81000 SYSTE®* SOFTWARE RELEASE MARK 11.0

TOCUMENT/OMSFUNCY

B1000 SYSTEFS DPTA MANAGEMENT SYSTEM II (DMSID)

FUNCTICNAL DESCRIPTION MANUAL

FIRM NUMBER 1152444

LA AR EREREE SRS RS RREE R REEs SR AL RERRE RIS R 2R R SR RREEZE 2]

TITLE:

FILE

61000 SYSTEM SCFTWARE RELEASE MARX 11.0

IL: COCUMENT/OFMSFUNCT TAPE ID: SYSTEN

R R R ERE RS ERE R AR REEREEESEEIERR RSl R RRERSER RS iR RRR SRR ST

&
%
&
&
&
|
2 ARk
* AR
2 AR
* w&k%
4 AAR
A hER
2 A%
* A%
& k&
® Ak
* A AR
* 2 &
*

KARKRURR AR ANR AR ARNARARRAANR LA AR RANS AT A A AANRRL A AR R AR AR AN R R AR AR RN AR L

1152444

PROFRIETARY PRUGRAM MATERIAL

THIS MATERIAL IS PROPRIETARY TO BURROUGHS COFPCRATIOMN
ANC IS NCVY T(C EBE REPROCUCED, USED OR DISCLOSED EXCEPTY
IN ACCCRIANCE WITH PROGRAM LICENSE OR ULPON WRITTEN
AUTHCRIZATICM OF THE PATEnNY DIVISION OF BURROUGHS
CCRPORATION, DETFOIT», MICHIGAN 428232. USA.

COFYRIEGHT (C) 19F4
EURRCUGHS COFPORETION

* k%
L &
LE B
LR
*h %k
&k &
* k&
LR &
* Rk &
& &k &
k&
& &k %

1 Q1719784

*®
*
x
*
E
*
®
*
*
&
&*
*
*
*
*
&®
*
*
&

Announcesent Letter

January 19, 198%

B 1000 SYSTENS
DATA MANAGEMENT SYSTEM 1I (UMSII) FUNCTIONAL DESCRIPTION MANUAL

With this letters, we are announcing the availiability cf the
£ 1000 Systems Data Panacement Systesm II (DMSII) Functicnal
Lescription Manuatls, form 11524445 dated Marcts 198B4. This is 3

new sanual.

This manuatl includes an cverview of the DMSII structure types and
functional descriptions ¢cf the DMSI4i update and reorganizations
aucit and recoveryr znd tcata base security processes. AAlsos» tte
[MSI] menory vrequiresents» DMS/DASDL code descriptionss and OMSII
cata structure inrforsaticn is proviaded. This operating
instructions fcr the OMS/DECOMPILER, DMSDASDLANALY, DMS/ODBEACK,
[(MS/AUDTTANALY, and [MS/7{BMAP programs are described for use by

SYStems prcgrasmers sncd znalysts.

This manual is relative to the Mark 11.0 System Software Release.

2id technical cosmunication concerning this manual stould be

c¢irected to:

1122444 2 01/1%/84

Eurrcughs Corporztior

ranagers, B 1000 Scoftsare

Froduct Assurance arc Support

E300 Hecllister Avenue

Goletar Catifornia 93117 U.S. American

Copies of this puliciztior may be oruered from the Putiications

(enter» [earborns Michigin U.S5. American.

faymond J. Renzuilosr Manizger
feccugsentation - Hest

1152444 3 01715784

PREFACE

The information contzinec in this manual is relative to the Mark

11.0 System Software Release.

The 8 1000 Data Manacemert System L[4 (DMSII) consists of the

following componentss:

1.

A CMSII Cata Ard Structure Definition Language (CMS/DASDL)

describes a [CMSI1 cata base.

An ANS] €B COBCL», #NSI 74 COB0L» or RPEGII language
interface providintg pregrammatic access to the data in the

data bases

The CMSIT access reutines contained within the program

DMS/ALCR that ccntrel storage and retrieval.

The [MS/FECOVEFDE grogram automaticasily restores the

integrity of a datz base that may have been corrupted

through a system feidure.

The OMS/RECRGAMIZE program used in conjunction with the

DMS/LASCL compiter redescribes portions of the dats tases

Utidity gprograss tc assist in debugging the OMSII system

anc EMS5I] cata bases.

1152444 i H1719/84

These components fore the nucleus ot the 8 1000 Data Manmagement
System II.

RELATED DOCURENTS
The fotltowing documents zre referenced in this manuatls

8 1000 Systems System Software (peration Guides Volume 1,

fors number 115168%.
B 1000 Systems CCE(L Reference Manuzls, form number 1057197.

B 1000 Systems COB{L74 Reference Manual» form number

1108883.

E 100D Systems Repcrt Program Generator (RPGII) Manual,

form numter 1152067,

E 100D Systems Datz Management System II Inquiry Reference

Manuzli» form nuember 1108875.

B 1009 Systems OMSTI Data and Structure Definition Language

(DM¢S/CASCL) Larguace Manuals torm number 1152089.

1152444 2 01719/84

JABLE QF COANVENIS

PREFACE 1
RELATELD DOCUMENTS 4 e » m a8 B e w e % s o m = = e = = = & 2
SECTION 1 1-1
INTRODULCTION o o @ » % o = 5 » o » » » » » » » o «» » = = = 1=1
SECTION 2 =1
CMETII STRUCTURE TYFES e« ®» % o » » ®» ® & s ® = s s o e o » =1
CATA SET STRLCTUFRES -1

SEY ANL SUESETY STRUCTURES o o o = o = = » » o« = » = = » 2=2
Automratic Sets 2=3
Autosatic Subsets » ® & & » 8 m om % omow e u e w a o = 2=k
Manual Subsets Z=4
STRUCTLRE TYPES o o o o 5 o # o » =2 » « = » o« »« » » » » £~5
Data Set with ho Sets 2=5

Data Set with (rdered (Index Segquential) Set "~ v« s« = =B

Data Set with Emtecded Data 5et {No Sets) 2=~7

Cata Set wWith (rcered Embeddea Data Set = = « o o = « £=8

Data Set with Incex Random S5et and Automatic Subset 2=10

Data Set with dultiple Ordereg Sets and One Retrieval $2-11

Tvwec Lata Sets» Cne Referenced by a Manual Subset of theZ-13

Two Lata Setss Eact Reterencea by 2 Subset of the Cther2-14
SECTION 3 1-1
UFLCATE AND REORGANIZATION - % o » o = ® » o s » s = s = = 3=1
UPDAIE PROCESS I=1

RQO'Q&“ilat‘io“ Process » ®» ®» ®» ®» ® = % ® = ®» # s = = = 3I=2

1152444 1c=1 01719784

GENERATE Statesent 1-3
PUFGE statement L] - - - L d £ J - » » -» » - - - - » - - - 3-6
COPY Statement 3=7

IN‘EFNAL FItEs Sta'ement " ® ®» e W™ 8 W @ = ® ™ = ® = 3-10

DMS/RECRGANIZE Procram 3=-11
Recrganization Rules e o » o ®» 8 mw e e » & w » o » » 3I=14
Data Transformztiors 3-19

Anﬂitiﬁn -and Delftion Of Data Items » ®» ® = ° ®» » ® 3-19

Item Size Chenges 3-20
SiQHEd Data . M 8 @ ® B e ® B ®m e ® e B A " e ®® 3-20
Gccurrences 2=20

Fegrouping of Cata Items « « o o = » o =« « = s« « « 3=21
Item Type Chznges 3=-22
Lata Transformation Rules e ® » ®» « s = s s e = « 3=22
Version Checkirg I=24

Gafh&ge coilec‘ion » -» -» -» » - -» » -» - - » - - » L -» 3-25

Cisjoint Catec Sets 3-26
Incex Seﬂuentiai ® ®» » b m ®» m 3 » e a = w = = = =» 3=217
Incex Fandom 3-27

Lists (Manual Sutsets and Embedded Data Sets) « - = 3=27

File Naming Conventions 3-28
Algo’ithms - -» - - - - -» e d - L J - - -» - -» » - -» -» - - 3.30
Incex Secuential =30

Incex Fandom Sete and New Index Seguential Structures3-31
Abnormat Conditions =32
Non=festartalbtie (onNditionNsS = o = » # o = o » » = =« I=34

Restartable (onditions 3=35

1152444 1C=2 C1/719/84

Systea Requirenenis e 2 s 3 % e m s e 8w owow s
Purge
feoarganizaticn of a Data Set or Manusal Subset
fadance of an Incex Set or Subset
SECTION 4 @ % ® ®» m s W s = % s e m e % wowmos e s s w
AUCIT ANLC RECOVERY
SYNTAX ELEMENTS o o o o © o 5 2 o o o » o o = = =
Audit Trail
Restart Data 3¢t » o o 5 » . a m o moe m » = w »
Transactions
SYRCEOINt = o 2 o 5 s » © o ® o © = s = = = =»
Controlpoint
FORMS CF RECCVERY 4 % o w % e . mm ® 8 e 8 e » s = @
Program Abort Fecowery
Clear=Stzert RECOVRTY & « » » » » » 5 » o o« o » »
Dump Recovery
Partial Dump Recovery “ % a m % e 4 aos e om
Write Errors and Partial Dump Recovery
THROUGHPUT CCNSITCERATIONS & o o o = » = » = » = =
Aucdit Mecia
Audit Blccksize “« ®» ® 2 s 8 m s e 2 % & = s &
Logical Transactiors
Syncpoints and Controlpoints o o = o = o = » » =
RESTART PRCCEDURES
Easic Prccedures " e o w e s moeoa soe e ow
frternal Procegures

Externsl Prcceduves Felated to the DNSII Systenm

1152444 1C~3

- -» 4‘3"

01719s84

External Prccedures not Related to the DMSII Systes 4-35
General Procedures » » 2 o » = o » o s » » » » » » 4=35
Festart Recocrd Hindling 4-356
Batch Programs « « o » » » » » = © » o o« « » » » » » A4=38
Datz Comsunications Progranms 4= 40
Festarting Remote Stations w u e ® » 2 » e = » » o h=4]
Audit by Progrizm =42
Augit By Statitn « o o o s = o » # =« » » o » s » 4=42
teneral Restartling of Cata Communication Programs &4=43
Backed Ouvt Trarsactions e o o o # % » s & » o« » » =« hb=h6
Frequercy of Syntpoints 4~ 46

ADDITICNAL MULTIFROGFAMMING CONLIDERATIONS o+ o o o o « 4=50

Use ¢f an Messzge f{ontrol System (MCS) 4~590
Progras Synchrcniz:ztion e % » = ® o » s @ o » v o o h=52
SECTION 5 £=-1

CATA BASE SECURITY 4« o o o o # 2 = ® = & = s s =« s « = = » 5-1
Security Features £=2
Cpercgting System Security (ion=-DMSII Access) e » o £t=2
SECURITYTYPE £=-3

1c 5-4
IN - - - L - » - » L - » £ -» -» » - -» £ J - L -» - » - - 5‘&
guil S=4

DMSII ACCESS e d - -» - » » L J » - - L J L d - - L] - - -» - -» -» L J S-S
Structure and ltem Protection wWwith Lcgical Datas Bases ant=~5
Protecticon of Entive Physical and Logical Data Bases UsiS-7

SECURITYGUARD Files S=-8

1152444 TIC=4 01/15/84

Compiling the fata Base
Cospiling FPrograsms

Executine Programs « e

DMS/7INGUIRY Prcgran

Conclusicn

SECTION 6

CMS/DECCHPILER PRGCRAM

» »

Cperating Instructions

SECTION 7

- - » » » L - - »

CMS/OASTLANALY FRUOCRAM
Operating Instructions
SECTION B8

[MS/DBLCCK PROCRAM

SECTION §

CMS/DBEACK PROGRAM

- » - -

SECTION 10
CMS/AULCTIVTANALY PROCRAM -
CPERATING INSTRUCTIOMS
CMS/AUCITANALY CFTICMNS .
CPTICN SPECIFICATIONS
DATASASE Statesent
FILE Statement
STRUCTURES Statemert .
ASNS Statement

TYPES Statement
OPTICNS Statement
STATISTICS Statemerts

1152444

» 10-6

10-7
10-11
10-16
10-18
10-21

- oy

10-23

TC~5 01715784

VERIFY Statemert 10-24
Fite Names ® » o ®» » » » b s » » wm e e = » = » » =« 10-25
Switch Settings 10-26
DMS/AUDTTANALY Exanples o o o o = 2 o » =« = = » « « 10-27
SECTION 11 11-1
CMS/DEMAF FRCGRAM * a4 e o 8 s 2 & @ ° » = ® = s » o = 11=1
CPERATING INSTRLCTIOMS 11=-2
SHITCE SETTINGS & w o o o » o © ®» o w » » = = s » = = » 11=5
FILES 11-8
VIRTUAL DISK e s %= s ®» » ®» o ® » 8 e 2 ® o 2 » o s = 11=9
ACCEPT {AX or AC) SYSTEM COMMAND 11-9
CORMENAS o o o » 5 » = o o » » » =« o o » = » s » = « 11-10
FERFLRMANCE 11-17
COMMANL ERFORS e« % % ®» e ®» 0 = ®» ®w s e » e s e o o =« 11-19
EXECLTION EXAMPLES 11-21

STAIUS INFBRMATI(N " - L J - - » - -» » - - » L] » » - - -» 11-23

DMS/CB¥AF PROGFAN TUTPLUT 11-25
Heading Fages » . » - » - » » » L » ®» = . » » » - 11.27
Static Information 11-28

Data Printing e = s o » © » a = ® = » = » » » » =« =« 11=3D
Disjcint Data Sfet {DD3) Recoras 11-30
Embecded Structure (ES5) Tables > = » » » =« » » «» » 11-31%
Incex Sequentizl Tezbles 11-32
Incex Fandom TablesSs o « o « =« = o« » » =« » s« » » =« 11=35
Foputation Summary 11-3¢
Cisjoint Datz Set (DDS) Population e » = » » ® = 11=37

Embeoded Stricture {(ES) Population 11-38

1152444 IC~-6 01719/84

Incex Sequential C(IDXSEQ) Population « « « « » = s« 11-38

Incex Fandom C(ICYRND) Population 11-39
Error Summary e s ®» » » » % » ® 8 @& s s = o = o » 11=-39
Error», Wsrnings» ant Abort Messages 11-41

Error and Harnine MeSSa8gES s« « » » « » » » « » s « 11-41

Exror List ‘ 11-42
Abort Messages o » = ®» ® % = s ®» a = » = » = =« » » 11-62
"CAN'T CPEM FILE FOR <strig>: <str named>"” 11-64

APFENDIX A 2 o o o » o = o » » » o » s 5 o« » s = « s« s « » » A-=1
EMI/DASCL GLCSSARY A=1
PPFENDIX E e ®» s 2 o 3 ®» s » = a2 = » ® = = w » s » » s e Gt~1
CMS/7DASCL GENEFATEL COTE E=1
VERSICAN AND SECUFITY CHECKING o o o = » o o =« » » = « » £E=1
KEY-BUILCING COCE £E-1
WHERE» VERIFY» AMD FFQUIRED CLAULSE CHECKING. e« » » o« o« E=2

ALL INITIALIZATICN OF DATA IVTEMS E-3
SELECT CLALSE VEFRIFICATION o o o o » o o = « = o » s =« « (=&
TRANSFCARMATICGN CCDE FOR REMAP RECORDS E=4
TRANSFCRMATICN CCCE FOR PHYSICAL DATA SET RECORDS e » » E=5
CODE SEGMEMNT ASSIGNMENTS E=5
SYSTEV/MARK=SEGS PRCCRAM AND DMO/DASOL CCMPILER « « « o (£=6
APFENDIX € O |
COBOL QUALIFICATICM CF DMSIT IDENTIFIERS » e o o » » = o (-1
APFENDIX C £-1
8 1000 - B 6700/8 7700 DMSIT COMPATIBILITY .+ o o o » o « » L[=1
APFEANDIX E £E=-1

[Msii rEFEﬁY REGUIFEME,TS » » - » - » - - -» L] - - - » L - E'l

1122444 TCc-7 01715/84

WORKING SET E=1
PCPII1 NMEMCFY MANZGENMENT ALGORITHMS o o o o o o » = « » a E=2
USER PROGRAM REGLIREWENTS £-2

#CPI1 COCCE REQUIFEMERMTS ®= = ®» s o w s a % » 2 % s = « » E=3

MCPII LATA REQUIFEMENTS E-4
Glokals o o o« = 0 o« = = 2 « = » « 2 » =« » » =« » o« « » E=5
Aucit File Infcrmation Block E-6
Aucit Buffers * ® o ®» ® ®» ®» » % ® s ®» » s s » = » « = E=7
Structure fecords £-8

Disk Fi{e Heaﬂers .- ® ®» ® » e » . @ 8 W ® s & ® = = = E-B

Structure Currents E-10
Lock Descriptors - ®» o ®» ® ® ®» = & » ®w » » e ®» =» e « E=12
Buffer Descriptors E-14

Buffers -oon.-oo-uaon..n»-v».unE'l‘l

Hicden Buffers E~-16
Il£ Descriptors - -» » L J - - - » » - - - - » -, -» - » E-le
CNMSI] Workares E~-19

CPERATIONAL REQUIREMENTS E-20
Open» Llosesr Freer Crestes ana Recreate Operations - E=21
Find/Lock (Modify) Operations g-22

Lisjeint fati Sl o o o o o » = » = » o« » 2 = « » » E=22

Index fandom Sets E=23
Irncdex Sequential Sets And Subsets ®m % » » o » = = FE=23
Embedded Cat: Sets ' £=-23

¥anual Subsets s 8 8 ® ® ® ® B ™ B W % = ® @ @ = = E=24

Insert Operaticn E-24

1152444 TCc=8 1715784

Parent Data Set e » ® o o ®» » ®» ® = s s » « o & » E=24
Ctject Data fet £E-25
List TablesS « o » » = = » 2 » = = 2 = » » = » » « = E=25
Unorcered *anuzl Subset With One Entry Per Table E-26
Rencye Operaticn s » 2 o ® » % ® » » o ®» » m » o » = E=28
Store Operatior E-27
Lisjoint Datzs S81S » o » = » o » » » » » s » » » » E=27
Store Cperztior after a Create Cperation E-28
Store COperztior After a Modify Operation s o « = E=29
Embedded Datz Set E=-20
Delete Operaticn e« s ¢ s #» s » o » » o » o » » » o » E£=31
Begin=transaction ind End—~transacticn Operations E~31
CATA W(CRKING SET “- o ®» ®» ® o & » » e » s wm s » » = a = E=32
Examples of Workinc Set Calcuiations E=34

Example l: - - - -» » - - -» » - L] » - - - - - - - » E-35

Example 23 : E-40
Examp‘.e 3: » -» -» - -» -» L] - -» E -» -» - -» - - - L] - L4 E“'s
Example 43 E~-45

TABLE SPLITTING o o o = o o » o« » » 2 s = = = » = » « o E=48
Incex Taktle Formats ‘ E=-49

Table Splittine Alcorithms w » ®» s » » ® » » » = s =» E=S0

Incex fandonm E~S0

Incex Sequential . o o o o o = = @ o » s« « » o « » E=53

Entries Fer Tatle E=58
APFENDIX F ® ®» e ® % ®w % ® » ® » ® ® » wwe s ®» a2 a » » « o F=1
CMSII CATA STRLCTUFES F=-1

DMSI] Data Strictures I R S S F-1

1152444 TC=9 01/719/84

1152444

CLMSIT Globals

Logical Addresses P
OFH Table

File Records s « = » o » o » o =

Structure Records

Standard (Disjoirt) Data Set Recorcs

List Tables

Incex Tables o« s o » o = o o o @
CME/CASDL Cata Structures
CMS/DASOL Gicbals . » e e » = a
CCL Table

Nawme Tablde w o o« o o o o » o » »
Path Table

Key Tatle e @ s 8 s @ 5 8 = »
Attribute Tatle

Polish Table + « o o o » & o » =
Literal Tabile

C#5IY Audit File Information -
Avcit Types

Control Records fType = 3Bxa) .

it

Standard Datz Set Updates (Type
Ircex Entry Lpcates {(Type = 32x3)
Upcate Index Table Control Fields
Update List Tables (Type = alxad)
List Heac Upcates (Type = 35x3)
Space Aldocation (Type = 36x4d)

incex Splits and Comtines (Jlype =

TC-10

- - -

«7x3)

« =« F=5

01/15/84

APFEADIX € & o o » @ » @ o © o » o » s« ®» o a =
NCTATICN CCNVENTICMAS AMD SYNTAX SFECIFICATIONS
NOTATICN CONNENTIONS - e s s e m e » e =
Left and Right Broten Brackets {x>)
AT SIGN €3) o o o o s o « 2 2 o 2 = » o =
<idertifier>
<integer?> e ® ® ®m e % @ w ® e s e s s e
<hexadecimal-number>
SHeliMILET> o o o » = o = o 2 » = » = » =
<literal>
SYNTAX CCNVENTICMS e s % » m e s woem e
Required Items
Opticnal Items « e« » » » » » ® » » = o =
Loops

Eridges - » - - - -» - -» » -» L4 - - » L J -

1152444 TC~-11

0171584

SECTION 1

INTRODUCTION

The [MS/CASDL compiler if the programmatic too!l used by persons
usually referred to és Dzta Base Administrators (DBA). One
tunction of the LBA is tc¢ describe a data base to the E 1000 Dzta
tanagement System II. Tte overall cesign of the data tase is the

responsibidity of the CB¥ and incluces the foliowing:

1. Uncerstanding the vequirements of ail users of the data
base.

Ze Analyzing the varicus demands to be mace on the system.

1. Producing a data description capable of fulfitling the

needs of the systen.

The £HBA must alsoc determine which agplications reauire maximum
gptisizaticn ir order to provide overall efficiency. HBecause
[MS/CASCL atiows the fleyibility of many atternative solutions to
¢ given problems the DBA is always in a position to monitor anc
cptimize the uses of the data base. The LCBA must be aware of il
factaors and once the system is desiygneds must be committed to

tailcring its structiresa

1152444 i-1 01719784

Typicatlys the DBA produces 3 data vase design by using the
EMS/LASEL compiler cefault options to crezte the dat:z tase
structures. The CBA can then atlow users to test the various
apglicaticns. As exgerience is gained and the performince of the
system is evaluatedsr the DBA can experiment xith alternative
solutions. The end results therefores reflects the decisions cf
the CBA in detersining wtat is needed to produce the optimum
uszge of the data base fer the entire organization rather than

for ény one application.

The types of decisiors tte DBA makes are tased on evaluation of
the critical resgurces. For exampler at the cost of increasing
Ferory usec¢ during program execution and increasing secondary
stcrage spacer the DEA mzy decide that some cata should be stored
in more than ore lcceztior so atl related information can be
retrievec kith one accest. The DBA may also decide that the
sequencirg requiremerts ¢f one application are used so’rarely
that an additional set te maintain that ordering is not

worthwhile.

The CBA also evatuates tlte system requirements in terms of the
structures and their physticai parametersr depending on the neecs
cf the instaliation. Initiatlys, most questions relating to the
rhysical parameters ¢f tte data base are less important than the
fogical structures requivred by the applicaticen programs. This

requirement makes the task of the DbA twofolds:

1152444 1=-2 01715/84

1. Selecting structures based on their capabitities for

supperting the logicat requirements of the applicationse.

r Cptisizing the perdormance of the structures selected.

1152444 1-3 01719s84

SECTION 2

CMTIX STRUCTURE TYPES

A cata base is constructed by a DMS/DASDL compilation. The
contents of the data bas¢e are usualdiy the responsibility of the
Cata Base Adsinistrator (DEA). The DMS/UASDL compider» using 2
cescription of the dzta tase (DMS/DASDL source statements)e
frcduces a data base dictionary file containing information about

each structure described within the data base.

Cata base structures are either dis joint or embedded- A disjoint
structure is free standirgs A structure is considered embeddec
when it is declared s av item within some other structure. A

structure can be one of three types: data set» sets» or subset.

CAYA SET STRULTURES

A cata set is similar to a conventionat file in that it contains
the actuad recorcs ot information. However, it is different from
2 conventicnal filte in ttat items within the record can
themselves be structiress in which case these items are
considered as embedded structures. A record of a data set which
cortéins an emkecdec streicture is referred te as the ouner record
of the esteddec structure. 1f the embedded structure is a dataz
sets a veccerc cf the embedded data set is considered a3 detail
record of the cuner. The DBA defines a data setr» the items that

form data set records anc their attributess zs5 well as the

1152444 2=1 01719784

physical organization of these recordse The applicaticn
prngammer must be asare of these record items and attributes
prior to accessirg a dat: base. Knowledge of the physical
crganizaticn of the cata base is not required in order to access

the cata base.

SET AND SUBSET STRLCTUFRES

Sets and subsets are structures for optimizing access to the
records of a data set bated on the values of particular data
items» known as keyss. Tley can atsc be used to organize the
records of a data set into some logical sequence hased orn the
vatues in the key items. A set provides &@ccess to all of the
records of a2 data set. ! subset provides access to a2 limited
codlection of records of the data set» Since several sets or
suksets can exist for the same data setr» the same cata can be
t¢ccessed ir several cifferent sequences. For examples given 2
cata set containing emplcyee recordss one set could order the
cata in ascending secuence by the 4ast name and another set cotld
crcer the cata irn descercting sequence by employee number. Those
cata items of a cata recerd that are used to control the ordering

cf 3 set or subset afre krown as the key of the set or subset.

There are two sethocds of accessing a data set through a set aor
subkset. The first methotr» accessing of records based on tte
vatue of key fieldss» is catled the random access methocd. An

exsople of the randow access syntax is2

1152444 2=2 01719/84

FIND UNI¥=-COUGRSES VvI# UNIV-C~SEJ AT CRS~NO = 1234
The second methoces accesting of records sequentially based on the

value of the key fields» i1s the serial access method. An examgple

of the seriad sccess syntax is:

FIND UNIV-COURSES VI# NEXT UNIV-C-SET
fecords can also be zccecssed based on the physical ordering of
the records within tte dzta set. The physical ordering may or
#ay rot cofrespord t¢c the order in which the records were
createde &An example of zccess baseu on the physicat ordering of

a cata set is?
FIND NEXT UNIV~-CCURSES

Automatic Sets

All sets are automatic ir that as new records are storeds the
system automatically creztes entries in the set for those new
records of the dzta sete. Deleting records from a data set also
2utomatically removes the entry from the set. Sets can be either

embecded or disjcint strecturese.

1152444 2-3 01715484

Automatic Subsets

Subsets can be manual or automatic. Automatic subsets specify a
condition for wembership in the subset’? the condition is checked
each time a record is to be added to the data set. If the
cordition is met» the sy*tem automaticaldly creates an entry in
the subset. Those data vecords that meet the condition can te
gzccessed by the autosatic subsets. Ledeting a record fros the
cata set removes the entry from the automatic subset if the
sutset entry exists. CLurting an updatesr the condition is checked
anc the subset entry car be created or deleted. Automatic

subsets can be disjoint ttructures only.

ranual Subsets

A manual subset requires the application program to insert the
record in the wmanual subset after cseating and storing a recorc
in a data set. This requirement establiskes an entry in the
manuzl syvbset for the record in the data set. When deleting a
records it is necessiry Jor the application program to remove the
entry from the manual subtset prior to deleting the record from

the cata set. Manual sutsets can be embedded structures onlye.

1152444 2=4 01/19/84

STRUCTURE TYPES

Some exawples of the strecture types that torm a datz base are

itlustratec in the foliosing texts:

Lata Set swith Ko Sets

A cata set With no sets wight be iliustrated using a payrotl
épplications in whick every record in the cdata set is accessed

curing the processineg of the payrold program.

Cocirg Exanmples

PAYRCLL DATA sSE7
(.
«{cata set items)

J»MAXRECCRES = 1C0f15

1152444 2=5 01719784

Physical Structure:s
Fecord Access?
i. New records are stetred in the first availablde tocation.

2. The records car be 3ccessed buased on the physical cordering

of the data set. Yor example:

FIND FIRST PAYFOLL», FIND NEXT PAYROLL...

. fecords carnot be z2ccessed based on data values.

Data Set with Crderec (Ivdex Seqguential) Set

A cata set #With an ordered set coulu be used for an employee file
Wwith the last rame as the key. The entire data set could ke
zccessed through the set in alphabexical corder by using the last
name as the keys or &ny individuad record could be accessed Ly

Lusing the tast nawe c¢f tte individual as the keye.
{ocing Exasple:

EMPLCYEE CATA SET
(LAST=NAME v ee

)>MAXFECORCS = 1005
L-NAME SET OF EMPUOYEE KEY C(LAST-NAME), INDEX SEQUENTIAL?

Fhysical Structure:

1152444 2=6 0171984

Fecord Accesss

1. Records can be accessed based on the physicail ordering of

the cata set. For examples
FIND NEXT EMPLIYEE

Ze Records can be accessed based on the ordering sequence of

the set. For examples
FINC EMPLOYEE V¥T7A NEXT L-=NAME

. Records can be accessed based on the data wvalue cf a key.

For examplez

FINC EMPLOYEE V1A L-NAME A7 LAST-NAME = ™JONEST
Lata Set with Embedded Data Set (No Sets)

A gata set with an esbedced cata set could be used for an

employee file in which ar embedded data set was used to account

for each of the emplcyee’s dependents.
Cocing Examples

EMPLCYEE CATA SET
(.

DEPENDENT UNDOFDERYD DATA SET
(=
J»¥AXRECCRLS = 117

) MAXRECCRCLS = 10003

1152444 2=7 01719784

Physical Structures

Fecord Access:

1. Records of data set DEPENDENT can be accessec Lased on the

physical ordering ¢f the embecaded data set. For example:

FIND NEXT [EPENDENT
Z . There nmust be a2 valid EMPLOYEE current record in order to

access a DEPENIENTY recorda

Lata Set with Crderec Eatedded Data Set

This data structure coulc be used with the employee file as the
cata set and the empioyee job history as the embedded data set

crcered by the job pcsition.
Cocing Exaaple:

EMPLCYEE [ATA SEX
(.

JCB-HISTOFY CFDERFD DATA SET
(PCSITION ALFHA (20)

J»FANRECCRES = 1C€7
JOB-FOSIVICN ACCESS TO JOb-HISTORY KEY (FOSITICN)
)>¥AXRECCRLS = 100¢;

1152444 2=8 01719784

Physicatl Structure:

Fecord Access:

1. Records of datz set JOB=HISTORY can be accessec based on

the orderirg sequerce of JOB~+OS5ITICN. For exzmple:s

FIND JOB=HISTORY VIA NEXT o0B3-POSITION
2. Records of date set JOB~-HISTORY can be accessed tased on

the cata values of the key. For example:

FINL JOB=-HISTGRY ¥IA JOB-PUSITION AT POSITION = SYSTEMS—=ANALYST
3. There must be # valid EMPLOYEE current record to access &any

JOEB~+ISTCRY record.

1152444 - 2=9 01719/84

fata Set with Index Fandem Set and Automatic Subset

A gata set with a retrieval set coudd be used with an employee
file so that given 3 title and departments the recorc for the
employee who hoids ttat rosition could be accessed. An zutomatic

subset provicdes access tc ald the records of exempt employees.
Locing Examples

EMPLCYEE DATA SET
(TITLE .u®
CEPARTIFMENT aww
EXEMPT=-STATUS
MANME

Y»MAXRECORDS = 10(05

FOSITICN SET OF EMPLCYEE KEY(TIILE,DEPARTMENT)
CUPLICATES» INDEX RANDOM?

EXEMPT SUBSET OF EMPLOYEE WHERE C(EXEMPI-STATUS = 1)
KEY IS (NAME)» TUPLICATES?

Fhysical Structures

Record Access?

1. Records can be accessed based on the physical ordering of

the cata set. for exaaple:

1152444 - 2=10 01/71%/84

FIND NEXT EMPLOYEE

2e kecords can be accessed based on the value of 2 retrieval

key« For examples
FIND EMFLOYEE VIA POSITION AT TITLE = SECRETARY
ANMLE CEPAFTMENT = SYSTEMO~-PROGRAMMIANG
3. Records that sztisfy the automatic subset condition can te

accessed based on the physicai orvdering of the automatic

sukbset.
Example:

FING EMPLOYEE VYA NEXT EXENPT
4. Records that sastisdy the automatic subset condition can te
accessed based on the value of the subset key. For

examgples
FINL EMPFLOYEE V1A EXEMPT A NAME = "JOF DOGE"™
Cata Set with Multipte Ovrdered Sets and One Retrieval Set

This data set could te ar employee tile ordered by both name and

employee rumber and retrieved by title and department.
Cocing Examples

EMFLCYEE CATA SET
(FIFSTNAME«u .
LASTNAME 2u W
EMFLGYEE-NDewo
TITLE «we
CEFARTVNENT.w W

J» MAXRECCRLS = 10005
MAME SET OF EMPLOYEE KTY (LASTNAML,FIRSTNAME)» INDEX SEQUENTIALS?
EvP=~NO SET OF EMPLLYEE KEY (EMPLOYEE-NOJ» INDEX SEGUENTIAL?

1152444 2=11 01719784

FOSITICN SET OF EMFLOYYE KEY (TITLE,»DEPARTMENT)
DUFLICATES», INCEX FANDOM»?

Fhysical Structure:s

Fecord Access:

1. Records can be accessed tased on the physical ordering of

the cata set. For examples

FIND NEXT EFPLOYEL

Ze Records can be accessed based on any ordering seguence.
Example:

FIND ENPLCYEE VIA NEXT EMP~=NO
The crders noﬁever, is based on the values within the

records» nct tte pltysicatl order of the records.

