see

section 5.3).

CHAPTER 14. LOGICAL RECORD ACCESSING 14-1

<list> is a list of items describing the information to be
read from the disk (see section 12.3.3).

Programming Considerations:

<label> is optional.

<nvar> must have a negative value.

See section 12.3.3.

Reading starts at the current position within the file. That
is, the READ starts where any previous disk I/O operation on
the file left the position.

<list> may be made up of any combination of the following
items:

a) <svar>, a character string variable (see section 12.3.3.1).

b) <nvar>, a numeric string variable (see section 12.3.3.2).

c) <tab control>, a list control which is used to tab to the
position within the record where the data is to be
obtained.

Using the tab controls when reading logical records is
possible but not advisable. Since the tab position is
calculated relative to the start of the physical record and
not the start of the logical record, using a tab control could
tab into a different logical record.

Example:

FDECL
SEQ

FILE
FORM
OPEN
READ

"-1"
FDECL,"DATA"
FDECL,SEQ;A,B,C

Variables A, B, and C would be read starting at the current
position within the file. Any remaining characters in the logical
record will be ignored and the position within the file will be
left at the beginning of the next logical record.

Example: This program will list DATA/TXT on the screen.

FDECL
SEQ

FILE
FORM "-1"

14-2 DOS. DATABUS COMPILER

LINE DIM ,80

OPEN FDECL,"DATA" .
LOOP READ

STOP
DISPLAY
GOTO

14.5 WRITE (Logical)

FDECL,SEQ;LINE
IF OVER
*R,*P1:24,*+,LINE
LOOP

The WRITE instruction is used to put the information to be
saved onto the disk. The following sections discuss the aspects
of the WRITE instruction that apply to accessing logical records
only. For a general discussion of the WRITE instruction, see
section 12.3.4. This instruction may have one of the following
general formats:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

WRITE
WRITE
WRITE
WRITE

<file>,<nvar>;<list>
<file>,<nvar>;<list>;
<rfile>,<nvar>;<list>
<rfile>,<nvar>;<list>;

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<file> is a file defined using the FILE declaration (see

section 5.1).
<rfile> is a file defined using the RFILE declaration (see

section 5.3).
<list> is a list of items describing the information to be

written to the disk.

Programming Considerations:

<label> is optional.

<nvar> must have a negative value.

See section 12.3.4.

Characters are put on the disk starting at the current
position within the file being referenced. That is, the READ
starts where any previous disk 1/0 operation on the file left
the posi tion.

Processing for the WRITE instruction is terminated as follows:

CHAPTER 14. LOGICAL RECORD ACCESSING 14-3

a) Formats (1) and (3) cause:

1) an 015 (logical end of record character) to be
written, and

2) the posi ti on wi thi n the fi 1 e .to be bumped by 1.

b) Formats (2) and (4) cause the position within the file to
be unchanged after processing the last item in the list.
This operation is used only for writing the first part of
a record where more of the record will be written later.

Tab positioning is not allowed when using WRITE instructions.
If tabbing is required while writing to the disk, the WRITAB
instruction should be used.

14.6 WRITAB (Logical)

Using tab positioning when writing logical records is
possible but not advisable. Since the tab position is calculated
relative to the start of the physical record and not the start of
the logical record, using a tab control could tab into a different
logical record.

The only difference between using WRITAB on logical records
rather than physical records is that the current record number is
used to determine which physical record will be modified.

14.7 WEOF (Logical)

The WEOF instruction allows a DOS end of file mark (see
section 12.1.3) to be written to a file. This instruction has the
following general format:

1)
2)

<label> WEOF
<label> WEOF

<file>,<nvar>
<rfile>,<nvar>

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<file> is a file defined using the FILE declaration (see

section 5.1).
<rfile> is a file defined using the RFILE declaration (see

section 5.3).

14-4 DOS. DATABUS COMPILER

Programming Considerations:

<label> is optional.

<nvar> must have a negative value.

If the current position within the file is at the beginning of
a physical record, the EOF is written into that record.

If the current position within the file is not at the
beginning of a physical record, the following actions are
taken:

a) A physical end of record character (003) is written at the
current position, and

b) The position within the file is bumped to the next
physical record and the EOF is written into that record.

The position within the file is left at the beginning of the
EOF that was written.

CHAPTER 14. LOGICAL RECORD ACCESSING 14-5

CHAPTER 15. INDEXED RECORD ACCESSING

The following sections discuss the aspects of the Disk I/O
instructions that apply to accessing indexed records only.

15.1 OPEN (Indexed)

The following sections discuss the aspects of the OPEN
instruction that apply to accessing indexed records only. For a
general discussion of the OPEN instruction, see section 12.3.1.
One of the following general formats may be used:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

OPEN
OPEN
OPEN
OPEN

<ifile>,<slit>
<ifile>,<svar>
<rifile>,<slit>
<rifile>,<svar>

where: <label> is an execution label (see section 2.).
<slit> is a literal of the form "<string>" (see section

2 . 5) •
<svar> is a string variable (see section 4.2).
<ifile> is a file declared using the IFILE declaration

(see section 5.2).
<rifile> is a file declared using the RIFILE declaration

(see section 5.4).

Programming Considerations:

<label> is optional.

<slit> must be a valid character string (see section 4.2).

See section 12.3.1.

OPEN initializes both the index file and the data file that
has been indexed.

If the drive number is specifed (see section 12.3.1), both the
index file and the data file must be on the specified drive.

If the drive number is not specified (see section 12.3.1), the
index file and the data file may be on different drives.

The name of the data file to be opened is contained in the

CHAPTER 15. INDEXED RECORD ACCESSING 15-1

index file.

Opening the index file automatically causes the data file to
be opened.

If the data file is indexed by more than one index file, then
each index file must be opened using a different logical file.

The position within the data file is initialized to:

a. Record number = O.

b. Character pointer = 1.

The position within the index file is left undefined.

Assume that the following statements were included in the
program previous to the statements in all of the following
examples:

DECL IFILE

Also, assume that index files, DATA/lSI and DATA2/ISI, have been
created by indexing the data file, DATA/TXT, using the DOS INDEX
utility as shown below:

INDEX DATA/TXT:DRO,DATA/ISI:DRO;1-5
INDEX DATA/TXT:DRO,DATA2/ISI:DR1;6-10

Note that DATA/TXT is on drive 0, DATA/lSI is on drive 0 and
DATA2/IS1 is on drive 1.

Example:

OPEN DECL,"DATA 0"

This OPEN instruction will initialize DATA/lSI and DATA/TXT on
drive O.

Example:

OPEN DECL,"DATA 1"

This OPEN instruction will cause an I/O error, since neither
DATA/lSI nor DATA/TXT are on 'drive 1.

Example:

15-2 DOS. DATABUS COMPILER

OPEN DECL,"DATA"

This OPEN instruction will initialize DATA/lSI and DATA/TXT on
drive O.

Example:

OPEN DECL,"DATA2 0"

This OPEN instruction will cause an I/O error, since DATA2/IS1 is
not on drive O.

Example:

OPEN DECL,"DATA2 1"

This OPEN instruction will cause an I/O error, since DATA/TXT is
not on drive 1.

Example:

OPEN DECL,"DATA2"

This OPEN instruction will initialize DATA2/IS1 on drive 1 and
DATA/TXT on drive O.

15.2 CLOSE (Indexed)

This instruction is used to return any unused, newly
allocated disk space to DOS for use by another file. The
following sections discuss the aspects of the CLOSE instruction
that apply to accessing indexed records only. For a general
discussion of the CLOSE instruction, see section 12.3.2. CLOSE
may have one of the following general formats:

1)
2)

<label> CLOSE
<label> CLOSE

<ifile>
<rifile>

where:. <label> is an execution label (see section 2.).
<ifile> is a file declared using the IFILE declaration

(see section 5.2).
<rifile> is a file declared using the RIFILE declaration

(see section 5.4).

Programming Considerations:

CHAPTER 15. INDEXED RECORD ACCESSING 15-3

<label> is optional.

See section 12.3.2.

Only the data file is affected by executing the CLOSE
instruction.

The index file is unchanged by the execution of the CLOSE
instruction.

15.3 READ (Indexed)

The READ instruction is used to get information saved on the
disk into variables in a Databus program. The following sections
discuss the aspects of the READ instruction that apply to
accessing indexed records only. For a general discussion of the
READ instruction, see section 12.3.3. This instruction may have
one of the following general formats:

1)
2)
3)
4)

<label>
<label>
<label>
<label>

READ
READ
READ
READ

<ifile>,<nvar>j<list>
<ifile>,<svar>j<list>
<rifile>,<nvar>j<list>
<rifile>,<svar>j<list>

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<svar> is a string variable (see section 4.2).
<ifile> is a file defined using the IFILE declaration (see

section 5.2). .
<rifile> is a file defined using the RIFILE declaration

(see section 5.4).
<list> is a list of items describing the information to be

read from the disk.

Programming Considerations:

<label> is optional.

The following apply when formats (1) and (3) are used:

a) The READ instruction accesses only the data file.

b) The READ is either a physical access (see section 13.4) or
a logical access (see section 14.4).

c) The index file is not used or modified in any way by the

15-4 DOS. DATABUS COMPILER

READ.

The logical string of <svar> specifies the key to be used when
searching the index file~

The key is considered to match an item in the index file (an
index item is a key in the index file) if one of the following
rules hold true.

a) If both the key and the index item have the same number of
characte~s, all of the characters must match.

b) If the key has more characters than the index item, then:

1) All of the characters up through the length of the
index item must match, and

2) the remaining characters of the key must be blanks.

c) If the key has less characters than the index item, there
is no match.

If a match is found,

a) The position of the logical record to be accessed is
obtained from the index file. The position within the
data file is then initialized to this value.

b) Once the position within the data file is established, the
READ proceeds precisely as if it were a logical record
access (see section 14.4). (Exception: see the
Programming Consideration below concerning tab
positioning.)

c) The position within the index file is initialized to the
next item in sequence in the index file.

If no match is found,

a) the OVER condition flag is set to true,

b) all of the variables in the list are unchanged, and

c) the position within the index file is left pointing to the
next item in sequence in the index file.

The OVER condition being set after an indexed READ operation
indicates that the key specified could not be found in the

CHAPTER 15. INDEXED RECORD ACCESSING 15-5

index.

The test for the OVER condition should be made after the READ
statement.

Tab positions when using indexed access are calculated
relative to the beginning of the logical record instead of
relative to the beginning of the physical record.

If the key is null, the last indexed record that was accessed
is re-read without using the index file to access the record.
This saves the time needed to search the index file for the
key. When the same indexed record needs to be read several
times, this feature may save considerable time.

Using a null key causes an I/O error if there was not a
previous successful READ performed using a non-null key.

15.4 WRITE (Indexed)

The WRITE instruction is used to .put the information to be
saved onto the disk. The following sections discuss the aspects
of the WRITE instruction that apply to accessing indexed records
only. For a general discussion of the WRITE instruction, see
section 12.3.4. This instruction may have one of the following
general formats:

1)
2)
3)
4)
5)
6)
7)
8)

<label>
<label>
<label>
<label>
<label>
<label>
<label>
<label>

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

<ifile>,<nvar>;<list>
<ifile>,<nvar>;<list>;
<ifile>,<svar>;<list>
<ifile>,<svar>;<list>;
<rifile>,<nvar>;<list>
<rifile>,<nvar>;<list>;
<rifile>,<svar>;<list>
<rifile>,<svar>;<list>;

where: <label> is an execution label (see section 2.).
<nvar> is a numeric variable (see section 4.1).
<svar> is a character string variable (see section 4.2).
<ifile> is a file defined using the IFILE declaration (see

section 5.2).
<rifile> is a file defined using the RIFILE declaration

(see section 5.4).
<list> is a list of items describing the information to be

written to the disk.

15-6 DOS. DATABUS COMPILER

Programming Considerations:

<label> is optional.

See section 12.3.4.

The following apply when formats (1), (2), (5) and (6) are
used:

a) The WRITE instruction accesses only the data file.

b) The WRITE is either a physical access (see section 13.5)
or a logical access (see section 14.5).

c) The index file is not used or modified in any way by the
WRITE.

The logical string of <svar>, when using formats (3), (4), (7)
and (8), specifies the key to be inserted into the index file.

If the key is null, an 1/0 error will result.

If the key already exists in the index file, an 1/0 error will
result.

The search algorithm, used to determine whether the key is
already in the index, is identical to that used in the indexed
access READ operation (see section 15.3).

WRITE uses the following procedure:

a) The key is inserted into the index such that the keys in
the index file remain in collating sequence (alphabetical
order).

b) The data file is searched for its end-of-file mark.

c) The record is written over the end-of-file mark and
proceeds exactly as if it were a physical record write
(see section 14.5).

d) A new end-of-file mark is written to the next physical
record.

e) This implies that for each record inserted into the data
file, at least one physical record will be used, no matter
how large or small the record.

CHAPTER 15. INDEXED RECORD ACCESSING 15-7

Processing for the WRITE instruction is terminated as follows:

a) Formats (1), (3), (5) and (7) cause:

1) all of the actions taken when terminating a logical
record WRITE (see section 14.5), plus

2) the position within the data file to be bumped to the
next physical record, and

3) an end-of-file mark to be written.

b) Formats (2), (4), (6) and (8) cause:

1) the position within the file to be unchanged after
processing the last item in the list. This operation
is useful for writing the first part of a record where
more of the record will be written later.

2) The end-of-file mark is not written. This makes it
the programmers responsibility to write the
end-of-file mark himself.

3) If the programmer fails to write an end-of-file mark,
then the next attempt to insert a record will cause a
RANGE trap. This insertion will fail because the
search for the end-of-file mark will fail.

Timing considerations:

a) Inserting many records causes indexed accesses to become
less random and more sequential. (Random accessing takes
much less time than sequential accessing.)

b) Inserting many records whose keys are close together in
the collating sequence causes indexed accesses to become
less random. (For example: AAAB is much closer to AAAA
than BBBB.)

c) Indexed accesses start taking significantly longer when
one tenth of the records in an indexed file have been
inserted.

d) Generally, use the DOS INDEX utility as often as possible
to insure that indexed accesses are as random as possible.

15-8 DOS. ·DATABUS COMPILER

15.5 WEOF (Indexed)

The WEOF instruction allows a DOS end of file mark (see
section 12.1.3) to be written to a file. This instruction has the
following general format:

1)
2)

<label> WEOF
<label> WEOF

<ifile>,<nvar>
<rifile>,<nvar>

where: <label> is an execution label (see section 2.).
<nvar> is 'a numeric variable (see section 4. 1).
<ifile> is a file defined using the IFILE declaration (see

section 5.2).
<rifile> is a file defined using the RIFILE declaration

(see section 5.4).

Programming Considerations:

<label> is optional.

The WEOF instruction accesses only the data file.

The WRITE is either a physical access (see section 13.7) or a
logical access (see section 14.7).

The index file is not used or modified in any way by the
WRITE.

15.6 READKS

The READKS (READ
allow indexed records
(alphabetical order).
format:

Key Sequential) instruction is provided to
to be read in collating sequen~e
This instruction has the following general

1)
2)

<label> READKS
<labe·l> READKS

<ifile> j<list>
<ri fi le> j <li st>

where: <label> is an execution label (see section 2.).
<ifile> is a file defined using the IFILE declaration (see

section 5.2).
<rifile> is a file defined using the RIFILE declaration

(see section 5.4).
<list> is a list of items describing the information to be

read from the disk.

Programming Considerations:

CHAPTER 15. INDEXED RECORD ACCESSING 15-9

<label> is optional.

The current position within the index file is used to get a
position in the data file.

After the position within the data file has been determined
from the index file, the position within the index file is
bumped to the next key in the collating sequence (alphabetical
order). The ASCII collating sequence is used.

If the position within in the index file is past the last key
in the index:

a) The OVER condition flag is set to true, and

b) All of the variables in the list will have an
indeterminant value.

Except that the initial position within the data file is
determined as described above, READKS proceeds identically to
an indexed access READ (see section 15.3).

Example:

DECL IFILE INDEX FILE DECLARATION
KEY INIT " " KEY VALUE USED TO

INITIALIZE THE INDEX FILE
LINE DIM 80 LINE BUFFER

TRAP NOFILE IF 10 CATCH FILES NOT ON DISK
OPEN DECL,"DATA" LOOK FOR DATA/TXT AND

DATA/lSI
TRAPCLR 10 OPEN SUCCEEDED SO DON'T

CATCH ANY MORE ERRORS
READ DECL , KEY; ; INITIALIZE THE POSITION . WITHIN THE INDEX FILE

*
LOOP READKS DECL;LINE READ IN THE LINE POINTED

TO BY THE NEXT KEY
STOP IF OVER OVER MEANS NO MORE KEYS
DISPLAY *R,*P1:12,*+,LINE DISPLAY THE LINE
GOTO LOOP GO GET THE NEXT LINE

*
TELL THE OPERATOR SOMETHING IS WRONG

NOFILE DISPLAY *R,*P1:12,"NO SUCH FILE"
STOP

15-10 DOS. DATABUS COMPILER

15.7 UPDATE

The UPDATE instruction allows tabbing while modifying an
indexed record. UPDATE allows characters to be written into any
character position of an indexed record without disturbing the
rest of the record. This instruction may have one of the
following general formats:

1)
2)

<label> UPDATE
<label> UPDATE

<ifile>; <list>
<rifile> ;<list>

where: <label> is an execution label (see section 2.).
<ifile> is a file defined using the IFILE declaration (see

section 5.2).
<rifile> is a file defined using the RIFILE declaration

(see section 5.4).
<list> is a list of items describing the information to be

written to the disk.

Programming Considerations:

<label> is optional.

UPDATE is used to modify the last indexed record accessed by
any indexed record instruction (typically a READ or READKS).

With the following exceptions UPDATE functions the same as
WRITAB.

a) All tab positions are calculated relative to the beginning
of the logical record, rather than relative to the
beginning of the physical record.

b) The initial position within the data file is determined as
described above, rather than being furnished by a
variable.

c) Since UPDATE modifies logical records instead of physical
records, it is possible to tab across physical record
boundaries.

Attempting an UPDATE when no other index operation has been
performed prior to the execution of the UPDATE, will cause and
1/0 error.

It is possible to overstore the 015 (logical end of record)
and the 003 (physical end of record) characters when using
UPDATE. If extreme care is not exercised, this can result in

CHAPTER 15. INDEXED RECORD ACCESSING 15-11

more than one record being turned into a single very large
record. In some cases it can result in an IIO error.

15.8 INSERT

INSERT provides the capability for inserting a single key
into more than one index file. This instruction must be used in
conjunction with indexed WRITE's. The indexed record is written
to the data file by the WRITE instruction, which also inserts the
key into one index file. Since the indexed record does not need
to be re-written, the INSERT instruction is used to insert the key
into any addition index files. One of the following general
formats may be used:

1)
2)

<label> INSERT
<label> INSERT

<ifile>,<svar>
<rifile>,<svar>

where: <label> is an execution label (see section 2.).
<svar> is a string variable (see section 4.2).
<ifile> is a file declared using the IFILE declaration

(see section 5.2).
<rifile> is a file declared using the RIFILE declaration

(see section 5.4).

Programming Considerations:

<label> is optional.

The logical string of <svar> specifies the key to be inserted.

One INSERT must be executed for each index file which will
contain the key.

If the key is null, an IIO error will result.

If the key already exists in the index file, an IIO error will
result.

The search algorithm, used to determine whether the key is
already in the index, is identical to that used in the indexed
access READ operation (see section 14.3).

The key is inserted into the index such that the keys in the
index file remain in collating sequence (alphabetical order).

The logical record written to the data file by the most

15-12 DOS. DATABUS COMPILER

recently executed indexed access WRITE, is the record which is
indexed by the execution of INSERT. Executing another indexed
access WRITE destroys the pointer to the indexed record of the
previous WRITE.

