
1-o J..' ,) '.'
i (J (:!I'i\''''

no. SR -uDJI!
If/h'" a..

RESEARCI-I J INC.

CRAY X-MP ANDCRAY-1®
COMPUTER SYSTEMS

LIBRARY
REFERENCE MANUAL

SR-0014

Copyright© 1976. 1977, 1978. 1979, 1980, 1981. 1982, 1983.
1984 by GRAY RESEARCH. INC. This manual or parts
thereof may not be reproduced in any form without
permission of CRAY RESEARCH. INC.

··--1==1 ~~ __ • 1.-... T

RECORD OF REVISION PUBLICATION NUMBER SR-0014

Each time thil manual is revised end reprinted, all chanE)es issued against the previous version in the form of change packets are
inc\?rporated into the n~w ,,:ersion and the new version IS assigned an alphabetic .Ievel: Between reprints, changes may be issued
against the current ver.lon In the form of change packets, Each change packet IS assigned 8 numeric designator starting with
01 for the first change packet of each revision level. '

Every page changed by a reprint or by a change packet has the revision level and change packet number in the lower righthand
corner. Changes to part of II pegellre noted by a change bar along the margin of the page. A change bar in the margin opposite
the page number indicates that the entire page is new; a dot in tha same place indicates that information has been moved tram
one page to another, but has not otherwise changed.

Requests for copies of Crav Research, I nco publications and comments about these publications should be directed to:
CRAY RESEARCt4,INC ••
1440 Northland Drive,
Mendota Heights, Minnesota 55120

Revision Description

April, 1977 - First edition.

A August, 1977 - Reprint with revision. This printing obsoletes
the first edition.

B June, 1978 - Reprint with revision. The addition of Section
4, Performance Statistics comprises the major change to this
manual.

C December, 1979 - This printing represents an expansion of the
Mathematics Subroutines Reference Manual to include all CRAY-l
subprograms available to the user. TO reflect this expansion,
the title of the manual has been changed to the CRAY-l Library
Reference Manual. The subprograms listed and described in
this manual reside in the $FTLIB, $SYSLIB, and $SCILIB
libraries. This printing obsoletes the previous title of the
manual and all previous printings.

C-Ol

D

SR-0014

January, 1980 - Technical corrections to pages 4-17 and 4-18.

April, 1980 - This printing represents a reprint with
revision, bringing the manual into agreement with the released
system, version 1.08. It obsoletes all previous printings.
Major additions include unblocked I/O, directive processing,
SKOL support, and library error processing. Replacing the
text of the previous summary section is a subprogram list with
subprograms grouped by UPDATE deck name within each library.
An index section has also been added.

Because of the extensive reorganization and
this manual, editing changes are not noted.
are noted by change bars.

repagination of
Technical Changes

The publication number has been changed from 2240014 to
SR-0014.

ii I

D-Ol April, 1980 - This change packet clarifies the formula for the
OPFILT routine and corrects the formulas and one parameter for
the Fourier transform routines.

E October, 1980 - This reprint with revision brings the manual
into agreement with version 1.09 of the released system.

E-Ol

F

Major features include open, close, and inquire routines;
SMACH, which returns machine constants, and FOLR and SOLR,
which solve first- and second-order linear occurrences. Other
revisions include $PAUSE, a special-purpose routine that
eliminates the need to substitute $STOP: and an update to the
performance statistics for single-precision, single-argument
routines. The index now includes all routines listed in the
manual. All technical changes except changes to the index are
noted by change bars.

All previous versions of this manual are obsolete.

June, 1981 - This change packet brings the manual into
agreement with version 1.10 of the released system. Major
features include FORTRAN 77 trigonometric, hyperbolic, and
character routines; linear algebra routines, ISEARCH, ISAMIN,
FOLRN, SOLRN, and SOLRN3: logical record I/O and dataset
control routines, READIBM and WRITIBM; definition and control,
SDACCESS: directive processing routine, CEXPRi job control
routines, RERUN and NORERUN: and miscellaneous special purpose
routines, ECHO, JNAME, LOGECHO, WFBUFFER.

June, 1982 - This rewrite brings the manual into agreement
with version 1.11 of the released COS system and version 1.10
of CFT and $FTLIB. Sections 4 and 5 have been reorganized.
Most of the routines in section 3 are now in table format and
the calling sequence format has changed. Also, section 2 now
contains a subprogram summary with page references. The major
new features are tapes and ORDERS, an in-memory sort routine.

All previous versions of this manual are obsolete.

G July, 1983 - This reprint with revision brings the manual into
agreement with version 1.12 of the COS system and version 1.11
of eFT. Major changes include the new calling sequence and
the split of $FTLIB. Also included are random access dataset
I/O routines, dataset skip routines, search routines, and
exchange package routines.

G-OI

SR-0014

Because of extensive repagination of this manual, editing
changes are not noted. Technical changes are noted by change
bars. All previous versions of this manual are obsolete.

September, 1983 - This change packet adds Pascal subprograms
to the manual.

iii I

H February, 1984 - This reprint with reVISIon brings the manual
into agreement with version 1.13 of COS and eFT. Major
changes include the addition of the heap and stack routines,
array search routines, and bidirectional memory transfer
routines 1 additions to the Linpack, Eispack, and random access
routines; and the multitasking capability. Numerous minor
changes have also been made. All previous versions of this
manual are obsolete.

I December, 1984 - This reprint with revision brings the manual
into agreement with version 1.14 of COS and CFT. Major
additions include explicit data conversion routines, byte and
bit manipulation routines, tape positioning and synchroni~ing
routines, new Pascal routines, and a number of miscellaneous
special purpose routines. Reorganizational changes include
moving routines MVC, PACK, UNPACK, and PUTBYT from the
miscellaneous special purpose SUbsection to the byte and bit
manipulation subsection. Appendix B contains new statistics
for single-precision, single-argument subprograms. Appendix
C, formerly containing processing times for the routine
ORDERS, now contains sort entry points. The tables containing
processing times have been moved to the location of the
description of the routine ORDERS. Numerous minor changes
have also been made. All previous versions of this manual are
obsolete.

SR-0014 iv I

I

PREFACE

This publication describes the subprograms available to users of the
CRAY-I and CRAY X-MP Computer Systems. It also contains subprograms that
allow the translation of a subset of International Business Machines
(IBM) or Control Data Corporation (CDC) file types online to a Cray
Computer System.

The user of this manual is assumed to be familiar with the Cray Operating
System (COS), and either the Cray FORTRAN Compiler (CFT), or the Cray
Assembly Language (CAL). The following Cray Research publications might
be helpful:

CRAY-OS Version I Reference Manual, publication SR-OOII

Macros and Opdefs Reference Manual, publication SR-OOI2

FORTRAN (CFT) Reference Manual, publication SR-0009

CAL Assembler Version 1 Reference Manual, publication SR-OOOO

CRAY-oS Message Manual, publication SR-0039

SKOL Reference Manual, publication SR-D033

COS Table Descriptions Internal Reference Manual, publication SM-004St

Pascal Reference Manual, publication SR-0060

t This manual is available only on tape. See your CRI site analyst for
information.

SR-0014 v I

CONTENTS

PREFACE • • • • V

I. INTRODUCTION • 1-1

SUBPROGRAM CLASSIFICATION • • 1-1
CFT LINKAGE METHODS • .. • • 1-2

CFT linkage macros • • • • • 1-2
CONVENTIONS • 1-3

2. SUBPROGRAM SUMMARY • • .. 2-1

INTRODUCTION • 2-1
TABLE DESCRIPTION • • .. • 2-1

Primary reference name • • • 2-2
page number • • 2-2
UPDATE deck name • • 2-2
Entry type .. • 2-2
CFT call type • • • 2-3

.-' Library • • • 2-3
OS dependency • • • • • • 2-3
Purpose 2-3
Pascal subprograms • • • 2-3

3. COMMON MATHEMATICAL SUBPROGRAMS • • • • .. 3-1

INTRODUCTION .. • .. • • 3-1
LOGARITHMIC ROUTINES • • .. 3-5
EXPONENTIAL ROUTINES .. • • 3-6
SQUARE ROOT ROUTINES • • • • .. 3-7
TRIGONOMETRIC ROUTINES • • .. 3-8
HYPERBOLIC ROUTINES • 3-11
BOOLEAN ARITHMETIC ROUTINES • 3-13
BASE VALUE RAISED TO A POWER ROUTINES .. • 3-15
DOUBLE-PRECISION ARITHMETIC ROUTINES 3-17
TRIPLE-PRECISION ARITHMETIC ROUTINES 3-18
SIXTY-FOUR-BIT INTEGER DIVISION • 3-21
CHARACTER FUNCTIONS .. • 3-22
CHARACTER CONCATENATION AND STORE ROUTINES 3-24

Initialization • • .. • 3-24
Transfer 3-24
Termination • • 3-25

SR-0014 vii I

4.

COMMON MATHEMATICAL SUBPROGRAMS (continued)

ASCII CONVERSION FUNCTIONS
PSEUDO VECTORIZATION ROUTINES
MISCELLANEOUS MATH ROUTINES •
RANDOM NUMBER ROUTINES •••

.
.

MATH TABLES • • • • • • • • . .

SCIENTIFIC APPLICATIONS SUBPROGRAMS •

INTRODUCTION
BASIC LINEAR ALGEBRA SUBPROGRAMS

.
~

.

Index of element having maximum absolute value • • • • • •
Sum of the absolute values • • • • • • • • • • • • • •
Constant times a vector plus another vector
Copy one array into another •••••• • • • • • •
Compute an inner product of two vectors •••• • • • • •
Euclidean norm of an array (12 norm) • • • • • • • • •
Construct Givens plane rotation • • • • • • • •
Apply Givens plane rotation •••••••••• • • • • •
Construct modified Givens plane rotation • • • • • •
Apply modified Givens plane rotation • • • • • • •
Scale array • • • • • • • • • • • •
Swap two arrays •••••• • • •

• • OTHER LINEAR ALGEBRA SUBPROGRAMS ••••
Sparse matrix primitives • • • • • • • •
Index of element with maximum or minimum
Index of element having minimum absolute
Sum of the values •••••••••••

.
value
value •

Compute complex Givens plane rotation. • • • • • • • •
Construct complex Givens plane rotation. • • • • • •
Cray machine constants • • • • • • • • • • • • • • • •

FUNCTIONS AND LINEAR RECURRENCE SUBROUTINES • • • • • • • •
SINGLE-PRECISION REAL AND COMPLEX LINPACK ROUTINES
SINGLE-PRECISION EISPACK ROUTINES • • • • • . . .
MATRIX INVERSE AND MULTIPLICATION ROUTINES
FAST FOURIER TRANSFORM ROUTINES • •

.
FILTER SUBROUTINES
GATHER, SCATTER ROUTINES
SEARCH ROUTINES • • •

.
Number or sum of values within or before an element
Searching for an object in a vector • • • • • • • • •
Indexed array of all positions of an object in a vector

SEARCH ORDERED ARRAY FOR TARGET • • • • • • • • • • •
SORT ROUT INE • • • • • • • • • • • • • • • •

Method • • • • • • • • •
Large radix sorting
Multipass sorting •

.

SR-OOl4 viii

3-25
3-28
3-28
3-36
3-38

4-1

4-1
4-1
4-4
4-5
4-6
4-8
4-9
4-10
4-11
4-13
4-13
4-19
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-28
4-29
4-30
4-38
4-38
4-46
4-50
4-53
4-56
4-57
4-58
4-59
4-64
4-71
4-73
4-75
4-75
4-76

I

5. INPUT/OUTPUT SUBPROGRAMS • •
INTRODUCTION •
FORTRAN I/O ROUTINES • • • • • • • • • • •

Initialization routines • • • • • • • • • • • • • • •
Input initialization routines • • • • • • • • • •
Output initialization routines •• • •

Transfer routines ••••••••••••••••••••
Formatted and unformatted input transfer routines
Buffered input transfer routines ••••••••••
Namelist input transfer routines ••••••••••
Formatted and unformatted output transfer routines
Buffered output transfer routines
Name1ist output transfer routines • •

Final ization routines ••••••• • • • • • • • • •
Input finalization routines • • • • • • • • • •
Output finalization routines

TAPE TRANSLATION ROUTINES • • • •
Buffer management routines • • • • • • • • •

Input buffer management routines •••
Output buffer management routines • • • • •

. . .

Record format management routines • • • • • • • • •
Input record format management routines • • • • • • •
Output record format management routines •• • • • •

Data format management routines ••• • • • • • • • •
Input data format management routines • • • • • •
Output data management format routines •••••••

EXPLICIT DATA CONVERSION • • • • • • • • • • • • • • • • • • •
IBM single-precision to Cray single-precision routine • •
IBM double-precision to Cray single-precision routine
IBM integer to Cray integer routine •••• • • •
EBCDIC to ASCII routine ••••• • • • • • • • • • •
IBM packed decimal field to integer routine • • • •
IBM logical to Cray logical routine ••• • • • • • • • •
Cray single-precision to IBM single-precision routine
Cray single-precision to IBM double-precision routine ••
Cray integer to IBM integer routine ••• • • • • • • • •
ASCII to EBCDIC routine •••••••••••••••
Integer to IBM packed decimal field routine • • • • •
Cray logical to IBM logical routine ••• • • • • • •
Unpack 60-bit words routine ••••••• • • • • • • • •
Pack 60-bit words routine • • • • • • • •
Pack 32-bit words routine ••• • • • • • • • • • • •
Unpack 32-bit words routine • • • • • • • • • • • •
CDC integer to Cray integer routine • • • • • • •
CDC single-precision to Cray single-precision routine
CDC display code character to ASCII character routine
Cray integer to CDC integer routine •• • • • • • • • • •
Cray single-precision to CDC single-precision routine ••
ASCII character to CDC display code character routine ••

DATASET CONTROL ROUTINES •• • • • • • • • • • • • • • • • • •
Open dataset routine • • • • •

SR-0014 ix

5-1

5-1
5-1
5-3
5-3
5-4
5-5
5-6
5-8
5-8
5-11
5-13
5-13
5-14
5-14
5-14
5-15
5-16
5-16
5-17
5-18
5-18
5-18
5-18
5-18
5-19
5-20
5-20
5-21
5-21
5-22
5-23
5-23
5-24
5-25
5-26
5-27
5-28
5-28
5-29
5-29
5-30
5-30
5-31
5-31
5-32
5-32
5-33
5-33
5-34
5-34

I

6.

DATASET CONTROL ROUTINES (continued)
Close dataset routine · .
Inquire routine ••••
Dataset copying routines • • • • • • • •

Copy records •••••••••••••••
Copy files •• • • • • • • •
Copy dataset ••• • • •
Copy sectors (unblocked) •••• . . .

Dataset skip routines • • • . .
Skip records • • • • • •
Skip files •••••• • • • · . .

· .

Skip dataset • • • • • • • • • • ·
Skip sectors (unblocked) •••

Dataset positioning routines • •
Get position of mass storage dataset •••••• · .
Set position of dataset • • •
Backspace one record • • • • • • •• • •
Backspace one file • • • • • • • • •
Rewind dataset • • • • • • • • • • • · .

· . Position dataset
Synchronize tape dataset

Dataset termination routines •
r/o status routines •••••
Auxiliary NAMELIST routines

.
LOGICAL RECORD I/O ROUTINES ••

Read routines ••••
Read words
Read characters • • •

. ·
Read IBM words ·
Read unblocked data • · . write routines • • • • •
Write words • • •
write characters
write IBM words • •
write unblocked data

· ·
• • · . .

CAL I/O interface routine
Bad data error recovery routines •
Character routines • • • • • •

· · . .
NUMERIC CONVERSION ROUTINES • • • • • • · · . . .
RANDOM ACCESS DATASET I/O ROUTINES • • • • • • • •

Record-addressable, random access dataset I/O routines
Word-addressable, random access dataset I/O routines •

WORD-ADDRESSABLE I/O AND DATASET CONTROL ROUTINES • • • • •

DATASET MANAGEMENT SUBPROGRAMS

INTRODUCTION .
CONTROL STATEMENT TYPE SUBPROGRAMS

Permanent dataset management (PDM) routines •••
Dataset staging routines • • • • • • • • • • •

· .
Definition and control routines • • • • • • · . .

SR-0014 x

5-34
5-35
5-35
5-35
5-37
5-39
5-39
5-40
5-40
5-40
5-41
5-42
5-42
5-42
5-46
5-50
5-52
5-52
5-53
5-55
5-55
5-57
5-59
5-63
5-63
5-64
5-66
5-69
5-69
5-70
5-70
5-73
5-74
5-74
5-75
5-75
5-77
5-78
5-83
5-83
5-103
5-109

6-1

6-1
6-1
6-2
6-2
6-3

I

7.

DATASET SEARCH TYPE SUBPROGRAMS •
DATASET INPUT/OUTPUT SUBPROGRAMS
TABLES • • • • • • • • • • • • •

.
· . .

· . .
· . .

SPECIAL PURPOSE SUBPROGRAMS •
INTRODUCTION · . .
DEBUG AID ROUTINES • • · . .

Flow trace routines · · . . .
Traceback routines • • • • • . .
Dump routines • • • • • • • •
Exchange Package processing routines •
Array bounds checking routines

TABLE MANAGEMENT ROUTINES •
TM common block •••

STACK MANAGEMENT ROUTINES •
HEAP MANAGER ROUTINES ••••

. . .

·
..

· . ·
• • · .

• • · . . · . . · . . . · .
Allocate routines, ·
Deallocate routines
Set new length routines

·
· · . .

Change length and move routines . . . • • • · .
Heap block length routines • • • • • • • •
Heap shrink routines • • • • • • • • • • •

·

JOB

Heap integrity check routines •••••••••
Heap statistics routines • • •
Dump heap control word routines • •
Heap expansion routine • • • • • • • •

.. Heap memory request routine •••
Heap merge routine • • • • • • · • •

CONTROL ROUTINES •• • • • • • · . .
FLOATING-POINT INTERRUPT ROUTINES ••••

Floating-point interrupt test • • • • •

· · . .
· . . · . . ·

·
Temporary floating-point interrupt control • •
Job floating-point interrupt control •••

·

BIDIRECTIONAL MEMORY TRANSFER ROUTINES •••••
Bidirectional memory transfer test • • • • • • •
Temporary bidirectional memory transfer control
Permanent bidirectional memory transfer control

TIME AND DATE ROUTINES •••••• • • • • • •
TIMESTAMP ROUTINES •••• • • • •
CONTROL STATEMENT PROCESSING ROUTINES • • • · . .

Control statement cracking routines ••••••
· • •

· · · ·

Cracked parameter list • • •
Get parameter routine ••
Directive cracking routine • • · . .
Process parameter list routine • • • • • • • •
Crack expression routine • • • • • • • • • • • • . . .

JOB CONTROL LANGUAGE SYMBOL ROUTINES · . . .

SR-00l4 xi

6-4
6-7
6-9

7-1

7-1
7-1
7-2
7-4
7-5
7-8
7-12
7-12
7-14
7-21
7-25
7-25
7-27
7-27
7-29
7-30
7-31
7-31
7-32
7-33
7-34
7-34
7-35
7-35
7-38
7-39
7-39
7-39
7-40
7-40
7-41
7-41
7-42
7-44
7-46
7-46
7-47
7-48
7-51
7-53
7-53
7-55

I

SKOL RUN-TIME SUPPORT ROUTINES • • • • • • •

8.

Character-string manipulation routines
Character-code translation routines
Error-handling routine •

..

ERROR-PROCESSING ROUTINES .. • ..
BYTE AND BIT MANIPULATION ROUTINES

Move bytes routine
Move bits
Move characters routine
Replace byte routine
compare bytes function
Search bytes routine
ASCII to integer routine
Integer to ASCII routines

..

.. .

..

..

Pack, unpack
MISCELLANEOUS SPECIAL PURPOSE ROUTINES

PASCAL SUBPROGRAMS

..
INTRODUCTION
P$$$HPAD
P$ABORT
P$BREAK
P$CALLR
P$CBV
P$CONNEC
P$DATE
P$DBP
P$DEBUG
P$DISP
P$DIVMOD
P$ENDP
P$EOF

.. P$EOLN
P$GET ..
P$HALT
P$JTlME
P$LOGMSG
P$LSTREW
P$MEMRY
P$MOD
P$NEW
P$OSDBS
P$OSDDT
P$OSDEP ..
P$OSDJT
P$OSDLM
P$OSDPR
P$OSDQI
P$OSDRC
P$OSDRP

..

..

..

..
..

..

..
..

..

..

..

..

..

..

.. ..
..

..

..

..
.. ..
.. ..

..
.. ..

..

.. ..

.. ..

.. ..

..

.. ..
..

..

.. ..

.. ..
..

..
.. ..

..
.. ..

..

..

..

..
..

..

..
..

..

..
.. ..
..

..

..

..

.. ..

..
.. ..

..

..

..

..

..
..

SR-0014 xii

..

..

..

..

..

..

..

..

..

.. ..

.. ..

.. ..

..

..

..

.. ..
..

..
..

..
.. ..

..
..
..
..

.. ..
..

..

..

..

..

..

.. ..

..
.. ..

.. ..
..

..

..

..
.. ..

.. ..

.. ..

.. ..

..

..

..

.. ..
..

..
..

..

..

..

..

..

..

..

..

..

..

..

7-56
7-57
7-58
7-60
7-60
7-63
7-63
7-63
7-64
7-65
7-66
7-66
7-67
7-68
7-68
7-70

8-1

8-1
8-1
8-2
8-2
8-2
8-3
8-3
8-4
8-4
8-4
8-4
8-5
8-5
8-6
8-6
8-6
8-7
8-7
8-8
8-8
8-8
8-9
8-9
8-10
8-10
8-11
8-11
8-11
8-12
8-12
8-12
8-13

I

8. PASCAL SUBPROGRAMS (continued)

9.

P$OSDRW
P$OSDTM •
P$OSDWC
P$OSDWF
P$OSDWR •
P$OSDXP •
P$PAGE
P$PUT
p$RB
P$RCH ••
P$READ
p$READLN
P$REPRV •
P$RESET
P$REWRIT
P$RF
P$RI
P$ROUND
P$RSTR
P$RTlME •
P$RTMSG
P$RUNTIM
P$SFRAME
P$TlME
P$TIMER ..
P$T.RACE •
P$TRUNC
P$WB
P$NCH •
P$WEOF
P$NI

•
•

..
•

•

.. P$WO
P$WRFIX •
P$WRFLT ..
P$WRITE
P$NRITLN
P$WSTR

• • • • • •
• • • •
• • • • •

• • • • •
• ••

..
.... . . .
• •••••
• •

• •
..

• • · ·
• • • • • •

•
• • ••• •

• • • •
• • •••••
• • • • • • • • •

• • •
• • • • •
• • • • • • • • •

.. .. .
• • • • •• •

• • • • • •• •
• • • • • • • • •

• • • • • · ...
••• • •

• • • • •
• •••••
••• •
• • • • • • •

MULTITASKING SUBPROGRAMS •

TARS ROUTINES • ..
TASK CONTROL ARRAY
LOCK ROUTINES

..

..
EVENT ROU'l'INES
UTILITY SUBPROGRAMS

•

•

..

..

• • ..

SR-OOI4

•

•
..
•

•

•
•
•

•
•
•

•
•
..
•
•

•

•
•
•

•
•
•

•

•

•
•

.. • • •
• •

• • • •
• •
• • •

• • •
• •

• •
• • ..
• • •

•
• • •

• • •
• · .. •
• · .. •

• • •

• .. . •
•

• • • •

• • •
• • • •

.. •
• • • •
• • •
.. • • •

• •
• • •

• • • •
• • •

•

• • •
• • • •

•
• •
• •

xiii

• • • • • •
• • • • • ..

.. . • •
• • • • •

• • • • • .. •
.. ..
.. ..

• • • • • ..
•
• • • • •

•
• • •

• .. •
.. •

• •
• • • • • • •
.. •
• • • • • •

•
• • • • • •

• • • • ..
• • •• •
• • • • •
• • · .. . • •

• • •
.. •
• · . .. • •

.. • •
• • • •

• •
• ·
• · . ..
• • • • • • •
•
•
.. • • • ..

•
• • • •
• • • •

• • • • • .. • • • • •

.. • • • •

.. • •
• • · ..
• • • •
• .. .
·

• • • • •
• • •

• • • •
• • •

• • • •
• • • • • •
• •
• • • • • •
• • •
• • · .. • • • •
• • • • • •
• • • • • •
• • • · .. • • • •
• .. .
• • • • • •
• • • • •
.. •
.. . •• •
• • •

•
• • • • • •
• • • • • •
.. .. • • • •

• • • •
.. . • • • •
.. . • • • •

• • •
• • • • •
• ·
· . ..

.. • ..
• •

.. • • .. •
• • • • • •

•

8-13
8-14
8-14
8-15
8-15
8-16
8-16
8-17
8-17
8-17
8-18
8-18
8-19
8-19
8-19
8-20
8-20
8-21
8-21
8-21
8-22
8-22
8-23
8-23
8-23
8-23
8-24
8-24
8-24
8-25
8-25
8-25
8-26
8-26
8-26
8-27
8-27

9-1

9-1
9-6
9-7
9-9
9-11

I

APPENDIX SECTION

A. ALGORITHMS

.. • ACOS AND ACOSV
ALOG AND ALOGV
ATAN AND ATANV
ATAN2 AND ATAN2V
CABS AND CABSV
CCOS AND CCOSV
CEXP AND CEXPV
CLOG AND CLOGV

• •••••
.. .. • •

..
.. .. •

..
• .. •
• •

COS AND COSV; COSS AND COSSV •
COSH AND COSHV
CO'I' AND COTV
CSIN AND CSINV

..

• ..
CSQRT AND CSQRTV
CTOCSS, CTOCSV, CTOCVS,
C'l'OISS, CTOISV, CTOIVS,
CTORSS, CTORSV, CTORVS,
DACOS AND DACOSV
DASIN AND DASINV
DATAN AND DATANV
DCOS AND DCOSV
DCOSH AND DCOSHV
DCOT AND DCOTV
DEXP AND DEXPV
DLOG AND DLOGV
OMOD AND DMODV
DSINH AND DSINHV
DSQRT AND DSQRTV
DTAN AND DTANV

•
•

..

•

•
..

.. ..
..
..

.. ..

• ..
..

.. ..

.. ..

• • ..
• .. •

• · ..
AND CTOCW

AND CTOIW
AND CTORW

• • • •
.. ..
• • • • •
.. ..
• • • • •
.. . ..

..
•

• • • • •
• • • • •
• • • • •
..

DTANH AND DTANHV • • • • • • • •
DTODSS, DTODSV,
DTOISS, DTOISV,
EXP AND EXPV
ITOISS
ITOIVS,
RANF
RANFV •
RANGET

lTOIW

DTODVS, AND DTODW
DTOIVS, AND D'l'OIW

.. ..
.. ..

..

•

..

..
..

•

•

..

..

•

..
..
•
•

RANSET •• • • • •
RTOISS, R'l'OIVS, AND RTOIW
RTORSS
RTORVS
RTORVV

..
..
..

..

.. ..
SQRT AND SQRTV
TANH AND TANHV

BIBLIOGRAPHY

SR-OOI4

..
•

..

..
• • ..
• .. •

.. •

• ..

• • ..
..

• .. •

xiv

• • • • · . ..

.. .. . • • • • • •
.. .. .

.. .. •
.. •

.. •
.. .. • •

.. • ..
• • • ..

.. • • • .. •
• .. •

• • • ..
.. • • • •

.. ..
.. . . • • • • · .. .
.. • •

• • • •
.. . • • • •

..
• • • • • •• •

• • • • • • •
.. . .. • • • • • ·

· • • •
• • • •

• • • • •
.. · ...

.. • • • • • · •
.. . • • • • •

• • • • • •
• • • • • · • • • • •

• • • • •
•

• • • • • • • •
• • • • • • • • • • • • •

• • •• •
.. • •• • · .. • • • • • • •

• •••••••

• • • • •

..

..

..

..

•

•

•

..

..

..

..

..

A-I

A-I
A-2
A-2
A-3
A-3
A-4
A-4
A-4
A-S
A-S
A-7
A-7
A-8
A-a
A-9
A-9
A-9
A-IO
A-I 0
A-II
A-II
A-II
A-II
A-12
A-13
A-13
A-13
A-14
A-I 4
A-I4
A-I4
A-14
A-IS
A-IS
A-16
A-I6
A-I7
A-I7
A-I7
A-IS
A-I 8
A-IS
A-19
A-19
A-20

I

B. PERFORMANCE STATISTICS ·
COMMON MATHMATlCAL SUBPROGRAMS
SCIENTIFIC APPLICATIONS SUBPROGRAMS •

· ·
C. SORT ENTRY pOINTS • · .
FIGURES

5-1 Group name . · • • · · · • • · • • • • • • • • • • · 5-2 Variable entry • • • • • • • • • · • • · • • · • • • • • • · · 5-3 Array entry • • • • • • • • • • • · · • · · • · 5-4 Logical read · · · • • · · • · • • • · · · · · 5-5 Logical write · · · · · · • • • • • • · •
7-1 Exchange Package printout • · • • • · · • · • • • · •
7-2 Parameter Control Table · · · · • • · · 7-3 Parameter control entry • • · • · · · · · · • · • • • • • • • •
7-4 Message Control Table · • • • · • • • • • • • • · · ·
TABLES

2-1 Subprogram summary ••• • • • • • •
2-2 Pascal subprogram summary • • • • • • • • • • •
3-1 Logarithmic routines •••• • • • • • • • • • • • ••
3-2 Exponential routines ••••••••••••••• • • •
3-3 Square root routines •••••••• ••••• • •
3-4 Trigonometric routines •• • • • • • • • • • • • • • • • •
3-5 Hyperbolic routines •
3-6 Boolean arithmetic routines • • • • • • • • • • • • • • • •
3-7 Values raised to a power ••••••• • • • • • • • • • • • •
3-8 Double-precision arithmetic routines • • • • • • • • • • • • •
3-9 Triple-precision arithmetic routines ••••••• •••
3-10 64-bit integer division • • •• •••••••••••••••
3-11 Character comparison functions called from FORTRAN ••••••
3-12 Character comparison functions called from CAL •• •••••
3-13 ASCII conversion • • • • • • • • • • • • • • •
3-14 Miscellaneous math routines • • •
3-15
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
5-1

Random number routines • •
Basic linear algebra subprograms (BLAS)
Other linear algebra subprograms
Single-precision LINPACK routines • • •
Single-precision EISPACK routines • • •
Arguments for Fourier transform routines
ISRCH routines ••• • • • • • •
WHEN routines • • • • • •
Sort times in seconds
Sort times in seconds
FORTRAN I/O routines

for ORDERS •••
with ASCII key
..

SR-00l4 xv

• • • • · · . . . · . . · • • • · . .
• • •

· . . • • • • • • • • · · ·
• • • . .

B-1

B-1
B-4

C-l

5-9
5-9
5-10
5-65
5-72
7-11
7-77
7-77
7-78

2-4
2-96
3-5
3-6
3-7
3-8
3-11
3-13
3-15
3-17
3-18
3-21
3-22
3-23
3-26
3-29
3-36
4-3
4-25
4-39
4-42
4-51
4-59
4-65
4-76
4-77
5-2

I

TABLES (continued)

5-2
5-3
5-4
5-5
5-6
5-7

5-8
5-9
5-10

7-1
B-1
B-2
B-3

INDEX

OPEN specifiers and their meanings
CLOSE specifiers and their meanings •
INQUIRE specifiers and their meanings
Conversion mode descriptions ••••
Conversion return conditions ••••

.
· · ·
· . • • •

Error codes for record-addressable, random access dataset
I/O routines •••••••••••• • • • • • • • • •
CLOSMS statistics •
WOPEN statistics •••
Error codes for word-addressable, random access dataset
I/O routines •
Performance counter group descriptions •••••••••
Statistics for single-precision, single-argument subprograms •
$SCILIB timings and comparisons • • • • • • • • • • • •
$SCILIB timings and MFLOP rates • • • • • • • • • • • • • • • •

SR-0014 xvi

5-36
5-37
5-38
5-80
5-81

5-86
5-92
5-104

5-106
7-86
B-2
B-6
B-9

I

INTRODUCTION

This manual describes the subprograms provided in the standard libraries,
$ARLIB, $FTLIB, $IOLIB, $SCILIB, $SYSLIB, and $UTLIB. Routines generated
by CFT in the form of inline code are not included in this manual but are
described in the FORTRAN (eFT) Reference Manual, CRI publication SR-0009.

Section 2 provides a subprogram summary grouped alphabetically by primary
reference name within each library. Sections 3 through 7 provide
detailed descriptions and calling sequences of the subprograms listed in
section 2. Sections 3 through 6 cover specific subprogram applications
and common mathematics, scientific mathematics, input/output, and dataset
management. Section 7 is a collection of special purpose subprograms,
grouped by application. These applications are debugging aids, job
control, floating-point interrupt control, time and date requests, and
control statement processing. The last subsection in section 7 consists
of routines whose applications do not lend themselves to any particular
grouping and are therefore listed separately. Section 8 presents
procedures and functions that reside in the Pascal runtime library,
$PSCLIB. Section 9 describes multitasking subprograms.

SUBPROGRAM CLASSIFICATION

The subprograms described in this manual are either subroutines, scalar
functions, or vector functions. Some subprograms can be used as either
subroutines or scalar functions. Scalar functions produce a single
result while vector functions produce a vector of results. Some vector
functions (called pseudo veatop funation8) call the corresponding
scalar functions. Such a scalar function call can occur when the vector
function performs infrequently used calculations or when the calculation
is not suited to vectorization.

In general, arguments to vector call-by-value functions are passed in V
registers~ scalar arguments are broadcast if necessary. However, some
routines implicitly called by eFT, such as exponentiation, have mixed
scalar and vector arguments.

SR-0014 1-1 I

1

eFT LINKAGE METHODS

The CFT-callable library routines are accessed by one of two methods:
call-by-address or call-by-value. Subroutines are always accessed by the
call-by-address method. Library functions intrinsic to CFT, or user
functions named in a VFUNCTION directive, are accessed by CPT in either
call-by-address or call-by-value mode, depending on context.

In call-by-value mode, arguments are loaded into either S or V registers,
and the function returns its result in S1 or vI (52 or V2 are also used
for complex or double-precision functions). vector functions must also
have the vector length present in the VL register.

In call-by-address mode, addresses of arguments are stored sequentially
in memory. Under the CFT 1.10 version of the calling sequence, the
address of the first argument is stored at entry 1, the second at entry
2, etc. Under the CFT 1.11 version, the list of addresses is stored in a
block of memory allocated for that purpose. Functions return their
results in registers. Subroutines return results through their argument
lists. (For information on the new calling sequence, see the Macros and
Opdefs Reference Manual, CRI publication SR-0012.)

By convention a call-by-value has a % suffix (for example, SIN%), and a
vector call-by-value has a % prefix and suffix as shown below.

Type Call by call by
Address Value

Scalar RTE RTE%

Vector %RTE %RTE%

Routines that are accessible from CAL programs only also can be prefixed
with a $.

CFT LINKAGE MACROS

CFT linkage macros generate code to handle subprogram linkage between
CFT-compiled routines and CAL-assembled routines. These linkage macros
and their uses follow.

CALL Provides linkage to call-by-address routines

CALLV Provides linkage to call-by-value routines

SR-0014 1-2 I

ENTER Reserves space for parameter addresses, saves Band T
registers, and sets up traceback linkage

EXIT Initiates a return from a routine to its caller; restores
any B or T registers not considered scratch by CFT.

eFT linkage macros should be used whenever possible to maintain
compatibility across versions of CFT. See the Macros and Opdefs
Reference Manual, CRI publication SR-0012, for detailed descriptions of
CFT linkage macros and linkage conventions.

All $ARLIB, $FTLIB, $IOLIB, $SCILIB, $UTLIB, and $SYSLIB subroutines can
use any of the A, S, V, VL, and VM registers as scratch registers~
therefore, the calling routine should not depend on any of these
registers being preserved. However, these routines preserve the contents
of registers BOI through B658 and TOO through T67S. Registers B708
through B778 and T708 through T77a also can be used as scratch
registers.

NOTE

Cray Research, Inc., reserves the right to make future
use of any of the A, S, V, VL, VM, B66-B77, and T70-T77
registers in any library subroutine. Users cannot
depend on the contents of these registers being
preserved by any library routine.

CONVENTIONS

The following conventions are used in this manual.

Convention

Italics

[] Brackets

(51), (52), etc.

Description

Define generic terms representing words or
symbols to be supplied by the user and
identify new terms

Enclose optional portions of a command format

Content of register Sl, 52, etc., respectively

Arguments are used on entry unless exit or return conditions are
specified.

SR-0014 1-3 I

SUBPROGRAM SUMMARY

INTRODUCTION

This section summarizes the subprograms in this manual. These
subprograms are callable from CAL or Cray FORTRAN programs and reside in
the $ARLIB, $FTLIB, $IOLIS, $UTLIB, $SYSLIB, and $SCILIB libraries.

$ARLIB contains routines primarily concerned with returning some numeric
result. Mathematical routines intrinsic to FORTRAN such as SIN reside
here.

$FTLIB contains CFT-specific routines such as ICBAR, LEN, and DOC.

SIOLIB contains routines that move data from external devices to main
memory or control that movement.

$UTLIB contains routines more infrequently used and of a utilitarian
nature.

$SCILIB routines perform operations such as matrix multiply or Fast
Fourier transform and must be explicitly called. Such processes are not
intrinsic properties of the Cray FORTRAN language and are independent of
specific Cray Operating System (COS) features.

2

$SYSLIB routines usually link directly to the operating system through a
normal exit. These routines are not usually accessible from a Cray
FORTRAN program, but are called by $IOLIB and $UTLIB routines for
specific tasks. In general, $SYSLIB serves as a link between the general
purpose $IOLIB and $UTLIB routines and the details of COS. $SYSLIB
routines depend on specific COS features.

Subprograms implicitly called by a CFT routine (for example, routines
used for exponentiation or I/O) have a $ or % character in their
names. They are not directly callable by a Cray FORTRAN program.

TABLE DESCRIPTION

Table 2-1 contains the subprogram summary that includes the following
items.

SR-OOl4 2-1 I

• Primary reference name

• Page number

• UPDATE deck name

• Entry type

• CFT call type

• Library

• OS dependency

• Purpose

PRIMARY REFERENCE NAME

Primary reference name is a general group name identifying a subprogram
and is generally similar to the subprogram name. For example, BACKSP is
the primary reference name for the backspace subprograms BACK, $BACK,
BKFlLE, BKSP, $BKSP, and BKSPF. The subprograms are alphabetized by
primary reference name.

PAGE NUMBER

The page numbers of subprogram locations are listed under each primary
reference name and reference detailed descriptions of the subprogram.

UPDATE DECK NAME

UPDATE deck name is the listed name of the subprogram in the UPDATE
program library.

ENTRY TYPE

Entry type indicates the source of the subprogram call, either CFT or
CAL. Entries callable from eFT are further divided into (1)
call-by-address and (2) call-by-value. See the description of these
linkage methods in the introduction to this manual.

SR-0014 2-2 I

CFT CALL TYPE

CFT call type indicates three classifications for CFT callable
subprograms:

S Subroutine

SF Scalar function

VF Vector function

See the introduction to this manual for a description of these
classifications.

LIBRARY

The library column indicates the library residence of the subprogram.

OS DEPENDENC~

Each subprogram is labeled either OS dependent (Dep.) or OS independent
(Ind.). This classification is a guideline for use of the routine under
operating systems other than the current version of COS. Independent
routines can be executed under other operating systems with minor changes
such as macro redefinition or substitution of external routines.
Dependent routines rely heavily on COS features.

PURPOSE

The purpose is a 1- or 2-1ine description of the subprogram.

PASCAL SUBPROGRAMS

Table 2-2 summarizes Pascal subprograms with a format similar to that of
table 2-1. Exceptions are (1) the primary reference name and UPDATE deck
name are always the same; (2) those subprograms callable from CAL only
are indicated with an x; and (3) the library is $PSCLIB for all Pascal
subprograms.

SR-0014 2-3 I

Table 2-1. Subprogram summary

Entry Type

Primary UPDATE CF'r Standard CFT
Reference Deck call From Call Library OS Purpose

Name Name Address Value CAL Only 'l'YPe Dep

ABORT
ABORT ABORT S $UTLIB Ind. Aborts job with traceback

ABS
REAL ABS SF $ARLIB Ind. Computes absolute value

ACCESS
ACS ACCESS S $SYSLIB Dep. Accesses a permanent dataset

ACOS
ACOS ACOS ACOS%: SF $ARLIB Ind. Computes arccosine
ACOSV %ACOS%: %ACOS VF $ARLIB Ind. Computes vectorized

arccosine

ACPTBAD
RCVRBAD ACPTBAD S $SYSLIB Dep. Transfers bad data to a

specified buffer for the
caller

SR-0014 2-4 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck call From call Library OS Purpose

Name Name Address Value CAL Only Type Dep

ACQUIRE
AQR ACQUIRE S $SYSLIB Dep. Accesses a permanent

dataset or acquires a
front-end resident dataset
and stages it to the Cray
mainframe

ACTTABLB
AC'l"I'ABLE AC'l"I'ABLE S $SYSLIB Dep. Returns job accounting table

ADJUST
ADJ ADJUST S $SYSLIB Dep. Expands or contracts a

permanent dataset

AlMAG
COMPLX AIMAG SF $ARLIB Ind. Returns imaginary part of a

complex number

AINT
REAL AINT SF $ARLIB Ind. Truncates to integral value

SR-OOl4 2-5 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CPT Standard eFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

ALP
ALF ADDLFT $ALF S $SYSLIB Dep. Adds name to Logical File

Table (LFT)

AMOD
REAL AMOD SF $ARLIB Ind. Computes division remainder

AMU
TM $AMU $SYSLIB Dep. Returns total allotted

table space

AND
BOOLEAN AND SF $ARLIB Ind. Forms logical product

ANINT
REAL ANINT SA $ARLIB Ind. Calculates nearest whole

number

ARERP
ARERP ARERP% $ARLIB Dep. Processes $ARLIB errors

SR-OOl4 2-6 I

\

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

ARGPLIMQ
FLOW ARGPLIMQ S $UTLIB Ind. Controls listing of

argument values for every
call and return

I AS CDC
ASCDC ASCDC S $UTLIB Ind. Converts ASCII character to

display code character

AS IN
ACOS ASIN ASIN% SF $ARLIB Ind. Computes arcsine
ACOSV %ASIN% %ASIN VF SARLIB Ind. Computes vectorized arcsine

ASSIGN
ASS ASSIGN S $SYSLIB Dep. Opens dataset and assigns

characteristics to it

ATAN
ATAN ATAN ATAN% SF $ARLIB Ind. Computes arctangent
ATANV %ATAN% %ATAN VF $ARLIB Ind. Computes vectorized

arctangent

SR-0014 2-7 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

ATAN2
ATAN2 ATAN2 ATAN2% SF $ARLIB Ind. computes 2-argument

arctangent
ATAN2V %ATAN2% %ATAN2 VF $ARLIB Ind. Computes vectorized

2-argument arctangent

ATS
TM $ATS $SYSLIB Dep. Allocates table space

AXPY
CAXPY CAXPY S $SCILIB Ind. Computes y=ax+y on

complex arrays x and y
SAXPY SAXPY S $SCILIB Ind. Computes y~aX*y on

real arrays x and y
SPAXPY SPAXPY S $SCILIB Ind. Computes y=ax+y on real

arrays x and y when y is
referenced indirectly

BACRSPACE
BACK $BACK $1OLIB Dep. Backspaces one record
BKFILE BACRFILE S $SYSLIB Dep. Backspaces one file
BKSP $BKSP $SYSLIB Dep. Backspaces one record

$BKSPF $SYSLIB Dep. Backspaces one file

SR-0014 2-8 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library as Purpose

Name Name Address Value CAL Only Type nep

I BICON
BICONV BICONV S $UTLIB Ind. Converts integer to ASCII
aICONZ BICONZ S $UTLIB Ind. character

BTD
BTD BTD BTD% $BTD SF $UTLIB Ind. Converts binary number to

ASCII decimal
BTD BID% SF $UTLIB Ind. Converts binary to decimal

ASCII right justified,
blank filled.

BTDR BTDR% SF $UTLIB Ind. Converts binary to decimal
ASCII right justified, zero
filled.

BTDL BTDL% SF $UTLIB Ind. Converts binary to decimal
ASCII left justified, zero
filled.

BTO
BTC BTO BTO% $BTO SF $UTLIB Ind. Converts binary number to

ASCII octal
BTO BTO% SF $UTLIB Ind. Converts binary to octal

ASCII right justified,
blank filled.

SR-0014 2-9 I

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

BTO
continued BTOR BTCR% SF $UTLIB Ind. Converts binary to octal

ASCII right justified, zero
filled.

BTOL BTOL% SF $UTLIB Ind. Converts binary to octal
ASCII left justified, zero
filled.

CABS
CABS CABS CABS, SF $ARLIB Ind. Calculates complex absolute

value
CABSV 'CABS% 'CABS VF $ARLIB Ind. Calculates vectorized

complex absolute value

CCOS
CCOS CCOS CCOS% SF $ARLIB Ind. Computes complex cosine
CCOSV %CCOS% %ceos VF $ARLIB Ind. COmputes vectorize~ complex

cosine

SR-00l4 2-10 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

CDC
CDCr $CDCI $IOLIB Dep. Translates CDC formatted

input data
COCO $CDCO $IOLIB Dep. Translates CDC formatted

output data

CEXPR
CEF CEXPR S $SYSLIB Ind. Transforms an expression

character string to a
Reverse Polish Table

CHAR
CARCON $MOVE $FTLIB Ind. Transfers one character

item to result
$PAD $FTLIB Ind. Terminates transfer

OCARCON SCCI SFTLIB Ind. Initializes concatenation
for store

$CCT $FTLIB Ind. Transfers one character
item to result

$CCF $FTLIB Ind. Terminates transfer
CHARCPR LGE $GE SF $FTLIB Ind. Compares ASCII arguments

for greater than or equal to
LGT $GT SF $FTLIB Ind. Compares ASCII arguments

for greater than

SR-0014 2-11 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

CHAR
continued LLT $LT SF $FTLIB Ind. Compares ASCII arguments

for less than
LLE $LE SF $FTLIB Ind. Compares ASCII arguments

for less than or equal to

I $EQ $FTLIB Ind. Compares ASCII arguments
for equality

$NE $FTLIB Ind. Compares ASCII arguments
for nonequality

INDEX INDEX SF $FTLIB Ind. Finds position of second
argument as substring of
first argument

LEN LEN SF $FTLIB Ind. Finds length of argument

CHCONV
CHCONV CHCONV S $UTLIB Ind. Converts ASCII character to

integer I
CLEARBT

BTMODE CLEARBT S $UTLIB Dep. Temporarily disables
bidirectional memory
transfers

SR-OOl4 2-12 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

CLEARBTS
BTMODE CLEARBTS S SUTLIB Dep. permanently disables

bidirectional memory
transfers

CLEARFI
FIMODE CLEARFI S $UTLIB Dep. Temporarily prohibits

floating-point interrupts

CLEARFIS
FIMODE CLEARFIS S $UTLIB Dep. Permanently prohibits

floating-point interrupts

CLOCK
CLOCK CLOCK S/SF SUTLIB Dep. Supplies current system

clock in hh:mm:88 format

CLOSE
CLOSE CLOSE SCLS SA 'IOLIB Dep. Terminates the connection

of a dataset to a unit
SYMDBC CLOSE S $SYSLIB Dep. Closes a random, unblocked

dataset

SR-OOl4 2-13 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

CMPLX
REAL CMPLX SF $ARLIB Ind. Converts two reals to

complex

COMPL
BOOLEAN COMPL SF $ARLIB Ind. Forms logical complement

CONJG
COMPLX CONJG SF $ARLIB Ind. Computes complex conjugate

COpy
CCOpy CCOpy 5 $SCILIB Ind. Copies complex array into

complex array
SCOpy SCOpy S $SCILIB Ind. Copies real array into real

array

COPYD
COpy COPYD S $ IOLIB Dep. Copies one dataset to

another: EOD not copied

SR-0014 2-14 I

Table 2-1. Subpro9ram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

COPYF

I
COpy COPYF S $IOLIB Dep. Copies files from one

dataset to another; EOD not
written

COPYR
COpy COPYR S $IOLIB Dep. Copies records from one

dataset to another~ EOF not
written I

COPYU
COPYU COPYU S $IOLIB Dep. Copies data to EOD in

unblocked format I
COS

COS COS COS% SF $ARLIB Ind. Computes cosine
COS V %COS% ¥I COS VF $ARLIB Ind. Computes vectorized cosine

COSH
COSH COSH COSH% SF $ARLIB Ind. Computes hyperbolic cosine
COSHV %COSH% %COSH VF $ARLIB Ind. Computes vectorized

hyperbolic cosine

SR-0014 2-15 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

COSS
COSS cess COSS% SF $ARLIB Ind. Computes cosine and sine
COSSV %COSS VF $ARLIB Ind. Computes vectorized cosine

and sine
%cesS% VF $ARLIB Ind. Same as %CooS

COSSH
COSH COSSH COSSH% SF $ARLIB Ind. Computes hyperbolic cosine

and sine
COSHV %CooSH VF $ARLIB Ind. Computes vectorized

hyperbolic cosine and sine
COSHV %COSSH% VF $ARLIB Ind. Same as %COSSH

COT
COT COT COT% SF $ARLIB Ind. Computes cotangent
COTV %COT% %COT VF SARLIB Ind. Computes vectorized

cotangent

CRACK
CRACK CRACK S $SYSLIB Dep. Reformats a user-supplied

string into verb,
separators, keywords and
values

SR-0014 2-16 I

\

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

CS
CCS CCS $CS S $SYSLIB Dep. Cracks control statement

$CCS S $SYSLIB Dep. Cracks control statement

CSIN
CSIN CSIN CSIN% SF $ARLIB Ind. Computes complex sine
CSINV %CSIN% %CSIN VF $ARLIB Ind. Computes vectorized complex

sine

CTOC
CTOCSS CTOC% SF $ARLIB Ind. Raises complex scalar to

complex scalar power
CTOCSV CTO%C% VF $ARLIB Ind. Raises complex scalar to

complex vector power
CTOCVS %CTOC% VF $ARLIB Ind. Raises complex vector to

complex scalar power
CTOCVV %CTO%C% VF $ARLIB Ind. Raises complex vector to

complex vector power

CTOI
CTOISS CTOI% SF $ARLIB Ind. Raises complex scalar to

integer scalar power
CTOISV CTO%I% VF $ARLIB Ind. Raises complex scalar to

integer vector power

SR-0014 2-17 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

CTOI CTOIVS %CTOn VF $ARLIB Ind. Raises complex vector to
continued integer scalar power

C'l'OIW %CTO%I% VF $ARLIB Ind. Raises complex vector to
integer vector power

CTOR
CTORSS CroR% SF $ARLIB Ind. Raises complex scalar to

real scalar power
CTORSV CTO%R% VF $ARLIB Ind. Raises complex scalar to

real vector power
CTORVS %CTOR% VF $ARLIB Ind. Raises complex vector to

real scalar power
CTORW %CTO%R% VF $ARLIB Ind. Raises complex vector to

real vector power

DABS
DBLE DABS SA $ARLIB Ind. Determines double-precision

absolute value

DATAN
DATAN DATAN DATANt SF $ARLIB Ind. Computes double-precision

arctangent
DATANV %DATANt %DATAN VF $ARLIB Incl. Computes vectorized

double-precision arctangent

SR-0014 2-18 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From call Library OS Purpose

Name Name Address Value CAL Only Type Dep

DATAN2
DATAN DATAN2 DATAN2% SF $ARLIB Ind. Computes double-precision

2-argument arctangent
DATANV %DATAN2% % DATAN 2 VF $ARLIB Ind. Computes vectorized

double-precision 2-argument
arctangent

DATETIME
DATE DATE S/SF $UTLIB Dep. Returns current date in

mm:dd:yy format
JDATE JDATE S/SF $UTLIB Dep. Returns current Julian date

in yyddd format
TlMEF TlMEF SF $UTLIB Dep. Returns time since initial

TIMEF call in milliseconds

DBLE
REAL DBLE SF $ARLIB Ind. Converts type real to

double precision

DCOS
DCOS DCOS DCOS% SF $ARLIB Ind. Computes double-precision

cosine
DCOSV %DCOS% %DCOS VF $ARLIB Ind. Computes vectorized

double-precision cosine

SR-OOI4 2-19 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE eFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

DDIM
DDIM DDIM DDIM% SF $ARLIB Ind. Double-precision positive
DDIMV %DDIM% %DDIM VF $ARLIB Ind. real difference

DECODE
RFD $DFI $IOLIB Dep. Initializes for decode

SDFV $DFA SIOLIB Dep. Cracks format1 decodes
$DFV% input.
$DFF $IOLIB Dep. Terminates decode

DELETE
DELETE DELETE S $SYSLIB Dep. Removes a saved dataset

from the Dataset Catalog

DELTSK
DELTSK $DELTSK% $UTLIB Ind. Deletes calling task

DIM
REAL DIM SF $ARLIB Ind. Computes positive real

difference

SR-OOl4 2-20 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

DINT
DINT DINT SF $ARLIB Ind. Truncates double-precision
DINTV VF $ARLIB Ind. numbers to integers

DISPOSE
DISPOSE DISPOSE S $SYSLIB Dep. Directs a dataset to the

specified queue

DMOD
DMOD DMOD DMOD% SF $ARLIB Ind. Computes division remainder

%DMOD %OMOD VF $ARLIB Ind.

DNINT
DNINT DNINT DNINT% SF $ARLIB Ind. Calculates nearest integer
DNINTV %DNINT% %DNINT VF $ARLIB Ind.

DOT
COOT CDOTC SF $SCILIB Ind. Finds the conjugated dot

product of two complex
arrays

COOTU SF $SCILIB Ind. Finds the unconjugated dot
product of two complex
arrays

SR-0014 2-21 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE eFT Standard eFT
Reference Deck Call From Call Library OS Purpose

Name Name Address value CAL Only Type Dep

DOT SDOT SOOT SF $SCILIB Ind. Finds the dot product of
continued two real arrays

SPDOT SPOOT SF $SCILIB Ind. Finds the dot product of
two real arrays, one array
is referenced indirectly.

DPREC
DASS DASS% SF $ARLIB Ind. Performs double-precision

addition
DOSS DDSS% SF $ARLIB Ind. Performs double-precision

division
DMSS DMSS% SF $ARLIB Ind. Performs double-precision

multiplication
DSSS DSSS% SF $ARLIB Ind. Performs double-precision

subtraction
DAVV DASV% VF $ARLIB Ind. Performs double-precision

addition, scalar+vector
DAVS% VF $ARLIB Ind. Performs double-precision

addition, vector+scalar
DAVV% VF $ARLIB Ind. Performs double-precision

addition, vector+vector
DDSV% VF $ARLIB Ind. Performs double-precision

division, scalar/vector
DDW nDVS% VF $ARLIB Ind. Performs double-precision

division, vector/scalar
DDVV% VF $ARLIB Ind. Performs double-precision

division, vector/vector

SR-0014 2-22 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard eFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

DPREC
continued DVVV DMSV% VF $ARLIB Ind. Performs double-precision

multiplication, scalar x
vector

DMVS% VF $ARLIB Ind. Performs double-precision
multiplication, vector x
scalar

DMVV% VF $ARLIB Ind. Performs double-precision
multiplication, vector x
vector

DSVV DSSV% VF $ARLIB Ind. Performs double-precision
subtraction, scalar-vector

DSVS% VF $ARLIB Ind. Performs double-precision
subtraction, vector-scalar

DSVV% VF $ARLIB Ind. Performs double-precision
subtraction, vector-vector

DPROD
DBLE DPROD SA $ARLIB Ind. Performs double-precision

product of two real
arguments

I DRIVER
DRIVER DRIVER S $SYSLIE Oep. Allows a user to directly

program a CRAY channel on
an lOS

SR-0014 2-23 I

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

I DSASe
DSASC DSASC S $UTLIB Ind. Converts display code

character to ASCII character

DSIGN
DBLE DSIGN SA $ARLIB Ind. Transfers sign from one

double-precision number to
another

DSIN
DCOS DSIN DSIN% SF $ARLIB Ind. Computes double-precision

sine
DCOSV %DSIN% %DSIN VF $ARLIB Ind. Computes vectorized

double-precision sine

DSNDSP
DSNDSP $DSNDSP $SYSLIB Dep. Searches Logical File Table

(LFT) in user's I/O area
for dataset name

DTB
DTB DTB DTB% $DTB SF $UTLIB Ind. Converts ASCII decimal

integer number to binary

SR-0014 2-24 I

\

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard eFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

DTOD
DTODSS DTOD% SF $ARLIB Ind. Raises double-precision

scalar to double-precision
scalar power

DTODSV DTO%D% VF $ARLIB Ind. Raises double-precision
scalar to double-precision
vector power

DTODVS %DTOD% VF $ARLIB Ind. Raises double-precision
vector to double-precision
scalar power

DTODW %DTO%D% VF $ARLIB Ind. Raises double-precision
vector to double-precision
vector power

DTOI
DTOISS D'1'OI% SF $ARLIB Ind. Raises double-precision

scalar to integer scalar
power

DTOISV DTO%I% VF $ARLIB Ind. Raises double-precision
scalar to integer vector
power

SR-OOI4 2-25 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

DTOI DTOIVS %DTOI% VF $ARLIB Ind. Raises double-precision
continued vector to integer scalar

power
DTOIW %DTO%I% VF $ARLIB Ind. Raises double-precision

vector to integer vector
power

DTOR
DTODSS DTOR% SF $ARLIB Ind. Raises double-precision

scalar to real scalar power
DTODSV DTO%R% VF $ARLIB Ind. Raises double-precision

scalar to real vector power
OTODVS %DTOR% VF $ARLIB Ind. Raises double-precision

vector to real scalar power
DTODVV %DTO%R% VF $ARLIB Ind. Raises double-precision

vector to real vector power

DUMP
CRAYDUMP CRAYDUMP S $UTLIB Ind. Prints a memory dump to a

specified dataset
PDUMP DUMP $DUMP S $UTLIB Dep. Dumps memory and aborts job
PDUMP PDUMP $PDUMP S $UTLIB Dep. Dumps memory

SR-0014 2-26 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

DUMPJOB
DUMPJOB DOMPJOB $SYSLIB Dep. Creates an unblocked

dataset containing the user
job area image

ECHO
ECHO ECHO S $SYSLIB Dep. Allows user to turn on and

off classes of messages to
user logfile

EISPACK
S $SCILIB Ind. See table 4-4.

ENCODE
WFD $EFI SIOLIB Dep. Initializes for encode
WE'D $EFV SEFV% SIOLIB Dep. Cracks format; encodes

$EFA output.
WE'D $EFF $IOLIB Oep. Finalizes encode

END
END $END S $UTLIB Ind. Terminates current job step

and advances job to next
ENDS job step

SR-0014 2-27 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library as Purpose

Name Name Address Value CAL Only Type Dep

ENDFlLE
EODW EODW $EODW S $SYSLIB Dep. Writes EOD, also EOF and

EOR if necessary~ clears
UEOF flag in DSP.

EOFR $EOFR $SYSLIB Dep. Detects EOF on last I/O
operation; clears UEOF flag
in DSP.

EOFW $EOFW $IOLIB Dep. Writes EOF, also EOR if
necessary; clears UEOF flag
in DSP.

ENDRPV
RPV ENDRPV $ENDRPV S $SYSLIB Dep. Continues normal exit

processing after a
reprievable request has
been processed

EOADF
EOADF $EOATEST $SYSLIB Dep. Checks for a read/write

past the allocated area
condition

SR-OOl4 2-28 I

\

\

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE eFT Standard CFT
Reference Deck Call From Call Library 05 Purpose

Name Name Address Value CAL Only Type Dep

EOF
lOOF EOF SF Returns EOF status; clears
lEOF IEOF $IEOF SF $IOLIB Dep. UEOF in DSP.

EQV
BOOLEAN EQV SF SARLIB Ind. Computes logical equivalence

ERREXIT
ABORT ERREXIT 5 SUTLIB Ind. Aborts current job step

EVASGN
EVASGN EVASGN S $UTLIB Ind. Identifies event

EVCLEAR
EVCLEAR EVCLEAR S $UTLIB Ind. Clears event

EVPOST
EVPOST EVPOST S $UTLIB Ind. Posts an event

SR-0014 2-29 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

EVREL
EVREL EVREL S $UTLIB Ind. Releases event identifier

EVTEST
EVTEST EVTEST S $UTLIB Ind. Tests event for posted state

EVWAIT
EVWAIT EVWAIT S $UTLIB Ind. Oelays calling task until

event is posted

EXCHANGE
XPFMT XPFMT S $SYSLIB Ind. Format Exchange Package
FXPF FXP $FXP S $SYSLIB Dep. Print Exchange Package
XPFMT B20CT S $SYSLIB Dep. Format octal representation

of Exchange Package

EXIT
EXIT EXIT S $UTLIB Ind. Terminates current job step

SR-0014 2-30 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CPT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

EXP
CEXP CEXP CEXP% SF $ARLIB Ind. Computes complex exponential
CEXPV %CEXP% tCEXP VF $ARLIB Ind. Computes vector complex

exponential
DEXP DEXP DEXP% SF $ARLIB Ind. COmputes double-precision

exponential
DEXPV %DEXP% %DEXP VF $ARLIB Ind. Computes vector double-

precision exponential
EXP EXP EXP% SF $ARLIB Ind. Calculates exponential
EXPV %EXP% %EXP VF $ARLIB Ind. Calculates vector

exponential

FETCH
FETCH FETCH S $SYSLIB Dep. Obtains a front-end

resident dataset and makes
it local to a job on a Cray
computer

FFT
CRFFT2 CRFFT2 S $SCILIB Ind. Computes a Fast Fourier
CFFT2 CFFT2 S $SCILIB Ind. Transform
RCFFT2 RCFFT2 S $SCILIB Ind.

SR-0014 2-31 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

FP6064
FP6064 FP6064 S $UTLIB Ind. Converts CDC

single-precision to Cray
single-precision

FP6460
FP6460 FP6460 S $UTLIB Ind. Converts Cray

single-precision to CDC
single-precision

FILTER
FILTERG FILTERG S $SCILIB Ind. Calculates general filter

coefficients
FILTERS FILTERS S $SCILIB Ind. Calculates symmetric filter

coefficients
OPFILT OPFILT S $SCILIB Ind. Solves equations by the

Weiner-Levinson method

FINDCR
FINDCH FINDCH S $UTLIB Ind. Searches for the occurrence

of a specified character
str ing. I

SR-0014 2-32 I

\

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call Prom Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

FLOAT
INTEGER FLOAT SF $ARLIB Ind. Converts type integer to

real

FTERP
FTERP FTERP $FTLIB Dep. Processes $FTLIB errors

FLOWTRACE
FLOW ARGPLIMQ S $UTLIB Ind. Controls argument printing

for flowtrace
FLOW FLOWENTR S $UTLIB Ind. Processes CFT flowtrace

option for calls
FLOW FLOWEXIT S $UTLIB Ind. Processes CFT flowtrace

option for RETURN statements
FLOW FLOWLIM S $UTLIB Ind. Sets limit on the number of

subroutine calls to be
traced

FLOW FLOWSTOP S $UTLIB Ind. Processes CPT flowtrace
option

FLOW SETPLIMQ S $UTLIB Ind. Controls CALL printing for
flowtrace

SR-0014 2-33 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS purpose

Name Name Address Value CAL Only Type Dep

FOLR
FOLR FOLR S $SCILIB Ind. Solves first-order linear

recurrences

FOLRN
FOLRN FOLRN S $SCILIB Ind. Solves for the last term of

a first-order linear
recurrence

FOLRP
FOLRP FOLRP S $SCILIB Ind. Solves first-order linear

recurrences

FOLR2
FOLR2 FOLR2 S $SCILIB Ind. Solves first-order linear

recurrences

FOLR2P
FOLR2P FOLR2P S $SCILIB Ind. COmbination of FOLRP & FOLR2

SR-0014 2-34 I

\

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library as Purpose

Name Name Address Value CAL Only Type Dep

GATHER
GATHER GATHER S $SCILIB Ind. Gathers a vector from a

source vector

GETBI
SYMDBC GETBl SF $SYSLIB Dep. Returns address of

subroutine name

GETDSP
GTDSP GETDSP $GTDSP SF $SYSLIB Dep. Locates a Dataset Parameter

$GTDSP% Table

GETLPP
GLPP GETLPP SF $SYSLIB Dep. Returns lines from JCLPP

GETNAMEQ
GNAMEQ GETNAMEQ S $UTLIB Dep. Returns ASCII

left-justified,
space-filled name of
routine that called
FLOWENTR or FLOWEXrT

SR-0014 2-35 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

I
GETPOS

GETPOS GETPOS SF $IOLIB Dep. Gets dataset position
GPOS $GPOS $SYSLIB Dep.
GTPOS GTPOS% $SYSLIB Dep. Gets tape dataset position

GETREGS
GNAMEQ GETREGS S $UTLIB Ind. Returns register usage

statistics for FLOWENTR

GPARAM
GPARAM GETPARAM $GP S $SYSLIB Dep. All three routines transfer

control statement parameter
values to an array provided
by the calling routine

$GPARAM $SYSLIB Dep.

$ PAL $SYSLIB Dep.

SR-OOl4 2-36 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

HEAP
MANAGER HPALLOC HPALLOC ALLOC% S $UTLIB Dep. Allocates a block of memory

from the heap
HPCHECK HPCHECK HCHECK%; S $UTLIB Dep. Checks integrity of the heap
HPCLMOVE HPCLMOVE CLMOVE% S $UTLIB Dep. Changes length of a heap

block, and moves block if
it cannot be extended in
place

HPDEALLC HPDEALLC DEALLC% S $UTLIB Dep. Returns a block of memory
to the heap

HPDUMP HPDUMP HPDUMP% S $UTLIB Dep. Writes information about
the heap to a dataset

HPGROW HPGROW% $UTLIB Dep. Heap expansion routine
HPLEN I HPLEN HPLEN% SF $UTLIB Dep. Returns length of a heap

block
HPMEM HPMEM% $UTLIB Dep. Memory request routine
HPMERGE HMERGE% $UTLIB Dep. Heap merge routine
HPNEWLEN HPNEWLEN NEWLEN% S $UTLIB Dep. Changes length of a heap

block
HPSHRINK HPSHRINK SHRINK% S $UTLIB Dep. Returns memory from heap to

operating system
HPSTAT IHPSTAT HPSTAT% SF $UTLIB Dep. Returns information about

the heap

SR-0014 2-37 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

IOODEL
IOODEL IOODEL SF $UTLIB Ind. Deletes SKOL string or

substring and returns the
length of resulting string

IOOERR
IOOERR IOOERR S $UTLIB Ind. Handles run time errors in

SKOL programs

IOOMVC
IOOMVC IOOMVC SF $UTLIB Ind. Replaces SKOL string or

substring with simple
character and returns the
length of resulting string

IOOMVM
IOOMVM IOOMVM SF $UTLIB Ind. Replaces SKOL string or

substring with another SKOL
string or substring and
returns the length of the
resulting string

SR-0014 2-38 I

\

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE eFT Standard CFT
Reference Deck call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

rOOORD
rOOORD IOOORD SF $UTLIB Ind. Returns internal SKOL code

for a given ASCII character

IOOREAD
I o o READ IOQREAD S $UTLIB Ind. Reads a logical record in

Al format and converts each
word containing an ASCII
character, left-justified,
space-filled, to its
internal SKOL code

IOOSETUP
IOOSETUP IOOSETUP S $UTLIB Ind. Initializes a SKOL

program's table for direct
translation of ASCII
character codes to internal
ordinal numbers

SR-OOl4 2-39 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call Prom Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

IOOWRITE
IOOWRITE IOOWRITE S $UTLIB Ind. Writes characters defined

by TYPE CHAR statement;
converts character ordinals
to ASCII characters in (Al)
format, left-justified,
space-filled, and then
writes them as a logical
record.

lABS
INTEGER lABS SF $ARLIB Ind. Computes integer absolute

value

IBM
IBMI $IBMI $IOLIB Dep. Translates input IBM

formatted data
lEMa $IBMO $IOLIB Dep. Translates output IBM

formatted data

lCAMAX
lCAMAX ICAMAX SF $SCILIB Ind. Finds the first index of

the maximum absolute value
of a complex array

SR-0014 2-40 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call Prom Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

ICEIL ICEIL ICEIL SF $UTLIB Ind. Returns integer ceiling of
a rational number
represented as two integer
parameters

IDIM
INTEGER 101M SF $ARLIB Ind. Computes positive integer

difference

IDNINT
IDNIN'l' IDNINT IDNINT% SF $ARLIB Ind. Finds nearest integer to

%IDNINT %IDNINT% VF $ARLIB Ind. double-precision number

IFDNT

I IFDNT IFDNT SF $SYSLIB Dep. Determines if a dataset is
local to the job

IGTBYT
IGTBYT IGTBYT SF $tJTLIB Ind. Fetches bytes

SR-OOl4 2-41 I

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE eFT standard CFT
Reference Deck Call From call Library OS Purpose

Name Name Address Value CAL Only Type Dep

IILZ
IILZ IILZ $SCILIB Ind. Returns the number of zero

values before the first
nonzero value

lIN
NCON $IIN $UTLIB Ind. Contains integer powers

10 in range of 100 to
of

1018

ILLZ
ILLZ ILLZ SF $SCILIB Ind. Returns the number of

values that do not have the
first bit set before the
first value that does have
the first bit set

ILSUM
ILSUM ILSUM SF $SCILIB Ind. Returns total number of

true values in array
declared LOGICAL

SR-0014 2-42 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library as Purpose

Name Name Address Value CAL Only Type Dep

IMX
NCON $IMX $UTLIB Ind. Contains double-precision

floating-point
representation of negative
powers of 10 in range of
100 to 10-4096

INQUIRE
INQUIRE INQUIRE $INQ SA $ IOLIB Dep. Returns the status of a

unit or a dataset

INSASCI
INSASCI INSASCI% S $SYSLIB Ind. Inserts ASCII parameters

into a message

INT
REAL INT SF $ARLIB Ind. Truncates to integer value

INT
TM $INT $SYSLIB Dep. Initializes table pointers

SR-0014 2-43 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

INT6064
INT6064 INT6064 S $UTLIB Ind. Converts CDC integer to

Cray integer

INT6460
INT6460 INT6460 S $UTLIB Ind. Converts Cray integer to

CDC integer

IOERP
IOERP IOERP% $IOLIB nep. Processes I/O errors

NLERP% SIOLIB Dep. Processes NAMELIST errors

IOSTAT
IOSTAT IOSTAT SF $ IOLIB Dep. Returns EOF status; clears

UEOF in nsp.

IPX
NCON $IPX $UTLIB Ind. Contains double-precision

floating-point
representation of positive
powers of 10 in range of
100 to 10-4096

SR-0014 2-44 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

ISAMAX
ISAMAX ISAMAX SF $SCILIB Ind. Finds the first index of

the largest absolute value
in a real array

ISAMIN
ISAMIN ISAMIN SF $SCILIB Ind. Finds first index of the

smallest absolute value in
a real vector

ISIGN
INTEGER ISIGN SF $ARLIB Ind. Transfers sign from one

integer to another

ISRCH
I SEARCH SF $SCILIB Ind. Returns the first location

ISRCHEQ ISRCHEQ of a true condition
ISRCHNE ISRCHNE
ISRCHFLT ISRCHFLT
ISRCHFLE ISRCHFLE
ISRCHFGT ISRCHFGT
ISRCHFGE ISRCHFGE
I SRCHILT ISRCHILT

SR-OOl4 2-45 I

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

ISRCH
continued ISRCHILE ISRCHlLE

ISRCHIGT ISRCHIGT
ISRCHlGE ISRCHlGE

lSMAX
ISMAX ISMAX SF $SCILIB Ind. Finds the first index of

the maximum of an array

ISMIN
ISMIN ISMIN SF $SCILIB Ind. Finds the first index of

the minimum of an array

ITOI
ITOISS lTOI% SF $ARLIB Ind. Raises integer scalar to

integer scalar power
ITOIVS tITOl% VF $ARLIB Ind. Raises integer vector to

integer scalar power
ITOIW ITO%It VF $ARLIB Ind. Raises integer scalar to

integer vector power
tITOtI% VF $ARLIB Ind. Raises integer vector to

integer vector power

SR-0014 2-46 I

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE CFT Standard eFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

JNAME
JNAME JNAME SF $SYSLIB Dep. Returns job name

I KOMSTR
KOMSTR KOMSTR SF $UTLIB Ind. Compares bytes

LEADZERO
BOOLEAN LEADZ SF $ARL1B Ind. Tallies number of leading

zero bits

LENGTH
LENGTH LENGTH SF $10L1B Dep. Returns number of words

processed in last BUFFER
I/O operation

LINPACK
S $SCIL1B Ind. See table 4-3.

SR-0014 2-47 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

LGO
LGO LGO $LGO S $SYSLIB Dep. Loads an absolute program

from a local dataset
containing the binary image
as the first record

LOADF
LOADF $STOREF $UTLIB Ind. Performs run time array

bounds checking
$LOADI (Performed by all LOADF

routines)
$ LOADR
$ LOAD L
$LOADD
$LOADC

LOC
I LOC LOC SF $FTLIB Ind. Returns first word address

of argument

LOCKASGN
LOCRASGN LOCKASGN S $UTLIB Ind. Identifies lock

SR-0014 2-48 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

LOCKOFF
LOCKOFF LOCKOFF S $UTLIB Ind. Clears lock

LOCKON
LOCKON LOCKON S $UTLIB Ind. Sets lock

LOCKREL
LOCKREL LOCKREL S $UTLIB Ind. Releases lock

LOCKTEST
LOCKTEST LOCKTEST S $UTLIB Ind. Tests lock

LOG
ALOG ALOG ALOG% SF $ARLIB Ind. Computes natural logarithm
ALOGV %ALOG% %ALOG VF $ARLIB Ind. Computes vector natural

logarithm
ALOGlD ALOGlD ALOGIO% SF $ARLIB Ind. Computes common logarithm
ALOGlOV %ALOGID% %ALOGlO VF $ARLIB Ind. Computes vector common

logarithm
CLOG CLOG CLOG % SF $ARLIB Ind. Computes complex logarithm
CLOGV %CLOG% % CLOG VF $ARLIB Ind. Computes vector complex

logarithm

SR-OOI4 2-49 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE eFT Standard CFT
Reference Deck Call From Call Library OS purpose

Name Name Address Value CAL Only Type Dep

LOG
continued DLOG DLOG DLOG% SF $ARLIB Ind. Computes double-precision

natural logarithm
DLOGV %DLOG% %DLOG VF $ARLIB Ind. Computes vector

double-precision natural
logarithm

DLOG DLOGlO DLOGlO% SF $ARLIB Ind. Computes double-precision
common logarithm

DLOGV %DLOGlO% %DLOGIO VF $ARLIB Ind. Computes vector
double-precision common
logarithm

LOGECHO
LOGECHO LOGECHO S $UTLIB Dep. Writes last line formatted

by SWFD as a message to
$LOG file

MASK
BOOLEAN MASK SF $ARLIB Ind. Forms ones mask from left

of argument bits if
O<a~g<63i forms ones mask
from right of
(128-argument) bits if
64<a~g<l28.

SR-OOl4 2-50 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

MEM
TM $MEM $SYSLIB Dep. Requests memory

MEMORY
HEM MEMORY S $SYSLIB Dep. Determines or changes the

amount of memory assigned
to a job

MINV
MINV MINV S $SCILIB Ind. SOlves linear equations,

using a partial pivot
search and Gauss-Jordan
reduction

MOD
DMOD OMOn DMOn% SF $ARLIB Ind. Performs double-precision

modulo arithmetic
DMODV iDMOn% 'OMon VF $ARLIB Ind. Performs vectorized

double-precision modulo
arithmetic

SR-0014 2-51 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

MOD
continued LDIVV LDSV% VF $ARLIB Ind. Performs 64-bit integer

division, scalar/vector
LDVS% VF $ARLIB Ind. Performs 64-bit integer

division, vector/scalar
LDVV% VF $ARLIB Ind. Performs 64-bit integer

division, vector/vector
LOMOD LOSS% SF $ARLIB Ind. Performs 64-bit integer

division, scalar/scalar
MOD MOD % SF $ARLIB Ind. Performs 64-bit modulo

arithmetic on two integer
scalars

MODSS% SF $ARLIB Ind. Same as MOD
MODW %MOD% VF $ARLIB Ind. Performs 64-bit modulo

arithmetic on two integer
vectors

MODVV% VF $ARLIB Ind. Same as %MOD%
MODSV% VF $ARLIB Ind. Performs 64-bit modulo

arithmetic on integer
scalar and integer vector

MODVS% VF $ARLIB Ind. Performs 64-bit modulo
arithmetic on integer
vector and integer scalar

SR-OOI4 2-52 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS purpose

Name Name Address Value CAL Only Type Dep

MODIFY
MFY MODIFY S $SYSLIB Dep. Changes permanent dataset

characteristics

I MOVBIT
MOVBIT MOVBIT S $UTLIB Ind. Moves bits

MSC
TM $MSC $SYSL1B Dep. Searches table with mask

MS10
RAIO OPENMS S $IOLIB Dep. Allows user to specify how

WRITMS S $10L1B Dep. records of a dataset are to
READMS S $10L1B Dep. be changed without
CLOSMS S $IOLIB Dep. limitations of sequential
STINDX S $10L1B Dep. access
FINDMS S $10L1B Dep.