3. Records can be accessed based on dats values of the order

key« For examgples

FIND EMPLOYEE VIA NAME AT LASTNAME = "SMITH™ AND
FIRSTMAME = ™JOKN"

1152444 2=12 01/19/84

4o Fecords can be accessed based on data vatue of 2 retrievel
keys. For examples
FINC EMFLOYEE 1A POSITION AT TITLE = MANAGER
AND CEPARTIMENT = FINANLE

Tuc Data Setsr» Orne Referenced by a Manual Subset of the Cther (No

Key)

This data structure coudr represent the reltationship between
cegpartments anc employees» wWith each department having a manual

sutset referencing all tte enmployees of ttst department.
Cocing Exanple:

DEPARTMENT TATA SET

DEPTI~EMFLCYEES SUFSET OF EMPLOYEES

J»MAXRECCRLS = 105
EMPLCYEES DAVA fET
C.

J»MAXRECCRLS = 100€C3

Physical Structure:

1152444 2=13 01/719/+84

Fecord Accesss

1. Records cf dateé set EMPLOYEES can be accessed tased on the

physical ordering ¢f 3 subset for a data set. For Example:s

FINC EMPLOYEES AIA NEXT DEFT-EMPLOYEES
2. Records cf data set EMPLOYEES can be actcessed ty the

physical ordering c¢f thte data set. For examples

FINE NEXT EMPLONEES

Tuo Cata Sets» Each Feferenced by a Subset of the Gther

The preceding example covld be expanded to order the employees
viithin 2 departaent by ttlteir tast name. Also» there could be =
psanual subset within eact record of data set EMPLOYEES

referencing the departsmert in which the employee works.

1152444 Z=14 01/719/84

Cocing Exarple:

DEPARIMENT DATA SET
{.

CEPT-EMFLCYEES SUYSET OF EMPLOYEES KEY (LASTNAME)

)»MAXRECCRES = 103
EMPLCYEES DATA SEY
(LASTNAME www

-»

EMP-DEPT SUSBSET OF DEPARTMENI]
JoMAXRECCRES = 100(€3

Fhysical Structure:

Fecord Access:

| The records of datz set EMPLOYEES can Lte accessed tased on
the rhysical cordering ¢f a suiLset of a data set. For

examples

FINC EMFLOYEES AIA NEXTY DEFPT-EMPLOYEES
2 The records of datz set EMPLOYEES can be accessed kased on
the data value of 2zn ordered key of the subset. For

examgles

1152444 2=15 01719/84

FIND EMFLOYEES VNIA CDEPT-EMPLOYEES AT LASTNAME = "JONES™
. Records cf data set DEPARTMENT can be accessed based on the

physical ordering c¢f the data set. For example:

FIND FIRST LEPAFTMENT
4a A gaster data set must have a current record to 3ccess its

subset.

1152444 2=1%6 01/719/84

SECTION 3
LPDATE AND REORGANIZATION

The update and reorganizetion processes changes the physical
snd/or {og9ical descripticn of an existing gata base with the
maxipum system assistance in the actual restructuring of the dzta
kLase and the minipum impzct on the applicaticn progrzms that

éccess the data base.

UPOATE PROCESS

The update capability of DM5/DASDL redescribes an existing datz
kase» and toth the dicticnary and the structure files are changed
to reflect this new cescription. The chances are czlways effected
ty running the DMS/RECHRGANIZE program following a DMS/DASDL
upcate (¥ LPLDATE option) compilation of the data base» and never

ty the DMS/DASCL compiler itself.

1o use the update cagabilities of the DMS/DASDL compidlers the
programmer compiles z description of the new data btase. This
cescription is prececec ty a SUPDATE statement which indicates to
the CMS/CASDL compiler ttat this is an existing cata basews
Specific rearganization tommands controilling garbage collectiorn
eanc file allocation can zlso be inciuded in the update run. A
reorganization contrcl file is produced by thte update run which
is used by the DMS/REORGUNIZE program in creating the revised

cata base.

1152444 -1 01/19/84

There is only cne recrgarize prograges and it is named
CMS/FEQRGAMIZE. Adl infermaticn necessary to perfaors the
reorganization is cortaired in the control file . The
CMS/FECRGANIZE progrem it then executed and the nawme of the data

tase is enterecd by means of an accept messzge.

Feorganization Process

The reorganizaticn process consists of two steps# an update
conpiler followed by a rin of the DMS/REORGANIZE progrzm. The
cata base cescriptior is read by the DMS/DASDL compiler. A
comparison is made between the old wescription and the new and a
reorganization contrcl file is built to affect the changes. The
general syntax of the CMS/DASDL input to per form an update
compile iss

SUPDATE

<altered data base description>

FEORGANIZES

<reorganize comménds?®
The FECGRGAMIZE statement signals the beginning of the recrganiae
¢cperstion to the CMS/DASTL compiler. There are two basic
furctions which can te requested in the feorganize operations;
CENEFATE and -PURCE,Tre CCPY and INTERNAL FILES are used to
cortroi the allocaticn o1 temporary fides during the

recrganizaticn process ard can appear in ttis section. The

general syntax of the RECRGANIZE statement is:

1152444 -2 01719784

R e L L L P LR LR LR Ry

RECRGANIZE; == === emcrcccrcc s cc o ccen e s ras s ma ==~ |
:-'— <generate statement> ---------:
:--- <purge statement> -*-'-°-'----:
;-'- <copy Sstatement> -*---~-~~-'--:
:-~- <internai files statement> ---:
If the data base description has not changed and ontly the
generate and/or purge furctions are needed» it i5s not necessary
to include the $UPUDATE statement anc the date tase description.
In this case» cnly tte RY¥ORGANIZE statementsr» beginning with the
RECRGANIZES keysymkcl 12 used as input to the DMS/DASDL

compifer.

CENERATE Statement

Curing the noreal upcatirg of a data basesr the efficiency of tre
cata base may cetericrate both in terms of the amount of I/0
required tc access pirts of the cata base and the amount of
wasted disk spsce« The CENERATE statement can be used to retuild
structures to increase tlteir efficiency and make excess cisk
space avaidable. Althouch alt structures return unused disk
space to their availzbie storage tistr there i5 no mecharism for
returning unused fide areas to the system. Thuss if 3 structure
éat one time included a very iarge number of records and
sutsequently returnec to a mcre typacal sizer» none of its unused
physical areas are returred to the system«. A GENERATE operation
cn this structure coupresses the structure and returns unused

file areas to the systeme

11524644 3=-3 01/719/84

A GENERATE operation on z structures besides gartage collecting
unused spaces causes the structure to be rebuitlts thereby
restcring it tc a2 more edficient state. The specific effect is

cependent cn the stricture type.

Syntax:

CENERATE === <disjoirt data set> =—======c-eececicmecccceccana-

i i 1
{ 1~ CRDERED BY <index set> =1
i 1

I- <emtedded structure> === ~=c=c-sccccccsscceccc==]
1 |
I= <incex tequential set> ==-<-==-=s=ccscscccccccc=-]
1 !
I=- USING <same set> -1

Semrantics?

«<disjoint data set>
The <disjoint data set> field specifies that the GENERATE
operation causes the records to be read from the old data
base anc stored in the news. The order in which the receorcs
are placec¢ in ttke new data base is guar anteed only if the
CRODERED BY keywcrds are specified. The <index set> field
specifies the nsme ¢f the set that spans
<disjoint data cata®» ancd the index cannot itself ke
logically changed (4or examplesr key or crdering change)d in

the same reorgarizatione.

1152444 I=4 01/719/84

-

<index sequential set>
The <index sequentizt set> fieldd specifies the nage of an
index sequential set and causes the set to be rebuitlt eitter
froe the object datz set (no USING option) or from the
existing fine tzblet (thke USINGL option). A genercte
operation on an indeéx sequential set with the USING option
is quicker and causes the set to be balanced with
SPLITFACTCOR entries per table. Howevers» existing integrity
errors {(for examplesr entries out of order) cata mismatchos
dead cbject reccror are carriea over to thte new data tase.
Generating the inde?® without the USING option causes the
index tc be rebeilt by reading the obtject data set and the

above mentionec integrity errors to te corrected.

<erbedded structure>
The <embecded structure> field specifies the nare of an
embedded structiuresr for examples ar embedoed data sets» anc
causes the records telonging to each parent record in the

old data tase tc te found and stored into contigucus tabtles.

A generate cperaticor on an eabedded structure csuses a
generate of the parent structure to be performed if the
parert structure is also an emiedded data set. If the
parent structure is 2 disjoint data sets» it i5 recreateds’
that is» all recoros (inclucing dead ones) are stored at
their current lecgicel address in the new file. This
operation doges rot c¢ause addresses in sets or mznual subsets

of the cisjoint datz set parent to need fixing up.

1152444 3=5 01/716/84

PURGE Statement

The FURGE statement remowes all records from a data set cor breaks
all relaticnships thét heve teen established for a mesnual subset.
hen the PLRGE statesent is specified and the reorganization
process is ccmpletes the purged structure still exists in the
cata base with the same structure number and version stamp it had
tefore the reorgani2stior. Howevers there are now nc entries in
the structure. The purge cperation takes precedence over aill
cther reorganize functiors. PURGE <index set name> causes a

generate operatione.

Syntaxs

FlJRGE EE LR T T R R ‘data Gel Y mmemmr e e ms A ... - - 3 mememesse=aes]

1 i
je== apanual subset> w=======|

1122444 3-6 01/719/84%

Semanticss

The <data set> and <marual subset> fields specify the names of

the structures to ke parced.

Fragmatics?

2 FURGE operation on a structure causes its file to be
reinitializec and all data to be removed from it. HWhen an
emtecded structure is purged and its parent is not purgeds the
structure head of the emtedded structure is set to null in the

parent data recorde.

A FUFGE operation of a dita set causes an implicit purge of atl
its embecded structures znd atd index sets and manual subsets

which reference it.

COFY Statesment

The COPY comnmand controls file allocation during the
recrganizaticn process. By defaults the structures created ty
the CMS/REGRGANIZE progrzm 3s a result of store gperations into
the temporary news data bzse reside on the sasme pack as the final
structure in the new date base. The COPY stztement changes this
cefaults HWith the CCPY ttatementr temporary files can be built
¢n any pack or tape. At the end of the reorganization processs
the temporary file is corieds with the appropriate nime changes

to its pergsanent packe

1152444 =7 01/715/84

Syntaxs:

COPY ===== ALL =====s=ceececenmccs J(==e-eescecemcccscccecscncn)

1 i

‘ "_m---- » -----—-’ ‘
1 1 1 |

>msmm= TAPE === meeeeeme e e e ceeeseeseeseccsemeecesmese—]

I—- FIN‘L “E!}IU’ A WD A A S A M NN WS AN WS WD AN W AD R AR NR SRR W AS AR AR NS W NN D EE NN WS MM MR W em 1
i 1
|‘-‘ FA*]LYNAME b - W . DISK -lv-»—-ﬂ'------V-‘-------‘--'-----_--'
§ 1 i 1
{== <familyname> =={ == » COPY BACK ==]

|l===== <pack id> =-=--|

Seranticss

FINAL NMELTIUM
The FINAL MEDIUF keywords are the default for all generated
anc recreated structures and cause all temporary files to ke

built on the pack whlere the final» permanent file resides.

FAMILYNAME
The FAMILYNAME keywerd causes the DMS/REORGANIZE progras to
builc the temporary file on the pack named <familynasme>.
The CISK keyworcs denotes the system pack. The files buitt
on the texpcrary pack are copied to the final media only at

the end of the entire reorganization procedure.

1152444 3-8 01/719/84

COFY BACK
The CCPY EACK keywords cause the temporary files tuwilt on
the specified¢ peck 10 be copied back to the finsl mecium
{destraying the old copy of the structure) at the end of the
ryeorganize procsdure for each cluster. This allows the
reuse of the temporzry pack for another cluster; however,
it makes grocessing after a logical failure more cifficulte
since the origiral rfata base files were destroyed and need
to be reloaded tefore the logical error can be resolved
{either by redefinirg the reorganization or fixing the
data)e For this rezsons» it is recommencec that this opticn
only be used when atsclitelyh necessary due to severe space

limitation.

TAFE
The TAPE keyworc catses the input structures to be read wWith
the CH¥S5II access rortines and written to tape in & special
format. The structeres are then deleted from disks reag
back from tape znd then stored on the final medium. This is
done c¢cn a cluster besis so the tape need only be {arge
enough to held the largest cluster. The tape is then reused
for each succeecing cluster. The TAPE keyword is intencec
for systems that co not have enough disk space for two
copies of their larcest structure. If the TAPE option is
specified for a3 date setr it is5 implied for any embedced
structures that are generated. The TAPE option is not
implied for a parent which neeus to te generatec &s the

result of generzting¢ an embeddéd structure. The TAPE option

1152444 3=-9 01715784

cannot be specitied for an index which is used in an CRODERED

BY statement in the generation of its data set.

ALL
The ALL keyword cautes any required temporary files needeg
durinrg recrganizaticn to be created on the specified mediumea
If the data base hat a structure named ALLs only that

structure is afiected by the CLPY statement.

Pragmatics:

A warning is inclucec in the CMS/DALDL listing when the CQPY
gption i5 specified ¢cn a structure which 15 not keing generatec
cr recreated. A warring is also included when the TAPE option is
implied for an embedced *tructure. Address fixup only occurs
when the object cf a2 manaal subset 1s generateds. These fixups

gre done inplace and reguire no additional disk space.

INTERNAL FILES Statesment

The INTERNAL FILES statesent controis disk file altocation for
the XREF cross~reference file used when the object of &2 manual
subtset is generateds. Ey defautlt, tne XREF file coes to the

system disk (DiSK).

1152444 3I=-10 01/715/84

Syntaxs:

INTERNAL FILES = (FAMLYNAME = ===== DISK ====-e==-==-); emmme=—- i

1=-=- <fasilyname< ~--)

CMS/REQRGANIZE Prograzm

After a successful DVS/D¥#SDL compile using the SUPDATE options
whether the FECRGANIZE statement was used or nots the
CME/REQRGANTIZE progrzm mist be run to effect the specified

changes. The syrtax for executing the DMS/REDRGANIZE program is?

EXECLYE CMS/RECGRCANIZES AX <data base name> ===== mEssssesssesaee-)

Tp A AR A WS AR WD WS WA AP N VIR W W R NR A R S <b“itch settings) LR E E LN B 2 N J LR R N X
i !
I== OGN <xfamidynane> ~=-|

The entire data base showrld be backed up btoth tefore and after
the CTMS/RECREANIZE progrzm is executed. The ON <familyname>
cption is cnly necessary if the data base cictionary resides or a
user pack. The <switch settings> are optional. All switches
cefault to a value of zero. Tabie 3~1 give the possible values

anc weanings for the various switchess

1152444 3=-11 01/719/84

Table 3-1.

SWwitch

1

1152444

DFS/REQORGANIZE Program Switch Settings

¥alue

0

1

Description

Perform the reorganization.
Perform tatle analysis only.

Perform complete table znalysis onlye.
The compiete table analysis includes
hex output of the tatle entriess, and
inctudes table entries that zppear to
be irrelevant. Primarily usec in
debugging problemse.

Inctude the table snaslysis in the
{tistinge.

Exclude the table znalysis from the
Listing.

Print data before and after
transformations. Alsc prints more
status information. This cén produce
a very large {isting. lUsed to track
data trans formation errorss.

Print the same output as when SH3 = 1,
and print cetail on the tape creation
phase it COPY 710 TAPE is usec. Used to
track data tr,ansformation ervors.

Print status messages in the line
printer file onty.

Display all status messages st the OLT
in addition to writing to the tLine
printer.

Stop at first DMSI1 {ogical ercror
(for exampie, duplicates).

Continue beyond first Llogical error»
printing a message for eachs» but do
not crezte a usable data base.

Continue past atll errors and create a
usable dats base. The final cata base
is missing the records whict

caused the problems and can have the
integrity error or write errcr flag
set on some structures. Any missing
records are printec in hex or the

01/719/84%

Line printer tisting.

9 1 Use the one data bsse mode. This means
only one data base is cpened at a
times All intermediate files are
built on disk before opening the new
data base files (as though TAPE was
speci fieoc for all structures and the
tape wWas file egquated to disk).

7 0 The DMS/RECGRGANIZE program performs
adl ftide copies.

1 Apy files having only their name or
pack changed are not changed by the
DMS/RECRGANIZIE progranm

2 Any files which are to be deletec
after the reorganize are not
deleted ty the DMS/REORGANIZE programa

3 The DMS/REGRGANIZE progrzm doces not
perform Litrary tile nawe chznges.
B 0 Printec output is in lower case.
1 Printed cutput is in Upper csSes
9 1 Enable pause function. A pause causes

DMS/REQORGANIZE to stop and Wwezit for
user inputs» typically to take a
prograr dusps There is ¢cne permanent
pause at tte beqginning of the
reorganize programs after the tables
have been Lloaded but before the cata
base is opened. At this pauses the
user can rvequest his dates base be
restorec to its pre-reorganize state.
This is done by entering <jol #> AX
RELSTORE. This is useful when a
previous cun of DMS/FECRGANIZE aborted
Wwith 3 restartable error and the user
Wwishes to return to his old cata base.
DMS/REQORGANIZE could be re-executed
with 5k9 = 1 and RESTORE could be
enterec at the first pause.

1152444 3-13 01/719/84

hhen using switch 9 to erable the pause functions the ocperator
sust remember that tte RFSTODRE operation is only wvalid at the
first pause of the CPS/RYORGANIZE programe. The only other reason
for enabling the pause function is to aliow the user to take

program cumps at various stages of the reorganize processe.

Reorganization Rufles

The following 1ist of rufles identify the capabilities and
linitations of the reorgeznization. Rules marked with 2n asterisk
(*) character require a change in the version stamps for the
zcffected structures- (Kefer alsoc to the subsection entitied
Version Checking for a discussion of the changes which can affect

the version stamps for existing structures.)

The fotlcewing recrgarization rules sequire a change in the

version stamps for tte adfected structures.

Accing Cata Items
Data items can bte atded to existing datz sets. Thkese new
items can be adced to the fixed format part as well as to
the variable format part. New items within the fixed format
part of a data set ¢an be REQUIRED or used as a key item if
an INITIALYALUE clawse is incltuded ir the description of the
item. 1f no INITIALVALUE appears in an item descriptions, a
syntax error is generated when the item is either declarec
Wwith the FECGUIRED keywordr or appears in a KEY clzuse. New
iters acded witkin z variable tormat part of a data set

record car be required 1f an INITIALVALUE is incldudec in the

1152444 =14 01/719/84

description of the item.

Poving a3 Data ltem frow Fixed to variable Format

An item can be gsovec from the fixed format part to 2

variable format part within a gata set record. The data

contained in thet item is lost in any dsta set recorc¢ which

does not contair the proper variable format part. Items

cannot be moved fros one variatle format part tc ancther

variable format part.

Celeting Datz Items

Data

items can te deleted from existing data setse.

Changing the Descripticn of Data aitems

Data item descripticns can be changed as follows:

1.

1152444

Fielc lengths can bte increased or decreaseds including
the {fracticn ard integer parts of numbers. (Key itess

¢f ordered manval subsets must not be changed.)

Signs can te actded to or uropped from numbers. (Key

items of ordered manual subsets cannot bte changed.)

Cccurtrences car be changec ({increased or decressed)e.

Item types can be changed except for RECJRD TYPE itess.
The tength of the RECORD IYPE field can be changed. It
i5 the user?'s responsibility to aveid any problems or
amticuities which sight arise from decreasing the
1ength of & RETORD TYPE field. (Key items of crcerec

wanual subsets cannct be changed.)

3=-15 01719/84

Changing Groupings or levels
The groupings ard/or dlevels can be changed-. The items must
be used within the =cope of the same data sets in the oild

and the new dats bacte.

Changing the Ordering cf Data Items

The ordering of the items can be changed.

Lhanging the Descripticens of Sets and Automatic Subsets

1. Sets and auvtomztic subsets can be deletede.

2. The cuplicstes clause can be changed.

3. L[ata items can be added to» or deleted froms, a key

specification.

4o The cgrder c¢f tle key items can be changeda

5. Ascending &ind rescending specifications on key items

can be chargeda

6. Incdex sequentizdl sets can be changed to index random

sets or avtomatic subsetse.

7« Index ranccm sets can be changed to index seguentiai

sets or avtomatic subsets.

1152444 3-16 01/19/84

B. Automatic subsets can be changed to index sequential

sets or incex random Setsa.

S« The KWHERE claute can change on zn automatic subset.

Enbedded Data Sets and Manual Subsets
Embedoec cata sets znd manual subsets can be deletede The

version of the farert data set is changed.

fmbedoed cata sets £nd wanual subsets can be changed from

ordered tc unorcerec or from unordered to ordered.

Key specificaticns can be changed on ordered embedded datas

sets. The ailorable changes includes:

l. [ata items can be added to or detleted from a key

specificationas

2. The crder cf tle key items can te changede.

3« The cuplicztes clause can be changed.

4. Ascending and cescending specifications on key items

can te charged. -

WHERE and VEFIFY

WHERE and VERIFY corditions can be changed.

When comparing the YHERE and VERIFY clauses» the DMS/DASOL
compiler checks first for anm igentical expressions, anc if
that cosparison fails» the compiler then checks for an

equivalent expressicne. Because of thisr compile times are

1152444 3=-17 01/19/84

increased it any of these clauses are ctangedr even if the

resultant clause is equivalent to the original. Depending

upon the sizer rumber», and complexity of these clausess tke
increase in CMS/CASTL compile time can become substantiails

therefore» the vser should aveid unrecessary changes to

these clausess

The following recrganization changes do not regquire & change in

the version stamps fcr tile affected structures.

Adcing Sets &nc Automatic Subsets

Sets and automatic stubsets can be added.
Adcing Esbedcec Lata Sets and Manuwal Sutbsets
Changing Pcpulatiors

Changing Structure Attributes

The following structure attributes can te changed.

AREAS

AREALENGTH

SPLITFACTOR (reovganization not required)
TABLESIZE

MCLULUS

BLCCKSIZE

FANILYANANME

TITLE

SECURITYTYPE

SECURITYUSE

1152444 3-18 01/1%/84

Carbage Collection
Any structure which exists in Loth the old and new cata tase

can be garbage collected (genesrated) or purged.

Data Transformations

Luring the reorganizetior processs uata items within a data set
can change in size, types offsetr and number of occurrencess»
sut ject te certain restrictions which are discussed tater. In
crcer to appear as a charge (rather than as 3 celetion and
adﬂition)r the item sust appear in the same cata set in the olc

gnd new cata bases.

Addition and Deletion cf Data Iteas

fata items can be adced to or deleted from tte description of 2z
cata set. When a data item is deleteds the cata associated with
that ites is remcved fros adl records in the data set. When a
cata item is acdecdr 3 data field containing high=-values (nuit) or
the value specified in tte INITIALVALUE clause is insertec intos
z41l records in the deta <et. For this rezson», items which are
gdcec canrct be vsed 3as leys or be required fieldss unless they

have INITIALANALUE clzusec<.

11524644 3=-19 01719784

Item Size Changes

Cata item siz2es can te ctanged. If the new size is greater than
the cld sizer then a filler is addeu to the fielc in accorcance
with the rules outlirec in tabie 3-i. Converselysr, i1 the nex
size is5s 1ess tharn the olg size» then data is truncated from the
item. This conditior is detected by the DMS/DASDL compiler anc a

warning message i5 generzted.

Signed Data

Sign fields can be acded to or deleted from a cata item.
Leletion cf @ sicn fielc is detecteu by the DMS/DASDL compiler
ENnc & Wwarning xessage is generated. A positive sign 15 generated

for existing items which have a sign addeda

Cccurrences

The number of occcurrences of a data item can be changed. If the
rusber of cccurrences decreases in the new data Ltases only the
first n coccurrences &re noved to the new record» where n is the
rusber of cccurrences of the data item in the nex data set
records. This condition is detected by the DMS/DASDL compiter znd
3 warning messzge is geneérated. If the nusber of occcurrences
increases in tte new datz baser only the first m occurrences hzve
cata moved intge them from the old data set records where ma is the
rursber of cccurrences of the data item in the olcd data set

recorde The remainirg crxcurrences of the item are set tc null.

1152444 3=20 01719784

Lccurs nesting can gc to three 1evels in the DMS/DASDL soaurce
file. If an item is nestedr, its number of occurrences can be
computed by multiplying the number of ozcurrences of all its
cuter levels. All data items are transformed on an elementary
level basis. If a ckange is made to the numter of occurrences at
the group levelsr this hazr the effect of chancing the number of
cccurrences ¢f atl of the elementary items within thzt groupr end

transformation is dore or that basis.

Fegrouping of Cata Itens

The groupings and/or 1evels of data items can be changeds sutject

to the fcilowing restrictionss

la. Regrcouping of cata items cannot cause data to te

duplicated.

Example:
0ld Grouping New Grouping
A GROLP A ALPHALZ)»
(B ALPHA{(1)3 B ALPHACL]1):
€ ALPHAC(1))S C ALPHAL1)?

In the exaaple abowve» the data represented by A is
duplicated in the rew cdetinition since B and € both contzin
data contained in !, Therefores the above reqrouping xould

not be atiowed by the DMS/CASLL compiler.

1152444 3=21 01719,8%

Ze Regrcupirg of items cannot cause mulitiple mapping of
information into ar item. Thais reqrouping would occur it
the new cefiniticn were transtormed into the old definition

in the previous exzmple.

Itenm Type Changes

Item types can be changecs The only restriction here is that &
cecieal or signec decimal item cannot be changed to an elementsry

atrha item (3 COBOL rudel.

Cata Transformation Rules

hhen the ONMS/0ASOL ccmpiler detects that an item must be
transformecsr it effectively generates a MOVE which conforas to
the COBOL conventions. The rutes for data transformsations are

shoewn in table 3~2.

Table 3=%¢. Data Transformations

1152444 3=22 01/719/84

i Truncation or i 1 {
{ Space 12ero llero) Iruncatelleneratellransiate

Mcve I Fitl tFite IFidL 1 Sign 1Positivel
e mmmmew=es==]1 0OnN t on 1 on 1 1 Sign 1
From 1 T¢ | Right 1RightlLeft | { 1
R RN L T S S N T N I N T R I N T T S S T T T N I N T S T N N L I L S TN T T R TSRS Es T EmmE=
Eroup 1€rcup i x L 1] 1 1
Group iAtcha (| X i i 1 i 1
Croup ISigned irtal 1 x 1 1 | X | X
Croup 1Integer i 1 x 1 L] 1 i X
Grcup 1Signed dec.! I x 1 1 i X !
Sroup 1Cecimal 1 I x 1 | i X
----- bbbl Bl e bl R bl BRI R LR EL LSS R LT X R Gk
Alphs 1€rcup 1 X i 1 i [|
Alpha tAlgha 1 X 1 1 1 1 1
Achs 1Signed irt.l | 1 x | L} X i X
Alphs 1integer 1 i 1 x 1 1 1 x
Alphs 1Signed dec.d 1 1 x 1 i X | X
Alphasa ICecimal | 1 1 x 1 1 1 X
- ———————— D R {ommm—— Rl Al ALl EL AL L s it EALEELELS R St
Signed int.iGrcup i X i 1 1 X i t X
Signed int.lAlphs i X 1 1 i X 1 ! X
Signed int.lS5icned irt.! 1 1 x 1 | i
Signed int.1Integer 1 1 t x 1 X i 1
Signed int.l5igned deca.l 1 1 x 1 i 1
Signed irt.dLDecimal 1 1 ' | X 1 i
eeeem——- wmjerecamecsne jrumcsne |ercen|mescn]secmcncn |tesnenen jessan e
integer 1Grcup 1 X 1 i 1 1 i X
Integer tAlgpha i X 1 1 ! 1 1 X
Integer 15igned irt.d 1 1 x 1 i X 1
Integer linteger i 1 1 x| 1 i
Integer 1Signed dece.! i 1 x 4 i X {
Integer 1lecimal 1 1 1 x | i 1
b d bbb Bl bbb i bl bl R {me=er|=mrmrccn|mecmcvraas jeamanmana
figned dec«l&rcup 1 X 1 i | X i 1
Signed dec.lAdlpha f*Error®] [} 1 i |
Signed dec.lSigned irt.l | I x 1 1 i
Signed dec.linteger | 1 i x | X 1 i
Signed dec.dSigned dec.l 1 1 x 1 1
Signed dec.lDecisal i 1 ! x 1 X 1 i
------- A b L L L Ll bl Rl bl Bl il b bt Rl bl bkl Bl bl R R b L b
Cecimal {€roup 1 X (| 1 1 i 1
CLecimal 1Alpha isError=| 1 1 1 i
Lecinal 15igned irt.ld i 1 x 1 1 X I
Cecimadl Iinteger | 1 1 x 1] i
Decinai 15igned deca.l 1 Tt x 1 1 X 1
Ceciwal 1fecigal 1 i i x 1 1 i
inta. integes

dec. = decimad

R AR A O A R Vi 4

Yersion Checking

Fach structure and remap has associated with it 3 version which
reflects the last time ttat a change was made to the logical
cescription ¢f that structure. For programs containing
cescriptiors of that stricture with an earlier versicns a version
error results if an atteapt is made to use thtat program to access
the slterec structure. f recompilation of the progrzm is
recuired toc brinc it up to dzte with the current description ot
thet structure. This recompilation must take place zfter the
successful ccempletior of the reorganizaticon grocesss. The version
of 3 structure is cortaired in the dibrary file which describes
that structure and thte Llibrary files are not changed until the

successful completior of the reorganization grocessa

Sore of the changes that are allowatle with recrganizaticon
require that the versions of some of the structures change. The
user must ke aware of any changes requiring recoapilation of
existing programs anc the magnitude of the recompitation effort

required tefore makirg ary changes to the data base.

The rules which determine version changes follows

1. If ary of the cata or group items in a data set change or
the VERIFY claitse changes» then the version of that cata

set and ald sets ard subsets that reference it change.

1152444 3~24 01719/,84

‘. If a set or sukset Logical description changes then that

set ¢r sitbset version must change.

3. If the WHEERE cecncition on an automatic subset changes then

that subset versior must change.

4 If an embedded datz set changes from ordered tc unorcerecr
or from unorderec to ordereds if any of the data or group
items in the dzta s=et changes» or if the key items ¢f the
access set charger then the version of the embedded data

set must changee.

In summary» atl of tte reorganization rules marked witk an
asterisk (2) require a version changyes and any user programs
accessing structures whote versions have changed must te

recogpileda.

Garbage Collection

Curing the norsal upcatirg of a data base the efficiency of the
cata base can cdetericrater, both in terms cf the number of I/C
gperations requirec to access parts of the datz base and the
amcunt of wasted disk spicee. The benefit obtained froe garbage
cotlecticn is 3@ function of the type of structure (disjoint data
set» index rancom setr irdex sequential set or subsets embeddec
cata sers» or manual subset) ancd of the dynamic entry of csta.
tartége collection iz pevformed automaticadly on any structures
which reguire reorgérization. The need for garbage collection

gnc the result obtairec fre describeds, by structure typer in the

1152444 3=25 01719484

following paragraphsa.

Cisfjoint Data Sets

The algorithes used Lty tte DMSII system to maintain disjoint data
sets do not have a mecharism for returning file areas as the
rusber of valic records tecreases. Thus» if a data set once
included a3 very darge nusber of recordss» but trte populaticon of
the cata set has since returned to o more typical sizer» none of
the disk areas would be returned to the operasting system (MCPII).
The celetec records szre gvailable for revse but may never be
reeded. Garbacge collection returns the excess disk &reas btack to
the cperating system (MCFII). Alsos it optionaliy orders the
recaords by am existirqg irdex designated by the user. If a
cisjcint data set is gartage collecteds tten all the sets and
subsets that reference thtat data set are zlsc garbage collectec
{the addresses which they contain must ald be changed to reflect

the new record locationsla

1152444 i-28 01715784

Index Sequential

The algortihms used by tte DMSII system maintain balanced index
sequent ial coarse anc fire tablese. The number of entries per
tatle is kept hetweer the vatue of TABLESIZE and TABLESIZE -
SPLITFACTCRs Little is zccoaplishea with the garbage coltietion
{generated) of an incex tequential set’? however» a purge
cperation rebuilds tte set from the data set. This can eliminzte

sny INTEGRITYERRGR esception conditions.

Incex Random

The algorithms used ty tte DMSII system to maintain an index
random s€t do not take acvantage of deletec entries in the base
tables to corscliidate any overfiows Alsocr overflow taktles which
have becocme empty are never returnead to the system. Garbage

collecticn performs koth of these functions.

Lists (Manual Subsets znd Embeddea Data Sets)

The algorithes used to szintain dlists dynamically return empty
records to available spate within the file. However, the excess
cisk space i5s never returned to the system. Garpage collection
returns the excess disk tpacer consoclidates the Llist in s minigum
number of records» ard groups recoras wWwith thke same parent in
cortiguous blockss. Any time a list is garbage coliectedr the
parent structure is slsco garbage codlected to change the Llist
head pointers to reflect the new fist record locations. If &

#anusl subset must hive Jts addresses adjusted because the obtject

1152444 ' 3-27 01/19/84

cata set was garbage collected» then atl of these functions
except the garbage ccliection of the parent structure zlsoc take

place.

Finallys, atll manual subset entries pointing at deleted records in
the related data set are remcoved. OSimilarly, if the key iteas
within an entry of ar orcerec manuai subset do not match ttre
corresponding key items sithin the cbject data set records the

entry is remocved from the manual subset.

File Naming Conventicons

Eoth DMS/CASCL and DMS/RYORGANIZE generate a number of temporary
cisk files that are Lsed during the reorganizatien process of ¢
cata basees The user shoald aveid naming the files in such a way

5 to conflict with the rames of these temporary files.