** WARNING ** executing an INSERT before any indexed WRITE's
are executed may result in damage to the data file.

It is not necessary to prevent the program from being
interrupted between the WRITE and INSERT instructions.

Timing considerations:

a) Inserting many records causes indexed accesses to become
less random and more sequential. (Random accessing takes
much less time than sequential accessing.)

b) Inserting many records whose keys are close together in
the collating sequence causes indexed accesses to become
less random. (For example: AAAB is much closer to AAAA
than BBBB.)

c) Indexed accesses start taking significantly longer when
one tenth of the records in an indexed file have been
inserted.

d) Generally, use the DOS INDEX utility as often as possible
to insure that indexed accesses are as random as possible.

15.9 DELETE

This operation allows a record to be physically deleted from
a data file and for its key to be deleted from the specified
index. One of the following general formats may be used:

1)
2)

<label> DELETE
<label> DELETE

<ifile>,<svar>
<rifile>,<svar>

where: <label> is an execution label (see section 2.).
<svar> is a string variable (see section 4.2).
<ifile> is a file declared using the IFILE declaration

(see section 5.2).
<rifile> is a file declared using the RIFILE declaration

(see section 5.4).

Programming Considerations:

CHAPTER 15. INDEXED RECORD ACCESSING 15-13

<label> is optional.

The logical string of <svar> specifies the key to be deleted.

One DELETE must be executed for each index file which will
need the key deleted.

If the key is null, an I/O error will result.

If the key cannot be found in the index, the OVER condition
flag is set.

The indexed record is deleted by overstoring every character
in the record with an 032 (octal). This includes the logical
end of record character (015).

Both the DOS REFORMAT utility and the Databus interpreters
ignore all 032 characters while reading. Therefore, while
reading these characters do not appear to exist.

The DOS REFORMAT utility may be used to eliminate the 032
control characters from the data file.

If the indexed record to be deleted has already been deleted,
then the only action taken is to delete the key from the index
file.

15-14 DOS. DATABUS COMPILER

CHAPTER 16. PROGRAM GENERATION

16.1 Preparing Source Files

Files containing the source language for DOS DATABUS COMPILER
programs are prepared using the general purpose editor running
under the DOS (the editor's use is covered in the DOS User's
Guide). The editor tab stops may be set to be suitable for keyin
of DATABUS programs by using the :T command and setting two tabs,
one at 10 and the other at 20.

16.2 Compiling Source Files

DATABUS programs are compiled using the DOS DATABUS COMPILER
running under the DOS. The DOS DATABUS compiler is parameterized
in the following manner:

DBCMP <source>[,<object>][,<print>][;<L><C><E><R><X><D>]

Where:

<source> is the DOS file specification containing the DATABUS
source code.

If no file extension is specified "/TXT" is assumed.

If no drive is specified all drives starting with
drive zero (0) are searched for the source file.

<object> is the DOS file specification for the object file.

If' no file specification is given, then the DATABUS
object file name is the same as the source file with
extension "/DBC".

If a drive number is not specified and the object
file does not exist, then the object file is placed
on the same drive as the source file. If the object
file already exists, the object code is placed on the
same drive as the already existing object file.

<print> is the DOS file specification for the print file.

CHAPTER 16. PROGRAM GENERATION 16-1

If no name is given for the print file specification,
the source file name will be assumed. File extension
of "/PRT" will be used if none is specified. Note
that if the print file is to be read under to
interpreter it must have a file extension of "/TXT"
since all files accessed by the interpreter must have
that extension.

If no drive is specified the print file will be
placed on the same drive as the source file.

A print file may be specified by simply keying a
comma (,) after the object file specification or if
no object file is specified, by keying in two commas
(,,) after the source file specification. Note that
the file extension assumed in this case is "/PRT".

The print file specification causes any printout
requested to be written into this file instead of
being printed on the line printer. Top of form will
be indicated by the character '1' in column one of
the print line. Otherwise, column one is always
blank and the line starts with column two (this is
the standart COBOL and FORTRAN print file format).

16.2.1 File Specifications

The compiler may be parameterized with up to three file
specifications. These file specifications follow the standard DOS
conventions. Refer to the DOS User's guide for further
information concerning DOS file specifications. A bad drive
specification for any of the files will result in the error
message:

BAD DEVICE SPECIFICATION

If any of the file specifications are identical, the message:

SOURCE AND OBJECT FILES THE SAME or
SOURCE AND PRINT FILES THE SAME or
OBJECT AND PRINT FILES THE SAME

will be displayed.

The source file contains the DATABUS program text created
with the editor. This file must always be specified. If no

16-2 DOS. DATABUS COMPILER

extension is given on the source file name, the extension TXT is
assumed. If the source file name is not supplied, the message:

NAME REQUIRED

will be displayed. If the source file name does not exist in the
DOS directory, the message:

NO SUCH NAME

will be displayed. If no drive is specified, all drives beginning
with drive zero (9) will be searched for the source file.

16.2.2 Output Parameters

These parameters allow the user to specify what type of
output is wanted in addition to the object file. If a print file
is specified, any print output is written in that file instead of
being sent to the printer. If the semicolon but no parameters are
specified, the only output is the object file (if in this case a
print file was specified it would be null).

The DOS DATABUS compiler can output to either a local or
servo printer. The compiler is self-configuring in this respect
and will output to whichever printer it finds connected to the
system I/O bus. Since the compiler looks first for a servo
printer, output will be to the servo printer if both a local and
servo printer are addressable by the system.

Any source code lines which have errors are displayed on the
screen during pass 2, with the appropriate error flag.
Additionally, the compiler displays at the lower left corner of
the screen the current line number being compiled, for every 10th
line. Every 10th line is indicated because displaying the line
number for every line would slow down the compiler. No numbers
will be displayed if the program is fewer than 10 lines long.
This line number display is cleared when processing of included
files begins or ends, so the line number display will blink off
momentarily during compilation of source files using includled
files.

To specify output options, a semicolon (;) plus one of more
of the following should be placed after the last file
specifications:

L A listing of the compilation results is printed. Each
line of source code is numbered and the object code

CHAPTER 16. PROGRAM GENERATION 16-3

location counter value for the first byte of code
generated for the line is listed to the left of each
source code line. A "+" appearing as the first character
of a line causes a new print page to be started. The rest
of the line following the "+" may be used as a comment
line. A "*" appearing as the first character of a line
causes a new print page to be started if the current line
is within two inches of the bottom of the current page. A
good way to improve the readability of a program is to
begin each section or routine with a comment before which
a line is entered which contains a "*" in its first
column. This will make sure the comment appears on the
same page as the first lines of the code to which it is
attached.

C A listing of the compilation results is printed and the
generated object code is listed to the left of the source
code. Printing the object code usually makes the listing
about twice as long. If this option is given, the L
option is implied and need not also be given.

E The source code for lines with errors will be printed in
addition to being displayed on the screen. This parameter
has no meaning if the L or C options are given since
listing produced under those options will include error
flags anyway.

R The line numbers for referenced labels in an operand
string will be printed at the right margin of the listing.
The line number is the line on which the Referenced label
was defined. If the L, C, or E option is not also given,
this option has no effect. This option may be given
instead of or in addition to the X option. The R option
is especially convenient with GOTO or CALL instructions in
following the logic path of a complex set of code. Note
that for the R option to be effective, a printer with at
least 130 column printing capability must be used.

No more than two labels may be printed on any single
line. This means that, in some cases, it is necessary to
use the C option in conjunction with the R option. Using
the C option causes multiple listing lines per DATABUS
instruction allowing more than three labels to be printed

X A cross-reference listing is printed at the end of the
compilation. There will actually be two
cross-referlences: one for the data labels and one for the
execu~able labels. Each cross-reference is sorted
alphabetically. The data or executable label is given

16-4 DOS. DATABUS COMPILER

preceded by the octal location where the label was defined
and followed by a list of all line numbers in which the
item was defined or referenced. An asterisk flags those
line numbers which are definitions. The SORT utility is
called by the compiler to do the actual reference sorting,
and the messages displayed on the screen will be
appropriate to the progress of the sort. A
cross-reference may be obtained regardless of whether a
listing was requested.

D A copy of the source code is displayed on the screen
during the compilation.

If a listing has been requested, the compiler will ask:

HEADING:

This may be 70 characters long and is printed at the top of each
page. Indicating the time and date of the listing is helpful in
keeping listings in chronological order. The source file name is
automatically listed to the left of the heading.

Example:

DBCMP PROGRAM

This is the simplest compilation specification. The following
items are pertinent:

Example:

The source code found in file PROGRAM/TXT will be
compiled. All drives will be searched for PROGRAM/TXT
starting with drive zero (0).

The object code will be placed in PROGRAM/DBC. The object
code will be placed on the same drive as the source unless
the object already exists on another drive.

No other output would be given except for errors displayed
on the screen.

DBCMP ANSWER,ANSWER4;CX

The following items are pertinent:

The source code file ANSWER/TXT would be compiled.

CHAPTER 16. PROGRAM GENERATION 16-5

Example:

All drives starting with drive zero (0) would be searched
ANSWER/TXT.

The object code would be placed in ANSWER4/DBC on the same
drive as ANSWER/TXT unless ANSWER4/DBC already exists on
another drive.

A listing would be printed on the printer and would
consist of the source and object code with a data and
executable label cross-reference at the end.

DBCMP FILE:DRO"FILELST/TXT:DR1;LX

The following items are pertinent:

The source code in FILE/TXT on drive zero (0) would be
compiled.

The object code would be placed in FILE/DBC on drive zero
(0) •

A copy of the source code and a data and label
cross-reference will be written in FILELST/TXT on drive
one (1).

The compiler may be stopped temporarily by depressing the
DISPLAY key. The DISPLAY light will be switched on and execution
will not be resumed until the DISPLAY key is depressed again (the
DISPLAY light will then be turned off). Compilation may be
aborted at any time before the cross-reference sort is begun by
depressing the KEYBOARD key. If the compilation is aborted in
this manner the object file and the dictionary file are deleted,
as are the reference file and the print file if a cross-reference
list or print file was specified.

16.3 Compilation Diagnostics

The compiler prints and displays diagnostic messages on the
listing to help the programmer debug snytactical errors in his
code. These messages take the form of an error code letter at the
left of the listing and an asterisk under the line at the position
of the scanning pointer when the error occured. The letters and
their meanings are:

16-6 DOS. DATABUS COMPILER

D Duplicate label.

E Expression error. A generalized syntactical error.

I Unrecognizable instruction.

U Undefined variable or label.

In the case of E errors a number is given on the line with the
asterisk pointing out the error position in the source line. This
number refers to the list of detailed error explanations in
Appendix E of this document. If any of these flags appear, the
compiler will store a STOP instruction into the first executable
location in the object file. If the faulty program is then
executed, it will only execute the STOP instruction which will
simply return control to the MASTER program.

The interpreter uses the DOS logical file zero (0) for
reading and writing all data to and from the disk. This implies
that a segment boundary may not be crossed by the object code
during a READ and WRITE statement (since fetching the statement
also involves a disk 1/0). For this reason, the DOS DATABUS
compiler will insert a TABPAGE instruction if it detects a READ or
WRITE statement crossing a segment boundary. Normally, this is of
no particular concern to the user, however, programs using TABPAGE
and doing extensive optimization should be aware that this may
occur.

16.4 Disk Space Requirements

The compiler maintains its label dictionary on. disk in the
file named DSCDICT/SYS. Moreover, this file is always placed on
the same drive as the output object file because it is reasonably
certain that that drive will not be write protected. For these
reasons, there may not be more than 254 files named (255 if the
object file name already exists) on the disk onto which the object
file is to be written.

Further, if a cross reference is desired, there must be four
more file name places available among the drives on-line. One of
the file names that will be in use during the compilation is
DSCREF/SYS (the file onto which the compiler writes information
about each label reference). Three files will be generated by
SORT: *SORTMRG/SYS, *SORTKEY/SYS, and DSCREFT/SYS. The first of
the two files by SORT are scratch files, and the third is a
tag-file pointing back into the DSCREF/SYS file. At normal

CHAPTER 16. PROGRAM GENERATION 16-7

completion the four (4) files, DSCREF/SYS, *SORTMRG/SYS,
*SORTKEY/SYS, and DSCREFT/SYS will be deleted and the file space
again made available to the user.

16-8 DOS. DATABUS COMPILER

APPENDIX A. INSTRUCTION SUMMARY

SYNTACTIC DEFINITIONS

<label>

<string>

<svar>

<nvar>

<ssvar>

<dsvar>

<snvar>

<dnvar>

<slit>

<nlit>

<char>

is a letter, followed by any combination
of up to seven (7) letters and digits.

is any sequence of characters with the
exceptions noted in section 2.6 (forcing
character).

A name assigned to a statement defining a
character string variable.

A name assigned to a statment defining a
numeric string variable.

A name assigned to a statment defining a
source character string variable. This
variable is unchanged as a result of the
instruction.

A name assigned to a statement defining a
destination character string variable.
This variable is generally changed as a
result of the instruction.

A name assigned to a statement defining a
source numeric string variable. This
variable is unchanged as a result of the
instruction.

A name assigned to a statement defining a
destination numeric string variable.
This variable is generally changed as a
result of the instruction.

is a literal of the form "<string>" (see
section 2.5).

is a literal of the form "<string>" where
string is a valid numeric string (see
section 2.5).

is any single character of the form

APPENDIX A. INSTRUCTION SUMMARY A-1

<occ>

<list>

"<string>" where string is of length one
(1) •

is an octal control character (001 to 037
inclusive) •

Any combination of <slit>, <occ>, <list
controls> (see section 9.1.3), <nvar> and
<svar>.

<cmlist> is a name assigned to a statement
defining a COMLST data declaration.

<nlist> A list of numeric variables each pair of
which is separated by a comma (,). The
list may be continued on more that one
line by placing a colon (:) after the
last variable on the line to be
continued.

<slist> A list of character string variables each
pair of which is separated by a comma
(,). The list may be continued on more
than one line by placing a colon (:)
after the last variable on the line of to
be continued.

<nslist> any combination of numeric and character
string variables separated by commas.
The list may be continued on more than
one line by placing a colon (:) after the
last variable on the line to be
continued.

<blist> The name assigned to the first of a set
of physically contiguous numeric string
or character string variables.

<index> A numeric variable used in connection
with list accessing.

<dnum> A decimal number between -128 and 127.

<dnum1> A decimal number indicating the number of
digits that should precede the decimal
point.

<dnum2> A decimal number indicating the number of

A-2 DOS. DATABUS COMPILER

<dnum3>

<dnum4>

<flag>

<event>

<skey>

<DOS file spec>

<file>

<rfile>

<ifile>

<rifile>

<rn>

<seq>

<key>

<null>

<route>

digits that should follow the decimal
point.

A decimal number between 1 and 20
inclusive.

A decimal between 1 and 64 inclusive.

One of the following flags: OVER, LESS,
ZERO, or EOS (EQUAL and ZERO are two
names for the same flag) that are used to
indicate the result of some DATABUS
operation.

The occurance of a program trap: PARITY,
RANGE, FORMAT, CFAIL, or 10.

A numeric or character string variable
used with SEARCH.

A DOS compatible file specification (see
DOS user's guide).

A name assigned to a FILE declaration.

A name assigned to a RFILE declaration.

A name assigned to a IFILE declaration.

A name assigned to a RIFILE declaration.

A numeric variable which 60ntains a
positive record number (>=0) used to
randomly READ or WRITE a file.

A numeric variable which contains a
negative number (<0) used to READ or
WRITE a file sequentially.

A non-null string variable used as a key
to indexed I/O accesses.

A null string variable used as a key to
an indexed read.

A character string variable used for
routing.

APPENDIX A. INSTRUCTION SUMMARY A-3

FOR THE FOLLOWING SUMMARY:

Items enclosed in brackets [] are optional.

Items separated by the I symbol are mutually exclusive (one
or the other but not both must be used).

COMPILER DIRECTIVES

<label> EQU <dnum>
<label> EQUATE <dnum>

INC <DOS file spec>
INCLUDE <DOS file spec>

FILE DECLARATIONS

<label> FILE
<label> IFILE
<label> RFILE
<label> RIFILE

DATA DEFINITIONS

<label> FORM <dnum1>.<dnum2>
<label> FORM <dnum1>.
<label> FORM <dnum 1>
<label> FORM <nlit>
<label> DIM <dnum>
<label> INIT <slit>
<label> FORM *<dnum1>.<dnum2>
<label> FORM *<dnum1>.
<label> FORM *<dnum 1>
<label> FORM *<nlit>
<label> DIM *<dnum>
<label> INIT *<slit>
<label> COMLST <dnum4>

A-4 DOS. DATABUS COMPILER

CONTROL

GOT a
GOTO
GOTO
BRANCH
CALL
CALL
CALL
ACALL
RETURN
RETURN
RETURN
STOP
STOP
STOP
CHAIN
CHAIN
TRAP
TRAPCLR
ROLLOUT
ROLLOUT
PI
TABPAGE
DSCNCT

<label>
<label> IF <flag>
<label> IF NOT <flag>
<index><prep><list>
<label>
<label> IF <flag>
<label> IF NOT <flag>
<nslist>

IF <flag>
IF NOT <flag>

IF <flag>
IF NOT <flag>
<svar>
<slit>
<label> IF <event>
<event>
<svar>
<slit>
<dnum3>

APPENDIX A. INSTRUCTION SUMMARY A-5

CHARACTER STRING HANDLING

MATCH
MATCH
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
APPEND
APPEND
APPEND
CNOVE
CMOVE
CMOVE
CMATCH
CMATCH
CMATCH
CMATCH
CMATCH
BUMP
BUMP
RESET
RESET
RESET
RESET
END SET
LEN SET
CLEAR
EXTEND
LOAD
STORE
STORE
CLOCK
CLOCK
CLOCK
TYPE
SEARCH
REPLACE
REP
REPLACE
REP

<svar><prep><svar>
<slit><prep><svar>
<ssvar><prep><dsvar>
<sslit><prep><dsvar>
<ssvar><prep><dnvar>
<sslit><prep><dnvar>
<snvar><prep><dsvar>
<snlit><prep><dsvar>
<ssvar><prep><dsvar>
<sslit><prep><dsvar>
<snvar><prep><dsvar>
<ssvar><prep><dsvar>
<char><prep><dsvar>
<occ><prep><dsvar>
<svar><prep><dvar>
<char><prep><dvar>
<svar><prep><char>
<svar><prep><occ>
~<occ><prep><dvar>
<dsvar>
<dsvar><prep><dnum>
<dsvar><prep><dnum>
<dsvar><prep><ssvar>
<dsvar><prep><snvar>
<dsvar>
<dsvar>
<dsvar>
<dsvar>
<dsvar>
<dsvar><prep><index><prep><slist>
<ssvar><prep><index><prep><slist>
<sslit><prep><index><prep><slist>
TIME<prep><dsvar>
DAY<prep><dsvar>
YEAR<prep><dsvar>
<svar>
<skey><prep><blist><prep><nvar><prep><dsvar>
<ssvar><prep><dsvar>
<ssvar><prep><dsvar>
<sslit><prep><dsvar>
<sslit><prep><dsvar>

A-6 DOS. DATABUS COMPILER

ARITHMETIC

ADD
ADD
SUB
SUB
SUBTRACT
SUBTRACT
MULT
MULT
MULTIPLY
MULTIPLY
DIV
DIV
DIVIDE
DIVIDE
MOVE
MOVE
COMPARE
COMPARE
LOAD
STORE
STORE
CHECK 11
CK 11
CHECK10
CK10

INPUT/OUTPUT

KEYIN
DISPLAY
CONSOLE
BEEP
PRINT
RPRINT
RELEASE
PREPARE
PREP
OPEN
CLOSE
WRITE
WRITE
WRITAB
WEOF
UPDATE
READ

<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<snvar><prep><dnvar>
<nlit><prep><dnvar>
<nvar><prep><nvar>
<nlit><prep><nvar>
<dnvar><prep><index><prep><nlist>
<snvar><prep><index><prep><nlist>
<nlit><prep><index><prep><nlist>
<svar><prep><svar>
<svar><prep><slit>
<svar><prep><svar>
<svar><prep><slit>

<list>[j]
<list>[j]
<list>[j]

<list>[j]
<list>[jJ

<filelrfile>,<svarlslit>
<filelrfile>,<svarlslit>
<filelrfilelifilelrifile>,<svarlslit>
<filelrfilelifilelrifile>
< fi le I rfi le> , <rn I seq> j < j I < li st > [j] >
<ifile I rifile>, <rn I seq I key> j < j I <list>[j]>
<filelrfile>,<rnlseq>j<j l<list>[jJ>
<filelrfilelifilelrifile>,<rnlseq>
<ifilelrifile>j<j I <list>[jJ>
< fi 1 e I rfi le> , < rn I seq> j < j 1< li st > [j J>

APPENDIX A. INSTRUCTION SUMMARY A-7

READ
READKS
DELETE
INSERT
COMCLR
COMTST
COMWAIT
SEND
RECV
DEBUG

<ifile!rifile>,<rn!seq!key!null>;<; !<list>[;]>
<ifile!rifile>;<;!<list>[;]>
<ifile!rifile>,<key>
<ifile!rifile>,<key>
<cmlist>
<cmlist>

<cmlist>,<route>;<nslist>
<cmlist>,<route>;<slist>

A-B DOS. DATABUS COMPILER

APPENDIX B. INPUT/OUTPUT LIST CONTROLS

CONTROL USED IN FUNCTION

*P<h>:<v> KDC Causes the cursor to be positioned
horizontally and vertically to the column
and line indicated by the numbers <h>
(horizontal 1-80) and <v> (vertical 1-24).
These numbers may either be literals or
numeric variables. Note that <v> is
ignored in the CONSOLE statement. This
list control is only effective on the
Datapoint 3502 (see 9.1.3.1, 9.2.3.1, and
9.3) .