MVC
MVC MVC S $UTLIB Ind. Moves characters

SR-0014 2-53 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

MVE
TM $MVE $SYSLIB Dep. Moves memory words to table

MXM
MXM MXM S 'SCILIB Ind. Performs matrix multiply

with fixed row and column
spacing

MXMA
MXMA MXMA S $SCILIB Ind. Performs matrix multiply

with arbitrary row and
column spacing

MXV
MXV MXV S $SCILIB Ind. Performs matrix-vector

multiply with fixed row and
column spacing

MXVA
MXVA MXVA S $SCILIB Ind. Performs matrix-vector

multiply with arbrtrary row
and column spacing

SR-OOl4 2-54 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

NACSED

I PDDED NACSED SF $SYSLIB Dep. Returns edition number of
last dataset that was
accessed, acquired, or saved

NAMELIST
RNL $RNL SIOLIB Ind. Reads NAMELIST input

RNLSKIP S SIOLIB Ind. Determines action for wrong
NAMELIST group

RNLTYPE S SIOLIB Ind. Determines action for
NAMELIST type mismatch
across equal sign

RNLECHO S $ IOLIB Ind. Specifies unit for NAMELIST
error messages and input
echo

RNLFLAG S SIOLIB Ind. Adds or removes NAMELIST
echo-initiating characters

RNLDELM S $IOLIB Ind. Adds or removes NAMELIST
group name del~itin9
character

RNLSEP S $lOLIB Ind. Adds or removes NAMELIST
separator character

RNLREP S $IOLIB Ind. Adds Or removes NAMELIST
replacement character

RNLCOMM S SIOLIB Ind. Adds or removes NAMELIST
trailing comment characters

SR-0014 2-55 1

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS purpose

Name Name Address Value CAL Only Type Dep

NAMELIST
continued WNL $WNL $IOLIS Ind. writes NAMELIST output

WNLLONG S SIOLIB Ind. Specifies NAMELIST output
line length

WNLDELM S SIOLlB Ind. Specifies NAMELlST
delimiting character

WNLSEP S SIOLlS Ind. Specifies NAMELIST
separator character

WNLREP S 'lOLIS Ind. Specifies NAMELIST
replacement character

WNLFLAG S 'IOLIS Ind. Specifies first character
of first line

NEQV
BOOLEAN NEQV SF $ARLIB Ind. computes logical difference

NICV
NICV NICV% $UTLIB Ind. COnverts numeric input

$NICV $UTLIB Ind.
I NlCONV NlCONV S $UTLIB Ind.

SR-0014 2-56 1

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE eFT Standard CPT
Reference Deck Call From call Library OS Purpose

Name Name Address Value CAL Only Type Dep

NINT
INTEGER NINT SA $ARLIB Ind. Calculates nearest integer

NOCV
NOCV NOCV% $UTLIB Ind. Converts numeric output

$NOCV $UTLIB Ind.
I NOCONV NOCONV 5 $UTLIB Ind.

NORERUN
RERUN NORERUN 5 $SYSLIB Dep. Controls monitoring of

conditions causing job to
be flagged as not rerunnable

NtlMBLKS
NUMBLKS NUMBLRS S $SYSLIB Dep. Returns current size of

dataset in S12-word blocks

SR-0014 2-57 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck call From call Library os Purpose

Name Name Address Value CAL Only Type oep

OPEN
SYMDBC OPEN S $SYSLIB Dep. Opens a random, unblocked

dataset
I OPEN $OPN SA $lOLIB Dep. Connects existing dataset

to unit, creates
preconnected dataset,
creates dataset and
connects it to unit, or
changes certain specifiers
of connection between
dataset and unit.
(Implements FORTRAN OPEN
statement.) I

OR
BOOLEAN OR SF 'ARLIB Ind. Forms log ical sum

ORDERS
ORDERS ORDERS S $SCILIB Ind. Internally sorts

fixed-length records

SR-OOl4 2-58 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck call From call Library OS Purpose

Name Name Address Value CAL Only Type Dep

OTB
OTB OTB SOTB SF $UTLIB Ind. Converts octal ASCII number

to binary

OVERLAY
OVERLAY OVERLAY S $UTLIB Dep. Processes overlays

P32
P32 P32 S $ UTL IB Ind. Packs 32-bit words

P6460
P6460 P6460 S $UTLIB Ind. Packs 60-bit words

PACK
PACK PACK S $SYSLIB Ind. Packs a specified number of

words into a packed list

PAUSE
STOP $ PAUSE $UTLIB Ind. Suspends program execution

or terminates job step;
installation dependent.

SR-0014 2-59 I

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE CFT Standard CFT
Reference Deck Call From call Library OS Purpose

Name Name Address Value CAL Only Type Dep

PBN
PBN $APBN $SYSLIB Dep. Asynchronously postions

dataset
$PBN $SYSLIB Dep. Synchronously positions

dataset

I PERF
PERF PERF S $SYSLIB Dep. Hardware performance monitor

PERMIT
PER PERMIT S $SYSLIB Dep. Allows the owner of a

permanent dataset to
control the manner in which
other users can use the
dataset

PPL
PPL PPL S $SYSLIB Dep. Processes keywords for a

given directive

SR-OOl4 2-60 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

POPCNT
BOOLEAN POPCNT SF $ARLIB Ind. Tallies number of bits set

in a word

POPPAR
BOOLEAN POPPAR SF $ARLIB Ind. Parity of number of bits

set in a word

I
PRCW

PROf $PRCW $SYSLIB Dep. Positions dataset after an
RCW

PTS
TM $PTS' $SYSLIB Dep. Presets table space

PUTBYT
PUTBYT PtrrBYT S $UTLIB Ind. Stores byte

SR-0014 2-61 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE eFT Standard eFT
Reference Deck call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

RANDOM
RANF RANF RANF% SF $ARLIB Ind. Returns a random number
RANFV %RANF% %RANF VF $ARLIB Ind. Returns a vector of random

numbers
RANGE'!' RANGET RANGET% SF $ARLIB Ind. RetUrns current seed of the

random number generator
RANSET RANSET RANSET% S $ARLIB Ind. Sets random seed

RANFI
RANSED RANFI $ARLIB Ind. Contains current index to

seed buffer for random
number generator

RANFS
RANSED RANFS $ARLIB Ind. Contains 128 random number

seeds in a buffer

RB
RB $RB 'lOLIB Pep. Initiates buffered input

SR-0014 2-62 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

RBN
RBN RBN $RBN SF $SYSLIB Ind. Replaces trailing blanks

with nulls

RCW

I
RCW $RCHP $SYSLIB Dep. Reads characters in partial

record mode
$RCHR $SYSLIB Dep. Reads characters in record

mode
$RCWP $SYSLIB Dep. Reads words in partial

I record mode
$RCWR $SYSLIB Dep. Reads words in record mode

RDIN
SYMDBC RDIN S $SYSLIB Dep. Reads a buffer of data from

a random, unblocked dataset

RDYQUE
RDYQUE $RDYQUE% $UTLIB Ind. Readies a queue of tasks

for execution

RDYTSK
RDYTSK $RDYTSK% $UTLIB Ind. Readies a task for execution

SR-0014 2-63 I

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

READ
I READ READ S $IOLIB Ind. Reads words, full record

mode

READC
READC READe s $IOLIB Ind. Reads characters, full

record mode

READCP
READCP READCP S $IOLIB Ind. Reads characters, partial

record mode

READ IBM
READ IBM READ IBM S $IOLIB Ind. Reads two IBM 32-bit

floating-point words from
each Cray 64-bit word

READP

I READP READP S $IOLIB Ind. Reads words, partial record
mode

SR-0014 2-64 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library as Purpose

Name Name Address Value CAL Only Type Dep

REAL
COMPLX REAL SF $ARLIB Ind. Returns real part of a

complex number

RELEASE
RLS RELEASE S $SYSLIB Dep. Releases a dataset

REMARK
REMARK REMARK S $UTLlB Dep. Enters message in logfile

REMARK 2 S $UTLIB Dep. Enters message and message
REMARKF ID in logfile

REPRIEVE
RPV SETRPV $SETRPV S $SYSLIB Dep. Transfers control to a

specified routine upon
encountering a
user-selected reprievable
error condition

ENDRPV ENDRPV $ENDRPV S $SYSLIB Dep. Continues job step
termination processing or
clears an existing reprieve
environment

SR-0014 2-65 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library as Purpose

Name Name Address Value CAL Only Type Dep

RERUN
RERUN RERUN S $SYSLIB Dep. Allows user to set job

rerunnability status

REWD
WCW $REWD $SYSLIB Dep. Rewinds dataset

RFD
RFD $RFI $10LIB Dep. Initializes for formatted

read
$RFV $RFV% $10LIB Dep. Cracks format, reads input.
$RFA $10LIB Dep. Vectorizes formatted read
$RFF $10LIB Dep. Terminates formatted read

I $RCHK $10LIB Dep. Read formatted, check1
$RNOCHK $10L18 Dep. Read formatted, no check

RLB
RLB $RLB $SYSLIB Dep. Reads data directly from

user area

SR-0014 2-66 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

RLD
RLD $RLI $IOLIB Dep. Reads list-directed input

$RLA $IOLIB Dep.
$RLF $ IOLIB Dep.

RNB
RNB RNB $RNB SF $SYSLIB Ind. Replaces trailing nulls

with blanks

ROT
CROT CROT S 'SCILIB Ind. Applies complex Givens

plane rotation
CROTG CROTG S $SCILIB Ind. Constructs complex Givens

plane rotation
SROT SROT S $SCILIB Ind. Performs Givens plane

rotation
SROTG SROTG S $SCILIB Ind. Constructs Givens plane

rotation
SROTH SROTM S $SCILIB Ind. Performs modified Givens

plane rotation
SROTMG SRO'lMG S $SCILIB Ind. Calculates a rotation

matrix as parameters for
modified Givens plane
rotation SROTM

SR-OOl4 2-67 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

RTOI
RTOISS RTOI% SF $ARLIB Ind. Raises real scalar to

integer scalar power
RTOIVS %RTOI% VF $ARLIB Ind. Raises real vector to

integer scalar power
RTOIVV RTO%I% VF $ARLIB Ind. Raises real scalar to

integer vector power
%RTO%!% VF $ARLIB Ind. Raises real vector to

integer vector power

RTOR
RTORSS RTOR% SF $ARLIB Ind. Raises real scalar to real

scalar power
RTORSV RTO%R% VF $ARLIB Ind. Raises real scalar to real

vector power
RTORVS %RTeR% VF $ARLIB Ind. Raises real vector to real

scalar power
RTORW %RRO%R% VF $ARLIB Ind. Raises real vector to real

vector power

SR-0014 2-68 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address value CAL Only Type Dep

RU
RU $RUI $IOLIB Dep. Initializes for unformatted

read
$RUV $RUV% $IOLIB Dep. Reads unformatted input
$RUA $IOLIB Dep. Reads unformatted input
%$RUV% into a vector
$RUF $IOLIB Dep. Terminates unformatted read

RUT
RUT RUT I % $IOLIB Dep. Initializes foreign dataset

read
RUTO% $IOLIB Dep. Reads foreign dataset, full

record mode
RUTDP% $IOLIB Dep. Reads foreign dataset,

partial record mode
RUTF% $IOLIB Dep. Terminates foreign dataset

read
FDGPOS% $IOLIB Dep. Gets foreign dataset

position
FDSPOS% $IOLIB Dep. Sets foreign dataset

position
FDBKSP% $ IOLIB Dep. Backspaces foreign dataset

SR-OOl4 2-69 I

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE eFT Standard CM'
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

SAVE
SVS SAVE S $SYSLIB Dep. Makes a dataset permanent

SCAL
CSCAL CSCAL S $SCILIB Ind. Scales a complex array by a

complex factor
CSSCAL CSSCAL S $SCILIB Ind. Scales a complex array by a

real factor
SSCAL SSCAL S 'SCILIB Ind. Scales a real array by a

real factor

SCATTER
SCATTER SCATTER S $SCILIB Ind. Scatters a vector into

another vector

SCERP
SCBRP SCERP $SCERP S 'SCILIB Ind. Processes 'SCILIB errors,

issues logfile error
message, then aborts with
traceback.

SR-OOl4 2-70 I

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

SCHED
SellED $SCHED% $UTLIB Dep. Schedules logical CPUs for

user tasks

SCNRM2
SCNRM2 SCNRM2 SF $SCILIB Ind. Calculates the Euclidean

norm (12) of a complex
array

SDACCESS
SDACC SDACCESS S $SYSLIB Dep. Allows a FORTRAN program to

access system datasets

SDSP
SDSP $SDSP $SYSLIB Dep. Searches Dataset Parameter

Tables for a dataset name
and returns DSP address

SEARCH
OSRCHI OSRCHI S $SCILIB Ind. Searches an ordered array

for a target
OSRCHF OSRCHF S $SCILIB Ind.

SR-0014 2-71 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS purpose

Name Name Address Value CAL Only Type Dep

SECOND
SECOND SECOND S/SF $UTLIB Ind. Returns time since start of

job in floating-point
seconds

SEGRES SEGRES $SEGRES $UTLIB Dep. Initializes execution of a
$SEGCALL segmented program and

services intersegment
subroutine calls

SENSEBT
BTMODE SENSEBT S $UTLIB Dep. Returns mode indicating

bidirectional memory
transfers are enabled or
disabled

SENSEFI
FIMODE SENSEFI S $UTLIB Dep. Returns mode indicating

floating-point interrupts
permitted or prohibited

SR-0014 2-72 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CPT Standard CFT
Reference Deck Call From call Library OS Purpose

Name Name Address Value CAL Only Type Dep

SETBT
BTMODE SETBT S 'UTLIB Dep. Temporarily enables

bidirectional memory
transfers ..

SETBTS
BTMODE SETBTS S $UTLIB Dep. Permanently enables

bidirectional memory
transfers

SETFI
FIMODE SETPI S 'UTLIB Dep. Temporarily permits

floating-point interrupts

SETFIS
FIMODE SETFIS S $UTLIB Ind. Enables floating-point

interrupts until explicitly
disabled

SETPLIMQ
FLOW SETPLlMQ S $UTLIB Ind. Processes eFT flowtrace

option

SR-0014 2-73 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard eFT
Reference Deck Call From call Library OS Purpose

Name Name Address Value CAL Only Type Dep

SETPOS
SETPOS SETPOS S $lOLIB Dep. Set dataset position
SPOS $SYSLlB Dep.
STPOS $SYSLlB Dep. Set tape dataset position
POS $ASPOS $SYSLlB Dep. Asynchronously positions

current dataset
$FSPOS $SYSLIB Dep. Finishes the asynchronous

dataset positioning request
$GPOS $SYSLIB Dep. Returns current dataset

position
$SPOS $SYSLIB Dep. Positions dataset to a word

address

I STPOS STPOS% $SYSLIB Dep. Positions tape dataset
SETPOS GETPOS SF $IOLIB Dep. Returns current dataset

position
SETPOS S $IOLIB Dep. Positions dataset

SFN
RNB RNB $RNB SF $SYSLIB Ind. Replaces trailing nulls

SFN with blanks

SHIFT
BOOLEAN SHIFT SF $ARLlB Ind. Shifts left circularly

SR-OOl4 2-74 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

SHIFTL
BOOLEAN SHIFTL SF $ARLIB Ind. Shifts left; zero fill.

SHIFTR
BOOLEAN SHIFTR SF $ARLIB Ind. Shifts right; zero fill.

SIGN
REAL SIGN SF $ARLIB Ind. Transfers sign from one

real number to another

SIN
COS SIN SIN% SF $ARLIB Ind. Computes sine
COSV %SIN% %SIN VF $ARLIB Ind. Computes vectorized sine

SINH
COSH SINH SINH% SF $ARLIB Ind. Computes hyperbolic sine
COSHV %SINH% %SINH VF $ARLIB Ind. Computes vectorized

hyperbolic sine

SR-0014 2-75 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

SKIP
SKIP SKIPR S $IOLIB Dep. Bypasses a specified number

of records in a dataset
SKIPF S $lOLIB Dep. Bypasses a specified number

of files in a dataset
SKIPD S $IOLIB Dep. Positions a dataset at end

of data

SKIPBAD
RCVRBAD SKIPBAD S $SYSLIB Dep. Skips to the first good

data encountered

I SKIPU
SKIPU SKIPU S $IOLIB Dep. Skips sectors on unblocked

dataset

SLERP
SLERP SLERP% $SYSLIB Ind. Processes $SYSLIB errors;

aborts with traceback.

SR-0014 2-76 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

SLFT
SDSP $SLFT $SYSLIB Dep. searches Logical File Table

for dataset name and
returns LFT address

SMACH
SMACH SMACH SF $SCILIB Ind. Real function of an integer

argument that returns Cray
machine constants

I CMACH CMACH SF $SCLIB Ind. Computes complex Cray
constants

SNAP
SNAP SNAP S $SYSLIB Dep. Prints current register

contents on $OUT

SNRM2
SNRM2 SNRM2 SF $SCILIB Ind. Calculates Euclidean norm

(12) of a real array

SOLR
SOLR SOLR S $SCILIB Ind. Solves second-order linear

recurrences

SR-OOl4 2-77 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS purpose

Name Name Address Value CAL Only Type Dep

SOLRN
SOLRN SOLRN S $SCILIB Ind. Solves for only the last

term of a second-order
linear recurrence

SOLR3
SOLR3 SOLR3 S $SCILIS Ind. Computes second-order

linear recurrence of three
terms

SQRT
CSQRT CSQRT CSQRT% SF $ARLIB Ind. Computes complex square root
CSQRTV %CSQRT% %CSQRT Vi' $AlU.IB Ind. Computes vectorized complex

square root
DSQRT DSQRT DSQRT% SF $ARLIB Ind. Computes double-precision

square root
DSQRTV %DSQRT% % DSQRT VF $ARLIB Ind. Computes vectorized

double-precision square root
SQRT SQRT SQRT' SF $ARLIB Ind. Calculates square root
SQRTV %SQRT' 'SQRT VF $ARLIB Ind. Calculates vectorized

square root

SR-0014 2-78 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

SRC
TM $SRC $SYSLIB Oep. Searches table for a

specific value

SSWITCH

I SSWITCH SSWITCH S/SF $UTLIB Dep. Tests pseudo sense switch

STACK
STACKAL $STKOFEN $UTLIB Dep. Handles overflow of a stack

during a subprogram entry
$STKCR $UTLIB Oep. Creates a stack
$STKUFEX $UTLIB Oep. Handles stack segment

underflow in a subprogram
exit

STACKOE $STKDE $UTLIB Dep. Deletes a stack
$STKUFCK $UTLIB Oep. Checks for stack segment

underflow in a subprogram
exit

STOP
STOP $STOP $UTLIB Ind. Terminates current job step

and advances job to next
job step

SR-0014 2-79 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS purpose

Name Name Address Value CAL Only Type Dep

I STRMOV
STRMOV STRMOV S $UTLIB Ind. Moves bytes

SUBMIT
SUBMIT SUBMIT $SUBMIT S $SYSLIB Dep. Places a job dataset into

the COS input queue

SUM
CSUM CSUM SF $SCILIB Ind. Sums the elements of a

complex array
SASOM SASOM SF $SCILIB Ind. Sums the absolute values of

a real array
SCASUM SCASUM SF $SCILIB Ind. Sums the absolute values of

real and imaginary parts of
a complex array

SSOM S50M SF $SCILIB Ind. Sums the elements of a real
array

SUSTSK
SUSTSI< $SUSTSK% $UTLIB Ind. Suspends execution of the

calling task

SR-0014 2-80 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library os Purpose

Name Name Address Value CAL Only Type Dep

SWAP
CSWAP CSWAP S $SCILIB Ind. Exchanges specified

elements of complex arrays
SSWAP SSWAP S $SCILIB Ind. Exchanges specified

elements of two real arrays

SYMDEBUG
SYMDEBUG SYMDEBUG S $UTLIB Dep. Produces a symbolic dump

DEADBUG

I SYNCH
SYNCH SYNCH% $SYSLIB Dep. Synchronizes tape dataset

TABLE
MANAGER TM TMADW SF $UTLIB Dep. Adds a word to a table

TM TMAMU S $UTLIB Dep. Reports TMGR statistics
TM TMATS SF $UTLIB Dep. Allocates table space
TM TMINIT S $UTLIB Dep. Initializes managed tables

SR-OOl4 2-81 I

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

TABLE
MANAGER TM TMMEM S $UTLIB Dep. Requests memory
continued TM TMMSC SF $UTLIB Dep. Searches table with mask

TM TMMVE S $UTLIB Dep. Moves words
TM TMPTS S $UTLIB Dep. Presets table space
TM TMSRC SF $UTLIB Dep. Searches table
TM TMVSC SF $UTLIB Dep. Searches vector table

TABLES
NCON $IIN $UTLIB Ind. Table of integer powers of

ten
$IMX $UTLIB Ind. Table of negative real

powers of ten
$IPX $UTLIB Ind. Table of positive real

powers of ten
PDD PDD $SYSLIB Dep. Table of permanent dataset

definitions
RANSED RANFI $ARLIB Ind. Table for random number

generator
RANFS

TADD
TPREC TADD TASS $ARLIB Ind. Performs triple-precision

STADD addition
TASS %

SR-OOI4 2-82 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

TAN
COT TAN TAN% SF $ARLIB Ind. Computes tangent
COTV %TAN% % TAN VF $ARLIB Ind. Computes vectorized tangent

TANH
TANH TANH TANH% SF $ARLIB Ind. Calculates hyperbolic

tangent
TANHV %TANH% % TANH VF $ARLIB Ind. Calculates vectorized

hyperbolic tangent

TDIV
TOSS TOrV TOSS $ARLIB Ind. Performs triple-precision

TDSS% division
$TDIV

TIBeR
TIBCR $TIBCR% $UTLIB Ind. Builds task information

block

TIEDE
TIBDE $TIBDE% $UTLIB Ind. Deletes task information

block

SR-0014 2-83 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

TIME
DTTS DTTS S $SYSLIB Dep. Converts from date and time

to timestamp
MTTS MTTS SF $SYSLIB Dep. Converts from a real-time

value to the corresponding
timestamp value

TSDT TSDT S $SYSLIB Dep. Converts between timestamps
and the date and time as
ASCII strings

TSMT TSMT SF $SYSLIB Dep. Converts from a timestamp
to the corresponding
real-time clock value

UNITTS UN I TTS SF $SYSLIB Dep. Returns the number of
timestamp units in a
specified number of
standard time units

TMLT
TMLT TMLT TMSS $ARLIB Ind. Performs triple-precision

TMSS% multiplication
$TMLT

TR
TR TR S $UTLIB Ind. Translates characters

SR-OOl4 2-84 I

Table 2-1. Subprogram summary (continued)

Entry Type

primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library 05 Purpose

Name Name Address Value CAL Only Type Dep

TRBK
TRBK TRBK $TRBK S $SYSLIB Dep. Prints a list of

subroutines showing the
path from the main program
to the current subprogram

TRBKLVL
TRBKLV TRBKLVL S $UTtIB Ind. Aids the traceback mechanism
TRBKLV TRBK LVL % $SYSLIB Ind. by returning information

for the current level

TREMAIN
TREMAIN TREMAIN 5 $SYSLIB Dep. Returns time remaining for

job execution in
floating-point seconds

TSKSTART
TSKSTART TSKSTART S $UTLIB Ind. Initiates a task

TSKTEST
TSKTEST TSKTEST S $UTLIB Ind. Returns a value indicating

whether the indicated task
exists

SR-0014 2-85 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard eFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

TSKTUNE TSKTUNE TSKTUNE S $UTLIB Ind. Modifies scheduling
parameters used by a
multitasking subroutine

TSKVALUE
TSKVALUE TSKVALUE S $UTLIB Ind. Retrieves user id specified

in the task control array
used to create the
executing task

TSKWAIT
TSKWAIT TSKWAIT S $UTLIB Ind. waits for the indicated

task to complete execution

TSUS
TSUB TSUB TSSS% $ARLIB Ind. Performs triple-precision

TSSS subtraction
$TSUB

I U32
U32 u32 S $UTLIB Ind. Unpacks 32-bit words

SR-0014 2-86 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address ValUe CAL Only Type Dep

I U6064
U6064 U6064 S $UTLIB Ind. Unpacks 60-bit words

UEOF
UEOFC $UEOFCL $SYSLIB Dep. Sets the uncleared
UEOFK $UEOFKIL $SYSLIB Dep. end-of-file flag in OSP
UEOFS $UEOFSET $SYSLIB Dep.

UNIT
UNIT UNIT UNITLB SF SIOLIB Dep. Waits for buffer I/O

completion and returns
status

UNPACK
UNPACK UNPACK S $SYSLIB Ind. Expands full words of data

into a larger number of
partial words

USCCTC
USCCTC USCCTC S $UTLIB Ind. Converts EBCDIC character

to ASCII character I

SR-0014 2-87 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type nep

USCCTI
USCCTI USCCTI S $UTLIB Ind. Converts ASCII character to

EBCDIC character

US ICTP
USICTP USICTP S $UTLIB Ind. Converts integer to IBM

packed decimal field

USDCTC USDCTC USDCTC 5 $UTLIB Ind. Converts IBM
double-precision to Cray
double-precision

USDCTI
USDCTI USDCTI S $UTLIB Ind. Converts Cray

single-precision to IBM
double-precision

US ICTC
USICTC USICTC S $UTLIB Ind. Converts IBM integer to

Cray integer

• SR-0014 2-88 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

USICTI
USICTI USICTI S $UTLIB Ind. Converts Cray integer to

IBM integer

USLCTC
USLCTC USLCTC S $UTLIB Ind. Converts IBM Logical to

Cray Logical

USLCTI
USLCTI USLCTI S $UTLIB Ind. Converts Cray logical to

IBM logical

USPCTC
USPCTC USPCTC S $UTLIB Ind. Converts IBM packed decimal

field to integer

USSCTC
USSCTC USSCTC S $UTLIB Ind. Converts IBM

single-precision to Cray
single-precision

• SR-OOl4 2-89 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type nep

I
USSCTI

USSCTI USSCTI S $UTLIB Ind. Converts Cray
single-precision to IBM
single-precision

UTERP
UTERP UTERP% $UTLIB Dep. Processes $UTLIB errors

WArO
WAIO WOPEN S $ IOLIB Dep. Opens a dataset on a disk

and specifies dataset as
word-addressable, random
access

PU'lWA S $IOLlB Dep. Writes a number of words
from memory to a
word-addressable, random
access dataset

GE'lWA S $IOLIB Dep. Reads a number of words
from a word-addressable,
random access dataset

WCLOSE S $IOLlB Dep. Closes a word-addressable,
random access dataset

SEEK S $IOLIB Dep. Allows user to
asynchronously read data
into specified dataset
buffers

SR-OOl4 2-90 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

WB
WB $WB S $IOLIB Dep. Initiates buffered output

WC

I WCH $WCHP $SYSLIB Dep. Writes characters in
partial record mode

WCH $WCHR $SYSLIB Dep. writes characters in record
mode

WE
WWD $WEOF $SYSLIB Dep. writes EOF and/or EOR, if

necessary
WWD $WEOD $SYSLIB Dep. writes EOD: writes EOF I

and/or EOR, if necessary.
,

WFBUFFER
WFBUFFER WFBUFFER $ IOLIB Ind. Loads a character from

$WFD's buffer

WF
WFD $WFI $IOLIB Dep. Initializes for formatted

output
WFVWFV% $IOLIB Dep. Cracks format; writes
%$WFV% output.

SR-0014 2-91 I

Table 2-1. Subpro9ram summary (continued)

Entry Type

Primary UPDATE CFT Standard CFT
Reference Deck Call From Call Library as purpose

Name Name Address Value CAL Only Type Dep

WF 'WFA $lOLIB Dep. Cracks format; writes a
continued vector to output.

$WFF 'IOLIB Dep. Finalizes write

I SWCHK SIOLIB Dep. Write formatted, check;
$WNOCHK $IOLIB Dep. Write formatted, no check

WHEN
WHENEQ WHENEQ S $SCILIB Ind. Returns all locations in an
WHENNE WHENNE array that have a true
WHENFLT WHENFLT relational value to the
WHENFLE WHENFLE target.
WHENFGT WHENFGT
WHENFGE WHENFGE
WHENEQ WHENEQ
WHENNE WHENNE
WHENILT WHENILT
WHENlLE WHENILE
WHENIGT WHENIGT
WHENIGE WHENIGE

WLB
WLB $WLB $SYSLIB Dep. Writes data directly into

user area

SR-OOI4 2-92 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE eFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

WLD
WLD $WLI $IOLIB Dep. writes list-directed data

$WLA
$WLF

WRITE
WRITE WRITE S $IOLIB Ind. writes words, full record

mode

WRITEC
WRITEC WRITEC S $IOLIB Ind. Writes characters, full

record mode

WRITECP
WRITECP WRITECP S $IOLIB Ind. Writes characters, partial

record mode

I
SR-0014 2-93 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE eFT Standard eFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Only Type Dep

WRITIBM
WRITIBM WRITIBM S $lOLIB Ind. Writes two IBM 32-bit

floating-point words from
each Cray 64-bit word

WU
WU $WI SIOLIB Dep. Initializes for unformatted

write
$WUV $WUV% $IOLIB Dep. Writes unformatted output
%$WUV% $lOLIB Dep. Writes a vector to an
$WUA output unit
$WUF $IOLIB Dep. Finalizes write

WUT
WOT WUTl% $IOLIS Dep. Initializes foreign dataset

write
WUTD% SIOLlB Dep. Writes foreign dataset,

full record mode
WUTDP% SIOLIB Dep. Writes forei9n dataset,

partial record mode
WUTF% SIOLlB Dep. Terminates foreign dataset

write
FDWEOF% SIOLlB Dep. Writes foreign dataset,

end-of-file

SR-OOl4 2-94 I

Table 2-1. Subprogram summary (continued)

Entry Type

Primary UPDATE eFT Standard CFT
Reference Deck Call From Call Library OS Purpose

Name Name Address Value CAL Oniy Type Dep

WW
WCW SWWDP SSYSLIB Dep. Writes words in partial mode

$WWPU $SYSLIB Dep. Writes words in partial
record mode with unused bit
count

$WWDR SSYSLIB Dep. Writes words in record mode
SWWDS SSYSLIB Dep. Writes words in record mode

with unused bit count

XOR
BOOLEAN XOR SF 'ARLIB Ind. Forms logical difference

ZTS

TM SZTS% $SYSLIB Dep. Clears table space

SR-OOl4 2-95 I

Table 2-2. Pascal subprogram summary

Call
primary Pascal Call from
Ref. and Standard CAL
UPDATE only Call
Deck Name Address Value (X) Dep. Type purpose

P$$$HPAD P$$$HPAD Ind. SF Get address of heap
control block

P$ABORT P$ABORT Ind. S Abort job step
P$CALLR P$CALLR Ind. SF Get name of calling

routine
P$CBV P$CBV Ind. S Call a call-by-value

routine
p$CONNEC P$CONNEC Ind. S Set file name
P$DATE P$DATE Ind. S Get date
P$DBP P$BREAK P$DBP X Ind. S Breakpoint checking
P$DISP PSDISP Ind. S Dispose heap area
P$DIVMOD P$DIVMOD X Ind. SF Integer division
P$ENDP P$ENDP Ind. S End program
P$EOF P$EOF Ind. SF End of file check
P$EOLN PSEOLN Ind. SF End of line check
P$GET P$GET Ind. S Read record
P$HALT P$HALT Ind. S Terminate program
P$JTIME P$JTIME Ind. SF Get job CPU time
P$LOGMSG P$LOGMSG Ind. S write SLOG message
P$LSTREW P$LSTREW Ind. S Rewrite file without

rewind
P$MEMRY P$MEMRY Ind. SF Memory management
P$MOD P$MOD X Ind. SF Integer modulus
P$NEW P$NEW Ind. S Allocate heap area
P$OSDBS P$OSOBS Dep. S Rewind dataset
P$OSOOT P$OSDOT Dep. S Get date
P$OSDEP P$OSDEP Dep. S Open dataset
P$OSDJT P$OSDJT Dep. S Get job CPU time
P$OSDLM P$OSDLM Dep. S Write $LOG message
P$OSDPR P$OSDPR Dep. S Set prompt string
P$OSDQI P$OSDQI Dep. S Query if dataset is

interactive
P$OSDRC P$OSDRC Dep. S Read characters
P$OSDRP P$OSDRP Dep. S Enable reprieve
PSOSDRW P$OSDRW Dep. S Read words
P$OSDTM P$OSDTM Dep. S Get time of day
P$OSDWC P$OSDWC Dep. S write characters
P$OSDWF P$OSDWF Dep. S write EOF
P$OSDWR P$OSDWR Dep. S write record
P$OSDXP P$OSDXP Dep. S Exit program

I SR-OOl4 2-96 I

Table 2-2. Pascal subprogram summary (continued)

Call
Primary Pascal Call from
Ref. and Standard CAL
UPDATE only Call
Deck Name Address Value (X) Dep. Type Purpose

P$PAGE P$PAGE Ind. S start new page
P$PUT P$PUT Ind. S Write record
p$RB P$RB Ind. S Read Boolean
P$RCH P$RCH Ind. S Read character
P$READ p$READ Ind. S Read record
P$READLN P$READLN Ind. S Read new line
P$REPRV P$REPRV Ind. S Reprieve processing
P$RESET P$RESET Ind. 5 Reset file
P$REWRIT P$REWRIT Ind. S Rewrite file
p$RF P$RF Ind. S Read floating point
P$RI P$RI Ind. S Read integer
P$ROUND P$ROUND X Ind. SF ROUND function
P$RSTR P$RSTR Ind. S Read string
P$RTIME P$RTlME Ind. S Runtime timing
P$RTMSG P$RTMSG P$DEBUG Ind. S Runtime messages
P$RUNTIM P$RUNTIM X Ind. S Runtime

initialization
routine

P$SFRAME P$SFRAME Ind. SF Returns pointer to
caller's stackframe

P$TIME P$TIME Ind. S Get time of day
P$TlMER P$RTlME P$TIMER X Ind. S Runtime timing
P$TRACE P$TRACE Ind. 5 Stack walkback
P$TRUNC P$TRUNC X Ind. SF TRUNC function
P$WB P$WB Ind. S Write Boolean
P$WCH P$WCH Ind. S Write character
P$WEOF P$WEOF Ind. S write end of file
P$WI P$WI Ind. S Write integer
p$WO p$WO Ind. S Write octal integer
P$WR P$WR Ind. S write real number
P$WRITE P$WRITE Ind. S write record
P$WRITLN P$WRITLN Ind. S write end of line
P$WSTR P$WSTR Ind. S Write string

I SR-OO!4 2-97 I

COMMON MATHEMATICAL
SUBPROGRAMS

INTRODUCTION

This section lists the following categories of mathematical subprograms.
(Algorithms and performance statistics are listed in Appendixes A and B.)

• Logarithmic

• Exponential

• Square root

• Trigonometric

• Hyperbolic

• Boolean

• Base value raised to a power

• Double- and triple-precision arithmetic

• Sixty-four bit integer division

• Character

• ASCII conversion

• Miscellaneous math

• Random number processing

• Math tables

3

The routines, whether presented in table form or in text form, list
definition, argument and register information, and result type for each
subprogram or subprogram group. In the routine definition, x and y
indicate the first and second real arguments, respectively. Complex
arguments are represented by z, which is x+iy. Argument and result types
are represented by the following abbreviations.

SR-OQ14 3-1 I

R Real
C Complex
D Double precision
CH Character
I Integer
B Boolean
L Logical
H Hollerith

Each subprogram is listed in the tables with a code (CALL. SEQ. oode)
corresponding to one of the following calling sequences.

NAME - Scalar, call-by-address (SA)

Entry:
argl
arg2

Exit:
(51)
(52)

Address of first argument
Address of second argument (if present)

Result
Second word of result; present if complex or
double-precision result.

CAL usage:

FORTRAN usage: The CFT compiler does not use scalar
call-by-address for these subprograms.

NAME% - Scalar, call-by-v'alue (SV)

(a) One word per argument (SVa)
Entry:

(Sl)
(52)

First argument
Second argument (if present)

Exit:
(Sl) Result

(b) Two words per argument (SVb)
Entry:

(51) , (S2)
(53) , (54)

First argument
Second argument (if present)

Exit:
(Sl) , (52) Result

(c) Three words per
Entry:

(51) , (52) , (53)
(54) , (55) , (S6)

5R-0014

argument (5Vc)

First argument
Second argument

3-2 I

Exit:
(Sl) ,(52) , (S3) Result

CAL usage:
CALLV SQRT%

FORTRAN usage: B:::SQRT(A)
The CFT compiler generates a scalar ca1l-by-va1ue
call to SQRT%.

%NAME - Vector, call-by-address (VA)

Entry:
apgl
apg2
arg3
apg4
(VL)

Exit:
(VI)
(V2)

First word address of first argument
Address of first increment
First word address of second argument (if present)
Address of second increment (if present)
Vector length

Result
Second word of result; present if double-precision or
complex result.

NOTE

For the vector call-by-address calling sequence, the
arguments are taken from FWA, FWA+INCREMENT,
FWA+2*INCREMENT, ••• , FWA+{(VL-l)*INCREMENT.

CAL usage;

FORTRAN usage: The CFT compiler does not use vector
call-by-address for these functions.

%NAME% - Vector call-by-value (VV)

Ca) One
Entry:

(VI)
(V2)
(VL)

SR-0014

word per argument (VVa)

First argument
Second argument (if present)
Vector length

3-3 I

Exit:
(VI) Result

(b) Two words per argument (VVb)
Entry:

(Vl),(V2) First argument
(V3},(V4) Second argument (if present)

Exit:
(VI), (V2) Result

CAL usage:

FORTRAN usage:

CALLV %SQRT%

DO 10 I=l,lO
10 B{I)=SQRT(A{I»

The CFT compiler generates a vector call-by-value
call to %SQRT%.

SR-OOl4

NOTE

The range of many functions is given as Ixl<oo. This
range is interpreted as x representable on the Cray
computer as a floating-point number: that is,
Ixl<28192 or approximately Ixl<102466 •

3-4 I

LOGARITHMIC ROUTINES

Table 3-1. Logarithmic routines

Call Arguments Func.
General Entry Seq. Definition Value
Purpose Names Code No. Type Range Type

Natural log. ALOG SA loge (x) or 1 R O<x<oo R
ALOG% SVa In(x)
%ALOG VA
%ALOG% Wa

Common log. ALOGIO SA loglO(x) 1 R O<x<oo R
ALOGIO% SVa
%ALOGlO VA
tALOGlO% VVa

Complex log. CLOG SA In/z/+ 1 C O<X<CIO C
CLOG% SVb i arctan(y/x)
% CLOG VA
% CLOG % Wb

Double-prec. DLOG SA lOge(x) or 1 D o <X<CIO D
Natural log. DLOG% SVb In(x)

%DLOG VA
%DLOG% Wb

Double-prec. DLOGIO SA 10910 (x) 1 D o <X<CIO D
Common log. DLOG1O% SVb

%DLOG1O VA
%DLOG1O% Wb

SR-0014 3-5 I

EXPONENTIAL ROUTINES

Table 3-2. Exponential routines

Call Arguments Func.
General Entry Seq. Definition Value
Purpose Names Code No. Type Range Type

Complex ex- CEXP SA eXcos(y)+ 1 C Ixi <21hn2 C
ponentiation CEXP% SVb iexsin(y) lyl<2 24

%CEXP VA
%CEXP% Wb

Double-prec. DEXP SA eX I D Ixl <21hn2 D
exponentia- DEXP% SVb
tion %DEXP VA

%DEXP% Wb

Exponentia- EXP SA eX 1 R Ix I <21Jrn2 R
tion EXP% SVa

%EXP VA
%EXP% Wa

SR-0014 3-6 I

SQUARE ROOT ROUTINES

Table 3-3. Square root routines

Call Arguments Func.
General Entry Seq. Definition Value
Purpose Names Code No. Type Range Type

Complex CSQRT SA y'1/2 (I z I +x) + 1 C O<x,y<oo C
square root CSQRT% SVb

%CSQRT VA i"1/2 (I z I-x)
%CSQRT% VVb

Doub1e-prec. DSQRT SA Yx or xl/2 1 D O<x< 00 D -square root DSQRT% SVb
% DSQRT VA
% DSQRT% VVb

Square root SQRT SA y'X or xl/2 1 R O<x<oo R -SQRT% SVa
%SQRT VA
%SQRT% Wa

SR-0014 3-7 I

TRIGONOMETRIC ROUTINES

Table 3-4. Trigonometric routines

Call Arguments Func.
General Entry Seq. Definition Value
Purpose Names Code No. Type Range Type

Arccosine ACOS SA arccos (x) 1 R Ixl<l R
ACOS% SVa
%ACOS VA
tACOS % VVa

Arcsine ASIN SA arcsin(x) 1 R Ixl<l R
ASIN% SVa
%ASIN VA
%ASINt VVa

Arctangent ATAN SA arctan (x) 1 R Ix 1<00 R
ATAN% SVa
%ATAN VA
%ATAN% VVa

Two-argo ATAN2 SA arctan (x/y) 2 R Ixl,lyl<CID R
arctangent ATAN2% SVa (x and y must

%ATAN2 VAb not both be
%ATAN2% VVa zero.)

Oouble-prec. DACOS SA arccos (x) 1 D Ixl<l D
arccosine DACOS% SVb

%DACOS VA
% DACOS % VVb

Double-prec. DASIN SA arcsine (x) 1 D lxl<l D
arcsine DASIN% SVb

%DASIN VA
%DASIN% VVb

SR-OOI4 3-8 I

Table 3-4. Trigonometric routines (continued)

Call Arguments Func.
General Entry Seq. Definition Value
Purpose Names COde No. Type Range Type

Double-prec. DATAN SA arctan (x) 1 D Ixl < 00 D
arctangent DATAN% SVb

%DATAN VA
%DATAN% VVb

Double-prec. DATAN2 SA arctan (x/y) 2 D Ixl,lyl<oo D
two-argo DATAN2% SVb (x and y must
arctan. %DATAN2 VA not both be

% DATAN2 % VVb 0.)

Cosine cos SA cos (x) 1 R Ixl<224 R
COS % SVa
%COS VA
%COS%: VVa

Complex CCOS SA cos (x)cosh(y)+ 1 C Ixl<224 C
cosine CCOS% SVb i sin(x)sinh(y) lyl<2131n2

%CCOS VA
tCCOS% Wb

Double-prec. DCOS SA cos (x) 1 D Ixl<248 D
cosine DCOS% SVb

%OCOS VA
%DCOS Wb

Sine SIN SA sin(x) 1 R lxl<224 R

SIN SVa
%SIN VA
%SIN% VVa

Complex sine CSIN SA sin(x)cosh(y)+ 1 C IxJ<224 C
CSIN% SVb i cos(x)sinh(y) Iyl<2131n2
%CSIN VA
%CSIN% Wb

SR-0014 3-9 I

Table 3-4. Triqonometric routines (continued)

Call Arguments Func.
General Entry Seq. Definition Value
Purpose Names Code No. Type Ranqe Type

Double-prec. DSIN SA sin (x) 1 D Ix 1<248 D
sine DSIN% SVb

%DSIN VA
%DSIN% Wb

COsine and COSS SA Y1=cos(x) 1 R Ixl<224 R
sinet COSS% SVb Y2=sin(x)

%COSS VA
%COSS% Wb

Tanqent TAN SA tan (x) 1 R IxJ<224 R
TAN% SVa
%TAN VA
%TAN% Wa

Double-prec. DTAN SA tan (x) I 0 Ix/<2 46 n
tangent DTAN% SVb Ix-nl>O,

%DTAN VA Inl=l,3,5, •••
%DTAN% VVb

Cotangent COT SA cot (x) 1 R Ixl <224 R
COT% SVa
%COT VA
%COT% VVa

Doub1e-prec. neOT SA cot (x) 1 D Ixl<246 D

cotangent DCOT% SVb Ix-nl>O,
%DCOT VA Inl=l,3,5, •••
%DCOT% Wb

t Not FORTRAN callable

SR-0014 3-10 I

HYPERBOLIC ROUTINES

Table 3-5. Hyperbolic routines

Call Arguments Func.
General Entry Seq. Definition Value
Purpose Names Code No. Type Range Type

Hyperbolic COSH SA (ex+e-x)/2 1 R Ixl<2131n2 R
cosine COSH% SVa

%COSH VA
%COSH% Wa

Hyperbolic SINH SA (eX-e-X)/2 1 R Ixl <21 Jrn2 R
sine SINH% SVa

%SINH VA
%SINH% Wa

Hyperbolic COSSH SA yr;;(ex+e-X }/2 1 R Ixl <21 3rn2 R
cosine and COSSH% SVb Y2=(eX -e-X)/2

. T Slne %COSSH VA
%COSSH% VVb

Hyperbolic TANH SA (eX_e-X) / 1 R Ix I <2131n2 R
tangent TANH % SVa (ex+e-X)

% TANH VA
%TANH% Wa

Double-pree. DCOSH SA eosh(x) 1 D Ixl<213ln2 D
hyperbolic DCOSH% SVb
cosine %DCOSH VA

% DCOSH% VVb

Double-pree. DSINH SA sinh(x) 1 0 Ixl<2l31n2 D
hyperbolic DSINH% SVb
sine %DSINH VA

%DSINH% VVb

t Not FORTRAN callable

SR-OOI4 3-11 I

Table 3-5. Hyperbolic routines (continued)

Call Arguments Func.
General Entry Seq. Definition Value
Purpose Names Code No. Type Range Type

nouble-prec. DTANH SA tanh (x) 1 D Ixl<2l31n2 D
hyperbolic DTANH SVb
tangent %DTANH VA

%DTANH% VVb

SR-OOl4 3-12 I

BOOLEAN ARITHMETIC ROUTINES

These scalar subprograms in table 3-6 are external versions of CFT in-line
functions. These functions can be passed as arguments to user-defined
functions. They are all called by address and results are returned in
register S1.

Table 3-6. Boolean arithmetic routines

Arguments Function
Function Definition Value

No. Type Type

AND computes logical product 0011 2 I,R,L,B B
1010
0010

COMPL Computes logical complement 01 1 I,R,L,B B
10

EQV Computes logical 0011 2 I,R,L,B B
equivalence 1010

0110

LEADZ Counts the number of leading 1 I,R,L,B I
zero bits

MASK Returns a bit mask of ones. If 1 I B
0<arg<63, the mask is
left-justified. If 64<arg:<128,
a right-justified mask of (128-
argument) bits is returned.

NEQV Computes logical difference 2 I,R,L,B B
(same as XOR)

OR Computes logical sum 0011 2 I,R,L,B B
!.Q!.Q.
1011

SR-0014 3-13 I

Table 3-6. Boolean arithmetic routines (continued)

Arguments Function
Function Definition Value

No. Type Type

POPCNT Counts the number of bits set 1 I,R,L,B I
to 1

POPPAR Returns a if even number of bits 1 I,R,L,B I
set; returns 1 if odd number of
bits set

SHIFT Performs circular shift of 2 I,R,L,B B
(al'"gl) to the left by (al'"g2) I
bits

SHIFTL Performs left shift of (al'"gl) 2 I,R,L,B B
by (al'"g2) bits with zero fill

SHIFTR Performs right shift of (al'"gl) 2 I,R,L,B B
by (al'"g2) bits with zero fill

XOR computes logical 0011 2 I,R,L,B B
difference 1010

1001

SR-0014 3-14 I

BASE VALUE RAISED TO A POWER ROUTINES

FORTRAN routines implicitly call the following routines to raise a value
to a power. When the call is from CAL, the VL register must be set for
vector functions. The following routines are called by value. In table
3-7, a plus sign before the TYPE (as in +0) indicates the value must be
positive.

Table 3-7. Values raised to a power

Arguments
Result

Definition Function Base Power
Name

Type Reg Type Reg Type Reg

Complex base raised CTOC% C Sl,82 C 83,84 C 81,52
to a complex power CTO%C% C Sl,52 C V3,V4 C Vl,V2
(C**C) %CTOC% C Vl,V2 C 53,54 C Vl,V2

%CTO%C% C Vl,V2 C V3,V4 C Vl,V2

Complex base raised CTOI% C 81,52 I 83 C 51,82
to an integer power CTO%I% C 51,52 I V3 C Vl,V2
(C**I) %CTOI% C V1,V2 I 53 C VI,V2

%CTO%I% C V1,V2 I V3 C Vl,V2

Complex base raised CTOR% C 51,52 R 83 C 81,82
to a real power CTO%R% C 51,82 R V3 C Vl,V2
(C**R) %CTOR% C Vl,V2 R 53 C Vl,V2

%CTO%R% C Vl,V2 R V3 C Vl,V2

Double-precision DTOD% +0 81,52 D 53,84 D 81,52
base raised to a OTO%D% +D 81,52 0 V3,V4 D Vl,V2
double-precision %OTOO% +D Vl,V2 D 53,54 D Vl,V2
power (O**O) %0'1'0%0% +0 Vl,V2 0 V3,V4 D VI,V2

SR-0014 3-15 I

Table 3-7. Values raised to a power (continued)

Arguments
Result

Definition Function Base Power
Name

Type Reg Type Reg Type Reg

Double-precision DTOI% D 81,82 I 83 D 81,82
base raised to an DTO%I% D 81,82 I V3 D V1,V2
integer power %DTOI% D Vl,V2 I 83 D V1,V2
(D**1) %DTO%I% D Vl,V2 I V3 D Vl,V2

Double-precision DTOR% +D 81,82 R 83 D 81,82
base raised to a DTO%R% +0 51,S2 R V3 D Vl,V2
real power (D**R) %OTOR% +D Vl,V2 R 83 0 VI,V2

%OTO%R% +D VI,V2 R V3 D V1,V2

Integer base raised ITOI% I 81 I 82 I 81
to an integer power ITO%I% I 81 I V2 I VI
(1**1) tITOn I VI I 52 I VI

%ITO%I% I VI I V2 I VI

Real base raised to RTOI% R 81 I 82 R 81
an integer power RTO%I% R 81 I V2 R VI
(R**I) %RTOI% R VI I 52 R VI

%RTO%I% R VI I V2 R VI

I Real base raised to RTOR% +R 51 R 82 R SI
a real power RTO%R% +R 81 R V2 R VI
(R**R) %RTOR% +R V2 R 52 R Vl

%RTO%R% +R V2 R V2 R VI

SR-0014 3-16 I

DOUBLE-PRECISION ARITHMETIC ROUTINES

These routines are implicitly called by FORTRAN to do double-precision
arithmetic. Double-precision arithmetic results are stored in two 64-bit
computer words. In the first word, the high-order 16 bits contain the
exponent and the low-order 48 bits contain the most significant part of
the value. In the second word the low-order 48 bits contain the least
significant part of the value. The first 16 bits of the second word must
be O. Double-precision arithmetic routines are called by value. Where
two fUnction names are given, use of the first one is preferred.
Double-precision arithmetic routines are in table 3-8.

Table 3-8. Double-precision arithmetic routines

Arguments Result

Definition Function Operand 1 Operand 2
Name

Type Reg Type Reg Type Reg

Double-precision DASS% D Sl,S2 D S3,S4 D Sl,S2
addition (D+D) DASV% 0 51,52 D V3,V4 D Vl,V2

DAVS% 0 Vl,V2 D 83,.84 D V1,V2
DAVV% D Vl,.V2 D V3,V4 D Vl,V2

Double-precision DOSS % D 81,82 D S3,84 D 81,82
division (DID) DD8V% D 81,82 D V3,V4 D Vl,V2

DDVS% D Vl,V2 D 83,54 D Vl,V2
DDVV% D Vl,V2 D V3,V4 D Vl,V2

Double-precision DMSS% D Sl,62 D S3,S4 D 61,82
multiplication DMSV% D 61,62 0 V3,V4 D Vl,V2
(D*D) DMVS% D Vl,V2 D 83,84 D Vl,V2

DMVV% 0 Vl,V2 D V3,V4 D Vl,V2

Double-precision DSSS% D Sl,82 D 83,S4 D Sl,S2
subtraction (0-0) DSSV% D Sl,82 0 V3,V4 D Vl,V2

D6VS% 0 V3,V4 0 83,S4 0 Vl,V2
D8VV% D V3,V4 D V3,V4 D Vl,V2

SR-0014 3-17 I

TRIPLE-PRECISION ARITHMETIC ROUTINES

Triple-precision arithmetic results are stored in three contiguous 64-bit
computer words. In the first word, the high-order 16 bits contain the
exponent and the low-order 48 bits contain the first part of the value.
The rest of the value is contained in the low-order 48 bits of the second
and third words. The high-order 16 bits of the second and third words
must be O. If these routines are called from FORTRAN, the arguments must
be passed in 3~ord arrays. Triple-precision arithmetic routines are in
table 3-9.

Table 3-9. Triple-precision arithmetic routines

Definition Name Call Type Entry Conditions Exit Conditions

Triple-precision $TADD Value (Sl)=address of Result to address
addition addend in S3

(S2)=address of
augend

(S3)=address of
result

TADDt Address argl =address of Result to address
addend in ar>g3

ar>g2=address of
augend

a:rog3=address of
result

TASS Address al'gl=address of (Sl) , (S2) , (S3) =
addend result

a:rog2"'address of
augend

TASS% Value (Sl) , (S2) , (S3) = (Sl) , (82) , (83) =
addend result

(S4) , (S5) , (S6) =
augend

t FORTRAN entry point

SR-0014 3-18 I

Table 3-9. Triple-precision arithmetic routines (continued)

Definition Name Call Type Entry Conditions Exit Conditions

Triple-precision $TDIV Value (Sl)=address of Result to address
division dividend in S3

(S2) =address of
divisor

(S3)=address of
result

TDIVt Address al'~ =address of Result to address
dividend in al'g3

al'g2=address of
divisor

al'g3-=address of
result

TDSS Address al'gl=address of (81) , (S2) , (83) =
dividend result

al'g2=address of
divisor

TOSS¥; Value (81) , (S2) , (83) = (Sl) , (82) , (83) -=
dividend result

(S4) , (85) , (S6) =
divisor

Triple-precision $TMLT Value (Sl)=address of Result to address
multiplication multiplier in S3

(S2)=address of
multiplicand

(S3)=address of
result

TMLTt Address al'gl =address of Result to address
multiplier in al'g3

al'9'2=address of
mul tiplicand

al'g3=address of
result

TMS8 Address al'gl=address of (Sl) , (S2) , (S3) =
multiplier result

al'g2=address of
multiplicand

TMSS% Value (Sl) , (S2) , (S3) = (SI) , (S2) , (S3)::::
multiplier result

(S4) , (S5) , (86) =
multiplicand

t FORTRAN entry pOlnt

SR-0014 3-19 I

Table 3-9. Triple-precision arithmetic routines (continued)

Definition Name

Triple-precision $TSUB
subtraction

TSUB t

TSSS

TSSS%

t FORTRAN entry point

Example of FORTRAN use:

REAL A(3),B(3),RSLT(3)
CALL TADD(A,B,RSLT)

Example 1 of CAL use:

Location Result

CALL

Example 2 of CAL use:

S1
S2
S3
S4
SS
S6
CALLV

SR-0014

Call Type Entry Conditions Exit Conditions

Value (Sl)=address of Result to address
minuend in S3

(S2) =address of
subtrahend

(S3)=address of
result

Address al"gl=address of Result to address
minuend in al"g3

al"g2=address of
subtrahend

arg3=address of
result

Address ar~h =address of (Sl) , (S2) , (S3) =
minuend result

al'g2""address of
subtrahend

Value {SI} , (S2) , (S3) = (81) , (S2) , (S3) =
minuend result

(S4) , (S5) , (S6) =
subtrahend

TASS, (ARGl,ARG2)

1.
o.
o.
1-
O.
o.
TASS %

3-20 I

SIXTY-FaUR-BIT INTEGER DIVISION

The 64-bit integer routines in table 3-10 are implicitly called by
FORTRAN. They divide two 64-bit integers to produce a 64-bit integer
result. The integer division routines are called by value.

Table 3-10. 64-bit integer division

Registers

Definition Name Exit Result
Entry Type

Quo. Rem.

Scalar/scalar LDSS% Sl,S2 Sl S2 I

Scalar/vector LDSVi Sl,V2,VL Vl V2 I

Vector/scalar LDVSt Vl,S2,VL VI V2 I

Vector/vector LDVV% Vl,V2,VL VI V2 I

SR-0014 3-21 I

CHARACTER FUNCTIONS

The character functions in table 3-11 are called by address. A character
address is 64 bits. These routines are implicitly called by FORTRAN for
the character comparisons: GE, GT, LE, and LT.

Table 3-11. Character comparison functions called from FORTRAN

Function Arguments Result
Definition Name

Operand 1 Operand 2 Type Reg

ASCII compare for GE LGE Character Character L S1

ASCI I compare for GT LGT Character Character L Sl

ASCII compare for LE LLE Character Character L Sl

ASCII compare for LT LLT Character Character L Sl

Find position of INDEX Character Character I 81
second argument as
substrinq of first
argument

Find length of LEN Character I Sl
argument

Example:

Call from CAL:

SR-0014 3-22 I

Entry:
aP9'l Address of character operand 1
apg2 Address of character operand 2

Exit:
(81) Logical result of comparison

Call from FORTRAN:

logiaa1- Logical result of comparison

Character operand 1

Character operand 2

The character functions in table 3-12 are called with the character
address of the first operand in register 81 and the address of the second
operand in register 82. These routines are called only from CAL.

Table 3-12. Character comparison functions called from CAL

Function Arguments Result
Definition Name

Operand 1 Operand 2 Type Reg

ASCII compare for GE $GE Character Character L 81

ASCII compare for GT $GT Character Character L 81

ASCII compare for LE $LE Character Character L 51

ASCII compare for LT $LT Character Character L Sl

ASCII compare for EQ $EQ Character Character L Sl

ASCII compare for NE $NE Character Character L Sl

SR-0014 3-23 I

Example:

Call from CAL:

Entry:
{ Sl}
(S2)

Exit:
(81)

Address of first character operand
Address of second character operand

Logical result of comparison

CHARACTER CONCATENATION AND STORE ROUTINES

FORTRAN routines implicitly call the following routines to perform
character concatenation. They are called in a manner similar to the I/O
routines (see section 5 of this publication for a detailed description of
I/O routines).

INITIALIZATION

$CCI initializes concatenation for store.

Call from CAL:

Entry:
(S1)

TRANSFER

Address of concatenated result

$CCT transfers one character item to result.

SR-OOI4 3-24 I

Call from CAL:

Entry:
(51)

TERMINATION

Address of item

$CCF terminates transfer; blank-filled.

Call from CAL:

CALLV $CCF

ASCII CONVERSION FUNCTIONS

The functions in table 3-13 convert binary integers to or from I-word
ASCII strings (not eFT character variable). The FORTRAN callable entry,
xxx, uses the call-by-address sequence.

SR-0014

NOTE

These routines are not intrinsic to eFT. Their default
type is real even though their results are generally
used as integers.

3-25 I

Table 3-13. ASCII conversion

Purpose Ent. Call Argument 1 Argument 2 Result
Name Seq.

Code Type Range Type Range

Converts binary to BTD SA I O<x<D'99999999 One word ASCII string
decimal ASCII BTD% SVa (right-justified,
(right-justified, blank-filled, decimal
blank-filled) conversion)

Converts binary BTDL SA I 0"x"D'99999999 One word ASCII string
to decimal ASCII BTDL% SVa (left-justified,
(left-justified, zero-filled, decimal
zeco-f iHed) conversion)

Converts binary to BTDR SA I 0~X~P'99999999 One word ASCII string
decimal ASCII BTDR% SVa {right-justified,
(right-justified, zero-filled, decimal
zero-filled) conversion)

Converts binary BTO SA I 0<x<O'77777777 One word ASCII string --
to octal ASCII BTC% SVa (right-justified,
(right-justified, blank-filled, octal
blank-filled) conversion)

Converts binary BTOL SA I O<x<O' 77777777 One word ASCII string --
to octal ASCII RTOL% SVa [left-justified,
(left-justified, zero-filled, octal
zero-filled} conversion)

Converts binary BTOR SA I O~~O'77777777 One word ASCII string
to octal ASCII BTOR% SVa (right-justified,
(right-justified, zero-filled, octal
~ero-filled) conversion)

Converts decimal DTB SA I Dec ima! ABC II I Opt. One word containing
ASCII to binary DTB% SVa (left-justified, (error decimal equivalent

zero-filled) code) of ASCII string.
Error code: 0 if no
error I -1 if error.
Returned in second
argument for CFT
calls and in sO for
CAL calls, If no
error code argument
is included for CFT
calls, routine
aborts on error.

Converts octal OTB SA I Octal ASCII I Opt. One word containing
ASCII to binary OTB% SVa (left-justified, (error octal equivalent

lIera-filled) code) of ASCII string.
Error code: 0 if no
error; -1 if errOr.
Returned in second
argument for CFT
calls and in SO for
CAL calls. If no
error code argument
is included for CFT
calls, routine aborts
on error.

SR-0014 3-26 I

Example:

Call from FORTRAN:

resul.t=BTD (a.l"'g)

result
arg

Decimal ASCII result (right-justified, blank-filled)
Integer argument

Call from CAL:

CALLV BTD%,81

Entry:
(81)

Exit:
(Sl)

Example:

Integer value

Decimal ASCII result (right-justified, blank-filled)

Call from FORTRAN:

pesu 1. t=DTB (arg,e.l"'.l"'code)

.l"'esu"l.t
a.l"'g
e rTC ode

Call from CAL:

Integer value
Decimal ASCII (left-justified, zero-filled)
o if conversion successful, -1 if error

I CALLV DTB%,Sl

Entry:
(81)

Exit:
(81)
(SO)

SR-OOI4

Decimal ASCII (left-justified, zero-filled)

Integer value
Error code 0 if conversion successful

-1 if error

3-27 I

PSEUDO VECTORIZATION ROUTINES

Pseudo vectorization simulates vectorized math routines. See the PVEC
macro in the Macros and Opdefs Reference Manual, CRI publication SR-0012.

MISCELLANEOUS MATH ROUTINES

The math routines can be divided into the following types.

• Absolute value
ABS
CABS
DABS
lABS

• Complex conjugate
CONJG

• Double-precision product of real arguments
DPROD

• Imaginary portion of complex number
A I MAG

• Modulo arithmetic
AMOD
DMOD
MOD

• Nearest integer
NINT
IDNINT

• Nearest whole number
ANINT
DNINT

• positive difference
DDIM
DIM
IDIM

• Sign transfer
DSIGN
ISIGN
SIGN

SR-OOI4 3-28 I

• Truncation
AINT
DINT

• Type conversion
CHAR
CMPLX

DBLE
FLOAT
INT
ICHAR
REAL

Table 3-14 contains the miscellaneous math routines.

Table 3-14. Miscellaneous math routines

General Entry Call Argument Type Result
purpose Name Seq. Type

Code 1 2

Real absolute ABS SA R R
value

Find the AIMAG SA C R
imaginary
portion of
a complex
number

Truncate AINT SA R R
to integral
value

Real modulo AMOD SA R R R
arithmetic
y=xl-x2 [xI/x2] Xl x2 Y

Calculates ANI NT SA R R
nearest whole
number
y=lx+.5j
if x>O
y= [;c.-. SJ
if x<O

SR-0014 3-29

Restrictions

[x[,[yl<oo

Ixl<2 46

IXI[<247
O< lx2[<247

Ix[<246

I

Table 3-14. Miscellaneous math routines (continued)

General Entry Call Argument Type Result
Purpose Name Seq. Type Restrictions

Code 1 2

Complex CABS SA C R Ixl,lyl<oo
absolute CABS%; svb x 2+y2< 00

value %CABS VA where complex
% CABS % Wb argument

z=x+iy

Integer to CHAR I CH
character
conversion

Convert two CMPLX SA R R C
reals to a
complex

Complex CONJG SA C C Ixl,lyl<oo
conjugate where complex

argument
z=x+iy

Determine DABS SA D D Ix I<co
double-
precision
absolute
value

Convert DBLE SA R D
real to
double-
precision

Double- DDIM SA D D D Ixl,lyl<oo
precision DDIM% SVb
positive real %DDIM VA
difference %DDIM% Wb
MAX (0 ,x-y)

SR-0014 3-30 I

Table 3-14. Miscellaneous math routines (continued)

General Entry Call Argument Type Result
Purpose Name Seq. Type Restrictions

Code 1 2

positive real DIM SA R R R Ixl,lyl<co
difference
MAX (O,x-y)

I Truncate DINT SA D D Ixl<295
double- DINT% SVb
precision %DINT VA
numbers, %DINT% Wb
y=[x]
fraction
last no
rounding

Double- OMOD SA D D 0 IXll<295
precision OOOD% SVb O<IX21<295
modulo %DMOD VA Xl x2 Y
arithmetic %DMOD% Wb
y=xl-x2 Ixl/x2]

Calculates DNINT SA D D Ixl<295
nearest DNINT% SVb
integer; %DNINT VA
defined as %DNINT% VVb
f.1c+. SJ
if x>O
1Jc-.5J
if x<O

Double- DPROD SA R R D I x I , I y I <00
precision
product of
two real
arguments

SR-0014 3-31 I

Table 3-14. Miscellaneous math routines (continued)

General Entry Call Argument Type Result
Purpose Name Seq. Type Restrictions

Code 1 2

Transfers DSIGN SA D D D I xII, I x2 1 < 00

sign from (to (from
one double- which which
precision sign is sign is
number to trans- trans-
another ferred) ferred)
defined as
y=lxll if
x~O
y=/xl' if
x2<O

Convert FLOAT SA I R /xl<2 46

integer
to real

Integer lABS SA I I /xl< CIO

absolute
value

Character I CHAR CH I
to integer
conversion

Positive IDIM SA I I I /xl,ly/<oo
integer
difference
MAX (O,x-y)

SR-OOI4 3-32 I

Table 3-14. Miscellaneous math routines (continued)

General Entry Call Argument Type Result
purpose Name Seq. Type Restrictions

Code 1 2

Nearest IDNINT SA D I Ixl<246
integer to a IDNINT% SVb
double- %IDNINT VA
precision %IDNINT% VVb
number;
defined as
Lx+.5J
if x>O
Lx-.5J
if x<O

Truncate to INT SA R I Ixl<246
integral
value

Transfer ISIGN SA I I I I xII, 'x2' <00

sign from (to (from
one integer which which
to another sign is sign is
defined as trans- trans-
y=lxll if ferred) ferred)

I
x2~O
y=-Ixl/ if
x2<O

Perform MOD SA I I I 1Xl/<263
64-bit modulo MOD% SVb xl x2 y O</x2 1<263
arithmetic MODSS% SVb (Sl-
on two remain-
integer der S2
scalars quot-
y=xl-x 2 [Xl/x2] ient)

SR-OOl4 3-33 I

Table 3-14. Miscellaneous math routines (continued)

General Entry Call Argument Type Result
Purpose Name Seq. Type Restrictions

Code I 2

Perform %MOD% Wb I I I 1Xll<263
64-bit modulo MODW% Wb xl x2 y O< lx2/<263
arithmetic (Vl-
on two rernain-
integer der V2-
vectors quot-
y:; lxl-x 2 ient)

(xl/x2) I

Perform MODSV% I I I 1XI,<263
64-bit xl x2 i - y O<lx21<263
modulo (divi- (divi- (Vl-
arithmetic dend) sor) remain-
on integer (Sl) (V2) der V2-
scalar and quot-
integer ient)
vector

Perform MODVS% I I I 1Xll<263
64-bit (divi- (divi- (VI- O<lx2,<263
modulo dend) sor) remain-
arithmetic (VI) (S2) der S2-
on integer quot-
vector and ient)
integer
scalar

Calculate NINT SA I Ix/<246

nearest
integer
y:; Lx+.5J
if x>O
y= Lx-. SJ
if x<O

Return real REAL SA C R
portion of
a complex
number

SR-OOl4 3-34 I

Table 3-14. Miscellaneous math routines (continued)

General Entry Call Argument Type Result
Purpose Name Seq. Type Restrictions

Code 1 2

Transfer SIGN SA R R R IXll,I}<;:21<co
sign from (to (from
one real which which
number sign is sign is
to another; trans- trans-
defined as ferred) ferred)
y=lxll if
x~O
y= IXII if
x2<O

Examples:

Call from CAL:

CALL FLOAT, (al"g)

Entry:
al"gl Address of integer argument

E}<;:it:
(81) Real result

Call from FORTRAN:

l"eaL=FLOAT(integer)

Y'ea~ Real result

Integer result

SR-0014 3-35 I

RANDOM NUMBER ROUTINES

Table 3-15. Random number routines

Call Result
Purpose Entry Seq. Argument Type Type

Name Code

Generates RANF SA No arguments R
random RANF% SVa required (VL)

numbers %RANF VA assumed correct
%RANF% VVa for vectorized

versions

Returns RANGET SA I (optional) I
current RANGET% SVa
seed of
random
number
generator

Sets RANSET SA I (optional) I
random RANSET% SVa
seed

NOTE

When the seed of the random number generator is reset,
RANSET does not store the supplied argument as the
first value in the buffer of the random number seeds.

SR-0014 3-36 I

Examples:

RANF

Call from CAL:

CALL RANF
CALLV RANF%
CALL %RANF
CALLV %RANF%

Call from FORTRAN:

I random=RAHF()

DO 10 1=1,10
10 RANDOM (I) "'RANF ()

RANGET

Call from CAL:

CALL RANGET
CALLV RANGET%

Call from FORTRAN:

CALL RANGET(iseed)
iseed=RANGET()

(Scalar version)

(Vector version)

iseed Contains the current seed

SR-0014 3-37 I

RANSET

Call from CAL:

CALL RANSET
CALLV RANSET%

Call from FORTRAN:

CALL RANSET(ivatue)
dummY=RANSET(ivatue)

MATH TABLES

The tables in the following list contain no executable instructions
but are referenced by other library routines.

'lIN Contains integer powers of 10 in the range of 100 to
1018

$LMX Contains double-precision floating-point representation of
negative powers of 10 in the range of 100 to 10-4096

$lPX Contains double-precision floating-point representation of
positive powers of 10 in the range of 100 to 104096

RANFI Contains the current index to the seed buffer for the
random number generator

RANFS Contains 128 random number seeds in a buffer

SR-0014 3-38 I

SCIENTIFIC APPLICATIONS
SUBPROGRAMS

INTRODUCTION

The scientific applications subprograms are written to run optimally on
the Cray computer. These subprograms use the call-by-address convention
when ca11ed by a FORTRAN or CAL program. See the introduction to this
manual for details of the call-by-address convention.

The subprograms are grouped as follows:

• Basic linear algebra subprograms

• Other linear algebra subprograms

• Functions and linear recurrence routines

• Linpack routines

• Eispack routines

• Matrix inverse and multiplication routines

• Fast Fourier transform routines

• Filter routines

• Gather, scatter routines

• Search routines

• Sort routine

BASIC LINEAR ALGEBRA SUBPROGRAMS

The Cray computer user has access to a subset of the Basic Linear Algebra
Subprograms (BLAS), a package of 22 CAL-coded routines. Only the
single-precision and complex versions of the BLAS are included in the
package. The following operations are available.

SR-0014 4-1 I

4

• Dot products

• Vector scaling

• Vector copy and swap

• Givens transformations

• pivot search {maximum element}

• Euclidean norm

• A constant times a vector plus another vector

• Sum of absolute values

Each BLAS routine has a real version and a complex version. Type and
dimension declarations for variables occurring in the subprograms must
appear in the following manner.

REAL
REAL
COMPLEX

SX(mx), SY(my}, SA
C, S, A, B, PARM(4), DI, D2, BI, B2
CX{mx), CY(my), CA

where dimensions m~x{l,N*IINCX/), my=max(l,N*/INCYI), and N is the
array length of the input vectors. In all routines, if N~O, inputs and
outputs return unchanged.

Type declarations for function names follow:

INTEGER
REAL
COMPLEX

ISAMAX, ICAMAX
SASOM, SCASUM, SOOT, SNRM2, SCNRM2
CDOTC, COOTU

The declaration for complex functions is especially important to avoid
type conversion to zero imaginary parts.

Arrays can have non-unit spacing between elements. The parameters inox
and inoy specify skip distances, allowing vector operands to be
noncontiguous elements of memory. A value of 1 indicates contiguous
elements. When a negative skip distance is specified, the operands are
used in reverse order. Since FORTRAN dimension statements allow only
positive integers for array lengths, references must be confined to array
elements having only positive indexes. Therefore, if spacing between
elements is negative, reversing the orientation of number is required.
Thus if array SX contains elements xl, x2, ••• , xn, the contents of memory
spaces SX{I), SX(2), ••• , SX(n) are

xl,x2, ••• ,xn if inox=l, or xn,xn-l, ••• ,xl if ino~-l.

SR-0014 4-2 I

I
That is, element xi is in location SX(l+(i-l)*incx) if incx>O or
in location SX(l+(n-i)*incx) if incx<O. Location SX(l) is passed
regardless of the sign of incx.

Example:

Let X{l)=l.O, X(2)=2.0, X(3)=3.0, ••• , X{lO)=lO. The real function,
SASOM, which sums the absolute value of elements of a vector, is
evaluated as follows.

SASUM(5,X,2)=««I.O+3.0)+5.0)+7.0)+9.0), and
SASUM(5,X,-2)=«((9.0+7.0)+5.0)+3.0)+I.O)

Table 4-l contains the purpose, name, and type of each BLAS.

Table 4-1. Basic linear algebra subprograms (BLAS)

Purpose Narne(papametep list) Type

Index of element with ISAMAX(n,sx,inex) Integer function
maximum absolute value ICAMAX (n, ex, inex)

Sum of the absolute SASUM (n, 8X, incx) Real function
values SCASUM(n,cx,inex)

Constant times a vector SAXPY(n,sa,sx,inex,sy,incy) Routine
plus another vector CAXPY{n,ca,cx,incx,cy,incy)

Copy one array into SCOPY(n,8x,inex,8y,incy) Routine
another CCOPY(n,cx,inex,cy,incy)

Euclidean norm of SNRM2(n,sx,incx) Real function
array SCNRM2 (n,cx,incX)

SR-OOI4 4-3 I

Table 4-1. Basic linear algebra subprograms (BLAS) (continued)

Purpose Name(parameter List) Type

Dot product SDOT(n,sx,incx,sy,incy) Real function

CDOTC(n,cx,incx,cy,incy) Complex function
CDOTU(n,cx,incx,cy,iney)

construct Givens plane SROTG{a,b,e,s) Routine
rotation

Apply Givens plane SROT(n,sx,incx,sy,iney,e,s) Routine
rotation

Construct Givens SROTMG (dl,d2,bl,b2,param) Routine
modified plane rotation

Apply Givens modified SROTM(n,sx,inex,sy,ineY, Routine
plane rotation param)

Scale array SSCAL(n,sa,sx,incx) Routine
CSSCAL(n, sa, eX, incx)
CSCAL(n,ea,ex,incx)

Swap two arrays SSWAP(n,sx,incx,sy,incy) Routine
CSWAP(n,ex,incx,cy,iney)

INDEX OF ELEMENT HAVING MAXIMUM ABSOLUTE VALUE

These integer functions find the first index of the largest absolute
value of the elements of a vector.

ISAMAX returns the first index i such that

where Xj is an element of a real vector.

SR-0014 4-4 I

I

I

call from FORTRAN:

imax=ISAMAX(n,ax,inax)

n Number of elements to process in the vector to be searched
(n=vector length if inax=l~ n=vector length/2 if

sx

inax

inaX=2; etc.)

Real vector to be searched

Skip distance between elements of ax. For contiguous
elements, inaX=l.

ICAMAX determines the first index i such that

IReal(xi} 1+IImag(xi) l=max{IReal(Xj) 1+IImag(Xj) I :j=l, ••• ,n}.

where Xj is an element of a complex vector.

Call from FORTRAN:

imax=rCAMAX(n,ax,inax)

n Number of elements to process in the vector to be searched
(n=vector length if inaX=l; n=vector length/2 if

ax

inax

inaX=2; etc.)