A temporary cogfy of the tata base dictionary has the following

names

sdata~tase=-pack>/2«new data base name>/DICTIONARY
The <data~base=-pack> and <nex data base name> come from the

CCMPILE statement specified in the ULMS/DASLL compilaticn.

Structures that are retuilt through DM5 are created in files

ragecs

1152444 3-28 01719784

Z<new cata base rame>/REQORG=<structure nimber>
These files resice by cedault on the finad medium tut can te

reassigned with the (0PY statement.

The tape file is named RFORG/<old data base name>.

The Libraries gre be asscciated with the new data base after tre
CMS/LASDL reorganize run have the foillouwirc naming conventionse.

CCECL lLibraries are namec:

<data base pack>/3<new data base name>/<structure name>

FPL {ibraries are namegs:

2data kase pack>/4<neyv data base named>/<structure rRame>?

The reorganization ccntrcd file created by DMS/DASDL, which
cescribes the reorganization operations to DMS/REQORGANIZE is

namegs:

<data Lkase pack>/2«<new data base name>/REORG-CNTL

The XREF filer if neededs is named:

2¥new cata base rame>/XREF

1152444 3=29 01719784

The YREF file resides cn the system pack by default but can be

reassignec with the INTEFNAL FILES statement.

Algorithas

The LMCP» cr DNMS Access Ffoutines (DMS/ACR)» is used for most of
the fide creation perforwed ty the LMS/REORGANIZE program.
Hovwevers» there are severzl special algorithms implemented in the
reorganizaticn program t¢ provide functions that are not
available in the DOMSII systems Or to increase efficiency of
frequentiy usecd functionst. The details of these algorithms are

cescribec in the followirg paragraphs.

Index Segquential

{ne such atgorithm is used for the Lalancing of an index
secuential set. TVhe balzncing is called for when the GENERATE
<set> USIMNC <set> syrtax is usedr or if only the block or zrez

size has changed in the vrew indexs

Yo balance the index seqiential sets the DMS/REORGANIZE progranm
reads most of the ole anc new file parameters directly from the
cictionaries» rather thap using the ones in the control file. It
tirst builcs the new fine table level fron the old fine tables>
{ozding eacth table SFLITFACTOR fudle If the addresses are to te

fixec ups then this is dene as the tine tabies‘are 1{oaded.

1152444 3=-30 01/719/84

Each higher level is mede by reading the previous tevel and
naking ancther level that indexes iie again filling the tables
SPLITFACTCR fuil (atthouch the 1ast table in each l1level may te
more or tess fulld. Thic is repeated for as many 1levels as
reguired urtil ore tsble is created on 3 devel. This table
tecomes the new root tahble» and the next tzble contains the newu
NA and HC. These values are placed in the Filte Control table &nd
the cictiorary fixer pute them in the new cictionary at the enc

of the reorganize Prccest.

Index Random Sets &nd Yew Index Sequential Structures

When a3 new index structure is addeds or when keys are changed on
ér irdex structures the ITMSII access routines in the operating
system are usec to brild the new indexs First the structure
records are adjusted to indicate that only the changed index is
to be built. At the comrlietion of the operations the structure

records are correctec.

1152444 I-31 01719784

Abnormad Conditions

If an error occurs wtile performing the reorganization of a data
tases the reorganization program terminates. The termination of
the reorganize progrzwe czn he initiated externaldly (progran
gberteds clears/starts anc so forth) or internally. UWhen
internaldy initiateds the reorganize program notifies the user
whether c¢r not it car be restarteds In generals when the
termination is exterraily initiateds the reorganization is
restartables. Specifically» the reocrganizaticn process can be
restartabler depending uron uhich ot the following categories of

sbnormal ccnoiticns cccurs:

1. Data base cescription errors.
Za System hangse.

3. I/C errorse.

4a Recrganization procram errorse

Cf theses» the tirst catecory {data hase description errors)
carnct be restartedr the seccnd category (system hangs) can be
restértec» and the 1lzst two depend upon the exact nature of the
probler. An 1/0 errcr czn normally be restarteds unless the I/0
ErrTor 15 ©on the tempecrary data base dictionary, labeled
Z<cata-base~name>/CICTICMNARY or a wiite error occurred in the new
cata base« Program errors due te insufficient dynamic memory or

overlay cisks for exampler, can be restarted.

1152444 3-32 01719784

The reorganizaticn process has two phasese. In the first phase»
the rew data base is built and no modificstion is made ta the
existing cata tase. In the second phasesr the reorganization
resoves» mcdifiesr» and aeds fileso, If the reorganization
terminates ir this seccne¢ phase and the reorganization 15 not
restartabtler the user car reload his backup copy of the cata tasse
tef;re rerunning the reorganization or continuing to process
against this data base. The user can identify what phase the
recrganization was ir Lty examining the printer output file
created by the DMS/RECRGENIZE program. If this is not availasbte

(due to a3 clear/start) tte ODT log may be inspected for the

foilowing xessages
*xxd PQECIN FILE MODIFICATION #xax
NOTE

This messaqge orly zppears if the DMS/REORGANIZE

prograg was executed with program switch 3 = 1.

This message indicates tle reorganization process has begun ph:ise

tWOe

115244 4 3-33 01715784

fon-Restartabie Conditions

If 3 non-restartable errer occurs during the reorganization
processyr it i5 the user?s responsibitlity to guarantee the
integrity of the existine (old) data base before attempting
regrganizaticn againe Tte action taken by the user to insure the
cata base integrity ceperds on when the condition occurs Las
incicated cr tﬁe prirt files produced by the reorganization
pgrograms)» and what type of error actualily occurs. The integrity
cf the existing data base can bhe restored by either of the

follgwings

1. Doing nothing. The recrganization program discoverec the

errof anc has sarked tte old uata base as usable.

e Restoring the cata base dictionary. The reorganization
prograg cid not gitcover the error (for examplesr the

prograg was abcrtet).

If the abnormal concitior was a data base description errors tte
user must alsoc make zpprepriate changes to the DMS/DASOL source
file before atteaptirg reorganization agains Possible

cescription errors ares

1. Duplicates occirrec but were not specified as altowed in

the new cata bisee.

1152444 3-34 01719784

2 A LINMITEFRGR occurred ¢cn a3 fide in thte new date kase (for
exzmplesr the maximim level of coarse tzbles was exceededs

or maximum file siz2e Wwas exceeded)a

J. A CATAERFROR occurred because of a failure to meet the
RECUIRED, ¥HERE» or VERIFY conditions specifiec in the new

data bases» or & variable format record type was uWronge

If ary of these cescription errors vccusr during reorganizations
the Cata Bsse Administrator (DBA) must change and recompile the
CMS/DASDL source fitlesr or correct the offending records in the

cata base to begin tfte reorganization process againe.

Restartable CLonditions

If» curing the reorganizztion process» an exception occurs which
is restartsbile, the tisting generated by the reorganization
grcgram shculd be corsulteg to détetmine what phase of the
reorganization was ir precess at the time of the exception and
what actiorss if anys need to be taken befcre re-executing the
CMS/FECREGANIZE progrime The following paragraphs describe the
possible situaticns shict might arise and any additionmal action

wshich the user may hive to take:

1. If a specific structure was being reorganized» either
because cf an explicit GENERATE» or btecause of a change in
the cescriptior of the structure (including all changes in
the {ogical dezcrirtion of the structurer and stl changes

in the physical cescription except a change to the number

115244 4 3=35 01715/84

of areas for ar existing filesr no additional action neecs

to be taken. Fe=edecute the UMS/RECRGANIZE programe.

2 If the DFMS/REOFGANYZE program sas in the process of
changing the nimbey of areas tor existing files the
message EUMP AFEAS FOR £str#> appears in the Listing
followed by one or more file namess the message END BUNMF
AFEAS FOR <stri> deces not appear in the listing)s» then ald
of the files whkich were to have their areas chenged must be
restcred to their rre-reorganization state. This change
only applies tc files for which the cnly change vwas to tte

numter of areas.

. If the excepticn cendition occurs after the DMS/RECGRGANIZE
prcgram has regoved the old data base dictionarys but
before the name of the temporary dicticnary has teen
changeds the user can change the names and it is not

necessary to restart the reorganization programse.

Systen Requirements

Lerending upen the specidic functions of reorganization teing
requestecr» the demancs uton the system in terms of memory» time
éanc cisk space car be extremely highs Users should bhe aware of
these requirements before attempting a reorganization which may
not te abtle to complete in 2 given time frame or which reguires
sore disk space or memcry than is on the system. The
requiresenrts fcr reorganizations includinc memory» time» and disk

specer are discussed in the following paragraphses in terms of the

1152444 I=-36 01719784

type of reorganizaticn tc¢ be done.

Furge

The impact of purging a structure is minimal. The purge process
rormally ccnsists of opering the figst area of the file
contsining the structure and adjusting tke Next Availatle and
Highest Cpen (AAHO) information for that file within the data
tase dicticnary. For incex random structures» all base tables

ere initializece.

Feorganization of 2 Data Set or Manual Subset

Feorganization of a cata set» whether caused by a change in the
descripticr of the dzta setes or by an explicit GENEFRATE, results
in the unicacing of the tata set from the old data base and
reloading it irtc the ne» data base. This procedure is used tc
reorganize both cisjcint and embedded data sets. Additionailiy»
manuzl subtsets are urlocated from the old data btase and retocacec

into the new dsta bssea

The amount of timer cisk spacer and memory required for this

grocess is approximately the same as if thte user were to urite
programs tc undoad and redload the data sete slthough there are
some tools available to the user to reduce these regquirtementse.

These tools are ciscussec in the foalowing paragraphss

1152444 3-37 01719,84

1. The CMS/RECRGANIZE program is5 very sensitive to dyrnamic
megory and should te executed with &8s msuch memory 2s
possible. MHher setting the dynamic mesory for the writer
pregrams» hosevers the user must consider the amsount of
memory on the systems as well as the asount of memory
requirted by the CMSII system to process the two cata bases
which are active at the time of the reorganization. {(Refer
to agpencix E ¢f ttis manual for a discussion cf the memcry
required by the CMTI] system to perform various functions

on a data basel.

Ze There must be two ropies of a data set present on disk at
the tise of the recrganization process. If there 1is
insufficient disk tpace available on the disk pack on which
the cata set file rormally residess an intermediate work
file can be assigned tc another disk packs by using the
COFPY syntax. 1If svace restrictions are severes the COPY

BACK or COFY Y(C TAFE syntax can be usede.

The time requirec for a reorganization of 2 data set should te
s1ightdy 4cnger than that of the original lozds but stilil on the
sare order of magnitiude. The factor which determines ktowx much
fonger the reorganizatior takes is the nusber of sets and subsets
which reference that datz setr» since the acdresses must be
correctec after the cata set has been rebuilt. This address
fixug is performed using simple reaas and writes on the cisk
fides containing the list, and reads of the XREF file creasted

curing the generaticor phase. Speed depends upon tablesize»

1152444 3-38 01719s84

btlocking» and entrysize ¢f the relevant sets and subsets.

Balance of an Indea Set or Subset

As in the case of recrgarization of a data setr there must be
encugh disk space avzilatle to hold two copies of each file to be
talanced If there is irsufficient disk space availzbles an
intermediate work pack czn be specitied to the DMS/DASCL compiler

using the COFY syntax.

1152444 3=39 01719284

SECTION &

AUVDIT AND RECOVERY

The CMSII audit and recovery system consists of the code swithin
the cperating system (MCFII) which audits atl updates to a data
tasesr and the I[MS/RECOVEFDB program whick processes this audited
information to restore tlte integrity of a data base ance that
integqrity has been ccmpremised whether by 3 user programasing
faidurer system errors or hardware mailfunction. Acditionaily»
aucit and recovery is designed to accompiish this task ir much
tess time» and Wwith such less user programwing or operctional
effort than would be reqrired by any user=written recovery

Froceduress

The retevant elesents of the DMS/DAGDL source file and the CCBCL
source file which are recuired to iwplement augit and recovery
for 2 DM3I1 data base» ard which have already bteen descrited inr
grevious sectionss are described in greater cetail in this
section. In acditions tle various types of recovery and the
implications of each type are described. Finaily» some
recosmengations concernirg the use of audit and recovery in
varicus system ervircngerts are included in the subsection titled

festart Prcoccedures.

1152444 4=1 01/719/84

SYARTAX ELEMENTS

The elenents of the (MS/TASDL syntax necessary to implement sucit
énc recovery in a [MSI] cata baser as descrited in the B 1000
Systems LM3I1 Lata and Structure Detiniticn Langquage (DMS/CASDL)

Lanquage manualsr, are as Jollows:

1. Audit trail.

4 Restart cata sete.
2. Transactionsa.

4. Syncpoint.

S Controlpcinte.

Each of these items is described in detail in the foliowing

raragraphse

Audit Trail

The sudit trail is a history of all updates per formed on a dats
bases it consists of a 9iler or sesries of files» containing one
record focr every charge to the data base- The first eight bits
of ezch record is a fielce which represents the type of change
keing auditeds. Exceprt fer control records {those representing
cata base CPEN or CLCSE» SYNCPOINT, CONTRCLPUINT» or PROGRAM
ABCRT1 = these records corsist of just the TYPFE field)s» this
record type is repeatea t the end of the record. This

repetition enables trte CMPS/RECOVERDwL program to read the audit

1152444 4=2 01715784

trzil either forvward or tackward. Following the TYPE fielcd is an
E=-tit fielc cortaining tte number of the structure being updateds.
Agsin» this fielc s repeated at the end of the recordr just
prior to the TYPE fielde The remainder of the record is variatle
in tength cdegending ipon the structure type ind the actual change
taking place. For exampler when a new record is added to s data
set» the audit recorc detcribing the operation requires four
tytes for the address of the new record plus the actual record
being adced. To audit tle update of an existing data set recard
requires the 4-byte zdcress plus copies of trke record tefore and
after the upcate. Tc aucit the insertion of a key into an index
recuires 13 bytes of control information (& S-tyte address which
specitfies the 1ocaticn oY the new key within a specific index
tabder a 4-byte address Jor the cata set reccrd which contains
that key» anc four bytes for an audit serial number) plus a copy

cf the actual keya.

In creating the audit trzid» there are usualily several distinct
cthanges to the data tase» and therefore several audit recordss
for any single DMSII updzte operation (store», deltete). For
examples when a3 new recovrd is stored in a cata sets the DMSII
system must aucits in actiticn to the simple étore of the records»
such things a3s the sgace allocation for that records the
insertion of the key fields into att of the paths which refererce
thst recorcs and any index table aliocation or table splitting

which is5 cecne to complete those insertse.

1152444 . 4=3 01/15/84

{perztionallys the CNMSII system uses two buffers for the audit

trzils which are written out automatically when they are fillec.

NOTE

Hhide switching aucit files {closing tke current fide
and cpening the nedt one)» the DMSII system can
allocate overflow tuffers for the audit trail. This
enables the cospletion of update operations which are
currently inp process» so that prograas can continue
to perform inguiry operations against the data base
while the file switching is in process. As scon as
the file switcting is completer any filled audit
buffers are writter to the new file; aill overflow
buffers sre then dealliocated a5 soon as they have

been wWritten ocuLte.

Adogitionslly, shen a syncpoint occurs» any updated audit buffers
in memory are sritter out whether or not they are full. Refer to
the ciscussion of syrcpoints in the subsection entitlec

SYNCFOINT. Audit records can overtap physical Dlockse.

The audit trail can ke atsigned to either disk or tape. If disk
is to be useor» then the cisk pack or cartridce on which the sucit
trsil resices should not coentain any other data base files since
the failure which corrupted those files coulc also corrupt tte

gucit trails making rvreccovery impossible.

1152444 b=14 0171984

Festart Cata Set

Every data base whict uses audit ana recovery must include
exzctly one restart cata set. This data set is physicatly the
sake as any c«trer data set and is treated 55 a simple data set by
koth the CFSIT systes ant the CMS/RLCOVERDS program. fLogicallys
this data set is the mears by which a user program can deteraine
if 5 recovery has occurred and to what point the dats tase has
teen recovered. Adcitiorally» the user data fields within the
restert record are t¢ be used to maintain the informztion
necessary to restore the program®s own internal cata to the point

cf the recoverye.

Iransactions

A transaction is a seriet of DMSII ouperations which can or cannot
update a data base. Hittin a3 user programes this series of
cgperztions must tegir with the begin—transaction
(BEGIN-TFANSACTICN vert in the COBOL and CCGBQOL/4 tanguzges and
TREEG operation code in the RPGII {anguage) operation. Lpon
executionr cf a begin-trarsaction operations, & prograg is in
transacticn state. & pregrag eust perform all of its updates to
an audited dats base while in transaction stste. To tleave
transaction statesr a procram must perform an end~transzction
(END-TRANSACTICN vert in the COBOL and COBOL74 tanguages and
TRENL operatiorn code in the RPGII language) operation.

Irznsaction state 15 uset for the following functions:

1152444 4=5 01/715/84

Cogpletion of a Sirgie Transaction
A progrim uses the end=transaction operation to notify the
DMSIT system that all of the updates which comprise 3 sincle
transacticn have rconpletec. If a program aborts (goes to
EGJ or is discortinuved (DS or LUP) by the operating system
{MCPII) while ir transaction stater then the DMSII systenm
assu®es trat a tranc=action is incompleter therekly
jeopardizing the stetus of the data tase? therefores the
DMSIT system must merk such a uata base as requiting
recovery. An ECLJ or DS of a program not in transaction

state deces not sffect the statws of the data base.

Closing a Cata HBase
No progras can clese the data Ltases either imglicitly or

explicitliys, whidle arother program i5 in transaction state.

Frograsg Aborts in lrantaction State
If a LMSI] program zborts while in transaction stzte» the
DMSII system carnaot allow the UuMS/RECOVERDB program to begin
while octher programes are still in transzction state. Refer

to the subsecticn ertitlec Proyram Abtort Recovery

Aucit Functicn
The CMSII systeas performs a store operation on the restart
data set record of the program whenever the audit function
is requested. The cudit function 1s invoked for a
begin~transacticn oreration by specifying the AUDIT cptior
with the EEGIN=-TRANTACTION veru for the CCBCL &and CCECL74

languages and leavirg the FACTUR 2 field blank with the

1152444 4=~5 01/719/84

TRBEG operation code for the RFGII language. The audit
function is invckec for ar end=transaction operztion by
specifyinc the 2ULIT opticn with the END=-TRANSACTION verbd
for the CCBCL ard CU(BOL74 languages and teaving the FACTCF 2
fiedd blank witt the TREND operation code for RPGII
programs. It is the store gperation to the restart data
recorc ¢f the progrzm which aliows the grograms to save any
inforgsaticn that is needed to restart itself in the event of
4 reccvery. Because of this implied stcre operztions, each
program must establish s Lockeu record xithin the restart
data set by pertorsing either a locks creater» or recreate
operaticn prior to the first begin-transaction or

end=transaction operation.

NOTE

As stated zbover the restart data set is
treatec as a simple data set by toth the
CMS$II system ard the DMS/KECOVERDB programe.
It is through this implieac store operation at
either begin~transaction or end=transaction
operation sith the AUDIY function set that
the contents 041 the restart record get
aucited anc car be subsequently restored by
the LMS/RECOVEFDB program as part of the

overall recovery processe.

1152444 L=-7 01719784

Counting Transacticns &nd Syncpoints
The CMSII systes coants the number of transactiens whicth
have cccurred ir orcer to perform syrcpoints and

controlpoints.

Syncpoint

A sypcpoint operation is a quiet points a time at which no
grograms are in transaction state and upcdating the dazta tase.
Sirce therfe is nc upcate activity occurring at this time»
syncpoint operations serve as a point of referencer for toth the
CMSI1 system and the OMNS/RECOVERDE program which insures that
changes on either sice of the syncpoint are {ogicadly and
furctionaldly irdepencent of each other.« Refer to the subsectian
entitled Forms Of Recovery for a description of the use of botkh

syncpoints and caontrecipoints ty the DMS/RECOVERDB program.

A syncpoirt operatior ocrurs when the number of transactions
specifiec to the NDM3/DASTL compiler have completed. The number
cf transacticns per synctoint can aiso be changed through use of
the SM input message. Refer to the B 1000 Systems Softuware
Cperatior Guider Volume 1» for infosrmaticp on this messace. HWhen
the required number ¢f transzctions has occurredr the DMSII
system writes & special syncpoint record to the audit trail anc
forces any urdated auvdit buffers to be written outs if any
grograms are in transaction stater» the syncpoint cannot cccur
until thcse programs have performed an end=transaction operaticne.

2i{sor no program can enter transaction state until the syncpecint

1152444 4=8 01/719/84%

gperation has cospletec. After the syncpoint operztion has
completecs the DMSII system increments the syncpoint ccunts in
grcer to determine wten the next controlpoint shoutd be

performec.

In acdition» the UMSII system forces a syncpoint operation
whenever a program closes the data bases or when a program abort
cccurse The programser ¢an &slso request 3 syncpeocint operation at
éan end=transacticn ogeration. Each of these types of syncpoint

cperztion is hancied in the manner previously outlined.

Finaily» uhenever the nurber of progyrams in transaction state
returns to zerc» the LMSIT system perforss a psevdo syncpoint
cpergtion. In this cases the syncpoint record is written to the
sucit buffer ir memceys, tut none of the other syncpoint functicns
cccure. The augit buffert are not furced outr nor are the
transaction or syncpcint counts affected. 7To the CMS/RECOVERCDS
grecgraes» this pseudo syncpoint operation is indistinguishable
from 2 true syncpoint operations so that tte amount of data
tetween syncpoint operationss» and therefores the amcunt of datsz
which might be backec out by a recovery operztion can fe

significantly reducec.

NOTE

Although the progrzmmer shoulwu be aware of the
existence c¢f pseudc syncpoint operations and their
function in recucirg the amount of data which might

be btackeac cutr the programrsmer shoulc not rely on

1152444 4=9 01719/84

their cccurrence since it is not possitle to
deternine if or when 3 pseudo syncpoint operation has
occurreds except ir a single pgrogrameming
environments it it also not possible for the
prograamer to cetermine when an audit buffer
cortaining & pseudc syncpoint record is fulls and

therefore written cute.

Controlpoint

A controlpoint operation is & special type ot syncpoint operation
which onrdty cccurs when tlte syncpoint count has reached the numter
specifiec to the LMS/DASIL compiler (this parameter can &lso te
rocified by the SM input messagel. After the DMSII system has
corpleted such a syncpoirt operationr, it forces to disk & data
tuffer updated prior to the last controlpoint records but not yet
written. Also» the [MSI] system maintains a series of fields»
calied the Next Available and Highest Open (NAHD) fiedldss», for
each file in the dat: tate. These NAHD fields are stored within
the cata base dictionary and controt the z2itocstien and
ceallocaticn of cisk file space. A¢ a controlpoint operations
sny MAHO field updated prior tc the last controlpoint record can
zlso be written cut to tte dictionarys These processes insure
that no updatec buffer ovr NAKO fiela can remain in memcry for
more than tuwo controlpoirt records without being written to diska.
pfter all of these write operations have completedsr 3

cortrodpcint recard is also written to the audit trail.

1152444 4=10 01715784

FOFMS CF RECCVERY

The recovery programs nased OMS/RECUVERDB», is5 invoked by the PRC
infut message. HRefer to the B 1000 Systems Software QOperation
Cuider Volume 1» for syntax. At beyinning of jobs, this progran
rezds up the data base dictionary and determines from the
informaticr containec in the first segments called the DMS
GLCBALS» which of the following three main types of recovery

cperstion is tc be performed:

1a Program zbaort recoserye.
2 clear/start recovery.
j. Durp reccvery.

The operator cin request a form of recovery known as a
partial cusp recovery by specifying a Llist of files nhich

are to be recoverec.

" Frogram Abort FRecovery

A program aﬁnrt recovery operation is required whenever 2 program
is aborted by the operating system (MCPII) or goes to end of jgb
(ECJ) white in transacticn state. khen this occurss, ail inquiry
programs are suspended at their next DMSII operation and.markec
as Maiting recoverys the only exception tc this is the close
cperstions which the DMSII system allows to complete. The updste
precgrams which are nct ir transaction state at the time of the

frogram abert are also suspended at their next DMSII operation.

1152444 4=11 01715/84

Any update program wbich is5 in transaction state is5 alloweg to
complete that transactior before being suspended. I such a
frcgrae perforaes an end-transaction operation with syncpcint at
this times an ABORY L[MSTETUS exception is returned immediately
anc the syrcpoint dperation is not gerforaed. MWhen alil grograss
in transacticon state have performed an end-transaction operaticnes
the LMSITI system forces # syncpoint operations performs a
fseucn-cldose operaticn or the data baser and then generates the
KC input messace. This tequence of operations is the only forms

cf recovery cperation wnhich is automatically invoked.

Upon reccgnizing a progrim aborts the DMS/RECOVERDB program finds
the end-of-file (EGF) for the current audit file and processes
tackward from that pcints backing out all updates which cccurred

between the program asbort and the Last valid syncpoint recorde.
NDTE

Since the CMSI] system forces a syncpoint operation
prior to the pseudc~close cperations the
DMS/RECOVERDB gprogram expects a syncpoint record at
the enc of the filee« This syncpoint record is
ignorec» as is the controlpoint which could have been

generatec by this scyncpoint operation.

1152444 4-12 01719,84

All ¢f the ugdates mist te backed out for twec reasonss

1. There is no way to identify tne program responsible for 2
particular audit record or to singie out the recorcs

generatec by the progrsm that abortede.

Ze Ancther grogras which was in transaction state at the tige
of the program abort could have processed data wmhich was in

some way affected ty the program abort.

After the updated records have been backed outr, the CMS/RECOVEFRDS
program issues a special comrunicate to the coperating system
(MCFII) informing it that atl programs waiting for recovery can
te restarted. Upon keing restartedsr aldl of the current=record
anc current-path poirtert of the programs are in a deleted state»
és if the cata base tac Just been opened. In additions an ABORT
CMSTATUS exception is returned to every prograa which hag
completec any transactior prior to the progrzm aborts this
exception is returnec at the next begin~transaction operation cf
these prograes or when ttose programs attempt to close the dzte

tasea.
NOTE

Whenever a procram receives an exception on any CMSII
operstions Tthat coperation has not keen per formed. In
the case of an AEQOFY exceptions if tte operation was

a begin~transactior operations the prog¢ram is not in

treznsaction stite. If the operation was a close

operation» the datz base is not closeds The only

1152444 4=13 01719/84

variation from this is when the operation is an
enc~transactior coperation in which case the DMSII
system completes tte end=transaction operations, tut
the upcate is subsequently backed out Ly the
DMS/RECDVERCB rrogram in spite of the requestec

syncpoint cperztior.

Upon receipt of an AEORY exceptions a prograg should {occate anc
Ltock its restart reccrd and take whatever action is necessary to
restart itsetf» basec upen the information contained in that

restart record. Procrams which opened the datz base INRUIRY are

not notified of the recovery operation.

Khen any program attempts to open a data btase while 3 recovery
operztion is requirec or in processs the OMSII system suspends
that program either azt dzta base open time if the data base is
inactive or at the first DMSIT operation after the copen cperation
if the data tase is currently active. Such & progras is

reinstatec at the cogpletion of the recovery operations

115244 4 h=14 01719484

Clear~5tart Recovery

The clear=-start recovery operation 1s required whenever a
clear/start operatior occurs while a data kase is teing updatec»
or 3 FATALERROF Excegptior sccurs. #shen a program attempts to
cpen such a3 data basesr clear/start recovery is initiated
autowsatically. For 5 clegar/start recoverys» cnly those files
Wwhich neec recovery &re zccesseds Previouslys, all datc tase
files were required to be present for a clear/start recovery.
For most clear/start reccvery situationss operator intervention

i5 no LONQGETr NECESSBTY»

As in the case ot prcgrary abert recoverys the DMS/RECOVERLB
program must back out sl1 upcated records between the end of the
zucit trail anc the last syncpecint record. Howevers Lecause ot
the clear/start aperztior» no close operation was performed on
the cata bases as is done at a progsam abort? therefores the
recoVefy operation mest insure that all upcated records prior to
that last syncpoint cperation have Leen wWritten to the data base.
Since an updated CNSIT beaffer can remain in memory as {ong as two
controlpoint operaticns tefore being written out to disk» the
CMS/FECOVERDE fprogras mu=zt process tackwarc through the zucit
trail until it has ercourtered two controlpoint records or dats
base opens and then it reapplies alil changes from that point
forwsrd to the last syncgoint recorde. After thkat has bteen dones
the CMS/RECOVEFDB prcecgran restarts any programs which can be

waiting for the recovery operation.

1122444 4=15 01719/84

Cump Recovery

A cump recovery restores a data base to a given state fbased uvpon
& rrevioLs ccpy of tte deta base and a1l of the audit files which
wer € created between that copy and the desired state- The copy
present at the start of the process aust represent an inactive
cata base which was successfully closeds. The copy csnnot itself
require e€ither progrzm atort or clear~-start recovery. A dump
recovery operaticn might be needed for one ot the following four

regsonss»

1. A system failure hes occurred which precludes the execution
of a clear~start recovery operation. The failure could te
a corrupticn o1 the data base dictionary or the entire disk
on which it residecs. An I/0 error on & write aperation to
any portion of the data base requires 3 dump recovery to

recover the data bzse.

Ze Either a clear=start or program abort recovery has been
unabile tc successfully complete. For examplesr an I1/C
error» reac¢ or writes has occurred during the recovery
operatiors, or the zudit trail cannot be read or contains
records which gre invalide In the latter two casess a dump
rTecovery operation can only restore the data base up to the
tast syncpcint recerag prior to the error in the audit

trail.

1152444 4=16 01715784

l. A hardware failure has occurredr, corrupting some or sil of
the cata base.« This fzilure could have cccurred at any

tigse, not just while the data base was active.

4. An error in a grogram has corrupted datar and it is
necessary to restore the data base te¢ 2 point prior to tte

executior of trkat grogram.

-

To initigte a cusp recovery operations the operator must load &
backup copy of the ertire data bases inclucing the datz base

cictionary» and then enter the RC input wessage.
NOTE

A data base shculd be tacked ups whether to tape or
disk» only uwher the entire data base is5 inactives an
attegpt to copy an active data baser» whether it is
opened ugdate cor irquirys can cause the backup
process to fails or result in an unusabtie copy of the

data base after an apparently successful backup.

The CMS/RECOVERDE prcecgranr reads forward thkrough the zudit trail»
gpplying all of the chantes against the odlg data base. Each time
the CMS/RECOVERDE pregraw encounters an enc-of-file record in the
aucit filer it attempts to open the next sequentiatiy labetlted
aucit files If this file is not presentr the following message

is displayeds

1152444 4=17 01/719,84

IF <gb=name>/AUB]ITnnrnn EXISTS» ENTER ¥Y» ELSE N
If the file recuestec coes not exists the operator enters N» and
the rtecovery process is complete. 4f the file does existr the
operator makes it present and enters Y; recovery proceeds at
that point. If neither Y nor N is entereds or if Y i5 ertered
anc the fide is still not presents the DMS/RECOVERDB progrém
repeats the messager looring until the appropriate response is

entered arc/or the file 15 present.
NOIE

Fecause of the mectanism which the CES/RECOVERDB
program Lses tc determine what type of recovery
operation to performs if recovery is ever invoked
unnecessarily» the CMS/RECOVEKDB progrem attempts to
perfor® CcumRp Tecovery operations and the preceding
message appears on the 00T immediately. The operator
shcudd enter N» cats5ing the DMS/RECOYVERDB progras to
tersinate. At no time should the CMS/RECOVERDE

program be discontinued (D5 or DP input message)d.

If CMS/RECCVERLE atorts with o stack overflow
conditions, or is discontinued because the operator
errorecusly enterec YES when no other audit file
existed» then the cata base is marked as
irrecoverable. To override thiss re~execute the

DMS/FECONERDEB program xith switch 3 = 13

1152444 4=18 01719/84

RC <data~base~nzme>sSWITCH 3=1;

This wey» a dusp recovery cperation can be avoided.

1f a program abort recorc is encountereds CURD recovery operation
is temporarily susperdeds» and program abort recovery must te
performec. When this is completer gump recovery operaticn is
resused starting witlt the next audit file. Similarlys when the
{MS/FECONEFDE prcgranm encounters the end-of~file record in tte

sucit trails onre of thres following conditions must te trues

1. The last recorc in the file was a c2ta base close record.
£ The 1ast recorc wa* a program abort record.
3. The first record ir the next file represents a3 continuztion

of the file just processed’ that iss the next file does

not begin with a ds#ta base open rTecord.

If none of these are true¢r it implies that a cltear/start
cperstion was the cavse «f trte end-of-fite record in the audit
filesr anc progras aboert recovery aust be per formed at this time
(clear=-start reccovery is not necessarys since the chzanges betueen
the last syncpoint recort and the prior tw»o controlpoint records
have alreacy been apgliet)s After the backing out of the records
is completer the dusf recovery operation is resumed with the next

eucit files

1152444 4-19 01715784

I1f any ceonciticn arises shich make it impossible for the

EMS/PECOVERDB progras to proceed {fur examples a read error on

the audit fitel)s, ther it must back out all ctanges from that

point to the 1a3st syrcpoint record. The following message 15

then displayed on the [D1:
INCCMFLETE RECOVERY = AUDIT FILLS WHCSE NUMBERS ARE GREATER THAN nn
PUST BE PUFRGEDL CF REFCYED NOW

The cata base is restorec only to the point of the ervror.

Partiatl Cusp Recovery

The partial dusp reccver) operation is a special case of the dump
recoNvery operations, shict can be performed when the operator
knows that only 3 subkset of the ¥files within the data bases
excluding the cata bzse cictionaryr» need to te recovereds as in
the case of 3 hardware fzilure on a single disk drive. Before
initiating the partizl duvmp recovery operations the cperator must
tosd the backup copies 09 the files to be recovered. The current
cata base cictionary must be presentr» as well 33 another copy of
the gictionarys, Labelled <data~base-name>/0LD.DICT» which is of

the same versicn as the files to be recovered.