*N KDPR Causes the cursor or printer to be
positioned in Column 1 of the next line
(see 9.1.3.7, 9.2.3.7, 10.1.3.4 and 10.2).

*EL KDC Causes the line to be erased from the
current cursor position (see 9.1.3.2,
9.2.3.2, and 9.3).

*EF KDC Causes the screen to be erased from the
current cursor position (see 9.1.3.3,
9.2.3.3, and 9.3).

*ES KD Causes the cursor to be positioned at
horizontal position 1 of the top row of
the display and the entire display to be
erased (see 9.1.3.4 and 9.2.3.4).

*EOFF K Causes the echo during input operations
from the terminal to be defeated (see
9.1.3.13)'

*EON K Causes the echo during input operations
from the terminal to be on (see 9.1.3.14).

*+ KDCPR Turn on Keyin Continuous for KEYIN or
space after logical length suppression for
DISPLAY, PRINT, RPRINT, and CONSOLE (see
9.1.3.9, 9.2.3.9, 9.3, 10.1.3.8, and
10.2) .

APPENDIX B. INPUT/OUTPUT LIST CONTROLS B-1

*+

*-

*-

*<n>

*<n>

*<nvar>

*F

*L

*C

*T

*W

*JL

W Turn on space compression during WRITE
(see section 12.3.4.3.1).

KDCPR Turn off Keyin Continuous (turned off at
the end of the statement) or the space
after logical length suppression (see
9.1.3.10, 9.2.3.10, 9.3, 10.1.3.9, and
1 0 • 2) •

W Turn off space compression during WRITE
(see section 12.3.4.3.2).

PR Causes a horizontal tab on the printer to
the column indicated by the number <n>
(see 10.1.3.5 and 10.2).

RW Tab specification for READ or WRITAB
operations.

KDPR

The logical file pointers are moved to
that character position relative to the
current physical record (see section
13.4.1 and section 13.6.1).

Suppress a new line function when
occurring at the end of a list (see 9.,
10.1.3.6 and 10.2)

PR Causes the printer to be positioned to the
top of form (see 10.1.3.1 and 10.2).

KDPR Causes a linefeed to be displayed or
printed (see 9.1.3.6, 9.2.3.6, 10.1.3.3
and 10.2).

KDPR Causes a carriage return to be displayed
or printed (see 9.1.3.5, 9.2.3.5, 10.1.3.2
and 10.2).

K Time out after 2 seconds for KEYIN
statement (see 9.1.3.11).

KD Pause for one second (see 9.1.3.12 and
9.2.3.12).

K Left justify numeric variable and zero
fill at right if there is no decimal

. point. Left justify string variable and

B-2 DOS. DATABUS COMPILER

*JR

*ZF

*ZF

*DE

*IT

*IN

*MP

K

K

PRW

K

K

K

W

blank (or zero if *ZF option is given)
fill to ETX (see 9.1.3.17).

Right justi fy string variable and blank
(or zero if *ZF option is given) fill at
left (see 9.1.3.18).

Zero fill instead of blank fill string
variable (see 9.1.3.19).

Left zero fill numeric variable (see
sections 10.1.3.7, 10.2 and 12. 3 • 4 • 3 . 3) .

Restrict string input to digits (0-9) only
(see 9.1.3.20).

Set Text-input mode. This applies to 3601
only (see 9.1.3.15).

Clear Text-input mode. This applies to
3601 only (see 9.1.3.16).

Convert numeric variable to minus
overpunch format (see section 1 2 . 3 . 4 • 3 • 4) •

APPENDIX B. INPUT/OUTPUT LIST CONTROLS B-3

APPENDIX C. SAMPLE DATASHARE SYSTEM

The programs described in the following sections are a
complete set of the programs necessary to bring up a DATASHARE
system. This system includes a method of logging activity on the
system and a great deal of system security.

The following is list of the events that are logged by the
system: user sign on's, user sign off's, invalid attempts to sign
on, all program errors not controlled by the user's program, all
attempts to execute a program, all attempts to rollout and all
rollout returns.

System security is provided by requiring that a user have
valid identification before allowing him to sign on. Additional
security is provided by assigning security clearances to all
users, then requiring the appropriate security clearance before
allowing a user to execute a program.

** SPECIAL NOTE **
The source files for the programs described in this Appendix

are included on the released object tape. These source files are
provided solely for the customer's convenience. They are not a
part of the supported software. Any errors or suggested
modifications to these programs should be submitted as a USER'S
COMMENT on this user's guide.

To generate this system:

use the DOS MIN command to transfer the following programs to
your disk,

use the chain file provided (see section C.1.5.1) and the DOS
CHAIN command to compile the system programs (a description of
the chain file tags to be used is included in the chain file).
A suggested DOS command line to compile the system programs
is:

CHAIN MAKEANMA/CHN;1,2,3,4,SAMPLE,NEW

compile the supplemental system program "NEWUSER" (see section
C.3.1),

execute the DATASHARE interpreter (see the user's guide of the

APPENDIX C. SAMPLE DATASHARE SYSTEM C-1

appropriate interpreter),

when the ANSWER program asks:

What is your identification number?

you should type: 999999999

This will sign you onto the system as "Anyuser" with the
highest possible security clearance. (Note: for added
security, identification numbers are not displayed on the
screen.)

When the MASter MENU program asks for a program number by
displaying:

Selection by number

you should type: 3

to get "Program Selection by Name".

In response to:

ENTER PROGRAM NAME:
you should type: NEWUSER

to execute the NEWUSER program.

When the NEWUSER program asks for a program number as follows:

Selection by number

you should type: 1

to "Authorize a new user".

In response to:

Enter the user's identification number.

you should type your social security number or any other
9-digit number you want to use as your identification number.

In response to the successive requests:

Enter the user's name.

C-2 DOS. DATABUS COMPILER

Enter the user's security clearance.

you should type your name followed by a 9. Note: this
assumes you are the system engineer and will be one of the few
people who will have the highest possible security clearance.

When the NEWUSER program asks for another user's
identification number, you should indicate no more additions
by tapping the ENTER key.

In response to:

Are you done? (YIN)

you should type: Y

to indicate that you are done.

At this point you are returned to the NEWUSER menu. You
should now either delete "Anyuser" from the list of authorized
users or modify his security clearance to one of the lowest
possible levels. (Remember: "Anyuser's" identification
number is 999999999.)

Now you should type: 99

to allow the NEWUSER program to continue.

To, add any more users to the list of authorized user's you may
use the NEWUSER program.

APPENDIX C. SAMPLE DATASHARE SYSTEM C-3

C.l SYSTEM PROGRAMS

The following programs must be compiled to initiate the
execution of this DATASHARE system.

C-4 DOS. DATABUS COMPILER

C.1.1 Sample ANSWER Program

· DATASHARE ANSWER PROGRAM

· NOTE: THE PORT NUMBER INCLUSION FILE IS NAMED "PORTN/TXX" TO
DEMONSTRATE THAT EXTENSIONS OTHER THAN "/TXT" MAY BE
USED FOR INCLUSION FILES.

PORTN
TODAY
*

INCLUDE
INIT

PORTN/TXX
"mm/dd/yy"

(PORTN FORM" 1", ETC.)
DATE PASSED IN COMMON ...

SECURITY FORM 1 SEE DESCRIPTION BELOW

· THIS VARIABLE IS USED TO INDICATE THE SECURITY RATING FOR WHICH
· THE USER IS AUTHORIZED. IT IS INITIALIZED FROM THE FILE OF
· AUTHORIZED USERS. A PROGRAM CAN REQUIRE THAT THE USER HAVE THE
· SECURITY CLEARANCE NECESSARY TO USE THAT PROGRAM. ZERO IS THE
· LOWEST RATING AND NINE IS THE HIGHEST RATING.
* EXAMPLE:
· SAY THAT THE USE OF PROGRAM "ROLLOUT" IS TO BE RESTRICTED TO
· ONLY A FEW USERS. THOSE USERS WHO WILL BE ALLOWED TO USE
· "ROLLOUT" WILL BE GIVEN A SECURITY RATING OF 7. ALL OTHER
· USERS WILL BE GIVEN LOWER SECURITY RATINGS. PROGRAM "ROLLOUT"
· IS THEN WRITTEN SO THAT IT WILL "ROLLOUT" ONLY WHEN THE USERS
· RATING IS 7. IF THE USER ATTEMPTING TO USE "ROLLOUT" HAS ANY
· RATING LESS THAN 7, THEN A STOP INSTRUCTION IS EXECUTED.

* SOME SUGGESTED SECURITY.LEVELS ARE AS FOLLOWS:

SECURITY USED BY:
o ..•.. DISCONTINUED SERVICE
1-3 ... DATA ENTRY OPERATORS
4-6 ... DATA ENTRY SUPERVISORS
7 PROGRAMMER
8 PROJECT MANAGER

· 9 ••••• SYSTEMS PROGRAMMER
* ... ,
· SCRATCH VARIABLES

· CWK2
CWK3
NWK2
NWK9

DIM
DIM
FORM
FORM

2
3
2
9

APPENDIX C. SAMPLE DATASHARE SYSTEM C-5

* · . USERS
USERID
*

IFILE
DIM 9

FILE OF AUTHORIZED USERS
KEY USED WITH FILE "USERS" · .. .

ROLCHAIN FILE
SEQ FORM
*

ROLLOUT CHAIN FILE
"-1" · OUTPUT PARAMETERS OF SUBROUTINE "GETDATE" . TIME IN 24-HR. FORMAT

TIME INIT "hh:mm:ss" hours:minutes:seconds
DAY FORM 2
MONTH FORM 2 mm/dd/yy
YEAR FORM 2
* JDAY FORM 3 JULIAN DATE
CDAY DIM 3 DAY (CHARACTER STRING)
CYEAR DIM 2 YEAR (CHARACTER STRING)
* NFEB FORM "28" II OF DAYS IN FEBRUARY
N30 FORM "30" USED FOR 30-DAY MONTHS
N31 FORM "31" USED FOR 31-DAY MONTHS
* · . NAME DIM 20 USER'S NAME FROM LOG FILE

INCLUDE LOGDATA/TXT

C-6 DOS. DATABUS COMPILER

+ ••
· MAINLINE

INCLUDE
*

LOGIO/TXT · .. .
· SET THE TRAPS SO THAT IF ANYTHING GOES WRONG THE USER STILL
· CANNOT LOG ON WITHOUT AUTHORIZATION

TRAP BADANS IF 10
TRAP BADANS IF CFAIL
TRAP BADANS IF FORMAT
TRAP BADANS IF RANGE
TRAP BADANS IF PARITY

* · .. . · LOG THE USER OFF THE SYSTEM.

• THIS FUNCTION IS PUT AT THIS POINT IN THE ANSWER PROGRAM SO
• THAT ANYONE WHO TURNS OFF THE PORT (INSTEAD OF USING A NORMAL
• LOG-OFF) WILL STILL GET LOGGED-OFF. NOTE THAT; WHEN THE PORT
· IS TURNED OFF, THE ANSWER PROGRAM WILL CONTINUE EXECUTING UNTIL
· THE FIRST CONSOLE, KEYIN OR DISPLAY STATEMENT IS REACHED.
· * · .. .
· GET THE DATE AND TIME.

TRAP BADANS IF 10
CALL GETDATE
MOVE "LOG-OFF" TO LOGTYPE
CLEAR LOGINFO WRITES BLANK "OTHER INFO."
CALL LOGWRITE

* · .. . · OPEN THE FILE OF AUTHORIZED USERS

· NOTE: THE NAME OF THE INDEX FILE NEED NOT BE THE SAME AS THE
NAME OF THE TEXT FILE WHICH IS INDEXED. (FOR INSTANCE;
"USERS/lSI" COULD BE CREATED FROM A TEXT FILE NAMED
"USERS/DSP".) THIS PROVIDES ADDITIONAL SYSTEM SECURITY,
SINCE "USERS/DSP" CANNOT BE ACCESSED BY DATABUS PROGRAMS

TRAP NOUSER IF 10
OPEN USERS,"USERS"
TRAP BADANS IF 10
GOTO LOGON

APPENDIX C. SAMPLE DATASHARE SYSTEM C-7

* · .. . · FILE CONTAINING AUTHORIZATIONS IS MISSING

NOUSER DISPLAY *ES:

*
GOTO

*P20:4,"You cannot log-on, the file contain-":
*P20:5,"ing the list of authorized users is":
*P20:6,"missing! To use the system, you":
*P20:7,"must use the DOS INDEX utility to":
*P20:8,"create the file, '"USERS/lSI'"."
HANG · .. .

· LOG THE USER ONTO THE SYSTEM

LOGON DISPLAY *ES,*P15:4,"D A T ASH ARE S Y S T EM":
" 0 N - LIN E":

*P30:6,"You are on port "",PORTN
* · .
· DISPLAY THE DATE AND TIME

*

CALL
DISPLAY

GETDATE
*P31:8,"Today is ",TODAY · .

· CHECK TO SEE IF THE USER IS AUTHORIZED

· NOTE: FOR ADDITIONAL SECURITY, ECHO OFF IS USED WHILE ENTERING
THE IDENTIFICATION NUMBER. THIS PREVENTS THE ID FROM
BEING DISPLAYED AT THE PORT.

THE IDENTIFICATION NUMBER BEING REQUESTED IS THE USERS
SOCIAL SECURITY NUMBER. OTHER IDENTIFICATION TECHNIQUES
MAY BE USED.

KEYIN

COMPARE
GOTO
MOVE
GOTO

*P1:12,"What is your
*EL,*EOFF,NWK9
"100000000" TO NWK9
BADID IF- LESS
NWK9 TO USERID
READID

C-8 DOS. DATABUS COMPILER

identification number? ":

MAKE SURE HE ENTERS
ALL 9 DIGITS

* · .. . · UN-AUTHORIZED USER

· · NOTE: THE PROGRAMMER CAN SET THE PENALTY FOR ENTERING A BAD
ID BY ADJUSTING THE NUMBER OF *W'S USED

BADID BEEP
DISPLAY

*

BEEP

*P50:12,*EL,"You are not an authorized user!":
*W, *W, *W, *W , *W

MOVE "BAD ID" TO LOGTYPE
MOVE NWK9 TO LOG INFO
CALL LOGWRITE
TRAP BADANS IF 10
GOTO LOGON · .. .

· SEE IF THE USER IS AUTHORIZED

READID READ
GOTO
DISPLAY
MOVE
MOVE
CALL
TRAP
DISPLAY

USERS,USERIDjUSERID,NAME,SECURITY

*

BADID IF OVER CAN'T FIND HIS NUMBER
*P50:12,*EL,"Thank you",*W,*W,*Pl:12,*EL
"LOG-ON" TO LOGTYPE
NAME TO LOG INFO
LOGWRITE
BADANS IF 10
*P20:10,"Hello, ",NAME:
*P20:11,"You are logged on at ",TIME,".":
*W, *W, *W · .. .

• IF USER HAS HIGH ENOUGH SECURITY CLEARANCE, CHECK TO SEE IF
· LOG FILE NEEDS CLEANING

*

COMPARE
STOP

"4" TO SECURITY
IF LESS "CHAIN to MASTER" · .. .

· LOOK AT THE NUMBER OF LOG ENTRIES
· IF MORE THAN 500, TELL THE USER HE NEEDS TO REORGANIZE

COMPARE
STOP

"500" TO LOGRN
IF LESS "CHAIN to MASTER"

APPENDIX C. SAMPLE DATASHARE SYSTEM C-9

* · .. . · FIND OUT IF THE USER WANTS TO RE-ORGANIZE THE LOG FILE

*

KEY IN

CMATCH
STOP

*ES:
*P20:4,"The log file is now using more than":
*P20:5,"five hundred disk sectors. It needs":
*P20:6,"to be re-organized to free this":
*P20:7,"space.":
*Pl:12,"Do you want to re-organize the log ":
"file? (YIN) ",CWK3
"Y" TO CWK3
IF NOT EQUAL "CHAIN to MASTER" · .. .

· HE-ORGANIZE THE LOG FILE
• CHAIN FILE NEEDS TO BE WRITTEN SO OPEN CHAIN FILE

*

DISPLAY
MOVE
MOVE
CALL
TRAP
PREPARE
TRAP
GOTO

*ES,"Writing CHAIN file."
"ROLLOUT" TO LOGTYPE
"RE-ORGANIZE LOG FILE" TO LOGINFO
LOGWRITE
NOCHAIN IF 10
ROLCHAIN,"ROLCHAIN"
BADANS IF 10
WRITECHN · .. .

· CHAIN FILE COULD NOT BE CREATED

NOCHAIN DISPLAY

*

\JRITAB
STOP

*ES:
*P20:4,"CHAIN file could not be written!":
*P20:5,"Re-organization discontinued.":
*W,*W
LOGFILE,LOGRN;*12,"NO ROLLOUT"

"CHAIN to MASTER" · .. .
· WRITE THE CHAIN FILE

WRITECHN WRITE
WRITE
WRITE
WRITE

WRITE
WRITE
WRITE

ROLCHAIN,SEQ;*+,". RE-ORGANIZE SYSTEM LOG FILE
ROLCHAIN,SEQ;"."
ROLCHAIN,SEQ;"II."
ROLCHAIN,SEQ;"I/* TAP THE DISPLAY KEY TO ":

"START RE-ORGANIZATION"
ROLCHAIN,SEQ;"I/."
ROLCHAIN,SEQ;"II. SAVE THE LOG FILE"
HOLCHAIN,SEQ;"II."