Complex vector to be searched

Skip distance between elements of ax. For contiguous
elements, inax=l.

SUM OF THE ABSOLUTE VALUES

These real functions sum the absolute values of a vector.

SASOM computes
n

SumP I Ixil
i=l

where x. is an element of a real vector.
l

SR-0014 4-5 I

Call from FORTRAN:

8um=SASUM{n,sx,in~x}

n

sx

inex

Number of elements in the vector to be summed

Real vector to be summed

Skip distance between elements of BX. For contiguous
elements, inc~l.

SCASUM computes

n
sum= l (IReal(Xi)]+1 Imag(xi) I}

i=l

where xi is an element of a complex vector.

Call from FORTRAN:

sum=SCASUM(n,ex,in~x)

n

ex

in~

Number of elements in the vector to be summed

Complex vector to be summed

Skip distance between elements of ~x. For contiguous
elements, in~~l.

CONSTANT TIMES A VECTOR PLUS ANOTHER VECTOR

These subroutines add a scalar multiple of one vector to another.

SAXPY computes

Y=aX+Y

where a is a real scalar multiplier and X and Yare real vectors.

SR-0014 4-6 I

Call from FORTRAN:

CALL SAXPYCn,sa,sx,incx,sy,incy)

n

sa

ax

inex

sy

Number of elements in the vectors

Real scalar multiplier

Real scaled vector

Skip distance between elements of s~ For contiguous
elements, incx=l.

Real result vector

incy Skip distance between elements of sy. For contiguous
elements, incy-l.

CAXPY computes

Y=aX+Y

where a is a complex scalar multiplier and X and Yare complex vectors.

Call from FORTRAN:

CALL CAXPY(n,ca,cx,incx,cy,iney)

n

ca

ex

incx

iney

SR-OOI4

Number of elements in the vectors

Complex scalar multiplier

Complex scaled vector

Skip distance between elements of c~ For contiguous
elements, inax=l.

Complex result vector

Skip distance between elements of cy. For contiguous
elements, incy=l.

4-7 I

COpy ONE ARRAY INTO ANOTHER

These subroutines copy a vector.

SCOpy copies a real vector

where xi and Yi are elements of real vectors.

Call from FORTRAN:

CALL SCOPY(n,sx,incx,sy,incy)

n

sx

in~

sy

Number of elements in the vector to be copied

Real vector to be copied

Skip distance between elements of sx. FOr contiguous
elements, inc~l.

Real result vector

Skip distance between elements of sy. For contiguous
elements, incy=l.

CCOpy copies a complex vector

where Xi and Yi are elements of complex vectors.

Call from FORTRAN:

CALL CCOPY(n,cx,incx,cy,incy)

n

inax

cy

iney

SR-0014

Number of elements in the vector to be copied

Complex vector to be copied

Skip distance between elements of ex. For contiguous
elements, inc~l.

Complex result vector

Skip distance between elements of cy. For contiguous
elements, incy=l.

4-8 I

COMPUTE AN INNER PRODUCT OF TWO VECTORS

These real and complex functions compute an inner product of two vectors.

SOOT compu tes

n

dot= 1 xiYi
i=l

where xi and Yi are elements of real vectors.

Call from FORTRAN:

dot=SDOT(n,sx,inox,sy,inoy)

n

ax

in ex

sy

inay

COOTe computes

n

odot= 1
i=l

Number of elements in the vectors

Real vector operand

Skip distance between elements of sx. For contiguous
elements, inax=l.

Real vector operand

Skip distance between elements of sy. For contiguous
elements, inay=l.

where xi and Yi are elements of complex vectors and xi is the
complex conjugate of xi.

Call from FORTRAN:

cdot=CDOTC(n,ox,inax,oy,inay)

SR-OOl4 4-9 I

n

ex

inc:c

cy

iney

Number of elements in vector

Complex vector operand

Skip distance between elements of ex. For contiguous
elements, ine~l.

Complex vector operand

Skip distance between elements of ey. For contiguous
elements, iney=l.

CDOTU computes

n

edot= 1 xiYi
i=l

where xi and Yi are elements of complex vectors.

Call from FORTRAN:

edot=CDOTU(n,ex,incx,ey,iney)

n

ex

inex

iney

Number of elements in vector

Complex vector operand

Skip distance between elements of ex. For contiguous
elements, ine~l.

Complex vector operand

Skip distance between elements of ey. For contiguous
elements, ineycl.

EUCLIDEAN NORM OF AN ARRAY (12 NORM)

These real functions compute the Euclidean or 12 norm of a vector.

SNRM2 computes

'''''''0''"''' (L I x I ~ t 2

where xi is an element of a real vector.

SR-0014 4-10 I

Call from FORTRAN:

eucnorm=SNRM2(n,sz,inoz)

n

sx

Number of elements in vector

Real vector operand

Skip distance between elements of 8X. For contiguous
elements, ino~l.

SCNRM2 computes

euenorm= (~l x.x .)1/2
1= 1 1

where xi is a complex vector and xi is the complex conjugate of xi.

Call from FORTRAN:

eueno~m=SCNRM2(n,cx,inez)

n

inez

Number of elements in vector

Complex vector operand

Skip distance between elements of ex. For contiguous
elements, ino~l.

CONSTRUCT GIVENS PLANE ROTATION

SROTG computes the elements of a Givens rotation matrix. The following
call calculates the parameters r, z, c, s, from input coordinates a,b as
in equation 1.

Call from FORTRAN:

CALL sROTG(a,b,o,s)

SR-OOl4 4-11 I

a Scalar a of equation 1

b Scalar b of equation 1

Scalar cosine of equation 1

s Scalar sine of equation 1

Equation 1:

z must contain enough information to reconstruct c,s~ that is, from plane
coordinates a,b, SROTG calculates

and

Parameter z is

r=sgn(a) * Ya2+b2 if lal>lbl

=sgn(b) * ra 2+b2 if lal<lbl

c=a/r if r~O
=1 if r=O

s==b/r if r;'O
=0 if r=O.

z=s if lal>lbl or a=h=O
=l/c if O<lal~lbJ
=1 if Ibl>lal=O

Note that if Izl~l, then

s=z

c=~

while if Izl>l, then

c=l/z

s=y'l-(l/Z) 2.

The subroutine uses parameters a and b and returns r,z,c,s, where r
overwrites a and z overwrites b.

SR-0014 4-12 I

APPLY GIVENS PLANE ROTATION

This subroutine performs a matrix multiplication. If the coefficients
~ and a satisfy ~*~+B*a=l.O, the transformation is a Givens rotation.
The coefficients a and a can be calculated from ax and By using SROTG.

SROT computes equation 2 on each pair of elements xi' Yi of real
arrays.

Call from FORTRAN:

CALL SROT(n,sx,inax,ay,inay,a,s)

n

ax

inax

By

inay

Number of elements in vector

Real vector to be modified

Skip distance between elements of ax. For contiguous
elements, ina~l.

Real vector to be modified

Skip distance between elements of By. For contiguous
elements, inay=l.

Real cosine of equation 2. Normally calculated using SROTG.

s Real sine of equation 2. Normally calculated using SROTG.

Equation 2:

SROT returns without modification to any input parameters if a=l and
8=0.

CONSTRUCT MODIFIED GIVENS PLANE ROTATION

SROTMG computes the elements of a modified Givens plane rotation matrix.

SR-0014 4-13 I

SROTMG sets up parameters papam from inputs dl' d2 , bt, b2• The following
is a brief description.

An application of the Givens plane rotation

can be written in a form such that repeated applications require matrix
multiplications by matrices containing only two non-unit elements. Row
transformations require only 2N multiplications, rather than 4N. Scale
factors d1 ,d2 are defined such that

where the scaling upon each application of the GiS is updated. Let H be a
matrix

such that

_ D,l/2 G[xyJ - H

where 0,1/2 = diag { ~ • ;;:} contains the updated scale factors;

therefore, H is chosen according to equation 3 or 4.

Equation 3:

SR-0014 4-14 I

Equation 4:

hll A Kc
h2l ;a; = -As

Coefficients c and s are determined by equations 5 and 6.

Equation 5:

c = x dlbl = ,
Yx2+y2 fd b2

I 1 + d 2 2b2

Equation 6:

s ::z Y d2b2 =
tx2+y2 Yd b2 + d b2

1 I 2 2

Equation 4 shows that the d's are going to be scaled by c or s if two
of the his are to be unity. Two cases, Icl>lsl and Isl>lcl, are
considered so that the d's are scaled down the least upon repeated
applications.

Case 1:

If Icl>lsl (which from equations 5 and 6 is the same as Idlbil>ld2b~J),
the solutions for equation 4 are determined by equation 7.

Equation 7:

case 2:

SR-0014 4-15 I

Equation 8:

Distinguishing the two cases, Icl>~2 or lsi> ~ is the updating
v-=: - Y2

factor. Then the complete solutions for D1 1/2 and H are as follows.

Case 1:

In case 1, where Icl > lsi or Idlbf'>ld2b~J, the following solutions for
H are chosen:

and scale

where

h ;::1
11

h21 =

h ;::
12

-b2
bl h22=1

factors dV d2 are updated

I 2
dl ;:: dll u = () dl

I 2 d2 = d2 lu = () d2

u ;:: det (H)

,
and since x = r, y = 0, and

Case 2:

to

is updated.

In case 2, where Isl~lcl or Idlbi'~ld2b~J, the following solutions for Hare
chosen.

SR-0014 4-16 I

and scale factors di are updated to

d t
1 = d2/ u

d t
2

:;:: dl / u

with
2

u = det (H) = 1 + dl b1
2 d2b2

and the x' factor becomes

case 3:

Let m = 4096. Whenever the parameters di are updated to be outside
the window

-2 ' 2
em) < Id.1 < (m)

'/.,

which preserves about 36 = 48 - 12 bits or 10 decimal digits of
precision, all parameters are rescaled such that the di's are within
that window. However, if either of the di's is 0, no rescaling
action is taken.

Underflow:

If
, -2

Id .1 < (m) ,
'/.,

then the following is set. ,
t 2

d. := d." em) ,
1- '/.,

, , -1 bl := bl • (m) ,

OVerflow:

I 2
If Id.1 > (m) , then we set

'/.,

,
t -2

d. := d .• (m) ,
'/., '/.,

, ,
bl := bl • (m) ,

, , -1
hil .- h • (m) , .- il

, , -1
hi2 := \2. (m) "

t ,
h.

'/.,1
:= hil" (m) ,

, ,
hi2 := hi2 • (m) •

SHOTMG modifies the input parameters 01, 02, and BI and returns the array
PARAM according to the following schedule:

SR-0014 4-17 I

case 4:

If ABS(D1*Bl*Bl).GT.ABS(D2*B2*B2), then

PARAM(l) =0

PARAM(3)=-B2/Bl

PARAM(4)~D2*B2/01*Bl

and parameters Dl, 02, and Bl are written over by

D1=D1/U

02=02/U

Bl=B1*U

where

U=1.+(D2*B2*B2)/(01*B1*B1).

Case 5:

If ABS(D2*B2*B2).GE.ABS(01*Bl*Bl), then

PARAM(l) =1.

PARAM(2)=Dl*Bl/D2*B2

PARAM(5)=Bl/B2

and parameters Dl, D2, and Bl are written over according to the following
sequence.

TEMP=Dl/U

01=02/U

Bl=B2*U

U=1.+{Dl*B1*B1)/(D2*B2*B2)

SR-0014 4-18 I

Case 6:

If, in either case 4 or 5, the updated parameters 01 and 02 have been
rescaled below/above the window,

(m)**(-2) .LE.ABS(01).LE.{m)**2

(m) ** (-2) .LE.ABS(02) .LE. (m) **2

then the parameters 01, Hll, Hl2, Bl and 02, H2l, H22, respectively, are
rescaled up/down by factors of m. Rescaling occurs as many times as
necessary to bring D1 or 02 within the above window. If Dl and 02 are
within the window on entry, rescaling occurs only once.

Output parameters are

PARAM(l)=-l.

PARAM(2)=H11

PARAM(3)=H21

PARAM(4)=H12

PARAM(5)=H22

and 01, 02, and B1 are written over by correctly scaled versions of case
5 or 6.

If 01<0, the matrix H=O is generated (that is, hll=h12=h2l=h22=O)
PARAM(l)=-l. and the rest of the elements of PARAM contain zero.

Case 7:

If 02*B2=O on entry, then H=l. Output is

PARAM(1)=-2.0 only.

APPLY MODIFIED GIVENS PLANE ROTATION

SROTM applies the modified Givens plane rotation constructed by SROTMG.

CALL SROTM(n,sx,incx,sy,incy,param)

SR-OOl4 4-19 I

computes

where the parameters HII, H2l, H12, and H22 are passed in the array PARAM
according to the following schedule: PARAM(l) is the key parameter
having values 1.0, 0.0, -1.0, or -2.0.

Case for which PARAM(l)=l.O:

Hll=PARAM(2)

H2l=-l.O

HI 2=1. 0

H22-PARAM(5)

and PARAM(3) and PARAM(4) are ignored.

Case for which PARAM(l)=O.O:

Hl1=1.0

H21=PARAM(3)

H12=PARAM (4)

H22=1.0

and PARAM(2) and PARAM(S) are ignored.

Case for which PARAM(l)=-l.O is rescaling case:

Hll=PARAM(2)

H21=PARAM{3}

H12=PARAM(4)

H22=PARAM(5)

is a full matrix multiplication.

Case for which PARAM(1)=2.0 is H=l, namely:

H11=1.0

H2l=O.0

SR-0014 4-20 I

H12=O.O

H22=I.O

and PARAM(2), PARAM(3), PARAM(4), and PARAM(5) are ignored. If H=l,
SROTM returns with no operation on input arrays sx, sy.

If any other value for PARAM(I) is read (other than 1., 0, -1., -2.),
SROTM aborts the job with the message:

SROTH CALLED WITH INCORRECT PARAMETER KEY

appearing in the legfile.

The array PARAM must be declared in a dimension statement:

DIMENSION PARAM{5)

in the calling program. See the description of SROTMG for further
details about the modified Givens transformation and the array PARAM.

SCALE ARRAY

These subroutines scale a vector.

SSCAL computes

X=aX

where a is a real number and X is a real vector.

Call from FORTRAN:

CALL SSCAL(n,sa,ax,inax)

n

sa

ax

inax

SR-0014

Number of elements in vector

Real scaling factor

Real vector to be scaled

Skip distance between elements of ax. For contiguous
elements, inox=l.

4-21 I

CSSCAL computes

X=aX

where a is a real number and X is a complex vector.

Call from FORTRAN:

CALL CSSCAL(n,sa,ex,inex)

n Number of elements in vector

sa Real scaling factor

ex Complex vector to be scaled

inex

CSCAL computes

Y=aY

Skip distance between elements of ex. For contiguous
elements, incx;l.

where a is a complex number and Y is a complex vector.

Call from FORTRAN:

CALL CSCAL(n,ca,cx,incx)

n Number of elements in vector

ea Complex scaling factor

ex Complex vector to be scaled

inex Skip distance between elements of ex. For contiguous
elements, incX~l.

SWAP TWO ARRAYS

These subroutines interchange two arrays.

SR-OOI4 4-22 I

SSWAP exchanges two real vectors.

Call from FORTRAN:

CALL SSWAP(n,8x,incx,8y,incy)

n

8X

incx

sy

incy

Number of elements in vector

One real vector

Skip distance between elements of 8X. For contiguous
elements, incx=l.

Another real vector

Skip distance between elements of BY. For contiguous
elements, inay=l.

CSWAP exchanges two complex vectors.

Call from FORTRAN:

CALL CSWAP(n,ax,inax,ay,incy)

n

ex

incx

ay

incy

Number of elements in vector

One complex vector

Skip distance between elements of ax. For contiguous
elements, inaX=l.

Another complex vector

Skip distance between elements of ey. For contiguous
elements, incy=l.

OTHER LINEAR ALGEBRA SUBPROGRAMS

These linear algebra subprograms are extensions of the BLAB and conform
to the sarne calling sequence. Table 4-2 contains the purpose, name, and
type of each linear algebra subprogram.

SR-0014 4-23 I

SPARSE MATRIX PRIMITIVES

This subroutine and function are useful primitives for the lower upper
factorization and solution of sparse linear systems.

SPAXPY is defined in FORTRAN in the following way.

DO 10 I=l,N
10 SY(INDEX(I»=SA*SX(I)+SY(INDEX(I»

Call from FORTRAN:

CALL SPAXPY(n,8a,s~,sy,inde~)

n Number of elements in the vectors

sa Real scalar multiplier

sx Real vector operand

sy Real vector operand

index Vector of indexes

SPODT is defined in FORTRAN in the following way.

DO 10 I=l,N
10 PDOT=PDOT+SY(INDEX(I»*SX(I)

Call from FORTRAN:

pdot=SPDOT(n,sy,index,sx)

n Number of elements in the vectors

sy Real vector operand

ax Real vector operand

index Vector of indexes

SR-OOl4 4-24 I

Table 4-2. Other linear algebra subprograms

Purpose Name(papametep list) Type

Primitives for the LU SPAXPY(n,8a,sx,sy,index) Routine
factorization of sparse SPDOT{n,sy,index,8x) Real function
linear systems

Index of element with ISMAX(n,sx,incx) Integer
maximum or minimum value ISMIN (n, sx, incx) functions

Index of element with ISAMIN(n,8x,incx) Integer
minimum absolute value function

Sum the elements of a SSUM(n,sx,incx) Real function
vector

CSUM (n, cx, incx) Complex function

Construct complex Givens CROTG(ca,cb,cc,cs) Routine
plane rotation

Apply complex Givens CROT(n,cx,incx,cy,incy, Routine
plane rotation CC,cs)

Cray machine constants SMACH (mach) Real function

INDEX OF ELEMENT WITH MAXIMUM OR MINIMUM VALUE

These integer functions find the first index of the largest or smallest
element of a real vector.

ISMAX returns the first index i such that

where Xj is an element of a real vector.

SR-OOl4 4-25 I

I

I

Call from FORTRAN:

imaX=ISMAX{n,ax,incx)

n Number of elements to process in the vector to be searched
(n=vector length if incX=l: n=vector length/2 if

ax

inex

inCX=2: etc.)

Real vector to be searched

Skip distance between elements of ax. For contiguous
elements, incx=l.

ISMIN returns the first index i such that

IXil=min{xj:j=l, ••• n}.

where Xj is an element of a real vector.

Call from FORTRAN:

imin=ISMIN(n,8x,incx)

n Number of elements to process in the vector to be searched
(n=vector length if incX=l: n=vector length/2 if

ax

incx

inOX=2; etc.)

Real vector to be searched

Skip distance between elements of ax. For contiguous
elements, incm=l.

INDEX OF ELEMENT HAVING MINIMUM ABSOLUTE VALUE

This integer function finds the first index of the smallest absolute
value of the vector elements of a real vector.

ISAMIN returns the first index i such that

where Xj is an element of a real vector.

SR-0014 4-26 I

I

Call from FORTRAN:

imin=ISAMIN(n,8x,incx)

n

8X

inca:

Number of elements to process in the vector to be searched
(n=vector length if incX=l; n=vector length/2 if
inCX=2; etc.)

Real vector to be searched

Skip distance between elements of 8X. For contiguous
elements, inc~l.

SUM OF THE VALUES

These functions sum the elements of a real or complex vector.

SSUM sums the elements of a real vector.

Call from FORTRAN:

sum=SSUM(n,sx,incx)

n

SX

inex

Number of elements in vector

Real vector to be summed

Skip distance between elements of 8X. For contiguous
elements, inc~l.

CSUM sums the elements of a complex vector.

Call from FORTRAN:

sum=cSUM(n,cx,incx)

n

ex

incx

SR-OOI4

Number of elements in vector

Complex vector to be summed

Skip distance between elements of ex. For contiguous
elements, in~x=l.

4-27 I

COMPUTE COMPLEX GIVENS PLANE ROTATION

CROTG computes the elements of a complex Givens plane rotation matrix as
in equation 9.

Equation 9:

The 2 x 2 matrix is unitary and A and B are overwritten.

Call from FORTRAN:

CALL CROTG{ca,eb,ee,es)

ca Complex a of equation 9

eb Complex b of equation 9

ee Complex sine of equation 9

cs Complex cosine of equation 9

CONSTRUCT COMPLEX GIVENS PLANE ROTATION

CROT applies the complex Givens plane rotation computed by the
subroutine CROTG. It performs equation 10.

Equation 10:

where x and yare complex row vectors.

Call from FORTRAN:

CALL CROT(n,cx,incx,cy,incy,cc,cs)

SR-0014 4-28 I

I

I

I

I

I

n

ex

inex

ey

incy

ee

es

Number of elements in vector

Complex vector to be modified

Skip distance between elements of ex. For contiguous
elements, incx=l.

Complex vector to be modified

Skip distance between elements of ey. For contiguous
elements, iney=l.

Complex cosine of equation 10

Complex sine of equation 10

CRAY MACHINE CONSTANTS

In SMACH or CMACH, job is an integer argument and returns Cray
machine constants as calculated by the FORTRAN version of SMACH or
CMACH. (See the Basic Linear Algebra Subprograms for FORTRAN Usage by
Chuck L. Lawson, Richard J. Hanson, Davis R. Kincaid, and Fred T.
Crow, published by Sandia Laboratories, Albuquerque, 1977, publication
number SAND77-0898.)

Call from FORTRAN:

X=SMACH{job}

SMACH returns the following information.

O.7l05E-14

.l290E-2449

=3 • 7750E+2450

The machine epsilon (the smallest
number € such that l.~ E il.)
A number close to smallest
normalized, representable number
A number close to largest normalized,
representable number

Otherwise, an error message is returned to the userrs logfile.

Call from FORTRAN:

X=CMACH(job)

SR-OOl4 4-29 I

I

I

CMACH returns the following information.

for job=1

=2

=3

O.7105E-14

.1348E12l6

• 7421E+12l7

The machine epsilon (the smallest
number E such that l.± E ;1.)
A number close to the square root of
the smallest normalized,
representable number
A number close to the square root of
the largest normalized, representable
number

Otherwise, an error message is returned to the user's logfile. CMACH
(2) and CMACH (3) were chosen to prevent overflow and underflow during
complex division.

FUNCTIONS AND LINEAR RECURRENCE SUBROUTINES

These subroutines solve first-order and some second-order linear
recurrences, respectively. A linear recurrence uses the result of a
previous pass through the loop as an operand for subsequent passes
through the loop. Such use prevents vectorization. These subroutines
can be used to optimize FORTRAN loops containing linear recurrences.

FOLR solves first-order linear recurrences as in equation 11.

Equation 11:

Cl=bl
ci=-aici-l+bi for i=2,3 ••• ,n

or in FORTRAN,

10

EQUIVALENCE (B,C)
C(l)=B(l)
DO 10 I=2,N
C(I)=-A(I}*C(I-l)+B(I)

Call from FORTRAN:

CALL FOLR(n,a,inca,b,incb)

SR-0014 4-30 I

I

I

n

a

inaa

b

inab

Length of linear recurrence

Vector a of len9th n of equation 11. (A(l) is
arbitrary.)

Skip distance between elements of the vector operand A.
For contiguous elements, inaa=l.

Vector b of equation lIon input and vector c of
equation lIon output. (The output overwrites the
input.)

Skip distance between elements of the vector operand b
and result C. For contiguous elements, incb=l.

FOLRP solves first-order linear recurrences as in equation 12.

Equation 12:

cl-bl
ci=aici-l+bi for i=2,3 ••• ,n

10

or in FORTRAN:

EQUIVALENCE (B,C)
C(1)=B(1)
DO 10 I=2,N
C(I)=A(I)*C(I-l)+B(I)

Call from FORTRAN:

CALL FOLRPCn,a,inca,b,inab)

n Length of linear recurrence

a Vector a of length n of equation 12. (A(l) is
arbi trary.)

inca Skip distance between elements of the vector operand
a. For contiguous elements, inca=l.

b vector b of equation 12 on input and vector c of
equation 12 on output. (The output overwrites the
input.)

inch Skip distance between elements of the vector operand b
and result c. For conti9uous elements, inab=l.

SR-0014 4-31 I

FOLR2 solves first-order linear recurrences as in equation 11. The
solution, however, is written to a vector a, which is different from
vector B in subroutine FOLR.

Call from FORTRAN:

CALL FOLR2(n,a,inca,b,incb,c,inca)

n Length of linear recurrence

a Vector a of length n of equation 11. (A(l) is arbitrary.)

inca

b

Skip distance between elements of the vector operand a.
For contiguous elements, inca=l.

Vector b of equation 11

ineb Skip distance between elements of the vector operand band
result C. For contiguous elements, incb=l.

ince

Vector c of equation 11

Skip distance between elements of the vector result c.
For contiguous elements, incc=l.

FOLR2p is a combination of FOLRP and FOLR2.

Call from FORTRAN:

CALL FOLR2P(n,a,inca,b,inob,c,incc)

n

a

b

incb

SR-0014

Length of linear recurrence

Vector a of length n of equation 12. (A(l) is
arbitrary.)

Skip distance between elements of the vector operand
a. For contiguous elements, inaa=l.

Vector b of equation 12 on input

Skip distance between elements of the vector operand
b. For contiguous elements, incb=l.

4-32 I

incc

Vector a of equation 12

Skip distance between elements of the vector result c.
For contiguous elements, incc=l.

FOLRN solves for the last term of a first-order linear recurrence. That
is rn of

i c 2,3, ••• ,n

Call from FORTRAN:

~e8ult=FOLRN(n,a,inca,h,inch)

n

a

inca

b

inch

Example:

Length of linear recurrence

vector a of length n of equation 11. (A(l) is
arbitrary.)

Skip distance between elements of the vector operand A.
For contiguous elements, inca=l.

Vector b of length n of equation 11. (The output
overwrites the input.)

Skip distance between elements of the vector operand and
result h. For contiguous elements, incb=l.

This routine allows for efficient evaluation of polynomials using
Horner's method.

n
Let p(x)=l biXn-i

i=O

then p(a)=(••• «bOx+bl)x+b2)x+ ••• bn) Horner's rule.

SR-OOI4 4-33 I

In FORTRAN:

PA=B(O)
DO 10 I-l,N

PA=PA*X+B(I)
10 CONTINUE

or equivalently

PA=FOLRN(N+l,-X,O,B(O),l}.

SOLR solves second-order linear recurrences as in equation 12.

Equation 12:

or in FORTRAN,

DO 10 Ial,N
10 C(I + 2)=A(I)*C(I+l)+B(r)*C(I)

Call from FORTRAN:

CALL SOLR(n,a,inca,b,incb,c,incc}

n

a

inca

b

inch

c

Length of linear recurrence

Vector a of length n of equation 12

Skip distance between elements of the vector operand A.
For contiguous elements, inca=l.

vector b of length n of equation 12

Skip distance between elements of the vector operand B.
For contiguous elements, incb=l.

Vector result C of length N+2 of equation 12

incc Skip distance between elements of the vector result C. For
contiguous elements, incc=l. C(l) and C(2) are input to
this routine; C(3),C(4), ••• ,C(N+2) are output from this
routine.

SR-0014 4-34 I

SOLRN solves for only the last term of a second-order linear recurrence,
that is c(n) of SOLR(n,a,inca,b,incb,c,incc). SOLRN is a real function.

Call from FORTRAN:

peault=SOLRN(n,a,inca,b,incb,c,inoc)

n

a

inca

b

incb

c

Length of linear recurrence

Vector A of len9th N of equation 12

Skip distance between elements of the vector operand A.
For contiguou~ elements, inca=l.

Vector B of length N of equation 12

Skip distance between elements of the vector operand B.
For contiguous elements, incb=l.

vector result C of length N+2 of equation 12

incc Skip distance between elements of the vector result C. For
contiguous elements, inCC=l. C(l) and C(2) are input to
this routine; C(3),C(4), ••• ,C(N+2) are output from this
routine.

The FORTRAN loop

RI C(I)
R2=C(2)
DO 10 I=1,N-2

TEMP=R2
R2=A(I) *R2+B(I) *Rl
Rl=TEMP

10 CONTINUE
RESULTmR2

could be solved as follows.

pesult=SOLRN(n,a,l,b,l,c)

SR-0014 4-35 I

Example:

SOLRN might be used to find rn of the calculation

with the following call.

pn=SOLRN(n,a,l,b,l,c,l)

The equivalent FORTRAN follows.

Rl.zC(l)
R2=C(2)
DO 10 I-l,N

TEMP=R2
R2a A{I)*R2+B(I)*Rl
Rl=TEMP

10 CONTINUE
RN=R2

SOLR3 computes a second-order linear recurrence of three terms, that is

cl=cl
C2=C2
ci=Ci+a i-2c i-l+bi-2c i-2 i=3, ••• ,n

Call from FORTRAN:

CALL SOLR3(n,a,inca,b,incb,c,incc)

n

a

inca

b

SR-OOl4

Length of linear recurrence

Vector A of length N of equation 12

Skip distance between elements of the vector operand A.
For contiguous elements, inca=l.

Vector b of length n of equation 12

4-36 I

incb Skip distance between elements of the vector operand h.
FOr contiguous elements, incb=l.

C Vector result c of length n+2 of equation 12

incc Skip distance between elements of the vector result c.
For contiguous elements, incc=l. c(l) and c(2} are
input to this routine; C(3),C(4), ••• , c(n+2) are
output from this routine.

Example:

SOLR3 solves a system of lower bidiagonal linear equations Lx=b.

I a 0 a .
el I a o. .

Lx= fl e2 1 0 .
0 f2 e) 1 0 . . .
. a f3 e4 1 0

then there is

Xl=bl
x2=b2-e l x l
xi=bi-ei-lxi-l-f i-2xi-2

· 0 xl bl
0 x 2 b2

· 0 X3 b)

· a x4 = b4 = b

· a
· 0

i=3, ••• ,n

Given this problem, it can be solved with the following FORTRAN.

00 10 I=l,N-l
10 E(I)=-E(I)

00 20 I=1,N-2
20 F(I)=-F(I)

B(l)=B(l)
B(2)=B(2)+E(1)*B(1)
CALL SOLR3(N,E(2),1,F(1),1,B(1),1)

SR-0014 4-37 I

SINGLE-PRECISION REAL AND COMPLEX LINPACK ROUTINES

LINPACK is a package of FORTRAN routines that solve systems of linear
equations and compute the QR, Cholesky, and singular value
decompositions. The original FORTRAN programs are documented in the
LINPACK Userts Guide by J. J. Dongarra, C. B. Moler, J. R. Bunch, and G.
W. Stewart, published by the Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, 1979, Library of Congress catalog card
number 78-78206.

Each single-precision $SCILIB version of the LINPACK routines has the
same name, algorithm, and calling sequence as the original version.
Optimization of each routine includes the following:

• Replacement of calls to the BLAS routines SSCAL, SCOPY, SSWAP,
SAXPY, and SROT with in-line FORTRAN code that the CFT compiler
vectorizes

• Removal of FORTRAN IF statements if the result of either branch
is the same

• Replacement of SOOT to solve triangular systems of linear
equations in SGESL, SPOFA, SPOSL, STRSL, and SCHDD with more
vectorizable code

These optimizations affect only the execution order of floating-point
operations in modified DO-loops. Refer to the LINPACK User's Guide
for further descriptions. The complex routines have been added
without much optimization.

Table 4-3 contains the name, matrix, and purpose of each LINPACK
routine in $SCILIB.

SINGLE-PRECISION EISPACK ROUTINES

EISPACK is a package of FORTRAN routines for solving the eigenvalue
problem, computing and using the singular value decomposition, and
solving banded symmetric systems of linear equations.

The original FORTRAN versions are documented in the Matrix Eigensystem
Routines - EISPACK Guide, second edition by B. T. Smith, J. M. Boyle,
J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler,
published by Springer-verlag, New York, 1976, Library of Congress
catalog card number 76-26627 and in the Matrix Eigensystem Routines -
EISPACK Guide Extension by B. S. Garbow, J. M. Boyle, J. J. Dongarra,
and C. B. Moler, published by Springer-Verlag, New York, 1977, Library
of Congress catalog card number 77-2802.

SR-0014 4-38 I

Table 4-3. Single-precision LINPACK routines

Name Matrix or Purpose
Decomposition

SGECO Real general Factor and estimate condition
SGEFA Factor
SGESL Solve
SGEDI compute determinant and inverse

CGECO Complex general Factor and estimate condition
CGEFA Factor
CGESL Solve
CGEDI Compute determinant and inverse

SGBCO Real general banded Factor and estimate condition
SGBFA Factor
SGBSL Solve
SGBDI Compute determinant

CGBCO Complex general banded Factor and estimate condition
CGBFA Factor
CGBSL Solve
CGBDI Compute determinant

SPOCO Real positive definite Factor and estimate condition
SPOFA Factor
SPOSL Solve
SPODI Compute determinant and inverse

CPOCO Complex positive definite Factor and estimate condition
CPOFA Factor
CPOSL Solve
CPODI Compute determinant and inverse

SPPCQ Real positive definite Factor and estimate condition
SPPFA packed Factor
SPPSL Solve
SPPDI Compute determinant and inverse

CPPCO Complex positive Factor and estimate condition
CPPFA definite packed Factor
CPPSL Solve
CPPDI compute determinant and inverse

SR-OOl4 4-39 I

Name

SPBCO
SPBFA
SPBSL
SPBDr

CPBCO
CPBFA
CPBSL
C~BDI

SSICO
SSrFA
SSISL
ssrDI

CHICO
CHIFA
CHISL
CHIDr

SSPCO
SSPFA
SSPSL
SSPDI

CBPCO
CHPFA
CHPSL
CHPDI

STRCO
STRSL
STRDI

CTRCO
CTRSL
CTRDI

SR-OOl4

Table 4-3. Single-precision LINPACK routines (continued)

Matrix or
Decomposition

Real positive definite
banded

Complex positive
definite banded

Symmetric indefinite

Hermitian indefinite

Symmetric indefinite
packed

Hermitian indefinite
packed

Real triangular

Complex triangular

Purpose

Factor and estimate condition
Factor
Solve
Compute determinant

Factor and estimate condition
Factor
Solve
Compute determinant

Factor and estimate condition
Factor
Solve
Compute inertia, determinant, and
inverse

Factor and estimate condition
Factor
Solve
Compute inertia, determinant, and
inverse

Factor and estimate condition
Factor
Solve
Compute inertia, determinant,
inverse

Factor and estimate condition
Factor
Solve
Compute inertia, determinant,
inverse

Factor and estimate condition
Solve

and

and

Compute determinant and inverse

Factor and estimate condition
Solve
Compute determinant and inverse

4-40 I

Table 4-3. Single-precision LINPACK routines (continued)

Name Matrix or Purpose
Decomposition

SGTSL Real tridiagonal Solve

CGTSL Complex tridiagonal Solve

SPTSL Real positive definite Solve
tridiagonal

CPTSL Complex Solve

SCHDC Real Cholesky Decompose
SCHDD decomposition Downdate
SCHUD Update
SCHEX Exchange

CCHDC Complex Cholesky Decompose
CCHDD decomposition Downdate
CCHUD Update
CCHEX Exchange

SQRDC Real Orthogonal factorization
SQRSL Solve

CQRDC COmplex Orthogonal factorization
CQRSL Solve

SSVDC Real Singular value decomposition
CSVDC Complex

Each $SCILIB version of the EISPACK routines has the same name, algorithm,
and calling sequence as the original version. Optimization of each
routine includes the following.

• Use of the BLAS routines SOOT, SASOM, SNRM2, ISAMAX, and ISMIN
when applicable

• Removal of FORTRAN IF statements if the result of either branch
is the same

SR-OOI4 4-41 I

• Unrolling complicated FORTRAN DO-loops to improve vectorization

• Use of the CFT compiler directive CDIR$ IVDEP when no dependencies
exist that prevent vectorization

These modifications increase vectorization and, therefore, reduce
execution time. Only the order of computations within a loop is changed;
the mOdified versions produce the same answers as the original versions
unless the problem is sensitive to small changes in the data.

Table 4-4 contains the name and purpose of each EISPACK routine in $SCILIB.

Table 4-4. Single-precision EISPACK routines

Name Matrix or Purpose
Decomposition

CG Complex general
CH Complex symmetric
RG Real general Find eigenvalues and eigenvectors
ROO Real general generalize (as desired)

AX= ABx
RS Real synunetric
RSB Real symmetric band
RSG Real symmetric generalize

Ax= flBx

RSGAB Real symmetric generalize
ABX= AX

RSGBA Real symmetric generalize
BAx= AX

RSP Real symmetric packed
RST Real symmetric

tridiagonal
RT Special real

tridiagonal

BALANC Real general Balances matrix and isolates
eigenvalues whenever possible

CBAL Complex general

SR-0014 4-42 I

Table 4-4. Single-precision EISPACK routines (continued)

Name Matrix or Purpose
Decomposition

ELMHES Real general Reduce matrix to upper Hessenherg
ORTHES form
COMHES Complex general
COMTH

ELTRAN Real general Accumulate transformations used in
ORTRAN the reduction to upper Hessenherg

form done by ELMHES, ORTHES

BALBAK Real general Form eigenvectors by back
ELMBAK transforming those of the
ORTBAK corresponding matrices determined by

BALANC, ELMHES, ORTHES, COMMES,
COMBAK Complex general eORTH, and CBAL
eORTB
CBABK2
REBAK
REBAKB

TREOI Real symmetric Reduce to symmetric tridiagonal
TRE02
TRE03

TRBARl Real synunetric Form eigenvectors by back
TRBAK3 transforming those of the

corresponding matrices determined
by TREDl or TRED3

IMTQLV Symmetric tridiagonal Find eigenvalues and/or
IMTQLl eigenvectors by implicit QL method
IMTQL2

RATQR Symmetric tridiagonal Find the smallest or largest
eigenvalues by rational QR method
with Newton corrections

SR-0014 4-43 I

Table 4-4. Single-precision EISPACK routines (continued)

Name Matrix or Purpose
Decomposition

TQLRAT Symmetric tridiagonal Find the eigenvalues by rational
TQLl QL method
TQL2 Find the eigenvalues and/or

eigenvectors by the rational QL or
QL method

BISECT Symmetric tridiagonal Find eigenvalues and/or eigen-
TRIDIB vectors which lie in a specified
TSTURM interval using bisection and/or
TINVIT inverse iteration

FIGI Nonsymmetric Reduce to symmetric tridiagonal
FIGI2 tridiagonal with the same eigenvalues

BAKVEC Nonsymmetric Form eigenvectors by back
transforming corresponding matrix
determined by FIGI

HQR Real upper Hessenberg Find eigenvalues and/or
HQR2 eigenvectors by QR method
COMQR Complex upper Hessenberg
Ca.tQR2

INVIT Upper Hessenberg Find eigenvectors corresponding to
specified eigenvalues

CINVIT Complex upper Hessenberg

BANDR Real symmetric banded Reduce to a symmetric tridiagonal
matrix

BANDV Real symmetric banded Find those eigenvectors
corresponding to specified
eigenvalues using inverse iteration

SR-OOl4 4-44 I

Name

BQR

MINFIT

SVD

HTRIBK
HTRIB3
HTRIDI
HTRID3

QZHES
QZIT
QZVAL
QZVEC

COMLR
COMLR2
REDUC

REDUC2

SR-OOI4

Table 4-4. Single-precision EISPACK routines (continued)

Matrix or
Decomposition

Real symmetric banded

Real rectangular

Real rectangular

Complex Hermitian

Real generalize
eigenproblem Ax ., A Bx

Complex general

Real symmetric generalize
Ax=).BX I

1 . I' Rea symmetr~c genera ~ze
ABx=). Bx or BAx: A Bx I

Purpose

Find eigenvalues using QR algorithm
with shifts of origin

Determine the singular value
decomposition A=USVT, forming UTB
rather than U. Householder
bidiagonalization and a variant of
the QR algorithm are used.

Determine the singular value
decomposition A=USVT• Householder
bidiagonalization and a variant of
the QR algorithm are used.

All eigenvalues and eigenvectors

All eigenvalues and eigenvectors

Reduce matrix to upper Hessenberg

Transforms generalize
symmetric eigenproblerns to standard
symmetric eigenproblems

4-45 I

MATRIX INVERSE AND MULTIPLICATION ROUTINES

The matrix inverse subroutine, MINV, computes the matrix inverse and
solves systems of linear equations using the Gauss-Jordan elimination.
MXM and MXMA are two optimal matrix multiplication routines, one more
general than the other. MXV and MXVA are similar to MXM and MXMA,
respectively~ however, MXV and MXVA handle the special case of matrix
times vector.

MINV computes the determinant and inverse of a square matrix. MINV can
also solve several systems of linear equations described by one square
matrix and several right-hand sides.

Call from FORTRAN:

CALL MINV(ab,n,nd,scratch,det,eps,m,mode)

ab

n

nd

Augmented matrix of the square matrix a and the n x m
matrix b of the m right-hand sides for each system of
equations to solve. The solution overwrites the
corresponding right-hand side. In the calling routine,
ab must be dimensioned a (nd,n+m) .

Order of matrix a

Leading dimension of ab

scratch User-defined working storage array of length at least 2*n

Determinant of matrix a

eps User-defined tolerance for the product of pivot elements

m >0 Number of systems of linear equations to solve
=0 Determinant of a is computed, depending on the value

of MODE.

mode +1 a is overwritten with a-I.
=0 a is not saved and a-I is not computed.

MXM computes a matrix times matrix product (c=a~ and assumes a skip
distance between elements of the matrices to be 1.

Call from FORTRAN:

CALL MXM(a,nap,b,nac,c,nba)

SR-0014 4-46 I

a First matrix of product

nap Number of rows of matr ices a and c

b Second matrix of product

nac Number of columns of matrix a and the number of rows of
matrix b

c Result matrix

nbc Number of columns of matrices b and e

MXV computes a matrix times a vector and assumes a skip distance between
elements of the matrix to be 1.

In FORTRAN, MXV would perform the following calculations.

00 10 1=1, NAR
10 C(I)=A(I,l)*B(I)+A(I,2)*B(2)+ ••• +A(I,NBR)*B(NBR)

call from FORTRAN:

CALL MXV(a,naP,b,nbp)

a Matrix of product

nap Number of rows of matrices a and C

b Vector of product

nbp Number of elements of vector b and the number of columns of
matrix a

Resulting vector

MXMA computes a matrix times matrix product (e=ab) and allows for
arbitrary spacing of matrix elements.

Call from FORTRAN:

CALL MXMA(a,na,iad,b,nb,ibd,e,nc,icd,na~,nac,nbe)

SR-0014 4-47 I

a First matrix of product

na Spacing between column elements of a

iad Spacing between row elements of a

b Second matrix of product

nb Spacing between column elements of b

ibd Spacing between row elements of b

c Output matrix

nc Spacing between column elements of c

icd Spacing between row elements of c

nar Number of rows in first operand and result

nac Number of columns in first operand and number of rows in
second operand

nbc Number of columns in second operand and result

Example 1:

The dimensions of matrix A below are 3x3.
marked by asterisks.

Consider the 2x3 submatrix AI

(l,l)* (1,2)*

t (a;/,
(2,1) (2,2)
+ (b) c)

(3,1)* (3,2)*

(l, 3) *

(2,3)

{3,3}*

The row spacing of AI (iad) is defined as the length of the path
through A between two consecutive row elements of A'. In this example,
the path is (a) through (c) (iad:3).

The column spacing of AI (na) is defined as the length of the path
through A between two consecutive column elements of At. In this
example, the path is (a) through (b) (na=2) ~ the number of rows of A'
is 2 (nar=2): and the number of columns of AI is 3 (nac=3).

SR-0014 4-48 I

Example 2:

Consider the matrices below. Let AT, the transpose of A equal the
first operand of a matrix multiply operand. The transpose of a matrix
has as its ith row the ith column of the original matrix.

(1,1) (1,2) (1,3) (1,1) ~ (3,1)

~
(a) (c) (a)

(2,1) (2,2) (2,3) (1,2) (3,2)

~
{b} (c)

(3,I) (3,2) (3,3) (1,3) (2,3) (3,3)

Matrix A Matrix AT

The length of the path between two consecutive column elements of AT is
the same as the length of the path between two consecutive row elements
of A. Refer to paths (a) through (c) of both matrices (na=3). The
length of the path between two consecutive row elements of AT is the
length of the path between two consecutive column elements of A. This
path consists of just (a) (iad=l). In this example nar=3 and naa=3.

Therefore, if A is the first operand of a call to MXMA, the following
subroutine call is used.

CALL MXMA(A,I,3, •••)

If AT is the first operand of a call to MXMA, the following subroutine
call is used.

CALL MXMA(A,3,1, •••)

MXVA computes a matrix times a vector and allows for arbitrary spacing of
matrix elements.

Call froill FORTRAN:

CALL MXVA(a,na,iad,b,nb,c,na,nar,nbr)

a First matrix of product

na Spacing between column elements of a

iad Spacing between row elements of a

SR-0014 4-49 I

b vector of product

nb Spacing between elements of b

o Result vector

no Spacing between elements of e

nar Number of rows in first operand and number of elements in
the result

nhr Number of columns in first operand and number of elements
in the second operand

FAST FOURIER TRANSFORM ROUTINES

These routines apply a Fast Fourier transform. Each routine can compute
either a Fourier analysis or a Fourier synthesis. Detailed descriptions~
algorithms~ performance statistics~ and examples of these routines appear
in the Complex Fast Fourier Transform Binary Radix Subroutine (CFFT2),
eRI publication SN-0203: Real to Complex Fast Fourier Transform Binary
Radix Subroutine (RCFFT2), CRI publication SN-0204; and Complex to Real
Fast Fourier Transform Binary Radix Subroutine (CRFFT2)~ CRI publication
SN-0206.

Each routine has the same argument list: (init, ix, n, x~ hlopk, y).

init Initialization flag

ix Analysis/synthesis flag

n Size of transform

x Input vector

hlopk Working storage vector

y Result vector

The routines are called the first time with ini~O and n as a power
of two in order to initialize the needed sine and cosine tables in the
working storage area hlopk. Then for each input vector of length n
(length (n/2)+l for CRFFT2), each routine is called with init=o. The
sign of IX determines whether a Fourier synthesis or a Fourier analysis
is computed. If the sign of ix is negative, a synthesis is computed;
if positive, an analysis is computed. Table 4-5 shows the size and
formats of x, y, and wopk for each routine.

SR-0014 4-50 I

Table 4-5. Arguments for Fourier transform routines

Argument CFFT2 RCFFT2 CRFFl'2

x Complex n Real n Complex
(nI2) +1

bJork Complex Complex Complex
(5/2)n (3/2)n+2 (3/2)n+2

y Complex n Complex Real n
(n/2) +1

CFFT2 calculates equation 13.

Equation 13:

n-l
Yk= .1 Xj exp(j: 2 J[i jk)

j=O n

for k=O,l, ••• ,n-l

where xi i=O,l, ••• ,n-l are stored in X(I),I=l,N

Yi i=O,l, ••• ,n-l are stored in Y{I),I=l,N

and the sign of the exponent is determined by SIGN(IX).

Call from FORTRAN:

CALL CFFT2(ini~,ix,n,x,bJOrk,y)

init ~O Generates sine and cosine tables in work
=0 calculates Fourier transforms using sine and cosine

tables of previous call

ix >0 calculates Fourier analysis
<0 Calculates Fourier synthesis

n

SR-0014

Size of Fourier transforml 2m where 3<m for the
CRAY X-MP and 2<m for the CRAY-l.

4-51 I

x

~ork

y

Input vector. Vector of n complex values.
Range: l02466/n>x(i) >n* (10- 2466) for i=I,n.

Working storage. Vector of (S/2)n complex values.

Result vector. Vector of n complex values.

NOTE

The input vector x can be equivalenced to either y
or work; then the input sequence is overwritten.

RCFFT2 calculates

n-l
l Xj exp(± 2~i jk)
j=O n

for k ~ O,1, ••• ,(n/2)

where xi i=O,l, ••• ,n-l are stored in X(I),I=l,N
Yi i=O,1, ••• ,n/2 are stored in Y(I),I=l,(N/2)+1

and the sign of the exponent is determined by SIGN(IX).

Call from FORTRAN:

CALL RCFFT2(init,ix,n,x,work,y)

init

ix

n

x

work

y

SR-0014

~o Generates sine and cosine tables in work
=0 Calculates Fourier transforms using sine and cosine

tables of previous call

>0 Calculates Fourier analysis
<0 Calculates Fourier synthesis

Size of Fourier transform; 2m where 3<m.

Input vector. Vector of n real values
Range: 102466/2*n>x(i}~2*n*lO-2466; i=l,n.

working storage. Vector, {3/2)n+2 complex value.

Result vector. Vector of (n/2)+1 complex values.

4-52 I

CRFFT2 calculates equation 13 where the xi elements are complex and
Xj=xn_j for j=0,1, ••• (n/2). Only the first (n/2)+1 elements are
stored in X.

Equation 13:

n-l
l
j=O

x· exp (+ 2 1C i j k)
J - n

for k=O,l, ••• ,n-l

where the Xj elements are complex and are related by Xj=xn-j

for j=1,2,3, ••• ,(n/2)

Call from FORTRAN:

CALL CRFFT2(init,ix,n,x,work,y)

init ~O Generates sine and cosine tables in work
=0 Calculates Fourier transforms using sine and cosine

tables of previous call

ix >0 Calculates Fourier analysis
<0 Calculates Fourier synthesis

n

x

work

y

Size of FOUrier transform; 2m where 3<m.

Input vector. Vector of (n/2)+1 complex values
Range: l02466/n~x(i) ~n*lO-2466; i=l,n.

Working storage. Vector, (3/2)n+2 complex values.

Result vector. vector of n real values.

FILTER SUBROUTINES

These subroutines are intended for filter analysis and design. They
also solve more general problems. For detailed descriptions,
algorithms, performance statistics, and examples, see Linear Digital
Filters for CFT Usage, CRI publication 2240210.

SR-0014 4-53 I

FILTERG computes a convolution of two vectors.

Given:

i;:;:l, •••• ,m
j=l, •••• ,n

FILTERG computes the following.

m

Filter coefficients
Data

o~;:; 1 a,d,+, 1 ... J ~ J- i=l, ••• ,n-m + I
j=l

Call from FORTRAN:

CALL FILTERG(a,m,d,n,o)

a Vector of filter coefficients

m Number of filter coefficients

d Input data vector

n Number of data points

o Output vector

FILTERS computes the same convolution as FILTERG except that it assumes
the filter coefficient vector is symmetric.

Given:

i=l,. •••• rm/zl
j=l, •••• ,n

(rm/21=m/Z for m even and
(m+l)/2 for m odd, called the
ceiling function.)

FILTERS computes the following.

m odd:

m even:

SR-0014

0,=
1

0'= 1

(m-I)/2
1 aj(di+j-l+di+m-j)
j=l

i=l, ••• ,n-m+l

m/Z
1 aj(d j +i _1 + d i + m-j}
j-l

4-54

i=l, ••• ,n-m+l

I

call from FORTRAN:

CALL FILTERS(a,m,d,n,o)

a

m

d

n

o

Symmetric filter coefficient vector

M is formally the length of vector A but because A is
symmetric (ai=am-i+l i i=l, ••• ,m), only m/2 elements
of A are ever referenced.

Input data vector

Number of data points

Output vector

OPFILT computes the solution to the Weiner-Levinson system of linear
equations Ta=b where T is a Toeplitz matrix in which elements are
described by the following.

for Ij-il+l=k
and k=l, ••• ,n.

Call from FORTRAN:

CALL OPFILT(m,a,b,a,p)

m

a

b

SR-OOl4

Order of system of equations

Output vector of filter coefficients

Information auto-correlation vector

Scratch vector of length 2m

Signal auto-correlation vector

N~E

Although OPFILT solves this matrix equation faster than
Gaussian elimination, OPFILT does no pivoting.
Therefore, it is less numerically stable than Gaussian
elimination unless the matrix T is positive, definite,
or diagonally dominant.

4-55 I

Example:

The following system of linear equations can be solved with the call
OPFILT (3,A,B,C,R). The array C is one dimension with a length of at
least six. (The tij elements show how the numbers for R are obtained.)

(:g: ::n ::;;) (:g~) = (:g~)
R(3) R(2) R(l) A(3) B(3)

GATHER, SCATTER ROUTINES

These subroutines allow the user to gather a vector from a source vector
or to scatter a vector into another vector. A third vector of indexes
determines which elements are accessed or changed.

GATHER is defined in the following way.

ai=bJ' where i=l, ••• ,n
i

In FORTRAN:

A(I)=B(INDEX(I»

where I=l,N

call from FORTRAN:

CALL GATHER{n,a,b,index}

n Number of elements in each vector

a OUtput vector

b Source vector

index Vector of indexes

SR-OOl4 4-56 I

SCATTER is defined in the following way.

aJ' =bi where i=l, ••• ,n
i

In FORTRAN:

A(INDEX(I»=B(I)

where I=l,N

Call from FORTRAN:

CALL SCATTER(n,a,index,b)

n Number of elements in each vector

a Output vector

b Source vector

index Vector of indexes

SEARCH ROUTINES

Several search routines in $SCILIB have been optimized in CAL. These
routines use the vector units and vector mask to quickly find the number
or positions of true occurrences in a vector of a given relation. The
routines ILLZ and IILZ find the first occurrences. ILSUM counts the
number of such occurrences.

Several routines find the positions of a searched for object in a
vector. These include: ISRCHEQ, ISRCHNE, ISRCHFLT, ISRCHFLE, ISRCHFGT,
ISRCHFGE, ISRCHILT, ISRCHlLE, ISRCHIGT, and ISRCHIGE.

The following routines return an indexed array of all positions of an
object within a vector. These include: WHENEQ, WHENNE, WHENFLT,
WHENFLE, WHENFGT, WHENFGE, WHENILT, WHENlLE, WHENIGT, and WHENIGE.

The OSRCHI and OSRCHF routines search ordered arrays for targets.

SR-0014 4-57 I

I
NUMBER OR SOM OF VALUES WITHIN A VECTOR OR BEFORE AN ELEMENT

IILZ returns the number of zero values before the first nonzero value in
an array. When scanning backward (ineZ < 0), this routine starts at
the end and moves backward (L(N),L(N + INCL) ,L(N + 2*INCL), •••).

Call from FORTRAN:

n

kount=IILZ(n,Z,incL)

Number of elements to process in the vector (N=vector
length, if incb=l; ~vector length/2, if incL=21 etc.)

vector ope rand

incZ Skip distance between elements of the vector operand. For
contiguous elements, inc!=l.

ILLZ returns the number of false values preceding the first true value in
a logical vector. When used with an integer or real vector, ILLZ returns
the number of positive or zero values preceding the first negative
value. When scanning backward (incl<O), this routine starts at the end
and moves backward (L(N),L(N+INCL),L(N+2*INCL), •••).

Call from FORTRAN:

n

kount=ILLZ(n,t,inet)

Number of elements to process in the vector (n=vector
length, if incL=l; n=vector len9th/2, if incb=2; etc.)

Vector operand

inel Skip distance between elements of the vector operand. For
contiguous elements, inel=l.

ILSUM counts the total number of true values in a vector declared
LOGICAL. It counts the total number of negative values in a vector
declared REAL or INTEGER.

Call from FORTRAN:

kount=ILSUM(n,t,inct)

SR-0014 4-58 I

n Number of elements to process in the vector (n=vector
length, if ino1Pl; n=vector length/2, if inob=21 etc.)

vector operand

inoZ. Skip distance between elements of the vector operand. For
contiguous elements, inel=l.

SEARCHING FOR AN OBJECT IN A VECTOR

These functions return the first location in an array that has a true
relational value to the target. See table 4-6 for a summary.

Table 4-6. ISRCH routines

Name(papameter Z.ist) Description

rSRCHEQ(n,appay,inc,tapget)

ISRCHNE(n,appay,ino,tapget)

ISRCHFLT(n,appay,inc,tapget)

ISRCHFLE(n,appay,ine,tapget)

ISRCHFGT(n,appay,ine,target)

ISRCHFGE (n,appay,ino, tapget)

SR-OOl4

Returns the first location in a real
array that is equal to the real
target

Returns the first location in a real
array that is not equal to the real
target

Returns the first location in a real
array that is less than the real target

Returns the first location in a real
array that is less than or equal to the
real target

Returns the first location in a real
array that is greater than the real
target

Returns the first location in a real
array that is greater than or equal to
the real target

4-59 I

Table 4-6. ISRCH routines (continued)

Name(parameter list) Description

ISRCHEQ(n,iarray,ine,itarget) Returns the first location in an
integer array that is equal to the
integer target

ISRCHNE(n,iarray,ine,itarget) Returns the first location in an
integer array that is not equal to the
integer target

ISRCHILT(n,iarray,inc,itarget) Returns the first location in an
integer array that is less than the
integer target

ISRCHILE{n,iarray,inc,itarget) Returns the first location in an
integer array that is less than or equal
to an integer target

ISRCHIGT{n,iarray,ine,itarget) Returns the first location in an
integer array that is not equal to an
integer target

ISRCHIGE(n,iarray,inc,itarget) Returns the first location in an
integer array that is not equal to an
integer target

ISRCHEQ is used when a real array element is equal to a real target, or
an integer array is equal to an integer target. ISRCHEQ replaces the
ISEARCH routine but has an entry point of ISEARCH as well as ISRCHEQ.

Call from FORTRAN:

location=ISRCHEQ(n,array,inc,target)
location=rSRCHEQ(n,iarray,inc,itarget)

n Number of elements to be searched.
returned.

array First element of real array to be

iarray First element of integer array to

inc Skip distance between elements of

SR-0014 4-60

If n<O, then 0 is

searched

be searched

the searched array

I

itarget

Real value searched for in array. If target is not
found, then the returned value is n+l.

Integer value searched for in array

The FORTRAN equivalent follows.

FUNCTION ISRCHEQ(N,ARRAY,INC,TARGET)
DIMENSION ARRAY(N)
J=l
If(INC.LT.O) J=N*{-INC)
DO 100 Iel.N

IF(ARRAY(J).EQ.TARGET) GO TO 200
J=J+INC

100 CONTINUE
200 I SRCHEQ>= I

RETURN
END

ISRCHNE is used when the array element (real or integer) is not equal to
the target (real or integer).

Call from FORTRAN:

loaation=ISRCHNE(n,array,ina,target)
loaation~ISRCHNE(n,iarray,ina,itarget}

n

array

ia'1'ray

ina

target

itarget

Number of elements to be searched. If n<O, then 0 is
returned.

First element of real array to be searched

First element of integer array to be searched

Skip distance between elements of the searched array

Real value searched for in array. If target is not
found, then the returned value is n+l.

Integer value searched for in array.

ISRCHFLT is used when the real array element is less than the real target.

Call from FORTRAN:

!oaation;ISRCHFLT (n,array,ina, target)

SR-OOI4 4-61 I

n

a~~ay

inc

tapget

Number of elements to be searched. If n<O, then 0 is
returned.

First element of real array to be searched

Skip distance between elements of the searched array

Real value searched for in array. If ta~get is not
found, then the returned value is n+l.

ISRCHFLE is used when the real array element is less than or equal to the
real target.

Call from FORTRAN:

loaation=ISRCHFLE(n,a~~ay,inc,tapget)

n

inc

ta~get

Number of elements to be searched. If n<O, then 0 is
returned.

First element of real array to be searched

Skip distance between elements of the searched array

Real value searched for in array_ If target is not
found, then the returned value is n+l.

ISRCHFGT is used when the real array element is 9reater than the real
target.

Call from FORTRAN:

loaation-ISRCHFGT{n,array,inc,target)

n

array

inc

target

SR-0014

Number of elements to be searched. If n<O, then 0 is
returned.

First element of real array to be searched

Skip distance between elements of the searched array

Real value searched for in array. If target is not
found, then the returned value is n+l.

4-62 I

ISRCHFGE is used when the real array element is greater than or equal to
the real target.

Call from FORTRAN:

!oaation-ISRCHFGE(n,array,ina,target)

n

inc

target

Number of elements to be searched. If n<O, then 0 is
returned.

First element of real array to be searched

Skip distance between elements of the searched array

Real value searched for in array. If target is not
found, then the returned value is n+l.

ISRCHILT is used when the integer array element is less than the integer
target.

Call from FORTRAN:

~ooation=ISRCHILT(n,iarray,ine,itarget)

iarray

inc

ita:t'get

Number of elements to be searched. If n<O, then 0 is
returned.

First element of integer array to be searched

Skip distance between elements of the searched array

Integer value searched for in array. If itarget is not
found, then the returned value is n+l.

ISRCHlLE is used when the integer array element 1s less than or equal to
the integer target.

call from FORTRAN:

toeation=ISRCHILE (n,iarray, ina,itarget)

n

SR-OOl4

Number of elements to be searched. If n<O, then 0 is
returned.

4-63 I

iarray

ina

itarget

First element of integer array to be searched

Skip distance between elements of the searched array

Integer value searched for in array_ If itarget is not
found, then the returned value is n+l.

ISRCHIGT is used when the integer array element is greater than the
integer target.

Call from FORTRAN:

tocation=ISRCHIGT(n,iarray,ina,itarget)

n

iarray

ina

Number of elements to be searched. If n<O, then 0 is
returned.

First element of integer array to be searched

Skip distance between elements of the searched array

Integer value searched for in array. If itarget is not
found, then the returned value is n+l.

ISRCHIGE is used when the integer array element is greater than or equal
to the integer target.

Call from FORTRAN:

Loaation=ISRCHIGE(n,iarray,inc,itarget)

n

ina

itarget

Number of elements to be searched. If n~O, then 0 is
returned.

First element of integer array to be searched

Skip distance between elements of the searched array

Integer value searched for in array. If target is not
found, then the returned value is n+l.

INDEXED ARRAY OF ALL POSITIONS OF AN OBJECT IN A VECTOR

These routines return all locations in an array that have a true
relational value to the target. Table 4-7 summarizes these routines.

SR-OOI4 4-64 I

Table 4-7. WHEN routines

Name(papameter list) Description

WHENEQ(n,array,inc,target,
index,nval)

WHENNE(n,array,inc,target,
index,nval)

WHENFLT(n,arpay, inc, target,
index, nval)

WHENFLE(n,apray,inc,target,
index, nval)

WHENFGT (n,array,inc, target,
index, nval)

WHENFGE(n,array,inc,target,
index, nval)

wHENEQ(n,iapray,inc,itarget,
index, nval)

WHENNE(n,iarray,inc,itarget,
index, nval)

WHENILT(n,iarPay,inc,itarget,
index,nva1.)

WHENILE(n,iarray,inc,itarget,
index, nva7,)

WHENIGT(n,iarray,inc,itarget,
index, nva7,)

WHENIGE(n,iarray,inc,itarget,
index,nval)

SR-0014

Returns all locations in a real array
that are equal to the real target

Returns all locations in a real array
that are not equal to the real target

Returns all locations in a real array
that are less than the real target

Returns all locations in a real array
that are less than or equal to the real
target

Returns all locations in a real array
that are greater than the real target

Returns all locations in a real array
that are greater than or equal to the
real target

Returns all locations in an integer
array that are equal to the integer
target

Returns all locations in an integer
array that are equal to the integer
target

Returns all locations in an integer
array that are less than the integer
target

Returns all locations in an integer
array that are less than or equal to the
integer target

Returns all locations in an integer
array that are greater than the integer
target

Returns all locations in an integer
array that are greater than or equal to
the integer target

4-65 I

WHENEQ is used when the real array element is equal to the real target or
the integer array is equal to the integer target.

Call from FORTRAN:

CALL WHENEQ(n,array,in~,target,index,nval)
CALL WHENEQ(n,iarray,ina,itarget,index,nvat)

n Number of elements to be searched

array First element of real array to be searched

iarray First element of integer array to be searched

ina Skip distance between elements of the searched array

target Real value searched for in array

itarget Integer value searched for in array

index Integer array containing the index of the found target in
the array

nval Number of values put in the index array

The FORTRAN equivalent follows.

INA=l
NVAL=O

IF(INC.LT.O) lNA=(-INC)*(N-l}+l

DO 100 I-=l,N

IF(ARRAY(INA}.EQ.TARGET} THEN
NVAL=NVAL+ 1
INDEX (NVAL) =I

END IF

INA=INA+INC

100 CONTINUE

WHENNE is used when the real array element is not equal to the real
target or the integer array is not equal to the integer target.

4-66 I

Call from FORTRAN:

CALL WHENNE(n,array,ina,target,index,nval)
CALL WHENNE(n,iarray,ina,itarget,index,nvat)

n Number of elements to be searched

array First element of real array to be searched

iarray First element of integer array to be searched

ina Skip distance between elements of the searched array

target Real value searched for in array

itarget Integer value searched for in array

index Integer array containing the index of the found target in
the array

nval Number of values put in the index array

WHENFLT is used when the real array element is less than the real target.

Call from FORTRAN:

CALL WHENFLT(n,array,inc,target,index,nval)

n

inc

target

index

nval

Number of elements to be searched

First element of real array to be searched

Skip distance between elements of the searched array

Real value searched for in array

Integer array containing the index of the found target in
the array

Number of values put in the index array

WHENFLE is used when the real array element is less than or equal to the
real target.

SR-0014 4-67 I

call from FORTRAN:

n Number of elements to be searched

First element of real array to be searched

inc Skip distance between elements of the searched array

target Real value searched for in array

ind63: Integer array containing the index of the found target in
the array

rival Number of values put in the index array

WHENFGT is used when the real array element is greater than the real
target.

Call from FORTRAN:

CALL WBENFGT(n,array,inc,target,index,nval)

n Number of elements to be searched

army First element of real array to be searched

inc Skip distance between elements of the searched array

target Real value searched for in array

index Integer array containing the index of the found target in
the array

nval Number of values put in the index array

WBENFGE is used when the real array element is greater than or equal to
the real target.

call from FORTRAN:

CALL WHENFGE(ri,array,inc,target,index,nval)

SR-0014 4-68 I

n

a~ray

inc

target

index

nvaL

Number of elements to be searched

First element of real array to be searched

Skip distance between elements of the searched array

Real value searched for in array

Integer array containing the index of the found target in
the array

Number of values put in the index array

WHENILT is used when the integer array element is less than the integer
target.

Call from FORTRAN:

CALL WHENILT(n,iarray,inc,itarget,index,nvaL)

n Number of elements to be searched

iarray First element of integer array to be searched

inc Skip distance between elements of the searched array

itarget Integer value searched for in array

index Integer array containing the index of the found target in
the array

nvaL Number of values put in the index array

WHENILE is used when the integer array element is less than or equal to
the integer target.

Call from FORTRAN:

CALL WHENILE(n,iarray,in~,itarget,index,nvaL)

n Number of elements to be searched

iarray First element of integer array to be searched

in~ Skip distance between elements of the searched array

SR-0014 4-69 I

itarget Integer value searched for in array

index Integer array containing the index of the found target in
the array

nva1 Number of values put in the index array

WHENIGT is used when the integer array element is greater than the
integer target.

Call from FORTRAN:

CALL WHENIGT(n,iarray,inc,itarget,index,nvat)

n Number of elements to be searched

First element of integer array to be searched

inc Skip distance between elements of the searched array

itarget Integer value searched for in array

index Integer array containing the index of the found target in
the array

nva1 Number of values put in the index array

WHENIGE is used when the integer array element is greater than or equal
to the integer target.

Call from FORTRAN:

CALL WHENIGE(n,iarray,inc,itarget,index,nva1)

n Number of elements to be searched

iarray First element of integer array to be searched

ine Skip distance between elements of the searched array

itarget Integer value searched for in array

SR-0014 4-70 I

index

nval

Integer array containing the index of the found target in
the array

Number of values put in the index array

SEARCH ORDERED ARRAY FOR TARGET

These subroutines search integer arrays for integer targets and search
real arrays for real targets.

OSRCHI searches an ordered integer array and returns the index of the
first location that contains the target (type integer). Searching always
begins at the lowest value in the ordered array. Even if the target is
not found, OSRCHI returns the index of the location that would contain
the target. The total number of occurrences of the target in the array
can also be returned.

Call from FORTRAN:

CALL OSRCHI (n,iarpay,inc,itarget,index,i~here,inum)

n

iarray

inc

itarget

index

SR-0014

Number of elements of the array to be searched

Beginning address of the integer array to be searched

A positive skip increment indicates an ascending array and
returns the index of the first element encountered,
starting at the beginning of the array.

A negative skip increment indicates a descending array and
returns the index of the last element encountered, starting
at the beginning of the array.

Integer target of the search

Index of the first location in the searched array that
contains the target

Exceptional cases:
(1) If n < 1, index=O
(2) If no equal array elements, index=n+l

4-71 I

inum

Index of the first location in the searched array that
would contain the target if it were found in the array.
(If the target is found, index=iwhepe.)

Exceptional case: if n is less than 1, iwhere=o

Number of target elements found in the array_ For the
total number of occurrences of the target in the array,
this parameter must be specified nonzero.

OSRCHF searches an ordered real array and returns the index of the first
location that contains the target (type real). Searching always begins
at the lowest value in the ordered array_ Even if the target is not
found, OSRCHI returns the index of the location that would contain the
target. As an option, the total number of occurrences of the target in
the array can also be returned.

Call from FORTRAN:

CALL OSRCHF (n,appay,ine,target,index,~here,inum)

n

ar~y

ina

tapget

index

iwhere

SR-OOl4

Number of elements of the array to be searched

Beginning address of the real array to be searched

A positive skip increment indicates an ascending array and
returns the index of the first element encountered,
starting at the beginning of the array.

A negative skip increment indicates a descending array and
returns the index of the last element encountered, starting
at the beginning of the array.

Real target of the search

Index of the first location in the searched array that
contains the target

Exceptional cases:
(1) If n < 1, index=O
(2) If no equal array elements, index=n+l

Index of the first location in the searched array that
would contain the target if it were found in the array.
(If the target is found, index:iwhere.)

Exceptional case: if n is less than 1, iwhere=O

4-72 I

I

I

inurn

SORT ROUTINE

Number of target elements found in the array. For the
total number of occurrences of the target in the array,
this parameter must be specified nonzero.

ORDERS is an internal fixed-length record sort optimized for the Cray
computer. It assumes that the n records to be sorted are of length
irecLth and have been stored in an array data that has been
dimensioned. The ORDERS method and processing are described later.

DIMENSION DATA(irecLth,n)

ORDERS does not move records within data but returns a vector index
containing pointers to each of the records in ascending order. For
example, DATA(l,INDEX(l» is the first word of the record with smallest
key.

Call from FORTRAN:

CALL ORDERS(mode,i~ork,data,index,n,irectth,ikeytth,iradBi2)

Although the number of arguments and their interconnections are
complicated, careful use can save significant execution time.

mode

SR-OOl4

Integer flag7 describes the type of key and indicates an
initial ordering of the records.

Upon completion of a call, ORDERS returns an error flag in
mode. A value equal to the input mode value indicates
no errors. A value less than 0 indicates an error.

-1 Too few arguments; must be greater than 4.

-2 Too many arguments; must be less than 9.

-3 Number of words per record less than 1 or greater than
2**24

-4 Length of key greater than the record

-5 Radix not equal to 1 or 2

-6 Key less than one byte long

4-73 I

I

I

iworok

data

index

I n

SR-0014

-7 Number of records less than 1 or greater than 2**24

-8 Invalid mode input values: must be 0, 1, 2, 10, 11,
or 12.

-9 Key length must be eight bytes for real or integer sort.

o The key is binary numbers of length 8*ikeyZth.
These numbers are cons~dered positive integers in
the range of 0 to 2(a*~reaZth}-1. (The ordering
of ASCII characters is the same as their ordering as
positive integers.)

1 The key is 64-bit Cray integers. These are twos
complement Signed integers in the range of -263 to
+263. (The key length, if specified, must be
eight bytes.)

2 The key is 64-bit Cray floating-point numbers. (The
key length, if specified, must be eight bytes.)

10 The key is the same as mode=o, but the array INDEX
has an initial ordering of the records (see
mUltipass sorting, later in this section).

11 The key is the same as mode=l, but the array INDEX
has an initial ordering of the records.

12 The key is the same as mode=2, but the array INDEX
has an initial ordering of the records.

user-supplied working storage array of length K where K=257
if i1"adBi~l, or K=65537 if iradBiz=2

Array dimensioned irealth by N containing the N records
of length i1"ectth each. The key in each record starts at
the left of the first word of the record and continues
ikeylth bytes into successive words as necessary. (By
offsetting this address, any word within the record can be
used as a key. See sort examples at the end of this
section.)

Integer array of length N containing pointers to the
records. In mode=lO, 11, or 12, index contains an
initial ordering of the records (see multipass sorting,
later in this section). On output, index contains the
ordering of the records: that is, DATA(l,INDEX(I)} is the
first word of the record with smallest key and
DATA{l,INDEX(N» is the first word of the record with the
largest key.

Number of records to be sorted. Must be >1

4-74 I

irealth Length of each record as a number of 64-bit words. Default
is 1. ipealth is used as a skip for vector loads and
stores. Therefore, ipealth should be chosen to avoid
bank conflicts.

ikeylth Length of each key as a number of 8-bit bytes. Default is
eight bytes (1 word).

iPadaiz

METHOD

Radix of the sort. iPadsiz is the number of bytes
processed per pass over the records. Default is 1. See
section on large radix sorting for ipadaiz=2.

ORDERS uses the radix sort, more commonly known as a bucket or pocket
sort. For this sort, the length of the key in bytes determines the
number of passes made through all of the records. The method has a
linear work factor and is stable in that the original order of records
with equal keys is preserved.

ORDERS has the option of processing one or two bytes of the key per pass
through the records. This process halves the number of passes through
the record but at the expense of increased working storage and overhead

I per pass (see table 4-8). ORDERS can sort on several keys within a
record by using its multipass capability. The first eight bytes of the
keys use a radix sort. If the key length is greater than eight bytes and
any records have the first eight bytes equal, these records are sorted
using a simple bubble sort. Using the bubble sort with many records is
time-consuming. Therefore, the multipass option should be used instead.

ORDERS has been optimized in CAL to make efficient use of the vector
registers and functional units at each step of a pass through the data.
Keys are read into vector registers with a skip through memory of
irealth. Therefore, ipectth should be chosen to avoid bank conflicts.

Large radix sorting

The number of times the key of each record is read from memory is
proportional to ikeytthlipadsis. using ORDERS with iPadsis=2
halves this ratio because two bytes instead of one are processed each
time the key is read. One disadvantage of halving the number of passes
is the user-supplied working storage array goes from 257 words to 65537
words. Also, a 2-byte pass requires that each pass now use a greater
overhead for setup_ These two factors favor a I-byte pass for sorting up
to about 5000 records. For more than 5000 records, however, a 2-byte
pass is faster.

SR-OOI4 4-75 I

I

Multipass sorting

Because the array INDEX can define an ordering of the records, several
calls can be made to ORDERS where the order of the records is that of the
previous call. mode=10, 11, or 12 specifies that the array INDEX
contains an ordering from a previous call to ORDERS. This specification
allows sorting of text keys that extend over more than one word or keys
involving double-precision numbers. (See examples at the end of this
section.) Although the length of the key is limited only by the length
of the record, up to eight bytes are sorted with the radix sort. The
remaining key is sorted using a bubble sort, but only in those records
whose keys are equal for the first eight bytes. Therefore, a uniformly
distributed key over the first eight bytes of length greater than eight
bytes might be sorted faster with a single call with a large IKEYLTH
rather than with a multipass call (see table 4-9). Note also that when
using the multipass capability, the least significant word must be sorted
first.

Tables 4-8 and 4-9 show the processing of one or two bytes of a key per
pass through the records for a 16-bank CRAY l-S computer System.