To initiate the partial rtump recovery operationr» the list of
fites to be recoverec is appended tu the RC input message. The
user must specify the conptete file name to te recovereds
including pack=icr if the file resioes on & user packr and dasts
base name. For examplesr if the user wishes to initiate a3 partial

cunp reccvery on twe files named FILELl anc FILE2 which reside cn

1152444 4=20 1719784

8 user pack namec USER» Znd the data base is named DB» the
followinrg commanc is usec. Assuming the dsta base dictigcnary

resices on the systes pactks the user enterss

RC C& USER/JCB/JFILE)Y USER/DB/FLLEZ
Assusing the data base dictionary resides cn a user pack named

USER1» the user enterss:

RC CE ON USER! USEF/DB/FILE1 USER/DBJFILE?
The CMS/RECOVERDE prcgranm only processes changes against the
structures stored in those files, automatically terminsting when
the specifiec files tave been brought up to the same version as
the remaincer ¢f the datz bases If either a clear=start recovery
ecr a3 program abort recovery operation is required at tte end of
the Ytast audit files it is performed against the entire dasta
tase« If any condition «ccurs which forgces an incomplete
recoverys & full dumg recovery operation must then be performec.

The cata tase is unusakble at that point.

1152444 4=21 01715/8%

Write Errors and Psrtizl Dump Recovery

A write error only atfects a particular file and its immeciate
offspring {(for example» & wurite error on an index prevents
utpcating of its cata setls Processing acainst the rest of the
cata base can continLe. Thke urite error can be cleared bty
running partial cump recevery against the affected structure.
Any attempt to access a sftructure which has had a write error

results in an I0ERKCQF exception being returned to the programa.

NOTE

A write error to tte data base dictionary stiil
‘renders the entire data base unusabie and requires a

fudll dumg recoyerys

THROUGHPUY CCNSIDERATICNS

Lepending upon the asount and types of wupdate activity being

per fecrmec on 3 data taser the overhead involved in auditing
upcated records can tecone very substantiat. It is possikble
through the settings of the various physical parameters of the
aucit systems to reditce the total amount of overhead required to
@aucit a given cata bzser» thereby improving total system

throughput. The parsmeters wmhich can be sdjusted ares

1152444 4=22 01719/+84

Audgitr file media
Audit tlocksize

Luraticr of transactions
Settings for syncpoirts and controdpoints

Audit Media

The amount of time sprent waiting fosr audit buffers to ke written
car comprise a significart amount of the totzl audit overhead.

It is possibie» through the settings for syncpoint records and
gudit blocksizes to recure the number of write operations which
cccur. In acdition» to sinimize the time actually spent waiting
for these 1/C operations to completer the asudit files can ke
éssicned tc whichever avzilable device has the highest transfer
rates anc in the case of disk, whichever cevice fbas the Lleast arnm
govegent and rcetatioral celay (Latency rate). LIf there is 3 disk
crive available whictk has no other gata bzse files assigned to
it» the aucit files can te assigned to that cisk. If magnetic
tape is to be used ard tte tape drives have varying transfer

rates» the drive withk the highest rate sbtould be useds.

1152444 4=23 01719284

Augit Blocksize

Cne major e€ffect of thé tize of the audit tlock is the frequency
with which non=syncpcint write operations of the audit buffers
cccure. As the size cf tte audit block decresses» the protability
increases that any given audit operation can fill an audit buffer
(fercing it to be writter outd). If the otter audit tuffer is
already in the process o4 being written out shen the current
butfer fills» then tte CMSII system must wait for the first I/C
gperztion to ccmplete before it can proceec. For exampler 3ssume
g8 Testart data set recore¢ 200 bytes in length. Since suditing of
én update to a data set record includes a tefore and after imace
of the records the begin~transaction and end-transaction
gperations alone consume cover 400 bytes each in the zudit trail.
Even with 2 sinieus smourt of updating within a transaction
cperations the default avdit blocksize of 1800 bytes can be
tilled by a5 few as two transaction operations. Therefore» in
orcder to minimize the nunber of physical write operations to the
gucit trail as well s tte acditional overtead required to
sllocate and maintain overflow audit bufferss, the cefault setting
fcr blocksize shoutld be the absolute minumuim used. If the
setting is much less thar this» any single transaction can

conpletely fildl an avdit buffer.

1152844 4=24 0171984

A second major effect of audit buffer size is on the ftength of
tine required for syrcpoint 1/0 operations. Optimallys syncpoint
I/C operstions shoulc gererate a small percentage of the totsi
rusber of write operstiors to the audit file. If this is true»
the zmount of time spent at a syncpoint operation waiting for 3
partially~-filled audit buffer to be written is insignificant. If
syncpoint cperations occur rather frequentiys» or the gresat
majority of the update ogerations being performed require very
tittle audit spaces then it is possible for syncpoint I/(
cperations ta become a leirge enough fraction of the total write
cperations tc the aucit 4ile that throughput 15 noticeably
cffected by the time reguirec for those I1/0 operations. This
cegradation of systen performance can be corrected by increasing
the number of transactior operations per syncpoint operation. If
the Lata Basse Adpinistrator (DBA) has reasons for maintaining 3
relatively lcw settirg fer the number of transacticn operations
per syncpoints then the tize of the audit blocks shouid not
exceed the defsult settirg of 1800 Lytes. This is especiatly
true if the upcate progrzms use Data Comms since response time is
so criticalt in an on~1lint environment. If syncpecint operations
cccur infrequentily and tte update operations being performed
require very littdle zudit spacer then it is possikle in tatch
enpvironeents to significzntly increase thrcughput by doubling cr

even tripling the aucit tlock size.

1152444 4=25 01719,84

A third sajor effect of fudit block size is on memory
utilization. EFach time zn audit operation occurss the DMSII
system increments an audit serial numbers which is storec within
the globals for the cata base. There is zanother field within the
globalss callec the snreleased audit serial number’ each time an
auait buffer is written» this field is updated to reflect the
encing audit serial rumber for that buffer. Acditicnally, there
is an audit serial niamber associateu with each DMSII deta buffer
which i5s set toc the current audit serial numter whenever a buffer
is urdatede By comparineg the audit serial number of the cdata
tuffer with the unreleased audit serial number, the CMSII system
can insure that no urdate cperations are physically written to
the cata base until the eudit recoraus corresponding to those
upcate operations have been written to the audit trail’? hence,
if a failure occurse no rortion c¢f the dats tase is newer than

the audit traids uhich weuld render the data base irrecoveratiea

As the size cf the airdit buffers increasess the frequency with
which those buffers &zre sritten out decreases. #Because of the
unreleased sudit seriat rumber mechanisms increasing the lengtt
cf the audit buffer lso increases the lengtt of time which a
¢ats buffer msust vemzin in memorys ithereby requiring more memory
toc process the data tasees Therefores the DBA should be zware
that although {arger aucit ﬁuffers can improve tkroughput bty
gsirimizing the anount of time spent waitirg for augit I/C
cperstions» there is alsct a chance that such a gain can te maore
then offset by memor) thrashing. Because of thiss extresely

targe aucit buffers {larcer than 3500=4000 bytes) should te

1152444 4-26 0171984

avciced aon alt but tlte lzrgest systemss» and even on these large
systemses if a3 high degree of memcory utilization atready existse

very large audit block sizes should be avoided.

Logical Transactions

The concept of a logical transaction is very important in the
cocing of application prcgrams. The begin~transaction andg
enc=transaction cperstiors should occur immediately btefore and
cfterr» resgectivelys every update operation to a dats tase which
is the result cf a ccmmor inputs rather than every single update
cperatione. Each tegin-transaction and end-transaction operaticn
glso causes a store cperition to the restart dats set (assuming
thzt the AUDIT optior is specified on one or the other of the
tegin~transaction or end-transaction operation). Since each
store operation is atditedr the grouping of logically related
upcate operations into 2 single transaction can greatly reduce
the total zuciting ocverhead necessarys in terms of both time and
gucit file space. Acditionatllys» the use of logical transactions
can simplify the procrameing coding effort for the following

reasons:

1. The amount of cocirg needed to perform a restart is
ginirizedr» since tte DBA doces not need to be concerned uwith
the gossibidlity of partially complete logical transactions

and the necessity to back thea out.

1152444 4=27 01715784

2 At the end-transaction operation» the DMSII system performs
an iaplicit free ovreration on aill records currently locked
by 8 proccrame. If z prcgram perforas several
begin-transaction #nd end—-transaction operations fcr a
single irputs it it possible that records which were
mocified at the bectinning of the process can have been
freece The prcqgrasmer must then relock any record hefore
attenptirg to upgate it» or possibily receive a NCTLCCLKEC

exceptior cn tte store operation.

Firally» a program stoule use as little time as possible in
transaction stater especially in 2 multi-programming environment.
This tenas toe minimise tte probabitity of several pregrags being
suspendec at the begin-transaction g¢peration because a syncpoint
operztion is due while cre program is performing an excessiwvely
tong transsction. Tc this end» progyrams in transaction state
should dog nothing thet ccudd result in lengthy delayss such as
cpening of ctosing a file or waiting to receive ingput from the
CCY or remcte terminal. Also» a program shoulc do as much as
possible of the processirg relative to a tramsaction before
entering transaction states» including as many of the non-update

LMS functicns (finds» lock» and create).

1152444 ‘ 4-28 01719784

Syncpoints and Lontrclpoints

The number of transactiors per syncpoint and syncpoints per
controlpcint atffects the system throughput while the data base is
active anc alsc affects 1he amount of time necessary toc perforys a
recovery ogeraticn. For purposes of processing a data bases the
greatest throughput can te achieved if syncpoint and controlpoint
cperztions occur as infrequently as possiblesr thereby minimizing
the zmount of time progrzms might be suspended at a
tegin~transaction operation. If syncpoint operations occur toc
frequentlys» much time car be spent waiting for partiatily=fillec
aucit buffers to bhe srittene By redgucing the amount of time
tetween cortroipcint operationss the probabidity that an updated
cata buffer can remain ir mescry for two controlpoint cperations
is much greaters resultirg in many more I/0 operations occurring
gt 3 contrclpoint operation. The optimum setting for syncgoints
rer controlpoint resvits in updated NAHQ fields bteing the anly
items written cut at a centrolpoint operation. HWhen recceverings
the opposite i5 true. Mcre fregueni syncpoint operaticns
minimize the asount ¢f time spent backing transactions outs, for
toth progras akort ard clear-start recovery. Sisilarlys, freguent
controlpoirt operaticns rteduce the amount of time consumed by the
clear=start recovery operaticn to reapply the changes between the
last syrncpcint recorcec ane¢ the two prior controlpoint recorcse.
Adcitiorally, frecguert syncpoint operations can dramatically
recuce the amount of time recuired to restart a programg» since a
shorter pericd of tige between syncpoint records means that there

ar € fewer Ltost transacticens shich need toc be re—enterec.

1152444 4=29 01/15/84

khen settirg the syncpcirt and controlpoint parameterss the total
volume of update activity cccurring in any period of time must be
taken into coensiceration. Fcr 1ow volumes of updatess the
settings czn be relatively smatl. As the wvolume increzses, these
settings might be increased such that a syncpoint cperation
represents a ccnstant percentage of the woerk load for s batch job
er 3 constant response time &t remote terminzls in a deta
conmunications ervircneert. It is possibles through the SM input
messages fcr the operator to change the settings for syncpoint
énc controlpoint operaticns as jobs change or work loads
increase. It is reccmmerded that severatl settings of these
parameters be tried in order to determine the best settings for

any garticular work loade

NOTE

The subsection entitled Backea Out Transactions
further ciscusses the settings for transactions per
syrcroint in relation to minimizing the amcunt of
data which the user can affora to 4ose in the event

of 3 recoverye.

1152444 4=30 01719784

RESTART PRGCEDURES

{nce an apglication grogvram determines that 2 recovery operaticn

has occcurredsr the preccedires to restart itself are a function cf

not

just that fprograms tut of the entire system environsent in

which the cata base znd rrogram are being run. Some of the most

important facters to be considered are:s

1.

Is it 2 batch job? Does the program process an external
cards cisks or tape filer cr does it update the data base
Wwithout externegl d#ta? Is the program driven by input from

a cata cempunicatin terminalz

Do several programs update the data base concurrentlys, or
is oply cne pregras which updates the data base sliowec to
execute at any one time? If only one update program 1is
altloweg to execute at any cne times then reprocessing any
trarsactions stich were backeu out by recovery should
produce sesults which are identical to those ottained when
these transactions were originatdly processed-. Hcowevers
when several rrogrzms update the data tase concurrentiys»
the cperctoxr mist take steps to insure that the upcvate
records to be rerur are re—-entered in exactly the same
orcéer as origirally doner thus insuring reproducibility of
results. FRefer to the subsection entitied Progrém

Synchronizatior for additicnal information.

1152444 4=31 01719784

In the case of datz cosmsunication application grogramss how
is the network implemented? Is there a2 single program
handling all remote transactions or are there several
programs? 1If several programss» do trtey have dedicated
terminals c¢r is there a2 Messaye Control System (MCS)
runrning to hancle =tation assignment? If there is an #CS,
is it participztine or non=participating? Both types of
MCS rerforw such finctions as remote file apen and close
operations, as well as station assignments to z remaote
file. A participating MCS also processes every message
which passes tltrouch the data communication network, while
a nonp=participatine MCS only processes special control
messages which eitter the station operator or cata
cospunication grogram can specify by means ot & signat

character at the beginning of the message.

In atl fcras ot recovery operations» every change made tg
the cata base zfter the Last syncpoint record is backed
out« The numter ol updcate records which are actuaily
backed ouvt can be wvinimized? howevers the cost of reducing
the swount of {ost data incluues acditional overtesc ubhile
performing the updste operations as well as donger periocs
of time reguired te actually recover the data tase once 3
failure cccurs. Tlerefores the trade~off betweer the tirme
required to restart the data Lase and the reprocessing of
transacations shict were backed out bty the recovery

operctior #ust be tonsidered.

1152444 4-32 01715784

These factors sust be taken into coansideration when the cata tase
is being gesignec anc when the application programs :re teing
writtens especially vhan determining such things as nusber of
transactions per Syncpoirt operations, the nusber of syncpoint
gperstions per contrcipoint operations and tte duration cf

transactionse.

Some suggestions for restart procedures» based upon various
generalizeg system ervircnmentss are outlined in the remainder of
this secticn. Although the routines described below can te used
€S a3 starting goints and ther modified to fit the specific neecs
cf an installations the dntent of thnese paragraphs is not to
specify rigid methocs of implementing audit and recovery
frecedures. FRsthers thete suggestions shoulo serve &5 guidelires
in igentifying some cf tte factors which must be taken irto

account when designirg ar application.

Basic Procedures

There are 3 fewn restart rrocedures which apply to atl
enyironments. At dezast ¢tne setr oradered or retrieval, should te
declered for the restart set. For Latch programss the key field
for this index might typically be the Prograr-Id. For data
communication grograss» the key might identi fy the station

respensible for the inpute

1152444 4-33 01/19/,84

Since a store operation is performea on the restart data set at
€ither the begin-trarsaction or end=transaction operztions the
program should update atl of the retevant fields in its restart

record immediately before executing that operations. There should

be sufficient cata storec within the restart record to enable ¢

program to restart itseld in each ot the following areas:

Internai Procedures

Items which are required to maintain consistency and
regrcducibility of results, such as control totals or preprinted
form numbers for checks «r invoicesr must be accessikle through

the restart record.

External Procedures Related to the DMSII Systenm

The prograw must be zble to restore any critical recerc¢ or path
pointers to their stite ¢t tke point of tlte recovery. This is
ustvally more isportart fer baztch programs than data communication
Erograms since successive data communication transactions are
typicatly unrelatedr wheveas batch gprograms can process

secuentially thrcough an entire structure.

1152444 4=14 01719784

External Procedures not Related to the DMSII Systenm

Input arc oytpit files ard non=-DMSId managed files such as
COBOL74 ISAM files must te present so that they can be

repositioned.

General Procedures

Interaction among the ar€as previously described must &ilsc be
taken into consider atione ¥For exampler it may be necessary to
reprccess the payroll for several employeess repeating the updite
gperations tc ali of the relevant data sets within the datz base
anc rossibly creating or adding to other tape or disk files which
2re used by ancther :zpplication programs towevers if paychecks
were physically created grior to the failure» then the program»
while in restart moder mast either not produce any new checks {(if
previously generated] or automaticadly voic any previously
gererated checks and generate new checks to replace them. The
restart procedures for stch an applicaticen program aust allown for
the entry cf tte last form number physically assigned. By
comparing the numbers being assigned to tlte last number actuatlly
issued prior tc the failuirer the applicaticn program determines

when to start issuinc new checkse.

NOTE

1152444 4=35 01/195/84

This example assumes a stand-slone mix. In designing
the procedures required to restart such a progras

when several progrsms are updating tte data baser the
interaction amocng zll programs must be considered in

orcer to guarartee reproducibidity of results.

Restart Record Hancling

Immeciately after opening the data wase» & program shoulc locate
anc lock its restart recerde If the operation is successfuls» the
grcgram shculd examire ttat record to determine if a recovery las
cccurreds 3anc if s50» the restart proceduyres should be executed.
If the tock cperatior is unsuccessfuls a create or recreate
gperation rust be perforwed at this time to establish a locked
recard for this progras #nd prevent the program from getting a
MCTLCCKEL excepxtion shen it attempts its first begin~transaction

or end=transacticn xith zudit operation.

Just before closing the rata bases the following CCBCL or CQOBCL74
coce can be performec to delete the restart record of & prograge.

{<exc>» refers to excepticn~handling code):

EEGIN-TRANSACTION NO-AUDIT <restart=dasta-set=name> <exc>.
DELETE <restart=cata=-set—name> <exc>a

END-TRANSACTION MCO=A1DIT <restasrt-data-set-name> SYINC <exc>.

1152444 4=36 01719/84

Ey deleting its restart recordr the program insures that its
restart prccedures need 1o be executed after dasta base open only
when the initisl lock operation on the restart set is successful.
hote that AULCIT is sippressed on both begin-transaction and
enc=transaction operctiors since there is no need to restart ttlis
cperation. Alsor the specification of SYNL insures thatr if
ancther progras aborts adter this end-transaction operzticn but
tefore this program can close the data baser» the ABORT exception

2t the close can be ignored.

Ancther method which can be used» rather than the deleticn of the
restart records, i5 tc¢ maintain a batch nuwmber within the restart
record. The current batch pumber is given to the programr eitter
from the COT or an exterral filer and compared to the number
within the restart recorc. If the two numbers match, this run is
3 continuation of an interrupted batchs, and the progras must
rerfcrm its restart sroutiness. If the two nuabers do not metchs

this is 38 new batche and no restart is necessary.

1152444 4=-37 01/719/84

Batch Prograss

Batch prcgrams are mich €asier to restart than data
communications progréms since they usually deat with ore or no
primary input souvces arc it 15 relatively simple to mairtain
information concernirg t%e position of that input file as well 3as
any outpuvt or secondsry input files. Alscs there is typically
very little interaction zmorg batch programs which might
complicate the restart. Acditionaliy» because the input dzta
which crives a batch procram is reaqgily retrievabler as opposec
to that of a data communication programs tte importance of lost
cata is minimizec since the lost transactions can be essily

regerneratedcs

A rhysical count of the rumber of input records processed can te
used to repositicn ar inrut file» and upon restartings» that many
records can te passec over. For ordered DMSII structures or any
cther non~LMSI] acrdered filesr a key field accomplishes
repositioning. FHowevers output files other than disk cannot be
physically repcsitiorea. Therefores, multiple output carc¢ or tispe
files must be wergeds ane Line printer filess», especisily in the

case of preprinted formss car requise operstor intervertione.

CLue to the relative €ase of recapturing 4dost transsctions in 2
tatch environments it is possible tv reduce the amount of
cverhead irvelved in auditing a batch program by grouping many
{ogical transactions intt a single physical transaction. Since
the store coperction ¢n tte restart cgata set at either 3

tegintransaction or enc~transaction is audi ted» and the audit of

1152444 4=38 01715/84

3 store operation on any data set consists of 3 before image and
zn atter image of thzt dsta sets» then a program which grcups
several lcgical transactions into a single phtysical transaction
can reduce the awount of time required to audit the changes to
the cata tase 3s well as minimize the physical length of the
aucit trails 1f this is done and a failure occurss the pumber of
records which sust be rerrocessed can be such higher, but the

savings in overali rin time usually more ttan offsets this.

If the batch jcb is ruaning w»ith several other programs whick
upcate the datas bases the length of a physical transzcticn should
te shorter than that for a3 program running alone. Thkis prevents
the tossibility cf tte other programs waitine for & syncpoint
gperation which cannct occur untit this program has completec its
current transaction. If the transaction is5 too long» the cverail
system degradaticn cincels out any gyain to a single programs If
the cther prograss ircluce data communication applicationss i1t is
test that the batch grograms perform a single physicsl
transaction for each fogical transaction. If a batch prcgram
runs in several cdifferent environments» the number of logical

transacticns per physical transaction should be flexible.

The initial 1oad of & cata base 15 a specizl case of a
sténc~alone tatct jot. Tt is not necessary to audit the load of
da cata set containing relatively few Tecorcs< This is true in
the case of any cata set which is smwald enocuch tkat the length of
tirme necessary to rerun the entire (unaudited) load in tke evert

cf 8 failure is so stort as to oftfset the overhead requirec in

1152444 4=39 01719784

orcer to make the preccess restartabte. In such a caser 3udit zngd
recovery shoulc not te ircluded in the original descripticn of
the cata btase. After the Load has completed» an UFDATE CFS/CASCL

compile can be run tc ade audit and recovery to the data tasea

If the load of a datc base is long enough to warrant it being
suditeds it is stroncly recosmended that 2 {arge nuaber of
togical transactions be troupec into single physical
transactions. The number of logicad transsctions can te as hich
as 1% of the totad niwmber of records to be loadeds up to a
gaxisum of about S00 togical transactions per physical

transactiona.

Cata Comaunications Frogranms

Eecause c¢f the complexity of data communications environmentse

the procedures requirtea 10 restart LUMSII programs using remote

files are much more complicated than the metkods batch progranms
can use to repositior ingut files to the point of the restarte.

The factors which recuire the more complex restart procedures

includes

1. A progran can te receiving inputs from several independent
terpinals and nust therefore Le able to restart each of
these terminalse cemmunicating to them their individual

restart points.

1152444 4=40 01/719s,84

2e A remcte file is a conceptuat entity. The input data to a
program exists only in the data communication tuffers anc
only for the cdiration of the transaction. There is no

simple way to reporition such a file.

3. There are sany prottems which arise when several programss
are upcdating a catz base cencurrently. For exzmplesr the
timing in whict the criginal transactions wWere generated
can affect eact ctterr and the same seguence of
transactions miLst therefore be duplicated by tte restart
procedures. Afsos if an MCS is present to hancle station
assignwent, the pregrams must maintain a3 record of which
stations they were dealing with at the point of the

failuree.

Festarting Remote Stations

Rather than the record nimber or symwbotic key which tatch
programs use tc restzrt themselvesr» data comsunicaticn programs
sust have 3 methcd ci comnmunicating to the remote opereter the
{ast complete transactior. This is normaily accomplishec Ly
storing in the restart record either the last full screen input
or some part of that inpst which contains sufficient infermation
to communicate the restart pcint to the operstor. The operator
sust then re-enter ary tvansactions whichk can have been lost

curing the reccvery.

115244 4 4=41 0171984

There are twc approaches that data communications programs can

vse when auditing:

Audit by Program

A single restart reccro exists for each programs as is done in 3
katch environment. If a program is processing data from several
stztionss the restart record shoudd include an array whick
contsins an entry for each of those stations. The program must
use the RENITEL.KEY file zttribute in order to determine the
source of each input. Tte retative station number can then te

used as a subscript into the array.

Audit by Station

A restart record exists for each station in the network. The
stétion nusbers or tlie remote operator®s name or log-on code», can
te used as a key field for this approach. Alsor the DBA can
either define 3 special =Tet for the restart cdata set to maintain
the restart records ty station, or the same set used by batch
programs can be used bty tata communication programs. In the
{atter cases bDatch proorzms can pltace their Program=Id ir the key
fielcr uhile Data Cosm programs can place the station number ip

the key fielde.

1152444 4=42 01/719/84

General Restarting oY Data Communication Progranms

When auditing by stations there is additional overhead in that
the programr must pertform 3 lock operation on the restart data set
tefore performing a tegir=transaction operations if the prograsg
detects that the current input is not from thke same station as
the last input. If zn M(S is presentr whether participating or
non=-participatinges and 1! atlows stations to be detached from one
remote file anc reattached to ancther filer then it can also be
recessary for a program to perform & free operation on the
restart record after eact enc-transaction operation to prevent
the rext program which accesses that staticn from receiving @

LEADLOCK exception. In this case» the lock gperation a2t the

tegin~transaction operation becomes unconditional.
NOTE

The unconditioral dree and lock operations can be
avoiced if the MLCS contains a mechaniss for informing
prcgrams when stations are being detacheds» possibiy
by passing some fovym of log~oftf message to the
programa. J{f this is doner» a3 station being detached
needs to be freec enly if it was alsc the tast
station to senc a transactions and the tock operation

is recessary as in the case of a non=M(CS environgzent.

1152444 4=43 01/719/84

fuciting ty preoegram is svfficient it a progrzm is5 receiving data
frcm very few statiorse. Howevers when many stations are ¢n the
tines the size of the restart recora can become prohibitively
large if this wmethog is tseds In most smultistation environmentss

therefores» auditing ty station is usualily nmore effective.

khen a batch progras is 4irst executedr it should attempt to find
éanc lock its restart recerd.s If that restart record exists», the
grogram takes whatever action is necessary to restart itself» zs
incicatec by the contentes of the restart recorde When a data
cormunication prograr is first executeds it should fotlow the
same general procecures. However» while operztor interaction
tends to be wirimatl vhen batch programs are teing restarted anc
is neraadly for the furptse cf restoring external mecic» data
cogmunication grcgragss mest inform the remote operator of the
last transacticn processeds and the operator must then re-enter
ény transactions lost. ‘Pdditionaltyr whether the data
copmunication prcgran is auditing by program or by stations it
vust perform this prccess for every station which it wzs

gccessing at the time of the failure.

Whether awuditirg by grogram cor by stations tltere shouid be some
sethod of notifying @ prcgram that one of its stations has gone
gffiine. 1If an ¥CS is ranningr the MCS5 can perform this function
through 5 special infut mressage. Without an MC5» it can te
recessary to enter sitch & message through the ODT ¢r another
station on the line. If a station goes offliner» the restart

recordrs whether for the frogram or the particular station», must

1152444 G414 01719784

te updated to reflect the loss of a station. In the case of an
zbrormal {css cf stations the restart reccrd should indicste that
the staticn needs to be vestarted wWwhen the station is trought
back online. In the case of 2 station dogging off» the restart
record shoulc indicate ttat the station is inactive. This
includes the case of an *C5 detaching a station from one progrcm
gno reassigning that staticn to another program. Failure to mzrk
such a station as inictive whep auditing by program coulg result
in a single station receiving restart messages from several
grograms rather than just the 1ast grogram to which it was

attached.

If auditing by programs the array of station information shoulg
include a flag indicetinge that a station is activer or that the
ststion has asbnormally gcne offline. #When a program first
rocifies its restart recerd immediately after opening the data
tases it must restart each station #or which there is vatid
restart information s irdicated by this flac. As in the case of
¢ batch prcgrasrs the restart record can be deleted just tefore
the prograg closes the datas base uniless the program recognizes

that it haao abrorwmally lest cne or more stations.

hhen auditing by station» each time a progras encounters a new
stations it should atteegt to modify the restart reccorad for that
station. If the finc anc Llock operations are successfuls, the
restart record shoulg he/exawined to determine if the station
reeds to be restartec. 1f the find and dock operations are

unsuccessful» 3 create oreration must be per formed on the restart

1152444 445 01/719/8B4

cata set tefore the progrvam zttempts to execute a
begin=transaction operation. The restart record shoulc include a
fielc to indicete which rrogram %was accessing the station. There

is no need tc celete restart records when auditing by station.

Backed Out Yransactions

As statec earlier in this sectionr all foras of recovery result
in some transactions beirg backed out. Ttis loss of deta is
usually not very «c«ritical in a batch envircnwsents, since the ingut
file is normally still available. howevers, since the lost input
is not reacily availzble in 3 remote environmentsr the
girisizaticn of tcst trarsactions becomes very important. It is
possible tc sccomplish tlis» at the expense of some throughputs
by acjustirg the frecuency with swhich syncroint operations are

per formeca.

Frequency of Syncpcints

It should be apparent thit the minimum date ioss can be achieved
ty performing a syncfoint operation after every transaction. Gut
cue to the asgount of overheac this coperation can require, in
scdition to the smourt 0% time programs would spend waiting for
syncpoint cperations to completesr this setting 1% Lsually not
feasible. Howevers it stould be possible to determiner if noct a
precise setting for trénsactions per syncpoint operations at
least a range of settings which take into account all of the

factors mentionec abceve.

1152444 446 01/15/84

In order tc prevent grograms from continuaily waiting for a
syrcroint cperation to cempleter the minisum setting for
transactions per syncpoirt operation should te the number of
rrograms cencufrently upcating the data base. 5Since the
transactior count is incremented at the enc~transaction operation
rather than the tegir~trénsaction operationr, it is possibile for
the rumber of gprograss ir transaction state to be larger than the
setting for transactions per syncpoint operation. If this
setting is less than the number of programs updating the dzta
tases it is very Likely that one or more procerams are in
transaction state every time that a syncpeoint operation is
scheculeds thereby celaying that syncpoint operation until those
programs hesve conpletec their current transactions. Hence the

recosmencec minisum settinge.

If the pnumter cf programe: which are updating the data tase
chéznges several times each dayr the number of transactions per
syncroint operation can te set to the average number of prograss
active at any cne time. Alternativelyr, if ttere are a series of
ciscrete job mixes» the '™ input message can be used to adjust

the setting between gixes.

The pmaximum setting tor transactions per syncpoint operation
shouild reflect the greatest amount vf data that the user can
zftord to loses» whick is typicadly cne transsction per station.
The setting of transzcticns per syncpoint operation should
therefore te set to insuve that the maximum number of

transactions between two syncpoint operations is no greater than

1152444 4=47 01/719/84

the number of active termninats. The largest number of

transactiors which cén occur betueen two syncpcint operations 153

(transacticns per syrcpoint +# update programs running =~ 1)
The rumber generated by the above formula would result if every
upcate program was ip trEnsaction states and the current
transactior count was one tess than transactions per syncpoint
gperstion. HWhen the next end-transsction operation is performeds
8 syncpoint operation is scheduiedr but it cannot cccur until atl
¢cf the rewcining programe are out ot transsction state (once the
syncpoint operation is scheduledr no more programs can erter

transaction state until 1he syncpoint operation is completed).

Betveen these two extremes, the determining factor for the actual
setting cf transacticns yer syncpoint operation should be tasec
cn the vclume ¢f updzte zctivity occurrince. In 3 low=volume
environwment» the setting can be at the 1ow end of the vrarge for

two reasonss

1. " Given infrecquert tvansactionss the likelihcoc cf programs

Wwaiting for a syncroint operation is minimal.

2. The tower setting can reduce the possitility of aucgit
recorcs resaining in memory for long periods of times
whiches in the event of a failurer coulc¢ cause transactiors
to be backed oLt ewen though they had cccurred quite a

while before tke fzilure.

1152444 4-48 01719/84

As the volume cf activity increasess the setting for syncpeint
cperations shoulc also ircrease since the overhead involvedo in
performing frecuent syncyroint operations can quickly tecome
prohibitive.s koxevers» regardless of the zmount of activity
cccurrings» the upper bourd for transactions per syncpoint
cpergtior sheculd only ke usecd if the number of stations 1is
relatively swall {apgroximately 25 or 4ess)» and the transactions
are evenly distributed among all of the stations. If this is not
the cases the (ikelitood of aultiple transactions from one

station tefore a syncpoirt operation increases dramaticalily.

As statec abover it is tlte station operator?s responsitility»
once the recovery operation is compieter to re—enter any lost
transactions. Althoirgh it is possicle to sicnificantly recuce
the amount of lost dzta through the setting of SYNCPCINT», length
cf transactionss and ever audit buf fer sizer there cin be some
instances in which it is necessary to completely etiminate any
cata l1oss. This can be zccomplisheu within DMSII ty requesting a
syncpoint 3t the end~trarsaction operation» or independerntly of
the CLMSII system by maintaining a separate avdit trail of all
regote input. JIf a separvrate data coamunication aucit is used»
anc a praogramg recognizes that a recovery operation has occurrecs
it can use the data vithin tte rgstart record to identify its
restasrt point. The grogram can then use tte data communication
2ugit trail to avteomaticzlly Teprocess any transactions which
cccurred between that restart point and the system fzilure.
Therefores by combining the two types of awLdit trailss a user can

accocaplish a tctal recovery operation in 2 much shorter period of

1152444 h=49 01719/84%

tiee thar would be pcssitle using either of the two forms of
gucit by i1tself. The user must be awarer» btowevers of the
increase in system overhead either uf these methods entails. The
enc=transaction cperztiors with syncpoint should be used
sparinglys only for wery critical transactions. Simitarlys, data
cognunication aucit should not be used on smaller systems whict
cannot afforo the extra cverhead undess it is absolutely
reces<sary to remcve the responsibility for data re~entry from the

stetion gperator.