C-l0 DOS. DATABUS COMPILER

*

*

*

*

WRITE

WRITE
WRITE

WRITE
WRITE
WRITE

WRITE
WRITE
WRITE
WRITE
WRITE
WRITE
WRITE

WRITE

WRITE

WRITE
WRITE
WRITE
WRI~E
WEOF

ROLCHAIN,SEQ;". Either of the following ":
"techniques may by used:"

ROLCHAIN,SEQ;"."
ROLCHAIN,SEQ;". SAPP MASTERLG,LOGFILE,":

"MASTERLG"
ROLCHAIN,SEQ;". or"
ROLCHAIN,SEQ;". LIST LOGFILE;L"
ROLCHAIN,SEQ;". LISTING OF MASTER LOG FILE"

ROLCHAIN,SEQ;"LIST LOGFILE;L"
ROLCHAIN,SEQ;"LISTING OF MASTER LOG FILE"
ROLCHAIN,SEQ;"II."
ROLCHAIN,SEQ;"II. RE-CREATE THE LOG FILE"
ROLCHAIN,SEQ;"II."
ROLCHAIN,SEQ;"BUILD LOGFILE;!"
ROLCHAIN,SEQ;"*OOO":

" PORT":
" LOG TYPE":
" DATE":
" TIME":
" OTHER INFORMATION"

ROLCHAIN,SEQ;"*rec":
" () " :
"()":
"() " :
"() " :
"(" . . .

ROLCHAIN,SEQ;"!"

ROLCHAIN,SEQ;"II."
ROLCHAIN,SEQ;"II. RETURN TO DATASHARE"
ROLCHAIN,SEQ;"II."
ROLCHAIN,SEQ;"DSBACKTD"
ROLCHAIN,SEQ ..

• ROLLOUT TO THE CHAIN FILE
. CHAIN TO THE MASTER MENU

DISPLAY
TRAP
ROLLOUT
TRAP
MOVE
CLEAR
CALL
STOP

*ES,"Re-organization in progress."
NOCHAIN IF CFAIL
"CHAIN ROLCHAIN"
BADANS IF CFAIL
"ROLL RET" TO LOGTYPE
LOG INFO
LOGWRITE

"CHAIN to MASTER"

APPENDIX C. SAMPLE DATASHARE SYSTEM C-11

* · .. . · SUBROUTINE TO GET THE TIME, DAY AND YEAR

· ON EXIT VARIABLE: TIME = "hr:mn:sc"
DAY = "dd"

GETDATE CLOCK
CLOCK
CLOCK

*

MONTH = "mm"
YEAR = "yy"
TODAY = "mm/dd/yy"

YEAR TO CYEAR
DAY TO CDAY
TIME TO TIME

GET THE YEAR
GET THE DAY
GET THE TIME · .. .

· PERFORM BOUNDARY CONDITION CHECKS IF DESIRED

· *

· *

*

*

CLOCK DAY TO CWK3 IF TIME TAKEN BEFORE
MATCH CDAY TO CWK3 MIDNIGHT AND DAY TAKEN
GOTO GETDATE IF NOT EQUAL AFTER MIDNIGHT, REPEAT

CLOCK YEAR TO CWK2 IF DAY TAKEN BEFORE
MATCH CYEAR TO CWK2 NEW YEARS & YEAR TAKEN
GOTO GETDATE IF NOT EQUAL AFTER NEW YEARS, REPEAT · .. .
MOVE
MOVE
MOVE

COMPARE
GOTO

CDAY TO JDAY
"0" TO MONTH
CYEAR TO YEAR

"1" TO JDAY
NODATE IF LESS

INITIALIZE

SYSTEM INITIALIZED
WITHOUT DATE! · .. .

· PERFORM YEAR-CHECK IF DESIRED

· *

COMPARE
GOTO
COMPARE
GOTO

"70" TO YEAR
NODATE IF LESS
"80" TO YEAR
NODATE IF NOT LESS · .. .

· MAKE SURE FEBRUARY IS HANDLED PROPERLY ON LEAP YEARS

MOVE
nTUTf'lJ:i'
"-' V ..L.JJ.L.I

MULTIPLY
COMPARE
GOTO
MOVE

YEAR TO NWK2
"4" INTO NWK2
"4" INTO NWK2
YEAR TO NWK2
MDLOOP IF NOTI EQUAL
"29" TO NFEB

C-12 DOS. DATABUS COMPILER

IS IT A LEAP YEAR?
NO, LEAVE NFEB = 28.
YES, SET NFEB = 29.

* · .. . · COMPUTE THE MONTH

MDLOOP

* MDL1

*

ADD
LOAD

SUBTRACT
GOTO
GOTO

ADD
MOVE

"1" TO MONTH
NWK2 FROM MONTH OF N31,NFEB,N31: JAN/FEB/MAR

APR/MAY/JUN
JUL/AUG/SEP
OCT/NOV/DEC

NWK2 FROM JDAY
MDL 1 IF EQUAL
MDLOOP IF NOT LESS

NWK2 TO JDAY
JDAY TO DAY

N30,N31,N30:
N31 ,N31 ,N30:
N31,N30,N31

SUBTRACT DAYS OF THE MONTH
UNTIL MONTH FOUND

UNBIAS FROM LAST SUBTRACT
TO GET DAY OF THE MONTH · .. .

• PUT THE DATE INTO mm/dd/yy FORMAT

MDL2

MDL3

MDL4

*

CLEAR
APPEND
APPEND
MOVE
CMATCH
GOTO
CMOVE
APPEND
APPEND
MOVE
CMATCH
GOTO
CMOVE
APPEND
RESET
RETURN

TODAY
MONTH TO TODAY
"/" TO TODAY
DAY TO CWK2
" " TO CWK2
MDL3 IF NOT EQUAL
"0" TO CWK2
CWK2 TO TODAY
"/" TO TODAY
YEAR TO CWK2
" " TO CWK2
MDL4 IF NOT EQUAL
"0" TO C~/K2
CWK2 TO TODAY
TODAY

IS THERE A LEADING BLANK?
NO, CONTINUE
YES, REPLACE IT WITH 0

IS THERE A LEADING BLANK?
NO, CONTINUE
YES, REPLACE IT WITH 0

· .. .
• DATE IMPROPER OR NOT INITIALIZED

NODATE

*

BEEP
KEYIN *Pl:8,*EF,"What is the current month? ",MONTH:

*N,"What is the current day? ",DAY:
*N,"What is the current year? ",YEAR · -... .

• CHECK FOR INVALID DAY ENTERED

COMPARE
GOTO
COMPARE
GOTO

"1" TO DAY
NODATE IF LESS
"32" TO DAY
NODATE IF NOT LESS

APPENDIX C. SAMPLE DATASHARE SYSTEM C-13

* · . · CHECK FOR INVALID MONTH ENTERED

*

COMPARE
GOTO
COMPARE
GOTO

"1" TO MONTH
NODATE IF LESS
"13" TO MONTH
NODATE IF NOT LESS · .. .

· CHECK FOR INVALID YEAR IF DESIRED

*

COMPARE
GOTO
COMPARE
GOTO
DISPLAY
GOTO

"70" TO YEAR
NODATE IF LESS
"80" TO YEAR
NODATE IF NOT LESS
*Pl:12,"Thank you",*W,*W,*Pl:8,*EF
MDL2 · .. .

• A TRAP HAS OCCURED WHILE IN THE ANSWER PROGRAM. DO NOT ALLOW
• A CHAIN TO THE MASTER PROGRAM

BADANS DISPLAY

GOTO

*P58:1,*EL,"
*P58:2,*EL,"
*P58:3,*EL,"
HANG

Unrecoverable system":
error! Consult your":
programmer."

C-14 DOS. DATABUS COMPILER

C.1.2 Sample MASTER Program

• DATASHARE MASTER PROGRAM FOR LOGGING ERRORS

· * · .. .
• COMMON AREA
• THIS AREA GETS OVERWRITTEN WITH AN 11-BYTE CHARACTER STRING
• VARIABLE WHEN AN ERROR OCCURS

• NOTE: "ERROR" USES THE SAME NUMBER OF BYTES OF USERS DATA AREA
AS THE VARIABLES "PORTN" AND "TODAY" DEFINED IN COMMON

· ERROR DIM
SECURITY FORM
*

*12
*1

ERROR MESSAGE
USER'S SECURITY CLEARANCE · .. .

· NOTE: THE PORT NUMBER INCLUSION FILE IS NAMED "PORTN/TXX" TO
DEMONSTRATE THAT EXTENSIONS OTHER THAN "/TXT" MAY BE
USED FOR INCLUSION FILES.

INCLUDE PORTN/TXX
TODAY INIT "I I "
* · .. . ANSWER DIM 8
TIME INIT "hh:mm:ss"
CWK1 DIM 1
CWK2 DIM 2
CWK11 INIT "

INCLUDE LOGDATAITXT
*

"

hours:minutes:seconds
WORK AREA: CHAR.TYPE,LEN=1
WORK AREA: CHAR.TYPE,LEN=2
CHARACTER, LENGTH 11

· .. .
• SEE IF THERE ARE ANY DATASHARE ERRORS.
• IF NO ERROR OCCURED, THE 2-BYTE PORT NUMBER WILL BE MOVED INTO
• THE WORK AREA. IN THIS CASE, THE 9TH CHARACTER OF CWK11 WILL
· STILL BE A BLANK.
• IF AN ERROR OCCURED, THE 11-BYTE ERROR MESSAGE WILL BE MOVED
• INTO CWK11. IN THIS CASE, THE 9TH CHARACTER OF CWK11 WILL BE
· AN ASTERISK.
• BY CHECKING THE 9TH CHARACTER, IT CAN BE DETERMINED WHETHER AN
• ERROR OCCURED OR NOT.

MOVE
RESET
CMATCH
GOTO
INCLUDE

ERROR TO CWK11
CWK11 TO 9
"*" TO CWK11
MASMENU IF NOT EQUAL
LOGIOITXT

APPENDIX C. SAMPLE DATASHARE SYSTEM C-15

* · .. . • SINCE THE DATE PASSED IN COMMON HAS BEEN OVERWRITTEN, GET THE
• JULIAN DATE AND USE THAT FOR LOGGING

*

CLOCK
ENDSET
APPEND
CLOCK
APPEND
RESET

DAY TO TODAY
TODAY
"I" TO TODAY
YEAR TO CWK2
CWK2 TO TODAY
TODAY · .. .

· WRITE THE LOG-OFF

*

CLOCK
MOVE
MOVE
CALL

TIME TO TIME
"ERROR" TO LOGTYPE
ERROR TO LOG INFO
LOGWRITE · .. .

• GIVE THE USER A CHANCE TO LOOK AT THE SCREEN BEFORE ABORTING

PAUSE

*

BEEP
DISPLAY
KEYIN
CMATCH
GOTO
KEYIN
CMATCH
GOTO

*P1:1,*EL,"Untrapped DATASHARE error at ",TIME
*P67:1,"(P)ause? ",*T,*+,CWK1
"P" TO C~iK 1 CHECK FOR NULL STRING
LOGOFF IF NOT EQUAL
P67:1,"(C)ontinue? ",+,*EL,CWK1
"C" TO CWK1
PAUSE IF NOT EQUAL · .. .

• CHAIN TO THE APPROPRIATE ANSWER PROGRAM

LOGOFF

*

MOVE
COMPARE
GOTO
RESET

BUILDANS CLEAR
APPEND
APPEND
RESET
TRAP
CHAIN

PORTN TO CWK2
"10" TO PORTN
BUILDANS IF NOT LESS
CWK2 TO 2

ANSWER
"ANSWER" TO ANSWER
CWK2 TO ANSWER
ANSWER
BADANS IF CF AIL
ANSWER

C-16 DOS. DATABUS COMPILER

GET THE PORT NUMBER
REMOVE LEADING SPACES

BUILD THE NAME
FORM: ANSWERn
WHERE: n IS THE PORT
NUMBER (0 < n < 17)

* · .. . • ANSWER PROGRAM COULD NOT BE FOUND

BADANS DISPLAY

GOTO
*

*P58:1,*EL,"
*P58:2,*EL,"
*P58:3,*EL,"
*P58:4,*EL,"
HANG

The system program":
#"",*+,ANSWER,"#" could not":
be found! Consult":
your programmer."

· .. .
· CHAIN TO THE MASTER MENU

TRAP
MASMENU CHAIN
*

BADMASM IF CFAIL
"MASMENU" · .. .

· THE MASTER MENU COULD NOT BE FOUND

BADMASM DISPLAY

GOTO

*P58:1,"
*P58:2,"
*P58:3,"
fP58:4,"
HANG

The system program":
#"MASMENU#" could not":
found! Consult":
your programmer."

APPENDIX C. SAMPLE DATASHARE SYSTEM C-17

C.1.3 Sample DATA SHARE MASter MENU

• MASMENU - DATASHARE MASTER MENU

· THIS PROGRAM WAS GENERATED USING THE "MAKEMENU" PROGRAM
· THEN MODIFIED WITH THE DOS "EDIT" COMMAND

· COMPILING THIS PROGRAM REQUIRES THAT THE FILES: "COMMON/TXTu,
· "LOGDATA/TXT" AND "LOGIO/TXT" EXIST ON ANY DRIVE WHICH IS ON-
· LINE. THESE INCLUSION FILES CONTAIN THE INFORMATION COMMON TO
· ALL OF THE SYSTEM PROGRAMS.

INDEX
TIME
PROGRAM
CWK2

INCLUDE
FORM
INIT
DIM
DIM
INCLUDE

COMMON/TXT
2
"hh:mm:ss"
9
2
LOGDATA/TXT

C-18 DOS. DATABUS COMPILER·

USER SELECTION VARIABLE
hours:minutes:seconds
PROGRAM SELECTION VARIABLE
WORK VARIABLE

+ ••
· MAINLINE

INCLUDE
*

LOGIO/TXT · .. .
· DISPLAY THE MENU

SHOWMENU DISPLAY *ES:

*

"DATASHARE MASTER MENU":
*P51:1,"Today is ",TODAY:
*P01:03,"(1)":
"Payroll Menu":
*P01:04,"(2) ":
"Exit to DOS":
*P01:05,"(3) ":
"Program Selection by Name":
*EL · .. .

· GET THE PROGRAM'S INDEX

GET INDEX KEYIN *P1:12,*EL,"Selection by number":
*P41:12,"Enter (99) when you are done.":
*P25:12,"_",*P25:12,INDEX

*

COMPARE
GOTO
COMPARE
GOTO
COMPARE
GOTO

"1" TO INDEX
GET INDEX IF LESS
"99" TO INDEX
LOGOFF IF EQUAL
"04" TO INDEX
GET INDEX IF NOT LESS · .. .

· BRANCH TO THE ROUTINE INDICATED BY THE INDEX

*

TRAP
CLOCK
BRANCH

BADCHAIN IF CFAIL
TIME TO TIME
INDEX OF MENU1: Payroll Menu

DOS: Exit to DOS
OTHER Program Selection by Name

GOTO GET INDEX · .. .
· PROGRAM DOES NOT EXIST.

BADCHAIN RETURN
* · .. .
· CHAIN INSTRUCTIONS

APPENDIX C. SAMPLE DATASHARE SYSTEM C-19

* · .. .
• Payroll Menu

MENU1

*

MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"MENU1 "TO LOGINFO
LOGWRITE
"MENU1" .
LOGFILE,LOGRN;*12,"NO PROGRAM"
GETINDEX · .. .

• EXIT TO DOS REQUIRES SECURITY CLEARANCE

DOS

*

*

*
NOROLL

*

COMPARE
GOTO

TRAP
MOVE
CLEAR
CALL
ROLLOUT

MOVE
CLEAR
CALL
GOTO

WRITAB
RETURN

"6" TO SECURITY
GETINDEX IF LESS

NOROLL IF CFAIL
"ROLLOUT" TO LOGTYPE
LOG INFO
LOGWRITE EXIT TO DOS BY EXECUTING
"FREE" THE DOS "FREE" COMMAND

"ROLL RET" TO LOGTYPE
LOG INFO
LOGWRITE
GET INDEX

LOGFILE,LOGRN;*12,"NO ROLLOUT"

• ••••••• til •••

• PROGRAM SELECTION BY NAME REQUIRES SECURITY CLEARANCE

OTHER COMPARE "7" TO SECURITY
GOTO GETINDEX IF LESS

*
GETPROG KEYIN *ES,"ENTER PROGRAM NAME: ",PROGRAM;

MOVE "PROGRAM" TO LOGTYPE
MOVE PROGRAM TO LOG INFO
CALL LOGWRITE

* · .. .
· DO NOT ALLOW HIM TO CHAIN TO OTHER MASTER OR ANSWER PROGRAMS

MATCH
GOTO
MATCH
GOTO
TRAP
CHAIN

"MASTER" TO PROGRAM
BADPROG IF EQUAL
"ANSWER" TO PROGRAM
BADPROG IF EQUAL
BADPROG IF CFAIL
PROGRAM

C-20 DOS. DATABUS COMPILER

* · .. . · PROGRAM DOESN'T EXIST

BADPROG DISPLAY

*

WRITAB
GOTO

" <-- THAT PROGRAM DOES NOT EXIST!":
*W,*W
LOGFILE,LOGRN;*12,"NO PROGRAM"
SHOWMENU · .. .

· LOG OFF BY CHAINING TO THE APPROPRIATE ANSWER PROGRAM

LOGOFF MOVE
COMPARE
GOTO
RESET

*
BUILDANS CLEAR

APPEND
APPEND
RESET
TRAP
CHAIN

*

PORTN TO CWK2
"10" TO PORTN
BUILDANS IF NOT LESS
CWK2 TO 2

PROGRAM
"ANSWER" TO PROGRAM
CWK2 TO PROGRAM
PROGRAM
BADANS IF CFAIL
PROGRAM

GET THE PORT NUMBER
REMOVE LEADING SPACES

BUILD THE NAME
FORM: ANSWERn
WHERE: n IS THE PORT
NUMBER (0 < n < 17)

· .. .
• ANSWER PROGRAM COULD NOT BE FOUND

BADANS DISPLAY

GOTO

*P58:1,*EL,"
*P58:2,*EL,"
*P58:3,*EL,"
*P58:4,*EL,"
HANG

The system program":
#"",*+,PROGRAM,"I" could not":
be found! Consult":
your programmer."

APPENDIX C. SAMPLE DATASHARE SYSTEM C-21

C.1.4 Sample Program Selection MENU

· MENU1 - MENU FOR WEEKLY PAYROLL SYSTEM

· THIS PROGRAM WAS GENERATED USING THE "MAKEMENU" PROGRAM

· COMPILING THIS PROGRAM REQUIRES THAT THE FILES: "COMMON/TXT",
· "LOGDATA/TXT" AND "LOGIO/TXT" EXIST ON ANY DRIVE WHICH IS ON-
· LINE. THESE INCLUSION FILES CONTAIN THE INFORMATION COMMON TO
• ALL OF THE SYSTEM PROGRAMS.

INDEX
TIME

INCLUDE
FORM
INIT
INCLUDE

COMMON/TXT
2
"hh:mm:ss"
LOGDATA/TXT

C-22 DOS. DATABUS COMPILER

USER SELECTION VARIABLE
hours:minutes:seconds

+ ••
· MAINLINE

· * .. · THIS MENU REQUIRES A SECURITY CLEARANCE OF AT LEAST 2

*

COMPARE
STOP
INCLUDE

"2" TO SECURITY
IF LESS
LOGIO/TXT ..