Table 4-8. Sort times in seconds for ORDERS

Length of key in bytes

N 7 8 15

2 .00057 .00065 .00065
5 • 00059 .00067 .00067

One 10 .00060 .00069 .00070
byte 50 .00080 .00092 .00095
per 100 .00105 .00120 .00125
pass 500 .00299 .00342 .00370

1,000 .00543 .00616 .00678
5,000 .02480 .02824 .03118

10,000 .04906 .05585 .06173

2 .01515 .01520 .01513
5 .01510 .01511 .01519

Two 10 .01507 .01511 .01512
bytes 50 .01522 .01522 .01525
per 100 .01540 .01542 .01547
pass 500 .01651 .01642 .01679

1,000 .01781 .01786 .01838
5,000 .02486 .02861 .03156

10,000 .04216 .04216 .04808

SR-0014 4-76 I

Table 4-9. Sort times in seconds with ASCII key

N Two passes One pass
8-byte Key 16-byte Key

2 .00131 .00065
5 .00135 .00068

10 .00140 .00072
50 .00191 .00104

100 .00258 .00145
500 .00796 .00485

1,000 .01470 .00907
5,000 .06814 .04307

10,000 .13602 .08531

Example 1:

PROGRAM SORTI

c
C Sort on a 2~ord (16-byte) key that is at the beginning of
CaS-word (inclusive) record
c

C

C

C

DIMENSION DATA(5,N)
DIMENSION INDEX(N)
DIMENSION WORK(65537)
N=lOOOO

MODE:cO

CALL ORDERS{MODE,WORK,DATA,INDEX,N,5,16,2)

C Print out the keys in increasing alphabetic order
C

C

DO 100 I=l,N
WRlTE(6,200) DATA(l,INDEX (I», DATA (2, INDEX (1»

200 FORMAT(1X,2A8)
100 CONTINUE

END

Example 2:

PROGRAM SORT2

c

SR-0014 4-77 I

C This program uses two calls to ORDERS to completely sort an array
C of double-precision numbers. The sign bit of the first
C word is used to change the second word into a text key that
C preserves the ordering. A sort is done on these six bytes of the
C second word. (The changes made to the second word are reversed
C after the call.) Last, a sort is done on the first word as a
C real key using the initial ordering from the previous call.
C

DOUBLE PRECISION DATA(IOO)
INTEGER lATA(200)
EQUIVALENCE(IATA, DATA)
INTEGER INDEX(100), WORK(257)
N=12
DO 5 lal, N

DATA(I)=(-l, DO)**IO.DO**(-20)*DBLE(RANF(»
5 CONTINUE

C
C First the second word key is changed
C

C

DO 10 1=2, 2*N, 2
IF(DATA(I/2).LE.0.DO) THEN

IATA(I)=COMPL(IATA(I»
ELSE

IATA(I)=IATA(I)
ENDIF

10 CONTINUE

C Sort on second word
C

CALL ORDERS(0,WORK,IATA(2),INDEX,N, 2, 6, 1)
c
C Restore second word to original form
C

C

DO 20 1=2, 2*N, 2
1F(DATA(I/2).LE.O.DO) THEN

IATA(I)=COMPL(IATA(I»
ELSE

IATA(I)=IATA(I)
ENDIF

20 CONTINUE

C Sort on the first word using the initial ordering
C

CALL ORDERS(12,SORT,DATA,INDEX,N,2,8,1)
DO 50 I=I,N

WRITE(6, 900)1, INDEX(I), OATA(INDEX(I»
50 CONTINUE
900 FORMAT(1x, 215, 2x, 040.30)

END

SR-00l4 4-78 I

I

INPUT/OUTPUT SUBPROGRAMS

INTRODUCTION

The following types of subprograms perform input or output operations on
COS datasets.

• FORTRAN I/O routines

• Tape translation routines

• Explicit data conversion routines

• Dataset control routines

• Logical record I/O routines

• Numeric conversion routines

• Random access dataset I/O routines

• Word-addressable I/O routines

FORTRAN I/O ROUTINES

The FORTRAN I/O routines described in this section provide the highest
level of user interface with COS datasets. They include formatted and
unformatted routines, call-by-address and call-by-value routines, vector
and scalar routines, namelist routines, and buffered input and output
routines.

SR-0014

NOTE

All formatted I/O is restricted to an input/output list
and format specification of not more than 152
characters. To change this default, COMDECK $COMMB in
$IOLIB can be modified and an alternate library built.

5-1 I

5

These routines fall into one of the followinq cateqories.

• Initialization

• Data transfer

• Finalization

The routines are named and their functions summarized in table 5-1.

Table 5-1. FORTRAN I/O routines

Operation Read Write Read Write Decode Encode Read Write
Sequence Form. Form. Unf. UnL L-d. L-d.

Initialization
routines $RFI $WFI $RUI $WUI $OF! $EFI $RLI $WLI

Transfer
routines $RFA $WFA $RUA $WUA $OFA $EFA $RLA $WLA

call-by-address

Transfer
routines $RFV $Wi'''V $RUV $WUV $OFV $EFV

call-by-value

Termination
routines $RFF $WFF $RUF $WUF $OFF $EFF $RLF $WLF

Each FORTRAN read/write statement not associated with name1ist processing
generates a call to an I/O initialization routine and a call to an I/O
finalization routine. Between these two calls, I/O list items are
processed using transfer routines. These transfer routines are
classified as either call-by-va1ue or call-by-address. Each list item
generates a corresponding c~ll to one of the two types of routines.

Transfer-by-value is selected for simple variables, constants,
expressions, or implied DO lists. Transfer-by-va1ue transfers a single
value or a vector of values. Transfer-by-address is selected for an
array name as a list item.

SR-0014 5-2 I

INITIALIZATION ROUTINES

Initialization routines process control information lists and set up
parameters for the processing of the corresponding transfer routines.
These routines, identified by the I suffix, are executed before the
transfer routines. No arguments are returned. No initialization is
required for namelist I/O or buffered I/O. All initialization routines
are called by address.

Input initialization routines

$RFI initializes FORTRAN formatted read.

Call from CAL:

Q.t?9'1 Address of unit name or number, or internal file
Ql"9'2 Address of FORMAT speCification
Qr>9'3 Address of error exit address, ERR=
Ql"9'4 Address of end exit address, END=
ap9'S Address of IOSTAT parameter
QP9'6 Address of record number (direct access)

$RUI initializes FORTRAN unformatted read.

Call from CAL:

Q.t?gl Address of unit name or number
Qro9'2 Unused
Qro9'3 Address of error exit address, ERR=
Qro9'4 Address of end exit address, END=
Qro9'5 Address of IOSTAT parameter
ar>9'6 Address of record number (direct access)

$DFI initializes FORTRAN formatted decode.

Call from CAL:

SR-0014 5-3 I

Address of record length in Cray characters
Address of FORMAT specification
Address of input character string

$RLI initializes list-directed reads.

Call from CAL:

al'!ll Address of unit name or number
al'!l2 Unused
al'g3 Address of error exit for ERR=
al'!l4 Address of exit address for END=
al'gs Address of IOSTAT parameter

Output initialization routines

$WFI initializes FORTRAN formatted write.

Call from CAL:

al'!ll Address of unit name or number r or internal file
al'g2 Address of FORMAT specification
al"g3 Address of error exit address
al"g4 Unused
al"!ls Address of lOS TAT parameter
ar!l6 Address of record number (direct access)

$WUI initializes FORTRAN unformatted write.

Call from CAL:

ar!ll Address of unit name or number
al'!l2 Unused
al'g3 Address of error exit address
arg4 Unused
al'gs Address of IOSTAT parameter
al"g6 Address of record number (direct access)

SR-0014 5-4 I

$EFI initializes FORTRAN formatted encode.

Call from CAL:

Address of record length in Cray characters
Address of FORMAT specification
Address of output character string

$WLI initializes list-directed writes.

Call from CAL:

al'gl Address of unit name or number
al'g2 Unused
al"9'3 Address of error exit for ERR=
ar>9'4 Unused
al"9'5 Address of IOSTAT parameter

TRANSFER ROUTINES

Read and write transfer routines move data between user locations and the
system I/O buffer area allocated to a dataset and associated with a
particular I/O unit. Encode and decode transfer routines transfer data
between user locations and a user-supplied buffer. The user-supplied
buffer contains eight characters per word and has no I/O unit
association. All dataset processing by these routines is sequential.
Transfer routine names are identified by the suffix A for call-by-address
routines and by the suffix V for call-by-value routines.

Each formatted, unformatted, and buffered transfer routine has eight
entry points. Each entry point corresponds to the type of data specified
in the I/O list and is the name of the routine (xnam) plus an increment
parcel value. Below is a list of the entry points showing the FORTRAN
data type accommodated:

Entry point

~am+O

SR-OOl4

Type of data

Typeless (Boolean) or no I/O list or type
checking present

5-5 I

I

Entry point !ype of data

xnam+3 Integer

xnamt6 Real

xnam+9 Double-precision

xnam+12 Complex

xnam+15 Logical

xnam+18 Character

xnam+2l Short integer

If an increment parcel value is omitted, typing is determined from the
format specification edit descriptor. The increment value can be omitted
for all data types except double-precision. For complex values, however,
if the increment value is omitted (or if xnam+6 is specified), two calls
must be made, one for the real portion and one for the imaginary
portion. In these cases, the complex number is treated as two real
numbers.

Format specifications identified for initialization routines and used by
transfer routines are described in the FORTRAN (eFT) Reference Manual,
CRI publication SR-OOQ9.

Restrictions on the format specifications for integer, logical and real
variables can be relaxed by using SEGLDR and its EQUIV options. See the
FORTRAN (eFT) Reference Manual, CRI publication SR-0009 for details.

Acknowledgement of the reading of an end-of-file (EOF) must occur before
initiating another read operation on the same unit. Acknowledgement can
be made by providing an EOF exit address, or by writing, rewinding, or
backspacing the dataset.

Buffered I/O is a form of data transfer allowing the execution of other
statements to proceed simultaneously with the actual transfer. The
number of words for one data transfer is represented by (twa-f~a+l).

If the remaining words in the record are to be skipped, full record mode
must be specified. Full record mode resumes transferring at the
beginning of the next record. If the rest of the record is to be
transferred, partial record mode must be specified.

Formatted and unformatted input transfer routines

The following transfer routines are called by address.

SR-OOI4 5-6 I

$RFA reads FORTRAN formatted data.
$RUA reads FORTRAN unformatted data.
$DFA decodes FORTRAN formatted data.

Call from CAL:

CALL $RFA+offset,(argl,arg2,arg3)
CALL $RUA+offset,(argl,apg2,arg3)
CALL $DFA+offset,(apgl,arg2,apg3)

argl First word address destination
apg2 Address of word count
apg3 Address of increment between destination addresses

$RLA reads list-directed data by address.

Call from CAL:

argl First word address of input
arg2 First word address of item count
apg3 First word address of increment between items

The following transfer routines are called by value.

$RFV, $RFV% read FORTRAN formatted data.
$RUV, $RUVl read FORTRAN unformatted data.
$DFV, $DFV% decode FORTRAN formatted data.

Call from CAL:

CALLV $RFV+offset
CALLV $RUV+offset
CALLV $DFV+offset

Requested value
Exit:
(Sl)
(S2) Second value if transfer is for double-precision or complex

values

SR-0014 5-7 I

%$RFV% reads FORTRAN formatted, vectorized data.
%$RUV% reads FORTRAN unformatted, vectorized data.

Call from CAL:

CALLV %RFV%+offset
CALLV %RUV%+offset

Vector length

(VL) requested values

Entry:
(VI.)

Exit:
(VI)
(V2) (VL) second values if transfer is for double-precision or

complex values

Buffered input transfer routines

$RB performs FORTRAN read buffered operation.

Call from CAL:

arg3
arg4

Exit:

Address of unit name or number
Address of mode specifier (rnode<O indicates
partial record transfer; mode>O indicates full record
transfer).
First word address of destination
Last word address of destination

Transfer from unit to first word of destination is initiated.
Control is returned to the calling program. To test for completion
of transfer, the user should issue a call to the routine UNIT or
LENGTH.

Namelist input transfer routines

$RNL reads FORTRAN namelist.

Call from CAL:

SR-OOI4 5-8 I

I

a1"gl
a1"g2
apg3
apg4

Address of unit name or number
Address of NAMELIST group entries
Address of ERR=address
Address of END-address

Namelist group entries for variables consist of a group name (one word)
plus a 2-word entry. Namellst group entries for arrays consist of a
group name (one word) plus (n+2) words, where n is the number of
dimensions in the array. The first word of the list is always the group
name. The order of the variable and array entries in the list is the
same as specified on the NAMELIST statement by the user. Figure 5-1
shows the group name, figure 5-2 shows the variable entry, and figure 5-3
shows the array entry.

Field

GN

o
1

Field

NAME

Unused

M

Unused

TL

SR-0014

o 8 16 24 32 40 48 56

GN

Figure 5-1. Group name

Bits Description

0-63 a-bit ASCII name, left-justified, zero-filled

o 8 16 24 32 40 48 56

IIIIIIIIIIIM IIIIIII TL II/f"WIII) VA

Word

0

1

1

1

1

~

Figure 5-2. Variable entry

Bits Description

0-63 a-bit ASCII character name,
left-justified, zero-filled

0-10 Zero-filled

11-13 Mode. Number of dimensions in the
array (1-7)

14-19 Zero-filled

20-31 Internal CFT type and length
description:

5-9 I

63

63

I

I

I

Field

Unused

VAM

EMM

Unused

VA

o
1

2-n

Field

NAME

Unused

M

Unused

'l'L

SR-0014

Word Bits Oeser iption

TL Description

1077 Logical
4027 24-bit integer
4077 64-bit integer
6077 Real
6177 Complex
7177 Double-precision

1 32-33 Zero-filled

1 34 =0 if variable address is actual
address
=1 if variable address is stack
offset from B03

1 35 Value is 1 if variable address is
24 bits

1 36-39 Zero-filled

1 40-63 Variable address

0 8 16 24 32 40 48 56 63

NAME (YAM EMM\

IIIIIIIIIIIM IIIIIII TL I I I ill I I I I) VA

LB I \...-/ DL

Figure 5-3. Array entry

Word Bits Description

0 0-63 8-bit ASCII character name,
left-justified, zero-filled

1 0-10 Zero-filled

1 11-13 Mode. Number of dimensions in the
array (1-7)

1 14-19 Zero-filled

1 20-31 Internal CFT type and length
description:

5-10 I

I

I

Field Word

Unused 1 32-33

Description

TL

1077
4027
4077
6077
6177
7177

Description

Logical
24-bit integer
64-bit integer
Real
Complex
Double-precision

Zero-filled

VAM 1 34 =0 if first word address of array is
actual address
=1 if first word address of array is
stack offset from B03

EMM 1 35 =0 if first word address of array is
22 bits long. Top 2 bits are assumed
zero.
=1 if first word address of array is
24 bits long

Unused 1 35-39 Zero-filled

FWA 1 40-63 First word address of array

LB 2-n 1-31 Lower bound of array dimension

DL 2-n 33-63 Dimension length

Formatted and unformatted output transfer routines

The following transfer routines are called by address.

$WFA writes FORTRAN formatted data.
$WUA writes FORTRAN unformatted data.
$EFA encodes FORTRAN formatted data.

Call from CAL:

CALL $WFA+offset,(arg1,arg2,arg3)
CALL $WUA+offset,(argltar92,apg3)
CALL $EFA+Offset, (arg1,arg2,arg3)

SR-0014

First word address destination
Address of word count
Address of increment between destination addresses

5-11 I

$WLA writes list-directed data by address.

Call from CAL:

First word address of input
First word address of item count
First word address of increment between items

The following transfer routines are called by value.

$WFV, $WFV% write FORTRAN formatted data.
$WUV, $WUV% write FORTRAN unformatted data.
$EFV, $EFV% encode FORTRAN formatted data.

Call from CAL:

CALLV $WFV+offset
CALLV $WUV+offset
CALLV $EFV+offset

(Sl) Word to be written or encoded
(82) Second word if double-precision or complex values

%$WFV% writes FORTRAN formatted, vectorized data.
%$WUV% writes FORTRAN unformatted, vectorized data.

Call from CAL:

CALLV %$WFV%+offset
CALLV %$WUV%+offset

(VL) Vector length
(Vl) (VL) requested values
(V2) Second values if transfer is for double-precision or

complex values

SR-0014 5-12 I

$WLV writes list-directed data by value.

Call from CAL:

CALLV $WLV+offset

(S1) Word to be written
(S2) Second word if double-precision or complex

Buffered output transfer routines

$WB performs FORTRAN write buffered operation.

Call from CAL:

arg3
apg4

Exit:

Address of unit name or number
Address of mode specifier (mode<O indicates partial
record transfer; mode~O indicates full record transfer).
First word address of destination
Last word address of destination

Transfer from unit to first word of destination is initiated.
Control is returned to the calling program. To test for completion
of transfer, issue a call to the routine UNIT or LENGTH.

Namelist output transfer routines

$HNL writes FORTRAN namelist.

Call from CAL:

aPgl Address of unit name or number
apg2 Address of NAMELIST group entries
apg3 Address of ERR=address

SR-0014 5-13 I

FINALIZATION ROUTINES

Finalization routines, suffixed by F, terminate a record and clear the
control information list parameters set up by the corresponding
initialization routines. No arguments are required for entry; no
arguments are returned. All linkage is call-by-address. Finalization
routines are unnecessary for namelist I/O and buffered I/O.

Input finalization routines

$RFF finalizes FORTRAN formatted read.

Call from CAL:

$RUF finalizes FORTRAN unformatted read.

Call from CAL:

$DFF finalizes FORTRAN formatted decode.

call from CAL:

$RLF finalizes list-directed read.

Call from CAL:

I mI .• RLF I
Output finalization routines

$WFF finalizes FORTRAN formatted write.

SR-0014 5-14 I

Call from CAL:

$WUF finalizes FORTRAN unformatted write.

Call from CAL:

$WLF finalizes list-directed write.

Call from CAL:

$EFF finalizes FORTRAN formatted encode.

Call from CAL:

TAPE TRANSLATION ROUTINES

The tape translation routines provide for reading and writing tapes that
have been written or are going to be read on computers with different
character sets or data formats from those of the Cray computer. Through
the ACCESS or ASSIGN control statement (refer to the CRAY-OS Version I
Reference Manual, publication SR-OOII) FORTRAN users can provide foreign
tape file characteristics. These parameters are used by the run-time
library to correctly translate the dataset. Support is supplied through
FORTRAN's formatted, unformatted, and buffered I/O.

A formatted or unformatted transfer routine is called once for each
variable in the I/O list. (See transfer routines, this section.) The
transfer routine then calls a buffer management routine. The buffer
management routine makes a system request for physical I/O when

SR-OOl4 5-15 I

I

appropriate and processes the cos block and record control words (ROW) if
the dataset is in COS blocked format.

Buffer management routines call the record format management routines one
or more times for each variable. Record format management routines keep
track of the current logical record within the I/O buffer and determine
the location of the requested variable within the logical record. They
process a partial record and return a status indicating whether the end
of the logical record has been reached. The record format management
routines call the data format routines once for each element of the
requested variable. The data format routines translate between the
internal COS representation of the variable and the representation of the
variable in the logical record.

NOTE

Some tape translation routines are included in all load
modules performing I/O since the code must be included
at load time but the dataset characteristics are not
known until run time.

If a user or site does not use foreign data types,
comdeck $COMFD in $IOLIB can be modified and an
alternate library built. Either IBM, CDC, or both
forms of conversions can be disabled; the corresponding
code is never loaded. Use of a disabled format is not
detected; no conVersion takes place.

BUFFER MANAGEMENT ROUTINES

The buffer management routines fill and empty the tape buffer, maintain
information in the Dataset Parameter Table (DSP) to be saved between READ
or WRITE statements, and determine which record translation routine is to
be called.

Input buffer management routines

RUTl initializes buffer management.

Call from CAL:

CALL RUTI,(argl)

DSP address

SR-0014 5-16 I

I

I

RUTD% reads data.

Call from CAL:

(81)
(82)

(53)
(84)
(55)

First word address of data
Number of data items
Increment between data items
Data type as defined by common deck $COMDT in $IOLIB
Length of item in bytes (type character only)

RUTF finalizes buffer management.

Call from CAL:

Output buffer management routines

WUTI initializes buffer management.

Call from CAL:

CALL WUTI, (ar>g)

apg D8P address

WUTD% writes data.

Call from CAL:

(81)
(82)

(53)
(54)

(85)

SR-OOl4

First word address of data
Number of data items
Increment between data items
Data type as defined by common deck $COMDT in $IOLIB
Len9th of item in bytes (type character only)

5-17 I

WUTF finalizes buffer management.

Call from CAL:

RECORD FORMAT MANAGEMENT ROUTINES

Record format management routines keep track of the particular vendor's
record and block formats. These routines move the translated bits to or
from the tape buffer and format them according to the record and block
definitions. These routines are called by address.

Input record format management routines

$IBMI reads IBM file format.
SCDCI reads CDC file format.

Output record format management routines

$IBMO writes IBM file format.
$CDCO writes CDC file format.

DATA FORMAT MANAGEMENT ROUTINES

Data format management routines translate the internal format of the
particular variable type. They are accessed by call-by-value subprogram
linkage.

I The naming convention for data format management routine is $STD.

S System~ codes are I (IBM), C (CDC).

T Variable type and size: for example, 116 is a l6-bit integer.

D Processing direction is 1 (input) or 0 (output).

Input data format management routines

%11161 translates l6-bit IBM integer to 24-bit Cray integer on input.

I %11321 translates 32-bit IBM integer to 64-bit Cray integer on input.

SR-0014 5-18 I

%IL81 translates 8-bit IBM logical to 64-bit Cray logical on input.

%IF32I translates 32-bit IBM floating-point to 64-bit Cray floating-point
on input.

%ID641 translates 64-bit IBM double-precision floating-point to l28-bit
Cray double-precision floating-point on input.

%ICHRI translates 8-bit IBM EBCDIC character to 8-bit ASCII character on
input.

%IC641 translates 64-bit IBM complex floating-point to 128-bit Cray
complex floating-point on input.

CI60I% translates CDC 60-bit integer to 64-bit Cray integer on input.

CF60I% translates CDC 60-bit floating-point to 64-bit Cray floating-point
on input.

CDl20I% translates CDC l20-bit double-precision to 128-bit Cray
double-precision floating-point on input.

CC120I% translates CDC l20-bit complex number to l28-bit Cray complex
floating-point on input.

CCHRI% translates CDC 6-bit display code to 8-bit ASCII character on input.

CL60I% translates CDC 60-bit logical to 64-bit Cray logical on input.

Output data management format routines

%11160 translates l6-bit IBM integer to 24-bit Cray integer on output.

I %11320 translates 32-bit IBM integer to 64-bit cray integer on output.

I

%ILaO translates a-bit IBM logical to 64-bit Cray logical on output.

%IF320 translates 32-bit IBM floating-point to 64-bit Cray floating-point
on output.

%ID640 translates 64-bit IBM double-precision floating-point to 128-bit
Cray double-precision floating-point on output.

%ICHRO translates a-bit IBM EBCDIC character to 8-bit ASCII character on
output.

SR-0014 5-19 I

%IC640 translates 64-bit IBM complex floating-point to l28-bit Cray
complex floating-point on output.

CI600% translates 64-bit Cray integer to CDC 60-bit integer on output.

CF600% translates 64-bit Cray floating-point to CDC 60-bit floating-point
on output.

CD1200% translates 128-bit Cray double-precision floating-point to CDC
120-bit double-precision on output.

CCI200% translates 128-bit Cray complex floating-point to CDC l20-bit
complex number on output.

CCRRO% translates a-bit ASCII character to CDC 6-bit display code on
output.

CL600% translates 64-bit Cray logical to CDC 60-bit logical on output.

EXPLICIT DATA CONVERSION

The explicit data conversion routines described in this subsection are
subprograms that allow data translation between Cray internal
representations and other vendors' data types.

IBM SINGLE-PRECISION TO CRAY SINGLE-PRECISION ROUTINE

The USSCTC subroutine converts IBM 32-bit floating-point numbers into Cray
64-bit single-precision numbers.

Call from FORTRAN:

CALL USSCTC(fpn,i8b,de8t,num[,ine])

fpn

isb

de8t

SR-OOl4

Variable or array of any type or length containing IBM
32-bit floating point numbers to convert

Byte number to begin the conversion. Type integer variable,
expression, or constant. Bytes are numbered from 1,
beginning at the leftmost byte position of fpn.

Variable or array of type real to contain the converted
values

5-20 I

I

num Number of IBM floating-point numbers to convert. Type
integer variable, expression, or constant.

inc Memory increment for storing the conversion results in
deBt. Optional parameter of type integer variable,
expression, or constant. Default value is 1.

IBM DOUBLE-PRECISION TO CRAY SINGLE-PRECISION ROUTINE

The USDCTC subroutine converts IBM 64-bit floating-point numbers into Cray
64-bit single-precision numbers.

Call from FORTRAN:

CALL USDCTC(dpn,isb,dest,num[,inc)

dpn variable or array of any type or length containing IBM
64-bit floating-point numbers to convert

isb Byte number within dpn to begin the conversion. Type
integer variable, expression, or constant. Bytes are
numbered from 1, beginning at the leftmost byte position of
dpn.

dest Variable or array of type real to contain the converted
values

num Number of IBM 64-bit floating-point numbers to convert.
Type integer variable, expression, or constant.

inc Memory increment for storing the conversion results in
de8t. Optional parameter of type integer variable,
expression, or constant. Default value is 1.

IBM INTEGER TO CRAY INTEGER ROUTINE

The USICTC subroutine converts both IBM INTEGER*2 and INTEGER*4 numbers
into Cray 64-bit integer numbers.

Call from FORTRAN:

CALL USICTC(in,isb,dest,num,ten[,inc)

SR-0014 5-21 I

I

in

ish

deet

Variable or array of any type or length containing IBM
INTEGER*2 or INTEGER*4 numbers to convert

Byte number to begin the conversion. Type integer variable,
expression, or constant. Bytes are numbered from I,
beginning at the leftmost byte position of in.

variable or array of type integer to contain the converted
values

num Number of IBM numbers to convert. Type integer variable,
expression, or constant.

len Size of the IBM numbers to convert. This value must be 2 or
4. A value of 2 indicates input integers are integer*2
(16-bit). A value of 4 indicates input integers are
integer*4 (32-bit). Type integer variable, expression, or
constant.

inc Memory increment for storing the conversion results in
dest. Optional parameter of type integer variable,
expression, or constant. Default value is 1.

EBCDIC TO ASCI I ROUTINE

The USCCTC subroutine converts IBM EBCDIC data into ASCII data. The same
array can be specified for output as for input only if ish = 1 and npw = B.

Call from FORTRAN:

CALL USCCTC(spc,ieb,dest,num,npwf,iuc1)

isb

dest

Variable or array of any type or length containing IBM
EBCDIC data to convert

Byte number to begin the conversion. Type integer variable,
expression, or constant. Bytes are numbered from 1,
beginning at the leftmost byte position of spc.

Variable or array of any type or length to contain the ASCII
data.

num Number of IBM EBCDIC characters to convert. Type integer
variable, expression, or constant.

SR-0014 5-22 I

I

npw Number of characters per word generated in deBt. The
npw characters are left-justified and blank-filled in each
word of dest. Type integer variable, expression, or
constant. Value must be from I to 8.

iua A value of nonzero specifies lowercase characters (a-z) to
be translated to uppercase (A-Z). A value of 0 results in
no case translation. Optional parameter of type integer
variable, expression, or constant. Default is no case
translation.

IBM PACKED DECIMAL FIELD TO INTEGER ROUTINE

The USPCTC subroutine converts a specified number of bytes of an IBM
packed decimal field to a 64-bit integer field. The input field must be a
valid packed decimal number less than 16 bytes long, of which only the
rightmost 15 digits are converted.

Call from FORTRAN:

CALL USPCTC(spc,isb,num,ian)

src Variable or array of any type or length containing a valid
IBM packed decimal field

i8h Byte number to begin the conversion. Type integer variable,
expression, or constant. Bytes are numbered from 1,
beginning at the leftmost byte position of SPC.

num Number of bytes to convert. Type integer variable,
expression, or constant.

ian Returned integer result

IBM LOGICAL TO CRAY LOGICAL ROUTINE

The USLCTC subroutine converts both IBM LOGICAL*l and LOGICAL*4 values
into Cray 64-bit logical values.

Call from FORTRAN:

CALL USLCTC(spc,isb,dest,num,len[,inaJ)

SR-0014 5-23 I

I

arc Variable or array of any type or length containing IBM
LOGICAL*l or LOGICAL*4 values to convert.

ish Byte number to begin the conversion. Type integer variable,
expression, or constant. Bytes are numbered from 1,
beginning at the leftmost byte position of arc.

dest Variable or array of type logical to contain the converted
values

num Number of IBM logical values to be converted. Type integer
variable, expression, or constant.

len Size of the IBM logical values to convert. This value must
be 1 or 4. A value of 1 indicates input logical values are
LOGICAL*l (8-bit). A value of 4 indicates input logical
values are LOGICAL*4 (32-bit). Type integer variable,
expression, or constant.

inc Memory increment for storing the conversion results in
dest. Optional parameter of type integer variable,
expression, or constant. Default value is 1.

CRAY SINGLE-PRECISION TO IBM SINGLE-PRECISION ROUTINE

The USSCTI subroutine converts Cray 64-bit single-precision floating-point
numbers to IBM 32-bit single-precision floating-point numbers. Numbers
that produce an underflow when converted to IBM format are converted to 32
binary zeros. Numbers that produce an overflow when converted to IBM
format are converted to the largest IBM floating-point representation with
the sign bit set if negative. An error parameter returns nonzero to
indicate that one or more numbers converted produced an overflow. No such
indication is given for underflow.

Call from FORTRAN:

CALL USSCTI(fpn,dest,isb,num,ier[,inc])

fpn variable or array of any length and type real, containing
Cray 64-bit, single-precision, floating-point numbers to
convert

dest

SR-0014

Variable or array of type real to contain the converted
values

5-24 I

I

ish Byte number at which to begin storing the converted
results. Type integer variable, expression, or constant.
Bytes are numbered from 1, beginning at the leftmost byte
position of dest.

num Number of Cray floating-point numbers to convert. Type
integer variable, expression, or constant.

iep Overflow indicator of type integer. Value is 0 if all Cray
values convert to IBM values without overflow. Value is
nonzero if one or more Cray values overflowed in the
conversion.

ina Memory increment for fetching the number to be converted.
Optional parameter of type integer variable, expression, or
constant. Default value is 1.

CRAY SINGLE-PRECISION TO IBM DOUBLE-PRECISION ROUTINE

The USDCTI subroutine converts Cray 64-bit single-precision floating-point
number to IBM 64-bit double-precision floating-point numbers. Precision
is extended by introducing 8 more bits into the rightmost byte of the
fraction from the Cray number being converted. Numbers that produce an
underflow when converted to IBM format are converted to 64 binary zeros.
Numbers that produce an overflow when converted to IBM format are
converted to the largest IBM floating-point representation with the sign
bit set, if negative. An error parameter returns nonzero to indicate that
one or more numbers converted produced an overflow. No such indication is
given for underflow.

Call from FORTRAN:

CALL USDCTI(fpn,de8t,iab,num,ier[,ine])

fpn

dest

isb

Variable Or array of any length and of type real, containing
Cray single-precision floating-point numbers to convert

variable or array of type real to contain the converted
values

Byte number at which to begin storage of the converted
results. Type integer variable, expression, or constant.
Bytes are numbered from 1, beginning at the leftmost byte
position of deBt.

num Number of Cray floating-point numbers to convert. Type
integer variable, expression, or constant.

SR-0014 5-25 I

I

ier Overflow indicator of type integer. Value is 0 if all Cray
values are converted to IBM values without overflow. Value
is nonzero if one or more Cray values overflowed in the
conversion.

ine Memory increment for fetching the number to be converted.
Optional parameter of type integer variable, expression, or
constant. Default value is 1.

CRAY INTEGER TO IBM INTEGER ROUTINE

The USICTI subroutine converts Cray 64-bit integer numbers into either IBM
INTEGER*2 or INTEGER*4 numbers. Numbers that produce an overflow when
converted to IBM format are converted to the largest IBM integer
representation with the sign bit set if negative. An error parameter
returns nonzero to indicate that one or more numbers converted produced an
overflow.

Call from FORTRAN:

CALL USICTI{in,dest,isb,num,ten,ier[,inc])

in

de8t

Variable or array of any length and type integer, containing
Cray integer numbers to convert

variable or array of type integer to contain the converted
values

ish Byte number at which to begin storing the converted
results. Type integer variable, expression, or constant.
Bytes are numbered from 1, beginning at the leftmost byte
position of dest.

num Number of Cray integers to convert. Type integer variable,
expression, or constant.

ten Size of the IBM result numbers. This value must be 2 or 4.

SR-OOl4

A value of 2 indicates output integers are INTEGER*2
(16-bit). A value of 4 indicates output integers are
INTEGER*4 (32-bit). Type integer variable, expression, or
constant.

5-26 I

I

iep Overflow indicator of type integer. Value is 0 if all Cray
values are converted to IBM values without overflow. Value
is nonzero if one or more Cray values overflowed in the
conversion.

inc Memory increment for fetching the number to be converted.
Optional parameter of type integer variable, expression, or
constant. Default value is 1.

ASCII TO EBCDIC ROUTINE

The USCCTI subroutine converts ASCII data to IBM EBCDIC data. All
unprintable characters are converted to blanks. The same array can be
specified for output as for input only if isb = 1 and n~ = 8.

Call from FORTRAN:

CALL USCCTI(Spc,dest,isb,num,npw[,inc])

spc Variable or array of any type or length containing ASCII
data, left justified, in Cray words to convert.

dest variable or array of any type or length to contain the IBM
EBCDIC data

isb Byte number at which to begin generating EBCDIC characrters
in dest. Type integer variable, expression, or constant.
Bytes are numbered from 1, beginning at the leftmost byte
position of dest.

num Number of ASCII characters to convert. Type integer
variable, expression, or constant.

npw Number of characters per word selected from spa. Value
must be from 1 to 8. Type integer variable, expression, or
constant.

inc A value of nonzero specifies lowercase characters (a-z) to
be translated to uppercase (A-Z). A value of 0 results in
no case translation. Optional parameter of type integer
variable, expression, or constant. Default is no case
translation.

SR-OOl4 5-27 I

I

INTEGER TO IBM PACKED DECIMAL FIELD ROUTINE

The USICTP subroutine converts a Cray 64-bit integer value to an
IBM-packed decimal field. If the input value contains more digits than
can be stored in num bytes, the leftmost digits are not converted.

Call from FORTRAN:

CALL USICTP(ian,dest,isb,num)

ian

dest

ish

Cray integer number to be converted to an IBM-packed decimal
field. Type integer variable, expression, or constant.

Variable or array of any type or length to contain the
generated packed field

Byte number within deBt specifying beginning location for
storage. Type integer variable, expression, or constant.
Bytes are numbered from 1, beginning at the leftmost byte
position of deBt.

num Number of bytes to be stored. Type integer variable,
expression, or constant.

CRAY LOGICAL TO IBM LOGICAL ROUTINE

The USLCTI subroutine converts Cray logical values into either IBM
LOGICAL*1 or LOGlCAL*4 values.

Call from FORTRAN:

CALL USLCTI(BPc,dest,isb,num,len[,inc)

spc

deBt

variable or array of any length and of type logical,
containing Cray logical values to convert

Variable or array of any type or length to contain the
converted values

isb Byte number within arc specifying beginning location for
storage. Type integer variable, expression, or constant.
Bytes are numbered from 1, beginning at the leftmost byte
position of spc.

SR-0014 5-28 I

I

num Number of Cray logical values to convert. Type integer
variable, expression, or constant.

ten Size of the IBM logical result value. This value must be 1
or 4. A value of 1 indicates output logicals are LOGICAL*l
(a-bit). A value of 4 indicates output logicals are
LOGICAL*4 (32-bit). Type integer variable, expression, or
constant.

inc Memory increment for fetching the number to be converted.
Optional parameter of type integer variable, expression, Or

constant. Default value is 1.

UNPACK 60-BIT WORDS ROUTINE

The U6064 subroutine unpacks 60-bit words from Cray 64-bit words.

Call from FORTRAN:

CALL U6064(spc,isb,dest,num)

src Variable or array of any type or length containing 60-bit
words as a continuous stream of data

isb Bit location that is the leftmost storage location for the
GO-bit words. Bit position is counted from the left to
right with the leftmost bit o. Type integer variable,
expression, or constant.

dest Destination array of any type to contain the unpacked 60-bit
words, left-justified and zero-filled, in a Cray 64-bit word

nwn Number of 60-bit words to unpack. Generates this many
elements of dest. Type integer variable, expression, or
constant.

PACK 60-BIT WORDS ROUTINE

The P6460 subroutine packs 60-bit words into Cray 64-bit words.

Call from FORTRAN:

CALL P6460(src,dest,isb,num)

SR-0014 5-29 I

I

S1'e

deBt

isb

num

Variable or array of any type or length containing 60-bit
words, left-justified in a Cray 64-bit word

Destination array of any type to contain the packed 60-bit
words as a continuous stream of data

Bit location that is the leftmost storage location for the
60-bit words. Bit position is counted from the left to
right with the leftmost bit o. Type integer variable,
expression, or constant.

Number of 60-bit words to pack. Reads this many elements of
BPC. Type integer variable, expression, or constant.

PACK 32-BIT WORDS ROUTINE

The P32 subroutine packs 32-bit words into Cray 64-bit words.

Call from FORTRAN:

CALL P32(src,dest,num)

arc Variable of any type or length containing 32-bit words,
left-justified in a Cray 64-bit word

dest Destination array of any type to contain the packed 32-bit
words as a continuous stream of data

num Number of 32-bit words to pack. Reads this many elements of
a1'C. Type integer variable, expression, or constant.

UNPACK 32-BIT WORDS ROUTINE

The U32 subroutine unpacks 32-bit words from Cray 64-bit words.

Call from FORTRAN:

CALL U32(S1'C,dest,num)

arc Variable or array of any type or length containing 32-bit
words as a continuous stream of data. Unpacking always
starts with the leftmost bit of BPC.

SR-0014 5-30 I

I

dest Destination array of any type to contain the unpacked 32-bit
words, left-justified and zero-filled, in a Cray 64-bit word.

Number of 32-bit words to unpack. Generates this many
elements of dest. Type integer variable, expression, or
constant.

CDC INTEGER TO CRAY INTEGER ROUTINE

The INT6064 subroutine converts CDC 60-bit integer numbers to Cray integer
numbers.

Call from FORTRAN:

CALL INT6064(spc,idest,num)

idest

Variable or array of any type or length containing CDC
60-bit integers, left-justified in a Cray 64-bit word

Variable or array of type integer to contain the converted
values

num Number of CDC integers to convert. Type integer variable,
expression, or constant.

CDC SINGLE-PRECISION TO CRAY SINGLE-PRECISION ROUTINE

The FP6064 subroutine converts CDC 60-bit single-precision numbers to Cray
64-bit single-precision numbers.

Call from FORTRAN:

CALL FP6064 (fpn, dest, num)

f~

dest

Variable or array of any type or length containing CDC
60-bit, single-precison numbers, left-justified in a Cray
64-bit word

Variable or array of type real to contain the converted Cray
64-bit, single-precision numbers

num Number of CDC single-precision numbers to convert. Type
integer variable, expression, or constant.

SR-OOl4 5-31 I

I

CDC DISPLAY CODE CHARACTER TO ASCII CHARACTER ROUTINE

The DSASC subroutine converts CDC display code characters to ASCII data.

Call from FORTRAN:

CALL DSASC(spc,sc,dest,num)

sa

dest

Variable or array of any type or length containing CDC
display code characters (64 character set), left-justified
in Cray 64-bit word. Contains a maximum of 10 display code
characters per word.

Display code character position to begin the conversion.
Leftmost position is 1.

variable or array of any type or length to contain the
converted ASCII data. Results are packed 8 characters per
word.

num Number of CDC display code characters to convert. Type
integer variable, expression, or constant.

CRAY INTEGER TO CDC INTEGER ROUTINE

The INT6460 subroutine converts Cray 64-bit integer numbers to CDC 60-bit
integer numbers.

Call from FORTRAN:

CALL INT6460(in,idest,num)

in

idest

Variable or array of any length and of type integer
containing Cray integer numbers

Variable or array of type integer to contain the converted
CDC integer numbers. Each integer is left-justified and
zero-filled.

num Number of Cray integers to convert. Type integer variable,
expression, or constant.

SR-OOl4 5-32 I

I

CRAY SINGLE-PRECISION TO CDC SINGLE-PRECISION ROUTINE

The FP6460 subroutine converts Cray 64-bit single-precision numbers to CDC
60-bit single-precision numbers.

Call from FORTRAN:

CALL FP6460(fpn,dest,num)

fpn Variable or array of any length and of type real containing
Cray single-precision numbers

dest Variable or array of type real to contain the converted CDC
60-bit Single-precision numbers. Each floating-point number
is left-justified.

num Number of Cray single-precision numbers to convert. Type
integer variable, expression, or constant.

ASCII CHARACTER TO CDC DISPLAY CODE CHARACTER ROUTINE

The ASCDC subroutine converts ASCII data to CDC display code characters.

Call from FORTRAN:

CALL ASCDC(sra,sa,dest,num)

spa Variable or array of any type or length containing ASCII data

Ba ASCII character poSition to begin the conversion. Leftmost
position is 1.

dest Variable or array of any type or length to contain the
converted CDC display code characters (64 character set).
Results are packed into continuous strings without regard to
word boundries.

num Number of ASCII characters to convert. Type integer
variable, expression, or constant.

SR-0014 5-33 I

DATASET CONTROL ROUTINES

The dataset control routines described in this subsection are utilities
that perform the following dataset processes.

• Opening
• Closing
• Inquiry
• Copying
• Skipping
• Positioning
• Termination
• I/O status reporting
• Auxiliary namelist access

OPEN DATASET ROUTINE

The OPEN dataset routine connects an existing dataset to a unit, creates a
dataset that is preconnected, creates a dataset and connects it to a unit,
or changes certain specifiers of a connection between a dataset and a
unit. (For more information on the OPEN dataset routine, see FORTRAN
(CFT) Reference Manual, CRI publication SR-D009.)

Call from FORTRAN:

CALL OPEN(iotist)

iolist An external unit specifier and, at most, one of each of the
other specifiers described in table 5-2.

CLOSE DATASET ROUTINE

The CLOSE dataset routine terminates the connection of a dataset to a
unit. (FOr more information on the CLOSE dataset routine, see FORTRAN
(CFT) Reference Manual, CRI publication SR-0009.)

Call from FORTRAN:

CALL CLOSE(ellist)

ellist An external unit specifier and, at most, one of each of the
other specifiers described in table 5-3.

SR-0014 5-34 I

•

I

INQUIRE ROUTINE

The INQUIRE routine returns the status of a unit or a dataset. (For more
information on the INQUIRE routine, see FORTRAN (CFT) Reference Manual,
CRI publication SR-0009.)

Call from FORTRAN:

CALL INQUlRE(itist)

itist A list of specifiers described in table 5-4.

DATASET COPYING ROUTINES

Dataset copying routines copy records and files from one dataset to
another.

Copy records

COPYR copies a specified number of records from one dataset to another
starting at the current dataset position. Following the copy, the
datasets are positioned after the end-of-record for the last record
copied.

Call from FORTRAN:

CALL COPYR{idn,odn,reoo~[,istat])

idn Dataset name or unit number of dataset to be copied

odn Dataset name or unit number of dataset to receive the copy

istat

SR-OOI4

Number of records to be copied

A 2-element integer array that returns the number of
records copied in the first element and number of files
copied (always 0) in the second element. istat is an
optional parameter. If present, only fatal messages are
written to the logfile.

5-35 I

SR-OOl4

Table 5-2. OPEN specifiers and their meanings

Specifier Data Type Meaning

UNIT-Ut Integer External unit specifier

IOSTAT-io8 Integer variable Error status specifier
or array element

ERR-a Statement label Stat8lllent label where
control is transferred
if error condition exists

FILE"fin ~haraoter expression File specifier

STATUS-sta Character expression Disposition specifier
(Default, 'IJ!IKNOWN',

ACCESS-ac" Character expression Access specifier
(eetault, 'SEQUBNTIAL"

PORM .. ,,It Character expression Forlll specifier (Default,
'UNFORMATrED' If access
is direct, , PORHAT"l'BD'
if access Is sequential.)

RBCL-l'~ Positive integer Record length for direct
expr .. lIslon aoceS8 method (omitted

for sequential access)

BLANJt-hl.nk Character expression Blank specifier
(Default, 'MULL')

Input (I) or Return value (RV)

(I)
Unit nWllber

CRY)
oif no error condition exists.
If error condition exists, error
message nWllber that corresponds
to error (see CRAY-OS Message
Manual, publioation SR-0039 for
error mesBage descriptions.)

(I)

PORTRAN state_nt label

(I)
Name of dataaet to be connectad

(I)
'OLD', dataset _st exist and
PILE- must be specified.
'NBW', dataset. Is created,
status becomes 'OLD', FILE­
must be specif1sd.
'SCRATCH', dataset is deleted
whan CLOSE statement is
a"aouted or when progrUl is
terminat.ed. Dataset must not
be named.
'~NOMN', the status 1s
'SCRATCH' if no tile specifier
is supplied and the unit is not
connaeted, otherwise, the status
becoDeS .OLD t •

(I)
'SEQUENTIAL' is access method,
'DIRECT' is accsss method.

(1)
'PO~T"l'ED'. format.ted I/O,
• UNPOJafI\T1'SIl', unformatted I/O.

(I)
FOr formatted I/O, number of
charaoters per record;
For unformatted I/O, 8 times the
nWlber of words.

(I)
'NULL' if numeric input blanks
are ignored; 'ZERO' if all
nonleading blanks are treated as
&aros. This specifier permitted
on data".,ts opened for forlUtted
I/O only.

t UNIT= does not need to be included in the unit specification
if u is the first item in oLiBt.

tt CFT allows formatted and unformatted records in the same
dataset (non-ANSI).

5-36 I

I

Table 5-3. CLOSE specifiers and their meanings

Specifier Data Type

Intaqer

IOSTAr.io8 Integer variable
or array element

ERR-~ Statement label

Heaning

External unit specifier

Ecror status specifier

Statement label where
control is tr"n~ferred
if errOr condition exists

STATUS-eta Character expre88ion DispositIon specifier
(Default, 'KEEP' If OpEN
status i8 'OLD'~ 'NEW-,
or 'UNltNOWN'. Default,
'DELETE I if OPEN status
is 'SCRATCH' or dataset
is ...ory resident.1

Input (II or Return value (RYI

(I)
Unit number

(RV)
o if no error condition exista,
If error condition exists, error
message nullber that correaponda t<
error <aae CRAV-os !!eBBage Manual,
publication SR-0039 for error
~Bsaqe descriptions).

U)
FOR"l'RM stateaent label

(I)

'KEEP', the dataset continues to
exiat after CLOSE Btatem.nt
execution. Do not specify 'ICEBP'
for .. dataset with 'SCRl\'rCII'
status on an OPEN Btat~nt.
'DBLE'l'E', the dataeet does not
exist afta. executIon of the
CLOSE statement.

t UNIT= does not need to be included in the unit specification
if u is the first item in ellist.

COpy files

COPYF copies a specified number of files from one dataset to another,
starting at the current dataset position. Following the copy, the
datasets are positioned after the end of file for the last file copied.

Call from FORTRAN:

CALL COPYF(idn,odn,file[,istat])

idn

odn

file

istat

SR-OOl4

Dataset name or unit number of dataset to be copied

Dataset name or unit number of dataset to receive the copy

Number of files to be copied

A 2-element integer array that returns the number of
records copied in the first element and number of files
copied in the second element. istat is an optional
parameter. If present, only fatal messages are written to
the logfile.

5-37 I

Table 5-4.

Specifier nata Type

IOSTAT-io8 Integftr variable
or «ttay element

ERR&8 Statement label

EXIST-HZ Logical variable
Or array element

OPENED-ad Logical variable
or array element

NUMBER&num Integer variabl~
or array element

NAM£D-nmd Logical variable
or array element

RECL·~t Integer variable
or array element

NRXTRBC-nP Integer variable
or array element

NAJ4E-fn Character variable
or array element

ACCESS-a,," Character variable
or array element

SEQUEliTI.u... Character variable
seq or array element

DIl!EC'l'-dil' Character variable
or array element

POPJ4-f,,{ Chatact.r vatiabl@
or array elemen~

POi!MAT'l'ED- Character variable
fmtt or array element

UNFORMATTEP~ Character variable
unt'" or array ele-lIIent.

Charaeter variable
or array element

INQUIRE specifiers and their meanings

Heaning"

Error status specifier

Stat ent label
where control is
transfer rea 1f error
condition exists

Exist.nce specifier

Connection Apecifiec

External unit specifier

Unit name specifier

Record length of unit
or file connected for
direct acCeSS.

Next record

File name

Access specifier

Sequential as possible
accezli method

Direct as possible
access method

Pormat specifier

Formatted as a possible
allOlfed form

Unformatted as a
possible allowed form

Blank eontrol apeeifiar

Input (1) Or Return value (RV)

(ltV)
o if no error condition exists. If error
condition exists, error message number that
corresponds to error (see CRAy-oS Message
Manual, publication SR-0039 for error message
descriptions.)

(I)
1'ORTRAN statelllent label

CRY)
• TRUE. if unit or file existsl else, .FALSE.

(RV)
• TRUE. if unit and dataset are connected1
elat!, .FALSI!.

CRY)
Unit currently connected: if no unit, num is
und",fined

(RY)

.'I'RUS. if unit haa a nameJ ellie, • FALSE.

(RV)

Record length in chatacte:[s. (Por unformatted
I/O, the record length i8 a positive integer
multiple of eighl.) If not connected for
direct access, ret is undefined.

tRV)
The record number that follows the last
cACord r@ad or written for direct acc@ss.
If none have been w~itt.n, n~l. If access
is not di.ect, nr is undefined.

CRV)

File name if file has a name; el"e, In is
undefined.

lRV)
'SEQUENTIAL' is access _",thad: 'DIRECT' is
access method ..

(RV)

'YES' if .. equential is allow-ed; 'NO' if
sequential is not allowed; 'UNKNOWN' if
unable to determine.

(RV)
'YES' if direct is allowed,
'NO' if direct is not allowed;
'tJNl(NOWN if unable to determine.

(RV)
'FORMATTED' if file 1s connected for
formatted I/O: 'UNFORMATTI!.D' if file is
connected for unformatted I/O.

lRV)
'YES' if formatted is allowed;
'NO' if formatted is not allo~edl
'tJNl(IIOIfN' if unable to deterAline.

(RV)

'YES' if unformatted is allowed;
'NO' if unformatted is not allowed;
-UNKNOWNt if unable to determine.

(RV)
'NULL' if null blank control is in e£fect;
• ZERO , if zaro blank control is in effect.
Blank control applies only to form@tt",d
records.

t CFT allows formatted and unformatted records in the same
dataset (non-ANSI).

SR-0014 5-38 I

I

Copy dataset

COPYD copies one dataset to another,
positions. Following the copy, both
end of file of the last file copied.
the output dataset.

starting at their current
datasets are positioned after the

The end of data is not written to

Call from FORTRAN:

CALL COPYD(idn,odn[,istat])

idn

odn

iatat

Dataset name or unit number of dataset to be copied

Dataset name or unit number of dataset to receive the copy

A 2-element integer array that returns the number of
records copied in the first element and number of files
copied in the second element. istat is an optional
parameter. If present, only fatal messages are written to
the logfile.

I Copy sectors (unblocked)

I

I

I

COPYU copies either a specified number of sectors or all data to
end-of-data (EOD). Copying begins at the current position on both
datasets. Following the copy, the datasets are positioned after the last
sector copied.

Call from FORTRAN:

CALL cOPYU(idn,odn,ns[,istat])

idn

odn

ns

istat

SR-0014

Name of unblocked dataset to be copied

Name of unblocked dataset to receive the copy

Decimal number of sectors to copy. If the unblocked
dataset contains fewer than ns sectors, the copy
terminates at EOD. If the keyword ns is specified
without a value, the copy terminates at EOD. .The default
is 1.

An integer array or variable that returns the number of
sectors copied. istat is an optional parameter. If
present, only fatal messages are written to the logfile.

5-39 I

I

I

DATASET SKIP ROUTINES

The dataset skip routines allow the user to skip a specified number of
records or files, or a single dataset.

Skip records

SKIPR directs the system to bypass a specified number of records from the
current position of the named blocked dataset.

Call from FORTRAN:

CALL SKIPR(dn,reaordl,istat])

dn

istat

Dataset name or unit number that contains the record to be
skipped. Must be a character constant, integer variable,
or an array element containing Hollerith data of not more
than seven characters.

Decimal number of records to be skipped. The default is
1. If reaord is negative, SKIPR skips backward on dn.

A 2-element integer array that returns the number of
records skipped in the first element and number of files
skipped (always 0) in the second element. istat is an
optional parameter. If present, only fatal messages are
written to the logfile.

SKIPR does not bypass end-of-file (EOF) or beginning of data (BOD). If
an EOF or BOD is encountered before reaord records have been bypassed
when skipping backwards, the dataset is positioned after the EOF or BOD.
When skipping forward, the dataset is positioned after the last EOR of
the current file.

Skip files

SKIPF directs the system to skip a specified number of files from the
current position of the named blocked dataset.

Call from FORTRAN:

CALL SKIPF(dn,fi~e[,istat])

SR-0014 5-40 I

I

I

fite

istat

Dataset name or unit number that contains the file to be
skipped. Must be a character constant, integer variable,
or an array element containing Hollerith data of not more
than seven characters.

Decimal number of files to be skipped. The default is 1.
If file is negative, SKIPR skips backward on dn. If
dn is positioned midfile, the partial file skipped counts
as one file.

A 2-element integer array that returns the number of
records skipped in the first element and number of files
skipped in the second element. iatat is an optional
parameter. If present, only fatal messages are written to
the logfile.

SKIPF does not skip end-of-data (EOD) or beginning-of-data (BOD). If a
BOD is encountered before fite files have been skipped when skipping
backward, the dataset is positioned after the BOD. When skipping
forward, the dataset is positioned before the EOD of the current file.

Example:

If the dataset connected to unit FT07 is positioned just after an
end-of-file, the following FORTRAN call positions the dataset after the
previous end-of-file. If the dataset is positioned midfile, it is
positioned at the beginning of that file.

CALL SKIPF('FT07',-1)

Skip dataset

SKIPD directs the system to position a blocked dataset at end-of-data
(EOD), that is, after the last end-of-file of the dataset. If the
specified dataset is empty or already at EOD, the call has no effect.

Call from FORTRAN:

CALL SKIPD(dn[,istat]}

SR-0014 5-41 I

I

dn

istat

Dataset name or unit number to be skipped. Must be a
character constant, integer variable, or an array element
containing Hollerith data of not more than seven characters.

A 2-element integer array that returns the number of
records skipped in the first element and number of files
skipped in the second element. istat is an optional
parameter. If present, only fatal messages are written to
the logfile.

Skip sectors (unblocked)

SKIPU directs the system to bypass a specified number of sectors or all
data from the current position of the named unblocked dataset.

Call from FORTRAN:

CALL SKIPU(dn,ns[,istat)

dn

ns

is tat

Dataset name or unit number of unblocked dataset to be
bypassed. Must be an integer variable or an array element
containing ASCII data of not more than seven characters.

Decimal number of sectors to bypass. The default value is
1. If ns is negative, SKIPU skips backward on dn.

An integer array or variable that returns the number of
sectors skipped. istat is an optional parameter. If
present, only fatal messages are written to the logfile.

DATASET POSITIONING ROUTINES

Dataset positioning routines change or reflect the position of the
current dataset. The following positioning routines, except for $GPOS
and GETPOS, set the current processing direction to input (read). If the
previous processing direction is output (write), end-of-data is written
on a sequential dataset and the buffer is flushed. On a random dataset,
the buffer is flushed.

Get position of mass storage dataset

The $GPOS routine returns the position of the specified mass storage
dataset. It determines the current word address of the dataset and can
return flags indicating that the dataset is positioned at a record, file,
or dataset boundary. The dataset's position is not altered.

SR-OOI4 5-42 I

I

I

The GTPOS%, FDGPOS%, and GETPOS routines return the position of the
specified interchange tape or mass storage dataset. The dataset's
position is not altered.

Call from CAL:

CALLV SGPOS

Entry:
(AI)

Exit:
(AI)
(82)
(SI)

SR-0014

Address of Dataset Parameter Table (DSP) or negative DSP
offset relative to DSP base (JCDSP), that is, contents of
second word of Open Dataset Name Table (ODN)

DSP address
Dataset position
Dataset position with flags. (Sl)=O if the dataset is at
the beginning-of-data (BOD): otherwise, the following flags
are set:

Bit Description

o End-of-record (EOR) flag

1 Dataset is positioned at a record boundary, that
is, following a record control word (RCW). This
bit is also set if end-of-file (EOF) or
end-of-data (EOD) bits are set.

o Dataset is either at BOD or in the middle of a
record.

1 Unused

2 End-of-file flag. One indicates the dataset is
at a file boundary, that is, following the
end-of-file ROW. This bit is also set if the EOD
bit is set.

3 End-of-data flag. One indicates the dataset is
currently at EOD.

31-63 Word address. This word address is the current
physical word address within the dataset,
including RCWs but not including block control
words (BCW).

5-43 I

I

GTPOS% obtains, for the CAL user, position information about an opened
interchange tape dataset. The information returned by GTPOS% refers to
the last block processed if the dataset is an input dataset. For output
datasets, the information returned by GTPOS% is meaningless unless the
tape dataset has been synchronized before the GTPOS% request is made.
GTPOS% uses call-by-value linkage.

Call from CAL:

CALLV GTPOS%

Entry:
(AI)

(A2)

Exit:
(AI)
(A2)

(51)

Absolute DSP address or negative nsp offset relative to the
DSP base (JCDSP)
Address of tape position information storage area. This
area must contain LE@TPI words to hold the tape information.

Absolute DSP address
Address of tape position information storage area. The
tape position information is returned in fields as defined
in the Macros and Opdefs Reference Manual, CRr publication
SR-0012.
Return conditions. On exit this register returns errors
and warnings from the tape get position routine.

;0 Tape position information successfully returned
~O Error or warning encountered during

request
+2 Dataset is not a tape dataset.

FDGPOS% obtains, for the CAL user, position information about a foreign
interchange tape or mass storage dataset being processed with the library
data conversion support (FD parameter on the ACCESS and ASSIGN control
statements). The information returned by FDGPOS% is internal information
to be retained and passed on to a FDSPOS% request. FDGPOS% uses
call-by-value linkage.

Call from CAL:

CALLV FDGPOS%

SR-OOl4 5-44 I

I

Entry:
(AI)

Exit:
(AI)
(Sl)

(52)

(S3)

(54)

Absolute D5P address or negative D5P offset relative to the
nsp base (JCDSP)

Absolute nsp address
Return conditions. On exit this register returns errors
and warnings from the tape get position routine.

=0 Tape position information successfully returned
10 Error or warning encountered during request~ error

message numberJ see coded 'IOLIB messages in CRAY-OS
Message Manual, publication SR-0039.

Dataset position information for finding the beginning of
the current block (Cray physical record). For disk
datasets, this register is set to the Cray block number for
the sector containing the beginning of the current block.
For tape datasets, this register is set to the volume block
count as returned from a TAPEPOS macro request.
Dataset position information for finding the beginning of
the current block (Cray physical record). For disk
datasets, this register is set to the dataset position,
including BOWs, of the beginning of the current block. Fbr
tape datasets, this register is set to the volume serial
number as returned from a TAPEPOS macro request.
Dataset position information for finding the beginning of
the current logical record. For disk and tape datasets,
this register is set to the current foreign dataset block
bit length.

GETPOS returns to the FORTRAN user the current position of the specified
interchange tape or mass storage dataset. This is a generic routine
independent of the device medium. The routine does not alter the
dataset's position, but captures information that later can be used to
recover the current position.

If foreign dataset conversion has not been requested, the physical tape
block and volume position is determined. For disk datasets, a non-tape
GETPOS request is made.

Call from FORTRAN:

CALL GETPOS (dn,ten,pa[,stat)

dn Dataset name or unit number

ten Length in Cray words of the position array. This parameter
determines the maximum number of position values to
return. This parameter should be set equal to 3.

SR-OOI4 5-45 I

I

pa

stat

Position array. On exit, pa contains the current
position information. This information should not be
modified by the user. It should be retained to be passed
on to the SETPOS routine.

Return conditions. This optional parameter returns errors
and warnings from the position information routine.

=0 Position information successfully returned
~O Error or warning encountered during request;

Error message number; see coded $rOLIS messages in
the CRAY-oS Message Manual, publication SR-0039.

Set position of dataset

To set the position of a mass storage dataset, the position must be at a
record boundary, that is, at BOD or following an EOR or EOF, or before an
EOD. A dataset cannot be positioned beyond the current EOD.

The $SPOS%, $ASPOS, and $FSPOS routines set the position of the specified
interchange tape or mass storage dataset. The STPOS%, FDSPOS%, and
SETPOS routines set the position of the specified interchange tape or
mass storage dataset.

$SPOS synchronously sets the dataset position, and $ASPOS asynchronously
sets the dataset position. Library routines finish the asynchronous
positioning ($ASPOS) if necessary_ A bit in the Dataset Parameter Table
(DPTPOS) can be tested to determine if a $FSPOS call is required.

Call from CAL:

CALLV $SPOS
CALLV $ASPOS

Entry:
(AI)

(81)

SR-0014

Address of Dataset Parameter Table (DSP) or negative DSP
offset relative to DSP base (JCDSP), that is, contents of
second word of Open Dataset Name Table (ODN).
Dataset position

Bit Description

0-30 Unused

31-63 Word address. The desired physical word address
within the dataset aligned on a record boundary.
Record control words are included.

5-46 I

I

Exit:
(AI)

(81)
(S6)

DSP address
Dataset position
RCW after which the dataset is
poSitioned, (86)=0 if at BOD.

$FSPOS finishes the asynchronous dataset positioning request.

Call from CAL:

I CALLV $FSPOS I

STPOS% positions, for the CAL user, a tape dataset at a particular tape
block of the dataset. Data blocks on the tape are numbered so that block
number I is the first data block on a tape. Before a tape dataset is
positioned with STPOS%, the tape must be synchronized with a call to
SYNCH%. 5TP05% uses call-by-value linkage.

Call from CAL:

I CALLV S~POS' I
Entry:

(AI)

(51)

(52)

SR-0014

Absolute DSP address or negative D5P offset relative to the
D5P base (JCDSP)

Block number request sign. This register must be set to
I+'L, I_IL, or I 'L. Refer to register 52, the block number
value register for usage details.

Block number or number of blocks to forward space or
backspace from the current position. The direction of the
positioning is specified by the block number request sign
register, 51.

For forward block positioning, set register 81 to '+'L. The
plus sign is invalid if either the volume number (54) is
unsigned or the volume identifier (85) has been specified.

For backward block positioning, set register 81 to '-fL.
The minus sign is invalid if either the volume number (54)
is unsigned or the volume identifier (S5) has been specified.

For absolute block positioning, set register S1 to ' 'L.

5-47 I

I

(S3) Volume number request sign. This register must be set to
'+'L, I_IL, or I 'L. Refer to volume number value register,
54, for usage details.

(54) Volume number or number of volumes to forward space or
backspace from the current position. This parameter should
be set equal to a binary volume number or number of volumes
to forward space or backspace. The direction of the
positioning is specified by the volume number request sign
register, S3. This parameter is invalid if the volume
identifier (S5) has also been specified.

(85)

Exit:
{Al}
(Sl)

For forward volume positioning, set register 53 to '+'L. A
block request (register 52) must not be specified with plus
or minus signs.

For backward volume positioning, set register S3 to I_IL. A
block request (register 52) must not' be specified with plus
or minus signs.

For absolute volume positioning, set register S3 to • IL.

Volume identifier to be mounted. This parameter is invalid
if number of volumes (register 84) has also been requested.
Also a block request (register 52) must not be specified
without plus or minus signs. The volume identifier must be
of the form 'VOL'L.

Absolute DSP address
Return conditions. On exit this register is used to return
errors and warnings from the tape get position routine.

=0 Tape successfully positioned
~O Error or warning encountered during request
-1 Set tape position parameter error
+2 Dataset is not a tape dataset.
+3 Positioning request not fully satisfied

FD5POS% positions, for the CAL user, a foreign interchange tape or mass
storage dataset being processed with the library data conversion support
(FD parameter on the ACCESS or ASSIGN control statements). FDSP05%
returns to the positions retained from a FDGPOS% request. FDSP05% uses
call-by-value linkage.

Call from CAL:

CALLV FD5POS%

SR-0014 5-48 I

I

Entry:
(AI)

(S2)

(S3)

(54)

Exit:
(Al)
(B1)

Absolute DSP address or negative DSP offset relative to the
DSP base (JCDSP)

Dataset position information for finding the beginning of
the current block (Cray physical record). For disk
datasets, this register is set to the Cray block number for
the sector containing the beginning of the current block.

For tape datasets, this register is set to the volume block
count as returned from a ~APEPOS macro request.

Dataset position information for finding the beginning of
the current block (Cray physical record). FOr disk
datasets, this register is set to the dataset position,
including BCWs r of the beginning of the current block. FOr
tape datasets r this register is set to the volume serial
number as returned from a TAPEPOS macro request.

Dataset position information for finding the beginning of
the current logical record. For disk and tape datasets,
this register is set to the current block bit length.

Absolute nsp address
Return conditions. On exit this register returns errors and
warnings from the tape get position routine.

=0 Tape position information successfully returned
#0 Error or warning encountered during request; error

message number~ see coded $IOLIB messages in CRAY-OS
Message Manual, publication SR-0039.

SETPOS allows the FORTRAN user to return to the position retained from the
GETPOS request. This is a generic routine independent of the device
medium. SETPOS can be used on interchange tape or mass storage datasets.

SETPOS positions to a logical record when processing a foreign file with
the library data conversion support (FD parameter on the ACCESS and ASSIGN
control statements). This same capability also exists for mass storage
files that have been assigned foreign dataset characteristics.

If foreign dataset conversion has not been requested, the physical tape
block and volume position is determined. A non-tape SETPOS request is
made for disk datasets if foreign conversion has not been specified.

For interchange tape datasets, SETpOS must synchronize before the dataset
can be positioned. Thus, for input datasets, the dataset must be
positioned at a Cray end-of-record. An end-of-record is added to the end
of data before the synchronization if the dataset is an output dataset and
the end of the tape block was not already Written.

SR-0014 5-49 I

Call from FORTRAN:

CALL SETPOS (dn,ten,pa[,8tat)

dn Dataset name or unit number

ten Length in Cray words of the position array. This parameter
determines the maximum number of position values to process
and allows for the addition of more information fields while
ensuring that existing codes continue to run. This
parameter should be set equal to 3.

pa Position array. On entry, pa contains the desired
position information from the GETPOS call.

stat Return conditions. This optional parameter returns errors
and warnings from the position routine.

=0 Dataset successfully positioned
#0 Error or warning encountered during request;

Backspace one record

Error message number; see coded SIOLIB messages in the
CRAY-oS Message Manual, publication SR-0039.

I The SBKSP and BACKSPACE routines position the dataset after the previous
end-of-record (EaR). The function is nonoperational if the dataset is at
beginning-of-data (BOD). If the dataset is at the first record of a file,
these routines position the dataset before the end-of-file (EOF).

I

Call from CAL:

CALLV $BKSP

Entry:
(Al.)

Exit:
(Al)
(S6)

SR-0014

Address of Dataset Parameter Table (DSP) or, if negative,
DSP offset relative to DSP base (JSDSP). The second word of
Open Dataset Name Table (ODN) also contains this negative
value.

Address of DSP
Contains record control word (RCW) after which dataset is
positioned (equals 0 if at BOD)

5-50 I

Call from FORTRAN (also clears UEOF flag in the DSP) :

BACKSPACE (f fin j)
lariat

U

fin

atist

Unit identifier

File identifier whose value specifies the name of the file

The following set of identifiers:

[UNIT]=U
IOSTAT=ios
ERR=S

Must contain a single external unit specifier and can
contain, at most, one of each of the other specifiers.
the UNIT, IOSTAT, and ERR specifiers described for the
or CLOSE statement, table 5-2 or table 5-3.

See
OPEN

The FDBKSPi routine allows a CAL user to backspace a logical record on a
foreign interchange tape or mass storage dataset being processed with the
library data conversion support.

Call from CAL:

CALLV FDBKSP%

Entry:
(AI)

Exit:
(Al)
(51)

SR-0014

Absolute nsp address or negative DSP offset relative to the
nsp base (JCDSP)

Absolute DSP address
Return conditions. On exit this register returns errors
and warnings from the tape get position routine.

=0 Tape position information successfully returned
10 Error or warning encountered during request; error

message number~ see coded $IOLIB messages in CRAY-oS
Message Manual, publication SR-0039.

5-51 I

Backspace one file

The $BKSPF and BACKFILE routines position a dataset after the previous
end-of-file (EOF). The fUnction is nonoperational if the dataset is at
beginning-of-data (BOD).

Call from CAL:

CALLV $BKSPF

Entry:
(AI)

Exit:
(AI)
(S6)

Address of Dataset Parameter Table (DSP) or, if negative,
DSP offset relative to DSP base (JCDSP). The second word
of Open Dataset Name Table (ODN) also contains this
negative value.

Address of DSP
Contains record control word (RCW) after which dataset is
positioned (equals 0 if at BOD)

Call from FORTRAN (also clears UEQF flag in DSP) :

CALL BACKFILE(dn)

dn Dataset name or unit number

Rewind dataset

Rewind routines rewind a sequential access dataset.

Call from CAL:

Entry:
(AI)

Exit:
(AI)

SR-OOI4

Address of Dataset Parameter Table (DSP) or, if negative,
DSP offset relative to DSP base (JCDSP). The second word
of Open Dataset Name Table (ODN) also contains this
negative value.

Address of DSP

5-52 I

Call from FORTRAN:

REWIND (/ !iYf) l a7,l,.st

u

fin

atiet

unit identifier. If the dataset is $IN, the file is
positioned after the first EOF. Otherwise, it is
positioned at BOD.

File identifier whose value specifies the name of a file

The following set of specifiers must contain a single
external unit specifier and can contain, at most, one of
each of the other specifiers.

[UNIT] =u
IOSTAT=io8
ERR=s

See the UNIT, IOSTAT, and ERR specifiers described for the
OPEN or CLOSE statement, table 5-2, or table 5-3.

Position dataset

I $PBN and $APBN position a dataset to a specific block, update DPOUT of
nsp, clear DPRCW of DSP, and update DPIN of DSP, if a read is from disk.
$PBN synchronously positions the dataset; $APBN asynchronously positions
the dataset.

Call from CAL:

CALL SPBN
CALL $APBN

Entry:
(AI)
(A4)

SR-OOI4

..

Address of Dataset Parameter Table (DSP)
Block number

5-53 I

I

NOTE

A dataset must be in read mode or positioned after a
$WEOD call. If a disk read was done without recall
(asynchronous), the user is responsibile for checking
on completion of the read and any outstanding errors.
The only valid exit value is the DSP address found in
Al.

Exit:
(Al)
(A4)
(AS)
(SO)

Address of DSP
New block number
DPFRST from DSP:

o (asynchronous). Disk read required and recall not
requested

1 (synchronous). Disk read not required, or disk read
required and recall requested

(53) DPOUT from DSP

SPRCW positions dataset after a record control word (Rew). The dataset
is positioned after end-of-record in record mode and after end-of-file in
file mode. The dataset must already be positioned at the block control
word (BCW) for the block containing the ROW.

Call from CAL:

CALLV $PRCW

Entry:
(Al)
(A4)

(S3)
(55)

(S6)

Exit:
(AI)
(56)

5R-OOl4

Address of Dataset Parameter Table (DSP)
DPOBN from DSP
DPOUT from DSP
Open Dataset Name Table (ODN) (word address including block
control words)
Mode< 0 : Record mode

>0: File mode

Address of DSP
RCW after which dataset is positioned (0 if at BOD)

5-54 I

Synchronize tape dataset

SYNCH% synchronizes a CAL program and an interchange tape dataset. If the
dataset is synchronized for input, the tape must be positioned at the end
of a block (Crayend-of-record). However, if the dataset is an output
dataset and a Cray end-of-record has not been written, the SYNCH% routine
writes an EOR before synchronizing. For an output tape, control is not
returned to the user until all of the data in the circular I/O buffer has
been written to the tape. SYNCH% uses call-by-value linkage.

Call from CAL:

CALLV SYNCH%

Entry:
(Al)

(S1)

Exit:
(Al)
(51)

Absolute DSP address or negative DSP offset relative to the
DSP base (JCDSP)
Processing direction:

=0 Input dataset
=1 Output dataset

Absolute DSP address
Return conditions. On exit this register returns errors and
warnings from the synchronization routine.

=0 Tape successfully synchronized
#0 Error or warning encountered during request
+1 Execution errorJ the error code is in DPERR field of

DSP table.
+2 Dataset is not a tape dataset.

DATASET TERMINATION ROUTINES

The $WEOF, $WEOD, EODW, ENDFILE, and $EOFR routines terminate datasets by
writing end-of-record (EOR) and end-of-file (EOF), or EOR, EOF, and
end-of-data (EOD).

$WEOF writes an EOF preceded by an EOR, if necessary, as the next words in
the I/O buffer.

$WEOD writes an EOD preceded by an EOR and an EOF, if necessary, as the
next words in the I/O buffer. The $WEOD forces the final block of data to
be written on the disk; that is, it flushes the I/O buffer. The dataset
is left positioned before the EOD.

SR-00l4 5-55 I

Call from CAL:

CALLV $WEOF
CALLV $WEOO

Entry:
(AI) Address of Dataset Parameter Table (DSP) or, if negative,

DSP offset relative to DSP base (JCDSP). The second word of
Open Dataset Name Table (ODN) also contains this negative
value.

Exit:
(AI) Address of DSP

EODW writes EOD, EOF, and EOR, if necessary, and clears the UEOF flag in
the DSP.

Call from FORTRAN:

CALL EODW(dn)

dn Dataset name or unit number

ENOFILE writes EOF and EOR, if necessary, on sequential access file and
clears UEOF flag in DSP.

Call from FORTRAN:

ENDFILE(dn[,iostat,epr})

dn Dataset name or unit number

iostat Address of IOSTAT parameter

ERR parameter

$EOFR determines if UEOF flag in nsp is set and clears UEOF flag in DSP.

Call from CAL:

CALL $EOFR, (arg)

SR-0014 5-56 I

Entry:
azog

Exit:
(SI)

Address of dataset name or unit number

o if UEOP was not set
1 if UEOF was set

I/O STATUS ROUTINES

UNIT returns I/O status upon completion of an I/O operation.

Call from FORTRAN:

exit=UNIT(dn)

e:r:it -2.0 Operation complete, no errors, partial read, did not
read EOR (blocked I/O only)

-1.0
0.0

+1.0
+2.0

operation complete, no errors
EOP or BOD on last read on blocked datasets, or
end-of-information (EOI) on unblocked datasets
Parity error
Unrecovered hardware error

dn Dataset name or unit number

LENGTH returns number of words processed in last buffer operation.

Call from FORTRAN:

exit=LENGTH(dn)

exit On exit, word count from last buffer operation or 0 if EOP .
or EOD is encountered

dn Dataset name or unit number

lEOF returns integer EOF status and clears UEOF flag in DSP.

Call from FORTRAN:

iexit=IEOF(dn)

SR-OOl4 5-57 I

ie:rit

dn

-1 BOD on last operation
o Neither EOD nor EOF on last operation

+1 BOF on last operation

Dataset name or unit number

EOP returns a real value BOF status and clears UEOF flag in DSP.

call from FORTRAN:

:peri t=EOF (dn)

Z'e:rit -1.0 BOD on last operation
0.0 Neither EOD nor EOF on last operation

+1.0 EOF on last operation

dn Dataset name or unit number

IOSTAT returns end-of-file status.

Call from FORTRAN:

iemt=IOSTAT(dn)

ie:rit o No error
1 UEOF cleared (EOF)
2 UEOD cleared (BOD)

dn Dataset name or unit number

$EOATEST checks for a read/write past the allocated area condition. If
such a condition exists, an error message is issued and the job aborted.

Call from CAL:

-Entry:
(Al)

Exit (if
(Al)

SR-OOl4

DSP address
job not aborted):

DSP address

5-58 I

$UEOFSET sets the uncleared End-of-file flag in the DSP.

Call from CAL:

I CALLV $UEOFSET I
Entry:

(AI) DSP address
Exit:

(AI) DSP address

$UEOFTCL clears the uncleared End-of-file flag in the DSP and indicates
whether it had been set or not.

Call from CAL:

I CALLV $UOOFrCL I
Entry:

(AI)

Exit:
(Al)
(81)

nsp address

DSP address
0, if UEOF was not set
Nonzero if UEOF was set

$UEOFKIL aborts job if uncleared End-of-file flag is set in the nsp.

Call from CAL:

CALLV $UEOFKIL

Entry:
(AI)

Exit (if
(AI)

DSP address
job not aborted) :

DSP address

AUXILIARY NAMELIST ROUTINES

NAMELIST routines allow user control of input and output defaults and are
accessed by call-by-address subprogram linkage. No arguments are
returned. For a complete description of the NAMELIST feature, see the
FORTRAN (eFT) Reference Manual, CRI publication SR-0009.

SR-0014 5-59 I

RNLSKIP determines action if NAMELIST group encountered is not the
desired group.

Call from FORTRAN:

CALL RNLSKIP (mode)

mode >0 Skip past the group and issue an information
logfile message (default).

=0 Skip past group.
<0 Abort job or go to ERR=address.

RNLTYPE determines the action if a type mismatch occurs across the equal
sign on an input card.

Call from FORTRAN:

CALL RNLTYPE(mode)

mode =0 Abort job or go to ERR=address.
~O Convert constant type to variable type if possible;

otherwise, abort or go to ERR=address (default).