ADCIVIONAL MULTIFROGRAMMINE CONSIDERATIONS

The following paragrsphs describe the use of an Message Lontrol

System (MCS) and procram synchronization for DMSII programse.

Use of an Message Cortrof System (MCS)

The sost igportant fazctor to consider when multiple data
coRmunicatior gregrans avre updating a data base i5 the presence
of an MCS. 1If each grogrvam is independent of the otherss and
stations sre dedicated tc a program as lorg as that program is
running» then the prccedares required are effectively the same as
these outlined above vegerdless of the number of programs running
concurrentiy. Ifs» hcwevers, an MCS as runninc to handle station
gssignments, and the #C3 zliows attachment and detachmert white a
grcgram is running» <cr thle program cannot determine from one
execution to the next which stations are assigned to its then the

restart grccedures becowe more compdicateds

1132444 4=50 01/719/84

When a network is brcugh' up» any active stations for which
restert records exist sheculd be restarted immediately sirce 3
station can be assigned to a program other than the one which
created its restart record. Speciad restart procecdures should be
written to acccmplish this. These procedures can te part of the
MCS if it is written in (0BOL. If the MCS is not written in
CGEOL» the procecures car either be embedded within one cf the
application programs or sithin a specially written restart
preogram. In either cf tte latter two casess» the MCS must execute
the progras containing tte restart r1outines Lefore executing ary
cther programs. It is tte restart grogram®*s function to exzamine
sl restart records and rotify the pgrograws shich originally
created these records thzt a recovery has occcurred. Tthese

prcarams csn then perfors their specific restart routines.

It is alsc the function «f the restart program to initiadily
create each restart record of the station if no record exists
when a station comes on Ytine. When a station becomes inactiver
or the network is shut dcwns» the restart program can either
celete the appropriate restart records or update those records to
incicate that the stetiors are inactive. Stztions which are
inagctive when the netweork is trought up shouid be ignored ty the
restart prograns until they are made ready» at which tige the MCS
can notify the restart program of the event. ¥When using this
approachs the restart retords must include both the station
number and the Progrim=I¢. It can Le necesszry in this ipstance

to decilare two paths intc the restart data set: one by

1152444 4=51 01715784

Frograg=-Id for batch procrams and one by station for data

CORMUNICAtION CTrCgransSe

Progras Synchronization

If 2 recovery has occurreds and it 3s necessary to rerun
transactions which were tacked outs it c©an be very critical that
the transactions are re~entered in exactly the same orger in
which they were criginatlly created. This is especially true ulen
many programs a3are upcatirg a common data sets» or several copies
cf the sase program ere rTunning» since it is very likely in such
circumstances that a trarsaction against 8 given data set can
have an e€ffect on suksegirent transactions against the same data
sete If these transzcticns are rerun in s different order» the
net results can be sitbstintialdly different. For examples an
invertory item might have been out of stock when an order uss
criginally entered» but the same item could te in stock on the
rerun if the transactions Were entered in 3 cifferent sequence.
In order to insure tkat the updates are rerun in the ssme order»
either time stzmps of setuential transaction numbers should be
gssigned toc each trarsaction. These time stamps can be
maintained in a cata cogrunication audit trails if one exists.

If no datz comaunication audit traid is being usedr» the time
stemp can te returnec¢ to the station operator part of the cata
valicaticr process. In either evenir the following procedure can

te used:

1152444 4=52 01715784

1. All records which zre to be ugdated must be modified prior

to the assignuaent «f the time staep or transaction numbter.

Ze All of the actial updates must be performed after the tige

stamp s genercéted.

This procedure insures ttat when reprocessing transactions after
38 recoverys if the uvser rrograss include the original time stasp
with each transactior (either automaticaliy provided from the
cata comgunication avdit or entered by the station operator as
part of the restart groc+dure)» then the restart program can
require that all updztes (rather than just the input for those
trarsactions) are performed in exactly the ssme orcer &s they
were originally cdones thas guaranteeing reproducibility of

resultse.

1152444 4=53 01719784

SECTION 5

DFTA BASE SECURITY

The Cata EBase Adwinistrator (DBA) can control security of & data
base at three levels: item level» record level» and structure
ievel. Item level security controls which items within a3 record
& progras <an access or wnodify and can be achieved using the
HICDEN and REACONLY cata item optionss HRecord Llevel security
cortrols which recorcs within a data set are visible to the user
énc which records» it sry» the program can alter. Reccrd devel
security can be achieved by using the SELELY and VERIFY
conditions. Structure level security controls the structures z
user can invoke. Irn short, remaps provide item and record level
securityr» while togical cata bases provide structure level

securitya

There are several ways tc enforce security on a data bases
cepending cn the devel o9 security aesired. Through the use of
the SECURIIYTYPE and SECURITYUSE fide attributesr» total access to
the [MS5IY cata base £an te restricted. Using REMAPS, LOGICAL
CATABASES» and SECURITYGUARD fites tdimited portions of the data

tase are made accessibles

1152444 5=1 01719/84

Security Features

The follcwing cescrites the types of security available with the

cperating system (MCFII) and the DMLII systems

Cperating Systea Security (Non-DMSIY Access)

This capability is5 availzble through the use of the TITLE»

SECUFITYTYFE» anc SECURITYUSE attricutes.

Fach structure (cata sets setr and audit trail) may te secured by
the use cf the terms mentioned previously. These termss being
part of the physical specifications are required for each

physical structure thtat wust be secured.

The cicticnary and library filess after being created by the
LMS/CASCL compiler cin also be protected from non~privileged

users by use of the ¥H irput messages.

Ey using TITLE, it is possible to give any structure {data set,
sets an aucit trail) a milti-file-id of usercode rather than a
cata base rare. The usercode must be enclosed in parentheses

which must themselves te enclosed 1n quotaticn marks.
Examples

TITLE = "(USCOCE}I"/A

1152444 5=2 1719784

Fefer to Ccapiling The Dzta Base in this section for restrictions

on da2ta Ltase compilation under the security systeme.

AldL filess» with or withoet usercodess» can te protected using tle

SECURITYTYFE and SECLRITYUSE optionse.

SECURITYTYPE

SECURITYIYFE has two settings:? PRIVATE and PUBLIC.

FRIVATE

The PRIVATE option tpecifies that only & privileged users» or
@ user whcse usercoce matches the usercode of the fiter if
any» is5s allowed to zccess this file. Therefore» to copye
Listr» or remove this file (COPY» DMPALL, or REMCVE) must te
run under a prisileced usercode or the usercode of the file.
It is not possitle to access this type of file even from the
OLT except by means of a privileged usercode or a usercode
which matches tte file. This anability to access the file

protects the file from 2ccidental remcval.

PUELIC
The PUBLIC cpticn stecifies that access tc the file is

unrestrictecsr depencing on the setting of SECURITYUSE.

1152444 5=3 01715784

SECURITYUSE

SECUFITYUSE has three settings: I0» INs and OLT.

10

The I0 option enables both reading from anc writing to the file

ty any usera.

IN

The IN option allows reac-only access to the file.

cul

The CUT coption allows write-only access to the file. This

setting has no significarce for data base filess

whenever the SECURITYUSE and SECURIIYVYPE sttributes are not
specifiecr security cefarlts to tte security attributes of the
first matching userccde in the SYSTEM/USERCODE file. For files
without usercoce TITLES» the default security attributes are

FUELIC/IC.

Example:

A CATA SET 1 ¢

E CATA SETY (

A1)

S SET CF @8

1152444 5=4 01/719/84

A (SECURITYTIYPE
€ (SECURITYTIYPE
S (SECURITYTYPE

PRIVATE),
PUBLIC, SECURITYLSE
PUBLIC» SECURITYLUSE

IN)?
IN)?

oo
no

CNSTII ACCESS

Secured access to data bises may be defined at two levels» as

fotiocuwss
1. Protection at the ttructure and item Level.
2 Protection at the tata base {and logical data base) level.

Structure and Item Protection with Logicad Data Bases and Remaps

It is possible tc intibkit access to any items records or data set
bty the use of rewaps and logical data bases. Rempapping provides
the facilities of hicing an items making &n item reac-onlys anc
rerasing ar item. It aleo atlouws records to be hidden by the use
cf SELEC1. 1If a procram is using a remap of a data set anc that
re@ap has s SELECT cilause attached to it» then the DMSII systea
cecices shether that proceram may access a certain record by

valicating it against the selection criteria.

1152444 5-5 01/15/84

Exezmples

PEFSONNEL CATA S¥T «

FEFS~NG PUMBER (6)s

FERS3=5AL MUMBER (6,2)7

FERS=AGE MUMBER (2),
)5

PERS~REMAF FREMAPY PERSONNEL (
FERS=NC/
FEFS=SAL REALOMY>

SELECT (PERS-ZAL < 1000);

This exaeple would allow a program invoking the PERS~REMAP dzte
set to access only PERS~-M0 and PERS=SAL and to change only
PEFS-NC for all records wvhere PERS-4AL has a value less than

1000.00.

To inhibit access to PERS=5AL, the following remap could be used:s

PERS=REMAP REMAPS FERSONNEL «
FERS=NC3
FERS=-S5AL FICDENS

SELECT {PERS~=fAL < 1000)>
The HEDDEN keyword afiowe the item to be usec in a SELECT

stetement while remaining hidden from the programe.

Logical cata bases can also irhibit access to data sets.

1152444 5«5 0171984

Example:

CUSTCMER TATA SET (
15
FCUSTCMER REMAFT CUSTOMER (

)3
FRODUCTS [CATA SET

15

INVOICES CATA SET (
1
LDB1 CATABASE (RCUSTOMER» INVULICES)S
The prograr using the 1ocical data base LDBl cannot access the

FRCOUCTS dasts set.

Frotection of Entire Physical and Logical Data Bases Using

SECUFITYGUARD Fidtes

Jucicious uvse c¢f remappirg and logical data tases effectively
inhitits access to sensitive data. Howewverr specificaticn of 3
logical cata base in CCBIL or RPGII requirtes the naming of the
physical cata bases Thervefores» because thte physical datz tase
rame is knowns» access to it can be gainede This probiem can be
soltved by the use of SECIRITYGUARD fites- A SECURITYGUARL fide
wmay ke applied to a logical cata base or physical data base.
Each datz tase may hive z separate SECURITYGUARD fite specifiec
in the DMS/DASEL source. It is necessary to specify the name of

the SECURITYGUART file fer each data base to be protectecd.

1152444 5-7 01/719/84

To apply a3 SECURITYGLARD file protection to the data base in the
previous examples the following staiements may be adaced to the

CMS/LASDL source:s

Exemple:z

LDBY (SECURITYGUARD
EXDE (SECURIYYGUARL

LDB1GUARD)
EXDBGUAKD)

it "

LY 1

EXCB is the nase of the rthysicat data base given in the compile

statement.

SECUFITYGUARD Fitles

The SECURIIYGUARD files #re data fites containing usercodes
positionecd between cclumrs 1 and 72 and in free-form coding. A
fercent sign () character at any point ir a record terminates

the scan of that reccrce

1152444 5~8 01719784

Syntaxs

A B N R B B B _E N R N N _E_ K B L _E_E B _E _E_E N L B _E_E_E X J RS NE R R S WD WS W -\-----‘_--'-'--‘-----.--_->
t |
1== CEFAULT = ===== \Q ===== ; ==]
1 !

i==- 0 =--1
e | {
1== FW =-1
demmmemce - R e L L L] |
]]
1 IELLELEL L R Ll R L L b bl bt b b Dt b DL R Slab e
1 i i 1
je===== YSEFCODF = <usercoge> ====- N ==~== ====-~ i
1 i
1== RC =-1
| [}
l== R¥ =-=-1

Semantics:

CEFALLT
The CEFAULT %eyword specifies the access allowed for
programs not executing with a usercoder or for programs
running under a usevcode not included in the SECURITYGUARL
fites. The usercoaget included in the SECURITYGUARD file are

trested as excegtiors to the DEFAULT statement.

<userccde>
The <usercoce> fieltr specifies the name of the usercode tc
be stered in the SECURITYGUARD file. The DMS/DASOL compiter
does not verify that any <usercode> specified in 2
SECURITYGUARDL file is a valid usercodes that iss containec

in the SYSTEM/USERCC(DE file.

1152444 5=9 01/719/84

The <usercoce> can te specifiea with or yithout enclosing

parenthesecsa.

MG
The N[keyword specifies that the named <usercode> cannot

access the data basee.

£0
The FL keysymbol specifies that the ramed <usercode® can

open the cata bzse in 3 reac~only (inquiry) manner.

KW
The FW keysymbol specifies that the nzmed <usercoce> can
open the cats tise in either a read/write {update) or

reac~cndy {inquiry) mannera.

Fragematicss

If no SECURITYGUARD §file is specified for a2 data bases the
cefault access aliowed fer all users of that data tase is
READ/WRITE. This is equivalent to including a SECURITYGUARC file

with only one entry: CEFAULT = RW.

If a SECLRITYGUARD file s included for a cata base» but no
CEFALLY statement i5 includec in thaot fider then DEFAULT = NC is

assumed.

1152444 5-10 01/715/84

A SECURITYCUARL fite showld be created as a private tide and need
onily be avzilable curing DMS/DASDL compilation as the infcrmation
is transferred to the cgictionary. Ilherefores» to make changes to
this part of security recuires changes not only to the relevant

SECUFTTYGCUARE file bort also a DMS/DASDL SUPDAVTE compilztione.
Exaaplez

CEFAULTY = NO5
LSERCCLE USER1 RW3
USERCCLE USERZ RO»

Compiling the Cata 8ase

A data base may be ccmpiled by two methods as follows:

1. From the GLT» sithcut fide security.

Ze Ey a privilegec pregras (a non~privileged programs cénnot
create files with 2 mutti=file=id other than their own

usercode).

The resuttant litrary files and the dictionary are puklic and
unsecureg (they have no tsercode atiached to them). Howevers
they can bte protectec with the MH input message. The data base
files are either public ¢r private cepending upon tte status of

SECUFITYTYFE as mentionet previousty in this section.

1152444 5-11 01719284

Compiling Frograms

If protection of the library files as not changed with the MH

infut messager» no security problems are encounterec while

corpiling grcgrams. The MH input message can be used to make

Litrary files private.

Example:s

MH ALCEB/CSA SEL PFIVATES

The prograe must then be compiled under 2 privileged usercode to

dccess this litrarye.

Executing Frograss

IThe programs can be executed i1f:

1.

The cata base tas ro SECURITYGUARD file or thke usercode
uncer which the pregram is executed is contained Wwithin the
SECURITYGUARD fite for the data base invoked (togical or

physicall» and

Access to the cata base is consistent with the setting fcr
that usercode in tte SECURITYLUARD fitle. For examplesr if
the entry in tle SYCURITYGUARUL file is USERCCGDE <usercode>
= fL» then the protram can open the cata base input only.

Opering the data bzse update would give a security error.

1152444 5-12 01/715/84

CMS/INQUIRY Progranm

The CMS/INQUIRY program tas its own secur ity system offering
grctection in additicn tc the SECURLTYGUARD file protectione. At
execution times the IMS/FUILDINGQ program zsks if security is
requireds. Answering YES causes the DMS/BUILDING program to
reguest valid usercoces fvalid for the DOMS/INQUIRY progrzm but
not necessarily in trte (YYSTEM)/USERCODE filed)s The data tase
car then orly be accessec through the DMS/INQUIRY program if the
EMS/ZINQUIRY program is executed with a usercode valid for that
cata base (3 usercode given to the LMS3/78B8UILDING progras anc

entered in the SECURITYGUARD file).

Lonclusion

It is possible to intibit any unauthorized user from accessing
the physical data baser zny logical data baser any dzta sets any
records, anc any iteme Ttis sccess criteria applies to all
programses whetkber user=written or the DMS/INQUIRY program. It is
also possible to inhibit any data base file from being copied»
listedr or remcved by ary non=privileged user includinc a3 user at

the (DT.

1152444 5=13 01719784

SECTION ©
DHS/DECOMPILER PROGRAM

The CMS/CECOMPILER progrzm 5 a decompiler. Its function is5 to
reconstruct the original DMS/DASDL source of an existing C¥S5II
c3ta baser based upor the information containeo in tte dictionery
of that cata bases The veconstructed source includes all
parameter anc option settings, non—default physical attributes
for sl structuress &nd Zny comments enclosed within gquotation
warks in the originai{ sowrce. Comments denoted by the percent
sign (%) character are nct includeds nor are the original dollsr

(%) cpticons to the DFMS/DES5DL compiler.

Cperating Instructions
Enter through the QOperater Display Terminal (QDT):

Syntaxs:

COMPILE <cdata~base=nzme> DMS/DELCOMPILER ==~emcsccmacccs===)

-

'(-m-_-a---a—---uu_ --------- ------i

1 1

pemmm- SYNTAY ======-eemeeeceecoccecsececcccscecccesessesesccenaan]

i - 1 i 1

1 i 1==/ 1 \== SWIICH 7 = <n> ==I
1== LIERARY <=1 1 -~ 0
-- i !
1==/ 1 \== SWIICK 9 = <n> ==I

1152444 5=1 01/715/84

Semantics:

SYNTAX

The SYNTAX keywerd specifies the generation of 3 source

{isting only.

LIBRARY

LIEBFARY or LY specifies the geperation ¢f a source tisting
and 3 copy of tlte new source fite on disk. The new file is

titlecg?

<data<-base-name>sSOURCE

SWITCH

Setting Switch 7 > € causes DMAL/DASCL compitler options to be

included in the new source through the (DT.

Setting Suitch § = r specifies the nusber of spaces the
source listing is tc be indented for each nested level. If

Switch 9 = 0» tte default is five spaces.

1152444 6~2 01719784

SECTION 7

DMS/DASDLANALY PROGRAM

The CMS/CASDLAMALY progrza decodes the contents of the data
structures within a CMSIY data base dictionarys The types of

cata structures whict are analyzed ares

CM5I1I Glcbals
The C#S1I globad information is5 stored in this structures
which contains fointers used by both the cperating system
{(MCPII) and the DMS/DASCL compider thkat point to other areas
in the dictionary. Datz fields used by the DMSII system in
the operation of the data base are also contained in the

DMSII glokals.

CMS/DASCL Globals
The CHS/DASCL global information is storec in seqgment three
of the cictionary. This information is a snap shot of the
DMS/CASCL memory fietds at the end of a compile. The
DMS/DASDL global information include rointers to the varigus
DMS/LASLL tables within the dictionarys such as the [OL
tabler» name tabler vath tabler key tabler attritute tables
and Pclish table anc are used Ly the OMS/DASDL compiler

during an update cospile to reioad these tables intc memory.

1152444 71 01/715/84

Aucit File Parameter Block (FPB)
The audit file garaneter block is 3 system file pzrameter
block (FPE) that is always containec in segsents 1 snc 2 cf
the dictionary. These are used by the operating system
(MCFII)» the DMS/RECONERDB programs and the DMS/AUDITANALY

program tc process the audit file.

CDL Table
The [LL tabde ccntains information about every iten
described in the DMX/DASDL sourcesr including structuress
data items» and grouip itemss. Lntries within the paths key»

attribute and titerzl tables refer back to the 0DL takle.

Name Tabde
The name table conteins every identifier used in the data
bases Entries pithin the DOL table point intc the rame
tables 1If tuo ¢r mcre data items have the same identifiers
the respective [OL entries for those items point to 2 comaon

name table entry.

Fath Tabie
The path tabdie relates the varaous tztles relevent to a

given structurea.

1152444 r=2 01/719/84

Key Table
The key table cecntains information sbout every cata item

used in a KEY declaration within the data base description.

Attribute Tatte
The attribute tzble describes every physical attribute

explicitly set ty tte user within the D¥S/DASDL sources

Folish Table

The Pelish table covtains encoded versions of every WHERE,

VERIFY» 3and SELECY s<tatement in the DM5/DASDL sourcee.

DFk Table anc Fite Recerds
The CFH tzbte ard file records descrite atl of the physical
files in the data bzse. The file records contain the
available space infermation used by tle operating systen
(MCPII) when allocating recordss as well as the version
stamps for each files The DFH tabtle is pointed to by the
BMSII global inforeztions, and contains static information
about eact fites suth as nusber of areas declared and
seqrents per ares. Each entry in the DFH tabile points to a

correspencing fite record.

Structure Records
The structure recorts describe the physical attributes of
every structure in the data base. Pointed to by the L[MSII
glotalss the structire records are used by the operating

systea (MCPII) to process the cata btase.

1152444 -3 01715/84

Structure Nage Yabile
The structure nzme table contains the name of every

structure defired fcr the physical data basea

Invoke Table

The irvoke table cortains one entry for every physical data
set or repap which is invoked in any logical or physical
data tase. Every pltysical data set is implicitly invoked in
the physical csta bzses alil other invokes» of toth physical
and logical structuressr are explicit Ly means of a UDATABASE
statement in the DMYT/DASGL source. There is only one entry
in the invoke tzble for each invoked structure’? each entry

describes ali of the cata bases in which that structure is

invokeda

Literal Table
The Litersl table centains every literal» numerics
alphanumeric» or heradecimal which appears in the data base

descripticn. Literzl table entries are pointed to Lty ODCL

and Polish table entries.

1152444 T=4 01719784

Cperating Instructions

Enter through the Operater Display Terminal (0DT)=2

Syntaxs

COMPILE <xgata~bise~rame> DMS/DASDLANALY SYNTJAX ==c=sccccmcaca=)

D TR AR A D A SRS R R R S D GRS R W S S N A TR G R R R A AR R W AR N AR W e e l

i 1
== <suwitches> ==}

Semanticss

<switches>
The foellowirg ssitctes can be set to any non—zero value to

suppress the anzlysis of the stated structure:

Switch

Number Structure

CrS Globats
UyS/7D8501L Globals
Avdit FPB

CLL Tzbile

Pzth Table

Key Tzbile
Attritute Table
Fciist Table
Structure Records
CFH Teble and Fiie Records

O ON NS W= O

NOTE

Because of the inteérrelation of the DFH table and the
file reccrdss these items are decoded together. The
name table and stricture name table are used in the
deccding of the LDl tabkle and structure recordss»

respectively. Literal table entries are used in the

1152444 =5 01715784

decocing of the UDl anc Polish tables. The
CME/CASDLANALY procram does not decoce the invoke

taktle.

1152444 -6 0171984

SECTION 8

D¥S/DELOCK PROGRAM

The [MS/CBLOCK program 1eccks the data base dictionarys which
prevents updating during a specific time period. The cata base
cictionary is not 1ocked when opened inquiry. This mezns thzt
while SYSTEM/CCPY is beivrg used to backup the gata baser the
cictionary 15 not locked and it is possible to run an update
program against the cata base. This is hichly undesirzble since
this can result in versicn missatches in the backup copy of the
cata base. Thereforer 1t is recommended that the DMS/CBLOCK

program be run just tefore the data base is to be backed upe.

Syntex dicticnary:

EXECLYE CMS/CBLCCK FILE CICTIONARY NANE =e=-mesmccccsscscmccccmm=)

>=== <familyname>/deta tase nape>/CICIIONARY =~e=ecccccscccnace==]

If the data base dictionzry resides on the system packs the
<family name> i5 not necessary. To send the DMS/DBLOCK gprogran
to erd of job (ECJ)» thereby unlocking the dictionarys a tlank

gccept (AX or ACL) system comeand is enterecs

1152444 8~1 01/715+84%

<job number>al
The CMS/CELOCK progrzm czn be used at any time to lock the
gictionary file and grevent updatings It can be used, fcr
exswples while troublesheoting 3 data base problem to prevent
users at remote stations from signing on to &an update programe.
The user shoulc remesber that the dictionary is not locked
agsirst upcating wher a YTUPDATE DMS/DASDL compile is runnings the
CMS/LBMAP program is runrings, or when the 3YSTEM/COPY program is
accessing the data bises Therefores if the cperator does not
vwish the cata base tc be updated while any ot the abecve programs

ere running, the DMS/DBLICK program must te used.

1152444 8=2 01715784

SECTION 9

DFS5/DEBACK PROGRAM

The DMS/CBEACK progrem cenverts the data tase dictionary from the
bark 11.0 relesse back tc the Mark 10.0 release. The DMS/LDBBALK
program is rup against a Mark 11.0 gata base dictionary and
converts it to a haltway pointe. Once this has been cone» &n
upcate (% UPDATE option) comgpilation of thte data base must be
rerformed against the data base dicitionary under the Mark 10.0
cperzting system. Tte OVS/DBBACK piogram is run by file-equating

the groper dictionarye.

Syntaxs

EXECUTE CTMS/CHBBACK FILE CICTIONARY NAME ====rmr-eescccccccecasce==>

>»== <family name>/«<cata base name> /JDICTIONARY === =recccacccnc=eca=]

The operator must tate thle resulting dictionzary anc perform an
upcate (% UPDATE gption) compilation of the cata base zgainst the
cictionary under the Mart 10.0 operating systems This creztes a
usabie Mark 10.0 dictionery file. The ogrerator must be certain
the cata base source file is used as input to the update

(% UFDATE cpticn) cospilztion of the data base and the scurce
file contains no other cltanges to the data bise. There can te no
FURGE or GENERATE stztementss the data base description cannot
have changed ir 3ny sayr nor can there be a SREORGANIZE statement

in the source. The cictionary must be thke only data base file

1152444 9=1 01719484

cffected ty this procecure. If the <data base name>/REORG.READ
anc <data base name>/RECFGLHWRIT proyrams are created as 2 result
¢f the SUPLATE compiler the proceduse was not successful and tre

cictionary is not ussble with the Mark 10.0 operating system.

1152444 9=-2 01/719/84

SECTION 10
DMS/AUDITANALY PROGRAN

The CMS/AUCTITANALY progrzm decodes a DMSII audit files printing
the contents of each audit recocrd» including recorc type»r
structure nusber» anc cortrotl information such as togical
adcressess» previous zudit serial numberss Next Available Highest
Upen (NAHQ) fielcoss» znc key values. As an options the contents
of c¢ata recordss» hott bedore and after imagess are also printec.
The operstor can alsc specify criteria for thke inclusion cor
exclusion of audit recores from the printec listing and/cr
specify that the audit files are to be fourd on & hardware device

other than the default device.

The printed Listing includes the auaqit type in hexadecimel format
énc the structure nusber in decimal. These fields are followec
ty 3 descripticon of the zudit recora types a 32=-bit aucit serial
rumber» anc the logicral zddress of the block affected Lty the
upcate being auditeds; ttese fields are foltowed by information
specific to the zucit record type. Additionzllys, whenever
informaticr is printed from zny given block within an audit fites
the relative lccaticr of that block within the audit file is
identified; along with the tlock numbers the listing includes
the beginning and encing audit serial numters for the records
within that blccke The current audit serisl number for each

sgucit record is printec &t tke right marcin of the tisting.

1152444 10=1 U1/19/84

CGPERATING INSTRUCTICONS

The TMS/AUCITANALY gprogrzm can be executed by seans of an EXECUTE

or CIMPILE statepente.
Syrtaxs

COMPILE <data base nime> DMS/AULITANALY SYNTAX ==w====== memssmm— -

cr

EXECUTYE DMI/AUDIYANALY

NOTE

If executecr a DATABASE «r D8 statement must be entered prior to

ény other options

CMS/AUDLVANALY OPTYIONS

After the grogram has been executed by the compile or execute
statements the DFS/JALDITEANALY program expects aoptions to be
entereds» either ty thte arcept (AX or AC) system commznd cor
through 3 card reader. The format of the options is the same
whether enterec by accept (AX or AC) system command or through a

card filea

1152444 10-2 01715784

Syntaxs

’(--- » -«----n-'

-:----‘option)n--------u----——n - TR um e em e -

| 1
1=== END ===1

Semantics:

<option>
The <cption> fielc specifies the option to be used. HReter

to Cpticn Specitications for tpne complete description of

each cption.

ENT
The END keyword tersinates input of the options for the

DMS/7AUDITANLY progrzme

The perioc {(.) charzcter terminates input of the options for
the CFS/ALDITANALY trogram- Several options can be entered
at cne tige by neant of one accept {AX or AC) systen
companrds or individval options can be entered with separate
accept C(AX or AL) systew commands. If the options are
entered thrcugh a cerd filer they can be entered with
several options per card or one opticn per card. 1In either
case» vhenr entering several options at once» the options can

be separated by a cetmma (») or semicolon (3) charactera

1152444 10-3 01/715/84

Fragmaticss=s

Frinter Cutput
Atl printed outgut s directed to a btackup print file

{abeleds

<¢ata base rame>7AUDITLIST
Both printed anc cispday output default to Lower case but
can te changed to urper case by setting switch 3 to a2

non=zerc valuee.

Yhe internal file nzme for print fide is LINE. In order to
make the print ftile viewable at a terminals the reccrc¢ size

of the file can be wodified as follows:?

“CCIFY DMS5/AUDITANALY FILE LINE RECORD.SIZE 803

Minirum record size aillowed is 70. Maximum is 132.

STATUS
Entering the STATUS comsand by means of an accept (AX or AL)
systewm after ald options have veen entereds causes the
DMS/7AUDITANALY grogram to dispiay how far it has processece.
The fcliowning shows the format of the status messages
Block <block nuwber> of Auqgit file <audit file rame> - serial
number <audit serial number>
If errors exist in the audit file» then the following is

also displayed:

1152444 10=-4 01/719/84

<number> errcrs in the auditfile
Cptions &nc¢ Commanc Strings
Options ard comsand strings may be split across input liness
but n¢ wWord may be troken across input Lines. Valid

comwands to the DMS/AUDITANALY program consist of the

following:

CATABASE statewmert

FILE <file oftiors>

ASNS <asn options>

STR <str options?

TYFE <type optiors>

CPTICN <print options>

yERIFY

STATISTICS

Frograg Switches

If svitch 2 is €qual to a non~«.ero vzluer commands are
expectec througl an unsequencea data file or card file rnaged
CARL. The defzult tarduare type for this file is disk but

can be cvervidden by a MODIFY system cosmand or file equate.

CPTICN SPECIFICATICNS

The syntax and functions of the various options uWwhich gay be

specifiec to the UMS/AUDTITANALY program followm:

1152444 10-5 01/719/84

CAVABASE Statesent

The CATAEASE statemernt irtentifies the name of the DMSII data tzse

in which the audit files are to be analyzede

When the DFS/7ALDITANRLY rrogram i5 executedr the DATABASE
statement sust be the first statement enterec prior to any other
cptions. The L[ATABASE statement is not used when the COMPILE

syntax 15 specifiede

Syntaxs

DATABASE £<cata hese rame> - o A " e e e]
i 1
== ON ===== «<fagily name> =-=1
i 1
1-= DISK ===m==m==nn]

Semanticss

[
The CN keyword specifies the location of the data base

dictignary file.

LISK

The keyword DISK refers to the system pecke.

<data tase name>
The <cata base rame> field specifies the name of the data

basea

1152444 10=6 01719784

<fzmily name>
The <family name> field specifies the pasck name of the [MSTI

dats kases

FILE S5Statesent

The FILE statemenit sgecidies which audit files are to ke znalyzed

ty the DFS/AUDITANALY prcgrame.

1152444 10=-7 01719784

Syntaxs

FILES =--==-- R e L L L L P L PP PP PP PP PR RS

cwe= i
I==== <nUEbEr1> ===emmcecmecmeccceemcceceescecsananana]
r 1

l==== GNLY =====scocceeccccnanx ===

i i | 1

! 1=~ FORWARC ==1 |

1 I 1

] 1 1 1

1 == REVERSE =-I i

1 -— !

1 1

I==== 0 <numter2> ===-=-=- R i |

D mmmw wm-- 0“ - - GISK - S e W N e AP u--—-»—---—--s--na----r-l

| 1
{== PACK <«family name> =--1
L] i

== TAPE =—==m=cec=smee=sen]

Semanticss

<numberi>
The <numberl>» field specifies the starting audit file

number. This nimbey must be a decimal Lliterast.

<pnumber2>
The <rumber2>» sgecifies the enuing auvcit file name. This

number must be £ decimal titeral.

FORWARL
The FCAWAFD keyword specifies that the zudit file is to ke
processed in the forvward direction. If the starting audit
file rusber {<rumbterld>) is greater than the ending file
number (<rumber?2>)» the files are processed in reverse oroer
starting with tte higher audit file numter. The

DMS/AUCITANALY gprogram processes audit files forwsrc ty

1152444 10-8 01/719/84

default.

REVERSE
The FEVERSE keyword specifies that the zudit file is to be
processed in the rewverse direction. If the starting audit
file rusber (<pumkerl>) is greater than the ending file
numter (<numberZ>)» the files are processed in reverse corcer
starting with tte higher audit file numter. The
DMS/AUCITANALY grogram processes audit tiles forwsrc by

defaulte.

0
The keyword TG is required when specifying an ending audit

file number.

FPragmaticss

If only the starting file number is entereds the DMS/AUDITANALY
program processes ald aucit filess bLeginning at the specified
file numters, until ttere are nc more audit files. Hhen this
cccurss the following gmessage is displayed on the 0ODY:3
“If Audit file <numbter> (title = <audit file name> is
available, then erter "Y¥" else enter "N" "
If the file existsrs it stould be maaue present and the Lletter Y
entered through the (CT. If the legtter N is entereds, the program

terminatesa.

1152444 10-9 01715/84

If the audit files are Lrcated on media other than that on which
they Were createcr tte OM <DISK» PALK» or TAPE> opticn can be
specifiece CISK refers to tte system disk. PACK specifies &
user pack. If TAPE is sgecifiedr the audit files cn tépe must be
in the same format as on disk (including tte same klock size).
This means that SYSTEM/CIPY tibrary tapes cannot be processed Lty

the CMS/AULCITANALY progrzm.

if the audit file is a centinuation audit file ({audit files
groduced avtomatically diring a run when the prewyious cudit filde

tecomes fudl)» the FREVERZTE option must be specified.