· DISPLAY XHE MENU

DISPLAY *ES:
"MENU FOR WEEKLY PAYROLL SYSTEM":
*P51:1,"Today is ",TODAY:
*P01:03,"(1) ":
"Enter timecard data":
*P01:04,"(2) ":
"Print payroll checks":
*P01:05,"(3) ":
"Print check register":
*P01:06,"(4) ":
"Enter void checks":
*POl :07, "(5) ":
"Print timecard labels":
*P01:08,"(6) ":
"Print FICA register":
*P01:09,"(7) ":
"Print UIC report":
*P01: 10, "(8) ":
"Print quarterly FICA report":
*P41:03,"(9) ":
"Print W-2's":
*P41:04,"(10) ":
"Re-organize employee file":
*P41:05,"(11) ":
"Add new employees":
*P41:06,"(12) ":
"Change employee master file":
*P41:07,"(13) ":
"List employee master file":
*P41:08,"(14) ":
"Print payroll general ledger":
*EL

APPENDIX C. SAMPLE DATASHARE SYSTEM C-23

* · .. . · GET THE PROGRAM'S INDEX

GET INDEX KEYIN *P1:12,*EL,"Selection by number":
*P41:12,"Enter (99) to leave this menu.":
*P25:12,"_",*P25:12,INDEX

*

COMPARE
GOTO
COMPARE
STOP
COMPARE
GOTO

"1" TO INDEX
GET INDEX IF LESS
"99" TO INDEX
IF EQUAL
"15" TO INDEX
GET INDEX IF NOT LESS · .. .

· BRANCH TO THE ROUTINE IND.ICATED BY THE INDEX

TRAP BADCHAIN IF CFAIL
CLOCK TIME TO TIME
BRANCH INDEX OF PAY 1 : Enter timecard data

PAY2: Print payroll checks
PAY3: Print check register
PAY4: Enter void checks
PAY5: Print timecard labels
PAY6: Print FICA register
PAY7: Print UIC report
PAY8: Print quarterly FICA report
PAY9: Print vJ-2' s
PAY10: Re-organize employee file
PAY11: Add new employees
PAY12: Change employee master file
PAY13: List employee mast-er file
PAY14 Print payroll general ledger

GOTO GET INDEX
* · .. .
• PROGRAM DOES ~OT EXIST.

BADCHAIN RETURN
* · .. . · CHAIN INSTRUCTIONS
* · .. .
• Enter timecard data

PAY1 MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY1 "TO LOGINFO
LOGWRITE
"PAY1"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GET INDEX

C-24 DOS. DATABUS COMPILER

* · .. . • Print payroll checks

PAY2

*

MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY2 "TO LOGINFO
LOGWRITE
"PAY2"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GET INDEX · .. .

• Print check register

PAY3

*

MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY3 "TO LOGINFO
LOGWRITE
"PAY3"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GET INDEX · .. .

· Enter void checks

· PAY4

*

MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY4 "TO LOG INFO
LOGWRITE
"PAY4"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GET INDEX · .. .

· Print timecard labels

PAY5

*

MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY5 "TO LOGINFO
LOGWRITE
"PAY5"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GET INDEX · .. .

• Print FICA register

· PAY6 MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY6 "TO LOGINFO
LOGWRITE
"PAY6"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GET INDEX

APPENDIX C. SAMPLE DATASHARE SYSTEM C-25

* · .. . • Print U/C report

PAY7

*

MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY7 "TO LOGINFO
LOGWRITE
"PAY7"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GET INDEX · .. .

• Print quarterly FICA report

· PAY8

*

MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY8 "TO LOGINFO
LOGWRITE
"PAY8"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GET INDEX · .. .

• Print W-2's

PAyg

*

MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY9 "TO LOG INFO
LOGWRITE
"PAYg"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GET INDEX · .. .

• Re-organize employee file

PAY10

if

MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY10 "TO LOGINFO
LOGWRITE
"PAY10"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GETINDEX · .. .

· Add new employees

PAY 11 MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PIIV11

.L n..L I I

LOGWRITE
"PAY11"
LOGFILE,LOGRN;*12,"NO
GETINDEX

C-26 DOS. DATABUS COMPILER

PROGRAM"

* · .. . • Change employee master file

· PAY12

*

MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY12 "TO LOGINFO
LOGWRITE
"PAY12"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GET INDEX · .. .

· List employee master file

· PAY13

*

MOVE
MOVE
CALL
CHAIN
WRITAB
G0TO

"PROGRAM" TO LOGTYPE
"PAY13 "TO LOGINFO
LOG~'lRITE

"PAY13"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GET INDEX · .. .

• Print payroll general ledger

· PAY14 MOVE
MOVE
CALL
CHAIN
WRITAB
GOTO

"PROGRAM" TO LOGTYPE
"PAY14 "TO LOGINFO
LOGWRITE
"PAY14"
LOGFILE,LOGRN;*12,"NO PROGRAM"
GETINDEX

APPENDIX C. SAMPLE DATASHARE SYSTEM C-27

C.1.5 Chain Files for System Generation

The following chain files may be used for system generation
and maintenance.

C-28 DOS. DATABUS COMPILER

C.l.5.l Compile the System Programs

• MAKEANMA - COMPILE ANSWER AND MASTER PROGRAMS

· CHAIN TAGS: DATE#value# ==> FORCES LISTING, (#value# USED IN
HEADINGS

· EXAMPLE:

<number> ==> FORCES COMPILATION OF MASTER AND
ANSWER PROGRAMS FOR THE PORT
NUMBER SPECIFIED

HALF ==> FORCES COMPILATION OF MASTER AND
ANSWER PROGRAMS FOR PORTS 1-8

ALL ==> FORCES COMPILATION OF MASTER AND
ANSWER PROGRAMS FOR PORTS 1-16

SAMPLE ==> FORCES COMPILATION OF THE SAMPLE
MENUS

NEW ==> FORCES CREATION OF NEW SYSTEM LOG
FILE AND A NEW LIST OF AUTHORIZED
USERS

TO COMPILE THE MASTER AND ANSWER PROGRAMS FOR
PORTS 1 THROUGH 4, TO PRODUCE LISTINGS OF ALL
PROGRAMS COMPILED, AND TO GENERATE NEW SYSTEMS
FILES: USE THE FOLLOWING DOS COMMAND LINE

CHAIN MAKEANMA/CHN; 1,2,3,4,DATE#ddmmmyy#,NEW

·
II IFS DATE
• I WILL PRODUCE LISTINGS OF THE PROGRAMS

II XIF
II IFS SAMPLE
· I WILL COMPILE THE SAMPLE PROGRAMS
II BEGIN
II.
II. COMPILE THE MASTER MENU
II.
II IFS DATE
DBCMP MASMENU;L
DATASHARE MASTER MENU (MENU SELECTION PROGRAM)
II ELSE
DBCMP MASMENU
II XIF
II.
II. COMPILE A SAMPLE MENU

#DATE#

APPENDIX C. SAMPLE DATASHARE SYSTEM C-29

II.
II IFS DATE
DBCMP MENU 1 ; L
SAMPLE MENU PROGRAM #DATE#
II ELSE
DBCMP MENU1
II XIF
II END
II XIF
II IFS 1,HALF,ALL
II BEGIN
• I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 1
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 1
II.
BUILD PORTN/TXX;!
PORTN FORM " 1"

II.
II. COMPILE ANSWER1
II. '
II IFS DATE
DBCMP ANSWER,ANSWER1;L
DATASHARE ANSWER PROGRAM #DATE#
II ELSE
DBCMP ANSWER,ANSWER1
II XIF
II.
II. COMPILE MASTER1
II.
II IFS DATE
DBCMP MASTER,MASTER1;L
DATASHARE MASTER PROGRAM (FOR LOGGING DATASHARE ERRORS) #DATE#
II ELSE
DBCMP MASTER,MASTER1
II XIF
II END
II XIF
II IFS 2,HALF,ALL
• I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 2
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 2
II.
BUILD PORTN/TXX;!
PORTN FORM " 2"

II.
II. COMPILE ANSWER2

C-30 DOS. DATABUS COMPILER

II.
DBCMP ANSWER,ANSWER2
II.
II. COMPILE MASTER2
II.
DBCMP MASTER,MASTER2
II XIF
II IFS 3,HALF,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 3
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 3
II.
BUILD PORTN/TXX;!
PORTN FORM " 3"

II.
II. COMPILE ANSWER3
II.
DBCMP ANSWER,ANSWER3
II.
II. COMPILE MASTER3
II.
DBCMP MASTER,MASTER3
II XIF
II IFS 4,HALF,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 4
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 4
II.
BUILD PORTN/TXX;!
PORTN FORM " 4"

II.
II. COMPILE ANSWER4
II.
DBCMP ANSWER,ANSWER4
II.
II. COMPILE MASTER4
II.
DBCMP MASTER,MASTER4
II XIF
II IFS 5,HALF,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 5
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 5
II.
BUILD PORTN/TXX;!
PORTN FORM " 5"

APPENDIX C. SAMPLE DATASHARE SYSTEM C-31

II.
II. COMPILE ANSWER5
II.
DBCMP ANSWER,ANSWER5
II.
II. COMPILE MASTER5
II.
DBCMP MASTER,MASTER5
II XIF
II IFS 6,HALF,ALL
• I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 6
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 6
II.
BUILD PORTN/TXX;!
PORTN FORM " 6"

II.
II. COMPILE ANSWER6
I I •.
DBCMP ANSWER,ANSWER6
II.
II. COMPILE MASTER6
II.
DBCMP MASTER,MASTER6
II XIF
II IFS 7,HALF,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 7
I I. .
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 7
II.
BUILD PORTN/TXX;!
PORTN FORM " 7"

II.
II. COMPILE ANSWER7
II.
DBCMP ANSWER,ANSWER7
II.
II. COMPILE MASTER7
I I

I I •

DBCMP MASTER,MASTER7
II XIF
II IFS 8,HALF,ALL
• I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 8
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 8

C-32 DOS. DATABUS COMPILER

II.
BUILD PORTN/TXX;!
PORTN FORM " 8"

, !
II.
II. COMPILE ANSWERS
II.
DBCMP ANSWER,ANSWER8
II.
II. COMPILE MASTERS
II.
DBCMP MASTER,MASTER8
II XIF
II IFS 9,ALL
• I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 9
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 9
II.
BUILD PORTN/TXX;!
PORTN FORM " 9"

II.
II. COMPILE ANSWER9
II.
DBCMP ANSWER,ANSWER9
II.
II. COMPILE MASTER9
II.
DBCMP MASTER,MASTER9
II XIF
II IFS 10,ALL
. I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 10
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 10
II.
BUILD PORTN/TXX;!
PORTN FORM "10"

II.
II. COMPILE ANSWER10
II.
DBCMP ANSWER,ANSWER10
II.
II. COMPILE MASTER10
II.
DBCMP MASTER,MASTER10
I I XIF .
II IFS 11,ALL

APPENDIX C. SAMPLE DATASHARE SYSTEM C-33

• I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 11
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 11
II.
BUILD PORTN/TXX;!
PORTN FORM "11"

II.
II. COMPILE ANSWER11
II.
DBCMP ANSWER,ANSWER11
II.
II. COMPILE MASTER11
II.
DBCMP MASTER,MASTER11
II XIF
II IFS 12,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 12
II.
II. CREATE THE INCLUSION FILE FOR POriT NUMBER 12
II.
BUILD PORTN/TXX;!
PORTN FORM "12"

II.
II. COMPILE ANSWER12
II.
DBCMP ANSWER,ANSWER12
II.
II. COMPILE MASTER12
II.
DBCMP MASTER,MASTER12
II XIF
II IFS 13,ALL
• I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 13
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 13
II.
BUILD PORTN/TXX;!
PORTN FORM· "13"

I I
I I •

II. COMPILE ANSWER13
II.
DBCMP ANSWER,ANSWER13
II.
II. COMPILE MASTER13
II.

C-34 DOS. DATABUS COMPILER

DBCMP MASTER,MASTER13
II XIF
II IFS 14,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 14
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 14
II.
BUILD PORTN/TXX;!
PORTN FORM "14"

II.
II. COMPILE ANSWER14
II.
DBCMP ANSWER,ANSWER14
II.
II. COMPILE MASTER14
II.
DBCMP MASTER,MASTER14
II XIF
II IFS 15,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 15
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 15
II.
BUILD PORTN/TXX;!
PORTN FORM "15"

II.
II. COMPILE ANSWER15
II.
DBCMP ANSWER,ANSWER15
II.
II. COMPILE MASTER15
II.
DBCMP MASTER,MASTER15
II XIF
II IFS 16,ALL
· I WILL COMPILE THE MASTER AND ANSWER PROGRAMS FOR PORT 16
II.
II. CREATE THE INCLUSION FILE FOR PORT NUMBER 16
II.
BUILD PORTN/TXX;!
PORTN FORM "16"

II.
II. COMPILE ANSWER16
II.
DBCMP ANSWER,ANSWER16

APPENDIX C. SAMPLE DATASHARE SYSTEM C-35

II.
II. COMPILE MASTER16
II.
DBCMP MASTER,MASTER16
II XIF

...
II.
II. DELETE THE PORT NUMBER INCLUSION FILE
II.
KILL PORTN/TXX
Y
II IFS NEW
• I WILL CREATE NEW SYSTEMS FILES
II.
II. CREATE NEW FILE OF AUTHORIZED USERS
II.
BUILD USERS/DSP;!

SSN USER'S NAME
()(
999999999Anyuser
!
II.

SECURITY
) - (. . .

9

II. INDEX THE FILE OF AUTHORIZED USERS ON COLUMNS 1-9
II.
INDEX USERS/DSP,USERS/ISI;1-9
II.
II. CREATE A NEW LOG FILE
II.
CHAIN LOGMAKE/CHN;NEW
II XIF

C-36 DOS. DATABUS COMPILER

.1.5.2 Re-organize System Log File

· LOGMAKE - RE-ORGANIZE DATASHARE SYSTEM 'LOGFILE'

· CHAIN TAGS: NEW ==>
REFORMAT ==>
LIST/Fdate/I ==>
SAVE ==>

CAUSES A NEW LOG FILE TO BE CREATED
CAUSES THE LOG FILE TO BE REFORMATED
CAUSES THE LOG FILE TO BE LISTED
#date# WILL BE INCLUDED IN THE HEADING
CAUSES THE LOG FILE TO BE SAVED

·

II IFS REFORMAT
· I WILL REFORMAT THE LOG FILE
II.
II. REFORMATING THE LOG FILE
II.
REFORMAT LOGFILE;DC
II XIF
II IFS LIST
· I WILL LIST THE LOG FILE
II.
II. LISTING THE LOG FILE
II.
LIST LOGFILE;L

SYSTEM LOG FILE #LIST#
II XIF
II IFS SAVE
· I WILL SAVE THE LOG FILE BY ADDING IT TO 'MASTERLG/TXT'
II
II. ADDING THE LOG FILE TO THE MASTER LOG FILE
II.
SAPP MASTERLG,LOGFILE,MASTERLG
II XIF
II IFS NEW
· I WILL CREATE A NEW LOG FILE
II.
II. CREATING A NEW LOG FILE
II.
BU ILD LOGFILE;!
*000 PORT LOG TYPE DATE TIME OTHER INFORMATION

APPENDIX C. SAMPLE DATASHARE SYSTEM C-37

* rn () () (

II XIF

••• • -e ••••••••••

C-38 DOS. DATABUS COMPILER

C.2 SYSTEM INCLUSION FILES

The following files are included in the source of all of the
system programs to make certain commonly used program segments
easier to use.

APPENDIX C. SAMPLE DATASHARE SYSTEM - C-39

C.2.1 COMMON User's Data Area

* .. . COMMON - DEFINE COMMON DATA AREAS

PORTN FORM
TODAY DIM
SECURITY FORM

*2
*8
*1

C-40 DOS. DATABUS COMPILER

PORT NUMBER
DATE IN mm/dd/yy FORMAT
SECURITY CLEARANCE LEVEL

C.2.2 Log File Data Area Definition

* ..
· LOGDATA - UPDATE THE SYSTEM LOG FILE -- INCLUSION FILE #1

• THIS FILE CONTAINS THE DATA AREA DEFINITION STATEMENTS THAT ARE
· REQUIRED BY THE LOG FILE I/O ROUTINES

* RESTRICTIONS: THIS FILE MAY BE INCLUDED IN A PROGRAM ONLY
ONCE

· *

THIS FILE MUST BE INCLUDED WITHIN THE
STATEMENTS USED TO DEFINE THE USER'S DATA
AREA ..

• A LOG ENTRY
• POSITIONS

1- 7
8- 9

• 10-11
* 12-21

· * 22-23
24-31
32-33
34-41
42-43
44-64

HAS THE FOLLOWING FORMAT:
USED FOR:
RESERVED
NUMBER OF THE PORT WRITING THE LOG ENTRY
RESERVED
THE LOG ENTRY'S TYPE:

LOG-ON ..•..•• USER SIGN ON
LOG-OFF ...••• USER SIGN OFF
BAD ID ••.•••• INVALID ATTEMPT TO SIGN ON
ERROR •....••• DATASHARE ERROR
PROGRAM .••.•• SUCCESSFUL CHAIN TO A PROGRAM
NO PROGRAM ••. UNSUCCESSFUL CHAIN TO A PROGRAM
ROLLOUT ••.••. SUCCESSFUL ROLLOUT
ROLL RET .•••. ROLLOUT RETURN
NO ROLLOUT .•• UNSUCCESSFUL ROLLOUT

RESERVED
DATE OF LOG ENTRY
RESERVED
TIME OF LOG ENTRY
RESERVED
OTHER INFORMATION:

LOG-ON •..••.• USER'S NAME
BAD ID ..•..•. INVALID NUMBER ENTERED
ERROR .•..•..• ERROR MESSAGE
PROGRAM •••••. NAME OF PROGRAM
NO PROGRAM NAME OF PROGRAM

APPENDIX C. SAMPLE DATASHARE SYSTEM C-41

* · . • THE FOLLOWING VARIABLES MUST BE SET TO THEIR APPROPRIATE VALUES
• BEFORE WRITING A LOG ENTRY

LOGFILE
LOGTYPE
LOGINFO
*

FILE
DIM
DIM

10
20

SYSTEM LOG FILE
TYPE OF LOG TO BE WRITTEN
OTHER INFORMATION · .

• THE FOLLOWING VARIABLES MUST BE DEFINED ELSEWHERE AND BE SET TO
· THEIR APPROPRIATE VALUES BEFORE WRITING A LOG ENTRY

.PORTN

.TODAY

.TIME
*

FORM
INIT
INIT

2
"mm/dd/yy"
"hh:mm:ss"

PORT NUMBER
month/day/year
hours:minutes:seconds · .

• SINCE THE SYSTEM LOG FILE IS COMMON TO ALL PORTS, THE FOLLOWING
· VARIABLES ARE NEEDED TO HANDLE THE COMMON FILE CONSIDERATIONS

LOGRN
ZERO

FORM
FORM

3
"0 "

C-42 DOS. DATABUS COMPILER

RECORD NUMBER OF LOG ENTRY
RECORD NUMBER AT RECORD 0

C.2.3 Log File Input/Output Routines

* · . • LOGIO - UPDATE THE SYSTEM LOG FILE -- INCLUSION FILE #2

• THIS FILE CONTAINS: I. A ROUTINE THAT OPENS THE SYSTEM LOG
FILE

· * RESTRICTIONS:

· *

II. A SUBROUTINE THAT WRITES A LOG
ENTRY TO THE SYSTEM LOG FILE

THIS FILE MAY BE INCLUDED IN A PROGRAM ONLY
ONCE
THIS FILE SHOULD BE INCLUDED IN A PROGRAM AT
THE POINT WHERE THE USER WISHES THE LOG FILE
TO BE OPENED · .

• I. OPEN THE SYSTEM LOG FILE

*

TRAP
OPEN
TRAPCLR
GOTO

NOLOG IF 10
LOGFILE,"LOGFILE"
10
LOGOPEN · .