RNLECHO specifies unit for error messages and input echo.

Call from FORTRAN:

CALL RNLECHO(unit)

unit =0 Error messages and echoed input go to $OUT (default).
~O Error messages and echoed input go to specified

unit. All input is echoed.

The following four routines (RNLFLAG, RNLDELM, RNLSEP, and RNLCOMM) add
or delete characters from the set of characters recognized by the
namelist input routine in various positions. char is a single
Hollerith character specified in H, C, or R format; it is not a character
variable. No checks are made to ensure that alternate character
selections are consistent.

SR-OOl4 5-60 I

RNLFLAG deletes or adds echo character. If an echo character appears in
column I of an input record, that record and all subsequent records
processed by the current READ, are copied to the echo output unit.

Call from FORTRAN:

CALL RNLFLAG (~hal', mode)

mode

Echo character. Default is E.

-0 Delete character.
10 Add character.

RNLDELM deletes or adds NAMELIST group delimiting character. The group
character is the first character of the group name and the END terminator.

Call from FORTRAN:

CALL RNLDELM (~hal', mode)

Delimiting character. Default is $ and &.

mode =0 Delete character.
~O Add character.

RNLSEP deletes or adds separator character. The separator character
separates data items in the input records.

Call from FORTRAN:

CALL RNLSEP(~hal',mode)

Separator character. Default is ,.

mode

SR-OOI4

=0 Delete character.
;0 Add character.

5-61 I

RNLREP deletes or adds replacement character.

Call from FORTRAN:

CALL RNLREP (char, mode)

char
mode

Replacement character. Default is c.

=0 Delete character.
~O Add character.

RNLCOMM deletes or adds trailing comment indicator.

Call from FORTRAN:

CALL RNLCOMM(char,mode)

char

mode

Trailing comment indicator. Default is

=0 Delete character.
¥O Add character.

WNLLONG indicates output line length.

Call from FORTRAN:

CALL WNLLONG(tength)

and ;.

tength Output line length; 8<length<16l or length=-l (-1
specifies default of 133 unless the unit is 102 or $PUNCH,
in which case the default is 80).

WNLDELM defines ASCII NAMELIST delimiter.

Call from FORTRAN:

CALL WNLDELM (char)

char NAMELIST delimiter. Default is &.

SR-0014 5-62 I

WNLSEP defines ASCII NAMELIST separator.

Call from FORTRAN:

I CALL WNLSEP (ehaP l

NAMELIST separator. Default is ,.

WNLREP defines ASCII NAMELIST replacement character.

Call from FORTRAN:

CALL WNLREP(ehap)

ehar NAMELIST replacement character. Default is =.

WNLFLAG indicates the first ASCII character of the first line.

Call from FORTRAN:

CALL WNLFLAG (ahap)

ahar First ASCII character of the first line. Default is blank.

LOGICAL RECORD I/O ROUTINES

Logical record I/O routines are normally called by FORTRAN I/O routines
and communicate with the system through Exchange Processor requests.

These routines are divided into read, write, CAL I/O interface,
character, and bad data error recovery routines.

READ ROUTINES

Read routines transfer partial or full records of data from the I/O
buffer to the user data area. Depending on the read request issued, the
data is placed in the user data area one character per word or in full
words. (Blank decompression occurs only when data is being read one
character per word.) In partial mode the dataset maintains its position

SR-0014 5-63 I

I

after the read is executed. In record mode the dataset position is
maintained after the EOR that terminates the current record. Figure 5-4
provides an overview of the logical read operation.

Read words

Routines transferring full words transmit the words from the I/O buffer
to the area beginning at the first word address (FWA). This process
continues until either the word count in A3 is satisfied or an EOR is
encountered.

Unrecovered data errors do not cause the job to abort. Control is
returned to the user to use the good data that was read, (A2) through
(A4)-1, and to decide whether to abort or to skip or accept the bad
data. If the user does nothing, the job is aborted on the next read
request.

$RWDP reads words, partial record mode. $RWDR reads words, full record
mode.

Call from CAL:

CALLV $RWDP
CALLV $RWDR

Entry:
(Al)

(A2)
(A3)

Exit:
(AI)
(A2)
(A3)
(A4)
(SO)

(51)

(56)

5R-OOI4

Address of Dataset Parameter Table (DSP) or, if negative,
DSP offset relative to DSP base (JCDSP). The second word
of Open Dataset Name Table (ODN) also contains this
negative value.
FWA of user data area
Word count. If count=O, no data is transferred.

Address of DSP
FWA of user data area
Word count
Actual LWA+l (equals FWA if null record)
Termination mode:

<0 Read terminated by EOR
~O Null record, EOF, EOD, or unrecovered data error

encountered
>0 Read terminated by count. If count is

exhausted simultaneously with reaching EOR, the EOR
takes precedence.

Error status:
a No errors encountered
I Unrecovered data error encountered

Record control word (Rew) if (SO)~O and (S1)=0

5-64 I

SR-0014

t----_-_-....::I'-i~..t,l ~ST I/O BUFFER PO INTERS
(AI) }

OUT
~----rLMT
~---...

DSP
(A2) - -f -.

User

(A3) Data
Area

. _ t __ ~----..::--=--'

FIRST
data

IN~------------~

OUT~------------~'

data
LIMIT~· ______________ ~

1/0 BUFFER

mass
storage

Figure 5-4. Logical read

5-65

USER

SYSTEM

I

Example of $RWOP:

A B C D E F G H
I J K L M N 0 P (A2)
Q R 5 T U V W X $RWDP (A3)=2..A IAIBICIDIEIFIGIHI

f.l t.J. .. 't- __ IIIJIKILIMINlolpl y z t.J. t.J. t.J. f.l
RCW

0 1 2 3 I 4 5 6 7 User data area
8 9 {j t.J. I 6 t.J. 11 t.J.

RCW

Data in I/O buffer

READ reads words, full record mode. READP reads words, partial record
mode.

Call from FORTRAN:

CALL READ(dn,wo~,count,statu8[,ubc]}
CALL READP(dn,word,count,statu8[,ubc]}

dn

count

status

Dataset name or unit number

Word-receiving data area

On entry: number of words requested
On exit: number of words actually transferred

On exit:
-1 Words remain in record.
o EOR
1 Null record
2 EOF
3 EOn
4 Unrecovered data error encountered

ubc Optional unused bit count. On exit, if end of record is
reached, ubc contains the unused bit count in the last
word. The unused bits are zeroed in the user's data area.

Read characters

Read character routines unpack characters from the I/O buffer and insert
them into the user data area beginning at the first word address (FWA).
This process continues until either the count is satisfied or an EaR is
encountered. If an EOR is encountered first, the remainder of the field
specified by the character count is filled with blanks.

SR-0014 5-66 I

I

Unrecovered data errors do not cause the job to abort. Control is
returned to the user to use the good data that was read, (A2) through
(A4)-1, and to decide whether to abort, or to skip or accept the bad
data. If the user does nothing, the job is aborted on the next read
request.

$RCHP reads characters, partial record mode. $RCHR reads characters,
full record mode.

Call from CAL:

CALLV $RCHP
CALLV $RCHR

Entry:
(AI) Address of Dataset Parameter Table (OSP) or, if negative,

DSP offset relative to n5P base (JCDSP). The second word
of Open Dataset Name Table (ODN) also contains this
negative value.

(A2)
(A3)

Exit:
(AI)
(A2)
(A3)
(A4)
(SO)

(81)

First word address (FWA) of user data area
Character count. If count=O, no data is transferred.

Address of OSP
FWA of user data area
Character count
Actual LWA+l (equals FWA if null record)
Termination mode:

<0 Read terminated by EOR
=0 Null record, end-of-file, end-of-data, or unrecovered

data error encountered
>0 Read terminated by count. If count is

exhausted simultaneously with reaching EOR, the EOR
takes precedence.

Error status:
=0 No errors encountered
=1 Unrecovered data error encountered

(56) ROW if {SO)~O and (Sl)=O

SR-0014 5-67 I

Example of $RWDP:

(A2) ____,.--____________ _

I T
I H
I I
I S

ITIHIIlsI6IIISI~1 $RCHP
IDIAITIAI.1616161 •

I t,
I I
I S
I 11

Data in I/O buffer J D
(A3)=16 I A

I T
IA
I •
I 6
I 11

User data area

READC reads characters, full record mode. READCP reads characters,
partial record mode.

Call from FORTRAN:

CALL READC(dn,chap,count,status)
CALL READcP(dn,chap,count,8tatu8)

dn

aount

status

SR-OOl4

Dataset name or unit number

Character-receiving data area

On entry: Number of characters requested
On exit: Number of characters actually transferred

On exit:
-1 Characters remain in record.
o EOR

1 Null record
2 EOF
3 EOD
4 Unrecovered data error

5-68 I

I

Read IBM words

READIBM reads two IBM 32-bit floating-point words from each Cray 64-bit
word.

Call from FORTRAN:

CALL READIBM(dn,fwa,~opd,incPement)

dn Dataset name or unit number

First word address (FWA) of user data area

lHOrd Number of words needed

inopement Increment of IBM words read

On exit, the IBM 32-bit format is converted to the equivalent Cray 64-bit
value. The Cray 64-bit words are stored in user data area.

Read unblocked data

$RLB reads data directly into the user area without the use of system I/O
buffers, ReNs, or BCWs.

Call from CAL:

Entry:
(Al)

(A2)

(A3)
(81)

Address of Dataset Parameter Table (OSP) or, if negative,
OSP offset relative to DSP base (JCDSP). The second word
of Open Dataset Name Table (ODN) also contains this
negative value.
First word area (FHA) of user data area
Word count. If count=O, no data is transferred.
Recall indicator; specifies whether read is done
synchronously or asynchronously.

o No I/O recall requested (asynchronous)
1 I/O recall requested (synchronous)

Exit:
(AI-A3)
If recall
(SO)

Unchanged
requested :
-1.0 Operation complete, no errors

(A4)

SR-0014

0.0 End-of-information (EOI) on last read
+1.0 Parity error
Actual last word address+l

5-69 I

I

WRITE ROUTINES

Write routines transfer partial or full records of data from the user
data area to the I/O buffer. Depending on the write operation requested,
data is taken from the user data area one character per word and packed
eight characters per word or is transferred in full words. (Blank
compression occurs only when data is being written one character per
word). In partial mode, no EOR is inserted in the I/O buffer to
terminate the record. In record mode an EOR is inserted in the I/O
buffer in the next word following the data that terminates the record.
Figure 5-5 provides an overview of the logical write operation.

Write words

In routines where words are written, the number of words specified by the
count is transmitted from the area beginnin9 at the first word address
(FWA) and is written in the I/O buffer.

$WWDP writes words, partial record mode.

$WWPU writes words, partial record mode with unused bit count. The user
can specify the unused bit count in the last word of a partial record as
an entry condition.

$WWDR writes words, full record mode.

$WWDS writes words, full record mode with unused bit count. The user can
specify the unused bit count in the last word of the record as an entry
condition.

Call from CAL:

CALLV $WWDP
CALLV $WWPU
CALLV $WWDR
~LV$MmS

Entry:
(JlL) Address of Dataset Parameter Table (DSP) or, if negative,

DSP offset relative to DSP base (JCDSP). The second word
of Open Dataset Name Table (ODN) also contains this
negative value.

(A2)
(A3)

First word address (FWA) of user data area
Word count. If count=O, no data is transferred; EOR is
written.

(A4) Unused bit count, value 0 to 63 ($WWDS and $WWPU only)

SR-OOl4 5-70 I

Exit:
(AI)
(A2)
(A3)

Address of DSP
FWA of user data area
Word count

Example of $WWDP;

IAIBlclDIEIFIGIHI
IrlJIKILIMINIOlpl
IQIRISITlulvlwlxl
IYIZI I I I I I I

User data area

$WWDP ..

WRITE writes words, full record mode.

call from FORTRAN:

CALL WRITE(dn,~ord,count[,ubo])

dn Dataset name or unit number

7.Jord Data area containing words

IAIBICIDIEIFIGIHI
IIIJIKILIMINIOlpl
IQIRISITlulvlwlxl
IYIZI I I J I I I

I/O buffer

count Word count. A value of 0 causes an end-of-record record
control word to be written.

ubc Optional unused bit count. Number of unused bits contained
in the last word of the record.

WRITEP writes words, partial record mode.

Call from FORTRAN:

CALL WRITEP(dn,7.Jo~,count[,ubc])

dn Dataset name or unit number

7.Jo~ Data area containing words

count Word count

ubc Optional unused bit count. Number of unused bits contained
in the last word of the record.

SR-0014 5-71 I

(A2)

SR-0014

(Al)r-----

FRST }
--~6~T I/O BUFFER POINTERS

1--------1 LMT

DSP

User
Data
Area

FIRST I--............:.~' . ,--d-a_t_a_" --'-_'""'\)

IN

OUT~ __ ~ ________ ~

data
LIM I T 1--______ ----'

I/O BUFFER

mass
storage

Figure 5-5. Logical write

5-72

USER

SYSTEM

I

I

Write characters

Write character routines pack characters into the I/O buffer for the
dataset. The number of characters packed is specified by the count.
These characters originate from the user area defined at first word
address (FWA).

$WCHP writes characters, partial record mode.

$WCHR writes characters, full record mode. The unused bit count in the
record control word CRCW) specifies the EOO in the previous word.

Call from CAL:

CALLV $WCHP
CALLV $WCHR

Entry:
(AI)

(A2)

(A3)

Exit:
(AI)

(A2)
(Al)

Address of Dataset Parameter Table (DSP) or, if negative,
DSP offset relative to DSP base (JCDSP). The second word
of Open Dataset Name Table (OON) also contains this
negative value.
FWA of user data area
Character count. If count=O, no data is transferred; EOR
is written.

Address of DSP
FWA of user data area
Word count

Example of $WCHP:

(A2) - - -r;...._.:..-----:._-=-_...:...._.:-.~----....;~;;.........;­
(A3) ::;11 U

T

D

A
T
A - - - - ~--~--~--~--~--~--~--~~

User data area

SR-OOl4 5-73

$WCHP •
I previously
I written datal
I IOlulTlplulTI
11llniAITIAJ I I I

I/O buffer

I

WRITEC writes characters, full record mode. WRITECP writes characters,
partial record mode.

Call from FORTRAN:

CALL WRITEC(dn,aha~,aount)
CALL WRITECP(dn,aha~,aount)

dn Dataset name or unit number

Data area containing characters

aount Character count

Write IBM words

WRITIBM writes two IBM 32-bit floating-point words from each Cray 64-bit
word.

Call from FORTRAN:

CALL WRITIBM(dn,fwa,vatue,inar-ement)

dn Dataset name or unit number

fbJa FWA of user data area

vaLue Number of values to be written

inar-ement Increment of source (Cray) words written

On exit, IBM 32-bit words written to unit

Write unblocked data

$WLB writes data directly from user area without the use of system I/O
buffers, ROWs, or BCWs.

Call from CAL:

CALLV $WLB

SR-OOI4 5-74 I

I
Entry:

(AI) Address of Dataset Parameter Table (DSP) or, if negative,
DSP offset relative to DSP base (JCDSP). The second word
of Open Dataset Name Table (ODN) also contains this
negative value.

(A2)
(A3)

(51)

Exit:

First word address (FWA) of user data area
Word count. If count=O, no data is transferred.
Recall indicator. Specifies whether write is done
synchronously or asynchronously.

a No I/O recall requested (asynchronous)
1 I/O recall requested (synchronous)

(AI-A3) Unchanged
If recall requested:
(SO) -1."0 Operation complete, no errors

+1.0 Parity error
+2.0 Unrecovered hardware error

CAL I/O INTERFACE ROUTINE

$CBIO provides buffered I/O interface for CAL requests. The user is
responsible for ensuring that requested data transfers are complete and
error free by examining the Dataset Parameter Table (DSF) before
attempting to process input data or requesting additional writes.

Call from CAL:

CALLV $CBIO

Entry:
(51) Address of DSP

BAD DATA ERROR RECOVERY ROUTINES

Bad data error recovery routines enable a user program to continue
processing a dataset when bad data is encountered. Bad data means an
unrecovered error was encountered while the dataset was being read.
Skipping the data forces the dataset to a position past the bad data so
no data is transferred to a user-specified buffer. Accepting the data
causes the bad data to be transferred to a user-specified buffer and the
dataset is positioned immediately following the bad data.

When an unrecovered data error is encountered, the user continues
processing by calling either SKIPBAD or ACPTBAD.

SR-0014 5-75 I

SKIPBAD allows the user to skip the bad data so no bad data is sent to
the user-specified buffer.

Call from FORTRAN:

CALL SKIPBAD(dn,blocks,tenmcnd)

dn

bt.ocK.s

tePTTl(Jrld

Dataset name Or unit number

On exit, contains the number of blocks skipped. The
dataset format determines the meaning of block (see the
CRAY-OS Version 1 Reference Manual, publication SR-OOlI,
for definitions of the tape block formats). The format can
be:

•
•
•

Interchange. Number
Blocked transparent.
blocks skipped.
Unblocked. Number of
skipped.

of physical tape blocks skipped.
Number of sectors or 512-word

sectors or 512-word blocks

On exit, address of termination condition. For an
unblocked dataset, only a negative valu~ (not at EOD) or a
2 (at EOD) is returned.

<0 Not positioned at a record control word (ROW)
=0 positioned at EOR
>0 If 1, positioned at EOF

If 2, positioned at Eon

ACPTBAD makes bad data available to the user by transferring it to the
user-specified buffer.

• Interchange. The portion of bad data between the current position
and the next control word is transferred (no control words are
transferred).

• Blocked transparent. The entire sector or Sl2-word block
following the current position is transferred (control words are
transferred). The possibility of having a partial block «512
words) exists.

• Unblocked. The entire sector or Sl2-word block is read into the
user data area and then transferred to a user-specified buffer.
The bad data is placed after the good data from the read. The
user can specify the word address of the user-supplied buffer to
be the same as the address immediately following the good data.
This specification prevents transfer to a user-specified buffer.

SR-0014 5-76 I

Call from FORTRAN:

CALL ACPTBAD(dn,uda,~Pdant,tePrnOnd,ubant)

dn Dataset name or unit number

uda User data area to receive the bad data; length must be 512
words.

~Pdcnt On exit, number of words transferred «512)

termcnd On exit, address of termination condition. This is defined
for datasets in interchange and blocked transparent format.

ubant

<0 Not positioned at a record control word (RCK)
=0 positioned at EOR
>0 If 1, positioned at EOF

If 2, positioned at EOD

On exit, address of unused bit count. Only defined if
termination condition is 0, and ~~cnt is nonzero.

CHARACTER ROUTINES

Character routines load and store character items, find the beginning of a
format, and increment character addresses. These routines are used by I/O
routines. $LCI and $5CI are used by character routines and I/O routines,
and $FFS and $UIO are used by I/O routines only.

$LCI loads a character item.

Call from CAL:

Entry:
(51)

Exit:
(AI)
(VL)
(Vl)
(51)

SR-OOl4

Character address pointer

Length of item in words
Length of item in words
Character item adjusted to word boundary
Size in characters

5-77 I

$SCI stores a character item.

Call from CAL:

Entry:
(SI)

(VI)
Address of character item
Place to store, adjusted to word boundary: blank fill

$FFS finds the start of a format.

Call from CAL:

Entry:
(51)

Exit:
(AO)

(AI)
(A2)

Address of format

o if starting (is found
Nonzero if non-numeric character is found before (
Word address of starting (
Character position of starting (

$UIO increments character address.

Call from CAL:

Entry:
(51)
(82)

Address of character address pointers
Increment between items

NUMERIC CONVERSION ROUTINES

Numeric conversion routines convert a character to a numeric format or a
number to a character format.

SR-0014 5-78 I

I

I

CAUTION

$NICV and $NOCV are obsolete. NICV% and NOCV% should
be used in their place.

NICV% and NlCONV perform numeric integer input conversion to character
format.

Call from CAL:

I CALLV NICV% I
Entry:

(Al)
(S3)

(S4)
(S5)
(S6)

Exit:
(AI)

(Sl,S2)
(S3)

(84)

First input character address
Field width (optional)
Decimal places (optional)
p factor (optional)
Mode in bits 49 to 63 (symbols defined in $IOLIB). See
table 5-5 for description of bits.

Last input character address+l
Binary result
Next character
Return conditions. See table 5-6 for descriptions.

Call from FORTRAN:

CALL NICONVCfca,fw,dp,pf,mode,br,stat)

fea First input character address; on exit, last input character
address +1

fW Field width in characters

dp Decimal places

pf p factor

mode Conversion mode. See table 5-5 for description of bits.

SR-0014 5-79 I

I

bp High-order binary result followed by low-order binary
result. This parameter must be two Cray 64-bit words long.

stat Errors and warnings returned from the conversion routines.
See table 5-6 for descriptions.

Table 5-5. Conversion mode descriptions

Bit Symbol Description

49 SVDPART Set if decimal places field present
50 SVCFT Set if called from librarY1 o if

called from CFT.
51 SVPLS Set if requested + sign output
52 SVEXPS Set if exponent size defined
53 SVSEXP Sign of exponent
54 SVSMAN Sign of fraction or number
55 SVDFLD D conversion
56 SVGFLD G conversion
57 SVEFLD E conversion
58 SVFFLD F conversion
59 SVIFLD I conversion
60 SVZFLD Hex conversion
61 SVOFLD Octal conversion
62, 63 SVBZR,SVBNL Blank conversion indicators:

00 Blanks treated as delimiters
01 Blanks ignored (as in

FORTRAN source)
10 Blanks treated as zeros (as

in FORTRAN run-time input)

NOCV% and NOCONV perform numeric output conversion.

Call from CAL:

Entry:
(AI)

(A2)
(51) , (52)

(53)
(54)

SR-00l4

First output character address
Size of exponent (if SVEXPS bit set)
Binary number to he output
Field width
Decimal places

5-80 I

I

(S5) P factor
(S6) Mode in bits 49 to 63 (symbols defined in $IOLIB). See

table 5-5 for description of bits.
Exit:

(Al) Last output character address

Table 5-6. Conversion return conditions

Mode Descr iption

0'0077 Typeless
0'4027 24-bit integer
0'4077 64-bit integer
0'6077 64-bit real
0'6177 l28-bit real
-1 Illegal character
-2 OVerflow
-3 Exponent underflow
-4 Exponent overflow
-5 Null field

Call from FORTRAN:

CALL NOCONV(fea,j'w,dp,pf ,mode, sexp,br, statuB

fea First output character address; on exit, last output
character address.

fW Field width in characters

dp Decimal places (cannot apply to conversion)

pf P factor

mode Conversion mode. See table 5-5 for bit descriptions.

sexp Size of exponent if Mode flag is set

bp Binary number to be converted. High-order binary value
followed by the low-order value. This parameter must be
two Cray 64-bit words long.

SR-0014 5-81 I

I

I

I

8tat Errors and warnings returned from the conversion routines

>0 No error in conversion
<0 Error in conversion. (Current version of numeric

output conversion has no error conditions to return.)

$NICV performs numeric input conversion. This routine is obsolete.

Call from CAL:

I RSHICV I
Entry:

(A3)
(A4)
(AS)
(A6)
(86)

Exit:
(AI)
(A2)
(A6)
(81)
(52)

Field width (optional)
Decimal places (optional)
P factor (optional)
First character address
Mode in bits 49 to 63 (symbols defined in $lOLlB). See
table 5-5 for bit descriptions.

Next character
Mode (in octal). See table 5-6 for descriptions.
Last input character address+l
High-order result
Low-order result

$NOCV performs numeric output conversion. This routine is obsolete.

call from CAL:

I R $NOCV I
Entry:

(A3)
(A4)
(AS)
(A7)

(Sl) , (82)
(86)

Exit:
(A7)

SR-OOl4

Field width
Decimal place s
P factor
First output character address
Binary number to be output
COnversion mode in bits 49 to 61 (symbols defined in
$lOLlB). See table 5-5 for bit descriptions.

Last output character address

5-82 I

RANDOM ACCESS DATASET I/O ROUTINES

Sequentially accessed datasets are used for applications that read input
to a job once at the start of the process and write output to a job once
at the end of the process. However, when large numbers of intermediate
results are used randomly as input in later stages of jobs, a random
access dataset capability is more efficient to use than sequential
access. A random access dataset consists of records that are accessed and
changed in the same manner. Random access of data removes the slow
processing and inconvenience of sequential access, particularly when the
order of reading and writing records differs in various applications or
when I/O speed is important.

Random access dataset I/O routines allow the user to specify how records
of a dataset are to be changed without the usual limitations of sequential
access. Only those I/O routines meant for each type of dataset can be
used with predictable results.

Random access datasets can be created and accessed by the
record-addressable dataset routines (READMS/WRITMS, READDR/WRITDR) or the
word-addressable dataset routines (GETWA/PUTWA).

NOTE

Generally, random access dataset I/O routines used in a
program with overlays or segments should reside in the
root segment or first overlay. However, if all I/O is
done within one overlay, the routines can reside in
that overlay. If all I/O is done in that overlay's
successor, the routines can reside in the successor
overlay.

RECORD-ADDRESSABLE, RANDOM ACCESS DATASET I/O ROUTINES

Record-addressable, random access dataset I/O routines allow the user to
generate datasets containing variable-length, individually addressable
records. These records can be read and rewritten at the user's
discretion. The library routines update indexes and pointers.

The random access dataset information is stored in two places: in an
array in user memory and at the end of the random access dataset.

SR-OOl4 5-83 I

When a random access dataset is opened, an array in user memory contains
the master index to the records of the dataset. This master index
contains the pointers, and optionally the names of the records within the
dataset. Although this storage area is provided by the user, it must be
modified only by the random access dataset I/O routines.

When a random access dataset is closed and optionally saved, the storage
area containing the master index is mapped to the end of the random
access dataset, thus recording changes to the contents of the dataset.

The following FORTRAN-callable routines can change or access a
record-addressable, random access dataset: OPENMS, WRITMS, READMS,
CLOSMS, FINDMS, CHECKMS, WAITMS, ASYNCMS, SYNCMS, OPENDR, WRITDR, READDR,
CLOSDR, STINDR, CHECKDR, WAITDR, ASYNCDR, SYNCDR and STINDX.

The READDR/WRITDR random access I/O routines are direct-to-disk versions
of READMS/WRITMS. All input or output goes directly to or from the
userls data area from or to the mass storage dataset without passing
through a system maintained buffer in high memory_ Since mass storage
can only be addressed in even 512 word blocks, all record lengths are
rounded up to the next multiple of 512 words.

Users can intermix both READMS/WRITMS and READDR/WRITDR datasets in the
same program. Do not use the same file in both packages at the same time.

OPENMS/OPENDR opens a local dataset and specifies the dataset as a random
access dataset that can be accessed or changed by the record-addressable,
random access dataset I/O routines. If the dataset does not exist, the
master index contains zeros~ if the dataset does exist, the master index
is read from the dataset. The master index contains the current index to
the dataset. The current index is updated when the dataset is closed
usin9 CLOSMS/CLOSDR.

A single job can use up to 40 active READMS/WRITMS files and 20
READDR/WRITDR files.

Call from FORTRAN:

CALL OPENMs(dn,index,Length,it[,ierr])
CALL OPENDR(dn, index, length, it[, ierp])

dn

index

SR-OOI4

Type INTEGER variable, expression, or constant. The name
of the dataset as a Hollerith constant or the unit number
of the dataset (for example, dn=7 corresponds to dataset
FT07) ..

Type INTEGER array. The name of the array in the user's
program that is going to contain the master index to the
records of the dataset. This array must be changed only by
the random access dataset I/O routines.

5-84 I

tength

it

ierr

SR-OOl4

Type INTEGER variable, expression, or constant. The length
of the index array. The length of index depends upon the
number of records on or to be written on the dataset using
the master index and the type of master index. The
Zength must be at least 2*nree if it-lor nree if
it=o. nree is the number of records in or to be
written to the dataset using the master index.

Type INTEGER variable, expression, or constant flag
indicating the type of master index.

it=o Records synchronously referenced with a number
between 1 and lengt~

it=l Records synchronously referenced with an
alphanumeric name of eight or fewer characters.

it=2 Records asynchronously referenced with a number
between land Zength.

it=3 Records asynchronously referenced with an
alphanumeric name of eight or fewer characters.

For a named index, odd'numbered elements of the index array
contain the record name, and even numbered elements of the
index array contain the pointers to the location of the
record within the dataset. For a numbered index, a given
index array element contains the pointers to the location
of the corresponding record within the dataset.

Type INTEGER variable. Error control and code. If ierr
is supplied on the call to OPENMS/OPENDR, ierr returns
any error codes to the user. If ierr is not supplied, an
error aborts the job.

If the user sets ierp>O on input to OPENMS/OPENDR, error
messages are not placed in the logfile. Otherwise, an
error code is returned, and the error message is added to
the job's logfile. OPENMS/OPENDR writes an open message to
the logfile whether the value of ierr selects log
messages or not.

On output
ie~O

<0

from OPENMS/OPENDR:
No errors detected
Error detected. ierp contains
error codes in table 5-7.

5-85

one of the

I

Code
Number

-1

-2

-3

-4

-5

SR-OOl4

Table 5-7. Error codes for record-addressable, random
access dataset I/O routines

Routines
Affected

OPENDR
OPENMS
WRITDR
WRITMS
READDR
READMS
STINDR
STINDX
CLOSDR
CLOSMS
CHECKDR
CHECKMS
WAITDR
WAITMS
ASYNCDR
ASYNCMS
SYNCDR
SYNCMS

OPENDR

OPENMS

OPENDR
OPENMS

OPENDR
OPENMS

OPENDR
OPENMS

Description

The dataset name or unit number is
illegal.

The user-supplied index length is less than
or
equal to O.

The number of datasets has exceeded memory
or size availability.

The dataset index length read from the
dataset is greater than the user-supplied
index length (nonfatal message).

The user-supplied index length is greater
than the index length read from dataset
(nonfatal message).

5-86 I

Code
Number

-6

-7

-8

-9

-10

-11

-12

-13

-14

-15

SR-0014

Table 5-7. Error codes for record-addressable, random
access dataset I/O routines (continued)

Routines
Affected Description

WRITMS The user-supplied named index is illegal.
READMS
FINDMS

WRITMS The named record index array is full.
READMS

WRITMS The index number is greater than the
READMS maximum on the dataset.
FINDMS

WRITMS Rewrite record exceeds the original.
READMS

READMS The named record was not found in the
FINDMS index array.

OPENMS The index word address read from the
dataset is less than or equal to o.

OPENMS The index length read from the dataset is
less than o.

OPENMS The dataset has a checksum error.

OPENMS OPENMS already has opened the dataset.

WRITMS OPENMS/OPENDR was not called on this
WRITDR dataset.
READMS
CLOSMS
STINDR
STINDX

5-87 I

Code
Number

-15

-16

-17

-18

-19

-20

SR-0014

Table 5-7. Error codes for record-addressable, random
access dataset I/O routines (continued)

Routines
Affected

FINDMS
CHECKMS
CHECKDR
WAITMS
WAITDR
ASYNCMS
ASYNCDR
SYNCMS
SYNCDR
WAITDR
WAITMS

STINDR
STINDX

WRITMS
WRITDR
READMS
FINDMS

WRITMS
WRITDR
READMS
FINDMS

WRITMS
WRITDR
READMS
FINDMS

OPENMS
OPENDR

Description

OPENMS/OPENDR was not called on this
dataset.

A STINDX/STINDR call cannot change the
index type.

The index entry is less than or equal to 0
in the user's index array.

The user-supplied word count is less than
or equal to O.

The user-supplied index number is less
than or equal to O.

Dataset created by WRITDR/WRITMS

5-88 I

WRITMS/WRITDR writes data from user memory to a record in a random access
dataset on disk and updates the current index.

Call from FORTRAN:

CALL WRITMS(dn,ubuff,n,irec,rrj1ag,s[,ierr])
CALL WRITDR(dn,ubuff,n,irec,rrflag,s[,ierr])

ubu!f

n

SR-0014

Type INTEGER variable, expression, or constant. The name
of the dataset as a Hollerith constant or the unit number
of the dataset (that is, dn=7 corresponds to dataset
FT07).

Type determined by user. The location of the first word in
the user's program to be written to the record.

Type INTEGER variable, expression, or constant. The number
of words to be written to the record. n contiguous words
from memory, beginning at ubuff, are written to the
dataset record. Since COS unblocked dataset I/O is in
multiples of 512 words, it is recommended that n be a
multiple of 512 words when speed is of importance.
However, the random access dataset I/O routines support a
record length other than multiples of 512 words. WRITDR
rounds n up to the next multiple of 512 words, if
necessary.

Type INTEGER variable, expression, or constant. The record
number or record name of the record to be written. A
record name is limited to a maximum of eight characters.
For a numbered index, iree must be between 1 and the
length of the index declared in the OPENMS/OPENDR call.
For a named index, iree is any 64-bit entity the user
specifies.

Type INTEGER variable, expression, or constant. A flag
indicating record rewrite control. rrflag can be one of
the following codes.

o Write the record at EOD.
1 If the record already exists and the new record

length is less than or equal to the old record length,
rewrite the record over the old record. If the new
record length is greater than the old, abort the job
step or return the error code in ierr. If the record
does not exist, the job aborts or the error code is
returned in iep-p.

5-89 I

-1 If the record exists and its new length does not exceed
the old length, write the record over the old record.
Otherwise, write the record at EOD.

B Type INTEGER variable, expression, or constant. A

sub-index flag. t

Type INTEGER variable. Error control and code. If ie~~
is supplied on the call to WRITMS/WRITDR, ier~ returns any
error codes to the user. If ie~~>o, no error messages are
put into the logfile. Otherwise, an error code is returned
and the message is added to the jobls logfile.

On output from WRITMS/WRITDR:
ie~r=O No errors detected

<0 Error detected. ie~~ contains one of the
error codes in table 5-7.

READM8/READDR reads a record from a random access dataset to a contiguous
memory area in the userls program.

///

WARNING

If you are using READDR in asynchronous mode and the
record size is not a multiple of 512 words, user data
can be overwritten and not restored. with the SYNCDR
routine, the dataset can be switched to read
synchronously, causing data to be copied out and
restored after the read has completed.

///

Call from FORTRAN:

CALL READMS(dn,ubuff,n,irea[,ierr]}
CALL READDR(dn,ubuff,n,irea[,ie~p])

t Deferred implementation

8R-0014 5-90 I

dn

ubuf!

n

Type INTEGER variable, expression, or constant. The name
of the dataset as a Hollerith constant or the unit number
of the dataset (for example, unit=7 corresponds to
dataset FT07).

Type specified by user. The location in the user's program
where the first word of the record is placed.

Type INTEGER variable, expression, or constant. The number
of words to be read. n words are read from the random
access record ipec and placed contiguously in memory,
beginning at ubuff. If necessary, READDR rounds n up
to the next multiple of 512 words. If the file is in
synchronous mode, the data is saved and restored after the
read.

Type INTEGER variable, expression, or constant.
number or record name of the record to be read.

The record
A record

name is limited to a maximum of eight characters. For a
numbered index, irec must be between 1 and the length of
the index declared in the OPENMS/OPENDR call. For a named
index, irea is any 64-bit entity the user specifies.

Type INTEGER variable. Error control and code. If ierr
is supplied on the call to READMS/READDR, iepp returns
any error codes to the user. If ierp>O, no error
messages are put into the logfile. Otherwise, an error
code is returned and the message is added to the job's
logfile.

On output
ierr=O

<0

from READMS/READDR;
No errors detected
Error detected. iepr contains
error codes in table 5-7.

one of the

CLOSMS/CLOSDR writes the master index specified in OPENMS/OPENDR from the
user's program area to the random access dataset and then closes the
dataset. Statistics are collected on the activity of the random access
dataset and written in a readable format to dataset $STATS. (See table
5-8). The statistics can be written to $OUT by using the following
control statements or their equivalent after the random access dataset
has been closed by CLOSMS/CLOSDR.

REWIND,DN=$STATS.
COPYF,I=$STATS,O=$OUT.

SR-0014 5-91 I

Call from FORTRAN:

CALL CLOSMS(dn[,ierr])
CALL CLOSDR(dn(,ierp])

dn Type INTEGER variable, expression, or constant. The name of
the dataset as a Hollerith constant or the unit number of the
dataset (that is, dn=7 corresponds to dataset FT07).

iel'r Type INTEGER variable. Error control and code. If ierr is
supplied on the call to CLOSMS/CLOSDR, ierr returns any
error codes to the user. If iepl'>o, no error messages are
put into the 10gfile. Otherwise, an error code is returned
and the message is added to the job's 10gfi1e.

CLOSMS/CLOSDR writes a message to $LOG upon closing the dataset whether or
not the user has requested error messages to be written to the lO9file.

On output from CLOSMS/CLOSDR:
ierp=O No errors detected

<0 Error detected. ierr contains one of the
error codes in table 5-7.

CAUTION

If a job step terminates without closing the random
access dataset with CLOSMS/CLOSDR, the dataset
integrity is questionable.

Table 5-8. CLOSMS statistics

Message Description

TOTAL ACCESSES = Number of accesses

READS = Number of reads

WRITES = Number of writes

SR-0014 5-92 I

Table 5-8. CLOSMS statistics (continued)

Message Description

SEQUENTIAL READS = Number of sequential reads

SEQUENTIAL WRITES = Number of sequential writes

REWRITES IN PLACE = Number of rewrites in place

WRITES TO EOI = Number of writes to EOI

TOTAL WORDS MOVED = Number of words moved

MINIMUM RECORD = Minimum record size

MAXIMUM RECORD = Maximum record size

TOTAL ACCESS TIME = Total access time

AVERAGE ACCESS TIME = Average access time

STINDX/STINDR allows an index other than the master index to be used as
the current index by creating a sub-index. STINDX/STINDR reduces the
amount of memory needed by a dataset containing a large number of
records. It also maintains a dataset containing records logically
related to each other. Records in the dataset, rather than records in
the master index area, hold secondary pointers to records in the dataset.

STINDX/STINDR allows more than one index to manipulate the dataset.
Generally, STINDX/STINDR toggles the index between the master index
(maintained by OPENMS/OPENDR and CLOSMS/CLOSDR) and a sub-index (supplied
and maintained by the user).

The user is responsible for maintaining and updating sub-index records
stored in the dataset. Records in the dataset can be accessed and
changed only by the current index.

After a STINDX/STINDR call, subsequent calls to READMS/READDR and
WRITMS/WRITDR use and alter the current index array specified in the
STINDX/STINDR call. The user saves the sub-index by calling
STINDX/STINDR with the master index array, then writes the sub-index
array to the dataset using WRITMS/WRITDR. Retrieving the sub-index is
performed by calling READMS/READDR on the record containing the sub-index
information. STINDX/STINDR thus allows logically infinite index trees
into the dataset and reduces the amount of memory needed for a random
access dataset containing many records.

SR-OOl4 5-93 I

CAUTION

When generating a new sub-index (for example, building
a database), the array or memory area used for the
sub-index must be set to O. If the sub-index storage
is not set to 0, unpredictable results occur.

Call from FORTRAN:

CALL STINDX(dn,index,length,it[,iepr})
CALL STINDR(dn,index,tength,it[,iepp})

dn

index

length

it

SR-0014

Type integer variable, expression, or constant. The name of
the dataset corresponding to COS conventions as a Hollerith
constant or the unit number of the file (that is, unit=7
corresponds to dataset FT07).

Type integer array. The user-supplied array used for the
sub-index or new current index. If index is a sub-index,
it must be a storage area that does not overlap the area
used in OPENMS/OPENDR to store the master index.

Type integer variable, expression, or constant. The length
of the index array. The length of index depends upon the
number of records on or to be written on the dataset using
the master index and the type of master index. If it=l,
length must be at least twice the number of records on or
to be written to the dataset using index. If it=O,
Length must be at least the number of records on or to be
written to the dataset using index.

Type integer variable, expression, or constant. A flag to
indicate the type of index. When it~O, the records are
referenced with a number between I and length. When
it=l, the records are referenced with an alphanumeric name
of eight or fewer characters. For a named index,
odd-numbered elements of the index array contain the record
name, and even-numbered elements of the index array contain
the pointers to the location of the record within the
dataset. For a numbered index, a given index array element
contains the pointers to the location of the corresponding
record within the dataset.

The index type defined by STINDX/STINDR must be the same as
that used by OPENMS/OPENDR.

5-94 I

Type integer variable. Error control and code. If iepp
is supplied on the call to STINDX/STINDR, iepp returns any
error codes to the user. If ie~>o, no error messages are
put into the logfile. Otherwise, an error code is returned
and the message is added to the job's logfile.

On output from STINDX/STINDR:
ierPCO No errors detected

<0 Error detected. iepp contains one of the
error codes in table 5-7.

FINDMS asynchronously reads the desired record into the data buffers used
by the random access dataset routines for the specified dataset. The
next READMS or WRITMS call waits for the read to complete and transfers
data appropriately.

Call from FORTRAN:

CALL FINDMS(dn,n,irec[,iepp)

n

ierp

SR-0014

Type integer variable, expression, or constant. The name
of the dataset as a Hollerith constant or the unit number
of the dataset (that is, dn=7 corresponds to dataset
FT07).

Type integer variable, expression, or constant. The
number of words to be read as in READMS or WRITMS.

Type integer variable, expression, or constant. The
record name or number as in READMS or WRITMS to be read
into the data buffers.

Type integer variable. Error control and code. If
iepr is supplied on the call to FINDMS, ierp returns
any error codes to the user. If iepp>o, no error
messages are put into the logfile. Otherwise, an error
code is returned and the message is added to the job's
logfile.

On output from FINDMS:
ierr=O No errors detected

<0 Error detected. ie~ contains one of the
error codes in table 5-7.

5-95 I

ASYNCMSjASYNCDR sets the I/O mode for the random access routines to be
asynchronous. Therefore, input/output operations can be initiated and
subsequent execution can proceed simultaneously with the actual data
transfer. With READMS, asynchronous reads should be done with the FINDMS
routine.

Call from FORTRAN:

Call ASYNCMS (dn [, iez>r])
call ASYNCDR (dn [, ierr])

dn Type integer variable, expression, or constant. The name
of the dataset as a Hollerith constant or the unit number
of the dataset (for example, dn=7 corresponds to dataset
FT07).

Type integer variable. Error control and code. If ierr
is supplied on the call to ASYNCMS/ASYNCDR, ierr returns
any error codes to the user. If ierr>O, no error
messages are put into the 109fi1e. Otherwise, an error
code is returned and the message is added to the job's
logfile.

On output from ASYNCMS/ASYNCDR:
ierr=O No errors detected

<0 Error detected. ierr contains one of the
error codes in table 5-7.

SYNCMS/SYNCDR sets the I/O mode for the random access routines to be
synchronous. All input/output operations wait for completion.

Call from FORTRAN:

CALL SYNCMS (dn [, ierr])
CALL SYNCDR (dn [, ierr])

dn

SR-0014

Type integer variable, expression, or constant. The name
of the dataset as a Hollerith constant or the unit number
of the dataset (for example, dn=7 corresponds to dataset
FTO?).

5-96 I

isrp Type integer variable. Error control and code. If isl'P
is supplied on the call to SYNCMS/SYNCDR, isrp returns
any error codes to the user. If is~>o, no error
messages are put into the logfile. Otherwise, an error
code is returned and the message is added to the job's
logfile.

On output from SYNCMS/SYNCDR:
isrr=O No errors detected

<0 Error detected. iel'P contains one of the
error codes in table 5-7.

CHECKMS/CHECKDR checks the status of an asynchronous random access input
or output operation. A status flag is returned to the user, indicating
whether the specified dataset is active.

Call from FORTRAN:

CALL CHECKMS(dn,istat[,ierl'])
CALL CHECKDR (dn, istat [, iel'r])

dn

istat

ier?'

Type integer variable, expression, or constant. The name
of the dataset as a Hollerith constant or the unit number
of the dataset. (For example, dn=7 corresponds to
dataset FT07.)

Type integer variable. Dataset I/O Activity flag_
istat=o No I/O activity on the specified dataset.
istat=l I/O activity on the specified dataset

Type integer variable. Error control and code. If ierr
is supplied on the call to CHECKMS/CHECKDR, ierr returns
any error codes to the user. If iep:ro>o, no error
messages are put into the loqfile. Otherwise, an error
code is returned and the message is added to the job's
logfile.

On output from CHECKMS/CHECKDR:
iepF=O No error detected

<0 Error detected. iSrT contains on of the
error codes in table 5-7.

SR-0014 5-97 I

WAITMS/WAITDR waits for the completion of an active asynchronous input or
output operation. A status flag is returned to the user, indicating
whether the I/O on the specified dataset was completed without error.

Call from FORTRAN:

CALL WAITMS(dn,istat[,ierr)
CALL WAITDR(dn,istat[,ierr])

dn

istat

Type integer variable, expression, or constant. The name
of the dataset as a Hollerith constant or the unit number
of the dataset. (For example, dn=7 corresponds to
dataset FT07.)

Type integer variable. Dataset error flag.
istat=o No error occurred during the asynchronous

I/O operation.
istat=l Error occurred during the asynchronous I/O

operation.

Type integer variable. Error control and code. If ierr
is supplied on the call to WAITMS/WAITDR, ierr returns
any error codes to the user. If iep,p>O, no error
messages are put into the logfile. Otherwise, an error
code is returned and the message is added to the job's
logfile.

On output from WAITMS/WAITDR:
iePr=O No errors detected

<0 Error detected. ierr contains one of the
error codes in table 5-7.

The following examples show some of the features and uses of random
access dataset routines.

SR-OOl4 5-98 I

Example 1:

In the program SORT, a sequence of records is read in and then printed
out as a sorted sequence of records.

1 PROGRAM SORT
2 INTEGER IARRAY (512)
3 INTEGER INDEX (512), KEYS (100)
4 CALL OPENMS ('SORT',INDEX,255,1)
5 N=50
C READ IN RANDOM ACCESS RECORDS FROM UNIT "SORT"

6 DO 21 I=l,N
7 REAO(S,lOOO) (IARRAY(J),J=1,512)
a NAME=IARRAY(l)
9 KEYS (I) =IARRAY(l)

10 CALL WRITMS ('SORT',IARRAY,S12,NAME,0)
11 21 CONTINUE

C SORT KEYS ALPHABETICALLY IN ASCENDING ORDER USING EXCHANGE SORT
12 DO 23 I=l,N-l
13 MIN=I
14 J=I+l
15 DO 22 K=J,N
16 IF (KEY(K).LT.KEYS(MIN» MIN=K
17 22 CONTINUE
18 IB=KEYS(I)
19 KEYS (I) =KEYS (MIN)
20 KEYS (MIN)=IB
21 23 CONTINUE

C WRITE OUT RANDOM ACCESS RECORDS IN ASCENDING
C ALPHABETICAL ORDER

22 DO 24 I=l,N
23 NAME=KEYS(I)
24 CALL READMS ('SORT' ,IARRAY,S12,NAME)
25 WRITE (6,5120) (IARRAY(J),J=1,S12)
26 24 CONTINUE
27 1000 FORMAT (n •••••• ")

28 5120 FORMAT (lX," •••••• ")
29 CALL CLOSMS ('SORT')
30 STOP
31 END

In this example, the random access dataset is initialized as shown in
line 4. Lines 6 through 11 show that from unit 5 a record is read into
array IARRAY and then written as a record to the random access dataset
SORT. The first word of each record is assumed to contain an a-character
name to be used as the name of the record.

Lines 12 through 21 show that the names of the records are sorted in the
array KEYS. Lines 22 through 26 show that the records are read in and
then printed out in alphabetical order.

SR-0014 5-99 I

Example 2:

The programs INITIAL and UPDATE show how the random access dataset might
be updated without the usual search and positioning of a sequential
access dataset.

Program INITIAL:

1 PROGRAM INITIAL
2 INTEGER IARRAY(512)
3 INTEGER INDEX (512)

C
C OPEN RANDOM ACCESS DATASET
C THIS INITIALIZES THE RECORD KEY I' INDEX II
C

4 CALL OPENMS ('MASTER',INDEX,101,1)
C
C READ IN RECORDS FROM UNIT
C WRITE THEM TO THE DATASET
C

00 10 1=1,50

6 AND
"MASTER"

5
6
7
8

READ(6,600) (IARRAY(J),J=1,512)
NAME=IARRAY (1)
CALL WRITMS ('MASTER' ,IARRAY,512,NAME,O,0)

9 10 CONTINUE
C
C CLOSE II MASTER ,r AND SA VB RECORDS FOR UPDATING
C

10 CALL CLOSMS (' MASTER I)

11 600 FORMAT (IX,· ••••• ')
12 STOP
13 END

Program UPDATE:

1 PROGRAM UPDATE
2 INTEGER INEWRCD(512)
3 INTEGER INDX (512)

C
C OPEN RANDOM ACCESS DATASET CREATED IN THE
C PREVIOUS PROGRAM "INITIAL II

C
C INDX WILL BE WRITTEN OVER THE OLD RECORD KEY
C

4 CALL OPENMS ('MASTER' ,INDX,101,1)
C
C READ IN NUMBER OF RECORDS TO BE UPDATED
C

5 READ (6,610) N

SR-OOI4 5-100 I

C
C READ IN NEW RECORDS FROM UNIT 6 AND
C WRITE THEM IN PLACE OF THE OLD RECORD THAT HAS
C THAT NAME
C

6 DO 10 I=l,N
7 READ (6, 600) (INEWRCD(J),J=1,5l2)
8 NAME=INEWRCD(l)
9 CALL WRITMS ('MASTER', lNEWRCD,5l2,NAME,1,0)

10 10 CONTINUE
C
C CLOSE "MASTER" AND SAVE NEWLY UPDATED RECORDS
C FOR FURTHER UPDATING
C

11 CALL CLOSMS (·MASTER")
12 600 FORMAT (IX,· •••••• ")
13 610 FORMAT (lX,· •••••• ")
14 STOP
15 END

In this example, program INITIAL creates a random access dataset on unit
MASTER; then program UPDATE replaces particular records of this dataset
without changing the remainder of the records.

Line 10 shows that the call to CLOSMS at the end of INITIAL caused the
contents of INDEX to be written to the random access dataset.

Line 4 shows that the call to OPENMS at the beginning of UPDATE has
caused the record key of the random access dataset to be written to
INDX. The random access dataset and INDX are the same now as the random
access dataset and INDEX at the end of INITIAL.

Lines 6 through 10 show that certain records are replaced.

Example 3:

The program SNDYMS is an example of the use of the secondary index
capability, using STINDX. In this example, dummy information is written
to the random access dataset.

1 PROGRAM SNDYMS
2 IMPLICIT INTEGER (A-Y)
3 DIMENSION PINDEX(20),SINDEX(30),ZBUFFR(50)
4 DATA PLEN,SLEN,RLEN /20,30,50/
C OPEN THE DATASE'l'.

5 CALL OPENMS (l,PINDEX,PLEN,O,ERR)

SR-0014 5-101 I

6 IF (ERR.NE.O) THEN
7 PRINT*,' Error on OPENMS, err=',ERR
8 STOP 1
9 ENDIF
C LOOP OVER THE 20 PRIMARY INDICES. EACH TIME
C A SECONDARY INDEX IS FULL, WRITE THE
C SECONDARY INDEX ARRAY TO THE DATASET.

10 DO 40 K~I,PLEN
C ZERO OUT THE SECONDARY INDEX ARRAY.

11 DO 10 I=I,SLEN
12 10 SINDEX(I)=O

C CALL STINDX TO CHANGE INDEX TO SINDEX.
13 CALL STINDX (I,SINDEX,SLEN,O,ERR)
14 IF (ERR.NE.O) THEN
15 PRINT*,' Error on STINDX, err=',ERR
16 STOP 2
17 ENDIF

C WRITE SLEN RECORDS.
18 DO 30 J~1,SLEN

C GENERATE A RECORD LENGTH BETWEEN 1 AND RLEN.
19 TRLEN=MAXO(IFIX(RANF(O)*FLOAT(RLEN»,1)

C FILL THE "DATA" ARRAY WITH RANDOM FLOATING POINT NUMBERS.
20 DO 20 I=I,TRLEN
21 20 ZBUFFR(I)=(J+SIN(FLOAT(I»)**(l.+RANF(O»
22 CALL WRITMS {1,ZBUFFR,TRLEN,J,-1,DUMMY,ERR)
23 IF (ERR.NE.O) THEN
24 PRINT*,' Error on WRITMS, err=',ERR
25 STOP 3
26 ENDIF
27 30 CONTINUE

C "TOGGLE" THE INDEX BACK TO THE MASTER AND
C WRITE THE SECONDARY INDEX TO THE DATASET.

28 CALL STINDX (I,PINDEX,PLEN,O)
C NOTE THE ABOVE STINDX CALL DOES NOT USE THE
C OPTIONAL ERROR PARAMETER, AND WILL ABORT
C IF STINDX DETECTS AN ERROR.

29 CALL WRITMS (l,SINDEX,SLEN,K,-I,DUMMY,ERR)
30 IF (ERR.NE.O) THEN
31 PRINT*,' Error on STINDX, err=',ERR
32 STOP 4
33 ENDIF
34 40 CONTINUE

C

35
36

CLOSE THE DATASET.
CALL CLOSMS (l,ERR)
IF (ERR.NE.O) THEN

37
38

PRINT*,' Error on CLOSMS, err=',ERR
STOP 5

39
40
41

SR-0014

ENDIF
STOP 'Normal'
END

5-102 I

WORD-ADDRESSABLE, RANDOM ACCESS DATASET I/O ROUTINES

A word-addressable, random access dataset consists of an adjustable
number of contiguous words. Any word or contiguous sequence of words is
accessible from a word-addressable, random access dataset using the
associated word-addressable, random access I/O routines. These datasets
and their I/O routines are similar to the record-addressable, random
access datasets and their I/O routines. The FORTRAN-callable
word-addressable, random access I/O routines are: WOPEN, WCLOSE, PUTWA,
APUTWA, GETWA and SEEK. WOPEN opens a dataset and specifies it as a
word-addressable, random access dataset that can be accessed or changed
with the word-addressable I/O routines. The WOPEN call is optional. If
a user call to GETWA or PUTWA is executed first, the dataset is opened
for the user with the default number of blocks (16) and istats turned
on.

Call from FORTRAN:

CALL WOPEN(dn,btoaks,istats[,ierr])

dn

btoaks

istats

ierr

SR-OOI4

Type integer variable, expression, or constant. The name of
the dataset as a Hollerith constant or the unit number of
the dataset (for example, 7 corresponds to FT07) •

Type integer variable, expression, or constant. The maximum
number of S12-word blocks that the word-addressable package
can use for a buffer.

Type integer variable, expression, or constant. If is tats
is nonzero, then statistics about the changes and accesses
to the dataset dn are collected. (See table 5-9 for
information about the statistics that are collected.) These
statistics are written to dataset $STATS and can be written
to $OUT by using the following control statements or their
equivalent after the dataset has been closed by WCLOSE.

REWIND,DN=$STATS.
COPYD,I-$STATS,O=$OUT.

Type integer variable. Error control and code. If ierl"'
is supplied on the call to WOPEN, iel"'r returns any error
codes to the user. If ierr is not supplied, an error
aborts the job.

On output from WOPEN:
ierp=O No errors detected

<0 Error detected. iepr contains one of the
error codes in table 5-10.

5-103 I

Table 5-9. WOPEN statistics

Message Description

BUFFERS USED ==

TOTAL ACCESSES =

GETS =

PUTS ==

FINDS :::::

HITS :

MISSES ::::

PARTIAL HITS =

DISK READS =

DISK WRITES =

BUFFER FLUSHES =

WORDS READ =

WORDS WRITTEN :::::

TOTAL WORDS:

TOTAL ACCESS TIME =

A VER ACCESS TIME :::::

EOD BLOCK NUMBER =

DISK WORDS READ =

DISK WOS WRITTEN =

SR-00l4

Number of Sl2-word buffers used by this dataset

Number of accesses. This is the sum of the GETWA
and PUTWA calls.

Number of times the user calls GETWA

Number of times the user calls PUTWA

Number of times the user calls SEEK

Number of times word addresses desired were
resident in memory

Number of times no word addresses desired were
resident in memory

Number of times that some but not all of the word
addresses desired were in memory

Number of physical disk reads done

Number of times a physical disk was written to

Number of times buffers were flushed

Number of words moved from buffers to user

Number of words moved from user to buffers

TOTAL WORDS. Sum of WORDS READ and WORDS WRITTEN

Real time spent in disk transfers

TOTAL ACCESS TTIME divided by the sum of DISK
READS and DISK WRITES

Number of the last block of the dataset

Count of number of words moved from disk to
buffers

Count of number of words moved from buffers to
disk

5-104 I

I

I

Table 5-9. WOPEN statistics (continued)

Message Description

TOTAL DISK XFERS = Sum of DISK WORDS READ and DISK WDS WRITTEN

BUFFER BONUS % = TOTAL WORDS divided by value TOTAL DISK XFERS
multiplied by 100

PUTWA writes a number of words from memory to a word-addressable, random
access dataset.

APUTWA asynchronously writes a number of words from memory to a
word-addressable, random-access dataset.

Call from FORTRAN:

CALL PUTWA(dn,soupoe,addp,oount[,iepp])
CALL APUTWA(dn,soupoe,addr,oount[,iepp])

dn

souroe

addr

oount

ierr

SR-0014

Type integer variable, expression, or constant. The name
of the dataset as a Hollerith constant or the unit number
of the dataset (for example, 7 corresponds to FT07).

Variable or array of any type. The location of the first
word in the userls program to be written to the dataset.

Type integer variable, expression, or constant. The word
location of the dataset that is to receive the first word
from the userls program. addFcl indicates beginning of
file.

Type integer variable, expression, or constant. The number
of words from 80UPoe to be written.

Type integer variable. Error control and code. If ierr
is supplied on the call to PUTWA, ierr returns any error
codes to the user. If ierr is not supplied, an error
causes the job to abort.

On output
ierr=O

<0

from PUTWA/APUTWA:
No errors detected
Error detected. ierp contains
error codes in table 5-10.

5-105

one of the

I

I

I

GETWA synchronously reads a number of words from the word-addressable,
random access dataset into the user's memory. The SEEK routine performs
asynchronous word-addressable input.

Call from FORTRAN:

CALL GETWA(dn,result,addr,count[,ierr])

dn Type integer variable, expression, or constant. The name
of the dataset as a Hollerith constant or the unit number
of the dataset (for example, 7 corresponds to FT07).

re8uLt variable or array of any type. The location in the
user's program where the first word is placed.

addr

count

Code
Number

-1

SR-0014

Type integer variable, expression, or constant. The word
location of the dataset from which the first word is
transferred.

Type integer variable, expression, or constant. The
number of words from result written into the user's
memory from the dataset.

Type integer variable. Error control and code. If
ie!'r is supplied on the call to GETWA, iel'1' returns
any error codes to the user. If ierr is not supplied,
an error causes the job to abort.

On output from GETWA:
ierr=O No errors detected

<0 Error detected. ie1'1' contains one of the
error codes in table 5-10.

Table 5-10. Error codes for word-addressable, random
access dataset I/O routines

Routines
Affected Description

WOPEN Illegal unit number
APUTWA
PU'lWA
GETWA
WCLOSE
SEEK

5-106 I

Code
Number

-2

-3

-4

-5

-6

-7

SR-0014

Table 5-10. Error codes for word-addressable, random
access dataset I/O routines (continued)

Routines
Affected Description

WOPEN Number of datasets has exceeded memory or
APUTWA size availability.
PUTWA
GETWA
SEEK

GETWA User attempt to read past end of data
SEEK

APUTWA User-supplied word address less than or
PUTWA equal to 0
GETWA
SEEK

APUTWA User-requested word count greater than
maximum

PUTWA
GETWA
SEEK

WOPEN Illegal dataset name
APUTWA
PUTWA
GETWA
WCLOSE
SEEK

APUTWA User word count less than or equal to 0
PUTWA
GETWA
SEEK

5-107 I

WCLOSE finalizes the additions and changes to the word-addressable
dataset and closes the dataset.

Call from FORTRAN:

CALL WCLOSE(dn[,iepp)

dn Type integer variable, expression, or constant. The name
of the dataset as a Hollerith constant or the unit number
of the dataset (for example, 7 corresponds to FT07).

Type integer variable, expression, or constant. Error
control and code. If iepp is supplied on the call to
WCLOSE, iepp returns any error codes to the user. If
ierr is not supplied, an error aborts the job.

On output from WCLOSE:
ierr=O No errors detected

<0 Error detected. ierr contains one of the
error codes in table 5-10.

SEEK asynchronously reads data into specified dataset buffers. The SEEK
and GETWA calls are used together. The SEEK call reads the data
asynchronously; the GETWA call waits for I/O to complete and then
transfers the data. The SEEK call moves the last write operation pages
from memory to disk, loading the user-requested word addresses to the
front of the I/O buffers. The user can load as much data as fits into
the dataset buffers. Subsequent GETWA and PUTWA calls that reference
word addresses in the same range do not cause any disk I/O.

Call from FORTRAN:

CALL SEEK(dn,addr,count[,ierr)

addr

count

SR-OO!4

Type integer variable, expression, or constant. The name of
the dataset as a Hollerith constant or the unit number of
the dataset (for example, 7 corresponds to FT07).

Type integer variable, expression, or constant. The word
address of the next read.

Type integer variable, expression, or constant. The number
of words of the next read.

5-108 I

Example:

Type integer variable, expression, or constant. Error
control and code. Error control and code. If ierr is
supplied on the call to SEEK, ierr returns any error codes
to the user. If ierr is not supplied, an error aborts the
job.

On output from SEEK:
ierr=O No errors detected

<0 Error detected. ierr contains one of the
error codes in table 5-10.

Assume a user wants to use a routine that reads word addresses 1,000,000
I to 1,051,200. A dataset could be opened with 101 blocks of buffer space,

and CALL SEEK(dn,1000000,5l200,ierr) can be used before calling the
routine. Subsequent GETWA or PUTWA calls with word addresses in the
range of 1,000,000 to 1,051,200 do not trigger any disk I/O.

WORD-ADDRESSABLE I/O AND DATASET CONTROL ROUTINES

Word-addressable and I/O dataset control routines are normally called by
FORTRAN I/O routines and communicate with the system through Exchange
Processor requests.

OPENWA opens a word-addressable dataset.

Call from FORTRAN:

CALL OPENWA(dn,index,ieoi,iaddr,btoeks,idsp)

dn

index

ieoi

iaddr

btoeks

idsp

SR-0014

Dataset name or unit number

On exit, contains relative index into the Dataset
Parameter Table (DSP) area where this dataset name goes

On exit, contains the number of disk blocks

On exit, contains the address of the buffer assigned to
this dataset

Number of blocks of memory to request from the system

Address of DSP assigned

5-109 I

NOTE

Subsequent OPEN or CLOSE statements, field length
changes, etc., can cause the DSP address to change.

CLOSEWA closes a word-addressable dataset.

Call from FORTRAN:

CALL CLOSEWA(index)

index Offset in Dataset Parameter Table (DSP) area

READWA reads words from a word-addressable dataset.

Call from FORTRAN:

CALL READWA(index,buffer,address,cnt,rcl)

index Offset in Dataset Parameter Table (DSP) area

buffer Buffer to receive data

address Word address on disk to read

cnt Number of words to read

Recall flag. If 0, waits for completion.

WRITEWA writes words from a word-addressable dataset.

Call from FORTRAN:

CALL WRlTEWA(index,buffer,address,cnt,pcl)

index Offset into Dataset Parameter Table (DSP) area

buffer Buffer to receive data

SR-0014 5-110 I

addre8s

ant

pa~

Word address on disk to write

Number of words to write

Recall flag- If 0, waits for completion.

WDSETB sets buffer address to current value.

Call from FORTRAN:

CALL WDSETB(dn,index,iaddp)

dn

index

iaddp

Dataset name or unit number

Offset into Dataset Parameter Table (DSP) area

Value to get buffer address

WDSET sets dataset names for word-addressable datasets.

Call from FORTRAN:

CALL WDSET(dn,idn)

dn

idn

SR-0014

Dataset name or unit number

On exit, returns dataset name or 0 if error

5-111 I

DATASET MANAGEMENT
SUBPROGRAMS

INTRODUCTION

Dataset management subprograms provide the user with the means of
managing permanent datasets, staging datasets, creating datasets,
changing dataset attributes, and releasing datasets. These routines are
grouped into control statement type, dataset search type, and I/O type.

CONTROL STATEMENT TYPE SUBPROGRAMS

The control statement type subprogram resembles job control language
(JCL) control statements in name and purpose. However, a subprogram can
be called from within a FORTRAN or CAL program while JCL control
statements cannot. See the CRAY-QS Version I Reference Manual,
publication SR-OOll, for a description of the parameters.

Following is an example of a FORTRAN call to a control statement type
subprogram.

EXAMPL='EXAMPL'L
IDC='PR'L
CALL ASSIGN(iptc,'DN'L,EXAMPL,'U'L,'MR'L,'DC'L,IDC)

iptc is an integer variable that contains a status code upon return.
The status code is 0 if the call was successful.

This type of subprogram requires call-by-address subroutine linkage with
the following calling sequence.

CALL SUBROUTINE NAME(stat,key)

stat Returned status code

key Keyword/value combinations in one of the following formats:

SR-OOI4 6-1 I

6

'ke~ord'L,'value'L or 'keyword'L

NOTE

See the CRAY-oS Version 1 Reference Manual, publication
SR-OOll for control statements and their keywords.

PERMANENT DATASET MANAGEMENT (PDM) ROUTINES

Permanent dataset management routines access the COS Permanent
Manager and return the status of the operation in parameter 1.
is equal to 0 if no error condition exists, and not equal to a
error condition does exist.

ACCESS associates a permanent dataset with the job.

ADJUST expands or contracts a permanent dataset.

Dataset
The value

if an

DELETE removes a saved dataset. The dataset remains available for the
life of the job.

MODIFY changes permanent dataset characteristics.

SAVE makes a dataset permanent and enters the dataset's identification
and location into the Dataset Catalog.

PERMIT specifies user access mode to a user pern~nent dataset by other
users.

DATASET STAGING ROUTINES

Dataset staging routines stage files to or from a front-end processor or
to the Cray input queue. The job aborts if an error occurs.

SR-0014 6-2 I

I

I

ACQUIRE obtains a front-end resident dataset, stages it to the Cray
mainframe, and makes it permanent and accessible to the job making the
request.

DISPOSE directs a dataset to the specified front-end processor.

FETCH brings a front-end resident dataset to the Cray mainframe and makes
the dataset local.

SUBMIT places a job dataset into the Cray input queue.

DEFINITION AND CONTROL ROUTINES

Definition and control routines allow changing of dataset attributes and
creation and release of datasets. They return the status of the
operation in parameter 1. The value of parameter 1 is 0 if no error
condition exists and is not equal to 0 if an error condition exists.

ASSIGN opens dataset for reading and writing and assigns characteristics
to it.

RELEASE closes a dataset, releases I/O buffer space, and renders it
unavailable to the job.

SDACCESS allows a program to access datasets in the System Ditectory.
This function has no control statement.

Call from FORTRAN:

CALL SDACCESS(istat,dn)

istat An integer variable to receive the completion status (0 or
1) •

dn

SR-0014

If 0, the dataset is a system dataset and has been accessed.
If 1, the dataset is not a system dataset and has not been
accessed.

Name of the system dataset to be accessed

6-3 I

Example:

This example is in a general format.

IF NOT (IFDNT(NAME» THEN
BEGIN
CALL SDACCESS (STATUS, NAME);
IF STATUS < > 0 THEN

BEGIN
OUTPUT (. ***DATASET NOT AVAILABLE I;
BLANKFILL (NAME): AS);
CALL ABORT;
END

END

DATASET SEARCH TYPE SUBPROGRAMS

$SDSP searches Dataset Parameter Table (DSP) for a dataset name and
returns DSP address.

Call from CAL:

Entry:
(51) Dataset name or alias (ASCII, left-justified, zero-filled)

Exit:
(51)
(AO)
(AI)

Dataset name or alias
Return code, positive if found; negative if not found.
Dataset Parameter Table (DSP) address

$SLFT searches Logical File Table (LFT) for dataset name and returns LFT
address.

Call from CAL:

SR-0014 6-4 I

Entry:
(Sl)

Exit:
(Sl)
(AO)
(A2)

Dataset name (ASCII, left-justified, zero-filled)

Dataset name
Return code, positive if found; negative if not found.
LFT address

ADDLFT and $ALF add a name to the Logical File Table (LFT).

Call from FORTRAN:

CALL ADDLFT (dn ,d8p)

dn Name to add to Logical File Table (LFT)

dsp Dataset Parameter Table (DSP) address for name

Call from CAL:

Entry:
(Sl)
(Al)

Exit:

Name to add to Logical File Table (LFT)
Dataset Parameter Table (DSP) address for name

No arguments returned

$DSNDSP searches Logical File Table in the userls I/O area for dataset
name and returns Dataset Parameter Table (DSP) address.

Call from CAL:

CALLV $DSNDSP

Entry:
(Sl)

Exit:
(Sl)
(AI)

Dataset name (ASCII, left-justified, zero- or blank-filled)

Dataset name
Dataset Parameter Table (DSP) address (0 if not found)

SR-OOI4 6-5 I

I GETDSP and 'GTDSPI search for a Dataset Parameter Table (DSP) address.
If none is found, a DSP is created.

Call from CAL:

Entry:
(AI)

Exit:
Address of dataset name or unit number

(AI) Address of Dataset Parameter Table (DSP)
(Sl) Negative DSP offset relative to base of DSPs if system area

nsp: DSP address 1f user area DSP.
(52) Dataset name (ASCII, left-justified, blank-filled)

Call from FORTRAN:

CALL GETDSP(unit,dsp,ndsp,dn)

unit Dataset name or unit number

dsp Dataset Parameter Table (DSP)

ndsp Negative DSP offset relative to base address of DSPs

dn Dataset name (ASCII, left-justified, blank-filled)

IFDNT determines 1f a dataset has been accessed.

Call from FORTRAN:

stat-IFDNT (dn)

stat .TRUE. if dataset was accessed or openedJ otherwise, • FALSE.

dn Dataset name (ASCII, left-justified, zero-filled)

NOTE

IFDNT must be declared LOGICAL in the calling program.

SR-OOI4 6-6 I

NUMBLKS returns current size of dataset in Sl2-word blocks.

Call from FORTRAN:

va Z.:mNUMSLKS (dn)

val Number of blocks returned as integer value. If number of
blocks cannot be determined, a negative function value is
returned.

dn Dataset name or unit number

DATASET INPUT/OUTPUT SUBPROGRAMS

Before the 1.09 release, these subprograms were used for input/output
control. Although they are still usable, use of the FORTRAN unblocked
I/O subprograms (see section 5) is recommended.

OPEN opens a random, unblocked dataset.

Call from FORTRAN:

CALL OPEN(dst,dn,ds,dstat)

dst

dn

ds

dstat

Dataset Parameter Table (DSP), Open Dataset Name Table
(OON), and Dataset Definition List (DOL) array (dataset
tables normally residing in the high-address end of the
user field)

Dataset name or unit number

Dataset size

Dataset status

On exit, dataset size and status returned to locations specified in
entry. See RDIN note below for description of status.

SR-0014 6-7 I

CLOSE terminates processing of a random, unblocked dataset.

Call from FORTRAN:

CALL CLOSE Cdst)

dst Dataset Parameter Table (DSP), Open Dataset Name Table
(ODN), and Dataset Definition List (DDL) array (dataset
tables normally residing in the high-address end of the
user field)

On exit, no arguments returned

RDIN reads one buffer of data from a random, unblocked dataset.

Call from FORTRAN:

CALL RDIN(dst,abuf,sbuf,bnum,stat}

dst

abuf

sbu!

bnwn

stat

Dataset Parameter Table (DSP), Open Dataset Name Table
(ODN), and Dataset Definition List (DOL) array (dataset
tables normally residing in the high-address end of the
user field)

Buffer area

Buffer size

Block number

Return status is stored

On exit, dataset status returned in locations specified in entry

SR-0014

NOTE

Status consists of Dataset Parameter Table (DSP) error
flags, right-justified. The return status is a if no
error occurred.

6-8 I

TABLES

PDD is the table of permanent dataset definitions.

PDD is created and managed by some of the dataset management subprograms,
so the user generally has no need to be concerned with it. For a
detailed description of the table, see the CRAY-oS Version 1 Reference
Manual, publication SR-OOll.

SR-0014 6-9 I

SPECIAL PURPOSE SUBPROGRAMS 7

INTRODUCTION

Special purpose subprograms are grouped into the following categories:

• Debug aid routines

• Table management routines

• Stack management routines

• Heap management routines

• Job control routines

• Floating-point interrupt routines

• Bidirectional memory transfer routines

• Time and date routines

• Timestamp routines

• Control statement processing routines

• Job control language symbol routines

• SKOL run-time support routines

• Error processing routines

I • Byte and bit manipulation routines

• Miscellaneous special-purpose routines

DEBUG AID ROUTINES

Debug aid routines consist of

• Flow trace routines

• Traceback routines

SR-OOl4 7-1 I

• Dump routines

• Exchange Package processing routines

• Array bounds checking' routines

FLOW TRACE ROUTINES

Flow trace routines process the CFT flow trace option (ON=F). (See the
FORTRAN (CFT) Reference Manual, eRI publication SR-0009, for details on
flow tracing.) calls to these routines are automatically inserted into
code by the CFT compiler. A CAL call to a flow trace routine must be
preceded by an ENTER macro or its equivalent. Flow trace routines are
called by address.

FLOWENTR processes entry to a subroutine.

call from CAL and FORTRAN:

FLOWEXIT processes RETURN execution.

Call from CAL and FORTRAN:

CALL FLO!iEXIT I

FLOWSTOP processes a STOP statement.

call from CAL and FORTRAN:

GETNAMEQ returns the ASCII, left-justified, space-filled name of the
routine that called FLOWENTR or FLOWEXIT.

SR-0014 7-2 I

Call from FORTRAN:

CALL GETNAMEQ(arg)

Entry:
arg Address of output

Exit:
Caller name stored in address pointed to by arg

GETREGS returns register usage statistics for FLOWENTR.

Call from FORTRAN:

CALL GETREGS(arg)

Entry:
arg

Exit:
Address of output array

Statistics stored in array

SETPLIMQ initiates detailed tracing of every call and return.

Call from FORTRAN:

CALL SETPLIMQ(tines)

tines Number of trace lines printed

ARGPLIMQ initiates listing of argument values for every call and return.
This subprogram can be called only once in the user program.

Call from FORTRAN:

CALL ARGPLIMQ(tist)

list List of argument values for every call and return

SR-OOI4 7-3 I

FLOWLIM sets a limit on the number of subroutine calls that can be
traced. A summary is printed when the limit is reached.

Call from FORTRAN:

CALL FLOWIM(limit)

limit Limit of the number of subroutine calls that can be traced

TRACEBACK ROUTINES

$TRBK and TRBK print a list of all subroutines active in the current
calling sequence from the currently active subprogram. It also
identifies the address of the reference. The user can specify a unit to
receive the list. If no unit is specified, the list is printed to the
user logfile.

Call from FORTRAN:

CALL TRBKf(apg)]

apg Address of dataset name or unit number

TR8KLVL aids the traceback mechanism by returning information for the
current level of the calling sequence.

Call from CAL:

I~ TRBKLVL%

Entry:
(A2)

(A3)
Exit:

(A2)

(A3)

SR-OOl4

Traceback table address of the current level (the Band T
register save area)
Argument list address of the current level's caller

Traceback table address of the current level's caller; 0 if
current level is a main level routine.
Argument list address of the current level's caller: 0 if
current level is a main level routine.

7-4 I

(Sl) Status: <0 if error
~O if no error
>0 if no error and current level is main level

(S2) Name of current level (ASCII, left-justified, blank-filled)
(S3) Parcel address from where call to current level was made
(54) Parcel address of current level's entry point
(S5) Line sequence number corresponding to call address; 0 if

none.
(S6) Number of arguments and registers passed to current level.

Call from FORTRAN:

CALL TRBKLVL(tFbktab,aFglist,status,name,caltadp,entpnt,seqnum,numapg)

tpbktab

azag1..ist

status

name

catZ.adF

entpnt

seqnum

nwnapg

DUMP ROUTINES

Current level's traceback table address. On exit, current
level's caller's traceback table address. Zero if current
level is a main level routine.

Current level's argument list address.
level's caller's argument list address.
level is a main level routine.

<0 if error
=0 if no error

On exit, current
Zero if current

>0 if no error and current level is main level

Current level's name (ASCII, left-justified, blank-filled)

Parcel address from where call to current level was made

Parcel address of current level's entry point

Line sequence number corresponding to call address (a zero
indicates none)

Number of arguments or registers passed to current level

Dump routines produce a memory image and are called by address.

$PDUMP and PDUMP dump memory to $OUT and return control to calling program.