If noc FILE specificationt are enterecds the DES/AUDITANALY proagaranm
uses the audit File Faraweter Block (FPB) in the datz tase
cictionary tc ceterwmine the default device type and the starting

zucit file numkbere.

1152444 10-10 01715784

STRUCTURES Statement

The STRUCTURES statesent specifies individual structures or types

cf structures to be znalyzed.

If the STRLCTURES ststement is not specifiedr data images are
printed for all structures in the audit file by default. If the
gperator wishes to print all structures without the data imagecss

the STRUCTURES ALL keywords must be specified.

1152444 10-11 01719/8%

Syntasx:

STRUCTURES ==+==~ <structure type> ==~ =<-===r==csscc<==
semssse=- i i
ik - == ALL ==~==<-==scacca= iadedededeked i bdadd
- 1 i
I== DISJOINT =-==-==rme=m=wee=- = SET ====~-1
1 1 i 1 1
I 1~= DATA =-I
i i 1 1
i == DATASEY=~=======~- LI |
1 i
== DLS ===<=eememoresccmcecccnemaneenea=]
i 1
I== [0S =====c=c=-= bbbl Sutadabinddedadabdd
I 1
I== ELS ======c=meecccrcm e essssame=]
i i
== E§ #==-emvwocsnmme~ bdebdnbdaidebinb i b
1 |
I== EMBFDDED ~========ccee=e=s SET <e=-=|
1 1 1 LI |
1 == DATA =--1| 11
l 1 t i
I I== DATASEY =====- ===1 1
1 i
I== [CX ===cc-cceren e e cccacenneemsee=]
i 1
I== IDXFAN ======eeecescccccccascescee=]
1 i
== ICXIEQ =====o-emsceccasmceccensccnn=]
i i
I== INDEX ===-=rececccmmcrccscmmcscn=e=]
| i ! !
| == SEQUENTIAL =-~1 1
1 1 1 1
1 - == RANDOM ======] i
1 1
I== MANVAL SUBSET ====<~<ececscccmcccsnee=]
l 1
== MS§S§ ==omemmmessms s cese s — - “===1
1 1
1== <structure name> === ~=wes==csccecn==]
1 i
1== <structure numier> ========== =]
F et - T WS WS W MR W AR m g U R RS NS G WS P L L L L LT T

1152444

i

== DATA =wmm=e=
1
i--

1
IMBGES --1

10=-12

01715784

=~ AREAS === <npumter> === TQ <number> =-===-=scs=sc--c----c-- !
- - - i i
i- BLDCKS ‘number) -u-.------------—--"
- - ' ‘
I== TC <number> =--1
T e e R N S AR W W TS R W SR WD T M A W R A S W R R e AN A e W AR M Em R W AR AR en e e
: 1
1 1 1 1
=== STYPES ======= BEFQRE =====s===m=mme=e==csecmcccaocc=]

1 1
AFTER =~~=1
1 1
SPACE ===1

Seranticss:

The foldowing valic stvucture types can be entered:

Keywords Structure lype

DDS Disjoint data sets

DISJCINT CATA SET Disjoint data sets

DISJCINT CATASE] Disjoint data sets

DISJCINT SET Atl indexes

ns Any data sets disjoint or embeddec
EDS Embedded data sets

EMBELCED CATA SET Embedded data sets

EMBECCED LCATASED Embedded data sets

EMBECLEL IET Manual subsets

ES Any embedded structurer EDS or M55
10X ALl indexes

TOXRAN Index random sets

IDXSEQ Index sequential sets

INCEX SEQUENTIAL
MANUAL SUESEY

MSS

1122444

Index sequential sets
Manual subsets
Manval subsets

10-13

01715784

AREAS \
(i}

The AFEAS keyword srtecifies ranges ofnaddresses for a
structure. The <number> field can be either decisal or

hexsdecimal literals.

ELCCKS ‘ Cy i
@L’—.@st Jf{()ﬁk o A ¢ .U(U'i;l Ao es
Akevuord specifi€es ranges oi/addresses forﬁa structure.

The <number> field ¢an be either decimal or hexzdecimal

The

litersis.

CATA
The CATA keyworc cavses toth before and after imaces to be
printed. For ar incex structurer the individual taktle

entries are prirteda

CATA IMACES
If the CATA IMACES &eyuofds are specifieds both before anc

after images are printed.

SYTIPES
The STYPES keywerd <=pecifies that BEFORE» AFTER» or SPACE
keyvwords followe STYPES BEFORE causes the bhefore images to
be printecsr STYFES #FTER causes the after dimages to be
orinted» and STYPES SPACE causes the space allocaticn

reccrcs tc be printed.

1152444 10-14 01715784

<structure name>
The <structure rame> field specifies the name of the
structure to be analyzed in the audit file. /if the
<structure rame> fifdld equals any of the keywords for
structure types» the <structure name> fietd is used to print

the audit recorcs

<structure number>
The «structure rumber> field specifies the structure number

to te analyzead in tte audit fide.

1152444 10-15 01719/8%

ASkS Statesment

The ASNS statewgent ccntrels printing by using @ range of audit
seriall numkers withir the scope of the files specified with the

FILE statement.

If the ASNS statepment is not specifiedr vatlues for minimum and
gaxigum aucit serial numters are adla and AFFFFFFFF3»

respectively.
Syntaxs

ASNS ====~= FA(M s<stzrt number>s T0 a2<end number>qd =======-|

== FRGM a<stzrt number>a ==~-- Smemessen. - - i
1 1
f== T{ 3%end rumber?>3d === ccrcrcccseccccacscee==]

Semantics:

FRCM
The FROM keyworc¢ cavses the analysis to begin with the sucit

serial nusber sgecified by the <start number> field.

10
The TL keyword causes the analysis tc end with the aucit

seriatl nusber sgecified ty the <end numter> field.

1152444 10~16 C1719/84

1152444 10-17 01/719+,84

TYPES Statement

The TYPES statement

grirted.

specifies which audit types are to be

The operatcr can specify that specific audit record

types be printed

or that ail audit records relating to a

particular structure type be printeae.

Syntaxs

TYPES

1152444

1<===
i
|
.--
1
I-.-
|
]-—
i
i
!--
1
i

- .- G D N WS W A N WD W W W

RaLdit recerd type> ===
1
AFI1ER s=====ee=o== ————

BEFURE ---------- -----g
i

CCATFG'. B e A . - - -...-1

1
SP’CE l--—--um-----n---i

10-18

01719784

Semanticss

<audit recorc type>
The <audit reccrd type> field must be entered as a two=cicit
hexadecimal Literal enclosed in at sign (3d) characterss and
must reference valic¢ audit record types. A list of valid
audit reccrc types can te founa under Audit Types in

appencix F of thkis wanual.

AFTER

The AFTER keyweord prints after images.

EEFORE

The BEFCGRE keywerd grints before images.

CCATROL
The CCNTRCL kxeysord prints controi records. Control records
include dsta base cren ard close» syncpcints» ceontrolpeoints

and program abort recordse.

SPACE

The SFACE keyword prints space aldocation records.

TABLE

The TABLE keysworc prints recorous retzting to index tatbles.

1152444 10-19 01715784

1152444 10-20 01719484

CPTICNS Statement

The CPTICNS statement cortrols the gormat of the printed outpute.

Syntaxs:

CPTICNS =====m==ce=- et m——mmmeceeeaaa cmmmmmmm——]
~————— ! 1 1 |

I=== SINGLF === === UPPER ==-1

1 1 1 |

1=== DCUBLF ==-1 1=== LOKER ===

femantics:

COUBLE

The CCUELE keyuwcrc tauses the d4ine printer listing to be

doubled sraced. The default is single spacing.

LOWER
The LLHEF keyword aliows the {ine printer output to use

lower=case letters. The default is lower-case letters.

SINGLE

The SINGLE keyucrc rauses the Line printer listing to be

s5ingle spacede The defzult is single spacing.

LUPFER
The LUFPER keynword czuses the Line printer output to use
upper~case letters cniy. The cefault is lower=case lettersa
Upper=case letters cnly can te specified permanentiy Ly

settirg program switch 3 to a2 non-zerc value using the

MODIFY (NM{) comgande

1152444 10-21 01719/84%

1152444 10-22 01/715/84

STATISTICS Statements

The STATISTIICS conmand prints certain statistics about each DMEIT

aucit file.

Syntax:

STATISTICS ~=m===eemeccescccccccseceeccccccecaceceeoe e anna]

Prageatics:

The STATISVICS commard czuses statistics to te printed for each
augit file specified in the FILE statement. These statistics
include the number of each data base structure accessec in the
gucit fites» as wWell ss thte total number of syncpointss
controdpcints» and esrors in the auait file. The STATISTICS
capabidity is set by defzult if no STRUCTURES or TYPES statement

is entereds

1152444 10-23 01715784

VERIFY Statement

The VERIFY staterent verifies the integrity of DMSII audit files.

Syntasxs

UIZRIFY S WS N A N NP W S N AR WD W R N WD WD DN W B D W U W D A D D VDD WS N MR A R AN A R WD e W WM NS WN W W W --—‘

Pragmatics:

¥hen the VERIFY comeenc s specifieor no audit records are
printed. Insteads ezch zudit ftile specified in the FILE
statement is read anc verified to determine if errors existe
When the NERIFY commend is specifiedr the STATISTICS capability

is set by cefavlt.

1152444 10-24 01719784

Fite Names

The following are the internal and external file names used by

the CMS/AUCITANALY progrzim.

Internal

R T T RN

MUDITFILE
LINE
LICTICMARY

CARD

1152444

fxternal

fUDITFILE
«datz base name>/ALDITLIST
«data base name>/CICTIONARY

CARD

10-25

01719784

Switch Settings

Tabte 9=1 shows the

programe.

Table 9-1.

Suwitch Value

2 0
2 1-15
3 0
3 1-15

valic switch settings

CMS/RUDITANAL Program

Result

Input is expected

Input is expecteo

for the OMS/AUDITANALY

Suitch Settings

from the 0OCT.

from the file CARD.

PiL output 15 in loWwer case.

Py ocutput is translated tc upper case.

NOTE

An AX systenm ccgmard overrides switch 2 and input is

expected from

1152444

the (DT.

10-26

01/19/,84

DMS/ZAUDITAKALY Exasples

The following 2are examples of various ways to run the

[MS/AUDITAMALY progrzm. Note that

follcowing

gn ogtion

a a perioc (.) character

strirg terminates the entry of optiors to the

CMS/AUCTITANALY progrzme The key word END cam atso be usecd to

terminate the entry ¢f ortionss

Frint Aucit Files 1 Through S

To print the cortents of audit files 1 througk S» the

following coawmards can te useds

EXECUTE

EXECUTE

EXECUTE

CCrMPILE

CMSZ7AUCITANALYZAX Db <data base name> FILE 1 TC 5 .

CMS/Z7AULCITANALY>AX Db <date bsse name> CN <pack name>
FILE 1 TO S.

CMS/7RAUCIVTANLY?AX DB <data base name>s AX FILE 1 YO 5»

A)

<dats

ENT™

bace name> DM

S/AUDITANALY FOR SYNTAX

<job #> AX FILE 1 0 5, EiD

Frint Aucit Files 1 Through 5, Be

tore/After Images

To prccess audit files 1 through 5» btut only print entries

for disjoint data sets with their before ang after imagess

the fcellowirg cecmmards can be used:?

1152444

EXECUTE CMS/AUDITANALY3AX D
STR DISJOINT DATA SET DATA IMAGES? AX END™

AX

b <data bzse name>3AX FILE 1 10 55

EXECUTE CMS/ZAULCITANALY>AX Dp <data bese name> FILE 1 TC 5
(N PACK <pzck> STR DDs DATA .«

CCMPILE <datz tate name> DMOS/AUDI TANALY FOR SYNTAX

<job #> AX FILE 1 TO 5 ON PACK <pack nawme>

<job #> AX

<job #> AX END

10=2r7

TR UDS DATA IMAGES

01/715/84

Frint Aucit File 845 Structure #7)
To anzlyze only audit file number 4 and print only aucit
recorcs for stricture number 7 with statistics znd no dats
images» the fotlowirg commands can be used:
EXECUTE CMS/AUCITANLY>?AX DB <data base name>3;AX FILE & ONLY3
AX STR 77 £X STATISTILS? AX.

EXECUTE DMS/AUDITANALY?AX Db <data base nawe>s FILE 4 CNLY», STFR
STATS.

1152444 10-28 01/19/84

SECTION 11

(MS/DBNAP PROGRAM

The LWMS/CEMAP progranr checks the integrity of a data base. It
can be runr against a DMSTI data base if that data tase is not
currently copened update. Acditionadlys, the DMS/7DBMAP program
grints stwiucture infcreation from the data base dictionary in &
more reacable form than that given vy the DMS/DASDLANALY program»
performs population summeries» and grints cata from the cata base
{in hexacecimat). Trke vzrious options possitle are given to tte

CMS/CBMAP grogram by mears of accept LAX or AC) system commandsa.

The following terms sre wsed by the DMS/DEMAP program to refer to

the various data base structures.

Keysyesbol Structure Type

LDS Cisjoint data set

LS Any datz sets DUS or ELS

EDS Enbeddec data set

ES Any empbeddec structuresr EDS or M55

inx Index sequertial set or subset or ar incex random set

IDXRNL Index réndow set
I0XSER Irdex sequertial set or subset
¥35S Manual subset

1152444 11-1 01/715/84

CPERATING INSTRUCTIONS

The CMS/LBKAP progran car be initiated with 3 COMPILE statement
or EXECUTE statewent. With the EXECUTE statements the data tase
rage must te suppliec atleng with the comsmands ty means of &
commznd fide or accegt (EX or ALC) system command. Hith the
CCMFILE ststementr thke czta base name is specified within the

CCHPILE statements irdepenaently of all other commmands.

1152444 11-2 . 01/719/84

Syntax:

CCMPILE <cata base nane> DMS/DBMAP FOR SYINTAX-===mecesmcecmccncnca=)
- - - '
i
1
1
EXECUTE LCNS/UBMAP wo=eememmrmceccwcenocs o= e m -]
"-m---a----- ; - e W a8 e . i
i 1
PDEmmmm - - {suitchss) O - - A o
1 i
I1== <file ecugtes> —====-= -=1

1 i
I== <yvittual giskd> ====m===]
1]
== <AX or AL cemmand> ===}

Semantics:

<AX or AL cosmanda>
Refer to the Accept (AX or AC) Systew Command in this

secticn for a ccmplete descriptiona

«file eauates>

Refer to Files in tltis section for a complete descriptione.

£switch settings>
flefer to Switch Settings in thas section for a cormplete

description.

1152444 11-3 01719784

<virtual disk>
Refer to virtual Ci<k in this section fer a complete

descripticne.
Pragmaticss

Executing the CHS/LBMAF Program
If the CMS/LBMAF prcgram is executed rather than compiled,
the name cf the date¢ base must be entered thrcocucgh the 0DT.
The OvS/DEMAP progrzm must be executed if more than one diata
base is tc be meppeds When executeds trte DMS/DEMAP progfam
requests & new cata base name at the cospleticn of the
mapping of each datz base and proceeds to end of jot (ECJ)
mhen tlanks are entered. If the switch settings are to be
different for gsch cata baser the settings must be changec

prior to enterirg tte new data base namea.

Compiding the LM5/CBMAF Program
If the CMS/CABMAF prcecgram is compideds the <data-bzse~named
inclucec in the comrile statement is used tc automatically

locate the data base dictionary.

Lictionary on User Packh
If the cata base cictionary resides on & user packs the
<data=bsse=name> in the COMPILL statement must te of the

forms

1152444 11=4 01719/84

spack=id>/<dk-nawe>/
If the CMS/LBMAF precgram is executeds the second virgule (/)
character is optionzl vten entering the name of the cata

base througt the 007,

SNITCH SETTIAGS

yalic suwitch numbers for the DMS/DBMAP progrzm are 1» B» and 9.
These switches contrel wtere the DMS/DBMAP program looks for the
coamands ard some of the printing parameters. These switches can
¢cnily be set to beodesan vzlues? that is» 0 or 1. Tzstte $-2 shous

the value snd result of each switch settings

1152444 11-5 01719784

Table 9~2. DMTI/DBMAP Program Switch Settings

Switch Yalue Result
1 0 Cowrmands are e¢xpectec from the OCT.
1 Coamands are expected from the file CARD.
8 0 Gutput is in 4ouWer c3seca.
1 Cutput is in upper case€.
g 0 At blank lines and page skips are
intluded in the output listing.
1 Blznk 41ines and page skips are

sugpressed in the outpit 1isting.
If switch 1 is not sets the commands are expected Lty means of
accept (AX or RL) systewm commands and are prompted for if
recessary. The exceptior to this is the use of the COVPILE
stztement. If the CCMPILE statement is entered without an early
gccept message» DWMS/IBMAF performs a default run against the dita
tase and does not allow zny commands to te entered to it. The
presence of an early accept msessage overrides any setting of
sWwitch 1. When wusing the COMPILE syntax under a usercodesr the
#CF automatically sets switch 1 to i In this situation» the

operator must explicitly set switch 1 to 0 if so desirede

1152444 il=~6 01/19/84

1152444 11=7 01719/84

FILES

The three files used by the DMS/DBMAP progras are describec here.

They can be mocified by seans of fiile eguates.

LINE
This is the cutgput grinter file. JIts external name is <dzta
base rame>/¢AP-LIST ON <data base pack> but can be changec

by 2 file ecuate 2t run time.

CAFRD
When the [MS/OEBMAP rrogram is sun wWith switch 2 = 1» the
data tase name (if the EXECUTE statement is used) and the
comreands 3re vezd from this fiites The default exterral name
is LMS/7CBMAP-COF» bet it can be file-equatec to any cisk

files The disk file must not inciude segquence numrhers.

FICX
Fite FICX reads index tables when performing validity
checking. For speet and optimization» it is5s best for this
file to have one rore buffer than the number of tlevels in
the ceepest index sequential set in the data base. Howevers
since index tables can ke very largév ttis couloc prove to be
too much space for fome systems. The number of buffers for
this file is set to 5 by defaultr but can be mocdified with a

fide equate.

1152444 11-8 01715/8¢4

VIRTUAL DISK

virtual disk is required to save paged arrayse The zmount of
virtual cisk assignec to a program can be controlted by the
VIRTUAL_CISK program attribute. It is rot normally necessary to
glter virtual cisk» tut shen doing an extended vadidity check ¢n
a targe cisjoint dat:i set the value of the VIRTUAL_DISK progran
attribute may need tc be increasede During extended vstlidity
checking of a cisjoirt cdata set (DDad)» a titmap of the avsilable
chain is built. The virtual disk required for this is%: {(number

¢f open records) / 1440,

ACCEFT (AX or AC) SYSTEM CUMMAND

The accept (AX or AC) system command can te used in the COMPILE
stztement to supply comwznds to the DMS/DBMAP prograss anc in the
EXECUTE statement to suptly both the data tase name end the
commands. A period {(.) charascter concludes the command string.
If the periog {.) character is not includecsr the D¥S/DEMAP

program expects acditiorzl inpute.

11524644 11-9 01/715+84

Coamands

The commancs control the tewvel of checking apptied to each
structure <r group of structures. Lommands can be entered fros
the (DT bty meanrns of sccert commrands» or from thte CARD file (as
cescribec in the paragrarhs entitiled Switch Settings). In
cither caser the syntax 3s identicat except for the comma (») or
segicolon (5) characters which is optional between comsands

entered by means of zccert systes cCcommandse.

Commands can be in upper or lower case and c&n be arkitrarily
split across lines» Zlthcugh words cannot be splite. If the
commsnos are entered frow a card fides the end-of-file record
terminates comgand irput. If the commancs are being ertered
through the 0BT, the prosram keeps prompting for more cormands
until the fericd {.) character is5 enterd. A4l commands esntered
are grintec ¢n the first page of the output listing zlong with

ENny Errors they can cenevate.

1152444 11-10 01719/84

Syntas

<=~
l
t
1

1152444

- <g¢ata base nare>

X3

- AR W A J;

i i

Igeemmcen , ccmmnn

I=-= ON <pack name> ===-~--~|{ 1

! ! 1 |
1 t== D[S ==1
1 1 1
1 1== ES ===
i 1 !
! 1-- IfX =-1
1

l

id) n--m---------g

- <str
1 i
1= CLUSTER =i

ALL m====-=sesveeeem-=-

-
s e

11-11

1

EXTENOED ¥ALIDITY ======-]
- 1
i

EXTENCED VALIDITY PRINT =1
- - 1
i

KA ===mmecececcemeccaccnn)
-]
1

NAHD COUNT ========c==cu=]
- 1
1

STATIC INFQ =========c=o=]
- 1
- '

VALIDITY ==vecmemeccocaan)
- 1
1

VALIDITY PRINT ==========}

01719/84

WA R D D G5 W AR DN W R NS MR AR S SEM WD D M WS AN D SN WR U S SN D WD AR AR AN G WD AR S AR M AN WD W WS e Wb S 'l

i
1
L

LR L L LR R P E P I T P I R R ¥ R E IR R F R R XE R Y]

Semantics:

<data base name> The Xcata base name> fielcd wmust appear as the
first coamand entered if the LXECUYE statement is
specifiec. The «dzta base name> field must not te entered
if the CCMPILE statement is sﬂeciiiec since the name of the

data base 1s specidied in the COMPILE statement.

ALL
The ALL keyword caustses ald data base structures to te

incluceds.

ALL ©DDS
The ALL DLCS keysymbels cause all disjoint data sets to be

inclucece.

ALL ES
The ALL ES keysymbols rtause alt embedded structuress» toth
embedced cata sets #nd manual subsets to be included. H#hen
the VALICITY keyworc is specified for an embedded structurer
validity checkirg it also applied to the parents and
grandparents of that structure as well» meaning this

operation can heéve dar—-reaching ef fects.

ALL IDX
The ALL ILCX keysymbcecls cause aill index sets» toth index

sequertial amd inde? random to be included.

1152444 11-12 C1/715/84

<str idg>
The <str id> fielg wust be a data set and includes the
structure. <styr i0? can be the structure name cr structure

nunbere.

CLLUSTER
The CLUSTER keysord causes ail the descendents for «<str i¢>
to te included. The descendents of 2 structure incluce ait
embedoec structures for that data set as well as their
embedced structwres. Also» any index structure which has

<str id> as its object is includede.

KA
The KA opticn czuset the structure to be included in the KA
suammary &t the becinning of the Llisting. There is no way
to exclude a structare from the KA summarys, but specifying
this cption asswres that no greater 3amount of checking or
printing is pertormed. This is the defzult for any

structures rot referenced by any comeand.

STATIC INFO
The STATIC INFC option causes the static information from
the cdicticnary structure record to be printecd. This 15 tthe

defaudt when nc comsands are entered.

1152444 11-13 01715/84

NAKQ CCUNT
The NAHC COUNT <ptien verifies the NAHD chain for the

structure to be and prints a summary of the populztion.

VALIDITY
The YALIDITY option checks the integrity of the structure.
This includes fdagging atl errors dlisted in the error
secticn except those few only availabie when the EXTENDEL
WALICITY CHECKING ortion is specified. W¥When the VALIDITY
option is reqguested on an eanbeuded structures checking is
alsc perforwed cﬁ tte parents of the structure &nd so ons» up
to the cisjoeint dat: sete If the VALIDITY opticn is
reguested or an indexs the NAHU COUNTY option is

automatically irvoked for its object disjoint datas set.

NALIDIVY PRINT
The VALICITY PRINY c¢ption is5s similiar to the VALIDITY option

Wwith the zdoiticn ttat all data in the structure specifiec
is printec in a hexsdecismal format. Keyss where they exists
are geccded and prirted in aipha or numeric format. This
option can be requested on any structures including
embedceos’? howevers the cutput can be confusing with
embecoed tables cut of context. HWithout this options dcts

is only printec preceding any 1eported €rror.

1152444 11-14 01715784

EXTENDEC vALIDITY
The EXTENCEL VvALIDITY option reports sld errors as with the

the VALICITY opticn and includes the following?

The object disjcint datz set record pointed to Lty an index

set entry i5 dezde

The key in the cbjert disjoint data set record pointed to by
an incex set entry «oes not match the key in the entry

itself.

A disjoint data set record containing a dead flzg is not 1in

the KAHO chaine.

The ctject cisjcint data set record pecinted to £ty a nmanual

subset entry is cdeac (wWwarning only)l.

The key ir the chject disjoint data set reccrd pointed to by
an crderec¢ manavl sutbset entry does not match the key in the

entry itself Cuarnivrg only)d.

EXTENDEL VALIDITY FRINT
The EXTENCEDC VALICIVY PRINT option works exactly the same as
the VALIDITY PRINT «cption and prints ald4 data in the

specified structure in hexadecimal format.

1152444 11-15 01715784

Fragmaticss:

As the options become move complexs they become more time and
space consuming. Therefocres care snould bhe taken not to specify
gore options than is5 necessary {refer to Per formance in this

sectionl.

There are 8 few intecrity errors which the D¥S/DBEMAFP program does
not report. These are errors whose detection relies on
C¥S/LASDL~generated codes The DMS/LUBMAP program does not detect

the following errorss:

1. Data does not xeet 3 verify conditicne.
2. A required field it missing.
3. A record beloncs ir an automatic subset tut is missing or a

recora is evrorecusly includeu in an automatic subset.

4. A variable forgat vecord type 1S wWrong.

1152444 11-16 C1/719/84

FEFFCRMANCE

For ¢ data base¢ that contains no embedded structuress that is», a
ftat data baser a quick #n¢ full validity check can be
sccomplished with the cowmanc: ALL IDX:EXTENDED VvALIDITY. The
enly check that is csitted from this map is the population check
for cisjcint data set structures. Howevers» problems witt
cisjoint data set populations can be seen in the checking of
their ingex structures. Using this command zZvoids 2n extra rezd
of the disjoint cata set structures and is» thereforesr much

guickera.

A sipilar advantage can te achieved for data bases that are
cefined 3s disjoint ¢ata sets {flat data tases) with the

following cosmancs

ALL ICXZEXTENDED vALIDITY», ALL &S:EXTENDED YALIDITY
In this caser» cnly tte cisjoint data set structures that contain
embtecded structures ire rvteadr making the saving in time

groeperticnal tec the flatress of the data tase.

In any caser extencec validity checking on disjoint data set
structures only provides one additional cbheck than simple
valicity checking. Exterded validity checking shows which
records cortain dead flag¢s but are not in the avaitatle chaine.
Limple vatlidity checting on & disjoint data set structure tells
the cneratér that such records exist without showing whickh

records they are.

1152444 1i-17 01719784

1152444 11-18 C1/15/84

COMNANL ERRORS

If an error is ercountered while reading comeands from the CARL
filer» the CMI/LEBMAP rrogram is aborted. If 2n error message
cther than TEXT FOLLUWS FERIOD is displayec en the 00T7» 3 messzqge
is displayed and the comwand is skipped anc¢ the remaining
cowrands &gre processed. An &Edditional prcmpt is then givensr even
if the perioc (.) chsracter has been encountered to allow
correcticn of the ersor. The possitle errors and their geanincs
are listed next. The TEYY FOLLOKS PERIODD message always causes
the CMS/CBMAP prograx te abort. The error messages are in the

forms

ERROR IN CCMMAND INPUT. <error wmsg>s SEEING2 <last cosmmand read>

The possibie cceamand errcrs and their meanings follow:

CLLSTER EXPECTED

Neither the CLUSTER keyword nor a colon (2) character wuas

found following a krown Sstructure name.

¥ISSING CCLOA

No colon (2) chzracter was found following a 1egal groupinge.

MISSING COMMA
No cogmals)r senicolon(’)» or period (.) character fotllowed

an ctherwise valid comsmande

1152444 11-19 01719/84

TEXT FCOLLOWS PERIOL
Adll ccmmards were vzlides but acditional comwand text was

founc on the tast 1ine zfter the period (.) character.

LNKNOWMN ALL WVARIANT
The werd fotlowing FLL was not IDX» DDS» E or 3 colon (3)

charactere.

UNKNCMN STRUCTURE

No legal grcupirg or knewn structure name began a command.

UMRECOGNIZED QOPYIGH

Foldowing a valid grouping and colon (2) character» no valid

option was founce

1152444 11-20 01719784

EXECUTION EXAMPLES

The following are sowe edamples of how the DMS/DBMAP program czn

Ee rune.

In order to prcoduce s cgedault map of the data tase MYDEB on the M

packs the following syntzx can be used:?

COMPILE CBFACK/TESTICF/ WITH DMS/DBMAP FOR SYNTAX
Since suitbh 1 is not set and there 15 no accept (AX or AC)
system cowmgpands, 3 detault run is pesformed. Thkis prints the KA
listing cf eack structure and the static information contsined in
the dats base cictiorary for each structure. The same thing

coulc also be accomplished with the stategent:

EXECLYE CMS/CBMAF>AX TESTDB ON LBPACK.
1o perform validity chec¥ing on a data set and atll its related

structuress» the follecwine command could be used:

COMPILE TESTUB WI1TH TMS/DBMAP FOR SYNTAXS
AX ALL:KA» [S1 C(LUSTER:VALADITY.

This accepts the comwand: from the accept (AX) system commands
The X4 option is invcked for atl structures and data set D31 and

its related structures ave checked for wvalidity.

To perform extenced valicity checking on ali structures in the

cata baser use the fcllosing syntaxs

1152444 11-21 01715+84

EXECLTE CMS/CBMAF>AX TESTDB ON LBPACK, Ali:E.
The following commanc perforss extended validity checking on all
cisjeint data sets ard ircreases virtual disk for this run of the

CMS/CBMAP program to 250f segments:

EXECULTE CMS/LBMAFS VIRTUAL_DISK 25005 AC DEMODS> ALL DODS:E.
The fodlowing cosmanc cavses the DMS/DBMAP program tc lock for a
cisk file ramed CMS/LEBMAF-COM for the options in order to analyze

the cata base TESTOB on rack CDBPACK:

COMPILE CBPACK/IESTCE/ WITH DMS/DBMAP, FOR SYNTAX? SWITCH 1 15
SWITCK 8 13 FILE ¥FIDX BUFFERS = 3

This command also caLses the gutput to be printed in upper=case
tetters only and changes the number of buffers for file FIDX to

k|

- W

1152444 11~-22 01719484

STATUS INFCREATICN

The LCMS/LENMAP rprograr car take a considerable amount of time
coing valicity checking. The current status of the CMS/CBMAP

grcgran car be detersined by entering the fotlowing cosmand:
<job number>aX S1ATUY or <job number> AX 57T
The response to the STATIS command is in the foltowing format:
MAPPINE <str name>. SEEN <number reccords read> OF <totcl non-dead>
CYERALL ERKDRS: <totzl errors seen>» HWARNINGS <total warnings given>
€5tr name> is the nawe 04 the current disjoint data set or index
set that is teing checketes The <total non~dead> records 1is
cetermined from the rext=availabler highest apen (NAHO) chain.

If an error cccurred in the NAHQ chains, the response to the

STATLUS comrand is in the following format:

MAPPINE <str name>. SEEN <numbet of records read> CF COPENEL
<wax records>
In this case» <max recorgs> is determined from highest open (HC[)
anc gives an urper bcund to the number of records that are

examineds For indexes» the number of records is equal to the

number of tablesas

khen using the STATUS coamand to esiimate time towards
completicns, it is useful to know the order in which the TMS/DBFAP
prcgram perfores its various functions. The DMS/DBMAP program
ter forms its work in the same order no matter what options h:cve
teen set. Firsts the citjoint data set structures are examinec

in numerical order. After each disjoint dztz set has kteen

1152444 11-23 01/715/84

examinedr all of its index set structures are examined ir
rurerical orcer. Presence of the STATUS command is gueried €ach
tise the C¢S/DEMAP progrzm reads a record (or table) from sz
structure file. QOuring the 1oading and summary (KA) phases of
the OMS/CBVMAP programkr» tte S5TATUS commanc is not seer anc no
response is given. 2fter thats towevers» tte response is usuaily

guite rapids.

1152444 11=-24 01719/84

CMS/0BMAFP FROGRAM CUTPUT

The line printer outgut zlways consists of three heading pages
(page s%ips carn be swppressed with switchk 4 set to 1) followed by
the cata base wap. In tte map poertions each disjoint cluster :znd
each index structure stavt on a new pagee. The disjoint clusters
gre mapped in nunerical ¢erders followaed by the index set applying
to that cluster» alsc in numerical order. The end of the listing
inctudes an error susmary showing each strictures, the numter of
€errors detectec per structuresr and the nuster of warnings per

structures.

kithin the disjoint cluster mapr» the static information for the
cisjoint data set anc its embedded sets (in numerical order)» and
their embecded sets zre frinted first. After each structure
hecding» any errcrs founc in the NAKU chain are reported.
followWwing this, any errors occurring in the data of the disjoint
cata set or its ewbecded sets are reportedr and the ¢ata is
printed for those structares which have their print flags set.
Finailys the pcpuiation tummaries for the c¢isjoint data set anc
its embecded sets are printed in the same orcer in which their
hkezdings appeareds asrd ary population consistency errors are

reported.

Within the map for am incex set structuresr the order is similar
but less ccaplexs» sirce «nly ohe structure is involved. Agains
the static infermaticn it printed farst, followed by any NAHO
chain errors. The integrity errors and opticnat table data

follow this. Finaltys pcpulation summaries and any population

1152444 11-25 01719784

inconsistency €rrors are printed.

There can be gaps in this overall orderinrg where validity checks
have not been requestec for some structures. No mention at zdd
is masde of striuctures thst have only their KA opticns set.
Structures that have only their static information options set
have only their static irformation sreported? no NAHC errorss
cata errorss or populaticn summary are printed. Structures which
have only their NAHO court option se¢t have NAHC errors and a
shorthanc form of the porutlation summary printed. Nc other

integrity errors are repcrted for these structures.