• LOG FILE IS MISSING

· NOLOG

HANG

DISPLAY

GOTO

*P54:1,*EL," #"LOGFILE/ISI#" is missing!":
*P54:2,*EL," The port number is ",PORTN
HANG

APPENDIX C. SAMPLE DATASHARE SYSTEM C-43

* · .. . · II. WRITE A LOG ENTRY TO THE SYSTEM LOG FILE

· PROCEDURE: 1. LOCK OUT ALL OTHER PORTS
2. GET THE NUMBER OF LAST USED RECORD (RN)
3. PUT AN EOF MARK IN RECORD RN+2 (THIS INSURES

THAT THE EOF OF THE LOG FILE IS ALWAYS MARKED)
4. PUT RN+1 IN THE LOG FILE AS THE LAST USED RECORD
5. ALLOW OTHER PORTS TO EXECUTE
6. WRITE THE LOG ENTRY TO RECORD RN+1 (NOTE THAT

THIS OVERWRITES THE OLD END-OF-FILE MARK)

LOGWRITE PI 5 1. LOCK OUT
READ LOGFILE,ZERO;*2,LOGRN 2. READ RN
ADD "2" TO LOGRN
WEOF LOGFILE,LOGRN 3. EOF AT RN+2
SUBTRACT " 1 " FROM LOGRN
WRITAB LOGFILE,ZERO;*2,LOGRN 4. PUT RN+1

· PI GOES TO a AT THIS POINT 5. ALLOW OTHER PORTS
* · ...
· SEE DESCRIPTIONS IN DATA AREA 6. WRITE LOG ENTRY

WRITE LOGFILE,LOGRN;" " ,PORTN:
" " ,LOGTYPE:
" ",TODAY:
" " ,TIME:
" ",LOGINFO

RETURN
* · .. .
· NOTE: THE "TRAPCLR PARITY" INSTRUCTION IS USED AS A "NOP"

INSTRUCTION

LOGOPEN TRAPCLR PARITY

C-44 DOS. DATABUS COMPILER

C.3 SUPLEMENTAL SYSTEM PROGRAMS

Although the following programs are not necessary for using
the DATASHARE system defined in this appendix, they should make
using and modifying the system much simpler.

APPENDIX C. SAMPLE DATASHARE SYSTEM C-45

C.3.1 Re-organize the List of Authorized Users

. NEWUSER - PROGRAM TO UPDATE THE LIST OF AUTHORIZED USERS

INCLUDE COMMON
* · . CFILE
SEQ
*

FILE
FORM "-1" · .

USERS
USERID
NAME
CLRANCE
*

IFILE
DIM
DIM
FORM

9
20
1 · .

NWK9
CWK1
REPLY
INDEX

FORM
DIM
DIM
FORM

9
1
1
2

C-46 DOS. DATABUS COMPILER

USER SELECTION VARIABLE

+ ••
· MAINLINE

· * · . • THIS MENU REQUIRES A SECURITY CLEARANCE OF AT LEAST 8

*

COMPARE
STOP

"8" TO SECURITY
IF LESS · .

• PREPARE THE CHAIN FILE

*

TRAP
PREPARE
TRAPCLR
WRITE

WRITE
GOTO

NOCHAIN IF 10
CFILE,"ROLCHAIN"
10
CFILE,SEQ;*+,"II* TAP THE DISPLAY KEY TO ":

"RE-ORGANIZE THE LIST OF ":
"AUTHORIZED USERS"

CFILE,SEQ;"II."
OPENUSER · .

• CHAIN FILE COULD NOT BE CREATED

NOCHAIN DISPLAY

STOP
*

*ES:
*P20:4,"CHAIN FILE COULD NOT BE WRITTEN!":
*W,*W

· .. .
· OPEN THE FILE OF AUTHORIZED USERS

OPENUSER TRAP
OPEN
TRAPCLR
GOTO

*

NOUSER IF 10
USERS,"USERS"
10
MENU · .

· FILE OF AUTHORIZED USERS NOT THERE

NOUSER KEYIN

CMATCH
STOP

*ES:
*P20:4,"The list of authorized users is":
*P20:5,"missing.":
*Pl:12,"Do you want to create a new list? ":
*EL,REPLY
"Y" TO REPLY
IF NOT EQUAL

APPENDIX C. SAMPLE DATASHARE SYSTEM C-47

* · .. . • CREATE A NEW LIST OF AUTHORIZED USERS

*

DISPLAJ'

WRITE
WRITE

WRITE
WRITE
WRITE

WRITE

WRITE
CALL
GOTO

*F2~;4j"Wr!ting the chain file."
CF:::LE,SEQj"II."
CFILE,SEQj"ll. BUILD THE FILE CONTAINING ":

"THE LIST OF AUTHORIZED USERS"
CFILE,SEQj"II."
CFILE,SEQj"BUILD USERS/DSPj!"
CFILE,SEQj" SSN USER'S NAME

"SECURITY"
CFILE,SEQj"()(

") - (
CFILE,SEQj"!"
CHAINROL
OPENUSER

"

" . .
" . .

· .. .
• DISPLAY THE MENU

*

DISPLAY *ES:
"PROGRAM TO UPDATE THE LIST OF AUTHORIZED USER
*P51:1,"Today is ",TODAY:
*P01:03,"(1) ":
"Authorize a new user":
*P01:04,"(2) ":
"Modify a user's authorization":
*P01:05,"(3) ":
IIRemove a user from the listll:
*EL · .. .

• GET THE PROGRAM'S INDEX

GETINDEX KEYIN *P1 :12,*EL,IISelection by number":
*P41:12,IIEnter (99) to continue. lI :

*P25:12,"_II,*P25:12,INDEX
COMPARE
GOTO
COMPARE
GOTO
COl'1PARE
GOTO

"111 TO INDEX
GET INDEX IF LESS
"99'~ TO INDEX
WRTCHAIN IF EQUAL
1104" TO INDEX
GET INDEX IF NOT LESS

C-4B DOS. DATABUS COMPILER

* • ••••••••••••••••••••••••• e· •••••••••••••••••••••••••••••••••••••

· BRANCH TO THE ROUTINE INDICATED BY THE INDEX

*

BRANCH

GOTO

INDEX OF ADD: Authorize a new user

GETINDEX

CHANGE: Modify a user's authorizatio
DELETE Remove a user from the list

· .. .
· Authorize a new user

* · .. .
· DISPLAY THE FORM

ADD DISPLAY *ES:
*P25: 6, " _____________ _ "

* · .. "
• GET THE USER'S ID #

GETIDN

*

CALL
CMATCH
GOTO

GETID
" " TO USERID
GETNME IF NOT EOS · .. .

· ASK IF HE IS DONE WITH THIS ENTRY

*

KEYIN

CMATCH
GOTO
GOTO

*P25:4,*EL:
*P1:12,"Are you done? (YIN) ",*EL,REPLY
"Y" TO REPLY
MENU IF EQUAL
ADD · .. .

• GET THE USER'S NAME

GETNME

*

CALL
GOTO

GETNAME
GETCLR IF NOT 80S · .. .

• ASK IF DONE WITH THIS ENTRY

ASKDONEN KEYIN

CMATCH
GOTO
CMATCH
GOTO
GOTO

*P1:12,"Do you want to re-enter the (I)dent":
"ification number or the (N)ame? ",*EL,REPLY
"N" TO REPLY
GETNt4E IF EQUAL
"I" TO REPLY
GETIDN IF EQUAL
ASKDONEN

APPENDIX C. SAMPLE DATASHARE SYSTEM C-49

* · . • GET THE USER'S SECURITY CLEARANCE

GETCLR

*

CALL
COMPARE
GOTO

GETCLEAR
"0" TO CLRANCE
WRTNEWU IF NOT EQUAL · .

· ASK IF DONE WITH THIS ENTRY

ASKDONEC KEYIN *P1:12,"Re-enter (I)d number, (N)ame, " :
"(C)learance or enter (Z)ero clearance? " :
*EL,REPLY

CMATCH "I" TO REPLY
GOTO GETIDN IF EQUAL
CMATCH "N" TO REPLY
GOTO GETNME IF EQUAL
CMATCH "C" TO REPLY
GOTO GETCL.R IF EQUAL
CMATCH "Z" TO REPLY
GOTO ASKDONEC IF NOT EQUAL

* · .
• ADD THE USER TO THE LIST OF AUTHORIZED USERS

WRTNEWU CALL
GOTO

*

INSERT
ADD · .

• Remove a user from the list
· * · . · GET THE USER TO BE DELETED

DELETE CALL
CMATCH
GOTO

GETUSER
" " TO USERID
VERIFY IF NOT EOS

* .
• ASK IF DONE WITH THIS ENTRY

KEYIN
CMATCH
GOTO
GOTO

*P1:12,"Are you done? (YIN) ",*EL,REPLY
"Y" TO REPLY
MENU IF EQUAL
DELETE

C-50 DOS. DATABUS COMPILER

* · . • MAKE SURE HE WANTS TO DELETE BEFORE REMOVING

· VERIFY KEYIN *Pl:12,"Is this the entry to be removed? ":
*EL,REPLY

*

*

("MATCH
GOTO

DELETE
GOTO

"Y" TO REPLY
DELETE IF NOT EOUAL

USERS,USERID
DELETE · .

· Modify a user's authorization
· * · . • GET THE ENTRY FROM THE LIST TO BE MODIFIED

CHANGE CALL
CMATCH
GOTO

GETUSER

*

" " TO USERID
ASKMOD IF NOT EOS · .

· ASK IF DONE WITH ENTRY

*

KEYIN
CMATCH
GOTO
GOTO

*Pl:12,"Are you done? (YIN) ",*EL,REPLY
"Y" TO REPLY
MENU IF EQUAL
CHANGE · .

• FIND OUT WHAT HE WANTS TO DO WITH IT

ASKMOD

*

KEY IN

CMATCH
GOTO
CMATCH
GOTO
CMATCH
GOTO
CMATCH
GOTO
GOTO

*Pl:12,"(D)one, modify (I)d number, ":
"modify (N)ame, or ":
"modify security (C)learance? ",*EL,REPLY
"D" TO REPLY
WRTMOD IF EQUAL
"I" TO REPLY
IDMOD IF EQUAL
"N" TO REPLY
NAMEMOD IF EQUAL
"C" TO REPLY
CLRMOD IF EQUAL
ASKMOD · .

· MODIFY THE SECURITY CLEARANCE

CLRMOD CALL
COMPARE
GOTO

GETCLEAR
"0" TO CLRANCE
ASK MOD IF NOT EQUAL

APPENDIX C. SAMPLE DATASHARE SYSTEM C-51

* · . · ASK IF DONE WITH ENTRY

ASKDONEZ KEYIN

*

CMATCH
GOTO
CMATCH
GOTO
GOTO

*Pl:12,"(D)one or enter (Z)ero security":
"clearance? ",*EL,REPLY
"D" TO REPLY
WRTMOD IF EQUAL
"Z" TO REPLY
ASKDONEZ IF NOT EQUAL
ASK MOD · .

· MODIFY THE NAME

NAME MOD CALL
GOTO

*

GETNAME
ASKMOD IF NOT EOS · .

· ASK IF DONE WITH ENTRY

KEYIN
CMATCH
GOTO
GOTO

*Pl:12,"Are you done? (YIN) ",*EL,REPLY
"Y" TO REPLY
WRTMOD IF EQUAL
ASK MOD

* . ~ . .
• MODIFY THE IDENTIFICATION NUMBER

· * · . · DELETE THE OLD USER ID

IDMOD
*

DELETE USERS,USERID · .
· GET THE NEW ID NUMBER

NEWID CALL
CMATCH
GOTO

GETID

*

" " TO USERID
NEWID IF EOS · .

• INSERT THE NEW USER INTO THE LIST OF AUTHORIZED USERS

CALL INSERT.
GOTO CHANGE

* ••• '!!~~~ ••••••••••

• UPDATE THE ENTRt

WRTMOD UPDATE
GOTO

USERS;USERID,NAME,CLRANCE
CHANGE

C-52 DOS. DATABUS COMPILER

* .
. WRITE THE CHAIN FILE

WRTCHAIN DISPLAY
CALL
STOP

*ES,*P25:4,"Writing the CHAIN file."
CHAINROL

APPENDIX C. SAMPLE DATASHARE SYSTEM C-53

+ ••
• GET THE USER'S ID NUMBER

· GETID CLEAR
KEYIN

USERID

*

COMPARE
RETURN
COMPARE
GOTO
MOVE
RETURN

*P25:4,"To exit, tap·the ENTER key":
*P25:6," ",*P1:12:
"Enter the user's identification number.",*EL:
*P25:6,NWK9:
*P25:4,*EL
"0" TO NWK9
IF EQUAL
"100000000" TO NWK9
GETID IF LESS
NWK9 TO USERID

· .
· GET THE USER'S SECURITY CLEARANCE

GETCLEAR KEYIN *P25:4,"To exit, tap the ENTER key":
*P56:6,"_",*P1:12:

*

DISPLAY
MOVE
CMATCH
GOTO
RETURN

"Enter the user's security clearance.",*EL:
*P56:6,CLRANCE:
*P25:4,*EL
*P56:6,CLRANCE
CLRANCE TO CWK1
"-" TO CWK1
GETCLEAR IF EQUAL

· .
• GET THE USER'S NAME

GETNAME KEYIN *P25:4,"To exit, tap the ENTER key":

*

DISPLAY
CMATCH
GOTO
RETURN

*P35:6," ",*P1:12:
"Enter the user's name.",*EL:
*P35:6,*IT,NAME,*IN:
*P25:4,*EL
*P35:6,NAME
" " TO NAME
GETNAME IF EQUA~

· . ~ ~ ~ : .
• GET AND DISPLAY AN ENTRY FROM THE LIST OF AUTHORIZED USERS

C-54 DOS. DATABUS COMPILER

* · . • GET THE USER'S ID #

GETUSER DISPLAY
CALL
CMATCH
RETURN

*ES
GETID
" " TO USERID
IF EOS

* . • .
· SEE IF THE USER IS ACTUALLY ON THE LIST

READ USERS,USERID;USERID,NAME,CLRANCE
GOTO SHOWUSER IF NOT OVER

* · . · USER NOT FOUND

*

BEEP
DISPLAY

GOTO

*P25:4,"That user could not be found",*EL:
*W,*W
GETUSER · .

• PUT THE ENTRY ONTO THE SCREEN

SHOWUSER DISPLAY

RETURN

*ES,*P25:4,"That user is:":
*P25:6,USERID," ",NAME," ",CLRANCE

* . ~
• INSERT A NEW USER INTO THE LIST OF AUTHORIZED USERS

INSERT

*

TRAP
WRITE
TRAPCLR
RETURN

NOWRITE IF 10
USERS,USERID;NWK9,NAME,CLRANCE
10

· .
• USER ID IS ALREADY IN USE

NOWRITE BEEP
DISPLAY

RETURN
*

*P1:12,*EL:
*P25:4,"That user ide is already in use!",*EL:
*W, *W, *W

· ~ ~ .
WRITE THE CHAIij FILE

APPENDIX C. SAI·IPLE DATASHARE SYSTEM C-55

"II."
WRITE CFILE,SEQ;"II. REFORMAT THE LIST OF II.

"AUTHORIZED USERS"
WRITE CFILE,SEQ;"II."
WRITE CFILE,SEQ;"REFORMAT USERS/DSP;R"

* . ~
• WRITE THE INDEX LINES

*

WRITE
WRITE

WRITE
WRITE

CFILE,SEQ;"II."
CFILE,SEQ;"II. INDEX THE LIST OF ":

"AUTHORIZED USERS"
CFILE,SEQ;"II."
CFILE,SEQ;"INDEX USERS/DSP;1-9" · .. .

· WRITE ROLLOUT RETURN LINES

*

WRITE
WRITE
WRITE
WRITE

CFILE,SEQ;"II."
CFILE,SEQ;"II. RETURN TO DATASHARE"
CFILE,SEQ;"II."
CFILE,SEQ;"DSBACKTD" · .. .

• WRITE EOF'S TO THE FILES

WEOF CFILE,SEQ
* · .. .
· ROLLOUT TO THE CHAIN FILE

*

DISPLAY

TRAP
ROLLOUT
TRAPCLR
RETURN

*ES,*P25:4,"Rolling out to reorganize the":
*P25:5,"file of authorized users."
NOROLL IF CF AIL
"CHAIN ROLCHAIN"
CFAIL

· .. .
• ROLLOUT NOT POSSIBLE

NO ROLL KEYIN *ES:

STOP

*P20:4,"The chain file has been written, but":
*P20:5,"the rollout to it failed. Use the":
*P20:6,"following DOS command line to update":
*P20:7,"the list of authorized users:":
*P20:8,"#"CHAIN ROLCHAIN#"",REPLY

C-56 DOS. DATABUS COMPILER

C.3.2 Program to Generate New Menus

· MAKEMENU - MENU GENERATION PROGRAM

INCLUDE COMMON
* · .. . NAME

TITLE
REPLY
*

DIM

DIM
DIM

8

50
1

NAME OF MENU / NAME OF
PROGRAM FOR CHAIN INST.
TITLE TO BE DISPLAYED
REPLY TO QUESTIONS

· .. .
BRANCH IN IT "BRANCH INDEX OF " SEE BELOW

• WHEN WRITING THE BRANCH INSTRUCTION, THE STRING ABOVE MUST BE
• WRITTEN PRECEDING THE FIRST PROGRAM NAME ONLY. A STRING OF
• BLANKS MUST BE WRITTEN PRECEDING ALL OTHER PROGRAM NAMES. THIS
• IS HANDLED USING THE VARIABLE "BRANCH". THE VARIABLE "BRANCH"
• IS WRITTEN PRECEDING THE PROGRAM NAME FOR ALL LINES OF THE
• BRANCH INSTRUCTION. THE FIRST TIME "BRANCH" IS WRITTEN IT
• CONTAINS THE STRING GIVEN ABOVE. AFTER WRITING THE VARIABLE
• "BRANCH" A STRING OF ALL BLANKS IS MOVED INTO IT CAUSING ALL
· SUBSEQUENT WRITES USING "BRANCH" TO WRITE BLANKS PRECEDING THE
• PROGRAM NAME.

· * · .. . • THESE VARIABLE ARE USED BY THIS PROGRAM TO POSITION TO THE
· PROPER POSITION ON THE SCREEN AS WELL AS BEING USED TO WRITE
• THE *P<h>:<v> CONTROLS FOR DISPLAYING THE MENU.

INDEX

HPOS
VPOS

FORM

FORM
FORM

2

2
2

NUMBER INDICATING WHICH
PROGRAM
HORIZONTAL POSITION
VERTICAL POSTION ...

• UTILITY WORK AREAS
• C => CHARACTER STRING VARIABLE
• N => NUMERIC STRING VARIABLE
· NUMBER IN LABEL INDICATES THE LENGTH OF THE WORK AREA

· CWK9
CWK34
CWK65
NWK1

DIM
DIM
DIM
FORM

9
34
65
1

APPENDIX C. SAMPLE DATASHARE SYSTEM C-57

* . OUTFILE FILE ON COMPLETION CONTAINS THE
MENU THAT WAS BUILT

WKFILE1 FILE WORK FILE USED TO STORE
BRANCH INSTRUCTION

WKFILE2 FILE WORK FILE USED TO STORE
THE CHAIN INSTRUCTION
SECTION OF THE MENU

SEQ FORM "-1" USED FOR SEQUENTIAL 1/0
REWIND FORM "0" USED TO REWIND FILES

C-58 DOS. DATABUS COMPILER

+ ••
• MAINLINE

*

COMPARE
STOP

"8" TO SECURITY
IF LESS

REQUIRE A SECURITY CLEAR­
ANCE OF AT LEAST 8 · .. .

• GET THE NAME OF THE MENU

BAD MENU KEYIN
CMATCH
GOTO
GOTO

*

*ES,"What is the name of the menu? ",NAME
" " TO NAME
BADMENU IF EOS
BADMENU IF EQUAL · .. .

• PREPARE THE OUTPUT FILE

*

TRAP
OPEN
TRAPCLR

PREP OUT IF 10
OUTFILE,NAME
10 · .