SR-OOl4 7-5 I

Call from FORTRAN:

CALL PDUMP (fuxi, 7,uxi, type)

fwd First word to be dumped

7,~d Last word to be dumped

type Dump type code:
o or 3 Octal dump

1 Floating-point dump
2 Integer dump

'DUMP and DUMP dump memory to $OUT and abort the job.

Call from FORTRAN:

CALL DUMP (fbJd, 7,1Ud, type)

f~ First word to be dumped

7,lJd Las t word to be dumped

type Dump type code:
o or 3 Octal dump

1 Floating-point dump
2 Integer dump

NOTE

• If 4 is added to the dump type code, first word and
last word addresses specified above are then
addresses of addresses (indirect addressing).

• First word/last word/dump type address sets can be
repeated up to 19 times.

DUMPJOB creates an unblocked dataset containing the user job area image
(including register states). This data is suitable for input to the DUMP
or DEBUG prQ9rams.

SR-OOl4 7-6 I

Oall from FORTRAN:

CALL DUMPJOB(dn)

dn FORTRAN unit number or Hollerith unit name. If no
parameter is supplied, $DUMP is used by default.

SNAP copies current register contents to $OUT.

Call from FORTRAN:

CALL SNAP(pegs,eontrol,foPm)

pegs Code indicating registers to be copied:
1 B registets
2 T registers
3 Band T registets
4 V registers
5 B and V registers
6 T and V registers
7 B, T, and V registers

eontroL Control word (not cutrently used)

fopm Code indicating format of dump. Dumps from registers S, T,
and V are controlled by the following type codes:

o Octal
1 Floating-point
2 Decimal
3 Hexadecimal

Dumps from registers A and B are in octal format.

SYMDEBUG and DEADBUG produce a symbolic dump.

Call from FORTRAN:

CALL SYMDEBUG(ehaP)

CALL DEADBUG

Character string (integer)

SR-0014 7-7 I

NOTE

The character string consists of the keyword/parameter
pairs listed with the DEBUG utility in the CRAY-OS
Version 1 Reference Manual, publication SR-OOll. The
string must terminate with a period.

CRAYDUMP prints a memory dump to a specified dataset.

Call from FORTRAN:

CALL CRAYDUMP (!wa, twa, dn)

fwa First word to be dumped

twa Last word to be dumped

dn Name or unit number of the dataset to receive the dump
output

EXCHANGE PACKAGE PROCESSING ROUTINES

Exchange processing switches execution from one program to another. An
Exchange Package is a 16-word block of memory associated with a
particular program. The Exchange Package processing routines include
XPFMT, $FXP, FXP, and B20CT.

XPFMT produces a printable image of an Exchange Package in a
user-supplied buffer. A and S registers appear in the buffer in both
octal and character form: in the character form, the contents of the
register are copied unchanged to the printable buffer. The calling
program is responsible for proper translation of non-printable
characters. Parcel addresses have a lowercase a, b, C r or d suffixed to
the memory address.

The user can specify that the Exchange package be formatted as a CRAY-l
or CRAY X-MP Exchange package, or can allow XPFMT to determine which
format to use based on the values in the Exchange Package. Values within
the Exchange Package determine the Exchange Package format. XPFMT

SR":'0014 7-8 I

assumes the Exchange package was produced by or for a CRAY X-MP computer
if either the data base address or the data limit address is nonzero.
Otherwise, it assumes the Exchange Package was produced by or for a
CRAY-I computer.

Call from FORTRAN:

CALL XPFMT(addpe88,in,out,mode)

in

out

mode

The nominal location of the Exchange Package to be printed
as the starting Exchange Package address. This is not the
address of the 16-word buffer containing the Exchange
package to be formatted.

A l6-word integer array containing the binary
representation of the Exchange Package

An integer array, dimensioned (8,0:23) into which the
character representation of the Exchange Package is
stored. Line 0 is a ruler for debugging and is not usually
printed (see figure 7-1).

The first word of each line is an address and need not
always be printed.

An integer word indicating the mode in which the Exchange
Package is to be printed. 'S'L forces the Exchange Package
to be formatted as a CRAY-l Exchange package; 'X'L forces
the Exchange Package to be formatted as a CRAY X-MP
Exchange Package; 0 means that the subprogram is to use the
Exchange Package value to deduce the machine type.

Figure 7-1 is an example of a printout when the mode
selected is 'X'L.

FXP and $FXP format and write to the output dataset the contents of the
Exchange package, the contents of the vector mask (VM), and the contents
of the BO register. These routines complement the user reprieve
processing code by formatting the supplied Exchange Package to an output
dataset.

Call from CAL:

SR-0014 7-9 I

Entry:
(AI)
(A7)
(82)
(A3)

Exit:
(AI)
(A7)

Address of output Dataset Parameter Area (DSP)
Address of Exchange Package
Vector mask (VM) to be formatted
Contents of BOO to be formatted

Output DSP address
Exchange Package address

Call from FORTRAN:

CALL FXp(dsp,xp,vm,ret)

dsp Output Dataset Parameter Area (DSP) address

xp Excbange Package address

urn Vector mask (VM) to be formatted

pet Contents of BO to be formatted

B20CT places the ASCII representation of the low-order n bits of a full
Cray word into a specified character area.

Call from FORTRAN:

CALL B2OCT(S,j,k,v,n)

8 First word of an array where the ASCII representation is to
be placed

j

k

v

SR-OOI4

Byte offset within array 8 where the first character of
the octal representation is to be placed. A value of I
indicates the destination begins with the first (leftmost)
byte of the first word of 8. j must be greater than O.

Number of characters used in the ASCII representation. k
must be greater than o. k is the size of the total area
to be filled and it is blank-filled if necessary.

Value to be converted. The low-order n bits of word v
are used to form the ASCII representation. v must be
less than or equal to 263_1.

7-10 I

n Number of low-order bits of v to convert to ASCII
character representation (l~n<64). If insufficient
character space is available (3k<n), the character region
is filled with asterisks (*).

The k characters pointed to by j in array 8 are first set to blanks.
The low-order n bits of v are then converted to octal ASCII, using
leading zeros if necessary. The converted value (n/3 characters, rounded
up) is right-justified into the blanked-out destination character region.

I ... + 1. ••• + 2 •••• + 3 •••• + 4.1+ 5 •••• + •••• 6 ••••
00000000 P ooooooooa AD 00000000 aaa MODES FLAGS
00000000 IBA 00000000 Al 00000000 aaa OFF ON OFF ON~
00000000 lLA 00000000 A2 00000000 aaa MM MM PCI PCI
00000000 XA 0000 VL 000 A3 00000000 aaa ICM ICM MCU MCU
00000000 DBA 00000000 A4 oooooooo aaa IFP IFP
00000000 DLA 00000000 AS 00000000 aaa IUM IUM
00000000 A6 00000000 aaa IMM lMM
00000000

00000000 SO
00000000 Sl
00000000 S2
00000000 S3
oooooooo S4
00000000 S5
00000000 S6

7= S7

A 7 00000000 aaa SEl SE I

00000000000000000000000

00000000000000000000000

00000000000000000000000

0000000000000000000000

00000000000000000000

00000000000000000000000

00000000000000000000000

00000000000000000000000

BDM BDM

aaaaaaaa FPS FPS
aaaaaaaa WS WS
aaaaaaaa lOR lOR
aaaaaaaa
aaaaaaaa
aaaaaaaa
aaaaaaaa

aaaa~

PROCESSOR = 0 CLUSTER = 0 PS = 0

ERROR TYPE
CHIP SLCT
READ MODE

= aaaaaaaaaaaaaaaa VU = 0

= 00000o BANK = 00

= aaaaaa SYNDROME = 000

a means alpha
o means octal

C!) Derived from addpe88 parameter

(3) Character representation of A registers

CD Character representation of S registers

FPE FPE
ORE ORE
PRE PRE
ME ME
101 101
EEX EEX
NEX NEX
DL DL
Iep ICP

~ A mode or flag mnemonic appears in the ON or OFF column depending on
the state of the mode or flag bit in the Exchange Package.

Figure 7-1. Exchange package printout

SR-OOl4 7-11 I

ARRAY BOUNDS CHECKING ROUTINES

$STOREF and $LOADF are generated by the compiler to perform run-time
array bound checking. See the FORTRAN (CFT) Reference Manual, CRr
publication SR-0009, for details on array bound checking.

TABLE MANAGEMENT ROUTINES

Table management routines perform the following functions.

FORTRAN

TMINIT

TMATS

TMADW

TMSRC

CAL Function

$INT Initializes managed tables

$ATS Allocates space to a table

$ADW Adds a word to a table

$MSC, $MSCO, Searches a table with or without masking
$SRC

TMPTS $PTS%, $ZTS% Presets memory with any given value (default
is 0)

TMMVE $MVE Moves memory

TMMEM $MEM Requests additional memory

TMAMU $AMV Returns table management operation statistics

The routines in the FORTRAN column are FORTRAN callable and those in the
CAL column are CAL callable. The Job Communication Block (JCB) field
JCHLM defines the beginning address of the table area.

The user must provide two control information tables with corresponding
CAL ENTRY pseudo-ops:

• Table Base Table (BTAB)

• Table Length Table (LTAB)

Their formats follow.

BTAB

SR-0014

ISp·
1.- Normal interspace between tablei and

tablei+lr
Current allocated table length, and
First word address of tablei'

7-12 r

LTAB 40/-, 24/LENi

Current length of tablei

The last entry in each control information table (TEND) must be a dummy
entry. The TEND entry has zeros in the AL and LEN fields. The ISP fi~ld
in the TEND entry contains the minimum field length increment to be made
for table space. If the Table Manager needs to expand the job's field
length, it does so by a minimum of ISP words. ISP is ignored for $MEM
calls.

The number of entries in a control information table must not exceed 64,
TEND included. (The FORTRAN callable versions of these routines use a
default BTAB and LTAB definition from a common area in $SYSLIB.)

TMINIT initializes the table descriptor vector, BTAB, and zeros all
elements of the table length vector, LTAB. The user must preset each
element of BTAB to contain the desired interspace value for the
corresponding table: for instance, Sl in the example below determines the
interspace value for table 1. Interspace values determine how many words
are added to a table when more room is needed for that table or for any
table with a lower number.

TMINIT accepts a single parameter, n, in the prototype statements
below, which determines the number of tables that can exist for the life
of the calling program.

After the call to TMINIT, BTAB should not be changed. The interspace
values have been shifted 48 bits to the left, bits 16 through 39 contain
the current size of each table, and the rightmost 24 bits contain the
absolute address of each table's first word. LTAB is used only to pass
new table lengths from the user to the Table Manager.

INTEGER, BTAB(n), LTAB(n)
DATA BTAB /sl,s2,s3 ••• ,sn/

CALL TMINIT

The FORTRAN programmer can use statements like the following to access
each table. In this example, table i is accessed.

EQUIVALENCE (BTABei), PTRi)
INTEGER PTRi, TABLEi (0:0)
POINTER (PTRi, TABLEi)

TABLEi (subscript) = ...

SR-0014 7-13 1

TM COMMON BLOCK

The common block labeled TM is reserved for use by the Table Manager and
must always contain 64 BTAB words and 64 LTAB words.

COMMON ITMI BTAB(64), LTAB(64)

Blank common can be used in the customary way, but the last entry in it
should be for a I-dimensional array declared to contain just one word.
The name of this array is then used to access the tables, beginning
immediately after the end of blank common.

COMMON II TABLES(l)

The following statement function extracts the rightmost 24 bits from a
BTAB word and changes that value from an absolute address to a relative
address or offset within the table area. Thus the result of BASE{N) is
an index into TABLES(l) pointing to the first word currently allocated to
table N.

BASE(N} = (BTAB(N) • AND. 77777777B) - LOC(TABLES(l»

WRITE (6,101) TABN
101 FORMAT ('0 Dump of table ',I2,/)

OFFSET = 0
102 CONTINUE

DO 103 I = 1, 4
INTABLE = OFFSET .LT. LTAB(TABN)
IF (INTABLE) THEN

OCTAL (I) = TABLES(l + BASE(TABN) + OFFSET)
ALPHA (I) = TABLES (1 + BASE(TABN) + OFFSET)

ELSE
OCTAL (I) = 0
ALPHA(I) =

END IF
OFFSET = OFFSET + 1

103 CONTINUE
WRITE (6,104) OFFSET-4, OCTAL, ALPHA

104 FORMAT (I6,2X,4(022,lX),4A8)

INTABLE = OFFSET • LT. LTAB (TABN)
IF (INTABLE) GO TO 102

WRITE (6,105)
105 FORMAT (/)

RETURN
END

SR-0014 7-14 I

$INT initializes table pointers. upon entry, the user must provide all
table interspace values. The remaining BTAB and LTAB fields are set by
$INT. LTAB array is zeroed. Memory to be used for the managed tables is
zeroed.

Call from CAL:

TMINIT initializes managed tables. Upon entry, the BTAB array contains
the desired table expansion increments. Upon exit, the BTAB array is
initialized, the LTAB array is zeroed, and tbe memory to be used for the
managed tables is zeroed.

$MEM requests memory_

Call from CAL:

Entry:
(Al) Lengtb of memory field requested

Exit:
No ar9uments returned. Memory is extended by requested amount.

TMMEM requests memory. Upon exit, memory is extended by the requested
amount. No value is·returned.

call from FORTRAN:

I CALL TMMEM(meml

mem Length of memory requested

$ATS allocates table space.

Call from CAL:

SR-0014 7-15 I

Table pointer
Increment

Entry;
(AI)
(51)

Exit:
(A2)
(A3)

Pointer to expanded portion of table
Address of expanded portion of table

TMATS allocates table space.

Call from FORTRAN:

index=TMATS(number,incre)

index Index of change

nwnber Table number

incre Table increment

$ADW adds a word to a table.

Call from CAL:

Entry:
(Al) Table pointer
(51) Entry for table

Exit:
(A2) Index of word
(A3) Address of word

TMAOW adds a word to a table.

Call from FORTRAN:

indeX=TMADw(number,entry)

index Index of word

SR-0014 7-16 I

Table number

entl'Y Entry for table

$MSC searches table with mask to locate a specific field within an entry.

call from CAL:

Entry:
(Sl)
(S2)
(Al)
(A2)

Exit:
(AO)
(AJ)

Search word
Field being searched for within entry
Table number
Number of words per table entry

Address of match, if found, 0 if match not found.
Address of match, if found

TMMSC searches table with mask to locate a specific field within an entry.

Call from FORTRAN:

indeX=TMMSC(tabnum,ma8k,8WoFd,~ord)

index Table index of match, if foundJ -1 if not found.

talmwn Table number

mask Field being searched for within entry

8bJOm Search word

~ord Number of words per entry group

$MSCO searches table with mask to locate a specific field within an entry
and an offset.

Call from CAL:

SR-0014 7-17 I

Entry:
(Sl)
(S2)
(AI)
(A2)
(A4)

Exit:
(AD)
(A3)

Search word
Field being searched for within entry
Table number
Number of words per table entry
Word offset within entry to be searched

Address of match, if found; a if match not found.
Address of match, if found

$SRC searches table for a specific value.

Call from CAL:

CALLV $SRC

Entry:
(Sl)
(AI)
(A2)

Search word
Table number
Number of words per table entry

Address of match, if found; a if match not found.
Table index of match, if found
Address of match, if found

Exit:
(AO)

(A2)
(A3)

(A4) Ordinal of entry, or next ordinal if no match. First entry
ordinal is o.

TMSRC searches table with optional mask to locate a specific field within
an entry and an offset.

Call from FORTRAN:

iMdex=TMSRC(tabnum,arg,~ord,offBet,mask)

index Table index of match, if a match is found; -1 if not found.

tabnum Table number to search

arg Search argument or key

Number of words per entry

offset Offset into entry group

mask Field being searched for within entry

SR-D014 7-18 I

TMVSC searches vector table for the search argument.

Call from FORTRAN:

index=TMVSC(tabnum,apg,nwo~)

index Table index match, if found; -1 if not found.

tabnum Table number

arg Search argument

n'Wor>d Number of words per entry group

$AMU returns total allotted table space.

Call from CAL:

Entry:
No arguments

Exit:
required

(A2)
(A3)

Allocated length of tables
Number of table entries

TMAMU reports TMGR statistics.

Call from FORTRAN:

CALL TMAMU (ten,tabnwn,tabmov, tabmar>,nlJord)

ten Allocated length of table

tabnum Number of tables used

tabmov Number of table moves

tabmar> Maximum amount of memory used throughout Table Manager

Number of words moved

SR-OOI4 7-19 I

$PTS% presets table space.

Call from CAL:

Entry;
(AI)

(A2)
(81)

Base address of space
Length to be preset or zeroed
Preset

Exit:
(Va) Preset vector

$ZTS% zeros table space.

Call from CAL:

Base address of space
Entry:

(Al)
(A2)

Exit:
(Va)

Length to be preset or zeroed

Zero vector

TMPTS presets table space.

Call from FORTRAN:

CALL TMPTS(stapt,len,ppeset)

Starting address

ten Length to preset

preset Preset value

$MVE moves memory words to table.

SR-OOI4 7-20 I

I

Call from CAL:

Entry:
(AI)
(A2)
(A3)

Address from where words are to be moved
Address where words are to be moved
Number of words to be moved

TMMVE moves words.

Call from FORTRAN:

CALL TMMVE(fpom,to,count)

Address from where words are to be moved

to Address where words are to be moved

count Number of words to be moved

STACK MANAGEMENT ROUTINES

Stack management routines are called automatically by CFT compiler code
or, if in stack mode, by the CAL EXIT and ENTER macros.

A stack consists of a stack header plus one or more discontiguous
segments. A stack segment includes memory for use as a stack followed by
control words. Segment control words provide an overflow area and
linkage to a discontiguous segment. Each discontiguous portion of the
available space is linked through a control word to the next block of
available space. The control word also contains the size of a given
block.

A stack header control word exists at the base of each stack.

Format:

O· 8 16 24 32 40 48 56 63

~I~ _____________ ~_R_O_W _____________ I ____________ :_:_:_: __________ ~I

SR-OOl4 7-21 I

I

Field word

SHGROW o

SHASEG o

SHHWM 1

SHSIZE 1

Bits

0-31

31-63

0-31

32-63

Description

The number of times the stack has grown

Size of additional increments to the
stack. Zero means overflow is a fatal
error.

The largest size of the stack so far.

Current size of the stack; includes
usable stack space for all stack
segments

Stack segment control words exist at the top of each stack segment.

Format:

Field

o

127

128

129

130

PAD AREA

SSSIZE

SR-OOl4

o 8 16 24 32 40 48 56 63

PAD AREA

SIZE I BASE

/////////////////////////////////1 PSEG

/////////////////////////////////1 TCPT

Bits

0-127 0-63

128 0-31

Description

Area indicating that B/T register
save can always occur before a stack
overflow check is made. In a segment
that has overflowed to a
discontiguous segment, this area
contains the traceback packet used in
returning from the underflow routine.

Size of stack segment. Size includes
the length of the stack header but
does not include the length of stack
segment control words.

7-22 I

Field Word Bits Description

SSBASE 129 31-63 Offset to stack base relative to the
absolute top of stack.

SSPSEG 130 32-63 Offset to previous top of stack. If
PSEG=O, this is an initial stack
segment.

SSTCPT 131 32-63 Pointer to task common address block
($TASKCOM) •

Stack management routines perform the following functions.

Routine

$STKOFEN
$STKCR
$STKUFCK
$STKUFEX
$STKDE%

Function

Manages stack overflow
Creates initial stack segment
Manages stack underflow
Releases a topmost stack segment
Releases all stack segments

$STKOFEN is called if stack overflow is detected during allocation of
contiguous static space onto a stack at subprogram entry. Information
from the JCB, the stack header, and the B register stack pointers
determines how much additional space, if any, to allocate to the stack.

The current stack segment is enlarged if possible. Otherwise, a
discontiguous segment is created. In the latter case, the discontiguous
segment is released from the stack on exit from the routine that caused
the overflow condition.

This routine creates a stack for the root task the first time overflow
occurs. In all cases, it updates the B register stack pointers.

Call from CAL:

CALLV $STKOFEN

No arguments required.

$STKCR creates an initial stack segment and the stack header.

SR-0014 7-23 I

Call from CAL:

CALLV $STKCR

Entry:
{Sl)
(S2)

Exit:
(Al)

Initial size of stack
Size of increments to this stack; zero implies stack
overflow is a fatal error.

Address of first available word
(First word address + length of header)

(A2) Size of stack (does not include the length of control words)

$STKUFCK determines whether an exit sequence has produced stack
underflow. This routine releases the topmost segment if underflow has
occurred.

Call From CAL:

CALLV $STKUFCK

No arguments required.

$STKUFEX releases the topmost stack segment. The call to this routine
occurs on exit from the routines that caused the stack to overflow to a
discontiguous segment.

Call from CAL:

CALLV $STKUFEX

No arguments required.

$STKDE% releases all segments of the indicated stack to the available
space.

Call from CAL:

CALLV $STKDE%

No arguments required.

SR-OOl4 7-24 I

HEAP MANAGER ROUTINES

Heap manager routines provide dynamic storage allocation by managing a
block of memory within a user's job area, the heap. Each job has its own
heap. The functions of the heap manager routines are allocating a block
of memory, returning a block of memory to the heap's list of available
space, and changing the length of a block of memory. Heap manager
routines also move a heap block to a new location if there is no room to
extend it, return part of the heap to the operating system, check the
integrity of the heap, and report information about the heap. See the
CRAY-OS Version 1 Reference Manual, publication SR-OOll, for the location
of the heap and parameters on the LDR control statement that affect the
heap.

The heap manager consists of the following routines.

FORTRAN CAL

HPALLOC ALLOC%

HPDEALLC DEALLC%

HPNEWLEN NEWLEN%

HPCLMOVE CLMOVE%

I HPLEN HPLEN%

HPSHRINR SHRINK¥;

HPCHECK HCBECK%

IHPSTAT HPSTAT%

HPDUMP HPDUMP%

Function

Allocate a block of memory from the heap

Return a block of memory to the heap

Change the length of a heap block

Change the length of a heap block and move
the block if it cannot be extended in place

Return the length of a heap block

Return memory from the heap to the operating
system

Check the integrity of the heap

Return information about the heap

Write information about the heap to a dataset

The heap manager routines keep various statistics on the use of the
heap. These include values used to tune heap parameters specified on the
LDR control statement and information used in debugging.

ALLOCATE ROUTINES

Allocate routines search the linked list of available space for a block
greater than or equal to the size requested.

SR-0014 7-25 I

The length of an allocated block can be greater than the requested length
because blocks smaller than the managed memory epsilon specified on the
LDR control statement are never left on the free space list.

Error conditions checked in allocate routines:

• Length is not an integer greater than zero (-1)

• No more memory is available from the system (-2) (checked if the
request cannot be satisfied from the available blocks on the heap)

Call from CAL:

CALLV ALLOC%

Entry:
(Bl)

(82)

Exit:
(Sl)
(S2)
{S3}

Size (number of words) of requested block
Abort flag: nonzero requests abort on error; zero requests
an error code.

First word address of allocated block
Number of words requested (unchanged)
Error code: zero if no error was detected: otherwise, a
negative integer code for the type of error.

Call from FORTRAN:

CALL HPALLOC (addr,length,errcode,abort)

add:r

Length

elToode

SR-0014

First word address of the allocated block (output)

Number of words of memory requested (input)

Error code: zero if no error was detected; otherwise, a
negative integer code for the type of error (output).

Abort code: nonzero requests abort on error, zero requests
an error code (input)

7-26 I

DEALLOCATE ROUTINES

Deallocate routines return a block to the list of available space.

Error conditions checked in deallocate routines:

• Address outside bounds of the heap (-3)

• Block already free (-4)

• Address not at beginning of block (-5)

• Control word for next block overwritten (-7)

Call from CAL:

I CALLV DEALLC%

Entry:
(51)
(52)

Exit:
(Sl)

First word address of block being deallocated
Nonzero requests abort on error~ zero requests an error
code.

Error code: zero if no error was detected; otherwise, a
negative integer code for the type of error.

Call from FORTRAN:

CALL HPDEALLC (addp,errcode,abopt)

addJ:'

errcode

First word address of the block to deallocate (input)

Error code: zero if no error was detected; otherwise, a
negative integer code for the type of error (output).

abort Abort code: nonzero requests abort on error; zero requests
an error code (input).

SET NEW LENGTH ROUTINES

Set new length routines change the size of an allocated block. If the
new length is less than the allocated length, the portion starting at
ADDR+LENGTH is returned to the heap. If the new length is greater than
the allocated length, the block is extended if it is followed by a free
block. A status is returned, telling whether the change was successful.

SR-0014 7-27 I

The new length of the block can be greater than the requested length
because blocks smaller than the managed memory epaiton specified on the
LOR control statement are never left on the free space list.

Error conditions checked in set new length routines:

• Length not an integer greater than zero (-1)

• Addresss outside the bounds of the heap (-3)

• Block free (-4)

• Address not at beginning of block (-5)

• Control word for next block has been overwritten (-7)

Call from CAL:

CALLV NEWLEN%

Entry:
(81)
(62)
(63)

Exit:
(61)
(82)
(63)

Address of block to change
Requested new total length of block
Nonzero requests abort on error~ zero requests an error
code.

Address of block (unchanged)
Requested new total length (unchanged)
Status: zero if the change in length was successful~ one
if the block could not be extended in place~ a negative
integer for the type of error detected.

Call from FORTRAN:

CALL HPNEWLEN {addr, length, status,abort)

addr

1-ength

status

First word address of the block to change (input)

Requested new total length of the block (input)

Status: zero if the change in length was successful~ one
if the block could not be extended in place; a negative
integer for the type of error detected (output).

abort Abort code: nonzero requests abort on error; zero requests
an error code (input).

SR-0014 7-28 I

CHANGE LENGTH AND MOVE ROUTINES

Change length and move routines extend a block if it is followed by a
large enough free block or copy the contents of the existing block to a
larger block and return a status code that the block has been moved.
They can also reduce the size of a block if the new length is less than
the old length. In this case, they have the same effect as the length
change routines.

The new length of the block can be greater than the requested length
because blocks smaller than the managed memory epsiton specified on the
LDR control statement are never left on the free space list.

Error conditions checked in change length and move routines:

• Length not an integer greater than zero (-1)

• No more memory available from the system (-2) (checked if the
block cannot be extended and the free space list does not include
a large enough block)

• Address outside the bounds of the heap (-3)

• Block free (-4)

• Address not at beginning of block (-S)

• Control word for next block has been overwritten (-7)

Call from CAL:

I CALLV CLMOVE%

Entry:
(51)

(52)
(53)

Exit:
(51)

(82)
(83)

SR-OOI4

Address of block to change
Requested new total length
Abort code: nonzero requests abort on errorl zero requests
an error code.

Address of changed block; this value can be different from
the entry value.
Requested new total length (unchanged)
Status: zero if the block was extended in place; one if it
was moved; a negative integer for the type of er~or
detected.

7-29 I

Call from FORTRAN:

CALL HPCLMOVE (addr,tength,status,abopt)

addl"

"Length

On entry, first word address of the block to change: on
exit, the new address of the block if it was moved

Requested new total length (input)

status Status: zero if the block was extended in place; one if it
was moved: a negative integer for the type of error
detected (output).

Abort code: nonzero requests abort on error: zero requests
an error code (input).

HEAP BLOCK LENGTH ROUTINES

Heap block length routines return the length of a heap block. The length
of the block can be greater than the amount requested because of the
managed memory epsi"Lon.

Error conditions checked in heap block length routines:

• Address outside the bounds of the heap (-3)

• Block free (-4)

• Address not at beginning of block (-5)

• Control word for next block has been overwritten (-7)

Call from CAL:

I CALLV HPLEN%

First word address of block
Entry:

(81)
(52) Abort code: nonzero requests abort on error: zero requests

an error code
Exit:

(Sl)
(52)

(83)

5R-0014

Number of words in the block
First word address of block (copied from Sl)
Error code: zero if no error was detected: otherwise, a
negative integer code for the type of error.

7-30 I

Call from FORTRAN:

tength=IHPLEN (addr,eppoode,abort)

tength Length of the block starting at addr (output)

addr First-word-address of the block (input)

e~code Error code: zero 1f no error was detected; otherwise, a
negative integer code for the type of error (output).

abo~t Abort code: nonzero requests abort on error; zero requests
an error code (input).

HEAP SHRINK ROU"l'INES

Heap shrink routines return an unused portion of the heap to the
operating system. This is done only if the blocks closest to HLM are
free; no allocated blocks are moved. The minimum amount of memory to be
returned is the managed memory increment specified on the LDR control
statement. These routines are called only from the user program.

Call from CAL:

I CALLV SHRINK' I
No arguments

Call from FORTRAN:

No arguments

HEAP INTEGRITY CHECK ROU"l'INES

Heap integrity check routines check the integrity of the heap. Each
control word is examined to ensure that it has not been overwritten.
Error conditions checked in heap integrity check routines:

• Bad control word for allocated block (-5)
• Bad control word for free block (-6)

SR-0014 7-31 I

Call from CAL:

CALLV HCHECK%

Exit:
(Sl) Error code: zero if no error was detected; otherwise, a

negative integer code for the type of error.

Call from FORTRAN:

CALL HPCHECK (errcode)

Error code: zero if no error was detected; otherwise, a
negative integer code for the type of error (output).

HEAP STATISTICS ROUTINES

Heap statistics routines return statistics about the heap.

Call from CAL:

CALLV HPSTAT%

Entry:
(Sl)

Exit:
(Sl)

SR-0014

Code
1
2
3
4

for the information requested:
Current heap length
Largest size of the heap so far
Smallest size of the heap so far
Number of allocated blocks

5 Number of times heap has grown
6 Number of times heap has shrunk
7 Last routine that changed the heap
8 Caller of last routine that changed the heap
9 First word address of heap area changed last
10 Size of the largest free block
11 Amount by which the heap can shrink
12 Amount by which the heap can grow
13 First word address of the heap
14 Last word address of the heap

Requested value

7-32 I

Call from FORTRAN:

vatue=IHPSTAT (code)

code Code for the type of information requested (see CAL entry
point)

value Requested information

DUMP HEAP CONTROL WORD ROUTINES

Dump heap control word routines dump the address and size of each block
in the heap. Three types of dump are available: a dump of all heap
blocks, a dump of free blocks that traces the links to the next block on
the free list, and a dump of free blocks that traces the links to the
previous block on the free list. The dump stops if an invalid value is
found in a field needed to continue the dump.

Call from CAL:

CALLV HPDUMP%

Entry:
(Sl) Code for the type of dump requested:

o Print heap statistics
I Dump all heap blocks in storage order
2 Dump free blocks: follow NEXT links.
3 Dump free blocks; follow PREV links.

(S2) Dataset name: name of the dataset to which the dump is to
be written.

Call from FORTRAN:

CALL HPDUMP (code,daname)

code

daname

SR-OOI4

Code for the type of dump requested (see CAL entry point)

Name of the dataset to which the dump is to be written.
daname must be in left-justified, Hollerith form.

7-33 I

HEAP EXPANSION ROUTINE

The heap expansion subroutine is used by the allocate and new length
routines when there is not enough space in the heap to meet a request.
The subroutine requests additional memory from the operating system, adds
the new memory to the free space list in the heap, and adjusts the
control words at the end of the heap.

The heap expansion routine should not be called
directly by a user program.

Call from CAL:

CALLV HPGROW%

Number of words in pending allocate request
Entry:

(Sl)
Exit:

(51) Success flag; one if more memory was added to the heap, zero
if the heap could not be expanded.

HEAP MEMORY REQUEST ROUTINE

The heap memory request routine requests more memory from the operating
system to be added to the heap.

NOTE

The heap memory request routine should not be called
directly by a user program.

Call from CAL:

CALLV HPMEM%

SR-OOI4 7-34 I

Number of additional words needed for the heap
Entry:

(51)
Exit:

(51) Number of additional words that can be added to the heap;
zero if the heap could not be expanded.

HEAP MERGE ROUTINE

coalesce The heap merge routine is used by the heap shrink routine to
free blocks before finding out how much the heap can shrink.
used by HP5TAT to determine how much the heap can shrink and
the largest free block in the heap.

It is also
the size of

NOTE

The heap merge routine should not be called directly by
a user program.

call from CAL:

CALLV HMERGE%

Exit:
(51) Last free block; zero if the last free block is allocated,

or the address of the last heap block if it is free.
(52) The size of the largest free block

JOB CONTROL ROUTINE5

Job control routines perform functions relating to job step termination,
either causing a termination or instructing the system how to handle a
termination. Unless otherwise specified, these routines are called by
address. No arguments are returned.

ABORT requests abort with traceback and provides optional logfile
message. The optional user-supplied logfi1e message is written to both
user and system lO9fi1es. The message is written in the same format in
which it is sent.

SR-OOl4 7-35 I

Call from FORTRAN:

CALL ABORT{(log)]

log Logfile message

END$ and $END terminate the job step and advance the job to the next job
step.

Call from FORTRAN:

$ENDRPV and ENDRPV continue normal exit processing after a reprievable
request has been processed. This exit processing can be the result of
normal termination or abort processing.

Call from CAL:

Call from FORTRAN:

ERREXIT requests abort.

Call from FORTRAN:

I CALL ERREXIT I
EXIT provides exit for FORTRAN programs, writes the following message to
the logfile, and advances the job to the next step_

UT003 EXIT CALLED BY ~outine name

SR-OOl4 7-36 I

call from FORTRAN:

I CULEm I
NORERUN controls the monitoring of conditions causing the job to be
flagged as not rerunnable.

Call from FORTRAN:

I CALL IIORBRUN Cpamm)

pamm One argument is required. If argument is 0, the system
monitors for conditions causing the job to be flagged as
not rerunnable. If nonzero, such conditions are not
monitored.

RERUN allows the user to declare the job rerunnable or not rerunnable.

Call from FORTRAN:

CALL RERUN (param)

param One argument is required. If the argument is 0, the job
can be rerun. If the argument is nonzero, the job cannot
be rerun.

$SETRPV and SETRPV transfer control to the specified routine when a
user-selected reprievable condition occurs. SSETRPV is called by value,
SETRPV is called by address. See the Macros and Opdefs Reference Manual,
CRI publication SR-OOI2, for details of the SETRPV parameter formats.

Call from CAL:

CALLV SSETRPV

Entry:
(Al)
(A2)
(Sl)

SR-OOl4

Reprieve code entry address
Reprieve table address
Mask

7-37 I

Call from FORTRAN:

CALL SETRPV(rpvaode,rpvtab,ma8k>

rpvcode Routine where control is transferred

rpvtab A 40~ord array reserved for system use

mask User mask specifying reprievable conditions

I $STOP terminates the job step, advances the job to its next job step, and
prints an optional user-supplied message to the logfile. The message is
written in the same format in which it is sent.

Call from CAL:

CALL $STOP[,(log)]

log Address of the logfile message

I $PAUSE suspends program execution. An installation parameter, I@PAUSE,
determines whether $PAUSE or $STOP is to be executed. The default is
program suspension. $PAUSE prints an optional user-supplied message to
the legfile. The message is written in the same format in which it is
sent.

Call from CAL:

CALL $PAUSE{,(log)]

log Address of optional logfile message

FLOATING-POINT INTERRUPT ROUTINES

Floating-point interrupt routines allow the user to test, set, and/or
clear the Floating-point Interrupt Mode flag. Subroutine linkage is
call-by-address.

SR-0014 7-38 I

FLOATING-POINT INTERRUPT TEST

The floating-point interrupt test routine determines whether interrupts
are permitted or prohibited.

SENSEFI determines the current interrupt mode.

Call from FORTRAN:

CALL SENSEFI(mode)

mode Interrupt mode:
If mode=l, permit interrupts.
If mode=O, prohibit interrupts.

TEMPORARY FLOATING-POINT INTERRUPT CONTROL

These routines are local to the current job step. The system restores
the most recent mode setting at the start of the next job step. No
arguments are required or returned.

CLEARFI temporarily prohibits floating-point interrupts.

Call from FORTRAN:

[CALL CLEARFI

SETFI temporarily permits floating-point interrupts.

Call from FORTRAN:

CALL SETFI

JOB FLOATING-POINT INTERRUPT CONTROL

The results of routines are propagated through job steps. The system
does not alter the mode setting unless another floating-point interrupt
control subroutine is called or a MODE control statement is executed. No
arguments are required or returned.

SR-0014 7-39 I

CLEARFIS prohibits floating-point interrupts for a job until they are
enabled or the job terminates.

Call from FORTRAN:

CALL CLEARFIS

SETPIS enables floating-point interrupts until they are explicitly
disabled or the job terminates.

Call from FORTRAN:

CALL SETFIS

BIDIRECTIONAL MEMORY TRANSFER ROUTINES

Bidirectional memory transfer routines test, set, and/or clear the
bidirectional Memory Transfer Mode flag. Subroutine linkage is
call-by-address.

These routines are only effective on the CRAY X-MP,
which has hardware support for bidirectional memory
transfer.

BIDIRECTIONAL MEMORY TRANSFER TEST

The bidirectional memory transfer test routine determines whether
bidirectional memory transfer is enabled or disabled.

SENSEBT determines the current memory transfer mode.

SR-0014 7-40 I

Call from FORTRAN:

CALL SENSEBT{mode)

mode Transfer mode:
If mode=l, bidirectional memory transfer enabled
If mode=o, bidirectional memory transfer disabled

TEMPORARY BIDIRECTIONAL MEMORY TRANSFER CONTROL

These routines are local to the current job step. The system restores
the most recent mode setting at the start of the next job step. No
arguments are required or returned.

CLEARBT temporarily disables bidirectional memory transfers.

Call from FORTRAN:

SETBT temporarily enables bidirectional memory transfers.

Call f~om FORTRAN:

CALL SETBT

PERMANENT BIDIRECTIONAL MEMORY TRANSFER CONTROL

The results of these routines are permanent and are propagated through
job steps. The system does not alter the mode setting unless another
bidirectional memory transfer control subroutine is called or a MODE
control statement is executed. No arguments are required or returned.

SR-0014 7-41 I

CLEARBTS permanently disables bidirectional memory transfers.

Call from FORTRAN:

I=CLEARBTS

SETBTS permanently enables bidirectional memory transfers.

Call from FORTRAN:

I CALL SETBTS

TIME AND DATE ROUTINES

Time and date routines produce the time and/or date in specified forms.
These routines can be called as FORTRAN functions or routines. All of
the routines are called by address.

CLOCK returns current system clock time in ASCII hh:mm:sB format.

Call from FORTRAN:

t ime=CLOCK ()
CALL CLOCK (time)

time Time in hh:mm:ss format (type integer)

DATE returns today's date in mnrdd/yy format.

Call from FORTRAN:

da-te=DATE ()
CALL DATE (date)

date Today's date in mm/dd/yy format (type integer)

SR-OOl4 7-42 I

JDATE returns today's Julian (ordinal) date in yyddd format,
left-justified, blank-filled.

Call from FORTRAN:

date=JDATE ()
CALL JDATE (date)

date Today's Julian date in yyddd format

SECOND returns CPU time since start of job in floating-point seconds.

Call from FORTRAN:

second=SECOND([result])
CALL SECOND(seCOn~

second Result (CPU time used by job since start of job in
floating-point seconds). Contents of Sl stored at address
of argument.

result Same as above (optional for function call)

TIMEF returns a value, in floating-point milliseconds, that is, the
amount of wall-clock time passed since the initial call to TIMEF in the
program.

Call from FORTRAN:

ti~!=TlMEF([re8ult])
CALL TlMEF (timej)

time! Wall-clock time passed since the initial call to TlMEF, in
floating-point milliseconds. The initial call to TlMEF
returns O.

result Same as time!

TREMAIN returns CPU time remaining for job execution in floating-point
seconds.

SR-OOI4 7-43 I

Call from FORTRAN:

CALL TREMAIN(resuLt)

result Calculated CPU time remaining: stored in result.

TIMESTAMP ROUTINES

These routines are used by system accounting programs to convert between
various representations of time.

TSDT converts between timestamps and the date and time as ASCII strings.

Call from FORTRAN:

CALL TSDT(tB,date,hhmmss,BSBS)

ts Timestamp on entry (type integer)

date Word to receive ASCII date m~dd/yy

hhmm88 Word to receive ASCII time hh:mm:8s

SB8B Word to receive ASCII fractional seconds, S8S8

DTTS converts from date and time to timestamp.

Call from FORTRAN:

tS=DTTS(date,time)

ts Timestamp corresponding to date and time (type integer)

date ASCII date on entry in the form of mmVdd/yy

time ASCII time on entry in the form of hh:mm:8B

I On return, if tB=O, an incorrect parameter was passed to DTTS.

SR-0014 7-44 I

TSMT converts from a timestamp to the corresponding real-time clock value.

Call from FORTRAN:

irrt e=TSMT (ts)

Real-time clock value corresponding to specified timestamp

ts Timestamp to be converted (type integer)

MTTS converts from a real-time clock value to the corresponding timestamp
value.

Call from FORTRAN:

ts=oMTTS (il'te)

ts Timestamp corresponding to real-time clock value (type
inte<]er)

Real-time clock value

UNITTS returns the number of timestamp units in a specified number of
standard time units. UNITTS must be declared type integer.

Call from FORTRAN:

ts~UNITTS(period8runit8)

t8

pel'iod8

units

SR-0014

Number of timestamp units in p~l'iod8 and units (type
integer)

Number of timestamp units wanted in standard time units
(that iS r number of seconds, minutes r etc.)~ type integer.

Specification for the units in which pepiods is
expressed. The following values are accepted: 'DAYS'H r

'HOuRS'H, 'MINUTES'H, 'SECONDS'H, 'MSEC'H (milliseconds),
'USEC'H (microseconds), 'USEClOO'H (laOs of microseconds).
Left-justified, blank-filled, Hollerith.

7-45 I

Example:

ts=UNITTS(2,'DAYS ' H)

ts Number of timestamp units in two days

CONTROL STATEMENT PROCESSING ROUTINES

Control statement processing routines place control statement elements in
appropriate memory locations to perform the specified operations. These
routines, CRACK, PPL, and CEXPR, also can process directives obtained
from some source other then the control statement file ($CS).

CONTROL STATEMENT CRACKING ROUTINES

Control statement cracking routines take the uncracked image from the
JCCCr field and crack it into the JCCPR field. The Job Communication
Block (JCB) contains the control image in JCCCI. JCDLIT is a flag
indicating whether or not literal delimiters are to be retained in the
string.

scs, SCCS, and CCS are different entry points in the same routine.

$CS does not abort the job if errors are encountered.

Call from CAL:

Exit:
(SO) =0 No errors

¥,O Errors

$CCS,CCS aborts the job if errors are encountered.

Call from CAL:

$R-OOl4 7-46 I

call from FORTRAN:

I CALL CCS I

CRACKED PARAMETER LIST

Control statement parameters are available to the user in the form of a
cracked parameter list starting at location W@JCCPR in the JCB.

ExalllPle:

The following control statement appears in the cracked parameter list as
described below (shaded area is binary zero).

VERB,KEYWORD='THIS IS A LITERAL VALUE ••• '.

o 8 16 24 32 40 48 56 63

W@JCCPR+

1

c V I E J R I B 111/111/1/1111/1111/11111/1111//1
11/11111//1/11111111//1111111111/1/111111//111/////1/1II 017

2 K I E r y I W r 0 I R J D I1111111I
3 1111///1/1111/11111/11111//1//111111/111////11111111/1II 007

4 T I H I I I s I I I I s I
5 A I I L I I I T I E I R I A

6 L J I V I A I L I u t E I .
7 • I . 1//111/1/11/11/////111//111/1/1/11/1//1/1 037

An internal code for each control statement separator or terminator is
positioned in the last byte of odd-numbered words following keyword or
parameter values in the cracked parameter list.

Control statement scanning stops when a continuation separator or
terminator is encountered. Thus, for continued control statements, the
caller can call F$GNS again to scan the remainder of the control
statement.

Example:

This is an example of a continued control statement.

ACQUIRE, DN=dn, TEXT= I ABC' A
·DEFI.

SR-OOI4 7-47 I

The first crack control statement (CCS) call results in the following
cracked parameter list:

o 8 16 24 32 40 48 56 63

W@JCCPR+

I

(A I C I Q I u I r I R I E 11111111/
VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII//i///ii/ii/ii/ii/ii/II 017

2 0 I N 1111111111/11/1111/1111/111111111111111111/11111/
3 11111111111/11111111111/111111111/11111111/11111/11111II 007

4 D I N 1/11111/11111/1111/111/1111111/11111111111111111/
5 VI/II/II/IIIII/IIIIIIIIIIIIIIIIIIIIII/IIIIIIIIIIIIIIIIII 017

6 T J E I X I T 1//111111111111/11/111/11111111/1
7 /11111111111111/1111/11111111111111111/11111111/111111II 007

8 A I B I C 11111111111/111111/11/111111111111/11111/
9 11/1111111111111II 002

The calling program can then interpret this portion of the control
statement. The second CCS call replaces the cracked parameter list with:

o 8 16 24 32 40 48 56 63

W@JCCPR+(0 I ElF 1//1111111/111111111111/11111111111/11111
1 VIII 037

The current control statement image remains in unmodified form at
location W@JCCCr in the JCB.

GET PARAMETER ROUTINE

The get parameter routine processes control statement parameter values
from an already cracked control statement. If the statement has been
continued across card images, GETPARAM automatically requests the next
control statement and calls $CCS to crack it. Processing is determined
by the rules set up by the Parameter Control Table (PeT).

The PCT indicates default values for unspecified parameters. Through the
peT, the caller also indicates the following.

• If a parameter must be specified on the statement

• If a parameter is positional or keyword

• If a keyword parameter can have an equated value

SR-0014 7-48 I

• If a keyword parameter must have an equated value

• If any parameters are allowed

Call from FORTRAN:

CALL GETPARAM(tabte,numbep,papam)

tabte

SR-0014

The
and

1.
2.
3.
4.
5.

Parameter Control Table (PCT), dimensioned (S,number)
containing the following in each 5-element row.

A left-justified, zero-filled keyword
A default value for use if the keyword is missing
A keyed value for use if the keyword is unqualified
An initial subscript for use in output to param
A limiting subscript for use in output to param

If item 2 is negative, GETPARAM requires the keyword to be
on the control statement.

If item 3 is negative, GETPARAM does not allow the use of
the keyword alone (as in 1I ••• ,keyword, ••• n).

Either item 2 or 3 can be O~ GETPARAM does not distinguish
between zeros and any other positive values such as
character strings, but the caller can test them after
GETPARAM returns.

If items 2 and 3 are 0 and 1, or I and 0 respectively,
GETPARAM does not allow the keyword to be followed by an
= The keyword must be simply absent or present.

If item 1 1s a 64-bit mask (that is, 177777 7777 7777 7777
7777B), then the value given as the keyword is returned in
the control table. When an entry of this type has been
specified in the control table, the number of parameters is
limited to one.

If item 1 is given a value of 0, then the entry describes a
positional parameter. Entries of this nature must be
described in positional order.

If bit 2 in item 4 (that is, 020000 0000 0000 0000 OOOOB)
is set, the parameters following the keyword are defined to
be secure and are edited out before the statement is echoed
to the user's logfile.

7-49 I

number The number of parameters described in the control table.
If given a value of 0, GETPARAM does not allow any
parameters on the control statement.

param An array sufficiently large to receive all the parameter
values

Call from CAL:

(Al) table (Address)
(A2) number (Actual number)
(Al) paramB (Address)

NOTE

$GP is an alternate entry for CAL callers and provides
a "no-abortft exit. Upon exit, 50=0 if no errors are
detected.

Example of control table definition in FORTRAN:

INTEGER PERMFILE(2) PARAMS(15), TABLE(S,4), INPUT, LIBRARY(lO),
LWT
EQUIVALENCE(PARAMS(I),INPUT),

* (PARAMS(2),PERMFlLE),
* (PARAMS(4),LIBRARY(1»,
* (PARAMS(14),LIST)

DATA PARAMS/IS*_/
DATA (TABLE(I,1),I=I,5)/'I'L,'$IN'L,'$IN'L,l,I/,

(TABLE(I,2),I=1,5)/'P'L,O,-l,2,3/,
(TABLE(I,3),I=1,5}/'LIB'L,-1,'$FTLIB'L,4,13/,
(TABLE(I,4),I=1,5)/rLIST'L,O,1,l4,14/

CALL GETPARAM (TABLE,4,PARAMS)

This table (for a hypothetical program) tells GETPARAM that the only
keywords to be accepted are I, P, LIB, and LIST. The -1 value means that
P cannot appear alone (without an equal sign) and that LIB (with or
without an equal sign) must appear in the control statement.

In this table, only one word is provided for the I parameter; therefore,
if I=XXX appears in the control statement, the option xxx must not
exceed eight characters. The two words provided for the P parameter
allow for the maximum of 16 characters or for two subparameters {up to

SR-0014 7-50 I

eight characters each) separated by a colon in the control statement.
Ten words are provided for the LIB parameter so that up to ten
subparameters (or five 2-word parameters) are allowed in the control
statement. GETPARAM requires the keyword LIST to appear alone or not at
all. If LIST is specified, the value returned in the Parameter Value
Table is 1. LIST cannot be followed by an equal sign.

N~E

The following two subparameters cannot be distinguished
from one another in the PARAMS table:

A=Al234567:B1234567 (Two 8-character parameters)

A=Al234567B1234567 (One l6-character parameter)

Thus, the caller is responsible for restricting such
cases.

The output array PARAMS must be as large as the largest
subscript. If PARAMS is initialized to zeros, the
programmer can determine how many words are returned by
GETPARAM for multiword parameters such as P and LIB.

Since FORTRAN array numbering starts with 1, the array's base address is
reduced by 1 in GETPARAM. Therefore, the CAL user must supply the table
address + It in order to use labels directly in lieu of the FORTRAN
subscripts.

GETPARAM aborts if the control statement violates either the standard
control statement syntax rules or the additional rules imposed by the
Parameter Control Table. If there are no errors, the array is filled
with values from the control statement and/or with default values. The
Parameter Control Table is not altered by GETPARAM.

DIRECTIVE CRACKING ROUTINE

The directive cracking routine reformats (cracks) a user-supplied string
into verb, separators, keywords, and values. The cracked directive is
placed in a user-supplied buffer and returns the status of the crack to
the caller. CRACK can be called repeatedly to process a control
statement across several records.

t This is not true for $GP.

SR-0014 7-51 I

I

I

Call from FORTRAN;

CALL CRACK(ibuf,ilen,obuf,alen,j1ag[,dflag])

ibuf

ilen

olen

flag

Image of the statement to be cracked

Integer length (in words) of the image of the statement to
be cracked. Maximum value is 10 words.

Array to receive the cracked image

Integer length in words of the array abuf

Each keyword or positional parameter should be assigned
a separate word. Keywords or positional parameters of
more than eight characters must be assigned one word
for each eight characters plus one for any remaining
characters if length is not a multiple of eight
characters. Each separator must also be assigned a
separate word.

Integer variable to receive completion status. The Return
Value flag has the following meanings.

o Normal termination
I No error~ continuation character encountered.
2 Invalid character encountered
3 Premature end of input line
4 CRACK buffer overflow
5 Unbalanced parentheses
6 Input buffer too large

dflag Integer flag indicating that literal string delimiters are
to be preserved in the cracked image. If set to 0 or
omitted, quotes are not in the cracked string. If set to
1, all quotes are included in the string.

SR-OOI4

flag should be set to 0 before the first call to
CRACK and not changed (except by CRACK) until after the
last call to CRACK.

1-52 I

PROCESS PARAMETER LIST ROUTINE

The process parameter list routine processes the keywords for a given
directive. Processing is governed by the Parameter Description Table.
This table has the same format as the table GETPARAM uses, except that
the length of the table used by PPL is seven words with the extra two
words unused.

Call from FORTRAN:

CALL PPL(abuf,atable,ttable,outappay,stattbl)

abuf Array to receive the cracked image

atable PPL control table

ltable Number of 7-word entries in PPL control table

outarray Array to receive parameter values

stattbl 3-word completion status array. On the first-time call,
the Return Status Table is initialized to O. If PPL
returns a non-normal status, and PPL is called again with
the non-normal values left in, it attempts recovery.

Array element

1

2
3

CRACK EXPRESSION ROUTINE

Meaning

Return status code:
o Normal termination
1 Required keyword not found
2 OUtput keyword overflow
3 Syntax error
4 Unknown or duplicate keyword
5 Unexpected separator encountered
6 Keyword cannot be equated
7 Keyword must have value
8 Maximum of 64 keywords exceeded
9 Invalid return status, cannot

recover.
Keyword in error
Ordinal keyword value

The crack expression routine transforms an expression character string
(one right-justified character per word) to a Reverse Polish Table.

SR-0014 7-53 I

Call from FORTRAN:

CALL CEXPR(~haP,out,tmt,si2e)

out

tmt

size

Expression character string array (terminated by a zero
byte)

Reverse Polish Table array for output

Upper limit to the size of the Reverse Polish Table

Actual size of the Reverse Polish Table on return

An expression can contain a mixture of symbols, literals, numeric values
and operators. Expressions handled by this routine are FORTRAN-like in
syntax. The legal operators are listed later in this section.

Operator hierarchy follows FORTRAN rules and does parenthesis nesting.
Symbols are defined as 1- to 8-character strings having unknown value to
CEXPR. CEXPR simply flags the strings for the caller. The first
character cannot be numeric. Literals are 1 through 15 character strings
enclosed by double quotes (n).

A character string consisting of numeric digits is taken as a 64-bit
integer. A trailing B signifies a Boolean number.

The following is the format of the Reverse Polish Table.

0 8

0 I
•
•

· n

Field Bits

ITEMi 0-55

T 56-57

SR-0014

16 24 32 40 48 56 63

ITEM IT I OC I

Description

IS-character data item from the character string

2-bit
01
10
11

00

type field describing ITEM
1- through 8-character symbol
I-word binary value
1- through IS-character literal string
(delimiting double quotes not included)
Null, OC is valid

7-54 I

Field Bits Description

OC 58-63 6-bit operator code.

Operator
code (octal) Operator

01 .XOR.
10 .OR.
20 .AND •
30 • NOT.
40 .EQ.
41 .NE.
42 .LT.
43 .GT.
44 .LE.
45 .GE.
50 +
51
52 + (unary)
S3 - (unary)
60 *
61 /

CEXPR references the following internal routines: CEXERR, ITBLSTO,
ITBLSYM, ITBLOC, LITERAL, ERRl, ERR2, PUTLINE.

JOB CONTROL LANGUAGE SYMBOL ROUTINES

The job control language symbol routines manipulate job control language
(JeL) symbols for conditional JCL statements.

JSYMSET allows the user to change a value for a JCL symbol. The value is
the actual value given to the symbol, with no evaluation being performed.

Call from CAL:

Entry:
(Sl)
(AI)
(A2)

SR-OOI4

Symbol name
Points to value
Length of value

7-55 I

Call from FORTRAN:

CALL JSYMSET(sym,val[,len])

sym Val id JCL symbol name

va~ Actual value assigned to the symbol

ten Length of val in words (elements)

JSYMGET allows user programs to retrieve JCL symbols. The JSYMGET
routine also allows the creation of JCL symbols if they do not exist.

Call from CAL:

I CALLV $JSYMGET I
Entry:

(Sl)
(Al)
(A2)

Exit:
(A2)

Symbol name: left-justified, zero-filled.
Where value is returned
Number of words in the area that is to receive the value

Actual length of the value

Call from FORTRAN:

CALL JSYMGET(sym,val[,ten])

sym Valid JCL symbol name

val Receives the actual value of the symbol if the value buffer
is large enough and the symbol currently has a value

ten Length of the value buffer in words (elements). ~en is
changed to the actual length of the symbol's value (less
than or equal to the value buffer).

SKOL RUN-TIME SUPPORT ROUTINES

SKOL run-time support routines include character-string manipulation,
character-code translation, and error handling applications.

SR-OOI4 7-56 I

CHARACTER-STRING MANIPULATION ROUTINES

IOODEL deletes a SKOL string or substring and returns the length of the
resulting string.

len=IOODEL(string,max,olen,fohar,lohar}

len New length of the string addressed by string

string A SKOL string

max Maximum size of the string

olen CUrrent length of the string

jchaI' Index of the first character to be deleted

Index of the last character to be deleted

IOOMVC replaces a SKOL string or substring with a single character and
returns the length of the resulting string.

len=IOOMVC(BtPing,max,clen,fohar,lchar,ichar,lnum)

len New length of string addressed by string

string A SKOL string

Maximum size of string

oLen Current length of string

fchaP Index of first character to be replaced

lahar Index of last character to be replaced

iohaP Character to be inserted in place of deleted substring

tnwn SKOL source line number of call to IOOMVC

IOOMVM replaces a SKOL string or substring with another SKOL string or
substring and returns the length of the resulting string.

lencIOOMVM(string,max,clen,jchar,lchar,sstri,sfchar,slchar,lnum)

SR-OOl4 7-57 I

ten New length of string addressed by string

string A SKOL string

max Maximum size of string

cten Current length of string

fchar Index of first character to be replaced

l.char Index of last character to be replaced

Second SKOL string

sfehar Index of first character in second string to be inserted

s1.ehCU" Index of last character in second string to be inserted

lnwn SKOL source line number of call to IOOMVM

CHARACTER-CODE TRANSLATION ROUTINES

IOOORD returns the internal SKOL code for a given ASCII character.

NOTE

IOOSETUP must be called before any call to rOOORD.
IOOSETUP is described later in this section.

ord=IOOoRD(char,tnum)

ord Ordinal number of the given character

ASCII character: left-justified, blank-filled.

tmu1t SKOL source line number of the call to IOOORD

IOOREAD reads a logical record in Al format and converts each word
containing an ASCII character, left-justified, blank-filled, to its
internal SKOL code (character ordinal). Internal codes for characters
are defined by a TYPE CHAR statement.

SR-OOl4 7-58 I

NOTE

IOOSETUP must be called before any call to lOOREAD.
IOOSETUP is described later in this section.

CALL IOOREAD(dn,a~Pay,si2e,fchap,toha~,tnum)

size

foha~

tohap

tnum

Name or unit number of the dataset to be read

Array to receive the character ordinals

Size of array

Index of first character position to be filled

Index of last character position to be filled

SKOL source line number of call to IOOREAD

IOOWRITE writes characters defined by the TYPE CHAR statement and
converts character ordinals (internal SKOL codes) to ASCII characters in
Al format, left-justified, blank-filled, and then writes them as a
logical record.

CALL IOOWRITE(dn,a~~ay,size,fo~,toPd,lnum)

Name or unit number of the dataset to be written

Array containing the character ordinals

size Size of array

ford Index of first ordinal to be output

lo~ Index of last ordinal to be output

tnum SKOL source line number of call to IOOWRITE

SR-0014 7-59 I

IOOSETUP initializes a SKOL program1s table (128 words long) for direct
translation of ASCII character codes to internal ordinal numbers.

I CALL IOOSE'l'lJP(ol'd. Lnum) I
o~ Highest ordinal number to be used in the calling program

lnum SKOL source line number of the call to IOOSETUP

ERROR-HANDLING ROUTINE

IOOERR handles run-time errors in SKOL programs, writes an error message
to $OUT and $LOG, and then terminates the job step.

CALL IOOERR (oro, lnwn)

o1'd

1-num

Ordinal number of a SKOL error

SKOL source line number where the call to 100ERR was
inserted by the macro translator

ERROR PROCESSING ROUTINES

Error processing routines issue logfile messages and abort the job. See
the CRAY-OS Message Manual, publication SR-0039, for the messages issued
by these routines.

ARERP% processes $ARLIB errors.

Call from CAL:

Entry:
(51)

SR-0014

Error message ID defined in $SYSTXT, ARnnn

7-60 I

FTERP% processes $FTLIB errors.

Call from CAL;

Entry:
(51) Error message ID defined in $SYSTXT, FTnnn

IOERP% processes $IOLIB errors.

Call from CAL:

Entry:
(51)
(52)
(S3)
(S4)

(S5)
(S6)
(S7)

Error message ID defined in $5Y5TXT, FTnnn
Unit identification, ASCII, left-adjusted
If nonzero, format FWA
Character position in format
If nonzero, string buffer FHA
Character position in string buffer
Mode ('INPUT', 'OUTPUT', etc.)

NLERP% processes NAMELIST I/O errors.

Call from CAL:

Error message ID defined in $SYSTXT, FTnnn
Entry:

(Sl)

(S2)
(S3)
(S4)
(SS)
(S6)
(57)

Unit identification, Hollerith, left-justified, zero-filled
Record name

SR-0014

If nonzero, item name
If nonzero, address of string buffer
If nonzero, character poSition in buffer
Mode ('INPUT', 'OUTPUT', etc.) Hollerith, left-justified,
zero-filled

7-61 I

NOTE

If a format or string buffer address is provided, the
format or buffer is listed on $OUT and, if possible,
the error position is marked.

S5CERP processes $5CILIB errors. Aborts with traceback.

Call from CAL:

Entry:
(51) Error message ID defined in $SYSTXT, SCnnn

SLERP% processes $8Y5LIB errors and abort with traceback.

Call from CAL:

Error message ID defined in $5YSTXT, 5Lnnn
error message has two arguments:

Name of unit, ASCII format

Entry:
{51}

If
(52)
(83) ASCII descriptive word ('READ','WRITE', or program name of

calling routine); blank-filled
If

(S2)
error message has one argument:

Dataset name or unit number

UTERP% processes $UTLIB errors.

call from CAL:

Entry:
(51)

SR-OOI4

Error message ID defined in $8Y5TXT, UTnnn

7-62 I

I

BYTE AND BIT MANIPULATION ROUTINES

Byte and bit manipulation routines move bytes and bits between variables
and arrays, compare bytes, perform searches with byte count as a search
argument, perform conversion on bytes, and pack and unpack bits.

MOVE BYTES ROUTINE

The STRMOV routine moves a specific number of bytes from one variable or
array to another. The arguments num, isb, and idb must be greater
than 0 for any data to be moved. The argument dest must be declared
long enough to hold num bytes or spill will occur and data will be
destroyed.

Call from FORTRAN:

CALL STRMOV(8pe,isb,num,dest,idb)

isb

num

deBt

idb

MOVE BITS

Variable or array of any type or length that contains the
bytes to be moved. Bytes are numbered from 1, beginning at
the leftmost byte position of sre.

Starting byte in the spe string. Type integer variable,
expression, or constant. Bytes are numbered from 1,
beginning at the leftmost byte position of sro.

Type integer variable, expression, or constant that contains
the number of bytes to be moved

Variable or array of any type or length that contains the
string to receive the bytes

Type integer variable, expression, or constant that contains
the starting byte to receive the data. Bytes are numbered
from 1, beginning at the leftmost byte position of dest.

The MOVBIT routine moves a specified number of bits from one variable or
array to another. The arguments num, iBb, and idb must be greater
than 0 for any data to be moved. The argument deBt must be declared
long enough to hold num bits or spill will occur and data will be
destroyed.

SR-0014 7-63 I

call from FORTRAN

CALL MOVBIT(spe,isb,num,dest,idb)

isb

num

dest

idb

variable or array of any type or length that contains the
string of bits to be moved.

Starting bit in the src string. Type integer variable,
expression, or constant. Bits are numbered from 1,
beginning at the leftmost bit position of sFe.

Type integer variable, expression, or constant that contains
the number of bits to be moved

Variable or array of any type or length that contains the
string to receive the bits

Type integer variable, expression, or constant that contains
the starting bit to receive the data. Bits are numbered
from 1, beginning at the leftmost bit position of dest.

• MOVE CHARACTERS ROUTINE

I

I

MVC moves characters from one memory area to another. The source and
destination strings can occur on any byte boundary. The move is performed
one character at a time from left to right. The destination string can
overlap the source string.

Call from FORTRAN:

SR-0014

Word address of the Hollerith source string

Byte offset from the word address of the source string of
the first byte of the source string (the high-order byte of
the first word of the source string is byte number 1)

Word address of the Hollerith destination string

7-64 I

j2 Byte offset from the word address of the destination string
of the first byte of the destination string (the high-order
byte of the first word of the destination string is byte
number 1)

k Number of bytes to be moved

For example, the first byte of an array can be copied throughout the array
by the following call (where K is the length of the array in bytes).

CALL MVC(ARRAY,1,ARRAY,2,K-l)

REPLACE BYTE ROUTINE

PUTBYT replaces a specified byte in a variable with a specified value.
The high-order 8 bits of the first word of the variable is called byte 1.

Call from FORTRAN:

CALL PUTBYT(stping,position,value)

string The address of a variable. The variable may be of any type
except CHARACTER.

position The number of the byte to be replaced. The parameter must
be an integer greater than or equal to 1.

value The new value to be stored into the byte. The parameter
must be an integer with value between 0 and 255.

If PUTBYT is called as an integer function (having been properly declared
in the user program), the value of the function is the value of the byte
stored.

If position is less than or equal to 0, no change to the destination
string is made: the function value is -1.

SR-0014 7-65 r

I

COMPARE BYTES FUNCTIOO

The KOMSTR function performs an unsigned, twos complement compare of a
specified number of bytes from one variable or array with a specified
number of b~tes from another variable or array. The arguments num,
iBb, and idb have no size limits.

Call from FORTRAN:

ik = KOMSTR(src,isb,num,dest,idb)

ik Type integer result. Contains 0 if the strings Brc and
deBt are equal. Contains I if arc > deBt and
contains -1 if sra < deat.

sra Variable or array of any type or length containing the first
string to compare

iBb Starting byte in the src string. Type integer variable,
expression, or constant. Bytes are numbered from 1,
beginning at the leftmost byte position of Bra.

Type integer variable, expression, or constant that contains
the number of bytes to compare.

deBt

idb

Variable or array of any type or length containing the
second string to compare

Type integer variable, expression, or constant that contains
the starting byte. Bytes are numbered from 1, beginning at
the leftmost byte position of dest.

SEARCH BYTES ROUTINE

The FINDCH subroutine searches a variable or array for the occurrence of a
specified character string. The result is equal to the byte count in the
variable or array where the string was found, or equal to 0 if no string
was found.

Call from FORTRAN:

CALL FINDCH(chra,ten,atr,ts,nb,ifnd)

chrs

SR-OOl4

Variable or array of any type or length containing the
search string

7-66 I

I

len Length of the search string in bytes (must be from 1 to
256). Type integer variable, expression, or constant.

str Variable or array of any type or length that is searched for
a match with ~hrs

lB Starting byte in the BtP string_ Type integer variable,
expression, or constant. Bytes are numbered from 1,
beginning at the leftmost byte position of str.

nb

ifnd

Number of bytes to be searched. Type integer variable,
expression, or constant.

Type integer result

ASCII TO INTEGER ROUTINE

The CHCONV subroutine converts a specified number of ASCII characters to
an integer value. Blanks in the input field are treated as zeros. A
minus sign encountered anywhere in the input field produces a negative
result. Input characters other than blank, digits a through 9, minus
sign, or more than one minus slgn, produce a fatal error.

Call from FORTRAN

CALL CHCONV(spc,isb,num,ir)

8P~ Variable or array of any type or length containing ASCII
data or blanks

ish Starting character in the src string. Type integer
variable, expression, or constant. Characters are numbered
from 1, beginning at the leftmost character position of
spc.

num Number of ASCII characters to convert. Type integer
variable, expression, or constant.

ir Type integer result

SR-0014 7-67 I

INTEGER TO ASCII ROUTINES

The BICONV subroutine converts a specified integer to an ASCII string.
The string generated by BICONV is blank-filled, right-justified, and has a
maximum width of 256 bytes. If the specified field width is not long
enough to hold the converted integer number, left digits are truncated and
no indication of overflow is given. If the number to be converted is
negative, a minus sign is positioned in the output field to the left of
the first significant digit.

The BICONZ subroutine is the same as BrcoNV except that the output string
generated is zero-filled, right-justified.

Call from FORTRAN:

CALL BICONV(int,dest,isb,~en)
CALL BICONZ (int,dest,isb, ten)

int Type integer variable, expression, or constant containing
the integer value to be converted

dest variable or array of any type or length to contain the ASCII
result

ish Starting byte count to generate the output
integer variable, expression, or constant.
numbered from 1, beginning at the leftmost
dest.

string. Type
Bytes are

byte position of

ten Desired length of the output string. Type integer variable,
expression, or constant.

PACK, UNPACK

The PACK and UNPACK routines compress and expand stored data.

PACK takes the 1, 2, 4, 8, 16, or 32 rightmost bits of several partial
words and concatenates them into full 64-bit words. The formula for the
number of full words is shown in equation 1.

SR-0014 7-68 I

Equation 1:

n=(nw x nbits)/64

nw Number of partial words

nbits Number of rightmost bits of each partial word that is useful
data

n Number of resulting full words

Equation 1 restricts nw x nbits to a multiple of 64.

Call from FORTRAN:

CALL PACKCp,nbits,u,nw)

p Vector of packed data

nbits Number of rightmost bits of data in each partial word. Must
be 1, 2, 4, 8, 16, or 32.

u Vector of partial words to be compressed

nw Number of partial words to be compressed

UNPACK reverses the action of PACK and expands full words of data into a
larger number of right-justified partial words. This routine assumes nw
x nbits to be a multiple of 64.

Call from FORTRAN:

CALL UNPACK(p,nbits,u,nw)

p Vector of full 64-bit words to be expanded

nbits Number of rightmost bits of data in each partial word. Must
be 1, 2, 4, 8, 16, or 32.

u Vector of unpacked data

nw Number of resulting partial words

SR-0014 7-69 I

MISCELLANEOUS SPECIAL PURPOSE ROUTINES

Each miscellaneous routine described below has a separate purpose;
therefore, the routines are not grouped.

ACTTABLE returns Job Accounting Table (JAT).

call from FORTRAN:

CALL ACTTABLE(aP~y,count)

a'lTay

count

An array

Count; the first count words of the JAT are returned in
the array. If count is greater than the size of the JAT,
the array is padded with zeros.

DRIVER allows a user to directly program a CRAY channel on an lOSt.
This is a privileged function available to all single-tasked jobs. It is
prohibited to multitasking jobs.

Call from FORTRAN:

CALL DRIVER(appay,lentry,status)

array First element of the integer parameter block array. The
array is tentpy words long. In all cases, FUNC, PLEN and
LN are required in the parameter block and COSS is returned
in the parameter block ERPB. DP is always sent to the
driver and returned to the user.

For the FORTRAN user, PONC, DIR and COSS are literal strings
(i.e. set FUNC to lCFN$OPE' and DIR to 'DIR$INP' to open an
input channel. lDRS$RSV' in COSS means the channel is
reserved for another job).

'CFN$OPE' subfunction opens a channel; a job cannot access a
channel until it opens the channel. DRNM, DRTO, DIR, and
OPD are required.

'CFN$CLS' subfunction closes a channel. Any open channels
are closed during termination. UIR is required.

t This capability is available only on the MIOP.

SR-0014 7-70 I

I

len try

statUB

'CFN$RD', 'CFN$RDH', 'CFN$RDD' subfunctions read data. BAD
and DLEN are required: TLEN is returned. For read, either
the channel is read to central memory or data is moved from
ros buffer memory to central memory (if a read/hold was done
prior to this read). For read/hold, a second read is
performed and the data is held in buffer memory for a
subsequent read. For read/read, a second read to central
memory is done.

'CFN$WT', 'CFN$WTH', 'CFN$WTD' subfunctions write data. BAD
and TLEN are required; TLEN is returned. For write, data is
written to the channel from central memory or buffer memory
(if a write/hold was done prior to this request). For
write/hold, a second buffer of data is moved to and held in
buffer memory for a subsequent write. For write/write a
second write is performed from central memory.

'CFN$DMIN'-'CFN$DMAX' subfunctions are defined by the
driver. DFP and DIR are required.

Length of the parameter block entry in arpay; integer
variable set by the user.

Status; integer variable set by the system. On return,
status is 0 if no errors occurred and the job must poll
CaMS for nonzero. When COMS is nonzero, the driver has
completed the request and the driver status is in DRS. See
the individual driver specifications for driver status. If
status is nonzero on return, COSS contains the error code
and the request is not sent to the driver.

If no errors occurred and if status is nonzero on return,
coss contains the error code.

ECHO allows the user to turn on and off the classes of messages to the
user logfile.

Call from FORTRAN:

CALL ECHO('ON'L[,param-arraYJ,'OFF'L[,param-array])

param-array

SR-0014

Array of message class names or 'ALL'. Message class names
are defined in the CRAY-OS Version I Reference Manual,
publication SR-OOII.

7-71 I

I

ERECALL allows a job to suspend itself until one or more selected events
occur. This routine is available to all single-tasking jobs; it is
prohibited to multitasking jobs.

When event monitoring is enabled, the system monitors selected events for
a job, keeping track of which ones have occurred. Monitoring is disabled
at the beginning of each job step and can be enabled by making a system
request, specifying the events to monitor. Once monitoring is enabled, a
job can make a system request to change the events that are to be
monitored, get a map indicating which of the monitored events occurred, go
into event recall until one of the selected events occurs, or disable
monitoring_

When monitoring is enabled, a map of occurred events is returned to the
user and discarded by the system. If monitoring was disabled when the
enable occurred, the map is o.

When the events to be monitored are changed, a map of occurred events is
returned to the user and discarded by the system.

When a map of occurred events is requested, the map is returned to the
user and discarded by the system.

When recall is requested and the map of occurred events is 0, the job is
suspended for an event until one of the events occurs. If the map is
nonzero, the map is returned to the user immediately and discarded by the
system.

When recall is disabled, the map of occurred events is discarded by the
system.

Call from FORTRAN:

CALL ERECALLCfune,status,sevents,to,oevents,levents)

fune

SR-0014

Integer variable set by the user to define what information
or action is requested.

'DISABLE' Disables event monitoring. All other words
ignored.

'ENABLE' Enables event monitoring or changes the events
to be monitored. levents and sevents are
required. If levents is 0, timeout is the
only enabled event. Timeout is enabled in
order to prevent a job remaining indefinitely
in recall. tevents and oevents are
returned by the system. to 1s ignored.

7-72 I

I

status

sevents

to

oevents

'RECALL'

'RETURN'

Places the job in recall. An error is
returned in status if monitoring is
disabled. to is required, sevents is
ignored. levents and oevents are set by
the system. If to is 0, an
installation-defined default, I@TODEF, is
used. If to is specified, but less than the
installation defined minimum, I@TOMIN, the
installation minimum is used with no
notification. If levents is 0 on return,
timeout is the only event that occurred.

Requests levents and oevents be set by the
system; all other words are ignored. An error
is returned in status if monitoring is
disabled.

Status; integer variable set by the system. Status is 0
if no errors occurred; otherwise, see the parameter block
ERPB definition for error codes. The codes are returned as
blank-filled literal strings (for example, ERER$BFN will be
returned as 'ERER$BFN').

Integer array set by the user containing the events to be
monitored. levents is the number of events specified in
sevents. The events can be selected from the following.

'IJ' Inter-job message received
'UD' Unsolicited operator message received t

'OR' Operator reply receivedt

The following are privileged:

'CHI Channel driver done
'IQ' SOT placed in Input queue t

'QQ' SDT placed in Output queue t

Timeout duration in milleseconds (rightmost 24 bits);
integer variable set by the user.

Integer array set by the system to the occurred events.
tevents is the number of event words that have been
placed in oevents by the system. See sevents for
possible values.

t Deferred implementation

SR-0014 7-73 I

I

l,events Integer value specifying the number of events in either
Bevents or oevent8. ~or ENABLE, the user sets tevents
to the number of event words that the user has placed in
sevents. On return from ENABLE, RECALL, and RECALL
l,events is the number of event words that the system has
placed in oevent8.

GETBl returns the contents of register Bl (address of calling subroutine
name) in register Sl.

Call from FORTAN:

I bl~TBl I
bl Calling subroutine name address (Bl)

GETLPP returns the lines per page from field JCLPP of the JCB in register
51.

Call from FORTRAN:

"l.pp=GETLPP()

tpp Lines per page (type integer)

ICEIL is an integer function which returns the integer ceiling of a
rational number represented as two integer parameters.

Call from FORTRAN:

i=ICEIL(j,l<.)

j The numerator of a rational number

k The denominator of a rational number

The value of the function i is the smallest integer larger than or equal
to ilk.

IGTBYT extracts a specified byte from a variable.
of the first word of the array are called byte 1.
is returned as an integer value between 0 and 255.

SR-0014 7-74

The high-order 8 bits
The value of the byte

I

I

Call from FORTRAN:

byte=IGTBYT(BtPing,poBition)

Btping Address of an array~ the array can be of any type except
CHARACTER.

pOBition Number of the byte to be extracted. Must be an integer
larger than or equal to 1. If position is less than or
equal to 0, the function value returned is -1. If
position is greater than 0, the function value is an
integer between 0 and 255.

IJCOM allows a job to communicate with another job. This feature is
available to all single-tasking jobs. Inter-job communication is
prohibited to multitasking jobs.