A cosplete alphabetical Yisting of the errors and their seanings
is given ir the paracraplts titled Errorr ¥arnings and Abort
“esszge in this sectione Each error message also has a numﬁer
that is used in this mantal for easy reference to ei&ch message.
The number appears withir parentheses in text, but does rnot

appear with the error message in the DMS/CBMAP outpute.

1152444 11-26 01/719/84

Hezding Pages

Three heacing rpages aslways appear for the DMS/DBMAP program

gutput .

Fage 1
The ccmmands are listed exactly as they were reads

interspersed with ary error messages they generated.

fage 2
The data Lkase header consists of up tec three boxes. The
first bex contains the cata base namer structure count anc
sWwitch settings« Tte second boux appears only if any
abnormal status flats are set in the DM glokals section of
the dicticnary Znd tontzins these status flags as well as
the audit serial nusber. The third tcex appears only if any
options were set in the DM gloualss and contains these

opticns in addition to the audat serial nuaber.

Fage 3
The summary (KA) of data base structures is dlistec. This
incluces the OMS/DBMAP program option in effect for each
structures the structure type and file information. A
warning message (147 is given for any data base fide that is
wissing. An error (45) is reported for any version
missatchs The crea addresses are not printed but they are
checked to make sure none are zero (46). The next avsilatle
{NA), highest oten (HO)» ang root table addresses are alsc

validateo (17, 18). Harnings are given for any flags set in

1152444 11-27 C1/715+84

the status fielc of the file records (4&» 49, 50, S1,» 52).

Static Informaticon

The static inforgaticn fer a structure is found in the structure
record of the cata btzse cictionary and 15 printed in a resacable
formst by the CMS/DEBFAP programe. For datz setss» the static
information includes a 1list of embeaded structures as well as
their enbeddeds. For cistjoint data setss it inclucges 3 list of
incex set and manual subtet structures which point to that

cisjoint data set.

If any errcrs are fouinc while processing tte NAHO chains they are
printed iwmmediately after the static information. Possible
ErTOr mMesssges octurring here are numbers 4» 6, 19, 37» and 38.
#so, if a disjoint cata set file needed to perform @Zn extencec
valicity check for ar incex set or manual subset cannot te
cpeneds then a warning message (5) 1s reported here and the

extended validity option 15 converted to a validity check opticne.

1152444 11-28 01/719/84%

1152444 11-29 01719784

Cata Printing

Lata is printec for any structure which has its print option set
in acditicr to a vatidity option. 4if the print option is not
sets then cata is printec only preceding an grror. As many as 60
fines can be printed in tuch a case. Fewer can be printec if =
preceding error has zlrezdy caused gata to be printed or if the
print option is alternatively turnea on and off on various
emtecded structures sithin a disjoint cluster. A1l data set deta
is printed in hexadecimal» using as many lines as required. All
keys are coenverted to reidable format and parts of complex keys
ére concatenated togethev. AlL addresses are printed in

hexacecigal notatione.

Cisjocint Data Set (DIS) Fecords

The printout of disjcint data set (LDS) records consists of a
tire with the tex adcrest (new format) followed by one or more
{ines containing the date (in hexadecimal). For deleted reccrcses
cnly the address and the message #*% DELETED #+* are printec. 1If
error 8 is repoerteds, the record containing tte dead flag is
printed. The cata lines do not contain the tistheads. The cnly
error that might be reported for DDS data is numbker 8. Following
the cata liness the listltead for each embecded is printed
corsistirg of the emtecded structure nase and the hesd and tzil
sderesses founc in thte perent. The listheads are considered pzart
cf the parent recorc¢ for bothk printing anc validity check

purposes. [If the List head or tail is invalidr it is reported

1152444 11-30 01719784

here with error 17.

Embedded Structure (ES) VYablss

For each esbedcdecd structure (ES) with a valid Llist head (and for
which valicity checking is required) the chains of tztles are
rrinteds For ecach téhles its address (old fcrmat) is printec in
hexacecimal fodlcued by ¥Fts next anu prior pointers and its entry
counrt. Any €rrors ccncerning these values are repérted here
including error numbers 11» 22» 34» 36, and 17. If the entry
count 15 too larger, the waximum is used for purposes of printing
anc checkinge Each entry of the tavde is printed. For an
embtecded structures, the cata is printed in hexadecimal prececec
by the key {on a seperate line) i€ it is ordered. The key is
identified as cosing from the data if it is simple ores if it is
cosplexs from the tatle. For a manual subsetsr the object address
is printed in both oid ard new forasr fodlowed {on the same {ine)
ty the key if the marual subset is ordered. Following each
embecded structure entrys» any relevant errors are regortede.

These include object recerd warnings for manval subsets if the
EXTEMNDED VALIDITY option is set (41 or 42)» and key ordering and
cuplicate errors if the !Fructure is ordered (30 or 32). For
embecded structures sith complex keyss an error is reported if
the key coes not match tte data (43). Any embedded structures
with an embdedcec structuire 3re mapped following the dasta line in

the same manner 3s esbedced structures within disjoint dats sets.

1152444 11-31 01/7195/84

Index Segquential Tables

For index sequential (IXTEQ) structuress the tabies are printec
in depth-first order. Tle root tabie is printed tirst, followued
ty the leftmost table within it (Table 1)» followed bty the
fefteost table withir it (Table 1~-1J)» anc¢ so on» untii the fine

tatie is reached. This can te seen in the following diagrem.

1 Root 1
i Tatte |
]
-‘_-lﬂ_-----‘----‘---ﬂ-*- ----- A G WR D AR A R A AR U AR WD WS WS W AW AN
1 '] ¥
f Tabie 1 1 { Tabie 2 1} i1 Table 3 1

i
------ LR N R P T N ‘ A AR AR AN NS AR W AR AR B W W W
i

- D W S W W A e T AN W A WD W WS WP W N S - DN N AN AR RN T W WS R AN L N N Y R R

1 Tabde 1=1 8 1 ¥Yabie 1-2 1 1 Tabte 2-1 1 1| Tabte 3-1 1 1 Tzble 3-2 |
1 (Fine) I 1 (Fine) 1 1 (Fine) P 1 (Fine) 1 1 (Fine) 1

The tables are named as ¢thoWwn and are printed in the orders: Fgot
Tatier Table 1» Tabie 1-1» Table 1~z» Table Z» Table 2=1, Table

3, Tabie 3-1» Table 3-2», Tabte 3-3.

A headings in @ box» precedes each table. The information in the
keading includes the table namer addresss» prior and next
pointerss table typesr entry count and audit serial number. 1If
the address is invadidr then only the name and address» along
with a message» appezr ir the box. The invalid address that

caused this error has besn reported earlier.

1152444 11-32 01/719/84

Errors concerning informztion in the table header and traiter are
reported after the headivrg baoxe These incliucde ertry count checks
Cerror numbers 11 anc 227 and checks on the traider information
{error numbers 3» 25+ ang 26). Errors are given if the prior a&and
next pointers are not the addresses appearing in the adjacent
parent entries (evror numbers 21 ang 24). If a prior or next
gointer of a parent was tads then these checks cannot te made for
the first anc 4ast tzbles belonging to that parent. A message is
printed whenever the check is not made. The table type is
checked to make sure that it is the one indicated Lty the parent
tabie type (error nusber 23). If the type is wrong then no lorer
level tables for this pavent are checked. A message is printec

when this happens.

The table data follows tte heading tox. As many entries as fit
2re printec on each 1lines and following each lines» any errors
relating to these entries are printede Each error is preceded by
¢ line pocinting cut the cffending entry. Entries are printec¢ in
key/address pairsr» with the address enclosed in square brackets.
For fine tables, the adcresses are 32=bit asddresses in the object
cisjcint data sets. For cther tabtess the adcresses are 24-bit

adcresses in the index sSeta

The tast entry on each level of the tree must have a3 nult key
(all AF3s)e Errcr number 34 is reported if this is not so. The
tast fine table entry must also have 3 null sddresss and
therefore nust be entirely null-. 14 this is not truesr errcr

rumber 35 is repcrtec.s These null keys appear as question marks

1122444 11~ 33 01/719/84

in the printgut. Errors in key ordering (error number 32) and
guplicates (error nusber 30) are reported Alsor» each key is
coanpared tc the key in tte parent entry pointing to this table.
Do key in the table sust be greater than this parent key (error
rumber 31). If exterded validity checks are being perforsed»
then the otject record i¢ reads and errors concerning its
existence {errcr numter £1) and key {error number 42) are

reported.

Ifs while processing tabiess, an attempt is mzde to reac more
tables then there arees ttten 3 circudar table pointers error
(error numker 7) is reportedr 3nc processing of the structure
ceases. Usually there are guantities of other errors Lty the time
this is ciscovered. It is more an escape for the DMS/LCBMAF

prcgram than a useful ervror by itseif.

1152444 11-34 01715784

Iingex Random Tables

For index random (IDXAND? structures» the tables are printed in

tase-tabde order. £Ezch ron=empty base table is printeds foliowed
ty any overflow tables it can have. An empty base teble actialily
cortains ore entrys» the ¢meqgd entry (all 2F3s). Error numker 10

is reportec if it is missing.

For atl ncor~empty tables and for empty base tables that have
errors» a heading» ir a Yoxs precedes each tsble. The
information in the headirg includes the table namer adcresss
prior anc next pocinterss, and entry count. The base tabtde for
hash value n is namec Tatie BASE~n 307 1its overflow tables are
raeec Table EASE-n 31, Tzbie BASE-n 22, and so forth. Tt the
adcress is irvalids then only the name and addresss zlong with a
sessage» arpear in tte tex. The invalid next address causing

this is reported earlier.

Errars ccrcerning informztion in the table header and trailer sre
reported after the heacirg box. These include entry ccunt checks
(errcor numbers 11 anc 2Z) and checks on the trailer informsation
{error numbers 3» 255 anc¢ 26). The prior pointer must be the
éderess of the base table (error number 24) &s well as a valid
gderess (error number 177. If the next pointer is invalid (error
ruaber 17)s an invalid next address error {(error numter 20) is
als0 reportede The type must always be zero for index rancom
structures {(error nugber 28). HWhere there is more tkan one tatle

in the base chains 2 line summarizing the total rusber of entries

1152444 11-35 01719/84

in the chain follows the {ast table of the chain. Thkis sum

includes the final owega entry.

The tabie cata printcut is similar 1o that fcr index sequentiatl
structuress» consisting 0% key/address pairss as many per Lline zs
fitss The t3st entry of each base chain is supposed te be an
ceega entry (ald 4Fds)d)» 2nd an errotr is reported if it is missing
Cerror numker 33}, 1This entry is aitso printed, appezaring &s
[I-omega=1]. A null entry in any other place shows as guestion
marks. Folliowing each line of entriess any errors occurring in
the entries are reported.s These include €rrers concerning the
keys (error rumbers 29, 20, and 32)» and errors concerning tte
gddresses (error numter 17). Extended validity errors {ervror
rurbers 41 and 42) ard circuiar tabie pointers {errvor number 7)

ére reportec as for inder seguential structurese.

Fopulaticn Suamary

The poputation summary censists of two parts. The first part is
grinted for structures with the NAHU COUNTY option set. The
second part is printed ovdy for structures tkat have the VALIDITY
gption set. The first pert tells how many tables or reccrds have
teen openec. This it determined from the hichest open (HO)» and
if the HC is bads zeso records are considered open. The count of
tabdes or records on the NAHO chain is reportec and the resulting
population computed 1rom these two numbers is printed. If an
E€Er707 Was encounterec in processing the NAHD chain» then the

popgulation is reported as meaninalesse If trte file wmas missinc

1152444 11-36 1719484

then no populaticon c&n be reported.

The second portion centains statistics accumulated while
processing the structure during validity checkings» and 1is

cifferent for gach structure.

Cisjoint Data Set (DDS3 Population

Counts of cead and active records encountered while reading
sequentially through a disjoint cata set &sre maintzined. These
counts are printed ir the population summary. The total dead
records seen should te tte same as the nueter on the available
chzin. If this is5 nct trues error pnumber 9 is reporteds. If the
extended validity checkivrg is performed on the disjoint cata Ssets
the éctual number of recerds which appeared desd but were not an
the availatle chain zre rrinteds The total active records seen
shculd be the same as the population computec from the
next-avaidable ana tighest~open (NALD). Error number 1 is
reported if this is rot true. If the NAHC chain was badr this
check cannoct be made and an appropriate message is printed to

inform the operatore.

1152444 11-37 C1/719+84

Ewbedded Structure (ESY Population

The number of active tables encountered» and the total number of
entries they containedr s printede The total number cf tables
nust equal the expectec roputlation {error nuesber 1). The numter
cf tsbles that are required after a generate operation (3%
CEMNERATE C¥#S/DASEL ccmpiler option) is adso printed. This is
cetermined by consideringe the minimum space required to house z11
the entries of each garert. Sumnmaries by parent record includez
ruprber of parents with naid Ltists? number of entries for the
parent that had the gsost entriess number of entries for the
parent that hac the teweet entries (excluding fast subsets and
nuld lists)? and»r fcr urordered manual subsetss, the number of

rarents with fast sutsetrs If the parent data set file was

missingr» then this simmary cannot be given.

Incex Sequsntial (IDXSEQ) Poputation

The total number of active tables and entries is printed and
checked» as is dcne for embedded structures. The tatle and entry
counts are then broken dewn ty table type: tkigh Level coarse
takless, low level cozrse tablés’ and fine tables. The tast
{nutl) fine table entry is not counted as an entry herer so the
total nuaber of tine table entries should equal the object
cisjocint data set (error number 1%5) for sets. For subksets» the
fine tabde entry court stould not be greater than the disjoint
gata set population {errcr number lo). Checks cannot te made

ageinst the object cisjoint data set population if thke object

1152444 11~ 38 C1715/84

cisjoint data set cit not have its NAHO COUNT option sets, or if
its NAHOD chain was bzde. In such a case» 8 message is printed

telling of the omission ¢f this checks.

Incex Ramdom (IDXRKD) Fopulation

The total rumber of tables and entries i5 printed and checked» as
is done for incex secuential structurese. Then the table and
entry counts are Lroken town by base table and overflow tabiles.
The cmega entries are not included in these entry counts. The
total nusber of entries should be equal to the object cisjoint
cata set pcpulatiocn (errcr nuaber 15). As for index sequential
(ICXSEQ) structuress, no check can be made 3gsinst the object

cisjcint data set pogulation if it is unavailable.

Error Susmarcy

At the end of si{ DMS/DBY¥AP tistings is an error summary
contzining the data kase name and the totsl number of errors and
varnings. AS some errors can be encountered in the KA summarys
any CMS/CEMAP run car have some errorse Acditioral errors are
encounterec in the NAHO count operation. Most errorss of courses
are encountered¢ in trte welidity checking ocperation. Fcliowing
the totalss» 3 breakcoun is msde by structure. For each structure
having any errcrs or warrings» the structure number» name and
€rfor anc warning counts are printed. HKey comparison errors for
ganuzl subset or incex structures are attributed to the wanual

subset or index ard rot to the object disjcint data sets Ervors

1152444 11~39 D1/19/84

in a Listhead are attribsted to the parent recorc containing the

listheads and not to the embedded to whichk the Listhead referse.

1152444 11~41) C1/7159/84

Ervors MHarnings and Abort Messages

The fo{louing paragraphs describe the error» warning, and abort

tessages fcr the DMS/DBEMEP program

Error anc Harning kesszges

AL error and warning messages produced by the DMS/DBMAP progranm
ére listed alphabetictally on the foilowinc pzges. Harning
resssges occur for situations that can legitimately occur but
which shouvild be broucht f1o the user?s attentione £Ercrors are
ftlagged for situations whtich must not occur? they are the resuit
cf cerruption. Their ef9ects on the system vary in sewverity.
dost of these ercors proctuce either an integrity error from DNMZ»

or result in the fetchint of wrong secords.

A message is displayed fer the first error or smarnings» to tet the
cperztor know that tte disting must be examined. The totatl
runbey of errors {but not warnings) is inciudec in tte end-of-job

(ECJ) statement.

In the printer listirg, if tre print option is sets, error anc

warning nessages appear 2s followss

*% ERROR =% <text> or & WARNING *» <text>
orr if the print opticn is not sets» as

*% FRFEOF =% (Str# <number>) <text> or
* WARNING = (5tr# <number>) <text>

1152444 11-41 01/715/84

For some errorss, those ir index tables for instancer the error
lire is preceded by 2 lire containing a string of ##4 characters

uncerneath the fielc cauvsing the problema

Error List

In the pages that follows the number to the left ot each error
ressage identifies thte error number. The number does not appear
with the error ir the ODMS/DBMAP L ine printer output. The code
{K) or IN) or (V) or (P) following the messace indicetes whether
the error is repcrtec during the KA, NAHO COULNT, VALIDITY» or
FOFULATICN SUMMARY operations-. V¥ and P errors are reportec only
if the VALIDITY opticn it set for the redievant structure. The
structure types for shict each error can be reported are enclosed

in square Ltrackets.

S3 ABNCRMAL STATUS IN TATA BASE GLOBALS

(K) [ALLY (warning)

One or more of the zbnormal status flags is set in the data
base globais. 1lhis warning foilows the heading Lox that
prints the flags. (ftensr when one of these flags is set»
integrity errors car be expected in the data basesr but the

DMS/CEBMAP progrze wips all structures anyway.

1152444 11=-42 01/719/84

1 ACTIVE RECCRL CCULNY UIFFERS FROM NAHO POPULATICN

(PJ LLLS1]

The NAHC populationes determinea by subtracting the number of
recorcs found or the available chain from the numter of open
recaorcss ciffers frem the actual numter of live recerds seen
when reading the cisjoint data set sequentiaily. This
difference can gcccur if there is a live record on the
available chains which is reported with ervor number 37, or
if there is a dead record not on the zvzilabie chains, which
is to be reported with error 8 if the eaxtendec wvaticity

optiorn is set fcr tte disjoint data set.

2 ACTIVE TABLE COUMT DIFFERS FROM NAHO POPULATIGN

{P) CICX,EDS»MS8%]

Errcr number 2 is geite similar to error nuaber 1, except it
refers to index and embedded structures. The pumber of
tables actusily enctuntered while reading the structure
differs from the NAFD population. This difference can occur
if there is a live fentry count greater than zero) table on
the available ctains Wwhich is reported with error numter 38,
or if chains of tables intersects which is Likely to cause

errors in orderinge.

1152444 11-43 0171984

3 AUDIT NUMBER: <rumberl> > GLOBAL AUDIT NUMBER: <numberiZ>
{¥) TIDX,ES]

For an aucited cata baser an index or esgbedded structuire
block was found in shick the audit number <numberl> was
greater than the aucit number in the DMS globals <numterdd>.
For esbedcded structeresr this is reported every time 2 takle

from the bad blcck s read.
4 AVAILAELE CHAIN IS CIRCULAR
(N) TALL)

More records have teen found on the available chain than
have e€ver been cpened. There is no indication of the point
at which the chzin vent tad. HWhen this erraor occurss no
NAHC population can be computed and some poputation checks

cannot be made.

5 CAN*T CPEN FILE FOR <«str name> FOR EXTENDED VALIODITY CHECK

(¥) IF¢SS55,1IDX) (marning)

The file for the object disjoint data set <str named)s neeced
to perfora exterded validity checking for a manual sulbset or
index structures cotld not be opened. Therefeores the
extenced validity cteck could not be maces» aﬁd a regutar

validity check is mecde instead.

1152444 11=44 C1/19/84

6 CAN'T CPEN FILE FOR «str name> FOR NAHO COUNT

(N) TCOS»EDS»MS2-,IDYY (uarningl

The file for structuire <str naase> could not be ocpened and so
the requested NAZHO C(OUNT options as welt as any validity

checkings could nct be performed on this structure.

7 CIRCLLAR TABLE PCINTERS

(V) [EDS»¥S5S»IDXSEQe»IDXRND]

While processing an index or manual subset structures more
tabtes were seer thzn were ever openede. No indicztion is
given of where the table pointers went circular. Usualty,
quantities of other errors (key orderingr» wWwrong next
pointers, and sc forth) are reported before this error
occurse. This error is more an escape for the DMS/DAMAP

progrzm that an integrity error in itself.

8 CEAD RECCRE NOT IN AVAILABLE CHAIN

Cv) 1L0S1]

A disjoint cata set record containing a dead flag was not in
the available crtain for this disjoint data set structure.
The recorc is written out preceding this error (normally
dead records are not written out). This error is reportec
only if the extence¢ validity option is requested orn this
disjoint c¢ata sete Making this check can reqguire extra

virtual disk. Feter to Execution Examples in this section

1152444 11~45 01719/84

for acditioral informatione.
9 «nunmber> DEALC RELORDT NOT FOUND ON ANAILABLE CHAIN
{P) LCDS]

When reading a cisjcint data set sequentiallyr» <number> more
dead records were re¢ad than were founa on the available
chain. If the exterded vatidity option is requestec on this
disjoint cata set» then error number 8 is reported for each

such record.
10 EVPTY BASE THBLE DOF¥S NOT CONTAIN NLLL ENTRY
{¥) TIDXRADI]

Index rancowm files zre initialized with an omega (aii aFIs)
entry ir e€each bsse table. Error number 10 occurs if the
base table has cnly one entry and no overfiow tzbles» and
that cocne entry is nct the omeda entry. This does not hincer

the use ot the cata base.
11 ENTRY CCUNT = 0 IS TINVALID
(¥) TEDS»KSS»I0X]

An active tabde has an entry count of zero. This is5 an
errer because egpty tabtes should be put tack on the
available chains but this error does not affect proper use

of the data base.

1152444 11-46 01/15/84

12 ENTFY CCUNT DIFFERS FROM OBJECT DDS POPLLATION: <numker>

(P) CTICXRAND]

The sum of atltl (non-omega) entries in a index randow
CICXAND) structure wust be equal to the population of the
disjoint cata set it spzns. The disjoint data set
population that is compared is <number> and is the NAHO
populstion for that structure. Refer to error numbers 15

and 16» aisc.

13 ENTRY OUT OF ORLER IN VAEBLE: <address>. LAST KEY: <key>

(¥) TEDSCsimplel 611290001

In an ordered esbedced data setr» an entry in the table at
€address> is out of order with respect to the prior key
<key>s The key in error is printed just above this error.
The address is inclitded here only to help locate the key in
errgr in case thte print option was not set ana €0 lines w:zs
not sufficient to irclude the tabte header. {refer to error

nueber 32, aisol.

14 FILE MISSING

{K) £ALL] (warning)

The file for a cata base struciture is not present when the
dats btase is magped» Possiblys the disk pack for the file
is rot on line. If the file is also required for the NAHC

COUNTS gptions or as an object structure needed for an

1152444 1147 01719/84%

exterced valiagity ctecks then warning numbers S5 or B are

generztede

15 FINE TABLE ENTRY COUNT DIFFERS FROM CBJECT

DDS peopulation: <nember>

(P) TICXSER setl

The sum of all fine tabie entries (excluding the final null
entry) cf a sparning index sequential set shoula egual the
population of the cisjoint data set that it spanse The
disjoint data set pcpulation <number> used for comparison is
the KAHC population. Refer to error numbers 12 and 16,

also.

16 FINE TABLE ENTRY COUNT GREATER THAN OBJECT

DDS population: <nimber>

(P) TICXSEQ subset]

For an incex secuential (IDXSEw) subsets» the sum of fine
table entries must rot ke targer than tte NAHC population
<numkter> of its object disjoint data set. Retfter to error

numbers 12 and 15» zlso.

17 IN ADCRESSs <acdress> (INVALID DISK AREA NUMBER)
(BEYCNC HIGHESY OPEN) (INVALID RECORD NUMBER)

CINVALIC ELCLK CFFESET)

1152444 11-48 01719784

{everywhere) TALL]

This error can cccur ir many piaces whenever a nen format
address arpears in & structure. Scometimes an acditional
ervor messager for examples INVALID NEXT POINTER, is
generateds. Addresses are checked in several ways. If the
address fails ary of1 the checkss» then this error occurs and
the approgriate parenthesized message{s) is printed. Refer

to error rnumbers 18 and 47 atso0.

(Invalid cisk area rumber): the ares number in the address

is greater than the numbter of areas allocated to the file.

(Beyond highest oper):s aithouygh the area number is within
the files the acdress is beyond (or eqgua! to) the highest

openec adcress gaintained in the dictionary.

{Invalid t1ecord numter): the tecord nusber in the address
is greater than (or equal to) the maximum number of recorcs

per block for tltis structure.

{Invalic block cffset):2 the biock offset in the address is
greater than ({or egeal toc) the maxisum nuaber of blocks per
area times the rumber ot segments per blocks or the block

offset is not 3 wultiple of segments per blocke.

1122444 11-49 01715984

18 IN KkAHQ=z <address> {(ADDRESS IS NULL)
CINVALID CISK AFEA MUMBER) (BEYDUND HIGHEST OPEN)

CINVALIC RECORC NUMEER) C(INVALLD BLOCK OFFSET)
(K) falLl]

This error i5 very auch like error number 17» except it czn
onily be reportec when checking the next available (NA) anc
highest open (HC) fjeld in the KA phase. The restrictions
on the NA and HL fields are slightly different than the
restrictions on norwal addresses. Thke NA or HO fields can
be equai to the higtest open. In an HO fieldr or in an NA
field that is ecual to the HO tield of any of the fields»
recorcr» bdock or area» can be equal tos but cannot exceeds

the maximume

CADDRESS IS NULL)2 for a NA or HO field» a null address

(atl 3JFIds) i5 net wziid.

47 IN OLD ADCRESS: <acdress> (FILLER 8IT SET)
CINVALID CISK AFEA PUMBER) (BEYOND HICGHEST COPEN)

CINVALIC FECGRC NUMEER) C(INVALLD BLOCK QFFSET)
K3

This error i5 similzr to error number 17» except the address
being checked is an old format address. The restrictions
are the same as for a new address» with the acditior of the

fitder Bit check:

1152444 11-50 01/19/+,84

CFILLER BIT S5ET)3 the fidler bit C(high-order bit of the

block offset portior) is set. It must be zeroe.
2 INTEGRITY-ERRCR FLAE IS SET
(K) TALLY (warning)

An integrity error tas cccurred in this structure. The
DMSII systes prcces*es the structure anywWay and the

DMS/UBMAP progrzm wmeps it as usual.
19 INVALID NAHQ LIMK IV <address>», ABDRTING NAHO SEARCH
(N) [ALL €04710C01]

In the available tatle at <address>» the next available
pointer is an invalid address. An address error (error
numker 17) precedes this error. The NAHO populzation cannot
be cktained for thirt structures therefores some popilation

checks cannot be mace.
20 INVALID NEXT ALLCRESS
(v) UIDXRND]

The next address pointer in an index random (IDXRND) tabte
is 2n invalid scdrecsse This error follows an address error

ferror rusber 17).

1152444 11-51 01719/84%

21 INVALID NEXT PCINTEF. EXPECTEL <address>

(v) [IDXSEQ]

The next pointer in an index random (IDXSER) takle is not

the same 25 the addvess in the adjacent parent entry

<address>. MHher this occurse the rightwost coarse cr fine
address in this table cannot have its next pointer checkec»

anc a message is given stating this error.

22 INVALID NUMEER CF EMTRIES == USES <number>

C(v) [ECS,F¥SS»ICX]

The entry count in 2n index or embedded structure table is
greater than the marimue entries per table. For printing

and checking purposess this maximum <number> is usec.

23 INVALIC PARENT M1YPE: <number>

{v) LIDASER]

The type table gncountered in an index sequential (IDXSEQ)

table was not vilide

24 INVALIL PFICR PCINTER. EXPECTED <xaddress>

{¥) CEDS,+SS»ICXSEQSTDXRND]

Embedoged structure tables are processed by foliowing next
pointers. Therefores, the prior pointer in & table must ke
the <address> of the tatle just reads; if it is nets» this

error is generatec.

1152444 11-52 01719/84

An index sequential (IDXSEQ) structures the prior pginter
must te the same as the address in the entry just prior tg
the parent entry for this table {similar to error numbter
21). Hhen this ervrer occurs for an index sequertial
CIDXSEQ) structuires the first key of the table cannot be

checked for duplicates or ordering» nor can the table

reached by the 1irst entry hkave its prior pointer checked.

For an incex rardom (IDXRND) structurer the prior pointer of
any table must te tte base tabde of that chains if it is

not» this error is cenerated.
25 INVALIO SELF ACLRESS® IN TAIL: <address>
(v) LIDX]

The tail of eack incex (IDX) table contzins the address of
that table. This error occurs uwhen the <address> in the

taii ciffers frcecm tte actual audress of the table.
26 INVALIL STRUCTUFE NUMBER IN TAlL: <numater>
(v) £10Xx1

The taidl c¢f eact IDY table contains the structure numter cf
that IDX structire. This error occurs when the structure

¢nugber> in the taifl is srong.

1152444 11-53 01/715/84

27 INVALID TAIL <acdrl> FOR EMBEDLED <str name> IN RECORD
<adere>

EXPECTEL <acdress>
{v) LEDS»¥55]

In the siructuri hezd for embeaded <str name> in the parert
record at <sddri>» the tail <agdrl> differed from the actual
address of the dtast tabte in the chain. The tast table s
reccgrizea by havinc a null next pointer. Because this
error folloks tte printout of &all entries in the chain for
this embecded structures the parent record and tabtle head
cannot be inclucec in thke tast 60 lines (when no print
option is set)» and so the parent address and offending tail

address are repeatet in the errfor texte.
28 INVALID TYPE <numkber 1>. EXPELTED =<number 2>
(v) TIDXSEQ,ILCXENEC]

For an incex secuential (IDXSE4) tabies the atlcocwable typese
<number 2>» are determined by the type of the parent table
<nurbter 1>. The tatle keading giving the bad type
immediately precedes this error- Hhen zn index sequential
(IXSEG) table hazs a bad typer no attempt is made to access
tables to which its entries point since it is unknoun what
structure (the index or its disjoint data set) they refer
to. A message is given stating this error., For an index
rancom {ICXRND) stracturer ail tables must have a type of

28T 0.

1152444 11=-54 01/1%/84

29 KEY IM WRONG BASE T#BLE. SHOULD BE IN <address>
(v) LTIDXRAND]

The vatue of the key (the particular key is pointed out with
##8# characters) places it in a different base table (or
overfiow table) thar the one it belongs in. It must be irn

the table at <acdress>.
30 KEY IS INWALTID L[UPLICATE
(V) TEDS»ESS»IDXSEQ»TIDXRNDI]

In ar ordeved structure where auplicates are not zllowedr 3
duplicate key hzs been found. For index (IDX) structures
the key ir the prreceding line i5 pointed ocut with a string
of N8 chsracters. For embedded structuress» the cuplicate

key is the cne in tte ismediately preceding entrye.
31 KEY IS TQOC HIGH FCR THIS TABLE. MAX I35 <key>
(v) TIDXASER]

In an index sequential (IDX5FQ) tabler no key nmust be
greater than the key in the parent entry that pointed to
this tablee. The parent key is <key> and the cocffending key
in this table is identified in the preceding line with 344

rharacters

1152444 11-55 01715784

32 KEY CLT OF CRDEF IN TABLE: <aadress>. PRICR KEY: <key>
(V) [EDSCcoapiexds ¥ ES, ICXSEQ,IUXRND]

Within the table of an cordered structures a key is not in
order« 1In enbecded structuress, the entries are maintainec
in key orcer within each chain of tables of eachk parent
recorc. In an indey segquentiad (IDXSEQ) structures zlt kcys
at one level must be in order. In an index randog C(ICXRNL)
structure. all keye in the base table chain must be in
order. The precedirg key to which this key is compsred is
ckey>s. For index (IDX) structures the key in the precedirg
Line is icentified with #fﬂ characters. For emtedded
structures, the key is the one in the immediately preceding
entry. TYhis ervor is related to error number 131 for

embedced structuresa
33 LAST ENTRY CF CHAIN SHOULD BE A NULL
(v) LIDXRNDI]

The last entry c¢cf 2 base table chain must be a nuil omega

entry (a1l 3F3dsl.
34 LAST ENVRY CN LEVEL SHOULD HAYE NULL KEY

(v) TIDXSEQ]

1152444 11=56 01719484

The 1ast entry cn ezch level of an index sequential (IDXSEQ)

structure must tave a3 nuld (ala AFds) keye.

35 LASY FINE TABLE ENTFY SHOULD Bt NULL

{v) TIDXSEQ]

The last entry in tlte Lzast fine table must be entirely nuit

with all &dF3s fcr beth its key and address.

36 NEXT LINK IS SELF [EDS»MSS]

{v) TEBS»MSS]

The next pointer in an embeddea structure table is the sane

as the adcress ¢f thte tabler making 5 stort circutar list.

37 NON-CEAD RECORD IN MEXT AVAILALLE CHAIN AT <address>

(N) [LLS]

AlY recorcs in the zvailable cnain of a disjoint data set
must have dead tlagse This error message is generated if
the avaitsble recorc at <adcress> is not dead. The actual
recorc can be seen if the data for the structure is printed

out .

1152444 11-57 01719784

38 NON-EMPTY TABLE IN MEXT AVAILAGLE CHAIN AT <address>
{N) [ECS»¥5S5,1I0X]

ALl tables on tke available chain for an index (IDX) or
embecced structire nust have zero entry counts. This error

occuTs when the avaidlable table at <acdress> is not dead.
41 DBJECY FECORD IS CE®D

Cd) T¥S55¢fss) Lvarningl»rMS5S (warningl»IDXSEQ, IDXRND)

This error messzge is only generated if the manual subset or
index (IDX) stricture has the LXTENDED VALIDITY opticon set.
The error messace orcurs when the disjoint data set recorc
pointed to from the index (IDX) or manuzl subset has a dead
flag set. For indey structures this is an integrity errors
but for manual subsets it is only a warnings as nothing
preverts 3 program rom deleting a record pointed toc from an

manual subset.
49 RECCVERY=IN-PRCCESS FLAG IS SET
(K) TALL] {xarning)

The RECOVERY~IN~PROCESS flag is set in the file recorc.
This is noreally only set in memory during recovery and

shoulc not be set ir the dictionary.