• FILE ALREADY EXISTS

*

KEYIN

CMATCH
GOTO
STOP

"That menu already exists!":
*N,"Do you want to overwrite it? (YIN) ",REPLY
"Y",REPLY
DATAREA IF EQUAL

· .. .
• PREPARE THE OUTPUT FILE

PREPOUT PREPARE OUTFILE,NAME
* · .. .
• DATA AREA GENERATION

DATAREA KEYIN
* CLEAR

APPEND
APPEND
APPEND
RESET

"What is the menu's title? ",TITLE

CWK65
NAME TO CWK65
" .;, " TO CWK65
TITLE TO CWK65
CWK65

BUILD THE FIRST COMMENT

APPENDIX C. SAMPLE DATASHARE SYSTEM C-59

* · . · WRITE THE OPENING COMMENTS

*

WRITE
WRITE
vlRITE

WRITE
WRITE

WRITE

WRITE

WRITE
\~RITE

OUTFILE,SEQ;*+,". ",CWK65
OUTFILE,SEQ;"."
OUTFILE,SEQ;". THIS PROGRAM WAS GENERATED ":

"USING THE fI"MAKEMENUfI" PROGRAM"
OlJTFILE,SEQ;"."
OUTFILE,SEQ;". COMPILING THIS PROGRAM ":
"REQUIRES THAT THE FILES: fI"COMMON/TXTfI","
OUTFILE,SEQ;". fI"LOGDATA/TXT#" AND ":
"fI"LOGIO/TXTfI" EXIST ON ANY DRIVE ":
"WHICH IS ON-"
OUTFILE,SEQ;". LINE. THESE INCLUSION FILES ".
"CONTAIN THE INFORMATION COMMON TO"
OUTFILE,SEQ;". ALL OF THE SYSTEM PROGRAMS."
OUTFILE,SEQ;"." · .. .

· WRITE THE USER'S DATA AREA

WRITE OUTFILE,SEQj" INCLUDE COMMON/TXT"
WRITE OUTFILE,SEQ;"INDEX FORM 2":

" " . .
"USER SELECTION VARIABLE"

WRITE OUTFILE,SEQ;"TIME INIT":
" #"hh:mm:ssfl"":
" " .
"hours:minutes:seconds"

WRITE OUTFILE,SEQ;" INCLUDE LOGDATA/TXT"
* · .. .
· START WRITING THE MAINLINE

WRITE

WRITE
WRITE

OUTFILE, SEQ; It + ..•••••.••...•.•..•••••• " :
" " :
" "

OUTFILE,SEQj". MAINLINE"
OUTFILE,SEQ;"."

C-60 DOS. DATABUS COMPILER

* · .. . • SET UP SECURITY CHECK

KEYIN

WRITE

"What security clearance should be required":
" to execute this menu? (1-9) ",NWK1
OUTFILE, SEQ; n* ,,:

" " . · .. .
" " ·

WRITE OUTFILE,SEQ;". THIS MENU REQUIRES A ":
"SECURITY CLEARANCE OF AT ":
"LEAST ",NWK1

WRITE OUTFILE,SEQ;"."
WRITE OUTFILE,SEQ;" COMPARE":

" 1f."",NWK1,"tF" TO SECURITY"
WRITE OUTFILE,SEQ;" STOP IF LESS"
WRITE OUTFILE,SEQ;" INCLUDE LOGIO/TXT"

*
• WRITE THE INITIAL PART OF THE MENU DISPLAY INSTRUCTION

*

*

WRITE

WRITE
WRITE
WRITE

CLEAR
APPEND
APPEND
RESET
\mITt!:
WRITE

OUTFILE, SEQ; "* ••••.••••••••••••••••••. " :
" " . · .. .
" " ·

OUTFILE,SEQ;". DISPLAY THE MENU"
OUTFILE,SEQ;"."
OUTFILE,SEQ;" DISPLAY *ES:"

CWK65
TITLE TO CWK65
"1f":" TO CWK65
CWK65
OUTFILE,SEQ;"
OUTFILE,SEQ;"

"*P51:1,#"Today

#"",CWK65
" . .

is #",TODAY:" · .. .
• PREPARE THE WORK FILES

*

TRAP
PREPARE
PREPARE
GOTO

NOWORK IF 10
WKFILE1,"WKFILE1"
WKFILE2,"WKFILE2"
GETMENU

USE FOR "BRANCH" INSTRUCT.
USE FOR "CHAIN" SECTION

· .. .
• WORK FILES COULD NOT BE CREATED

NOWORK DISPLAY
STOP

"Work file could not be created!"

APPENDIX C. SAMPLE DATASHARE SYSTEM C-61

* · .
• INITIALIZE FOR GETTING THE MENU

· GETMENU DISPLAY
MOVE
MOVE
MOVE
GOTO

ES,+,TITLE,*P51:1,"Today is ",TODAY
"1" TO HPOS
"3" TO VPOS
"1" TO INDEX
GET ITEM

* · .. . • THE LOOP FOR GETTING THE MENU BEGINS HERE.
• THE FOLLOWING ORGANIZATION IS USED FOR THE LOOP SO THAT THE
• LAST LINE OF THE "BRANCH" INSTRUCTION WILL NOT BE WRITTEN UNTIL
• AFTER LEAVING THIS LOOP:

• 1. WRITE LINE OF "BRANCH" INST.
• 2. GET NEXT ITEM FROM KEYBOARD <-- THE LOOP IS ENTERED HERE
• 3. WRITE "LINE" OF CHAIN SECTION
• 4. IF NOT LAST ITEM, GO TO 1.
• 5. WRITE LAST LINE OF "BRANCH"
· * · .. .
• 1. WRITE A LINE OF THE BRANCH INSTRUCTION

· WRITE THE BRANCH INSTRUCTION TO A WORK FILE TO BE COPIED TO THE
• OUTPUT FILE AT A LATER TIME

WRITEBR

· *

CLEAR
APPEND
APPEND

APPEND
APPEND
APPEND

CWK65
" " TO CWK65
BRANCH TO CWK65

NAME TO CWK65
" : "TO CWK65
CWK34 TO CWK65

NULL LABEL FIELD.
EXCEPT FOR 1ST TIME
NULL OPERATION FIELD.
PROGRAM NAME NEXT
ATTACH CONTINUATION ":"
USE PROGRAM DESCRIPTION
AS COMMENT FIELD · .

• WRITE THE LINE OF THE BRANCH INSTRUCTION

• MAKE SURE THAT THE NEXT LINE OF THE BRANCH INSTRUCTION WILL
• HAVE A NULL OPERATION FIELD

*

RESET
WRITE
MOVE

CWK65
WKFILE1,SEQj*+,CWK65
" " TO BRANCH · .

• 2. GET AN ITEM FROM THE KEYBOARD

C-62 DOS. DATABUS COMPILER

* · . • GET THE PROGRAM NAME

GETITEM KEYIN *Pl:12,*EL,"Enter the name of a program to ":
"which this menu will CHAIN: ",NAME

*

CMATCH
GOTO
GOTO

" " TO NAME
GETITEM IF EOS
GETITEM IF EQUAL · .

· GET THE PROGRAM DESCRIPTION

· NOTE THAT; THE VERTICAL AND HORIZONTAL POSITIONS USED TO GET
· THE DESCRIPTION ARE THE SAME AS THE POSITIONS PUT INTO THE
· MENU PROGRAM WHILE DISPLAYING THE MENU

*

DISPLAY

DISPLAY
KEYIN

*PHPOS:VPOS,"C",INDEX,") ": PROMPT
" Descri be_thi s_program. ___ "
*PHPOS:VPOS,"C",INDEX,") "; RE-POSITION
*IT,CWK34,*IN,*EL DATA ENTRY · .

· WRITE THE DISPLAY POSITIONING FOR THIS ITEM

*

WRITE OUTFILE,SEQ;" ".
"*P",*ZF,HPOS,":",*ZF,VPOS:
",I"C",INDEX,") I":" · .

• CAUSE DISPLAY OF THE PROGRAM DESCRIPTION

*

CLEAR
APPEND
APPEND
RESET
WRITE

CWK65
CWK34 TO CWK65
"If":" TO CWK65
CWK65
OUTFILE,SEQj" If '"' , C W K 6 5 · .

· 3. WRITE A "LINE" OF THE CHAIN INSTRUCTIONS

• WHERE: "LINE" INCLUDES ALL OF THE INSTRUCTIONS NEEDED BEFORE
AND AFTER THE ACTUAL CHAIN INSTRUCTION

• THESE INSTRUCTIONS ARE WRITTEN TO A WORK FILE TO BE COPIED TO
• THE OUTPUT FILE AT A LATER TIME

APPENDIX C. SAMPLE DATASHARE SYSTEM C-63

* · . • PUT A DOUBLE QOOTE AFTER THE PROGRAM NAME AND LEAVE IN CWK9

*

CLEAR
APPEND
APPEND
RESET

CWK9
NAME TO CWK9
"11"" TO C\rJK9
CWK9 · .. .

· WRITE COMMENTS TO PRECEDE INSTRUCTIONS THAT CAUSE CHAIN TO THE
· PROGRAM

*

WRITE

WRITE
WRITE

WKFILE2,SEQ;*+, "* ,,:
" ":
" "

WKFILE2,SEQ;". ",CWK34
WKFILE2,SEQ;"." · .

• WRITE THE INSTRUCTIONS

*

WRITE

WRITE

WRITE
WRITE
WRITE

WRITE

WKFILE2,SEQ;NAME," MOVE #"PROGRAM#" ":
"TO LOGTYPE"

WKFILE2,SEQ;" MOVE #"",NAME:
"#" TO LOGINFO"

WKFILE2,SEQ;" CALL LOGWRITE"
WKFILE2,SEQ;" CHAIN #"",CWK9
WKFILE2,SEQ;" WRITAB LOGFILE,":

"LOGRN;*12,#"NO PROGRAM#""
WKFILE2,SEQ;" GOTO GETINDEX" · .. .

· 4. IF THE LAST ITEM, GO TO 5.
IF NOT THE LAST ITEM, GOT TO 1.

* BADANS

COMPARE
GOTO

KEYIN

CMATCH
GOTO
CMATCH
GOTO

"16" TO INDEX NO MORE THAN 16 ITEMS
ENDLOOP IF NOT LESS

*P1:12,*EL,"Are there any more programs to ":
"be included? ",*+,REPLY
"N" TO REPLY
ENDLOOP IF EQUAL REQUIRE YES OR NO ANSWER
"Y" TO REPLY
BADANS IF NOT EQUAL

C-64 DOS. DATABUS COMPILER

* · .. . · BUMP THE INDEX, VERTICAL POSITION AND THE HORIZONTAL POSITION
• BEFORE GOING TO 1.

*

ADD
ADD
COMPARE
GOTO
MOVE
MOllE
GOTO

"1" TO INDEX
"1" TO VPOS
"9" TO INDEX
WRITEBR IF NOT EQUAL
"3" TO VPOS
"41" TO HPOS
WRITEBR

• ••• III!! •

· 5. WRITE THE LAST LINE OF THE BRANCH INSTRUCTION
• (LAST LINE OF BRANCH INSTRUCTION CANNOT HAVE A COLON FOLLOWING)

ENDLOOP CLEAR
APPEND
APPEND
APPEND
APPEND
APPEND
RESET
WRITE

*

CWK65
" " TO CWK65
BRANCH TO CWK65
NAME TO CWK65
" "TO CWK65
CWK34 TO CWK65
CWK65
WKFILE1,SEQ;CWK65 · .. .

• WRITE END OF FILES TO THE WORK FILES

WEOF WKFILE1,SEQ
WE OF WKFILE2,SEQ

* · · WRITE THE LAST LINE OF THE MENU DISPLAY INSTRUCTION

WRITE OUTFILE,SEQ;" *ELI!

* · .. .
• WRITE THE ROUTINE TO PROMPT AND KEYIN THE INDEX

DISPLAY
WRITE

WRITE
WRITE

*ES,"Writing KEYIN routine."
OUTFILE, SEQ; ,,* n:

" II. .. .
" " OUTFILE,SEQ;". GET THE PROGRAM'S INDEX"

OUTFILE,SEQ;"."

APPENDIX C. SAMPLE DATASHARE SYSTEM C-65

* · .
· WRITE THE INSTRUCTIONS THAT DISPLAY THE PROMPTING MESSAGE

*
·

*

WRITE

WRITE

WRITE

OUTFILE,SEQ;"GETINDEX KEYIN
"*EL,I"Selection

OUTFILE,SEQ;"
"1"Enter (99) to
"menu.#":"

*P1:12,":
by number4F":"

*P41:12,":
leave this ":

OUTFILE,SEQ;" *P25:12,":
"11"_ff", *P25: 12, INDEX" · .

WRITE THE INSTRUCTIONS THAT DO THE RANGE CHECK ON THE INDEX

WRITE OUTFILE,SEQ;" COMPARE #"1/1"":
" TO INDEX"

WRITE OUTFILE,SEQ;" GOTO GET INDEX " :
"IF LESS"

WRITE OUTFILE,SEQ;" COMPARE #"99#" " :
"TO INDEX"

WRITE OUTFILE,SEQ;" STOP IF EQUAL"
ADD "1" TO INDEX
WRITE OUTFILE,SEQ;" COMPARE 11"":

*ZF,INDEX,"#" TO INDEX"
WRITE OUTFILE,SEQ;" GOTO GET INDEX " :

"IF NOT LESS" · .
• COpy THE BRANCH INSTRUCTION FROM THE WORK FILE

*

DISPLAY
WRITE

WRITE

WRITE
WRITE

WRITE

READ
GOTO

*ES,"Writing the BRANCH instruction."
OUTFILE, SEQ; "* .•.••••..•••.•.....•..•• " :

" " .. .
" " OUTFILE,SEQ;". BRANCH TO THE ROUTINE ":
"INDICATED BY THE INDEX"

OUTFILE,SEQ;"."
OUTFILE,SEQ;" TRAP BADCHAIN ":

"IF CFAIL"
OUTFILE,SEQ;" CLOCK TIME ":

"TO TIME"
WKFILE1 ,REWIND;;
BEGINBRL · .. .

· GET THE ACTUAL BRANCH STATEMENT FROM WORK FILE 1

BRLOOP WRITE
BEGINBRL READ

GOTO

OUTFILE,SEQ;CWK65
WKFILE1,SEQ;CWK65
BRLOOP IF NOT OVER

C-66 DOS. DATABUS COMPILER

*
WRITE

*
WRITE

WRITE
WRITE
WRITE

*

OUTFILE,SEQ;" GOTO GET INDEX"

OUTFILE, SEQ; n* ":
" " .. .
" " OUTFILE,SEQ;". PROGRAM DOES NOT EXIST."

OUTFILE,SEQ;"."
OUTFILE,SEQ;"BADCHAIN RETURN" · .. .

· COPY THE CHAIN INSTRUCTION SECTION FROM THE WORK FILE

*

DISPLAY
WRITE

WRITE
READ
GOTO

*ES,"Writing the CHAIN instructions."
OUTFILE, SEQ; It * " :

" ":
" "

OUTFILE,SEQ;". CHAIN INSTRUCTIONS"
WKFILE2,REWIND;;
BEGINCHL · .

• GET THE ACTUAL CHAIN INSTRUCTIONS FROM WORK FILE 2

CHLOOP WRITE
BEGINCHL READ

GOTO
*

OUTFILE,SEQ;CWK65
WKFILE2,SEQ;CWK65
CHLOOP IF NOT OVER · .

• WRITE AN END OF FILE MARK TO THE OUTPUT FILE
• KILL OFF THE WORK FILES

WEOF OUTFILE,SEQ
*

PREPARE WKFILE1,"WKFILE1"
CLOSE WKFILEl

*
PREPARE WKFILE2,"WKFILE2"
CLOSE WKFILE2

APPENDIX C. SAMPLE DATASHARE SYSTEM C-67

APPENDIX D. COMMON FILE ACCESS CONSIDERATIONS

Since DATASHARE is capable of executing more than one program
concurrently, more than one program at a time can try to access a
single file. There is no problem if these accesses are not
modifying the contents of the file or if they are dealing with
different records in the file. If this is the case, one program
will have no idea that another is accessing the same file.
However, if a certain record in the file is to be modified by more
than one program at a time, a lockout mechanism is needed to allow
one program to finish its modification before the other can start.
The Prevent Interruptions instruction is provided for this
purpose. The PI instruction can solve many common file update
conflicts directly as shown in the example in Section 6.12.
However, there are cases where several files may have to be read
and then a decision made by the operator before the modification
can take place. In this case, the part of the record that is
going to be modified can be read first and saved. Then the other
reads and operator decisions are made and a new value made ready
for the modification write. However, before the modification is
actually made, interruptions are prevented while the value
currently in the record is read again and compared to the value
read the first time. If the value has not changed, then the
modification is made before interrupts are allowed again. If the
value has changed, a new modification value is computed based upon
the new value in the location to be updated (this may require
another operator decision) and the cycle is repeated. It is
assumed that the conflict rate over a given record in a file will
be low and the number of times an operator will be asked to repeat
a decision will be small. See the example below for an
illustration.

Another potential problem regarding common files that are
being accessed by more than one port simult~neously exists. This
problem is encountered when more than one port is updating a
common file. For example, suppose that port A was adding records
to the same file as port B and that both ports had new file space
allocated. If port A perfomed a CLOSE instruction on the common
file, space deallocation would occur on the file and some of the
information that port B had written may be lost. A solution to
this space deallocation problem is to avoid the use of the CLOSE
instruction on the common files.

• FILE ACCESS LOCKOUT EXAMPLE

APPENDIX D. COMMON FILE ACCESS CONSIDERATIONS D-1

DATAFILE
QTYONH
QTYONHS
QTYWD
KEY

THYAGN

IFILE
FORM
FORM
FORM
DIM

"0000"
"0000'"
"0000"
10

OPEN DATAFILE,"DATAFILE"

READ
MOVE
DISPLAY
KEYIN
SUB
GOTO
GOTO
PI
READ
COMPARE
GOTO
SUB
UPDATE

DATAFILE,KEY;*20,QTYONH;
QTYONH TO QTYONHS
"QUANTITY ON HAND: ",QTYONH
"QUANTITY TO WITHDRAW: ",QTYWD
QTYWD FROM QTHONH
ERROR IF LESS
ERROR IF OVER
5
DATAFILE,NULL;*20,QTYONH;
QTYONH TO QTYONHS
TRYAGN IF NOT EQUAL
QTYWD FROM QTYONH
DATAFILE;*20,QTYONH

D-2 DOS. DATABUS COMPILER

APPENDIX E. COMPILER ERROR CODES

When· an E code is given by the compiler at the left of a line
of code containing an error, the very next line will contain an
asterisk followed by an E code number and another asterisk under
the error line at the position of the scanning pointer when the
error was detected. The E code number refers to the number in the
left column of the following table and the corresponding error
explination in the right column.

00001 The first operand of a CMATCH or CMOVE instruction was not
an octal number, a quoted character, or a string variable.

00002 The second operand of a CMATCH instruction was not an octal
number, a quoted character, or a string variable.

00003 The second operand of a MATCH or APPEND instruction was not
a string variable.

00004 The first operand of a MATCH or APPEND instruction was not
a string variable, numeric variable or a literal.

00005 The first operand of a RESET or ACALL instruction was not a
string variable.

00006 The second operand of a RESET instruction was followed by a
character that was not a space, implying that there were
other operands following the second operand. RESET may
have only one or two operands.

00007 The first operand of a BUMP instruction was not a string
variable.

00010 The second operand of a BUMP instruction was not terminated
by a space, or had an absolute value of greater than 127.

00011 The operand of a CHAIN or ROLLOUT instruction was not a
string variable or a literal.

00012 The first operand of a STORE instruction was not a string
variable or numeric variable or literal. The first operand
of a LOAD instruction was not a string variable or numeric
variable.