Call from FORTRAN:

CALL IJCOM(appay,lappay,lentpy,nentpy,status)

a-ppay First element of the integer parameter block array. An
installation-defined maximum number of parameter blocks
(I@MPBS) can be specified in array. The array is tapPaY
words long and each of the nent~y parameter blocks in it
is tent-py words long. See the ERPB table definition for a
description of a parameter block. The FORTRAN user ignores
LINK; the system links the entries together for the user.
In all cases, FONC, RID, and PLEN are required in each
parameter block and STAT is set in each parameter block by
the system.

SR-00l4

For the FORTRAN user, FUNC and STAT are literal strings (for
example, set FUNC to 'IJM$OPEN' to open a path. 'IJMS$BP'
in STAT means the path was busy).

'IJM$NOP' Subfunction is a no OPe

• IJM$REC' Subfunction marks the job as receptive. RCB
is required: all other words are ignored.

'IJM$OPEN' Subfunction initiates an attempt to open a
communication path with another job. HLEN,
TID, and NCB are required; all other words
are ignored.

7-75 I

I

nent~y

status

'IJM$ACCE ' Subfunction accepts a request from another
job to open communication. TID~ HLEN, and
NCB are required; all other words are ignored.

I IJM$REJE I Subfunction rejects a request from another
job to open communication. TID is required;
all other words are ignored.

'IJM$SNDM' Subfunction sends a message to another job.
NCB~ TID, BADD and BLEN are required; all
other words are ignored.

'IJM$SNDL' Subfunction sends a message to an attached
job's logfile. This is a privileged
function. TID, OVR, FCS~ FCU, CLS and BAnD
are required; all other words are ignored.

'IJM$CLOS' Closes a communication path. Either NCB and
TID or neither are required; all other words
are ignored. If NCB and TID are specified
only the path determined by RID and TID is
closed; otherwise all communication paths
with RID are closed.

'IJM$END' Subfunction marks the job as not receptive.
All other words are ignored. Existing
communication paths are not affected.

Length of array; integer variable set by the user.

Length of each parameter block entry in array; integer
variable set by the user.

Number of parameter blocks in array; integer variable set
by the user. Default is 1.

Status; integer variable set to a if no errors occurred.
If status is nonzero, STAT contains the error code. If
multiple parameter blocks are used~ all STAT fields must be
examined if status is nonzero.

INSASCI% inserts ASCII parameters into a message. Insertion is
controlled by the Message Control Table (MCT).

Call from CAL:

CALLV INSASCI%

SR-OOI4 7-76 I

Entry:
(51) Message number, used as an offset into the MeT to select the

entry (message) to be processed.
(S2)

(53)

Base address of parameters to be inserted. Parameters must
be in the order defined by the parameter control entry
(PCB). Parameters can span words, and each parameter is
assumed to be right-justified. See figures 7-2 and 7-3.
Base address of the MCT. The format of the MCT is shown in
figure 7-4.

Exit:
The message assembled in the destination buffer, unless the message
number is out of range or the MCT is improperly defined, in which
case, error message SLOOO is issued and the routine aborted

Entry (one per variation in message format):

o 8 16 24 32 40 48 56 63
I NP 11111111111111111111111111111111111 PCA

Figure 7-2. Parameter COntrol Table

Field Bits Deser iption

PCNP 0-7 Number of parameters to be inserted

PCPCA 40-63 Address of parameter control entry (PCE)

Entry (one per parameter):

o 8 16 24 32 40 48 56 63

'VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII 5W SB LEN I
Figure 7-3. Parameter control entry

Field Bits Description

PCSW 40-45 Starting word in text (0, 1, •••)

PCSB 46-51 Starting bit in starting word (0 ••• 63)

PCLEN 52-63 Length in bits (maximum is 64 bits)

SR-0014 7-77 I

Header:
0 8 16 24 32 40 48 56 63

I NM I DBA 1//////1 PCA I
Entry:

0 8 16 24 32 40 48 56 63

I pco 1//////1/1//////1/////////11 IMWL I MWA I
Figure 7-4. Message COntrol Table

Field Bits Description

MCNM 0-7 Number of messages defined in MeT

MCDBA 8-31 Address of buffer in which to assemble message

MCPCA 40-63 Address of Parameter Control Table (PCT)

MCPCO 0-7 Offset into PCT; selects desired entry.

MCMWL 36-39 Message length in words

MCMWA 40-63 Message address in words

JNAME returns job name.

Call from FORTRAN:

name-JNAME(result)

name Job name; left-justified with trailing blanks.

resuLt Returned job name

LGO loads an absolute program from a local dataset containing the binary
image as the first record. The loaded program is then executed. Control
does not return to LGO.

call from CAL:

Entry:
(Sl)

SR-0014

Dataset name containing the absolute load module

7-78 I

Call from FORTRAN:

CALL LGO('dn'L)

dn Dataset name containing the absolute load module

LOC returns memory address of specified variable or array_

Call from FORTRAN:

add~eSBaLOC(arg)

add:-N~S8 Argument address

arg Argument whose address is to be returned

LOGECHO writes the last line formatted by $WFD as a message to the $LOG
file.

Call from FORTRAN:

Entry:
A WRITE or PRINT statement has previously been executed in a
FORTRAN program, or a WRITE or OUTPUT statement has been executed
previously in a SKOL program, so that the characters written still
remain in $WFD's local buffer. The character string should end
with a period. The first period encountered ends the message.

Exit:
The message has been written to $LOG (using REMARK2) unless $WFD's
buffer contains nothing but blanks after the print control
character in the buffer.

MEMORY determines or changes a job's memory allocation and/or mode of
field length reduction.

SR-0014 7-79 I

I

Call from FORTRAN:

CALL MEMORY (code, vaLue)

oode Determines what information or action is requested
(blank-filled).

IUC' vatue specifies the number of words to be added to (if
value is positive) or subtracted from (if value is
negative) the end of the user code/data area.

'FL' va~ue specifies the number of words of field length to
be allocated to the job. If FL is specified and vatue
is not, the new field length is set to the maximum
allowed the job.

'USER' The job is put in user-managed field length reduction
mode. vatue is ignored.

'AUTO- The job is put in automatic field length reduction mode.
vaLue is ignored.

'MAXFL 1 The maximum field length allowed the job is returned in
vatue.

'CURFL' The current field length is returned in value.

'TOTAL' The total amount of unused space in the job is returned
in vatue.

vatue An integer value or variable when oode is 'UC' or 'FL'.
An integer variable that is to contain a returned value if
code is 'CURFL', 'MAXFL 1 , or 'TOTAL'.

Memory can be added to or deleted from the end of the user code/data area
by USin9 the 'UC' code. If the user code/data area is expanded, the new
memory is initialized to an installation-defined value.

The job 1 s field length can be changed by using the 'FL' code. The field
length is set to the larger of the requested amount rounded up to the
nearest multiple of 512 decimal words or the smallest multiple of 512
decimal words large enough to contain the user code/data, LFT, DSP and
buffer areas. The job is placed in user-managed field length reduction
mode for the duration of the job step.

The job1s mode of field length reduction can be changed by using either
the 'USER' or 'AUTO' code. When 'USER' code is specified, the job is
placed in user mode until a subsequent request is made to return it to
automatic mode. When AUTO code is specified, the job is placed in

SR-OOl4 7-80 I

automatic mode and the field length is reduced to the smallest multiple
of 512 decimal words that can contain the user code/data, LFT, DSP, and
buffer areas.

The job's maximum or current field length can be determined by the
'MAXFL' or 'CURFLI code. The total amount of unused space in the job can
be determined by the 'TOTAL' code.

The job is aborted if filling the request would result in a field length
greater than the maximum allowed the job. The maximum is the smaller of
the total number of words available to user jobs minus the job's JTA or
the amount determined by the MFL parameter on the JOB statement.

Examples:

CALL MEMORY ('FL ')

The job's field length is set to the maximum allowed the job and the job
is placed in user mode for the duration of the job step.

CALL MEMORY (, AUTO t)

The job's field length is reduced to a minimum and the job is placed in
automatic mode.

CALL MEMORY('UC',-5)
CALL MEMORY ('UC' , IVAL)

where IVAL is -5

The job's user code/data area is reduced by five words.

NACSED returns edition number for permanent dataset just accessed by CALL
ACCESS(DN=dn).

Call from FORTRAN:

I ~NACSED () I
ed Edition number in binary form

SR-0014 7-81 I

I

OPTION changes the user-specified options for a job.

call from FORTRAN:

CALL OPTION (['LPP'L, '45'L] [,'STAT', {'ONI }])
'OFP'

OVERLAY loads overlays and transfers to the overlay address (see CRAY-oS
Version 1 Reference Manual, publication SR-OOll, for details of the
OVERLAY routine).

Call from FORTRAN:

dn Dataset in which overlay resides

OVerlay level 1 (LEVI)

Overlay level 2 (LEV2)

Optional message: RECALL-DON IT RELOAD IF IN MEMORY. If
the overlay is already in memory, use the overlay that is
already there.

PERF provides an interface to the hardware performance monitor feature on
the CRAY X-MP mainframe. Thirty-two counters are available, arranged
into 4 groups of 8 counters each. (See table 7-1.) Only one counter can
be accessed at a time.

Call from FORTRAN:

CALL PERF (func, group, buffer, bull)

func

SR-OOl4

Performance monitor function. Either an integer function
number (PM$xxx, where xxx is the function name), or one
of the following ASCII strings, left-justified, and
zero-filled.

Enable performance monitoring.
Disable performance monitoring.

'ON'L
'OFF'L
'REPORT'L
'RESET'L

Report current performance monitor statistics.
Report current statistics, then clear
performance monitor tables.

7-82 r

I

buffe!'

bufl

Performance monitor group number (integer). See table 7-1
for group numbers and their corresponding counters and
counter contents.

First-word address of a performance monitor request
buffer.

Number of words in the buffer array

The PERF request block format contains a fixed header and a variable
number of subblocks following the header. The first three words of the
header are set in subroutine PERF before calling the system, while the
remaining words in the header are returned by the system.

The words in the block header allow one to analyze the information
returned in the subblocks without the use of constants, allowing programs
to continue to execute correctly when the contents of the header or
subblocks change.

Block header format:

o . .
11

Field

HMRSF

HMRGN

HMRNW

HMRNU

HMRBH

HMRTS

HMRCT

HMRCP

HMRGE

HMRNC

HMRNG

HMRLE

SR-0014

o 8

o

1

2

3

4

5

6

7

8

9

10

11

16 24 32 40 48 56

Block header

Description

Subfunction (PMON,PMOFF,PMREP,PMRST)

Group number (0 through 3) for PM$ON

Length of request block

Number of words used

Number of words in block header

Set nonzero if block too small

Offset to first group counter in subblock

Offset to first group accounted cycles

Length of counter group entry in subblock

Number of counters in each group entry

Number of groups in each subblock

Length of subblock entries

7-83 I

I

Timing subblocks are returned for every REPORT and RESET call. Each
subblock contains hardware performance monitor data from a single cos user
task.

The address of the first timing subblock is at (BLOCK FWA)+(contents of
block header field HMRBH), with the next following (contents of block
header field HMRLE) word after the first. Subblocks end when the offset
to the next block would start after (contents of block header field HMRNU)
words.

Each subblock contains a 2-word header, with fields HMTN and HMGRP. HMTN
is the COS user task number associated with the subblock.

HMGRP is the last hardware performance monitor group number active for the
subblock.

Within the subblock, there are (contents of block header field HMRNG)
performance monitor groups reported. Each group report consists of two
fields: counters associated with the group, and the number of CPU cycles
that were accounted for while the specified monitor was active. The
offset to the first group counter is (contents of block header field
HMRCT) words into the subblock; there are (contents of block header field
HMRNC) counters for each performance monitor group. The offset to the
first group's accounted CPU cycle is at (contents of block header field
HMRCP).

Timing groups within a subblock follow each other by (contents of block
header field HMRGE) words.

Subblock format:

0
0

I .
37

8 16 24 32 40 48 56

Subblock

Field Description

HMTN o User task number

HMGRP 1 Latest performance monitor group number

HMCNTO 2-9 Group 0, counter 0 through 7

HMCCYO 10 Group 0 accounted CP cycles

IIMeN'!'l 11-18 Group 1, counter 0 through 7

SR-0014 7-84 I

Field Word Description

HMCCYI 19 Group 1 accounted CP cycles

HMCNT2 20-27 Group 2, counter a through 7

HMCCYI 28 Group 1 accounted CP cycles

HMCNT3 29-36 Group 3, counter 0 through 7

lIMCCY1 37 Group 1 accounted CP cycles

$RBN and RBN convert trailing blanks to nulls.

Call from CAL:

Entry:
(81)

Exit:
(81)

Argument to be converted

Result of conversion

Call from FORTRAN:

noblanks=RBNCblanks}

blanks Argument to be converted

noblanks Argument after conversion

$RNB and RNB convert trailing nulls to blanks.

SR-0014

NOTE

FORTRAN programs using RBN or RNB must specify the
function to be type integer.

7-85 I

g:roup

o

1

2

3

I SR-0014

Table 7-1. Performance counter group descriptions

Performance
Counter Description

Number of:
o Instructions issued
1 CPs holding issue
2 Fetches
3 I/O references
4 CPU references
5 Floating-point add operations
6 Floating-point multiply operations
1 Floating-point reciprocal operations

o
1
2
3
4
5
6
1

o
1
2
3
4
5
6
1

o
1
2
3
4
5
6
7

Hold issue conditions:
Semaphores
Shared registers
A registers and functional units
S registers and functional units
V registers
V functional units
Scalar memory
Block memory

Number of:
Fetches
Scalar references
Scalar conflicts
I/O references
I/O conflicts
Block references
Block conflicts
Vector memory references

Number of:
000 - 011 instuctions
020 - 131 instructions
140 - 151, 175 instructions
160 - 174 instructions
176, 117 instructions
Vector integer operations
Vector floating-point operations
Vector memory references

1-86 I

Call from CAL:

I CALLV $RNB

Entry:
(81) Argument to be converted

Exit:
(81) Result

Call from FORTRAN:

btanks~RNB(nobtanks)

btanks Argument after conversion

noblanks Argument to be converted

REMARK enters a message in the user and system logfiles preceded by a
I message prefix, tUT008 1 • REMARK allows a maximum of 71 characters.

Call from FORTRAN:

CALL REMARK(meBsage)

I mes8age Message terminated by a zero byte or a 7l-character message

REMARK2 enters a message in the user and system logfiles. REMARK2 allows
I a maximum of 79 characters including message 1D.

I

Call from FORTRAN:

CALL REMARK2(message)

message Message terminated by a zero byte or maximum of 79 characters

REMARKF enters a message in the user logfile. Up to 12 variables can be
passed in arguments 2 through 13. The variables must be of type integer,
real, or logical so that they occupy only one word each. The message is
prefixed by 'UT009' unless the caller supplies a prefix. The caller is
judged to have supplied a prefix if the characters Ib-b' where b=blank,
appear in columms 6 through 8 of the formatted message.

SR-OOl4 7-87 I

Sample FORTRAN calling sequences:

10030 FORMAT ('CAOOI - " 14, I errors')
ASSIGN 10030 TO LABEL
CALL REMARKF (LABEL, IERRCNT)

10770 FORMAT ('PODOl - ACCESS I, AS,A7,' ED=', 14, ':')
ASSIGN 10770 TO LABEL
CALL REMARKF (LABEL, DN(l), DN(2), ED)

Call from FORTRAN:

var

ivaI'

Variable containing the address of a format statement for
ENCODE

Address of variable

$SEGRES initializes execution of a segmented program.
$SEGCALL services intersegment subroutine calls in a segmented program.

These routines require the creation of a Segment Description Table (SDT)
whose address is stored in /$SEGRES/. Calls to these routines are made
through code modifications performed by SEGLDR. These routines should
not be called directly by a user program.

SSWITCH tests sense switch.

Call from FORTRAN:

CALL SSWITCH (8l.Jrlum, result)

8'llJnwn

result

SR-0014

Switch number (integer)

Value is I if switch value ranges from 1 to 6 and switch is
on. Value is 2 if switch value is less than 1 or greater
than 6 or if switch is off (integer).

7-88 I

SYSTEM makes requests of the operating system.

Call from FORTRAN:

fun~tion Executive request number

arg1 Optional argument (required by some requests)

arg2 Optional argument (required by same requests)

STATUS Status returned in SO (function dependent)

TR translates a string in place from one character code to another using
a user-supplied translation table. The same size characters are assumed.

Call from FORTRAN:

CALL TR(s,j,k,tab2e)

8

j

k

tab2e

First word of an array containing characters to be
translated

Byte offset within array s where the first character to
be translated occurs

Number of characters to be translated

Translation table

The translation table must be considered a 256-byte vector. As each
character to be translated is fetched, it is used as an index into the
translation table. The new value of the character is the contents of the
translation table byte addressed by the old value. (The first byte of
the translation table is considered to be byte 0.)

WFBUFFER returns a character from the output buffer belonging to the $WFD
module. (This buffer contains the last line formatted by ENCODE, WRITE,
or PRINT. Each word in the buffer contains a character in FORTRAN Rl
format.)

SR-0014 7-89 I

I

Call from CAL:

CALL WFBUFFER, (artg)

Entry:
arg

Exit:
(Sl)

Index of the desired character

Requested character right-justified, zero-filled

Users can call procedures from a CFT or CAL program, using the F$CSP
system call. FORTRAN users should use the SYSTEM routine with the
appropriate parameters. CAL users should set up the call parameters in
the proper registers and EX.

SR-0014 7-90 I

PASCAL SUBPROGRAMS 8

INTRODUCTION

Pascal subprograms are procedures and functions that reside in the Pascal
runtime library, $PSCLIB. Some of these subprograms are implicitly
called from Pascal programs. For example, the Pascal source statement

WRITE (10)

is translated into a call on P$WI. To explicitly call such a subprogram,
declare it at the beginning of the Pascal program with an external
directive. Each subprogram that can be explicitly called is listed with
its accompanying external directive.

Some of the Pascal subprograms are called from CAL only: their parameter
linkages are such that they cannot be called directly from Pascal
programs. Por details of Pascal program organization, refer to the
Pascal Reference Manual, CRI publication SR-0060.

P$$$HPAD

P$$$HPAD returns the address of the program1s heap control block, which
is the data area used by P$MEMRY, P$NEW ,nd P$DISP to control use of the
dynamic variable storage area. P$$$HPAD is used only within these
routines. No parameters are required.

FUNCTION P$$$HPAD: INTEGER; EXTERNAL:

Integer variable := P$$$HPAD

SR-0014 8-1 I

•

P$ABORT

P$ABORT calls P$OSDXP to abort the current job step. No parameters are
required.

PROCEDURE P$ABORT: EXTERNAL:

P$ABORT

P$BREAK

P$BREAK is used with P$DBP to perform data breakpoint checking for Pascal
programs. P$BREAK informs P$DBP of the address to be monitored. See the
Pascal Reference Manual, eRI publication SR-0060 for a detailed
description and examples of the use of data breakpoint checking.

PROCEDURE P$BREAK (VAR V: INTEGER: ISVAR: BOOLEAN); EXTERNAL;

Integer variable := address;

P$BREAK (integer variable, FALSE)

P$CALLR

P$CALLR returns the name of the current procedure's caller. No
parameters are required.

PROCEDURE P$CALLR (VAR CALLER: ALFA); EXTERNAL:

P$CALLR (aLfa variabLe)

SR-OOl4 8-2 I

P$CBV

P$CBV provides access to call-by-value routines from Pascal programs. It
takes a procedural parameter describing the call-by-value routine to be
called and an array parameter describing register contents to be in
effect when the routine is called. P$CBV returns the register contents
at the end of the call-by-value routine.

TYPE REGISTER = (AREG, SREG);
REGISTERS = ARRAY REGISTER, 0 •• 7 OF INTEGER,
VAR REGS: REGISTERS;
PROCEDURE call-by-value-routine; EXTERNAL;
PROCEDURE PSCBV (PROCEDURE P: VAR R: REGISTERS); EXTERNAL;

REGS := desired contents of registers;

P$CBV (call-by-value-routine, REGS)

P$CONNEC

P$CONNEC changes the COS filename (7-character maximum) to the alfa type
variable specified by STR. The change becomes effective only after a
call to P$RESET or P$REWRITE.

P is the file variable; STR is the new name for the file.

PROCEDURE P$CONNEC (VAR F:TEXT;STR:ALFA) ;EXTERNAL,

P$OONNBC (file name, aLIa stPing)

P$CONNEC implements the Pascal procedure CONNECT.

SR-0014 8-3 I

P$DATE

P$DATE calls P$OSDDT to obtain the current date in the form DD/MM/YY. An
ALFA variable to receive the current date should be passed as a parameter.

PROCEDURE P$DATE (VAR CURRDATE: ALFA) ~ EXTERNAL~

•

P'DATE (alfa variable)

P$DBP

Calls to P$DBP are generated by the Pascal compiler for modules compiled
with the BP+ option. P$DBP checks the contents of the word registered
with the P$BREAK routine. If they have changed since the last call to
P$DBP, a breakpoint message is written to SOUTo P$CBV is callable from
CAL only. See the Pascal Reference Manual, CRr publication SR-0060 for
more information on data breakpoint checking.

P$DEBUG

P$DEBUG (call by value only) produces and prints the runtime post-mortem
dump (pmd) and, depending on the value of Sl, takes one of the following
actions.

S1 < 0
81 in (0 •• 1000)
Sl > 1000

Continues execution
Performs an ENDP macro (same as halt)
Aborts

The Pascal-callable entry name is P$RTMSG.

P$DISP

P$DISP deallocates the storage area at the address indicated by the
pointer variable. Since P$DI8P performs the inverse operation of P$NEW,
the word at PTR-l must contain the same linkage information put there
previously by procedure P$NEW. The pointer PTR must conform to the
limits of the heap.

SR-0014 8-4 I

I

P$DI5P attempts to meld the newly freed area with an already existing
free area. Should no meld be possible, the routine inserts the area into
the free chain in ascending address order. Storage acquired from the
system by exceeding the minimum heap size is not returned to the system.

PROCEDURE P$DI5P (PTR:POINTER) :EXTERNAL~
•

P$DISP (pointer variabLe)

P$DISP implements the Pascal procedure DISPOSE.

P$DIVMOD

P$DIVMOD (call by value from CAL only) performs a single-precision
integer divide and modulus, returning the quotient in register 51 and the
remainder in register 52.

P$DIVMOD implements the Pascal procedure DIV.

P$ENDP

P$ENDP executes a normal program exit. Processing resumes with the next
job control statement if reprieve processing is not enabled for normal
job step termination. No parameters are required.

PROCEDURE P$ENDP:EXTERNAL:

P$ENDP

5R-OOl4 8-5 I

P$EOF

P$EOF returns the end-of-file status for a Pascal text/record file.

FUNCTION P$EOF (VAR F:FILE OF type):BOOLEAN~EXTERNAL~

Boolean vaPiable:=P$EOF <fite name)

P$EOF implements the Pascal procedure EOF.

P$EOLN

P$EOLN returns the end-of-line status for a Pascal text file.

FUNCTION P$EOLN (VAR F:TEXT) :BOOLEAN~EXTERNAL:
•

Boolean vaPiable:=P$EOLN (file name)

P$EOLN implements the Pascal procedure EOLN.

P$GBT

P$GET reads a logical record from file F and then sets the corresponding
status bits in the file variable to reflect the current file status
before returning to the caller.

For files randomly accessed, the file is pre-positioned. For TEXT files,
P$GET calls P$OSDRC to fill the buffer.

For the FILE OF type clause, P$GET calls P$OSDRW. The user's variable
serves as the I/O buffer by the setting of the buffer address and length
with the statement:

USER VARIABLE : = FILE VARIABLE ;

SR-OOl4 8-6 I

P$GET implements the Pascal procedure GET.

PROCEDURE P$GET (VAR F:FILE OF type);EXTERNAL;

P$GET (file variable)

P$HALT

P$HALT stops program execution and invokes the runtime routine P$DEBUG,
which provides a post-mortem dump.

PROCEDURE P$HALT;EXTERNAL;

P$HALT

P$HALT implements the Pascal procedure HALT.

P$J"l'IME

P$JTlME calls P$OSDJT to obtain the number of CPU seconds used by the
job. No pardIDeters are required.

TYPE STRING = PACKED ARAAY (I.BO) OF CHAR;
FUNCTION P$JTlME: REAL: EXTERNAL~

Real variable := P$JTlME

SR-0014 8-7 I

I

P$LOGMSG

p$LOGMSG writes a message of up to 80 characters to the logfile. The
character string must be truncated by a 0 byte or be 80 characters long.

TYPE STRING = PACKED ARRAY [1.80] OF CHAR;
PROCEDURE p$LOGMSG (STR:STRING)~EXTERNAL;

P$LOGMSG ('chal'aotel' stl'ing')

P$LSTREW

P$LSTREW is an alternate entry point into P$REWRITE which rewrites a file
without positioning it.

PROCEDURE P$LSTREW (VAR F: TEXT); EXTERNAL;

P$LSTREK (textfile)

P$MEMRY

P$MEMRY obtains information about the heap in which dynamic variables are
allocated. It takes an integer parameter describing the aspect of the
heap to be returned.

FUNCTION P$MEMRY (REQUEST: INTEGER): INTEGER; EXTERNAL;

•

Integer variable := P$MEMRY (request code)

SR-0014 8-8 I

Request codes for P$MEMRY:

Request Action

1 QUERY SIZE OF HEAP
2 QUERY HIGH WATER MARK
3 QUERY LOW WATER MARK
4 QUERY NUMBER OF ALLOCATED HEAP AREAS
5 QUERY NUMBER OF TIMES HEAP HAS GROWN
6 QUERY NUMBER OF TIMES HEAP HAS SHRUNK
7 QUERY NAME OF LAST HEAP ROUTINE USED
8 QUERY NAME OF LAST ROUTINE TO CALL A HEAP ROUTINE
9 QUERY LAST HEAP ITEM ALLOCATED/DEALLOCATED/ETC.

10 QUERY SIZE OF LARGEST FREE BLOCK
11 QUERY AMOUNT HEAP CAN SHRINK
12 QUERY AMOUNT HEAP CAN GROW
13 QUERY HEAP F.W.A.
14 QUERY HEAP L.W.A.
15 QUERY NUMBER OF TIMES HPALLOC CALLED
16 QUERY NUMBER OF TIMES HPDEALLC CALLED
1 7 DO A HEAP SHRINK
18 DO A HEAP INTEGRITY CHECK
19 DUMP HEAP STATISTICS TO SOUT
20 DUMP HEAP CONTROL WORDS TO $OUT{ALL BLKS)
21 DUMP HEAP CONTROL WORDS TO $OUT(FREE BLKS VIA NEXT)
22 DUMP HEAP CONTROL WORDS TO $OUT{FREE BLKS VIA LAST)

P$MOD

P$MOD (call by value from CAL only) returns the modulus in register Sl.
P$MOD implements the Pascal procedure MOD.

P$NEW

P$NEW allocates the storage area at the address indicated by the pointer
variable. SIZE contains the number of words to be allocated. The
contents of the word preceding the user area contains linkage information
for use by the P$NEW and P$DISP routines. Upon completion of P$NEW, PTR
contains the address of the allocated user area. This area is
zero-filled by the P$NEW routine.

SR-0014 8-9 I

I

PROCEDURE P$NEW (VAR PTR:POINTER~SIZE:INTEGER)~EXTERNAL;

P$NEW (pointer variable, integer variable)

P$NEW implements the Pascal procedure NEW.

P$OSDBS

P$OSDBS is an operating system dependent routine that rewinds a dataset.
It takes the DSP offset of the dataset to be rewound as a parameter.

PROCEDURE P$OSDBS (DSP: INTEGER); EXTERNAL;

P$OSDBS (DSP offset of dataset)

P$OSDDT

P$OSDDT is an operating system dependent routine that returns the current
date in the form DD/MM/YY. An ALFA variable to receive the current date
should be passed as a parameter.

PROCEDURE P$OSDDT (VAR CURRDATE: ALFA) 7 EXTERNAL;

P$OSDDT (alfa variable)

SR-0014 8-10 I

I

P'OSDEP

P'OSDEP is an operating system dependent routine that opens a dataset for
processing. It takes the dataset name as a parameter and returns a DSP
offset (which is used to describe the dataset to the other P$OSDxx
routines that perform I/O).

FUNCTION P$OSDEP (DSN: ALFA): INTEGER; EXTERNALJ

•

Integer variable := P$OSDEP ('dataset name')

P$OSDJT

P$OSDJT is an operating system dependent routine that returns the number
of CPU seconds used by the job. No parameters are required.

FUNCTION P$OSDJT: REAL; EXTERNAL;

Real variable := P$OSDJT

P$OSDLM

P$OSDLM is an operating system dependent routine that writes a message to
the logfile (SLOG). The logfile message is terminated by a 0 byte (ASCII
NUL) or the 80th character, whichever comes first.

TYPE STRING = PACKED ARRAY 1 •• 80 OF CHAR;
PROCEDURE P$OSDLM (STR: STRING); EXTERNAL;

•
•

P,OSDLM ('character string')

SR-0014 8-11 I

I

P$OSDPR

P$OSDPR is an operating system dependent routine that sets the prompt
string for the interactive dataset SIN.

PROCEDURE P$OSDPR (PROMPT: ALFA) ~ EXTERNAL;

•

P$OSDPR (DSP offset of dataset, 'prompt string')

PSOSDQI

P$OSDQI is an operating system dependent routine that returns TRUE if the
dataset whose DSP offset is passed as a parameter is an interactive
dataset.

FUNCTION P$OSDQI (DSP: INTEGER): BOOLEAN; EXTERNAL;

Boolean variable := P$OSDQI (OSP offset of dataset)

PSOSDRC

P$OSDRC is an operating system dependent routine that reads a character
record from a dataset into a buffer. The DSP offset of the dataset to be
read, the address and length of the buffer, and an integer variable to
receive the return code are passed as parameters. After the call to
P$OSDRC. the return code variable indicates the dataset's status as
follows:

Returned value 0 Implies normal return; length of record is (-

SR-0014

returned value)
= 0 EOF, EOD, or null record
= 1 Insufficient space in buffer
= 2 Unrecoverable hardware error

8-12 I

I

CONST MAXBUFFER = buffer length;
TYPE BUFFER = ARRAY 1 •• MAXBUFFER OF CHAR;
VAR BUF: BUFFER;
PROCEDURE P$OSDRC (DSP: INTEGER: VAR BUF: BUFFER;
BUFLENGTH: INTEGER; VAR RETURN INFO : INTEGER); EXTERNAL;

P$OSDRC (DSP offset of dataset, BUF, MAXBUFFER, integer variable)

P$OSDRP

P$OSDRP is an operating system dependent routine that enables the job to
perform reprieve processing. It takes a procedural parameter describing
the routine to receive control in the event of a reprieve, a buffer area
to hold the exchange package, and a mask value selecting the types of
errors to be reprieved as parameters. See the Macros and Opdefs
Reference Manual, CRI publication SR-0012 for a description of allowable
mask values.

TYPE EXCHANGE PACKAGE = ARRAY 1 •• 40 OF INTEGER;
VAR EP: EXCHANGEPACKAGEi

PROCEDURE reprieve routine;
PROCEDURE P$OSDRP (PROCEDURE P; EP: EXCHANGEPACKAGE;
MASK: INTEGER);

P$OSDRP (reprieve routine, EP, mask)

P$OSDRW

P$OSDRW is an operating system dependent routine that reads a record from
a dataset into a buffer. The DSP offset of the dataset to be read, the
address and length of the buffer, and an integer variable to receive the
dataset's status are passed as parameters. The status codes returned by
P$OSDRW are identical to those returned by P$OSDRC above.

SR-OOl4 8-13 I

I

CONST MAXBUFFER = buffer length;
TYPE BUFFER = ARRAY 1 •. MAXBUFFER OF INTEGER;
VAR BUF: BUFFER;
PROCEDURE P$OSDRW (DSP: INTEGER; VAR BUF: BUFFER;
BUFLENGTH: INTEGER; VAR RETURNINFO: INTEGER); EXTERNAL;

P$OSDRW (DSP offset of dataset, BUF, MAXBUFFER, integer
variable)

P$OSDTM

P$OSDTM is an operating system dependent routine that returns the current
date in the form HH:MM:SS. An ALFA variable to receive the current time
should be passed as a parameter.

PROCEDURE P$OSDTM (VAR CURRTlME: ALFA); EXTERNAL;

P$OSDTM (aJfa variable)

P$OSDWC

P$OSDWC is an operating system dependent routine that writes a character
record to a dataset. It takes the DSP offset of the dataset and a
buffer's address and length as parameters.

SR-0014 8-14 I

I

CONST MAXBUFFER = maximum buffer length;
TYPE BUFFER = ARRAY 1 •• MAXBUFFER OF CHAR;
VAR BUF: BUFFER;
PROCEDURE P$OSDWC (DSP: INTEGER;

BUF: BUFFER;
BUFLENGTH: INTEGER); EXTERNAL;

•
•

P$OSDWC (DSP offset of dataset, BUF, number of characters in buffer)

P$OSDWF

P$OSDWF is an operating system dependent routine that writes an end of
file mark to the dataset whose nsp offset is passed as a parameter.

PROCEDURE P$OSDWF (DSP: INTEGER): EXTERNAL 1

•

P$OSDWF (DSP offset of dataset)

P$OSDWR

P$OSDWR is an operating system dependent routine that writes a record to
a dataset. The nsp offset of the dataset and the buffer's address and
length are passed as parameters.

SR-0014 8-15 I

I

CONST MAXBUFFER = length of buffer:
TYPE BUFFER = ARRAY 1 •• MAXBUFFER OF INTEGER;
VAR BUF: BUFFER:
PROCEDURE P$OSOWR (DSP: INTEGER;

BUF: BUFFER:
BUFLENGTH: INTEGER) 1 EXTERNAL:

P$OSDWR (DSP offset of dataset, BUF, length of buffer)

P$OSDXP

P$OSDXP is an operating system dependent routine that either terminates
the program normally or aborts the current job step, depending on whether
its Boolean parameter is FALSE or TRUE, respectively.

PROCEDURE P$OSDXP (DOABORT: BOOLEAN); EXTERNAL;

PSOSDXP (TRUE or FALSE)

P$PAGE

P$PAGE writes a page-eject function to the file specified by F.

PROCEDURE P$PAGE (VAR F:TEXTFILE);EXTERNAL;
•

P$PAGE (fi te name)

P$PAGE implements the Pascal procedure PAGE.

SR-0014 8-16 I

P$PUT

P$PUT writes a logical record from the file specified by F and then sets
the corresponding status bits in the file variable to reflect the current
file status before returning to the caller.

For files randomly accessed, the file is pre-positioned. For TEXT files,
P$PUT pads the line to the end of the current word with blanks and then
calls P$OSDWC.

For the FILE OF type clause, P$PUT calls P$OSDWR.

PROCEDURE P$PUT (VAR F:FILE OF type}:EXTERNAL;

P$PUT (file variable)

P$PUT implements the Pascal procedure PUT.

p$RB reads a 1- to 5-character Boolean argument from the text file F.
Leading blanks are ignored. Arguments can be upper or lower case.

PROCEDURE P$RB (VAR F:TEXT;VAR BOOL:BOOLEAN) ;EXTERNAL;

•

p$RB (fite name,Bootean apgument)

P$RCH

P$RCH returns, right-justified, the next character in the file. File
status functions P$EOF and P$EOLN are set where applicable. If P$EOLN is
set, the next record is read before return.

SR-0014 8-17 I

I

PROCEDURE P$RCH (VAR F:TEXT:VAR CH:CHAR):EXTERNAL;

P$RCH (file va~iable,character variable)

P$READ

p$READ performs a call to the procedure P$GET and then moves the file
buffer to a user variable.

PROCEDURE P$READ (VAR F:TEXT;VAR X:USERVARIABLE) iEXTERNAL:

p$READ(file variable, variable}

P$READLN

P$READLN fills the user text file buffer with the next record in the file.

PROCEDURE P$READLN (VAR F:TEXT);EXTERNAL;

p$READLN (file variable)

P$READLN implements the Pascal procedure READLN.

SR-0014 8-18 I

P$REPRV

P$REPRV allows a program to trap certain runtime errors. The errors to
be trapped are selected by the bit mask that is passed as a parameter.
See the Macros and Opdefs Reference Manual, CRI publication SR-0012 for a
description of allowable mask values.

PROCEDURE P$REPRV (MASK: INTEGER); EXTERNAL 1

P$REPRV (mask selecting errors to be reprieved)

P$RESET

P$RESET resets the specified file. If the file is not open, P$OPEN is
called to open the file for reading.

Upon exit from P$RESET, the file pointer is positioned at the beginning
of the file. P$RESET implements the Pascal procedure RESET.

PROCEDURE P$RESET (VAR F:FlLE OF type) ;EXTERNAL~

P$RESET (lite vaPiabte)

P$REWRIT

P$REWRIT resets the specified file. If the file is not open, P$OPEN is
called to open the file for writing_

Upon exit from P$REWRIT, the file pointer is positioned at the beginning
of the file.

SR-0014 8-19 I

PROCEDURE P$REWRIT (VAR F:FILE OF type);EXTERNAL;
•

P$REWRXT (fite vaPiable)

P$REWRIT implements the Pascal procedure REWRITE.

p$RF performs a character-string read and returns the next signed real
number in the file. Preceding spaces and end-of-lines are skipped.

PROCEDURE P$RF (VAR P:TEXT;VAR R:REAL) iEXTERNAL;

p$RF (file variabte,peal variable)

P$RI returns the next signed integer in the file. The range of the
integer read is limited to -MAXINT<integer<MAXINT.

Preceding spaces and end-of-lines are skipped. The character sequence
read must conform to the proper signed-integer syntax.

PROCEDURE P$RI (VAR P:TEXT;VAR INT:INTEGER);EXTERNAL:

P$RI (file vapiabte,integep vapiabZe)

SR-00l4 8-20 I

P$ROUND

P$ROUND (call by value from CAL only) returns in register Sl the rounded
value of the argument as an integer. P$ROUND implements the Pascal
procedure ROUND.

P$RSTR

P$RSTR reads the number of characters specified by WIDTH and places them
in the packed character string specified by STR. The first character is
right-justified in the first word. If the length of the current line
exceeds the character string, the file pointer is left in mid-record. If
the current line is exhausted by the read, left-over positions in the
character string are blank-filled on the right and the function P$EOLN is
set.

PROCEDURE P$RSTR (VAR F:TEXT;STR:STRING:WIDTH:INTEGER) ;EXTERNAL;

•

P$RSTR (file variabte,chaFacteF stping,integer vaPiable)

P$RTIME

A call to P$RTlME is generated by the
program compiled with the BT+ option.
by PSTLMBR and prints a timing report
required.

PROCEDURE P$RTIME; EXTERNAL;

P$RTIME

Pascal program at the end of a main
It takes the statistics collected

to $OUT. No parameters are

SR-OOI4 8-21 I

P$RTMSG

P$RTMSG is the Pascal-callable entry name for the subprogram P$DEBUG.
P$RTMSG produces and prints the runtime post-mortem dump (prod) and,
depending on the value of X, takes one of the following actions.

X < a
X in (0 •• 1000)
X > 1000

Continues execution
Performs an ENDP macro (same as halt)
Aborts

PROCEDURE P$RTMSG (X:INTEGER);EXTERNALJ

P$RTMSG

P$RUNTIM

P$RUNTIM (call by value from CAL only) initializes the Pascal environment
with the following procedures:

1. Creates a heap of size Al + A2 words
2. Allocates space for the stack from the heap
3. Initializes P$$$HEAP structure
4. Opens the input file and initializes the variable
5. Opens the output file and initializes the variable

The input and output files are not initialized if the address given for
their variables is zero. P$RUNTIM initializes a fixed-extent stack.
However, the heap is extendable to the memory limit. See procedures
P$RESET and P$REWRIT for information on opening Pascal textfiles. See
procedures P$NEW and P$DISP for information on using the Pascal heap.

At the time of the call, the registers specified contain the following
information.

Al Heap size in words
A2 Stack size in words
A3 Address of input file variable
A4 Address of output file variable

SR-0014 8-22 I

I

P$SFRAME

P$SFRAME returns a pointer to the base of the stack frame of the
calling procedure. No parameters are required.

FUNCTION p$SFRAME: INTEGER; EXTERNAL ~

•

Integer variable :a P$SFRAME

P$TIMB

P$TIME calls p$OSDT.M to obtain the current time in the form HH:MM:SS. An
ALFA variable to receive the current time should be passed as a parameter.

PROCEDURE P$TIME (VAR CURRTIME: ALFA); EXTERNAL;

PSTDKE (alfa variable)

PSTINER

Calls to P$TIMER are generated by the Pascal compiler for modules
compiled with the BT+ option. P$TlMER collects runtime statistics to be
printed later by P$RTlME. P$TIMER is callable only from CAL.

PSTRACE

P$TRACE is called by P$RTMSG to produce a stack walkback. No parameters
are necessary_

SR-0014 8-23 I

PROCEDURE P$TRACE; EXTERNAL:

P$TRUNC

P$TRUNC (call by value from CAL only) truncates the value of the argument
and returns the truncated value in register Sl. P$TRUNC implements the
Pascal procedure TRUNC.

P$WB writes a Boolean argument to a text file.

PROCEDURE P$WB <VAR F:TEXT;BOOL:BOOLEAN;W:INTEGER) ;EXTERNAL;

PIWB <fiLe vapiabte,BooLean vaPiabLe,integep width)

P$WCH

P$WCH writes the character that is right-justified in eH as the next
character in the file.

PROCEDURE PSWCH (VAR F:TEXT;CH:CBAR);EXTERNALi

P$WCB (fiLe vapiabte,charaatep vaPiabLe)

SR-0014 8-24 I

P$WEOF

P$WEOF calls P$OSDWF to write an end of file mark on the textfile passed
as a parameter.

PROCEDURE P$WEOF (VAR T: TEXT); EXTERNAL;

P$WEOF (textfile)

P$WI writes the integer with the width specified by FIELDW, to the file.

PROCEDURE P$WI (VAR F:TEXT;INT:INTEGER;FIELDW:INTEGER);EXTERNAL:

p$WI(fiLe variabLe,integer variabLe,integer width)

P$WO writes the octal representation of an integer value to a textfile.
It takes a textfile, an integer value, and the desired field width as
parameters.

PROCEDURE p$WO (VAR T: TEXT; IVAL, WIDTH: INTEGER); EXTERNALi

p$WO (textfile, integer value, field width)

SR-0014 8-25 I

P$WRFIX

P$WRFIX writes the real number to a Pascal text file accordin9 to the
rules for fixed-point representations.

PROCEDURE P$WRFIX (VAR F:TEXTJE:REALJW,FR:INTEGER) ~EXTERNALJ

•

P$WRFIX (file variable,real variable, integer width,
integer fraction digits)

P$WRFIX implements the Pascal fixed-point write procedure.

P$WSFLT

P$WRFLT writes the real number to a Pascal text file according to the
rules for floating-point representations.

PROCEDURE P$WRFLT (VAR F:TEXT;E:REAL;W:INTEGER) ;EXTERNAL;

•

P$WRFLT (file variable,real variable, integer width)

P$WRITE

P$WRlTE moves the user variable to the file buffer and performs a call to
the procedure P$PUT.

PROCEDURE P$WRITE (VAR F:TEXT;X:USERVARIABLE);EXTERNAL;

P$WRITE (file variabte,variable)

P$WRlTE implements the Pascal procedure WRITE.

SR-0014 8-26 I

P$WRITLN

P$WRITLN causes a line to be written to the textfile passed as a
parameter. PSWRITLN implements the standard Pascal procedure WRITELN.

PROCEDURE P$WRITLN (VAR T: TEXT): EXTERNAL:

•

P$WRITLN (textfile)

P$WSTR

P$WSTR writes the packed character string STRING to the file F. The
first character is right-justified in the first word. The length and
width of the character string are specified by LEN and FIELDW,
respectively.

PROCEDURE P$WSTR (VAR F, TEXT; STRING: CHARSTRING; LEN, WIDTH:
INTEGER)' EXTERNAL;

P$WSTR(F, STRING, LEN, FIELDW)

P$WSTR implements the Pascal character string write procedure.

SR-0014 8-27 I

MULTITASKING SUBPROGRAMS

Multitasking subprograms create and synchronize parallel tasks within
programs. They are grouped in the following categories:

• Task routines

• Lock routines

• Event routines

• Utility routines

For further information on using these subprograms in a multitasking
environment, see the Multitasking User's Guide, CRl publication SN-0222.

TASK ROUTINES

Task routines handle tasks and task-related information.

TSKSTART initiates a task.

Call from FORTRAN:

CALL TSKSTART (task-aPpay,name[,list])

task-apl'ay
Task control array (described under subtitle task control
array) used for this task. Word 1 must be set. WOrd 3, if
used, must also be set. On return, word 2 is set to a
unique task identifier that must not be changed by the
program.

name External entry point at which task execution begins. This
name must be declared EXTERNAL in the program or subroutine
making the call to TSKSTART.

SR-OOI4 9-1 I

9

NOTE

CFT does not allow a program unit to use its own name
in this parameter.

list (optional parameter)
List of arguments being passed to the new task when it is
entered. This list can be of any length. See the
Multitasking User's Guide, CRI publication SN-0222, for
restrictions on arguments included in list.

Call from CAL:

CALL TSKSTART,(task-appay name,A register,list),USE=A7

task-appay name
Control array (described under subtitle task control array)

A register
An A register containing the parcel address of the routine
to multi task

list List of arguments passed to the new task. No limitations
on the length of the list.

Example:

C

PROGRAM MULTI
INTEGER TASKlARY(3),TASK2ARY(3)
EXTERNAL PLLEL
REAL DATA(40000)

C LOAD DATA ARRAY FROM SOME OUTSIDE SOURCE
C •••
C
C CREATE TASK TO EXECUTE FIRST HALF OF THE DATA

TASKlARY(l)=3
TASKlARY(3)='TASK I'

C
CALL TSKSTART(TASKlARY,PLLEL,DATA(l),20000)

C
C CREATE TASK TO EXECUTE SECOND HALF OF THE DATA

TASK2ARY(1)=3
TASK2ARY(3)='TASK 2'

SR-0014 9-2 I

C
CALL TSKSTART(TASK2ARY,PLLEL,DATA(2000l),20000)

C
END

TSKWAIT waits for the indicated task to complete execution.

Call from FORTRAN:

CALL TSKWAIT (task-appay)

task-appay
Task control array (described under subtitle task control
array)

Example:

C

PROGRAM MULTI
INTEGER TASKlARY(3),TASK2ARY(3)
EXTERNAL PLLEL
REAL DATA(40000)

C LOAD DATA ARRAY FROM SOME OUTSIDE SOURCE
C
C

C CREATE TASK TO EXECUTE FIRST HALF OF THE DATA
TASKIARY(l) =3
TASKlARY(3) = 'TASK l'

C
CALL TSKSTART(TASKlARY,PLLEL,DATA(1),20000)

C

C CREATE TASK TO EXECUTE SECOND HALF OF THE DATA
TASK2ARY(I}-3
TASK2ARY(3)='TASK 2'

C
CALL TSKSTART(TASK2ARY,PLLEL,DATA(20001},20000)

C

C NOW WAIT FOR BOTH TO FINISH
CALL TSKWAIT (TASKlARY)
CALL TSKWAIT(TASK2ARY)

C
C AND PERFORM SOME POST-EXECUTION CLEANUP
C •••

END

SR-0014 9-3 I

In the above example, TSKSTART is called once for each of two tasks. As
an alternative, the second TSKSTART could be replaced by a call to PLLEL
and the TSKWAIT removed. This alternate approach reduces the overhead of
the additional task but can make understanding the program structure more
difficult. The two approaches produce the same results.

TSKVALUE retrieves the user identifier (if any) specified in the task
control array used to create the executing task.

Call from FORTRAN:

CALL TSKVALUE (peturn)

Integer value that was in word 3 of the task control array
(described under subtitle task control array) when the
calling task was created. A 0 is returned if the task
control array length is less than 3 or if the task is the
initial task.

Example:

c

SUBROUTINE PLLEL(DATA,SIZE)
REAL DATA(SIZE)

C DETERMINE WHICH OUTPUT FILE TO USE
CALL TSKVALUE (IVALUE)
IF (IVALUE • EQ. 'TASK l') THEN

IUNITNO"3
ELSE IF (IVALUE • EQ. • TASK 2 I) THEN

IUNITN0=4
ELSE

STOP
ENDIF

C •••
END

Error condition; do not continue.

TSKTEST returns a value indicating whether the indicated task exists.

Call from FORTRAN:

petupn=TSKTEST (taak-appay)

A logical • TRUE. if the indicated task exists. A logical
• FALSE. if the task was never created or has completed
execution.

SR-OOl4 9-4 I

task-appay ,
Task control array (described under subtitle tasl control
array)

NOTE

TSKTEST must be declared LOGICAL in the calling module.

TSKTUNE modifies tuning parameters within the library scheduler. Each
parameter has a default setting within the library and can be modified at
any time to another valid setting.

NOTE

This routine should not be used when multitasking on a
CRAY-l Computer System.

Because of variability between and during runs, the
effects of this routine are not measurable in a batch
environment.

call from FORTRAN:

Each keyword is an ASCII character string. Each value is an integer.
The parameters must be specified in pairs but the pairs can occur in any
order. The following lists the legal keywords. For more information
about using this routine, see the Multitasking User's Guide, CRI
publication SN-0222.

MAXCPU Maximum number of COS logical CPUs allowed for the job

DBRELEAS Deadband for release of logical CPUs

DBACTlVE Deadband for activation or acquisition of logical CPU

HOLDTIME Number of clock periods to hold a CPU, waiting for tasks to
become ready, before releasing it to the operating system

SAMPLE Number of clock periods between checks of the ready queue

SR-0014 9-5 I

Example:

CALL TSKTUNE ('DBACTlVE' ,1, 'MAXCPU' ,2)

TASK CONTROL ARRAY

Each user-created task is represented by an integer task control array,
constructed by the user program. At a minimum, the array must be two
Cray words. A third word can be included. Following is the array
structure:

o 8 16 24 32 40 48 56 63

LENGTH

TASK ID

TASK VALUE

LENGTH Length of the array in Cray words. The length must be set
to a value of 2 or 3, depending on the optional presence of
the task value field. The user sets the length field
before creating the task.

TASK ID A task identifier assigned by the multitasking library when
a task is created. This identifier is unique among active
tasks within the job step. The multitasking library uses
this field for task identification, but the task identifier
is of limited use to user programs.

TASK VALUE (optional field)
Field that the user can set to any value before creating
the task. If TASK VALUE is used, LENGTH must be set to a
value of 3. The task value can be used for any purpose.
Suggested values include a programmer generated task name
or identifier or a pointer to a task local storage area.
During execution, a task can retrieve this value with the
TSKVALUE subroutine.

Example:

c
c

c

PROGRAM MULTI
INTEGER TASKARY(3)

SET TASKARY PARAMETERS
TASKARY (1) =3
TASKARY(3}='TASK I' ...
END

SR-0014 9-6 I

I

I

TSKLIST lists the status of each existing task, telling whether each task
is running, ready to run, or waiting_ If the task is waiting, the
address of the lock or event or the identifier of the task waited upon is
reported.

Call from FORTRAN:

CALL TSKLIST (dn)

dn Optional name or unit number of the dataset to receive the task
status list. The default is $OUT.

LOCK ROUTINES

Lock routines protect critical regions of code and shared memory_

LOCKASGN identifies an integer variable that the program intends to use
as a lock. This subroutine must be called for each lock variable before
its use with any of the other lock subroutines.

Call from FORTRAN:

CALL LOCKASGN (name [,va1.ue1)

name Name of an integer variable to be used as a lock. The
library stores an identifier into this variable. The
variable should not be modified by the user.

value The initial integer value of the lock variable. An
identifier should be stored into the variable only if it
contains the value. If va2ue is not specified, an
identifier is stored into the variable unconditionally.

LOCKON sets a lock and returns control to the calling task. If the lock
is already set, the task is suspended until the lock is cleared by
another task and can be set by this one. In either case, the lock will
have been set by the task when it next resumes execution of user code.

SR-0014 9-7 I

Call from FORTRAN:

I CALL LOCKON (name)

name Name of an integer variable used as a lock.

LOCKOFF clears a lock and returns control to the calling task. Clearing
the lock allows one of the waiting tasks to resume execution, but this is
transparent to the task calling LOCKOFF.

Call from FORTRAN:

CALL LOCKOFF (name)

name Name of an integer variable used as a lock.

LOCKREL releases the identifier assigned to the lock. If the lock is set
when LOCKREL is called, an error results. This subroutine detects some
errors that arise when a task is waiting for a lock that will never be
cleared. The lock variable can be reused following another call to
LOCKASGN.

Call from FORTRAN:

name Name of an integer variable used as a lock.

LOCKTEST tests a lock to determine its state (locked or unlocked).
Unlike LOCKON, the task does not wait. A task using LOCKTEST must always
test the return value before continuing.

Call from FORTRAN:

return=LOCKTEST (name)

retUl"n

name

SR-OOI4

A logical .TRUE. if the lock was originally in the locked
state. A logical • FALSE. if the lock was originally in the
unlocked state, but has now been set.

Name of an integer variable used as a lock.

9-8 I

NOTE

LOCKTEST must be declared LOGICAL in the calling module.

EVENT ROUTINES

Event routines signal and synchronize between tasks.

EVASGN identifies an integer variable that the program intends to use as
an event. Before this routine can be used with any of the other event
routines, it must be called for each event variable.

Call from FORTRAN:

I I CALL EVASGN (name [. vatue] J

I
name Name of an integer variable to be used as an event. The

library stores an identifier into this variable. The
variable should not be modified by the user.

value The initial integer value of the event variable. An
identifier should be stored into the variable only if it
contains the value. If value is not specified, an
identifier is stored into the variable unconditionally.

EVWAIT delays the calling task until the specified event is posted. If
the event is already posted, the task resumes execution without waiting.

Call from FORTRAN:

I CALL EWAlT (name)

name Name of an integer variable used as an event.

EVPOST posts an event and returns control to the calling task. Posting
the event allows any other tasks waiting on that event to resume
execution, but this is transparent to the task calling EVPOST.

SR-0014 9-9 I

Call from FORTRAN:

CALL EVPOST (name)

name Name of an integer variable used as an event.

EVCLEAR clears an event and returns control to the calling task. When
the posting of a single event is required (a simple signal), EVCLEAR
should be called immediately after EVWAIT to note that the posting of the
event has been detected.

Call from FORTRAN:

CALL EVCLEAR (name)

name Name of an integer variable used as an event.

EVREL releases the identifier assigned to the event. If tasks are
currently waiting for this event to be posted r an error results. This
subroutine detects erroneous uses of the event beyond the specified
region. The event variable can be reused following another call to
EVASGN.

Call from FORTRAN:

I CALL EVREL (name)

name Name of an integer variable used as an event.

EVTEST tests an event to determine its posted state.

Call from FORTRAN:

return~EVTEST (name)

retuPn A logical .TRUE. if the event is posted. A logical • FALSE.
if the event is not posted.

name Name of an integer variable used as an event.

SR-OOl4 9-10 I

NOTE

EVTEST must be declared logical in the calling module.

UTILITY SUBPROGRAMS

utility subprograms are used by the user-callable multitasking
subprograms to perform queue manipulation and task scheduling functions.

$TIBCR% builds a task information block, and returns the address in S1.

Call from CAL:

I CALLV $TIBCR%

Entry:
(51)

Exit:
(51)

Address of the task information block for the parent task.

Task identifier assigned to the new task.

$TIBDE% deletes a task information block. No explicit arguments are
required by this routine. However, it does use the current value of the
top of stack pointer (B67). The user should be careful not to destroy
this value when calling this routine.

Call from CAL:

I CALLV $TIBDE%

$RDYTSK% readies a task for execution.

Call from CAL:

I CALLV SRDYTSK%

5R-OOl4 9-11 I

Entry:
(51) Address of task information block of task to ready.

NOTE

On the CRAY X-MP system, this routine should be called
with the T5KLK hardware semaphore set. This semaphore
is cleared before the routine exits.

$RDYQUE% readies a queue of tasks for execution.

Call from CAL:

I CALLV $RDYQ!JE%

Entry:
(51)
(52)

Address of task information block of first task to ready
Address of task information block of last task to ready

NOTE

On the CRAY X-MP system, this routine should be called
with the T5KLK hardware semaphore set. This semaphore
is cleared before the routine exits.

$5U5T5K% suspends execution of the calling task.

Call from CAL:

I CALLV $SUSTSK% I
Entry:

(Sl)

5R-OOl4

Address of queue where task is to be placed.

9-12 I

NOTE

On the CRAY X-MP system, this routine should be called
with the TSKLK hardware semaphore set. This semaphore
is cleared before the routine exits.

$DELTSK% deletes the calling task and activates any tasks waiting for its
completion.

Call from CAL:

CALLV SDELTSK%

$SCHED% schedules logical CPUs for user tasks. This routine is executed
when a change in task status occurs. $SCHED% does not necessarily return
to the calling routine. It resumes execution at the address specified in
the task information block of the first task in the ready queue.

call from CAL:

Entry:
(81)

SR-0014

Current logical CPU running the calling task.

9-13 I

APPENDIX SECTION

· . . .,.~ - - ..

.~.,. 1;;~rj'r., ;:.: •
'.''-;-'

ALGORITHMS

The following algorithms describe the routines in section 3, COmmon
Mathematical Routines. Descriptions are arranged alphabetically by
routine name.

ACOS AND ACOSV

Arccosine and arcsine are related by:

arcoos(x) = ~ - arcsin(x)
2

therefore, if arcsine is calculated, a final subtraction from ~/2
furnishes the arccosine if desired. Moreover, only positive values of
x need be considered since

arcsin (-x) - -arcsin(x).

1. Calculate a reduced argument, r, a multiplier, m, and an addend,
a, depending on X:

:c zt m

o ~ x ~ sin(~6) X 1

sin (K/6) < :r: ~ sin (Jt;3) T 2 (x) = 2:c2 - I 1/2

sin (Jtj3) < x ~ sin (5'1'/12) T 4(x) _8x4 - 8:c2 + 1 1/4

sin (SJt/l2) < x < 1 '1-x2 -1 -

2. Compute arcsin(r) using a rational function of the form

where P and Q are polynomials of degree 4 in r2.

SR-0014 A-I

a

0

'1'/4

3lr/8

~/2

I

A

I

3. Multiply the result by m and add a.

4. Insert the result sign, which is the sign of x.

ALOG AND ALOGV

The common and natural logarithms are related by

log (X) = log e • In x

therefore, if the natural logarithm is calculated, a final multiplication
by log e furnishes the common logarithm, if desired.

1. Express the argument, x, as 211f where I/ff.::. f < n. Then

In (X) = In(2nf) = 10g2211 • In 2 + In{f) = nln 2 + In(f)

To determine nand f, observe that x is represented in floating-point

format as x = 2ba where 1/2 < e < 1. When 1/2 < e < I~ then 1 < 20 <Y2:

In this case, In(x) = In{2bc~ = 1n[2b-l(20)} = ~b-l)ln 2 + In (2e>

so that n ... b-1 and f= 2 a. When l/y'2.::. e < 1, we have n • band f -= a.

2. compute t - (f - l)/(! + 1).

3. Compute In(!) using a rational function of the form

where P and Q are polynomials of degree 3 in t 2 •

4. Multiply the exponent n by In 2 and add to the result.

5. If the common logarithm is desired, multiply by log e.

ATAN AND ATANV

1. Let z = Ixl. If 2 > 1, replace z with liz

2. Compute the integer n = L16z J • Let t ... n/16.

3. Compute W = (z - t)/(l + tz)

SR-0014 A-2 I

4. compute arctan(~) using a polynomial P(~) of degree 9.

5. Let a = 0 if a < 1 and a. lfj4 if a > 1.

6. Let 0 = arctan(t) •

7. Form arctan (a) = (a - 0) + 0 - P(~).

8. Insert the result sign depending on the magnitude of a, the sign of
x and the sign of arctan(a).

ATAN2 AND ATAN2V

Use the same algorithm as $ATAN and $ATANV.

CABS AND CABSV

The complex absolute value of a = x + iy is defined by the
following equation.

I al = y'x2 + y2

1. COmpute U = min (J xl, I YI) and v -= max (I xI, I yl) •

2. If v = 0, return with lal = o.

3. If v ; 0, express lal as v V1 + (U/V)2 = v Vi' where ~ lies in the
interval [1,2]. This expression avoids possible overflow in the
computation x2 + y2.

4. Compute an initial approximation to ~as

ao = 33/32 + 3/8 (~- 33/32).

5. Apply the Newton-Raphson iteration three times to compute ~

an+l • 1/2 (an + ~/an)

three times to compute ~

6. Multiply by v to obtain the final result.

SR-0014 A-3 I

CCOS AND CCOSV

The complex cosine of z = ~ + iy is defined by

cos (a) = cos(~) cosh(y) + sin(~) sinhCy)

1. Call COSS% to compute cos(~) and sin(~).

2. call COSSH% to compute cosh(y) and sinh(y).

3. Multiply cos(~) by cosh(y) to obtain the real part of cos(a).

4. Multiply sin (x) by sinh(y) to obtain the imaginary part of
cos(a).

CEXP AND CEXPV

The complex exponential of 3 = X + iy is defined by

e3 - eX cos(y) + iex sin(y).

1. Call EXP% to compute e~.

2. Call COSS, to compute cosey) and sin(y).

3. Multiply eX by cos(y) to obtain the real part of e 3•

4. Multiply eX by sin(y) to obtain the imaginary part of ea.

CLOG AND CLOGV

The complex logarithm of a = ~ + iy is defined by

log (3) = Inial + i arctan(y/x}.

1. Call ATAN2% to compute arctan(y/x) which is the imaginary part of
log(3).

2. Call CABS% to compute lal.

3. Call ALOG% to compute lnl31 which is the real part of log(8).

SR-0014 A-4 I

COS AND COSV; COSS AND COSSV

1. Compute n :; L4/Jt' Ixlj which is the number of multiples of .1["/4 in Ixl.

2. Define m = n mod 8.

3. Define a :; 1 if computing cosine; else a = O.

b = Low-order bit of m

C = Middle bit of m

d = High-order bit of m

e = Argument sign

4. Compute the reduced argument f = Ixl - Jt'/4(n + 6) in double-precision.

5. Define t = a\f\r.t
6. Compute sin(!> if t = 0 and coset) if t = 1 using

approximations of degree 6 in f2.

7. Insert the result sign which is [#a&(d~)] ! [a&(d\r»).t

COSH AND COSHV

1. Compute the integer n nearest to lxi/In 2. x = nln 2 + f where
If I < In 2 •

- 2

2. Approximate cosh(f) - I using a polynomial pef2) of degree 5 in f2.

3. Approximate sinh(!) using a rational function of the form

4. If cosh (X) is desired, use the following formula

cosh (X) = [1 + {P - Q)]2-n- 1 + [1 + (P + Q)]2n-l

where P = cosh(f) - 1 and Q = sinh(!). Observe that since

t \=Logical difference; *=complement; &=AND; : =OR.

SR-0014 A-5 I

we have

= (J ; d .,f; d) 2-"...1 + (.,f; e-f + .,f ; d) 2»-1

= (cosh (I) - sinh (n) 2-n- 1 + (cosh (j') + sinh (j')) 2n-l

= [1 + (cosh Ci> -1) - sinh (/) J 2-n- 1 + [l + (cosh (1) - 1) +
sinh(f)J2n-

= [1 + (P - Q)]2-n-1 + [1 + (P + Q)]2n- 1•

5. If sinh(x) is desired, return with sinh(x) = sinh(/) if ncO.
When n ~ 0, use the formula

sinh (x) "" 2n- 3 + (2 n- 3 - [1 + (P - Q)] 2-n- 1 } + [2-1 + (P + '1> J2 n- 1

where P = cosh(f) - 1 and Q = sinh(j1. Observe that since

we have

sinh (x) ... eX - e-x >: 2nef - 2-n- f = 2n-l ef _ 2-n-1e-f
2 2

= (coshC/) + sinh(f)}2n - 1 - (coshC/) - sinh(f)2-n- 1

= [1 + (cosh (/) - I) + sinh (1)] 2n- 1 - [1 + (cosh (j') -1)
- s lnh (/)] 2-n- 1

= [1 + (P + Q)]2n- 1 - [1 + (P - Q)]2-n- 1

= £2-1 + (P + Q) J 2n- 1 - [1 + (P - Q)] 2-n-l + 2n- 3 + 2n-3

= 2n- 3 + C2n- 3 - [1 + (P - Q) I2-n- 1) + [2-1 + (P + Q) J 2n- 1

SR-0014 A-6 I

COT AND COTV

1. Compute n • L4/~lxIJ, which is the number of multiples of X/4 in Ixl.

2. Define m = n mod 8.

3. Define a = 1 if computing cotangent; else, a=D.

b ~ Low-order bi t of m

o = High-order bit of m

d = Argument sign

4. Compute the reduced argument f = Ixl - ~4(n + 6) in double-precision.

5. Define t = a\ b \a. t
6. Compute tan (f) using a rational function of the form

where P and Q are polynomials of degree 3 in f2.

7. If t = 1, replace the result with its reciprocal.

8. Insert the result sign, which is a~d.t

CSIN AND CSINV

The complex sine of z = x + iy is defined by

sin(Z) = sin(x) cosh(y) + icos(x) sinh(y).

1. Call COSS% to compute cos (x) and sin(x).

2. call COSSH% to compute cosh (y) and sinh (x) •

3. Multiply sin (X) by cosh(y) to obtain the real part of sin(z).

4. Multiply cos(x) by sinhCY) to obtain the imaginary part of sin(z).

t \= Logical difference

SR-OD14 A-7 I

CSQRT AND CSQR'l'V

The complex square root of z = x + iy is defined by

Y2 ~ Y1/2 (Ial + X) .± i)"1/2 CIa I - x) = u + i v

where 2uv = y and where the ambiguous sign is taken to be the same as the
sign of y.

1. If a = 0, return with 0 as the answer.

2. call CABS% to compute lal.

3. Q:)mpute c = lal + Ixl
2

4. call SQRT% to compute u = re.
5. Compute v = llLL

2u

6. If x < 0, swap u and v.

7. Insert the imaginary result sign, which is the Sign of y.

C'l'OCSS, CTOCSV, CTOCVS, AND C"l'OCVV

Exponentiation of a complex number a = x + iy is defined by

aa = ea In(s) = exp(alnlzl + iarctan(a»
= exp [(ulnl al - varctan y/x) + i(uarctan y/x + vlnl al)]
-------------------------------~~~-------------~-------------

8 t

= eB(cos(t) + isin(t»

where a = u + iv.

Other library routines are called according to the above definition to
compute the result.

SR-OOl4 A-8 I

CTOISS, CTOISV, CTOIVS, AND CTOIVV

1. Return 0 if the base is 0 and the exponent is greater then O.

2. Return (1,0) if the base is nonzero and the exponent is o.

3. Compute the absolute value of the exponent e. Write fel as

e 2" "-1 + e1 2 + + e 12 + ••• eO n n-

where e· "I. is either o or 1.

4. Form Jl' zi
e· ... 1 "I.

5. Take the reciprocal if the exponent is negative and return.

CTORSS, CTORSV, CTORVS, AND CTORVV

Exponentiation of a complex number z • ~ + iy is defined by

z'Yl:enlnJzl [cos(narctan(y/~» + isin(narctan(y/~»J

1. Return 0 if the base is 0 and the exponent is nonzero.

2. Return (1,0) if the base is nonzero and the exponent is o.

3. Call other library routines according to the above definition to
compute the result.

DACCS AND DACOSV

Compute using the identity

SR-0014

arccos(~) = arctan(1-x2)
x

A-9 I

I

DASIN AND DASINV

compute using the identity

arcsin (x) = arctan(x/~ - x 2)

DATAN AND DATANV

The subroutine computes the double-precision arctangent of y/x. An
alternate I-argument entry point is provided with x assigned the value 1.

1. If x = 0, return with sin(y) • K/2 as the result.

2. If y/x < 2-17, compute the arctangent using the first two terms of
its Taylor series.

3. Define q = Iy/xl, a = tan(~16) and b = tan(3 ~/l6).

4. Select:r> and C depending on q.

q r C

o < q < tan (-0/8) (q - a)/(l + qa) J(/l6

tan (Jtj8) ~ q < 1) (q - b) /(1 + qb) 3'Y16

l<q<n (1 - qb}/(q + b) 50/16

V2:2.q<oo (1 - qa)/(q + a) 7'Y16

5. compute arctan{r) using the polynomial of degree 27 obtained by
economizing the power series of degree 39.

6. Add c to the result to obtain arctan(q).

7. Insert the result sign, which is the logical difference of the signs
of y and x.

SR-OOI4 A-I 0 I

DCOS AND DCOSV

1. Compute the integer n nearest to x • 2/~ •

2. COmpute the reduced argument y = x - n· ~2 which lies in the
interval (- K/4, K/4).

3. Define a = 1 if computing cosine; else a = O.

4. COmpute cos(y) if n + a is odd and sin(y) if n + a is even. Use the
polynomial obtained by economizing the first 13 terms of the Taylor
series to 11 terms.

5. Insert the result sign, which is the sign of n + a-I.

DCOSH AND DCQSHV

Compute using the identity

cosh (x) = eX + e-x
2

DCOT AND DCOTV

compute using the identity

cot (x) = cos(x)/sin(x)

DEXP AND DEXPV

1. COmpute the integer n nearest to xlo92e.

2. Compute the reduced argument W = X - nln 2.

3. Compute eX using the polynomial of degree 17 obtained by economizing
the power series of degree 20.

4. Add n to the exponent to obtain the final result.

SR-0014 A-II I

DLOG AND DLOGV

1. Express x as 2nl where l/Y2 ~< Y2. Then

In(x) = In(2n j') = l0922n. In 2 + In(j'} = nln 2 + In(j).

2. For a first approximation aO to In(I), use a polynomial of degree 7
in 2 = f - llf + 1.

3. Apply the Newton-Raphson iteration

two times to compute 1n(11. a2 is computed directly from aO using
the formula

a2 = [(aO - tu) - tIl - tu2 (1 + tU).
2 3

The formula is derived by neglecting terms that are insignificant.

Let T=fe-ao and t=l-~tu+tL where tu is the most significant part of t
and tl is the least significant. Then

ignoring the least significant part of t.

t
Expanding e U as a power series truncated to four terms, we have

ao - tu - (1 - l'etU) ~ aO - tu - (1 - p(l + tu + tu2 + tu\ 1 2: 3:

2 t 3 3
~ aO - tu - [t t (t t u2) - (tu -..1L) _ tu] u+ 1,- u- 2 2 6

SR-0014

t 2 t 3
~aO - tu - t1, - -1L - -1:L

2 3
~(aO - t) - tu2 (1 + tU)

2 3

A-12 I

Note that in the derivation above, some terms have been ignored.

1 - p = tu + tl == p = 1 - tu - tL

ptu = (1 - tu - t'[.)tu = tu - tu2 - t~u

ptu 2 = 1 - tu - tl tu2 = tu2 _ tu3 _ trf t'[.
~ 2 2 2 2

t - t 2 u u

t 2 t 3 u _ u
2'" -r

4. Multiply the exponent n by In 2 and add to the result.

5. If the common logarithm is desired, multiply by log e.

OMOD AND DMODV

1. Divide x by y and extract the integer part n.

2. Return with x - ny as the result.

DSINH AND DSINHV

Compute using the identity

sinh(x) • eX - e-x
2

DSQRT AND DSQRTV

1. Call SQRT% to compute an initial approximation, YO.

2. Perform one Newton-Raphson iteration to yield the double-precision
result.

SR-OOI4 A-13 I

DTAN AND DTANV

compute using the identity

tan(x) = sin(x)/cos(X)

DTANH AND DTANHV

compute using the identity

tanh (x) = sinh(x)/cosh(x)

For x = 0, return (tanh (0) = 0)
For x < 0, tanh (x) c (e2x - 1.)/(e2x + 1.)
For x > 0, tanh (x) - (1._e-2x)/(e-2x + 1.)

DTODSS, DTODSV, DTODVS, AND D'l'ODVV

1. Return 0 if base = 0 and exponent > o.

2. Call DLOG% to compute logarithm of base.

3. Call DMSS% to multiply logarithm of base by exponent.

4. Call DEXP% to compute final result.

DTOISS, DTOISV, DTOIVS, AND DTOIVV

1. See the algorithm for $RTOISS, $RTOISV, $RTOIVS, and $RTOIVV.

2. The series of multiplies is done by successive calls to DMSS%.

3. If base = 0, exponent must be > O.

EXP AND EXPV

1. Multiply x by 2/ln 2 and write

y = x • 2/ln 2 = 2nl + n2 + f

SR-0014 A-14 I

where "1 and "2 are integers, 0 ~"2 < 2 and 0 ~f < 1. Observe that

:J: (:e/ln 2) (In 2) (In 2 :e/ln 2 2X/ln 2
e =e = e) =

= 2("1 + "2/2 + f/2) a 2"12"2/22/ / 2•

2. Extract the integer and fractional parts of y. The least significant
bit of the integer part is "1 and the remaining bits are "2. The
fractional part is f.

3. Compute 2f/2 using a rational function of the form

Q(:r2) + :z:F(x2)

QCX2) - xPCX2)

where P and Q are polynomials of degree 2 in x 2 • Let x = f/2.

4. Multiply 2//2 by fi if "2 is 1.

5. Add "1 to the exponent of the result.

ITOISS

1. If base i • 2 and exponent i > 0, calculate result t = 23 and
return. Otherwise, calculate~S(i) as the initial product.

2. Using ABS(i) as an index, read the section of the multiplication tree
that gives the path of the minimum number of multiplications
necessary for this exponent.

3. calculate intermediate products until the path is exhausted.

4. If i < 0 and j(modulo 2) ~ 0, negate final product to obtain the
result. Otherwise, return the final product as the result.

ITOIVS, ITOIW

1. See the algorithm for RTOISS, RTOIVS, RTOIVV.

2. The series of multiplies are done as 64-bit integer multiplication.

3. If base i a 0, exponent j must be greater than O.

SR-OOl4 A-IS r

RANF

Let <Sen» be the linear congruential sequence produced by setting

Sn+l • mSn mod 248 , n ~ O.
Select a suitable multiplier m and starting seed SO. Use Sn' n > 0, as
the coefficient for the nth random number. Use 40000 as the biased octal
exponent and normalize the result to obtain random numbers in the range
(0,1). Since (i mod N) (j mod N) D ij mod N for integers i,j,N, the
result is

Sn+64 = m64Sn mod 248

enabling computation of 64 seeds at a time using vector instructions and
64 initial values Sir I < i < 64. Care must be taken to.allow
intermixing of scalar and vector RANF calls. The algorithm follows.

1. If only 64 random seeds remain in the 128-word buffer, go to step 4.
Otherwise, read the next seed and increment the buffer index.

2. Use the seed as the coefficient and 400008 as the biased exponent to
create the unnormalized random number.

3. Normalize the random number and return.

4. Move the 64 remaining seeds from the second half of the buffer to the
first half.

5. Apply the multiplicative congruential method to generate the next 64
seeds and store them in the second half of the buffer.

6. Reset the buffer index to pOint to the second seed in the buffer.

7. Use the first seed in the buffer as the coefficient and use 400008 as
the biased exponent to create the unnormalized random number.

8. Normalize the random number and return.

RANFV

Refer to the description for RANF for additional detail.

1. Read the next VL seeds from the buffer.

2. Use the seeds as the coefficients and use 400008 as the unbiased
exponent to create the unnormalized random numbers.

3. Normalize the random numbers.

SR-0014 A-l6 I

4. Compute VL and increment the buffer index by that amount.

5. Return if 64 or more seeds remain in the buffer.

6. Move the 64 newest seeds from the second half of the buffer to the
first half and decrement the buffer index by 64.

7. Apply the multiplicative congruential method to generate the next 64
seeds and store them in the second half of the buffer.

8. Restore VL to its original value and return.

RANGET

Return the current seed as a 64-bit integer. The random number generator
can be reset at some later time to the current state by calling $RANSET
with the 64-bit integer as an argument.

RANSET

1. Use the default seed if the supplied seed is O. Otherwise, take the
seed modulo 248 and make it odd to prevent zero propagation.

2. Apply the multiplicative congruential method to generate the first
128 seeds to fill the buffer.

3. Clear the buffer index and return.

RTOISS, RTOIVS, AND RTOIW

1. If exponent e < 0, compute base 2 = 1/2.

2. Compute the absolute value of the exponent e. Write lei as

e 211 + 11 Bn_1211- 1 + ... e12 + eO

where ei is either 0 or 1.