APPENDIX E. COMPILER ERROR CODES E-1

00013 The second operand of a STORE or LOAD instruction was not a
numeric variable.

00014 The second operand of a STORE or LOAD instruction was not
followed by either a space or a comma.

00015 One of the third thru Nth operands of a STORE or LOAD
instruction was not the same data type as the first
operand. If the first operand is a string or numeric
variable, then all operands after and including the third
operand must be a string or numeric variable, respectively.

00016 The second operand of a MOVE instruction was not a string
variable or a numeric variable.

00020 The first operand of a MOVE instruction was not a string
variable or a numeric variable or a literal.

00021 The second operand of a COMPARE, ADD, SUBTRACT, MULTIPLY,
or DIVIDE instruction was not a numeric variable.

00022 The second operand of a CMATCH, CMOVE, MATCH, APPEND,
CHAIN, ROLLOUT, COMPARE, ADD, SUBTRACT, MULTIPLY, or DIVIDE
instruction was not followed by a space (indicating no more
operands follow).

00023 The first operand of a COMPARE, ADD, SUBTRACT, MULTIPLY, or
DIVIDE instruction was not a numeric variable or a literal.

00024 The first operand of an instruction which may be followed
by a comma or a preposition was not immediately followed by
a comma or a space. If a comma follows the operand a
preposition is not looked for. If a space does follow the
operand then a preposition must be there.

00025 The first operand of a GOTO, CALL, dr TRAP instruction was
not followed by a space.

00026 The first operand of a TRAP instruction was not followed by
" IF ".

00027 The conditional operand ([NOT] EOS, EQUAL, ZERO, etc.) of a
GOTO, CALL, or TRAP instruction was not followed by a
space.

00030 The conditional operand of a GOTO or CALL instruction was
not [NOT] EOS, EQUAL, ZERO, LESS, or OVER; or the
conditional operand of a TRAP instruction was not PARITY,

E-2 DOS. DATABUS COMPILER

RANGE, FORMAT, CFAIL, or 10.

00031 The first operand of the TRAPCLR instruction was not
followed by a space.

00032 The first operand of the TRAPCLR instruction was not
PARITY, RANGE, FORMAT, CFAIL, or 10.

00033 An operand in a CONSOLE, KEYIN, or DISPLAY instruction was
not a string variable or a numeric variable. It was an
EQU, FILE, RFILE, IFILE, or RIFILE variable.

00034 A control code (letter or letters following an asterisk) in
a CONSOLE, KEYIN, or DISPLAY instruction was not *C, *L,
*N, *T, *R, *P, *EL, *EF, *ES, *W, *EON, *EOFF, *JL, *JR,
*ZF, *DE, *IT, OR *IN.

00035 A variable <N> in the *P<N>:<N> control code of a CONSOLE,
KEYIN, or DISPLAY instruction was not a number (did not
have a first character of 0-9) nor a numeric variable.

00036 A variable <N> in the *P<N>:<N> control code of a CONSOLE,
KEYIN, or DISPLAY instruction was a numeric literal with a
value for the first (horizontal position) <N> that was not
1 =< <N> =< 80, or with a value for the second (vertical
position) <N> that was not 1 =< <N> =< 24.

00037 A literal in a CONSOLE, KEYIN, or DISPLAY instruction was
not followed by a comma, space, semicolon, or full colon.

00040 The last character in the operand string of a CONSOLE,
KEYIN, DISPLAY, PRINT, RPRINT, READ, WRITE, or WRITAB
instruction was not a space, colon, or semicolon.

00041 The end-of-line was encountered before an operand string
terminator was encountered for a CONSOLE, KEYIN, DISPLAY,
PRINT, RPRINT, READ, WRITE, WRITAB, WEOF, READKS, UPDATE,
OPEN, PREPARE, INSERT, or DELETE instruction, or

The character following the first <N> in the *P<N>:<N>
control code of a CONSOLE, KEYIN, or DISPLAY instruction
was not a colon, or

A quoted string or octal number was specified in the
operand string of a READ instruction.

00042 An EQUATE, FILE, RFILE, IFILE, or RIFILE name was specified
in the operand list of a PRINT or RPRINT instruction.

APPENDIX E. COMPILER ERROR CODES E-3

00043 A character following an asterisk indicating a control code
in a PRINT or RPRINT instruction was not +, - L, F, C, N,
or a number 0-9.

00044 The first operand of a READ, WRITE, WRITAB, or WEOF
instruction was not a FILE, RFILE, IFILE, or RIFILE name.

00045 The character following the first operand of a READ, WRITE,
WRITAB, or WEOF instruction was not a comma.

00046 The second operand of a READ, WRITE, WRITAB, or WEOF
instruction having an IFILE or RIFILE name as the first
operand was not a string variable name nor a numeric
variable name.

00047 The second operand of a READ, WRITE, WRITAB, or WEOF
instruction having a FILE or RFILE name as the first
operand was not a numeric variable.

00050 The character following the first operand of a READKS
instruction or the second operand of a READ instruction was
not a semicolon.

00051 The character following the first opernad of an UPDATE
instruction or the second operand of a WRITE instruction
was not a space or semicolon.

00052 An operand in the operand string of a READ or READKS
instruction was not a tab (*<number> or *<nvar> or
*<EQUname» nor numeric variable nor string variable, or

An oprand in the operand string of a WRITE or UPDATE
instruction was not a space compression control (*+ or *-)
or a quoted string or numeric variable or string variable,
or

An operand in the operand string of a WRITAB or UPDATE
instruction was not a tab (*<number> or *<EQUname» or
space compression control (*+ or *-) or quoted string or
numeric variable or string varible.

00053 A tab operand (*<number> or *<EQOname> or *<nvar» was used
in a READ instruction that had an IFILE or RIFILE name as
operand one and an NVAR name as operand two.

00054 The character following the * control-indicator character
in a WRITE instruction was not a + or -. The compiler will
recognize only the *+ or *- control for the WRITE

E-4 DOS. DATABUS COMPILER

instruction, use the WRITAB instruction to use tab control
(*<number> or *<nvar> or *<EQU'd label» for output to a
disk file. For an Index-Sequential file, to use tab
control to update a record in the file, use the UPDATE
instruction.

00055 The operand following an * control-indicator character was
a quoted item. Numeric literals may be used but they may
not be enclosed in double-quote "symbols. Numeric
literals, numeric variable names, or equated names may be
used to specify tab values in KEYIN, DISPLAY, CONSOLE,
READ, WRITAB, READKS, or UPDATE instructions.

00056 The operand following an * control-indicator character was
not an unquoted numeric literal, a numeric variable name,
or an equated name.

00057 The first operand of a READKS or UPDATE instruction was not
an IFILE or RIFILE name.

00060 A tab in a READ, WRITAB, READKS, or UPDATE instruction was
greater than 249.

00061 A tab in a READ, WRITAB, READKS, or UPDATE instruction was
zero. Note that if the value of an EQU'd tab is
incorrectly specified the compiler generates a value of
zero for the tab, and each use of that tab will generate
this error.

00062 A character following an operand in the operand string of a
READ, WRITE, WRITAB, READKS, or UPDATE instruction was not
a space, comma, semicolon, or colon. If the instruction is
a WRITAB or UPDATE instruction a semicolon is assumed.

00063 The character following the second operand of a WEOF
instruction was not a space.

00064 The character following the second operand of a WRITAB
instruction was not a semicolon.

00065 The first operand of an OPEN instruction was not a FILE,
RFILE, IFILE or RIFILE name or the first operand of a
PREPARE instruction was not a FILE or RFILE name.

00066 The first operand of a PREPARE instruction was an IFILE or
RIFILE name.

There is no provision within the DATASHARE 3 INTERPRETER

APPENDIX E. COMPILER ERROR CODES E-5

for the creation of an indexed-sequential file. The file
must first exist and be indexed by means of the INDEX
program before the file may be opened by the OPEN
instruction and accessed, increased, or decreased by means
of the READ, WRITE, WRITAB, WEOF, READKS, UPDATE, and
DELETE instructions.

00067 The character following the first operand of an OPEN or
PREPARE instruction was not a comma.

00070 The character following the second operand of an OPEN or
PREPARE instruction was not a space.

00071 The second operand of an OPEN or PREPARE instruction was
not a string variable name or a literal.

00072 The end-of-line was encountered before a first operand was
encountered in a CLOSE instruction.

00073 The first operand of a CLOSE instruction was not a FILE,
RFILE, IFILE or RIFILE name.

00074 The character following the operand of a CLOSE instruction
was not a space.

00075 A character following a list operand in a STORE, LOAD, or
BRANCH instruction was not a comma, colon, or space.

00076 The first operand of a CLOCK instruction was not TIME, DAY,
or YEAR.

00077 A comma or the preposition TO was not used between the
first and second operands of the CLOCK instruction.

00100 The second operand of a CLOCK instruction was not a string
variable.

00101 The character following the second operand of a CLOCK
instruction was not a space.

00102 The first operand of an INSERT or DELETE instruction was
not an IFILE or RIFILE name.

00103 The character following the first operand of an INSERT or
DELETE instruction was not a comma.

00104 The second operand of an INSERT or DELETE instruction was
not a string variable name.

E-6 DOS. DATABUS COMPILER

00105 The character following the second operand of an INSERT or
DELETE instruction was not a space.

00106 An alphabetic character string where a preposition should
have been was not recognized as a preposition: BY, TO, OF,
FROM, or INTO, or

A numeric literal was used but was not enclosed in double
quote " symbols.

00107 An EQUATE directive was given after an executable
instruction was specified.

00110 An EQUATE directive was given but no label was specified.

00111 The first character of the operand of an EQUATE directive
was not 1 thru 9. A first character of 0 implies an octal
number which is not allowed in the EQUATE directive.

00113 The value specified for an EQUATE directive was not from 1
thru 249.

00114 The file specified in an INCLUDE directive was not found on
disk.

00115 The character after the first operand of a DIM instruction
was not a space.

00116 The operand value of a DIM instruction was greater than
127.

00117 For an INIT instruction or an instruction using a string
literal:

No operand was found, or

A character after a quoted string was not comma or space,
or

The end-of-line was encountered before the ending quote of
a quoted operand was encountered, or

The end-of-line was encountered immediately after a forcing
character # was given, or

A character following a comma following a quoted string or
an octal number was not a double-qoute symbol or a zero, or

APPENDIX E. COMPILER ERROR CODES E-7

A quoted string of greater than 127 characters was
specified.

00120 For an IN IT instruction or an instruction using a string
literal:

The character following the ending double-quote symbol of a
quoted string was not a comma or a space.

00121 For an instruction using a string literal: the literal was
over 40 characters long.

00122 The end-of-line was encountered before the first operand
(data item length specification) was encountered for the
DIM instruction.

00123 The end-of-line was encountered before the first operand
(numeric data format specification) was encountered, or the
numeric data was specified to be more than 22 characters
long, for the FORM instruction.

00124 A closing double-quote symbol was not found for the operand
(numeric data format specification) of a FORM instruction,
or

A numeric literal was used but was not enclosed in double
quote " symbols.

00125 For the operand (numeric data format specification) of a
FORM instruction or for a numeric literal operand:

The following applies for the FORM instruction if a
integer-decimal length was specified:

The character after the first numeric string (specifying
the integer part length) was not a ,space or a decimal
point.

The following applies if a quoted string was specified:

There were more than 127 characters in the number
specification, or

There were no digits specified, or

There was a decimal point specified but no digits followed
it, or

E-8 DOS. DATABUS COMPILER

The numeric literal was not enclosed in double quote "
symbols.

00126 For the DIM, INIT, or FORM instructions: the end-of-line
was encountered before an operand was encountered.

00127 An operand was not a quoted item, a number, or a label.

00130 The second character after the opening double-quote symbol
in the operand of a CMOVE or CMATCH instruction was not a
double-quote symbol. The forcing character does not apply
in these two instructions because it is not necessary.

00131 For an instruction using a literal: the character after the
ending double-quote symbol was not a space or comma.

00132 An octal number was specified but the number was not in the
range 0 thru 037 inclusive.

00137 Internal compiler error.

00141 The operand of a PI instruction was not an unquoted numeric
literal with a value of 1 through 20.

00143 Restricted error.

00144 Restricted error.

00145 Restricted error.

00146 CHECK10, CHECK11, REPLACE operand 1 not a svar.

00147 CK10, CK11, REP operand 2 not a svar or slit.

00150 SEARCH operand 1 not svar or nvar.

00151 SEARCH operand 2 not same type as operand 1.

00152 List length not nvar in SEARCH.

00153 Index not numeric in SEARCH.

00154 WRITE control was not *MP.

00155 WRITE control was not *ZF.

00156 Restricted error.

APPENDIX E. COMPILER ERROR CODES E-9

00157 COMLST in common area not allowed.

00160 Length specified in COMLST declaration was greater than 64
less than 1.

00161 The variable in COMCLR or COMTST instruction not followed
by blank.

00162 No operands were specified in COMCLR, COMTST, SEND, or RECV
or ACALL instruction.

00163 The first operand in COMCLR, COMTST, SEND, or RECV was not
a COMLST variable.

00164 Missing ',' after COMLST variable or
variable in SEND or RECV instruction.

, . , , after routing

00165 Missing routing variable in SEND or RECV instruction.

00166 Routing variable is not a string variable.

00167 Premature end of line.

00170 Invalid expression type in list used with SEND, RECV or
ACALL.

00171 Unknown separator or character.

E-10 DOS. DATABUS COMPILER

APPENDIX F. INDEX FILE SIZE COMPUTATION

The index file is a n-ary tree where n is determined by the
length of the key and where there are enough levels to make the
top node in the tree always fit within one disk sector (contain at
most n branches). One can conservatively estimate the number of
sectors that will be used in the index file by the following
method. The actual number used may be less because trailing
spaces in keys are discarded and more than the minimum number of
keys may fit in a sector.

For the following discussion the following definitions will be
used:

NR = Number of logical records to be indexed.

KL = Key length (number of characters per key).

NS(i)= Number of disk sectors for the i th level of the
tree.

NKSL = Number of keys per disk sector for the lowest
level of the tree.

NKS = Number of keys per disk sector for other than the
lowest level of the tree.

The number of sectors, NS(1) required for the lowest level of the
tree is:

NKSL = 250/(KL+7)

N S (1) = N R INK SL

(discard remainder)

(round up)

If NS(1»1, then perform the following iterative calculation
(i=2,3, etc), otherwise go to (2).

(1)

NKS = 250/(KL+3)

NS(i)= NS(i-1)/NKS

(discard remainder)

(round up)

If NS(i»1, then i=i+1 and go to (1) and repeat the process.

APPENDIX F. INDEX FILE SIZE COMPUTATION F-1

If NS(i)=1, then the iterative computation is complete and the
total number of sectors (TNS) required for the complete index
structure is:

(2) TNS = NS(1)+NS(2)+ •.. +NS(i)

Note that this computation yields a maximum number of disk sectors
required for the complete index structure and that the actual
number used may be less.

Example:

NR = 10000 (10000 logical records to be indexed)

KL = 10 (key length is 10 characters)

Now the following computations are performed:

NKSL = 250/(KL+7) = 250/(10+7) = 14.71 = 14

NS(l)= NR/NKSL = 10000/14 = 714.29 = 715

The lowest level of the index tree requires 715 sectors.
Since NS(1»1, then i=i+1 = 2. Proceeding with the computation:

NKS = 250/(KL+3) = 250/(10+3) = 250/13 = 19.23 = 19

NS(2)= NS(i-1)/NKS = NS(1)/NKS = 715/19 = 37.63 = 38

The next highest level of the index tree requlres 38 sectors.
Since NS(2»1, then i=i+1 = 3. Proceeding with the computation:

NS(3)= NS(i-1)/NKS = NS(2)/NKS = 38/19 = 2.00 = 2

The next highest level of the index tree requires 2 sectors.
Since NS(3»1, then i=i+1=4. Proceeding with the computation:

NS(4)= NS(i-1)/NKS = NS(3)/NKS = 2/19 = 0.11 = 1

The next highest level of the index tree requires 1 sector.
Since NS(i)=l has been reached, the computation is complete and we
can now sum the total number of sectors (TNS) required.

TNS = NS(1)+NS(2)+NS(3)+NS(4)

TNS = 715+38+2+1 = 756

F-2 DOS. DATABUS COMPILER

Therefore 756 sectors are required for the entire index tree.

APPENDIX F. INDEX FILE SIZE COMPUTATION F-3

APPENDIX G. SERIAL BELT PRINTER CONSIDERATIONS

Since the serial belt printer is connected to a 3600
terminal, there is no way that printer status information can be
returned to the interpreter. This means that all timing
considerations required by the printer must be handled by sending
enough "pad" characters to satisfy the worst case print time. (A
pad character is any character that will not be printed by the
printer. For example, an octal 032 will work quite well as a pad
character.)

Calculating the number of pad characters can sometimes be
confusing. The following discussion will hopefully eliminate some
of the confusion.

SIMPLE BUT SLOWER SOLUTION

The simplest way to handle the timing considerations is to
use a *W list control in every DISPLAY statement that will cause
printing on the belt printer. The one second pause will provide
more than enough time for the printer to print a line.

MORE DIFICULT SOLUTION

The belt printer requires that a certain minimum of
characters be sent per line. If less than this minimum is sent,
the printer can become very confused and erratic. This minimum
number of characters that must be sent is dependent on both the
baud rate of the 3600 to which it is attached and also, the length
of the line being sent.

APPENDIX G. SERIAL BELT PRINTER CONSIDERATIONS G-1

The following table shows the smallest line that can be sent to
the printer.

Line Length
I greater than

Baud Rate less than 40 I or equal to 40

110 (11 bits/char) 3 N/A
110 (10 bits/char) 3 N/A
150 4 N/A
220 (11 bits/char) 5 N/A
220 (10 bits/char) 6 N/A
300 7 N/A
600 14 N/A
1200 28 56
2400 56 111
4800 111 221
9600 221 442

N/A indicates that timing does not need to be considered when
using the indicated baud rate and line length.

Example: Let n represent the number of characters in the line to
be printed. If the terminal to which the printer is
connected is set to 1200 baud, then:

a) If n < 28, enough pads must be added to make n = 28.

b) If 28 < n < 40, no pads need to be added. The line
may be printed "as is".

c) If 40 < n < 56, enough pads must be added to make n
= 56.

d) If 56 < n, no pads need to be added.

To turn the printer on, so that anything displayed at the
terminal will get printed, the 032 control character should be
displayed. To turn the printer off, so that the terminal can be
used without the printer; the 024 control character should be
displayed.

TURNING THE PRINTER OFF

Lines are not printed by the serial belt printer until an 012

G-2 DOS. DATABOS COMPILER

or 015 control is received by the printer. If the printer were
never to receive an 012 or 015, no lines would get printed. The
Databus DISPLAY statement normally furnishes these controls at the
end of the line.

Consider the following DISPLAY statement:

DISPLAY 032,*W,"LINE TO BE PRINTED",024

This line will not be printed. The following sequence is sent to
the terminal by this display statement. First, the printer is
turned on. Second, the wait control is used to handle the timing
considerations. Third, the line is displayed on the terminal and
sent to the printer. Fourth, the printer is disconnected from the
terminal. Fifth, a carriage return (015) and line feed (012)
character are sent to the terminal. Note that neither the 015 nor
the 012 got sent to the printer because it was turned off before
the controls were sent.

The simplest way to solve this problem is to turn the printer
on and off in different DISPLAY statements from the one used to
display data at the terminal. Each DISPLAY statement to be sent
to the printer does not need to turn the printer on and then turn
it off.

Example:

FILE FILE
SEQ FORM "-1"
LINE DIM 80

OPEN FILE,"DATA"
DISPLAY 032
GOTO BEGIN

LOOP DISPLAY *W,*R,*P1:12,*+,LINE
BEGIN READ FILE,SEQjLINE

GOTO LOOP IF NOT OVER

DISPLAY 024
STOP

APPENDIX G. SERIAL BELT PRINTER CONSIDERATIONS G-3
\