3. Form J[a i
ei=l

SR-0014 A-17 I

RTORSS

1. Return 0 if the base is 0 and the exponent is greater than o.

2. Return I if the base is nonzero but the exponent is O.

3. Call ALOG% to compute the logarithm of the base.

4. Multiply by the exponent.

5. Call EXP% to compute the final result and return.

RTORVS

1. Return 0 if the base is o and the exponent is greater than o.

2. Return 1 if the base is nonzero but the exponent is o.

3. Call %ALOG% to compute the logarithm of the base.

4. Multiply by the exponent.

5. Call %EXP% to compute the final result.

RTORW

1. Call %ALOG% to compute the logarithm of the base.

2. Multiply by the exponent.

3. Call %EXP% to compute the final result. Return 0 for any zero base
if the exponent is greater than O.

SR-0014 A-IS I

SQRT AND SQRTV

This algorithm was designed and implemented by Barry K. Nelson, Lawrence
Livermore Laboratories.

1. If:r: = 0, return y£" = o.

2. Compute an initial approximation YO/16 accurate to 17% as a function
of :r:/2048.

3. Using a half-precision divide approximation, compute three
Newton-Raphson iterations of the form

Yn = (Yn - I
24-n 2 4-(n-l)

+ (24- (n-l))

Yn-l

4. Using a full-precision divide approximation, compute a final
Newton-Raphson iteration yielding

TANH AND TANHV

1. If:r: ~ 17.3287, return with tanh(:r:) = + 1 where the sign of the result
is the sign of x.

2. If lx' < 0.12, approximate tanh(x) using the first six terms of the
power series.

3. For all other values of x, call EXP% to compute e2X•

4. Return with tanh(x) = 1 - 2/1 + e2X•

SR-0014 A-l9 I

BIBLIOGRAPHY

Abramowitz, M. and Stegun, I. A. (1964). Handbook of MathematicaL
Functions. National Bureau of Standards, Washington, D.C. Library of
Congress catalog card number 64-60036.

Control Data Corporation. (1975). FORTRAN Common Libpary Mathematical
Routines. Control Data Corp., Bloomington, Mn. Publication number
60387400.

Dongarra, J. J., et ale (1979). LINPACK Ueep's Guide. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia. Library of
Congress catalog card number 78-78206.

Garbow, B.S., et ale (1977). Matrix Eigensystem Routines - EISPACK
Guide Extension. Springer-verlog, New York, N.Y. Library of Congress
catalog card number 7702802.

Gentalman, W. M. (December 1973). "Least Squares Computations by Givens
Transformations Without Square Roots." J. Inst. Math. Appl.

Hart, John F., et ale (1968). Computer Apppoximations. John Wiley &
Sons, New York, N.Y. Library of Congress catalog card number 67-23326.

IBM Corporation. (1968). IBM System/360 FORTRAN IV Libpapy
Subprograms. IBM Corp., New York, N.Y. File number S360-25 GC28-6596-4.

Knuth, D. E. (1969). The Apt of Computer Prog~ing, Volume 2
Seminumerical Algorithms. Addison-Wesley, Reading, Mass. Library of
Congress catalog card number 67-26020.

Lawson, C. L., et ale (1979). "Basic Linear Algebra Subprograms for
FORTRAN usage." Tpansactions on Mathematical SoftwaPe. Sandia
Laboratory Report SAND77-0898.

Ralston, Anthony. (1965). A First Coupse in Numerical Analysis.
McGraw-Hill, New York, N.Y. Library of Congress catalog card number
64-7940.

Smith, B. T., et ale (1976). Matpix Eigensystem Routines - Eispack
Guide, second edition. Springer-Verlag, New York, N.Y. Library of
Congress catalog card number 76-2662.

Stockmal, F. (January, 1964). "Calculations with PseudO-Random
Numbers." Journal of the ACM, Volume 11, No.1, pp 41-52.

SR-0014 A-20 I

PERFORMANCE STATISTICS B

This section contains accuracy and timing statistics for the
single-precision, single-argument routines listed in section 3, Common
Mathematical Subprograms, and for $SCILIB routines listed in section 4,
Scientific Applications Subprograms.

The figures listed in table B-1 are for a CRAY-l S Series Computer System
with a-bank memory. The CRAY-l S computer with 16-bank memory does not
typically show a significant difference in performance; however, for
these routines, the performance is three to seven percent faster.

COMMON MATHEMATICAL SUBPROGRAMS

These statistics are arranged alphabetically according to entry names of
the subprograms. Listed in table B-1 are the following column headings:

Entry name - the entry name that must be used to call the subprogram

Domain - the domain used to obtain the accuracy figures. For each
function, accuracy figures are given for one or more representative
segments within the valid domain. In each case, the figures given are
the most meaningful to the function and domain under consideration.

Ten thousand arguments are selected for each domain. The arguments are
uniformly distributed unless otherwise noted.

Aocuraoy - accuracy figures (maximum relative error and standard
deviation) for one or more representative segments within the valid
domain. The accuracy figures supplied are based on the assumption that
the arguments are perfect (that is, without error and, therefore, having
no error propagation effect upon the answers). The only error in the
answers are those introduced by the subroutines.

Average result rate (usee/result) timing statistics. Values
represent the average result rate in microseconds for scalar computations
and for vector computations using vector lengths of 1, 2, 4, 10, 32, and
64 elements. All timing information was gathered with interrupts
disabled.

SR-0014 B-1 I

I

Table B-1. Statistics for single-precision, single-argument
subprograms

Accuracy Average Result Rate (l(Sees/Result)
Max. Stdrd Vector Len<:! th

Entry Domain Error Dev Scalar 1 2 4 10 32 64
(xlO-14) (xlQ-IS)

ACOS' (-1, 1) 2.910 4.233 2.2 3.8 2.0 1.0 0.5 0.3 0.2
iACOS% (0, 1) 2.134 3.388 2.2 3.9 2.0 1.0 0.5 0.3 0.2

(0, 1/2) 0.944 2.695 2.0 3.5 1.8 0.9 0.4 0.2 0.2
(1/2, sin ./t/l) 1.064 3.150 2.2 3.9 2.0 1.0 0.5 0.3 0.2
(sin x/3, sinS x/12) 2.469 5.635 2.5 4.5 2.3 1.2 0.6 0.3 0.3
(sinS Jr/12, 1) 2.134 4.564 4.2 7.3 3.7 2.0 0.9 0.5 0.4

ALOGi (1/2, 2) 1.639 3.886 2.0 3.0 1.5 0.8 0.4 0.3 0.2
iALOG% (0, GO)t 1.562 4.282 2.0 2.9 1.5 0.8 0.4 0.3 0.2

AI.OGlO% (1/2, 2) 1.500 4.077 1.9 3.2 1.7 0.9 0.4 0.3 0.2
'ALOGlO% (0, GIl)t 1.786 3.924 1.9 3.2 1.6 0.9 0.4 0.3 0.2

ASINi (-1, 1) 1.765 3.888 2.2 3.7 1.9 1.0 0.5 0.3 0.2
'ASINi (0, 1) 1.655 3.874 2.0 3.7 1.9 1.0 0.5 0.3 0.2

(0. 1/2) 1.985 4.008 1.8 3.3 1.7 0.9 0.4 0.2 0.2
(1/2, sin :It'/3) 1.189 3.093 2.0 3.8 1.9 1.0 0.5 0.3 0.2
(sin 1(/3, sinS 0/12) 1.349 5.594 2.2 4.3 2.2 1.2 0.6 0.3 0.3
(sinS 't/12, 1) 0.578 2.152 3.9 6.9 3.5 1.9 0.9 0.5 0.4

ATANi (- 1112, Jr/2) 1.057 3.549 1.7 4.1 2.1 1.1 0.6 0.3 0.2
UTAN'

COS, (- "/4, Jr/4) 0.474 1.656 1.9 4.0 2.1 1.1 0.6 0.3 0.3
%COS' (- x, Jr) 1.010 2.312 2.1 4.0 2.1 1.1 0.6 0.3 0.3

(-100, 100) 50.043 16.824 2.1 4.0 2.1 1.1 0.6 0.3 0.3

COSH' (-0.301, 0.301) 0.712 3.177 2.1 3.6 1.8 1.0 0.5 0.3 0.3

'COSH' (-5677, 5677) 1.319 3.980 2.1 3.6 1.8 1.0 0.5 0.3 0.3

COT' (- J[/4, X/4) 1.835 5.058 2.3 3.4 1.7 0.9 0.5 0.3 0.2
'COTi (-100, 100) 60.847 24.833 2.3 3.4 1.7 0.9 0.5 0.3 0.2

t Samples are exponentially distributed.

SR-0014 B-2 I

.~

I

Entry

EXP'
'EXP'
SIN'
'SIN'

SINH'
'SINH'

SQRT'
'SQRT'

TAN'
'TAN'
TANH'
'TANH'

Table B-1. Statistics for single-precision, single-argument
subprograms (continued)

Accuracy Average Result Rate (Jt secs/Resultl
Max. Stdrd Vector Length

Domain Error Dev Scalar 1 2 4 10 32 64
(xlO-14) (xlO-1S)

(-1, 1) 2.170 7.482 1.6 2.5 1.3 0.7 0.3 0.2 0.2
(-5677 , 5677) 2.045 7.408 1.6 2.S 1.3 0.7 0.3 0.2 0.2

(- Jlr,'4, JIr,' 4) 0.698 2.244 1.8 3.9 2.0 1.1 0.5 0.3 0.3
(- 1f, Jt) 0.927 2.108 1.9 3.8 2.0 1.1 0.5 0.3 0.3
(-100, 100) 20.809 8.512 2.0 3.8 2.0 1.1 0.5 0.3 0.3

(-0.301, 0.301) 0.686 2.273 2.3 4.0 2.1 1.1 0.6 0.4 0.3
(-5677, 5677) 1.032 3.974 2.2 4.0 2.1 1.1 0.6 0.4 0.3

(0, 1) 0.767 1.931 1.5 2.3 1.2 0.6 0.3 0.1 0.1
(0,01)t 0.724 2.099 1.5 2.3 1.2 0.6 0.3 0.1 0.1

(- Jt/4, .lt/4) 1.444 4.274 1.8 3.4 1.8 0.9 0.5 0.3 0.2
(-100, 100) 60.456 24.830 2.1 3.4 1.8 0.9 0.5 0.3 0.2

(-20, 20) 5.671 5.822 2.8 4.6 2.4 1.2 0.6 0.3 0.3
(-1/2, 1/2) 8.127 13.481 2.7 4.6 2.3 1.2 0.6 0.3 0.3

t Samples are exponentially distributed.

SR-0014 B-3 I

SCIENTIFIC APPLICATIONS SUBPROGRAMS

This section presents timings of selected $SCILIB routines and some
comparisions between $SCILIB routines and FORTRAN DO-loops performing the
same functions. Table B-2 gives timings and statistics for ten popular
DO-loops and their $SCILIB equivalent subroutines. The FORTRAN DO-loops
are compiled with CFT version 1.10. The $SCILIB version is 1.11. The
timings in the tables are generated on a CRAY-l S Series l6-bank machine.

The timings for these tables are generated by a routine in SCILBPL called
TIMINGS. The following job produces timings for various machines with
the default compiler and $SCILIB.

JOB,JN=TIMINGS.
ACCOUNT, AC=myoum..
CFT.
LDR.
/EOF

CALL TIMINGS
STOP
END

The output appears in SOUTo

The following job produces timings for various versions of CFT or $SCILIB.

JOB,JN=TIMINGS.
ACCOUNT,AC=myoum..
ACCESS,DN=$SCILIB,ID=my~n.
ACCESS,DN=CFT,ID=myown.
ACCESS,DN=SCILBPL,ID=my~n.

UPDATE,P~SCILIBPL,I=O,Q=TIMINGS.

CFT,I=$CPL.
CFT.
LDR.
IEOF

CALL TIMINGS
STOP
END

Subroutine name - name of the $SCILIB routine and a brief description
of its function

Loop length - the number of passes through the FORTRAN DO-loop

CFT time - seconds used computing the results with eFT version 1.10

$SCILIB time - seconds used computing the same result with a call to a
$SCILIB subroutine

$SCILIB/CFT - the ration of $SCILIB time to CFT time

SR-0014 B-4 I

ctocks per ope~tion - number of 12.5 nanosecond clocks per
floating-point operation or per loop length if no floating-point
operations are done

Two points are evident from the column of ratios between CFT DO-loop and
$SCILIB subroutines.

1. The overhead of a subroutine call dominates the execution time
for short loop lengths.

2. For long loop lengths, $SCILIB versions can be faster than CFT
versions by a factor of 2 or 3.

Table B-3 presents timings and MFLOP rates for $SCILIB versions of SGEFA
and SGESL of LINPACK and ELMHES and HQR of EISPACK.

Subroutine name and function - name of $SCILIB routine and a brief
description

Dimension of matrix - the size of the matrix problem

Execution time - second used to compute the result

MFLOP rate - the approximate number of millions of floating-point
operations per second

SR-OOl4 B-5 I

Table B-2. $SCILIB timings and comparisons

Subroutine Name Loop eFT Time $SCILIB $SCILIB/ Clocks Per
(Function) Length (x10-6 sec) Time CFT Operation

(x10-6 sec) (Ratio)

FOLR 1 2.5 3.9 1.58 315.
(first order 2 3.1 4.1 1.32 165.
linear recurrence) 3 3.7 4.3 l.18 87.

4 4.3 4.6 1.08 61.33
5 4.8 4.8 1.00 48.00

10 7.6 5.9 .78 26.33
25 16. 9.3 .58 15.50
50 30. 15. .50 12.18

100 58. 26. .45 10.59
250 140. 60. .42 9.63

GATHER 1 3.0 4.6 1.57 371.
A(I)-B(INDEX(I» 2 3.4 4.8 1.43 193.

3 3.8 5.0 1.32 133.67
4 4.2 5.1 1.22 102.75
5 4.6 4.9 1.07 79.2

10 6.7 5.6 .84 44.7
25 13. 7.5 • 58 24 •
50 23. 1l. .46 17.10

100 44. 17. .39 13.65
250 110. 36. .34 11.58

ISAMIN 1 2.5 6.2 2.48 493.
(finds the 2 3.4 6.2 1.83 494.
first position 3 4.2 6.2 1.46 247.50
of the minimum 4 5.1 6.2 1.22 165.33
absolute value 5 6.0 6.2 1.04 124.25
of a vector) 10 10. 7.1 .69 63.11

25 23. 9.0 .39 30.08
50 45. 11.0 .25 18.04

100 88. 51. .58 41.55
250 220. 70. .32 22.33

SR-0014 B-6 I

Table B-2. $SCILIB timings and comparisons (continued)

Subroutine Name Loop eFT Time $SCILIB $SCILIB/ Clocks Per
(Function) Length (x10-6 sec) Time CFT Operation

(xlO-6 sec) (Ratio)

ISRCHEQ 1 4.3 5.5 1.27 438.00
(searches a 2 4.7 5.5 1.55 219.49
vector for 3 5.2 5.5 1.06 146.67
a word 4 5.6 5.5 0.97 110.25
match) 5 6.1 5.5 0.90 88.40

10 8.3 5.6 .67 44.70
25 15. 5.8 .38 18.48
50 28. 6.1 .21 9.74

100 50. 7.0 .14 5.59
250 110. 9.1 .07 2.90

MXM M 1 6.6 5.5 .84 443.
(full matrix 2 24. 6.S .46 57.44
multiply) 3 25. 8.0 .32 18.37

4 40. 9.2 .23 8.07
5 59. 12. .20 5.04

10 220. 30. .13 1.38
25 1700. 260. .16 .71
50 8900. 1800. .20 .59

100 59000. 14000. .24 .57
250 770000. 210000. .27 .54

MXM V 1 5.8 5.6 .97 447.
(matrix 2 7.6 6.4 .85 102.2
times a vextor) 3 9.3 6.5 .70 40.

4 11.0 7.0 .63 22.44
5 13.0 7.3 .56 12.4

10 23.0 9.8 .42 4.35
25 66. 24. .37 1.62
50 180. 76. .43 1.24

100 580. 280. .49 1.14
250 3100. 1700. .55 1.09

SAXPY 1 3.3 5.3 1.60 212.5
(add a scalar 2 3.3 5.3 1.60 106.5
multiple of 3 3.3 5.3 1.59 71.17
one vector 4 3.4 5.3 1.59 53.50
to another) 5 3.4 5.4 1.59 42.90

SR-0014 B-7 I

Table B-2. $SCILIB timings and comparisons (continued)

Subroutine Name Loop CFT Time $SClLlB $SCILlB/ Clocks Per
(Function) Length (xl0-6 sec) Time CFT Operation

(x10-6 sec) (Ratio)

SAXPY (continued) 10 3.5 5.5 1.58 21.95
25 4.0 6.0 1.50 9.66
50 5.0 7.0 1.41 5.58

100 7.3 9.3 1.28 3.72
250 14.0 16. 1.15 2.52

SCA'rl'ER 1 2.7 6.0 2.24 482.00
A(INDEX(l»=B(l) 2 3.0 6.0 2.00 241.5

3 3.0 6.1 1.81 161. 33
4 3.7 6.1 1. 66 121. 25
5 4.0 6.1 1.52 97.20

10 5.6 6.9 1.23 55.20
25 10. 8.8 .83 28.00
50 19. 12. .63 18.66

100 35. 19. .53 14.90
250 84. 39. .46 12.42

SOOT 1 2.9 5.5 1.89 439 •
(computes the 2 7.1 5.5 • 77 146.33
dot product of 3 7.1 5.5 • 77 87.80
2 real vectors) 4 7.2 5.5 .77 62.71

5 7.2 5.5 • 76 48.78
10 7.3 5.6 .76 23.63
25 8.2 6.0 • 73 9.78
50 9.8 6.6 .68 5.34

100 13. 7.8 • 59 3.15
250 23. 12. .51 1.93

SSOM 1 2.6 3.9 1.52 314.
(sums the 2 6.6 4.1 .62 326.
elements of 3 6.6 4.2 .64 169.
a real vector) 4 6.6 4.4 • 66 116 •

S 6.6 4.5 .68 90.5
10 6.8 4.8 .71 42.89
25 7.2 5.0 .69 16.71
50 8.2 5.3 .65 8.69

100 10. 7.0 .67 5.66
250 17. 9.1 .55 2.92

SR-0014 B-8 I

Table B-3. $SCILIB timings and MFLOP rates

Subroutine Name Dimension of Execution MFLOP rate
(Function) matrix time (seconds)

EUoIHES 5 .000057 3.63
(Reduction of 10 .00026 6.32
full matrix 25 .0020 13.30
to upper SO .010 20.23
Hessenberg form) 100 .064 25.83

250 .83 31.42

HQR 5 .00053 2.25
(Reduction form 10 .0022 4.70
upper Hessenberg 25 .011 11.41
form to upper SO .043 21.05
traingu1ar) 100 .18 36.02

250 1.4 62.62

SGEFA 5 .000062 1.35
(L-U decomposition) 10 .00019 3.48

25 .0011 9.62
50 .0048 17.41

100 .026 25.51
250 .30 35.00

SGESL 5 .000049 1. 73
(Backward and 10 .000056 3.59
forward solving) 25 .00015 8.58

50 .00033 15.01
100 .0089 22.01
250 .039 32.58

SR-0014 B-9 I

I

SORT ENTRY POINTS C

SORT consists of library subroutines accessed through FORTRAN calls. The
user-callable entry points are as follows:

SAMSORT
SAMFlLE
SAMKEY
SAMGO
SAHEQU
SAMOPT
SAMSEQ
SAMSIZE
SAMTUNE

Following are the entry points within the CRI sort package. The code is
proprietary and must not be used for any purpose other than as part of
the CRI sort package.

Module PSRV8IO entry points

V8PUT
V8GET
vaWAIT
V8POS
VSCLOSE
VSOPEN
VSSTATS
V8LNTHDS

Module IOXOXOI entry points

p87DNT
P87DOD
P87CLS
P87DLT
P87WDC
P87RDC
PS7LBN
P870PN
P87WAIT
P87SNSE

For more details, see the SORT Reference Manual, CRI publication SR-0074.

SR-OOl4 C-l I

, ..

.~. ;

INDEX

'.' ':,," , :,

INDEX

Abort current job step, 8-2
Abort with traceback, 2-4
ABORT, 2-4, 7-36
ABS, 2-4, 3-29
Absolute program, 2-48
Absolute value

minimum, 4-26
sum, 4-3, 4-5

ACCESS, 2-4, 6-2
ACOS, 2-4, 3-8, A-I
ACPTBAD, 2-4, 5-76
ACQUIRE, 2-5, 6-3
ACTTABLE, 2-5, 7-70
Addition, double-precision, 2-22
ADDLFT, 2-6, 6-5
ADJUST, 2-5, 6-2
ADW, 7-16
AIMAG, 2-5, 3-29
AINT, 2-5, 3-29
ALF, 6-5
Algorithms, A-I
ALLOC, 2-37, 7-26
Allocate routines, 7-25
ALOG, 2-49, 3-5, A-2
ALOGlO, 2-49, 3-5
AMOD, 2-6, 3-29
AMU, 2-6, 7-19
AND, 2-6, 3-13
ANINT, 2-6, 3-29
APBN, 2-60, 5-53
APUTWA, 5-105
Arccosine, 2-4, 3-8, A-l, A-9
Arcsine, 2-7, 3-8, A-IO
Arctangent

double-precision, 2-18, A-IO
double-precision 2-argument, 2-19
two-argument, A-3, 2-8
one-argument" 2-7, 3-8, 3-9, A-2

ARERP, 2-6, 7-60
ARGPLIMQ, 2-33, 2-7, 7-3
ArgWllent

as substring, 2-12
length, 2-12
first word address, 2-48

Argument values, 2-7
Arithmetic routines

double-precision, 3-17
triple-precision, 3-18
triple-precision, 3-19
triple-precision, 3-20

SR-0014 Index-l

Array
bounds checking, 2-48, 7-12
complex, 2-8, 2-70, 2-71, 2-80, 2-81
copy, 4-3
Euclidean norm of, 4-3
indexed, 4-64
interchange, 4-22
largest absolute value in, 2-45
maximum of, 2-46
minimum of, 2-46
ordered, 2-71
real, 2-8, 2-70, 2-BO, 2-81
scale, 4-4
scaling, 2-70
search for target, 2-71, 4-71
swap, 4-22
swap two, 4-4
task control, 2-86
true values in, 2-42
with integer target, 4-60, 4-65
with real target, 4-59, 4-65
with true relational value to

target, 2-92
zero values in, 4-58

ASCDC, 2-7, 5-33
ASCII conversion, 3-25, 3-26
ASIN, 2-7, 3-8
ASPOS, 2-74, 5-46
ASSIGN, 2-7, 6-3
ASYNCHMS/ASYNCDR, 5-9 6
ATAN, 2-7, 3-8, A-2
ATAN2, 2-8, 3-8, A-3
ATS, 2-8, 7-15

B2OCT, 2-30, 7-10
BACK, 2-8
BACKFILE, 2-8, 5-52
Backspace

record, 2-8
file, 2-8

BACKSPACE, 5-51
Bad data, 2-4, 5-75
Basic Linear Algebra Subprograms (BLAS)

description, 4-1
list, 4-3

Bibliography, A-20
BICONV, 2-9, 7-68
BICONZ, 2-9, 7-68
Bidirectional memory transfer, 2-12 and

2-13, 2-72, 73, 7-40
Binary image, 2-48
Bit setting. 2-42

I

Bits
move, 2-53
tally number set, 2-61
parity of number set, 2-61
number set to 1, 3-14

BKSP, 2-8, 5-50
BKSPF, 2-8, 5-52
BLAS, see Basic Linear Algebra Subprograms
Boolean arithmetic routines, 3-13, 14
Breakpoint checking (pascal), 2-96
BTD, 2-9, 3-26
BTDL, 2-9, 3-26
BTDR, 2-9, 3-26
BTO, 2-9, 3-26
BTOL, 2-10, 3-26
STORr 2-10, 3-26
Bucket sort, 4-75
BUFFER I/O, 2-47, 2-87
Buffer management

input, 5-16
output, 5-17

Buffered output, 2-91
Byte and bit manipulation, 7-63
Byte storage, 2-61
Bytes

fetches, 2-41
compares, 2-47
move, 2-80

CABS, 2-10, 3-30, A-3
CAL I/O interface, 5-75
Call-by-value routine (Pascal), 2-96
Calling routine (Pascal), 2-96
Calling task, 2-20
CAXPY, 2-8, 4-3, 4-7
CSIO, 5-75
Ce120I, 5-19
CCDOO, 5-20
CCF, 2-11, 3-25
CCHRO, 5-20
CCI, 2-11, 3-24
CCOPY, 2-14, 4-3, 4-8, 2-10
CCOS, 3-9, A-4
CCS, 2-17, 7-46
CCT, 2-11, 3-24
CD120I, 5-19
CD1200, 5-20
CDCI, 2-11, 5-18
COCO, 2-11, 5-18
CooTC, 4-4, 4-9
CDOTC, CDOTU, 2-21
COOTU, 4-10, 4-4
Ceiling of rational number, 2-41
CEXP, 2-31, 3-6, A-4
CEXPR, 2-11, 7-54
CF60I, 5-19
CF600, 5-20
CFFT2, 2-31, 4-51
CFT call type, 2-3
CFT in-line functions, 3-13
CFT linkage macros, 1-2
CFT linkage methods, 1-2
Change length and move routines, 7-29

SR-0014 Index-2

CEAR, 3-30
Character address

increment, 5-78
Character functions

called from CAL, 3-23
called from FORTRAN, 3-22

Character routines, 5-77
Character string

searches for occurence of, 2-32
CHCONV, 2-12
CHCONV, 7-67
CHECKMS/CHECKDR, 5-97
CI60I, 5-19
CI600, 5-20
Circular shift, 3-14
CL60I, 5-19
CL600, 5-20
CLEARBT, 2-12, 7-41
CLEARBTS, 2-13, 7-42
CLEARFI, 2-13, 7-39
CLEARFIS, 2-13, 7-40
CLMOVE, 2-37, 7-29
CLOCK, 2-13, 7-42
CLOG, 2-49, 3-5, A-4
CLOSE, 2-13, 5-34, 6-8
CLOSEWA, 5-110
CLOSMS, 2-53
CLOSMS/CLOSDR, 5-91, 5-92
CMACH, 2-77, 4-30
CMPLX, 2-14, 3-30
Common block TM, 7-14
Common logarithm, 3-5
Common mathematical subprograms, 2-97
Compare

ASCII, 3-22 and 3-23
Compares

for greater than, 2-11
for less than, 2-12
for less than or equal to, 2-12
for nonequality, 2-12

COMPL, 2-14, 3-13
COmplex

absolute value, A-3, 3-30
conjugate, 3-30
cosine, A-4, 3-9
exponential, A-4
exponentiation, 3-6
imaginary portion of, 3-29
logarithm, A-4
real portion of, 3-34, 4-7
sine, 3-9, A-7
square root, 3-7, A-8
vector, 4-6, 4-8

COmplex absolute value, 2-10
Complex array

copies, 2-14
Complex conjugate, 2-14
complex cosine, 2-10
Complex logarithm, 3-5
Complex number

imaginary part, 2-5
real part of, 2-65

Complex sine, 2-17
Compute absolute value, 2-4

I

Concatenation
initialize for store, 3-24

CONJG, 2-14, 3-30
Contangent. d.p., A-ll
Control information tables, 7-12
Control statement

cracks, 2-17
Control statement processing, 7-46
Conventions in manual, 1-3
Conversion

ASCII, 3-26
character to integer, 3-32
Cray/other vendors, 5-20
integer to character, 3-30
return conditions, 5-81

Convert
ASCII/display code, 5-33
ASCII/EBCDIC, 5-27
ASCII to EBCDIC, 2-88 2-24
ASCII to integer, 7-67
between timestamps and date and

time. 2-84, 7-44
binary to deCimal, 3-26
binary to octal, 3-26
CDC to Cray, 2-32, 2-44
Cray/CDC integer, 5-32
Cray/CDC single-precision, 5-33
CDC/Cray integer, 5-31
CDC/Cray single-precision, 5-31
Cray/rBM integer, 5-26
Cray/IBM logical, 5-28
Cray/IBM single precision, 5-24
Cray integer/IBM decimal, 5-28
Cray single-precision to IBM

double-precision, 2-88, 5-25
Cray to CDC, 2-32, 2-44
date and time to timestamp, 2-84
decimal to binary, 3-26
display code/ASCII, 5-32
display code to ASCII character, 2-24
EBCDIC/ASCII, 5-22
from date and time to timestamp, 7-44
from real-time clock value to

timestamp, 7-45
from timestamp to real-time clock

value, 7-45
IBM/Cray integer, 5-21
IBM/Cray logical, 5-23
IBM integer to Cray integer, 2-88
IBM packed decimal integer, 5-23
integer to ASCII, 7-68
integer to binary, 2-24
integer to IBM packed decimal, 2-88
integer to real, 2-33, 3-32
nearest integer to double-precision,

3-32
numeric input, 2-56
numeric output, 2-57
octal to binary, 2-59, 3-26
real to double-precision, 2-19, 3-30
rea~-time to corresponding timestamp

value, 2-84
timestamp to corresponding real-time

clock value, 2-84

SR-0014 Index-3

Convert (continued)
trailing blanks to nulls, 7-85
trailing nulls to blanks, 7-85
two reals to a complex, 3-30

Converts
ASCII character to display code

character, 2-7
ASCII to integer, 2-12
binary to decimal, 2-9
binary to octal, 2-9
binary to octal, 2-10
Cray integer to IBM integer, 2-89
Cray logical to IBM logical, 2-89
Cray single-precision to IBM

single-precision, 2-90
EBCDIC to ASCII, 2-87
IBM logical to Cray logical, 2-89
IBM packed decimal field to

integer, 2-89
IBM single-precision to cray

Single-precision, 2-89
integer to ASCII, 2-9
IBM/Cray single-precision, 5-20
IBM/Cray Single-precision, 5-21

Copy
vector, 4-8

COPYD, 5-39
COPYF, 2-15, 5-37
COPYR, 2-15, 5-35
COPYU, 2-15, 5-39
COS, 2-15, 3-9, A-5
COSH, 2-15, 3-11, A-5
Cosine

double-precision, 2-19
d.p. hyperboliC, A-II

Cosine and sine, 3-10
COsine, 2-15, 2-16, 3-9, A-5
Cosine, complex, A-4
Cosine, d.p., A-lI
COSS, 2-16, 3-10, A-5
COSSH, 2-16, 3-11
COT, 2-16, 3-10, A-7
Cotangent, 2-16, 3-10, A-7
CRACK, 2-16, 7-52
CRAY channel

program On an lOS, 2-23
Cray machine constants, 4-29
CRAYDUMP, 2-26, 7-8
CRFFT2, 2-31, 4-53
CROT, 2-67, 4-28
CROTG, 2-67, 4-28
CS, 2-17, 7-46
CSCAL, 2-70, 4-22, 4-4
CSIN, 2-17, 3-9, A-7
CSQRT, 2-78, 3-7, A-a
CSSCAL, 2-70, 4-22, 4-4
CSUM, 2-80, 4-27
CSWAP, 2-81, 4-23, 4-4
CTOC, 2-17, 3-15, A-8
CTOI. 2-17, 3-15, A-9
CTOR, 2-18, 3-15, A-9
Current date, 2-19, 8-10, 8-14, 8-4
Current time, 8-23

I

DABS, 2-18, 3-30
DACOS, A-9
DACOX, 3-8
DASIN, 3-8, A-IO
DASS, 2-22, 3-17
DASV, 2-22, 3-17
Data copies, 2-15
Data format management input, 5-18
Data management format output, 5-19
DATAN, 2-18, 2-19, 3-9, A-IO
DATAN2, 3-9
Dataset

accessed, 6-6
assigns characteristics to, 2-7
asynchronously positions, 2-60
attributes, 6-3
buffers, 2-90
bypass records in, 2-76
bypass files in, 2-76
Characteristics, 2-53
change records of, 2-53
CLOSE, 5-34
close, 2-13, 5-110, 6-3, 6-8
closing, 5-92
connect, 2-58
control use of, 2-60
copies, 2-14
copying, 5-35
copy, 5-39
current size, 6-7
definitions table, 6-9
direct to specified queue, 2-21
edition nu~er, 2-55
foreign, 2-69, 2-94
front-end resident, 2-5
interactive. 8-12
load absolute program from, 7-78
local to job, 2-41
mass storage, 5-42, 5-46, 5-48
OPEN, 5-34
open, 2-58, 2-90, 2-7, 2-96, 6-3,

6-7, 8-11
open local, 5-84
permanent, 2-82, 6-2
places into input queue, 2-80
position, 2-61, 5-53
positioning, 2-69, 2-74, 2-76,

5-42, 5-47
query interactive, 2-96
random access, 2-90, 5-89, 5-90,

5-91, 5-103
random, unblOCked, 6-7, 2-63, 6-8
read, 2-69
release, 2-65
rewind, 2-96, 5-52, 8-10, 2-66
saved, 6-2
search, 6-4
size, 2-57
skip, 5-40, 5-41
staging, 6-2
status, 2-43, 5-35
synchronize, 5-55
synchronously positions, 2-60
tape, 2-81, 5-44, 5-45, 5-47

SR-0014 Index-4

Dataset (continued)
terminates connection of, 2-13
termination, 5-55
unblocked, 2-76, 7-6
word-addressable, 5-109 and 5-110
write, 2-94

Da taset Ca talog
removes saved dataset from, 2-20

Dataset catalog, 6-2
Dataset control, 5-34
Dataset management, 6-1
Dataset Parameter Table (DSP)

search, 6-4
search for address, 6-6

Dataset parameter tables
search, 2-71

Dataset position, 2-36
Datasets

system, 2-71
FORTRAN access, 2-71
word-addressable, 5-111

Date (Pascal)
obtain, 2-96

Date and time, 7-42
DATE, 2-19, 7-42
DAVS, 2-22, 3-17
DAVV, 2-22, 3-17
DBLE, 2-19, 3-30
DCOS, 2-19, 3-9, A-II
DCOSH, 3-11, A-ll
DCO'1', 3-10, A-II
DDIM, 2-20, 3-30
DDSS, 2-22, 3-17
DDSV, 2-22, 3-17
DDVS, 3-17
DDVV, 2-22, 3-17
DEADBOG, 2-81, 7-7
DEALLC, 2-37, 7-27
Deallocate routines, 7-26
Debug aid, 7-1
Decode

formatted, 5-3, 5-7, 5-14
Decoding routines, 2-20
Definition and control, 6-3
DELETE, 2-20, 6-2
DELTSK, 2-20, 9-13
DEV, 2-20
DEXP, 2-31, 3-6, A-II
DFA, 2-20, 5-7
DFF, 2-20, 5-14
DFI, 5-3
DFV, 5-7
Difference

positive integer, 2-41
DIM, 2-20, 3-31
DINT, 2-21, 3-31
Display code conversion, 2-24
DISPOSE, 2-21, 6-3
Divide, 8-5
Division

compute remainder, 2-6
double-precision, 2-22
integer, 2-96
64-bit, 2-52
64-four-bit integer, 3-21

I

Division remainder, 2-21
DLOG, 2-50, 3-5, A-12
DLOG10, 3-5
DMOD, 2-21, 2-51, A-l3
DMSS, 2-22, 3-17
DMSV, 2-23, 3-17
DMVV. 2-23, 3-17
DNINT, 2-21, 3-31
Dot produce, 2-21, 2-22
Dot product, 4-4
Double-precision

absolute value, 2-18, 3-30
addition, 2-22, 3-17
arcosine, 3-8, A-9
arcsine, 3-8, A-10
arctangent, 2-18, 2-19, 3-9, A-IO
arithmetic routines, 3-17
common logarithm, 3-5
conversion, 2-88
cosine, 2-19, 3-9, A-l1
cotangent, 3-10, A-ll
division, 2-22, 3-17
exponential, 2-31
exponentiation, 3-6, A-II, A-14
hyperbolic cosine, 3-11, A-II
hyperbolic sine, 3-11, A-13
hyperbolic tangent, 3-12, A-14
logarithm, 2-50
modulo arithmetic, 2-51, 3-31, A-13
multiplication, 2-22, 2-23, 3-17
natural logarithm, 3-5, A-12
nearest integer to a, 3-32
negative powers of 10, 2-43
positive powers of 10, 2-44
positive real difference, 2-20, 3-30
product, 2-23
product of two real arguments, 3-31
raise power, 2-25, 2-26
Sine, 2-24, 3-10
square root, 3-7, A-13
subtraction, 2-22, 2-23, 3-17
tangent, 3-10, A-14
transfer sign, 3-32
truncate, 2-21, 3-31

DPROD, 2-23
DRIVER, 2-230 7-70
DSASC, 2-24, 5-32
DSIGN, 2-24, 3-32
DSIN, 2-24, 3-10
DSINH, 3-11, A-13
DSNDSP, 2-24, 6-5
DSP

set end-of-file flag, 2-87
DSQRT, 2-78, 3-7
DSSS, 2-22, 3-17
DSSV, 2-23, 3-17
DSVS, 2-23, 3-17
DSVV, 2-23, 3-17
DTAN, 3-10, A-14
DTANH, 3-12, A-14
DTB, 2-24, 3-26
DTOD, 2-25, 3-15, A-14
DTOI, 2-25, 3-16, A-14
DTOR, 2-26, 3-16

SR-0014 Index-S

DTTS, 2-84, 7-44
Dump heap control word routines, 7-33
Dump routines, 7-5
DUMP, 2-26, 7-6, 8-4
DUMPJOB, 2-27, 7-6

ECHO, 2-27, 7-71
EFA encode

formatted, 5-11
EFA, 2-27
EFF, 2-27, 5-15
EFI, 2-27, 5-5
EFV, 2-27, 5-12
Eigenvalue problem, 4-38
EISPACK routines

descriptions, 4-38
summary, 4-42

EISPACK, 2-27
Encode formatted, 5-5, 5-12, 5-15
End

program, 2-96
end of file check, 2-96
end of line check, 2-96

End of file mark, 8-i5
End of file mark, 8-25
END, 2-27, 7-36
End-of-file status, Pascal, 8-6
End-of-line status, Pascal, 8-6
ENDFlLE, 5-56
ENDRPV, 2-28, 2-65, 7-36
En try type, 2-2
EOATEST, 2-28, 5-58
EOD, 2-91
EODW, 2-28, 5-56
EOF, 2-29, 2-91, 5-58
EOFR, 2-28, 5-56
I::OFW, 2-28
EOR, 2-91
EQ, 2-12, 3-23
Equations Weiner-Levinson, 2-32
EQV, 2-29, 3-13
ERECALL, 7-72
ERREXIT, 2-29, 7-36
Error processing, 2-6
Error processing routines, 7-60
Error recovery, 5-75
Errors

I/O, 2-44
NAHELIST, 2-44
processes $FTLIB, 2-33
process SSCILIB, 2-70
process $UTLIB, 2-90
processes aSYSLIB, 2-76

Euclidean norm, 2-71, 2-77, 4-10, 4-3
EVASGN, 2-29, 9-9
EVCLEAR, 2-29, 9-10
Event processing, 2-29, 2-30
Event routines, 9-9
EVPOST, 2-29, 9-9
EVREL, 2-30, 9-10
EVTEST, 2-30, 9-10
EVWAIT, 2-30, 9-9

I

Exchange package
printout, 7-11
write to output dataset, 7-9

Exchange Package processing, 2-30, 7-8
Exit program, 2-96
EXIT, 2-30, 7-36
EXP, 2-31, 3-6, A-14
Explicit data conversion, 5-20
Exponential

complex, 2-31, A-4
double-precision, 2-31

Exponential routines, 3-6
Exponentiation, A-14, A-IS, A-17, A-18
Exponentiation, complex, A-8, A-9
Exponentiation, d.p., A-II

Fast Fourier Transform, 2-31, 4-50
FDBKSP, 2-69, 5-51
FDGPOS, 2-69, 2-69, 5-44
FDSPOS, 2-69, 5-48
FDWEOF, 2-94
FETCH, 2-31, 6-3
FFS, 5-78
File

backspace, 5-52
reset, 2-97, 8-19
rewrite, 2-97
rewrite without rewind, 2-96

File name set, 2-96
Files

copies, 2-15
copy, 5-37
skip. 5-40

Filter analysis and design, 4-53
Filter coefficients, 2-32
FILTERG, 2-32, 4-54
FILTERS, 2-32, 4-54
Finalization

input, 5-14
output, 5-14

FINDCH, 2-32, 7-66
FINDMS, 2-53, 5-94
FLOAT, 2-3 3, 3-3 2
Floating-point interrupt

permanent, 7-39
Floating-point interrupt

temporary, 7-39
Floating-point interrupt

test routine, 7-39
Floating-point interrupts, 2-72, 2-73
Floating-point seconds, 2-85
Flow trace, 7-2
FLOWENTR, 2-33, 7-2
FLOWEXIT, 2-33, 7-2
FLOWLIM, 2-33, 7-4
FLOWSTOP, 2-33, 7-2
Flowtrace processing, 2-33, 2-73
FOLR, 2-34, 4-30
FOLR2, 2-34, 4-32
FOLR2P, 2-34, 4-32
FOLRN, 2-34, 4-33
FOLRP, 2-34, 4-31
Format search, 5-78

SR-0014 Index-6

Fo~matted output, 2-91
FORTRAN I/O

description, 5-1
finalization, 5-14
initialization, 5-3
summary, 5-2
transfer, 5-5

FP6064, 2-32, 5-31
FP6460, 2-32, 5-33
FSPOS, 2-74, 5-47
FTERP, 2-33, 7-61
FXP, 2-30, 7-10, 7-9

GATHER, 3-35, 4-56
Gauss-Jordan elimination, 4-46
Gauss-Jordan reduction, 2-51
GE, 2-11, 3-23
GETBl, 2-35, 7-74
GETDSP, 2-35
GETLPP, 2-35, 7-74
GETNAMEQ, 2-35, 7-2
GETPARAM. 2-36, 7-49
GETPOS, 2-36, 2-74, 5-45
GETREGS, 7-3
GETSDP, 6-6
GETWA, 2-90, 5-106
Givens plane rotation, 2-67, 4-11, 4-13,

4-19, 4-28, 4-4
GP, 2-36
GPARAM, 2-36, 7-50
GPOS, 2-36, 2-74, 5-42
GT, 2-11, 3-23
GTDSP, 6-6
GTPOS, 2-36, 5-44

Hardware performance monitor, 2-60, 7-82
HCHECK, 2-37, 7-32
Heap block length routines, 7-30
Heap control block, 8-1
Heap expansion routine, 7-34
Heap integrity check routines, 7-31
Heap manager, 7-25
Heap memory request routine, 7-34
Heap merge routine, 7-35
Heap processing (Pascal), 2-96
Heap processing, 2-37, 8-8
Heap shrink routines, 7-31
Heap statistics routines, 7-32
H~£BGE, 2-37, 7-35
HPALLOC, 2-37, 7-26
HPeRECK, 2-37, 7-32
HPCLMOVE, 2-37, 7-30
HPDEALLC, 2-37
HPDUMP, 2-37, 7-33
HPGROW, 2-37, 7-34
HPLEN, 2-37, 7-30

HPMEM, 2-37, 7-34
HPNEWLEN, 2-37, 7-28
HPSHRINK, 2-37, 7-31
HPSTAT, 2-37, 7-32
Hyperbolic cosine and sine, 2-16, 3-11
Hyperbolic cosine, 3-11, A-5

I

Hyperbolic routines, 3-11, 3-12
Hyperbolic sine. 2-75, 3-11
Hyperbolic tangent, 2-83, 3-11, A-19
Hyperbolic tangent, d.p., A-14

I/O mode, 5-96
I/O status, 5-57
100DEL, 2-38, 7-57
100ERR, 2-38, 7-60
IOOMVC, 2-38, 7-57
IOOMVM, 2-38, 7-57
tOOORD, 2-39, 7-58
IOOREAn, 2-39, 7-58
IOOSETUP, 2-39, 7-60
IOOWRITE, 2-40, 7-59
lABS, 2-40, 3-32
IBMI, 2-40, 5-18
IBMa, 2-40, 5-18
IC64I, 5-19
ID640, 5-19, 5-20
lCAMAX, 2-40, 4-3, 4-5
ICEIL, 2-41, 7-74
ICHAR. 3-32
ICRRI, 5-19
ICHRO, 5-19
IDIM, 2-41, 3-32
IDNINT, 2-41, 3-33
IEOF, 2-29, 5-57
IF32l, 5-19
IF320, 5-19
IFDNT, 2-41, 6-6
IGTBYT, 2-41, 7-74
IHPLEN, 2-37, 7-31
IHPSTAT, 2-37, 7-33
IIl6I, 5-18
11160, 5-19
II321 translate

IBM integer to Cray integer, 5-18
1I320, 5-19
IILZ, 2-42, 4-58
lIN, 2-42, 2-82, 3-38
IJCOM, 7-75
IL81, 5-19
IL80, 5-19
ILLZ, 2-42, 4-58
ILSUM, 2-42, 4-58
IMX, 2-43, 2-82, 3-38
INDEX, 2-12, 3-22
Ini tialization

input, 5-3, 5-4
In1ine code, 1-1
Input

buffered, 2-62
Input transfer

buffered, 5-8
formatted and unformatted, 5-6
namelist, 5-8

Input/output subprograms, 5-1
INQ, 2-43
INQUIRE, 2-43, 5-35
INSASCI, 2-43, 7-76
INT, 2-43, 3-33, 7-15
INT6064, 2-44, 5-31, 5-32

SR-0014

Integer absolute value, 2-40, 3-32
Integer value

truncate to, 2-43
Intersegment subroutine calls, 2-72
Intregra1 value

truncate to, 2-5
IOERP, 2-44, 7-61
IOSTAT, 2-44, 5-58
IPX, 2-44, 2-82, 3-3B
ISAMAX, 2-45, 4-3, 4-4
ISAMIN, 2-45, 4-26
ISEARCH, 2-45
ISIGN, 2-45, 3-33
IS~, 2-46, 4-25
ISMIN, 2-46, 4-26
ISRCH routines, summary, 4-59
ISRCHEQ, 2-45, 4-60
ISRCHFGE, 2-45, 4-63
ISRCHFGT, 2-45, 4-62
ISRCHFLE, 2-45, 4-62
ISRCHFLT, 2-45, 4-61
ISRCHIGE, 2-46, 4-64
ISRCHIGT, 2-46, 4-64
ISRCHlLE, 2-46, 4-63
ISRCHILT, 2-45, 4-63
ISRCHNE, 2-45, 4-61
ITOI, 2-46, 3-16, A-IS

JCLPP
returns lines from, 2-35

JDATE, 2-19, 7-43
JNAME, 2-47, 7-78
Job Accounting Table (JAT), 2-5
Job area image, 2-27
Job control language symbol routines, 7-55
Job control routine, 7-35
Job CPU time, 2-96
Job name, 2-47
Job step

abort, 2-29
terminate and advance, 2-27
terminates, 2-30

Job step (Pascal)
abort, 2-96

JSYMGET, 7-56
JSYMSET, 7-55
Julian date, 2-19

Keyword processing, 2-60
KOMSTR, 2-47, 7-66

LeI, 5-77
LDSS, 2-52, 3-21
LDSV, 2-52, 3-21
LDVV, 2-52, 3-21
I.E, 2-12, 3-23
Leading zero bits, 3-13
LEADZ, 2-47, 3-13
Left shift, 3-14
LEN, 2-12, 3-22
LENGTH, 2-47, 5-57

Index-7 I

1GE, 2-11, 3-22
LGO, 2-48, 7-78
LGT, 2-11, 3-22
Library list, 1-1
Library residence, 2-3
Library summary, 2-1
Linear algebra subprogram, 4-23
Linear algebra subprograms, summary, 4-25
Linear equations, 2-51
Linear recurrence, 2-34, 2-77, 2-18, 4-30
Linkage macros, 1-2
LINPACK routines

descriptions, 4-38
summary, 4-39

LINPACK, 2-41
List-directed read. 5-4, 5-7, 5-14
List-directed write, 5-12, 5-13, 5-15, 5-5
LLE, 2-12, 3-22
LL'l', 2-12, 3-22
Load

character item, 5-77
LOADC, 2-48
LOADD, 2-48
LOADF, 7-12
LOADI, 2-48
LOADL, 2-48
LOADR, 2-48
LOC, 2-48, 7-79
Lock processing, 2-48, 2-49
Lock routines, 9-7
LOCKASGN, 2-48, 9-7
LOCKOFF, 2-49, 9-8
LOCKON, 2-49, 9-7
LOCKREL, 2-49, 9-8
LOCKTEST, 2-49, 9-8
Logarithm, 2-49, 2-50
Logarithm, complex, A-4
Logarithm, natural, A-2
Logarithm natural d.p., A-12
Logarithmic routines, 3-5
LOGECHO, 7-79
Logical complement, 2-14. 3-13
Logical difference, 2-95, 3-13, 3-14
Logical equivalence, 2-29, 3-13
Logical File Table

search, 2-77, 6-5
search for dataset name, 2-24

Logical File Table (LFT)
adds name to, 2-6, 6-5
search, 6-4

Logical product, 2-6, 3-13
Logical record I/O, 5-63
Logical sum, 2-58, 3-13
LT, 2-12, 3-23

Machine constants, 2-77, 4-29
MASK, 3-13
Mass storage dataset, 5-46
Mass storage dataset position, 5-42
Math tables, 3-38
Matrix inverse, 4-46
Matrix multiplication, 4-13
Matr ix multiply, 2-54, 4-46, 4-47

SR-0014 Index-8

Matrix primitive, sparse, 4-24
Maximum absolute value, 4-4
Maximum absolute value array complex, 2-40
Maximum absolute value index, 4-3
Maximum or minimum value, 4-25
.MEM, 2-51, 7-15
Memory assignment, 2-51
Memory dump, 2-26
Memory management, 2-96
Memory request, 2-51
MEMORY, 2-51, 7-79
Message

in logfile, 2-65
insert parameters into, 2-43

Message classes, 2-21
Minimum absolute value, 4-26
MINV, 2-51, 4-46
Miscellaneous math routines, 3-29

through 3-35
Miscellaneous special purpose routines, 7-70
MOD, 2-52, 3-33, 3-34
MODIFY, 2-53, 6-2
MODSS, 2-52
MODSV, 2-52, 3-34
Modulo arithmetic

double-precision, 3-31
on integer scalar and integer

vector, 3-34
on two integer scalars, 3-33, 3-34
read, 3-29
64-bit, 2-52, 3-33, 3-34

Modulo arithmetic double-precision, A-13
Modulus, 8-5
Modulus integer, 2-96
MODVS, 2-52, 3-34
MODVV, 2-52, 3-34
MOVBIT, 2-53, 7-63
Move characters, 2-53
MOVE, 2-11
MSC, 2-53, 1-17
MSCO, 7-17
MTTS, 2-84, 7-45
Multitasking, 2-86, 9-1
Multipass sort, 4-76
~ultip1ication double-precision, 2-23
MVC, 2-53, 7-64
MVE, 2-54, 7-20
MXl'1, 2-54, 4-46
MXMA, 2-54, 4-47
MXV, 2-54, 4-47
MXVA, 2-54, 4-49

NACSED, 2-55, 7-81
Namelist

auxiliary, 5-59
input transfer, 5-8
output transfer routines, 5-13

NAMELIST I/O errors, 7-61
NAMELIST processing, 2-55
Natural logarithm, 3-5, A-2
NE, 2-12, 3-23
Nearest integer, 2-21, 2-57, 3-31, 3-34
NEQV, 3-13

I

NEWLEN, 2-37, 7-28
NICONV, 2-56, 5-79
NICV, 2-56, 5-79, 5-82
NINT, 2-57, 3-34
NLERP, 2-44, 7-61
NOCONV, 2-57, 5-80, 5-81
NOCV, 2-57, 5-80, 5-82
NORERUN, 2-57, 7-37
NUMBLKS, 2-57, 6-7
Numeric conversion, 5-78

Online translation, v
OPEN, 2-58, 5-34, 6-7
OPENMS, 2-53
OPENMS/OPENDR, 5-84
OPENWA, 5-109
OPFILT, 2-32, 4-55
OPTION, 7-82
OR, 2-58, 3-13
O~E~

description, 4-73
examples, 4-77
method, 4-75
sort times, 4-76

os dependency, 2-3
OSRCHF, 2-71, 4-72
OSReHI, 2-71, 4-71
OTB, 2-59, 3-26
Output transfer

buffered, 5-13
formatted and unformatted, 5-11
namelist, 5-13

OVERLAY, 2-59, 7-82

P$$$HPAD, 2-96, 8-1
P$ABORT. 2-96, 8-2
PSBREAK, 8-2
P$CALLR, 2-96, 8-2
P$CBV, 2-96, 8-3
P$CONNEC. 2-96, 8-3
P$DATE, 2-96, 8-4
P$DBP, 2-96, 8-4
P$DEBUG, 2-97, 8-4
P$DISP, 2-96, 8-4
P$DIVMOD, 2-96, 8-5
P$ENDP, 2-96, 8-5
P$EOF, 2-96, 8-6
P$EOLN, 2-96, 8-6
P$GET, 2-96, 8-6
P$HALT, 2-96, 8-7
P$JTlME, 2-96, 8-7
P$LOGMSG, 2-96, 8-8
P$LSTREW, 2-96, 8-8
P$MEMRY, 2-96, 8-8
P$MOD, 2-96, 8-9
P$NEW, 2-96, 8-9
P$DSDBS, 2-96, 8-10
P$OSDDT, 2-96, 8-10
P$DSDEP, 2-96, 8-11
P$OSDJT, 2-96, 8-11
P$DSDLM, 2-96, 8-11
P$OSDPR, 2-96, 8-12

SR-0014 Index-9

P$OSDQI, 2-96, 8-12
P$OSDRC, 2-96, 8-12
P$OSDRP, 2-96, 8-13
P$OSDRW, 2-96, 8-13
P$OSDTM, 2-96, 8-14
P$OSDWC, 2-96, 8-14
p$OSDWF, 2-96, 8-15
P$OSDWR, 2-96, 8-15
P$OSDXP, 2-96, 8-16
P$PAGE, 2-97, 8-16
P$PUT, 2-97, 8-17
P$RB, 2-97, 8-17
P$RCH, 2-97, 8-17
P$READ, 2-97, 8-18
P$READLN, 2-97, 8-18
P$REPRV, 2-97, 8-19
P$RESET, 2-97, 8-19
P$REWRIT, 2-97. 8-19
PSRF, 2-97. 8-20
P$RI, 2-97, 8-20
P$ROUND, 2-97, 8-21
P$RSTR, 2-97, 8-21
P$RTIME, 2-97, 8-21
P$RTMSG, 2-97, 8-22
P$RUNTIM, 2-97, 8-22
P$SFRAME, 2-97, 8-23
P$TIME, 2-97, 8-23
P$TIMER, 2-97, 8-23
PSTRACE, 2-97, 8-23
P$TRUNC. 2-97, 8-24
PSWS, 2-97, 8-24
P$WCH, 2-97, 8-24
PSWEOF, 2-97, 8-25
P$WI, 2-97, 8-25
PSWO, 2-97, 8-25
P$WR, 2-97
PSWRFIX, 8-26
P$WRFLT, 8-26
PSWRITE, 2-97, 8-26
P$WRITLN, 2-97, 8-27
PSWSTR, 2-97, 8-27
P32, 2-59, 5-30
P6460, 2-59, 5-29
Pack

32-bit words, 2-59, 5-30
60-bit words, 2-59, 5-29
words into packed list, 2-59

PACK, 2-59, 7-68
PAD, 2-11
Page start new, 2-97
Page-eject, 8-16
PAL, 2-36
Pascal subprogram summary, 2-96
Pascal, 8-1
PAUSE, 2-59, 7-38
PBN, 2-60, 5-53
PDD, 2-82, 6-9
PDUMP, 2-26, 7-6
PERF, 2-60, 7-82
Performance counter group descriptions, 7-86
Performance monitor, 2-60
Performance statistics, B-1

I

Permanent dataset
access, 2-4, 2-5
acquire front-end resident, 2-5
expand contract, 2-5

PERMaT, 2-60, 6-2
Plane rotation, Givens, 2-67, 4-11, 4-13,

4-19, 4-28, 4-4
Pocket sort, 4-75
POPCNT, 2-61, 3-14
POPPAR, 2-61, 3-14
positive integer difference, 3-32
Positive real difference, 2-20
Positive real difference, 3-31
Power

scalar to scalar, 2-17, 2-18
scalar to vector, 2-17, 2-18
vector to scalar, 2-17, 2-18
vector to vector, 2-17 2-18

Power raised
double-precision, 2-25
double-precision, 2-26
scalar/vector, 2-68
single-precision, 2-46

Power raised, 3-14, 3-16
Powers of 10, 2-42, 2-82
PPL, 2-60, 7-53
PRBREAK, 2-96
PROW, 2-61, 5-54
Preface, v
Primary reference name, 1-1, 2-2
Product inner, 4-9
Prompt s tr ing, 2-96
Pseudo vectorization, 3-28
PTS, 2-61, 7-20
Publication list, v
PUTBYT, 2-61, 7-65
PUTWA, 2-90, 5-105

Radix sort, 4-75
Random access I/O, 5-83
Random number, A-16
Random number generator, 2-82
Random number processing, 2-62
Random number routines, 3-36
RANF, 2-62, 3-36, A-16
RANFI, 2-62, 2-82, 3-38
RANFS, 2-62, 2-82, 3-38
RANGET, 2-62, 3-36, A-17
RANSET, 2-62, 3-36, A-17
Rational number integer ceiling of, 2-41
RB, 2-62, 5-8
RBN, 2-63, 7-85
RCFFT2, 2-31, 4-52
RCHP, 2-63, 5-67
RCHR, 2-63, 5-67
RCWP, 2-63, 2-63
ROIN, 2-63, 6-8
RDYQUE, 2-63, 9-12
RDYTSK, 2-63, 9-11
Read

asynchronously, 5-95, 5-108
Boolean, 2-97
buffer, 2-63

SR-0014 Index-IO

Read (continued)
buffered, 5-8, 5-17
CDC file format, 5-18
character. 5-66. 5-67, 2-97
characters, 2-63, 2-64, 2-96
characters, full record mode, 5-68
characters, partial record mode, 5-68
character record, 8-12
directly from user area, 2-66
floating-point, 2-97
formatted, 5-3, 5-7, 2-66, 5-14
formatted, vectorized, 5-8
FORTRAN namelist, 5-8
IBM file format, 5-16
IBM floating point words, 2-64
IBM words, 5-69
integer, 2-97
list-directed, 2-67, 5-4, 5-14
logical record, 8-6
logical record in Al format, 7-56
new line, 2-97
one buffer of data, 6-8
record, 2-96, 2-97, 8-13
string, 2-97
synchronous/asynchronous, 5-96
unblocked data, 5-69
unformatted, 2-6, 5-3, 5-7, 5-14
unformatted, vectorized, 5-8
words, 2-63, 2-64, 2-96, 5-110
words, full record mode, 5-64, 5-66
words, partial record mode, 5-64, 5-66

READ, 2-64
Read/write check, 2-28
READC, 2-64, 5-68
READCP, 2-64, 5-68
READIBM, 2-64, 5-69
READMS, 2-53
READMS/READDR, 5-90
READP, 2-64, 5-66
Reads

random access, 5-90
READWA t 5-110
REAL, 2-65, 3-34
Real absolute value, 3-29
Real array

copies, 2 -14
Record

backspace, 5-50
logical I/O, 5-63

Record format management
input, 5-18
output, 5-18

Record mode writes characters in, 2-91
Records

bypass, 5-40
copies, 2-15
copy, 5-35

RELEASE, 2-65, 6-3
REMARK, 2-65, 7-87
IffiMARK2, 2-65, 7-87
REMARKF, 2-65, 7-87
Reprieve processing (Pascal), 2-96
REPRIEVE processing, 2-65
Reprieve processing. 2-97, 8-13

I

RERUN, 2-66, 7-37
Reverse Polish T.ab1e, 2-11
REWD, 2-66, 5-52
REWIND, 5-53
RFA, 5-7
RFD, 2-66
RFF, 5-14
RFI, 5-3
RFV, 5-7, 5-8
Right shift, 3-14
RLA, 2-67
RLA read list-directed, 5-7
RLB, 2-66, 5-69
RLF, 2-67, 5-14
RLI, 2-67, 5-4
RNB, 2-67, 2-74, 7-85, 7-87
RNL, 2-55, 5-8
RNLCOMM, 2-55, 5-62
RNLDELM, 2-55, 5-61
RNLECHO, 2-55, 5-60
RNLFLAG, 2-55, 5-61
RNLREP, 2-55, 5-62
RNLSEP, 2-55, 5-61
RNLSKIP, 2-55, 5-60
RNLTYPE, 2-55, 5-60
RTOI, 2-68, 3-16, A-17
RTOR, 2-68, 3-16, A-1S
RUA, 2-69, 5-7
RUF, 5-14
RUI, 2-69, 5-3
Runtime errors, 8-19
Runtime initialization routine, 2-97
Runtime messages, 2-97
Runtime timing, 2-97, 2-97
RUTD, 2-69, 5-17
RUTDP, 2-69
RUTF, 2-69, 5-17
RUTI, 2-69, 5-16
RUV, 2-69, 5-7, 5-8
RWDP, 5-64
RWDR, 5-64

SASUM, 2-80, 4-3, 4-5
SAVE, 2-70, 6-2
SAXPY, 2-8, 4-3, 4-6
Scalar functions, 1-1
Scale array, 4-21
SCASUM, 2-80, 4-3, 4-6
SCATTER, 2-70, 4-57
SCERP, 2-70, 7-62
SCHED, 2-71, 9-13
SCI, 5-78
Scientific applications subprograms, 4-1
SCNRM2, 2-71, 4-11, 4-3
SCOPY, 2-14, 4-3, 4-8
SDACCESS, 2-71, 6-3
SOOT, 4-4, 4-9
SOOT, SPDOT, 2-22
SDSP, 2-71, 6-4
Search bytes, 7-66
Search routines, 4-57
SECOND, 2-72, 7-43

SR-OOI4 Index-II

Sectors
bypass, 5-42
copy, 5-39

SEEK, 2-90, 5-108
SEGCALL, 2-72, 7-88
Segmented program, 2-72, 7-88
SEGRES, 2-72, 7-88
Sense switch, 2-79, 7-88
SENSEBT, 2-72, 7-40
SENSEFI, 2-72, 7-39
Set new length routines, 7-27
SETBT, 2-73, 7-41
SETBTS, 2-73, 7-42
SETFI, 2-73, 7-39
SETFIS, 7-40
SETPLIMQ, 2-33, 2-73, 7-3
SETPOS, 2-74, 5-49
SETRPV. 2-65, 7-37
sm, 2-74
SHIFT, 2-74, 3-14
Shift left, 2-74, 2-75
Shift right, 2-75
SHIFTL, 2-75, 3-14
SHIFTR, 2-75, 3-14
SHRINK, 2-37, 7-31
SIGN, 2-75, 3-35
Sign

transfer, 2-45
transfer from one integer to

another, 3-33
transfer from one real number to

another, 3-35
SIN, 2-75, 3-9
Sine

complex, A-7
double-precision, 2-24

Sine, 2-16, 2-75, 3-10, 3-9, A-5
Sine, d.p., hyperbolic, A-13
SINH, 2-75, 3-11
Skip sectors, 2-76
Skip to first good data, 2-76
SKIPBAD, 2-76, 5-76
SKIPD, 2-76, 5-41
SKIPF, 2-76, 5-40
SKIPR, 2-76, 5-40
SKIPU, 2-76. 5-42
SKOL processing, 2-38, 2-39. 2-40
SKOL run-time support, 7-56
SLERP, 2-76, 7-62
SLFT t 2-77, 6-4
SMACH, 2-77, 4-29
SMMVE, 2-B2
SNAP, 2-77, 7-7
SNRM2, 2-77, 4-10, 4-3
SOLR, 2-77, 4-34
SOLR3, 2-78, 4-36
SOLRN, 2-78, 4-35
Sort

bucket, 4-75
fixed-length records, 2-58
multipass, 4-76
pocket, 4-75
radix, 4-75

Sort entry points, C-1

I

SORT ROUTINE, 4-73
Sparse matrix primitives, 4-24
SPAXPY, 2-8, 4-24
Special purpose subprograms, 7-1
SPODT, 4-24
SPeS, 2-74
SPOS, 5-46
SQRT, 2-78, 3-7, A-19
Square root complex, A-B
Square root routines, 3-7
Square root, 2-78, A-19
SRC, 2-79, 7-18
SROT, 2-67. 4-13, 4-4
SROTG, 2-67, 4-11, 4-4
SROTM, 2-67, 4-19, 4-4
SROTMG, 2-67, 4-13, 4-4
SSCAL, 2-70, 4-21, 4-4
SSOM, 2-80, 4-27
SSWAP, 2-81, 4-23, 4-4
SSWITCH, 2-79, 7-88
Stack header control word, 7-21
Stack management, 7-21
Stack processing, 2-79, 2-97
Stack walkback. 8-23
STINDX, 2-53
STINDX/STINDR, 5-93, 5-94
STKCR, 2-79, 7-23
STKDE, 2-79, 7-24
STKOFEN, 2-79, 7-23
STKUFCK, 2-79, 7-24
STKUFEX, 2-79, 7-24
STOP, 2-79, 7-38
Store character item, 5-78
STOREF. 2-48, 7-12
STPOS, 2-74, 5-47
STRMOV. 2-80, 7-63
Sub-index, 5-93
SUBMIT. 2-80, 6-3
Subprogram summary, 2-1
Subroutine name address of, 2-35
Subroutines prints a list, 2-85
Subtraction double-precision, 2-23
SUSTSK, 2-80, 9-12
Symbolic dump, 2-81, 7-7
SYMDEBOG, 2-81, 7-7
SYNCH, 2-81, 5-55
SYNCMS/SYNCDR, 5-96
System clock, 2-13
System directory, 6-3
SYSTEM, 7-89

Table
clears space, 2-95
move words to, 2-54
permanent dataset definitions, 6-9
preset space, 2-61
search, 2-79
search with mask, 2-53

Table Base Table (BTAB), 7-12
Table Length Table (LTAB), 7-12
Table management, 7-12
Table manager, 2-81
Table of contents, vii

SR-0014 Index-12

Table pointers, 2-43
Table space total allotted, 2-6
TADD, 2-82, 3-18
TAN, 2-83, 3-10
Tangent, 2-83, 3-10
Tangent, d.p., A-14
Tangent, hyperbolic, A-19
Tangent, hyperbolic d.p., A-14
TANH, 2-83, 3-11, A-19
Tape dataset, 5-55
Tape dataset position information, 5-44
Tape translation

buffer management, 5-16
data format management, 5-18
description, 5-15
record format management, 5-18

Task
initiates, 2-85
suspends execution, 2-80

Task information block, 2-83
Task routines, 9-1
Task, 2-86
Tasks

read for execution, 2-63
schedule logical CPUs for, 2-71

TASS, 2-82, 3-18
TDIV, 2-83, 3-19
TDSS, 2-83, 3-19
Temporarily prohibits

floating-point interrupts, 2-13
Terminate program, 2-96
TIBCR, 2-83, 9-l1
TISDE, 2-83, 9-11
Time

obtain, 2-96, 2-97
since start of job, 2-72

Time and date, 7-42
TIMEF, 2-19, 7-43
Timestamp routines, 7-44
Timestamp units, 7-45
Timestamp, 2-84
TM common block, 7-14
TMAOW, 2-81, 7-16
TMAMU, 2-81, 7-19
TMATS, 2-81, 7-16
TMINIT, 2-81, 7-15
TMLT, 2-84, 3-19
TMMEM, 2-82, 7-15
TMMSC, 2-82, 7-17
TMMVE, 7-21
TMPTS, 2-82, 7-20
TMBRC, 2-82, 7-18
TMSS, 2-84, 3-19
TMVSC, 2-82, 7-19
TR, 2-84, 7-89
Traceback, 2-85, 7-4
Trailing blanks, 2-63
Trailing nulls, 2-67, 2-74
Transfer

character to result, 2-11
one character item to result, 3-24
termination, 2-11, 3-25
sign, 2-24, 2-45, 2-75, 3-32

I

Translate
ASCII CDC display code, 5-20
CDC d.p. to Cray d.p. f.p., 5-19
CDC f.p. to Cray f.p., 5-19
CDC complex to Cray complex f.p.,
CDC display code to ASCII, 5-19
CDC logical to Cray logical, 5-19
Cray integer to CDC integer, 5-20
Cray d.p. f.p. to CDC d.p., 5-20
Cray f .p. to CDC f .p., 5-20

5-19

Cray complex f.p. to CDC complex,
Cray logical to CDC logical, 5-20
IBM complex f.p. to Cray complex

5-20

f .p. ,5-19, 5-20
IBM integer to Cray integer, 5-19
IBM logical to Cray logical, 5-19
IBM f.p. to Cray f.p., 5-19
IBM EBCDIC to ASCII, 5-19
internal format, 5-18

Translates
CDC formatted input, 2-11
CDC formatted output, 2-11
characters, 2-84
IBM formatted data, 2-40

TREK, 2-85, 7-4
TRBKLVL, 2-85, 7-4, 7-5
TREMAIN, 2-85, 7-43
Trigonometric routines, 3-10, 3-8, 3-9
Triple-precision

addition, 2-82, 3-18
arithmetic routines, 3-19, 3-20, 3-18
division, 2-83, 3-19
multiplication, 2-84, 3-19
subtraction, 2-86, 3-20

True condition
first location of, 2-45

Truncate
double-precision, 2-21
double-precision numbers, 3-31
to integral value, 3-29, 3-33

TSDT, 2-84, 7-44
TSKLIST, 9-7
TSKSTART, 2-85, 9-1
TSKTEST, 2-85, 9-4
TSKTUNE, 2-86, 9-5
TSKVALUE, 2-86, 9-4
TSKWAIT, 2-86, 9-3
TSMT, 2-84, 7-45
TSSS, 2-86, 3-20
TSUB, 2-86, 3-20

U32, 2-86, 5-30
U6064, 2-87, 5-29
UEOFCL, 2-87
UEOFKIL, 2-87, 5-59
UEOFSET, 2-87, 5-59
UEOFTCL, 5-59
UIO, 5-78
UNIT, 2-87, 5-57
UNITTS, 2-84, 7-45
Unpack

32-bit words, 5-30
60-bit words, 2-87, 5-29

UNPACK, 2-87, 7-69
Unpacks 32-bit words, 2-86
Update deck name, 2-2
USCCTC, 2-87, 5-22
USCCTI, 2-88, 5-27
USDCTC, 2-88, 5-21
USDCTI, 2-88, 5-25
USICTC, 2-88, 5-21
USICTI, 2-89, 5-26
USICTP, 2-88, 5-28
USLCTC, 2-89, 5-23
USLCTI, 2-89, 5-28
USPCTC, 2-89, 5-23
USSCTC, 2-89, 5-20
USSCTI, 2-90, 5-24
UTERP, 2-90, 7:....62
Utility subprograms, 9-11

Vector
absolute values of, 4-5
add a scalar multiple, 4-6
compleX, 4-6
copy complex, 4-8
false values in, 4-58
gather, 2-35, 4-56
largest absolute value of, 404
largest or smallest element of, 4-25
scale, 4-21
scatter, 4-56
smallest abSOlute value in, 2-45
sum of values, 4-27
true values, 4-58
write to output, 2-92

vector functions, 1-1
vectorization

pseudo, 3-28
Vectors

convolution, 4-54
exchange, 4-23

WAITMS/WAITDR, 5-98
WB, 2-91, 5-13
WCHK, 2-92
WCHP, 2-91, 5-73
WCHR, 2-91, 5-73
WCLOSE, 2-90, 5-108
WDSET, 5-111
WDSETB, 5-111
WEOD, 2-91, 5-56
WEOF, 2-91, 5-56
WFA, 2-92, 5-11
WFBUFFER, 2-91, 7-89
WFF, 2-92, 5-14
WFI, 2-91, 5-4
WFV, 2-91, 5-12
WHEN routines, summary, 4-65
WHENEQ, 2-92, 4-66
WHENFGE, 2-92, 4-68
WHENFGT, 2-92, 4-68
WHENFLE, 2-92, 4-67
WHENFLT, 2-92, 4-67
WHENIGE, 2-92, 4-70

SR-0014 Index-13 I

WHENIGT, 2-92, 4-70
WHENlLE, 2-92, 4-69
WHENILT, 2-92, 4-69
WHENNE, 2-92, 4-66
Whole nulllber

calculates nearest, 3-29
nearest, 2-6

WLA, 2-93, 5-12
Wl.B, 2-92, 5-74
WLF, 2-93, 5-15
WLI, 2-93, 5-5
WLV, 5-13
WNL write FORTRAN namelist, 5-13
WNL, 2-56
WNLDELM, 5-62
WNLFLAG, 5-63
WNLLONG, 5-62
WNLREP, 5-63
WNLSEP, 5-63
WNOCHK, 2-9 2
WOPEN, 2-90, 5-103
Write

Boolean, 2-97
Boolean argument, 8-24
buffered, 5-13, 5-17
CDC file format, 5-18
characters, 2-96, 2-97, 8-24
characters, full record mode, 5-73, 5-74
characters, partial record

mode, 5-73, 5-74
characters defined by the TYPE CHAR

statement, 7-59
character record, 8-14
contents of exchange package, 7-9
EOF, 2-96
EOF, EOR, 5-56
end-of-file, 2-97
end of file mark, 8-25
end-of-line, 2-97
formatted, 2-92, 5-4, 5-11, 5-12, 5-14
formatted, vectorized, 5-12
floating-point, 2-94
full record mode, 2-94
IBM file format, 5-18
IBM words, 5-74
integer, 2-97
into user area, 2-92
list-directed, 2-93, 5-5, 5-12,

5-13, 5-15
logical record, 8-17
octal integer, 2-97
partial record mode, 2-93, 2-94
real number, 2-97
record, 2-96, 2-97, 8-15
packed character string, 8-27
record mode, 2-95
string. 2-97
unblocked data, 5-74
unformatted, 2-94, 5-4, 5-11, 5-12, 5-15
unformatted, vectorized, 5-12
words, 5-110
words, full record mode, 5-70, 5-71
words, partial record mode, 5-70, 5-71

WRITE, 2-93, 5-71

SR-0014 Index-14

WRITBC, 2-93, 5-74
WRITECP, 2-93, 5-74
WRlTEP, 2-93, 5-71
Writes

master index, 5-91
random access, 5-89

WRITEWA, 5-110
WRITIBM, 2-94, 5-74
WRITMS r 2-53
WRITMS/WRITDR, 5-89
WUA, 2-94, 5-11
WUF, 2-94, 5-15
WI, 2-94, 5-4
WUTD, 2-94, 5-17
WUTDP, 2-94
WUTF, 2-94, 5-18
WUTI, 2-94, 5-17
WUV, 2-94, 5-12
WWDP, 2-95, 5-70
WWDR, 2-95, 5-70
WWDS, 2-95, 5-70
WWPD, 2-95, 5-70

XOR, 2-95, 3-14
XPFMT, 2-30, 7-9

Zero bits tally leadin9, 2-47
Zero/nonzero, 2-42
ZTS, 2-95, 7-20

I

READERS COMMENT FORM

Library Reference Manual SR-0014 I

Your comments help us to improve the quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME ____________________________________ _

JOB TITLE _______________________ _

FIRM ___________________________________ __
RESEARCH, INC.

ADDRESS __________________________________ _

CITY ___________ STATE ____ ZIP ____ _

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
.,RST CLASS PERMIT PjO 61f4 51 PAUl MN

POSTAGE WILL BE PAID BY ~nORESS(£ . ---­, I Is .,
RESEARCH, INC.

1440 Northland Drive
Mendota Heights, MN 55120
U.S.A.

1 0 c
l~

r-
I~

C)

l~
:r

len
c
I~

I
I

I
-----~

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

t

'-------------------------------------1

READERS COMMENT FORM

Library Reference Manual SR-0014 I

Your comments help us to improve the Quality and usefulness of our publications. Please use the space provided
below to share with us your comments. When possible, please give specific page and paragraph references.

NAME __ __

JOB TIT LE __ _

FIRM _______________________________________ __

ADDRESS ___ __

CITY ____________ STATE ___ ZIP _________ _

~==I=:a ~ -- • I 1.-.. '
RESEARCI-I. INC.

Attention:
PUBLICATIONS

111111

BUSINESS REPLY CARD
f!RST CLASS PERMIT NO 6124 ST PAUl. MN

poStAGE WIll Bf I'AIO 8V AnORESSH

C=:I=' ~~ "" '~"T
~ESEAI=lCH, INC.

1440 Northland Drive
Mendota Hei-.ts. MN 65120
U.S.A .

--- -----~
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I

. -----------------~-------------------,

(")
c ...
> r­o z
Q ...
:r
iii
!:
z
m