1152444 11~58 01715/84

51 REORGANJIZATION-IN-PFOCESS FLAG IS SET

(K) TALL] (warning)

The REOARGANIZATION-IN=PROCESS tlag is erroneously set in the

file recorde Ttis 9lag must not be set.

42 TABLE XEY = OBJECT FEY MISMATChe. OBJECT RECORD CONTAINS =2

<key>

{(¥) CFSS (warningls IDXSEQs IDXRND]

This error messzge is generatea if the manual subset or
index {1D0X) styectuvre has the EXTENDED VALIDITY opticn set.
The error messace occurs swhen the <key> in the disjoint data
set recoero at ar address pointed to from an manual subtset or
index (IDX) stryvcturer differs from the key with that
address in the manuzl subset or index (IDX) table. For
index C(IDX) stracturesr this is an integrity errors» but fcr
manual subsetss it is only a warning messages as nothing
preverts 3 progras Yrom changing dats in a record pcinted to

by szn MSS entry.~ FRefer to error number 43, alsc.

43 TABLE KEY - TABLE DP?TA MISMATCh. DATA CONTAINS: <key>

(y) TEDS]

In ar ordered esbhedced data set Wwith 8 complex keysr the key
cowposed from the deta is stored separately inm the tabie.
This error occurs i9 the separately stored key differs fronm

the <key> uwithir the data. The keys in the date anc in tre

1152444 11=59 01/719/84

table are printed with the previously printed entry. Refer

to error number 42» alsoc.
48 UPDATE FLAG I3 SET
(K) [ALL] (warning)

The updating flcg it set in the file record for a structure.
This file was being updated when the system halted.

Reccvery 1is requiTec.
45 VERSICON MISMATCE. VERSION ON BLISK IS <yersion>

(K) 1aLL]

The fiie versior in the dictionary differs from the
<version> in the citk file heaader for a DMSII structure
file. This does prevent the structure from being used ty a
program. The DFNS/DEMAP program opens the file for validity

checking anysaye
S0 WRITE-ERRCR FLAC IS SET
(K) {2111 (warning)

The MRIVE~ERRCR flac is set in the file records indicating
that an output error has occurged on the file. The CMSII
systeg does not allzw use of this filee The DMS/LCBMAP

program maps it anysays

1152444 11-60 01/719/84

46 ZERC ACDDRESS FCF ARYTA <number>
(v) TALL]

Area <number> fcr tlte file has a zero address in the disk
file hesder. Mten this occurs the file is marked as missing
internally within tte DMS/DBMAF program so that no attempt
is mace to read it. Subsequent CAN'T OPEN FILE warning

messages result,

1152444 11-61 01719784

Abort Messages

Abort Messages are not dzta base integrity errorss but errors
that make it inpcssitie for the ODMS/7DBMAP program to continue
cperation. They are flacged as errors in the output printer
{isting anc ar€ also disrlayvyed at the 0DT. They always result in
2 mexory duep being taker and the DM5/DBMAP program being

stoppede.

There are two general rezsons for avorting a DBMAP run. Either
the progras has encoitntered some internad errors for example
gtteppting to read a file which has been openec once successfully
but i35 now missings or Zn attempt has been gade to run the CBrAP
program uncer conditions which it cannot te run (for examgles»
when the data tase is opened updates. The atort messages in tte
tollowing tist are icentified as one of the two types. For atort
ressages of the first tyres if¥ the operater can think of no
rezson for the abort (ifs for exampder the file has not teen
removedsr then 8 Fielc Communication Forw shoula be submitted
elcng with the dump @nd s much of the line printer file as has

teen made to ycur Burrouchs representative.

The following are the abert messages.

1152444 11-62 01/719/84

CAN OMY MAP 11.0 CATAEASES
The data base specified is not a Mark 11.0 data tbtase. The
DMS/CEMAP progrzm mzps Mark 11.0 data bases onlye. If the
data base is to be uvsed with the Mark 11.0 operating system»

it must be converte€ using the 3 CONVERT option.

CANNOT MAP ACTIVE [ATAEASE
The dictionary file is lockedr indicating that it is
currertly openec upcater presumably ty the DMSIT system.
The CUMS/DBMAP progrzm can access this data base when the
data base is no loncer opened update. UThis is an atort of
the seconc (user) type and can occur freguently if LCMSII

programs access the data base.

CANNOY MAP DATABASE WITH ACTIVE FULE: <filename>
Although the dictiorary was not open updater some file
required for a MAHD count (or wvalidity check) is open
update. The DMS/UBF¥AP program cannot run until any programs
updating the dictiorary files are finisted. This is zn
abort of the second (user) type == no TR should te

subgitted.

1152444 11-63 01/715/84

“CAN®"Y OPEN FILE FCOR «<str#>: <str name>"

The file for <str name> tas successfully been opened oncesr but
1laters» when trying tc reed its it is found to be missing.

Eecause the CMS/UBMAF pregram may need to switch between filess
the fite fcr a structure ctan be openedr closed and reopened. If
it has been opened successfully oncer the DMS/DBMAP program
expects it to rewain precsents, although it is possibie for somecne
to remove it during its closed periode. It thkis Ftas Lteen done
then this is an abort of the second type. Howevers if the file
is present then this is &n abort of the first type. Contact your

Eurrocughs representative for assistance.

CAN*T FEAD DICTIONARY FILE HEADER
Although the dictiorary file has already been opened and
reacr» later its file header cannot be read. This is an
abort of the first type and your Burrocucghs representative

should be contacteds

CATAEBASE DICTICNARYs «title> IS MISSING
The dictionary for the data base namec bty the user {either
in the cogmand strirgr, or in a compile statement) is not
present. If the <title> is the one specified by the user
and if the file actvally is missing» then this is an zbort
of the second (Lserd type. _If the <title> is nat the one
specified by the user» then this is an abort of the first

type- Contact your Burroughs r1epresentztive for assistance.

1152444 11-564 01/719/84

ERROR IN COMMAND FILE. <«<msg>s SELING:2 <last thing read>
If the ccamands are read from a filer then any command error
causes an abort as «escribed in the parzgraphs entitled
Comessnd Errors in ttis section. The acceptable syntax anc
possible error sesszges are described in the pavagraphs
entitled Cormancs ir this section. This is arn abort of the
seconC {user) type» unless the complaint in <msg> seens

invatid.

ERFOR IN SET OPVIGH
This is an internal error in the command parsing routines.
It ;ust nct be gossible. In order to continue grocessing»
try attering the syrtax of the commands» or using different

commandse. It iz an abort of tnhe first type. Contact your

Burroughs respresentative for assistancee.

ILLEGAL VALIC_NAHO CALLl <string>
This is an internal errcor in the adgress checking routines.
Theoreticalilyr it stould not be possitle. It is &n abort of
the first type Znd your Burrouyghs representative should be

tontacted.

FEAD ECF OF FILE F«#>3: <filename> AT ADDRESS <address>
An attempt Lkas teen made to read a ODME file <filename>»
which is switch file nuaber <¥>. <adcress> is the new
forgat CMS togical zddress causing the error. Because all
addresses are checksd for validity before use by the read
routines this is ap error. This is an zbort of the first

type and your Brrrouwghs representative should be contactec.

1152444 11-65 01/719/84

APPENDIX A
O¥S/DASDL GLOSSARY

The following cefinitions are intended to give a working

cescripticn of the terms used in this manusl .

ACCESS

A method to reach a desired record of a data set.

CONTENTICN
A congiticn in vhict a3 program is attempting to access 2
tabde entry or dogital record within & physical tiock which
has alreacy beer 1ocked by another user. If the program
waits for access to the block for more than MAXKAIT seccncsy
it receives a CEACLICK exceptione. Reter to DEACLY EMERACE

for accitional information.

CEADLY ENMBRACE
A conciticn in shict a3 chain of programs existss each of
which 15 waiting for CONTENTION to be resolved on a block
white simudtanecusly having focked a btlock uhich angther
prograe in the chaivr is waiting for. Upon reccgnizing a
DEALLY EMERACE, the DMSII system returns a DEADLOCK
exception to the losvest priority program in the chain and

uniocks all reccrds locked by that programa.

1152444 A=1 01/719/s84

CISJOINT
The ccndition ¢f nor=-reliance of data sets on the highest
level», that is» 3 data set which is not an item within a
data set. Stancard data setsr setsr anc automatic subsets
are the only structaeres that are disjoint. Disjoint sets

can cnly refer to disjoint data sets.

EMBEDDET

The condition of befing dependent on 2 data set thst is on 3
higher level? that is» 2 data set which is an item within a
data set. An esbect<ed data setL can only be referenced by an

embedded set on the same level.

INCEX

A table cf pointers to 3 data set used to provide specified

access to a dat:z set.

INNER LEVEL

See EMBEDLEL.

MASTER

A data set record wtich has dependent data sets is referred
to as either the masters, parents or ouner of the records of
the depencent dits tet. A master may itself te a record in
an embedded dat: set. An embedded data set cannot te

accessed without accessing the master.

1152444 A-2 01719784

MEMBER
An cccurrence ot a vrecord of a data set 15 a menber of thst

data sete.

CRDEREL
Maintained in 2 sequence depencding on tte value of user

specified fields based on a codlating sequencee.

(WANER

See MASTEFR.

FAFENT

See MASTEFR.

FATH
An access to a cata set record. One instance is & path. A

s5et 15 3an index of vathse.

FOPULATICHN
The numkter of recorcs in a data set. Fcor an embtecdded dat:
setr the population is the number of records in the embedced

data set per occurrence of the master data set.

FRCPERTIES
The physical structare 3and parameters of a data sets sets or

subsetr» such as storage requirements or structure typea.

1152444 A=3 01715/84

RECORD

A recorg contairs all the information that pertsins tc an

entit Ya

SCCPE

The range of influerce of a data set» set» or subset.

SET
An incex cf patts tc a cata set Wwith 2 pointer to each

recorc of that cata set.

SPAN
An incexs» whtether ovdered or retrievals which references
every recorc in a dgta set is said to span the data set.
Subsetss whether automatic or manuals may span 3 data sets

altheough typically they are not spanning sets.

SPLITTING
The methoc of irserting a new table intc @ set. When
fidlecsr D¥SII sglits an index table intc two tatles wather

than usine overflouw techniquese

SUBSET
A collection of patts to some or atll of the records of a
data set. The criterion for membership in the subset can be
specified to the DVI/DASDL compiler through a WHERE clauses
in which case tte sibset is automatic and maintsined throuvgh
an incex structire. Aditernativelys rveccrds can be

programmaticatly inserted into the subtsetr» in which case it

1152444 A4 01719784

is 3 manual subset zn¢ is maintained by means of & 1ist

structure.

UNCRDEFREL

Not maintained in a user specified order.

1152444 A=-5 01719784

APPENDIX B

EMS/TASDL GENERATED CODE

The CMS/LASDL compiler generates coae to perform the following

furctions:

VERSION ANC SECURITY CHECKING

These functicons are gerfermed by the operating system (MCPII)
whenever a procram issues a CMSII operations This code validates
any 1ogical data base nane included in the open operations checks
the version stamps of atl structures incluced in the path
cictionary of the prcgras» and ensures that the user program

meets any security requivtements that are specified through use of

& SECURITYCUARL filea

KEY-BUILDIMG CODE

Yhis code is calied shenever the DMSII system needs to construct
the key for any structure which has key items dectared (incexec

set cor subsete Or orcerec tist)d.

1152444 B=1 01715784

WHERE» VERIFY» AND REQUIREY CLAUSE CHECKING.

Each time an update ¢perztion is pérformed on & data set record
(store opperaticn after ejther a ltock or create operation)s, the
CrMS/TCASCL-generated coce is executeqg to ftirst evaluate any VERIFY
cr REQUIFREL clauses (for both the fixed anc variable fermat
parts). It any of these checks faidr a DATAERROR DMSTATLS
excegtion condition is generated. 4f a store operation uas
éttemptec after a lock orerations the DMS/DASDL-generated code 1is
then used to determire i{ any critical fields (those dats items
which are used in KEY or MHERE clauses) have changeds if not»
the STORE is trivials IJ any of the critical fields has changed»
cr if it is a stcore cper¢tion following & create operaticns €ach

set snd autompatic subtset must be examined in turne.

fFor @ store cperatior following a create aoperation» the C¥S/CASOL
coge evalustes all ot the WHERE clauses on automatic subsets. If
the record sstisfies any of these ciausess the recorc is inserted
into the appropriate subsets in addition to il of the sets
ceclared for the datc set. The DM3/DASDL~generated key building
coce is called duringe the insertion of the data set record intc

these sets and subsets.

For 2 store coperatior following a lock operations all sets and
sutsets zre examined to c¢etermine it the key has changed. If it
hkass and the change 15 vélids the old key is removed from the
incex and the nex key 1s inserted. If the key has not changed, a
KEYCHEANGED DMSTATUS excertion condiition is generated. In

sacition tc checking for key changess the WHERE clzuse for ezch

1152444 B=-2 01719784

eutosatic subset is re-evaluated. 4f the value of that ccndition
has changec» then the record is inserted into or removed from the

subset.

For embecced dats sets» the process is identical for both the
store operatior after a2 <reate operation and the store operaticn

sfter a 1ock operaticns 3ith two exceptions:

1. A KHERE clause canrot reference an embedded data set.
Za Key fietogs for an «rdered embedded datz set cannot bte
changeds

For both cdisjoint anc emtedded data sets» the DMS/DASDL~-generated
coce is only used for the key building and fcr the various
testing being performsec. MNone of the structure maintenance is

performec ty this coce.

ALL INIVIALTZATICN OF EATA ITENS

This code is executec each time a create operation i5 requestec
by a3 user. Any item for which an INITIALVALUE clause was
specifiec receives ttat wvalue. The RECORD TYPE field» if
gresents 15 initialiied to the value suppliec with the create
operztion. ALl other items are initialized to nulils. If the
varizble format value sugplied wWwith the CREATE {(COBOL and COBCLT74
cnly) vert does not matct any of the values zllowed for the
RECOFD TYPE fietds the DV¥S/DASDL—generated code returns a

CATAERROF CMSTATUS erception condition.

1152444 B=3 01719/84

For & recreate operations no initiatization is performeds, tut the

FECGFD TYPE fielc 15 verified.

SELECY CLAUSE VERIFICATION

Any checking needed to streen data set records from a remapr are
specifiec by a SELECT clzuse. This code is functionsidly
identical to that used fer the WHERE and VERIFY clauses. If &
record fails to meet the specified conditions, the DMSII system
repreccesses the fino opevation untidi a recorc can be found which

satisfies the requeste.

THANSFCRMATICN CCDE FOF REVAP RECORDS

Iransformation code constructs a rewap record from the contents
of a physical cata se¢t records The format of the remap records
£s presentec to a USEr programs matches the ceclarstion of the
remaps, and is totally incependent ot the format of the physical
cata set reccrde. If the remap record exactly matches the
physical data set record fas in the case of a remap used to
assign RPGiI~compatitle cata names to an existing data set)r» nc
transformation s needed~ In all other czses» a transformation

sust be perforsec.

1152444 B=4 0171584

TRAKSFCRMATICN CCDE FOF PHYSICAL DATA SET RECORDS

Iransformaticn cecde vsecorstructs the physical data set record
from the contents of 3 remap- This code is the exact inverse of
thst used to ccnstruct the rewaps with the exception that ati
FEADINLY items are simply verifiedr rather than movecr as part of

this reccnstruction grocesse.

COCE SEGMEKTY ASSIGNMENTS

The cperating system {(MCFII) assigns an entire code page to each
cpen DMSII data base« Ezch page can contain up to 64 incividual
segmentss there are six such pages reserved within the cperzting
system (MCFIi) for CFSII data bases. MWher generating cocer the
DMS/CASDL compiler attemets to Limit each code segment to a
length of 10240 bhits (12¢0 bytes). If the amount of code
required for the dats bate cannot fit into 64 segments of this
sizer then the size of ezch segment is incremented by 1024 bits

until 64 segsents can acromodate atdi of the code.

1152444 B=~5 01719784

SYSTEM/MARK~SEGS PROGRAM AND DMS/DASDL CONPILER

If the CCDE cgodllar aptior has been set in the OMS/DASDL compilers
then the DMS/7DASEL listirg describes the type and docation (by
segrent nuasber) of tte ctde generated for each structure. The
SYSTEM/MARK-S5EGS procram atlows the code segmentss» uwithir a data
base dicticnarys» to ke mzrked as importants for use with the
Friority Memory Manacemert routines in the MCP. To use the
SYSTEM/MARK=SECS. procram for this purposes the key word DVMS must
te the first option specifiec to the program» followed by the

rumbered list of segmente to be mar ked.

User discretior is acvised when marking segments- A code segment
which is usec infreaqventlys such as the version checkirg codes
shculd never be marked. Code segments to bte marked shoutlc onil)y
include those that a3re related te highdy veclstile data sets anc

ére relatec to the sets zna subsets which reference those data

SetSe

1152444 B-6 01719784

APPENDIX C

COBOL QUALIFICATION OF wMSIXI IDENTIFIERS

Unigque idertifiers are required in LOBOL programs. If a dasta set
is invoked more than oncer separate internal names must be used

50 that itemss within the daté set can be appropriately qualified.

A variable declaraticn with the same name as a data Ltase item can

ke usec ocnly if the item is ablde to be uniguely qualified.

In a selection expressior» sets and subsets require quatification
if they @re not unique icentifiers.s Data tase items in a

selection expression neec not be qualified.

1152444 £t-1 01/19/84

Example

LASDL:

»
-

D1 DAaTA SET(
A MUMBER (5}
8 NUMBER (31)5

S1 SET CF 01 KEY (A)»

CCcBoLs

CE
01
01

DEASE.
D1 INVCKE [1.
CA INNOKE C1l.

WCRKING~STORAGE SECTICN.
77 A FIC 99.€Invalid tecause it cannot te uniquely qualifiec.)

01 @

03 A PIC 95.

FFOCELURE DIVISIOM.

1152444

MCVE
FIM
MCNE
FINL
FINC

A CF 01 10 L. (Valid.)

S1 OF D1 AT t = L.

INDEX SEQUENTIALS

(valic because it can te gualifieda)

(Valad.)

A T0 1. (Insgfficient qualification of A.)
S1 AT A = Le (Insufficient qualification of S51.)

S1 OF DA AT ® OF

DA = L.

{¥atic tut A need nct be cualifiec

in a selection expression.)

C=-2

01719784

APPENDIX D

B 1000 - € 67¢0/8 7700 DMSITI COMPATIBILITY

The relaticnship of E 100 DMSII to B 670048 7700 D¥SII is as

follous:
1e B 1060 DMSII is a logicad subset of B E700/8 7700 CM¥STI.
2. Any C(0BOL constructs used to access B 1000 DMSII are

syntactically znd semantically compatikle with

B 6700/8 7700 LMSIY.

3. Any rhysical d:ita tases developed on the B 1000 LCNSI1 3re

not compatibie witt B 6700/8 ¢700 formatsa

4. The crcerec emktedded data sets together with its access set
of B 1000 LM5I1s it not supported by B 6700/8 7700 CmSII.
However» the icentical COBOL capability is prowidec ty
makirg an crdered embedded data set an unordered embteddec

data 5et togethker vith a3 set on B 6700/8 7700 OMSII.

Se The physical wmappirg algorithas on thke two systems differ
significantly znd the physical mapping parameters must be
reviewed carefully prior to transfer from 8 1000 DMSII to

8 6700/8 7700 LMSIl.

1152444 D=1 01719784

Ordered and retrieval set types are not meaningful an
g 670078 7700 IMSI15 they produce s regular 8 6700/8 7740

DMSII set.

DM3/CASDL parameters differ significantly with no cirect
correspondence between B 1000 ODMSIT and 8 6700s8 7700

CMsId.

8 1000 DMSII h2s ne structure comparable to the LINK in

B 8700/8 7700 CM51Y. Howevers the FAST SUBSET mechanism
{unordered mantal Tubset with only cne entry)r» described in
Appendix B» car be used to accomplish the same function =5

a LINKS

The generalizec selection expression as it exists in the

B 670078 7700 LM51IY has been implemented for use by COBCLT74
ang RPLII programs which access a DFMSIT data basesr as well
as bty the INS/INGUIRY programs This implegentation is
explicitly Limited to these three scftware products», and
preciuces any cf ttese products from using the pasrtial key
search {(refer to tte B 1000 Systems DMSI1 Host Language
Interface Manuzl)e.e The generalized selection expression is
valic for the (QBOW74 compiler and not for the CCBCL

compiler. LOBLL programs can use the partial key searche.

1152444 D=2 01719784

The fodllowing CMS/CASDL =nd COBOL statements can be used tgo
process all of the recorcs of the set S1 which satisfy the key

conditions:

A = 100 AND 8 > @ ANT B < 50000

1152444 D=3 01715784

Example:

CASDL3
D1 CATA SET (

A NUMBERA(3!;
E NUMEER(SY;

S1 SET CF D1 KEY (A,B), INDEX SEQUENTIALS
cceoLs:
PARA-A.

FING S1 AT A = 100 ANL B = 0

ON EXC(EPTION IF UMSTATUSCNOTFCUND) NEXT SENTENCE

ELSE FERFORM <error—=routine>.
FERFORM PAFA=8 UNTIL A > 100 DR B > 50000
PARA~B .

FIND NEXT %1

CN EXCEPTION IF UMSTATUSONOTFOUND) MOVE 101 TC A

ELSE FERFORM <erjor=routine>
ELSE IF A = 100 AND 8 NOT > 50000 THEN . « »

NOTE

This ieptementatior for partiasl keys exists only in
the B 1000 DMS5S13i» znd only for index sequential
structures (automatic subsets and ordered sets). In
the E 6760/8 7700 dmplementation of DMSII» the
current fath pcinter for an index i5s not affected Ly
an unsuccessful operation. Therefores the preceding
coce deces not grodice the desired result on these
systems» and users upgrading to B8 6700/B 7700 DMSII
must modify any pregrams which use the preceding
technicue before evecuting those progrzms on the

E B700/B 7700 systemse

1152444 D=4 01/715/84

The technigue cescribed in the prior example does not
produce the desirec results in the B 1000 OMSII for
either ordered mantal subsets or ordered embedded

data setse.

Cata bases must be remaprec and reloaded at the time of transfer
to B 6790/E 7700 DMSII. Howeverr any DMSII statements in COBCL
grcgrams developed fcr B 1000 DMSII are wvalid on B 670078 7700

E+¥SI1» with the excegtior previously noted for partizl keys.

1152444 D=5 0171584

APPENDIX E

LMSIY MENORY REQUIREMENTS

The amount of memory required to process 2 D¥SII datz tase is &
function of the complexity of the data baser» as uwell as the
rature of the applicztior being run against that dats tase. Faor
exampler 2 very complex c¢cata tase containing many access wethocs
for each data setr as well as subsets between the data setss»
recuires much wore memory to process than & very simple data tase
contzining only a few access methods. Simitarlys» smuch more
gewory is regquired fcr urdating a data base than for inquiries

into the same cata bisea

WORKINE SET

In acditior to the ccmpiexity of the data tase and the nature of
the zpplication being perforseds an extremely importznt factor to
be ccnsicered in the calculation of the wemory reguired to
process 2 cata base is tte concept of workincec set. Horking set
is defined to bte the amownt of memory wWhich is neegecd to perform
@ prccess xithcut caitsing thrashing (continual overlaying of
gemory to tring in tte ccde or data segments necessary). Khen
the wemory available fer a process 15 less than the working set
for that processs througtput is drastically reduceds Thrcughpat
imgroves a3s the amourt of mesory increases? the mcst cramatic
improvesent is achieved immediately after memory is increzsed

teyond the working set (that amount of memory i5 often referreg

1152444 E-1 01/715/s,84

to a5 the thrashing goint). Calculations for the working set of

an arplicsticon can be breken down into code and cata cocmponents.

FCPI1 MEMORY MANAGEMENT ALEORITHMS

When MPRI MCPII opticn is set» the wemory priority and decsy
factor assignec to s DOMSII buffer are those of the user grogras

which has ctaused the bufier to be atlocated.

For wore information on Ffriority Memory Management and the
concept of working set» vefer to appendix A of the B 1000 Systems

System Scoftware Cperztior Guider Yodume 1.

USER PFOGRAM REQUIREMENTS

hithin a user frograses thte memory required consists of the code
required for the UMSI1I verbs and exception hendling» and the dzta
storage for the varicus ecata set records invocked by 2 progras.
Since the [MSI]1 subsystew is embedded within the MCPII» and user
programs perform U[MS11 orerations by means of the normal MCPII
cogrsunicate mechanise» the only extra code or data required ty a
user prograe is generatec by the COBOL compiler to build and
issue the CMSII communicztes. The summary statistics printed Lty
the compider in each prosram Llisting can be used to determine the

total coce and data requirements for a procram.

1152444 E-2 01/715/84

¥CPIT COLDE REQUIREMENTS

The minimus amount of mewory required for the DMSII code within
the MCPII is 6K bytes? towevers the DMSII code working set can
require as many as 40K bytesr depenaing upon what is actually
being done and whether or not the data base uses audit and

recovery. The code sorking set is composed of:

1. The 66X byte mirisus mentioned in the preceding parasgraph,
which includes all of the code that must be present to
perfors any operation. This includes such itess as the
code for the hencling of structure currents, buffer

handiing» communiczte decodings and exception handlinge.

2 An acditional 4K bytes for routines which may ke necessary
to sstisfy any request but which are not specific toc the
particular reaqueste This incdudes such items &s I/0
initiation and/or clean-up» and structure anc file

validatiaone.

3. The specific ccde recessary for the request being
processed. This figure can vary from 2 minimum of 1K tytes

to a maximum of SK bytes.

4. If the data base uses DMSII audit 2ana recoverys, the audit
routiness all cf wtich falt into categories 1 and é»

require asn additioral 4K bytes of menorye.

1152444 E=-3 01719784

PCPII CATA REQUIREMENTS

There are 14 types ot data structures in memcory which the OMSII
suktsystes uses to process a data basee Most of these data
structures are starec by all programs currently accessing & given
cata base-. These types «f data structures are:

The globals

The aucit Flg

The aucit tuffers

Lisk file headers

Structure records

Structure currents

Lock descriptors

Euffer descriptors

Data buffers

170 descrigtors

CMSII work areas

fecord wWork areas

Status masks

Fath dictionaries
At data base open times» the CMSII system allocates a single area
cf memory which is usec 1o contain the globkals and the 170
cescriptorse. descrigptors. Path dictionaries are contained
within a user prograsg®s run structure nucleus» are allocated at
B0J» and require no extrz memory 1links. The other items are
allocatec @s neededr andg each occurrence of &n item requires a
gepory link in acddition to the memory sizes in the foliowings
each memory link is 187 tits in lengths. Ezch buffer descriptor
is allocated at the same time as the buffer it references and 1is
contiguous to that buffer?s only one memory link is required faor
8 Ltuffer and its descriptor. Similarilys thke audit FIB and audit
tufferss which are presert only shen a data tase which uses aucit

anc recovery is beinc upcatedr are aliocated as a3 unit therety

requiring only one memory Link.

1152444 E=4 01719/84

NDTE

In the discussion that foillows» 2 data
structure is stared by ali users ot the data
Fase unless specifically noted to the
contrary. Alscs when allocating memorys, if
the MCPII {finde an available space which is
{arger thar needed» it assigns the amount
reeded and mar¥%s the remainder as avaitatble.
1f» towever the excess space is not large
encugh to fFold an available memory links the
MCPII allocates the entire piece of menmory.
This can czuse any data structure to be as
ruch as 187 bits Llarger than actually

requirede

Elobals

The globals are containes in the first segsent of the data base
cictionaryr, are trought into memory when the data tase is first
cpeneds 3arc aust be kept in nmeaory until there are no more
programs accessing tke cgzta tase. The globals total
cpproximately 1K bits arnd contain the following miniaune

infcrmatior needed by the DMSII system to process the data base:

1152444 E-5 01715/84

1. Pointers for file @nd structure informations both in memcry

anc in the cdictionzrye.
Z e Pointers to docksr tuffers and I/70 descriptorse.

3. Boolean fields describing the status of such items as the

dats base or the avdit file.

4 Fielcs for such items as totad users», transaction and

syncgoint countss znd auait serial numtbters.

S The size ot the dictionary fields used to access data base

structures are B0 tits times the larcest structure rumber

aliocatece.

Audit File Inforeaticn Block

The audit Fide Informaticn Block (FiB) is either 568 bits (for
tape) or B804 bits (fcr cisk) in length. It 1s built at the tine
cf the first operaticn wtich requires auditirg from 2 File
Farameter EBlock whiclt is stored sithin the data base dictionary.
The FIB regains in memory until there are no more programs

upcating the data base.

1152444 E-6 01719784

Aucit Buffers

The IMSII system allocates two buffers for the audit trails each
aof which has its own I/0 descriptor. The dlength of each buffer
is equal tc the BLOCKSIZY parawmeter from the ALDIT TRAIL
statement in the OMS/CASTL compiler (default = 1800 tytes).

These buffers are writter to the augit trail as they are fillec
or when a syncpoint cccurse If the DMSII system i5 in the
process of closing thke carrent audit file anc opening & new ONeE»
édcitional buffers cén be allocated in order to allow user
grograms tc contirue to execute whide this file=switching pracess
takes places These extrs buffers are temporary and are

cealilocatec as socon &s pessible.

Each I/0 cescriptor is a system I/0 descriptor, 272 bits in
tength. Unly the originzl two audit buffers have I/{ descriptors
gdlocatec?y no I/0 descriptors are silocated for any over fiow

zugit butfers.

The zudit FIB» I/0 descriptorss and buffers zre allocateu‘as a

contiguous unit within memocry.

1152444 E-7 01/719/84

Structure Records

Structure records are stered within the dictionary and contain
the information necessary for the DMSII system to use &
particular structure. Ttey include static information
initialized by the D¥¢S/DPSDL compilers and dynamic informstion
gaintained by the DMSII system within the mesory copy of the
structure record uwhide tte structure is in use. The static
information includes suct items as vecords blockr» and area sizes»
key information for sets and subsets» and parent and otject
structure numbers. The cynasic information includes a count of
USETSs mewmcery adoresses ¢f items such as the DFH for the fitle of

this structurer and parert and object data set structure TEeCcOrgsSe.

Structure records are brcught into memory oniy when needed and
regain ir gemory until ttere are no more users for that

structuree.

Cisk Fite Headers

The OMSII system uses syttem disk file heacers (DFH) thatr have a
Length of 540 tits plus 26 bits per area declared- In acdition»
the EMSIY system appends to each DFh the File Record for the
fite? these file records are maintained within the data tase
cictionary, are at 1least 132 tits in 1ength» and contain the

follcwing informatior:

1152444 E~-8 01719784

1a

File version stamps A 36-bit field shich represents the
{ast time the file was updatec by the DMSII systems. This
fielc is also saintained within the DFH itself, anc the two
version stamps are compared when DMSII first opens the
file. The file open is allowed only if the tuo versions

are identical.

Self-relative pointer. A 1l6~Lit field used bty the O#SII
system tc upcate tte dictionary copy of the file record

when the fite is finatly closed.

Size. A 1b6-bit field also used by the DMSII system when

upgating the dicticnary copy of the file recordg.

Next Available-Kigtest Open (NAHO). One or more 64-Lit
fielcs describting the availabie space within the file. The
actual nuaber cf NIHD fields within each file record is :
function of the nuwber and type of structures stored witkin

the file and czn be determinec from the foilowing:

1) Listse prige dz2ta setsr and non—-prime indexes. A
single NAH{ is also maintained for fidles containing any
of these structure types. This NAHD is stored in pits
133 througt 19¢f of the fiie record. The totsl lengté

is 156 bitse.

1152444 E=9 01715784

2) Non-prime cata set. One NAHO for each arez declared
for the data set. Total iength is 132 bits plus 64

times (arezs decdiared).

Each DFH is allocatec when its corresponding structure is
aliocatec anc remains in memcry until no programs are using any
of its structures. The TMSII disk file headers cannot he

cverlayec.

Structure Currents

The CMSII system uses the currents to uniguely identify a current
record or path pcinter fecr 3 particular structure anc zldocates
one current for each user of a structure. In this contexts a
user incluces ény inyocation of a structure within a2 program. 1If
é data set is invoket more than once in a programs that deta set
anc ald of its sets znd subsets are each assigned a current for
€ach invoke when the strocture is first upcatec? otherwiser» only
current record pointers that are referenced are invoked. FEach
user is cesignated by both jot number and relative invoke numter
kithin the program. Thit cesignation is used by the DMSII system
to icentify each currente. For exampler if there are seven invyoke
stitements within a civer prograwns, and the operating system
(MCPII) assigns job 125 to that programs the DMSII systenm
cllocates seven currents for the programs and these currents
woulc be identified ss jcb #225» invoke ¥1 through jot #25s invoke
#7. Furthermores if the first tso invokes in the progras

referencec the same «ata setr there would be two currents for

1152444 E-10 0171984

thet data set allocated for this programs and these currents
woulc be icentified zs jeb #25» invoke #1 and job #25» invoke
Set and subset currents zre assignedgd the same user numkber as

their parent data sete

Currents are allocated ir a Linked 1ist from the structure
recordsr 3s referencecr ard are dealidocated when the gprograw

referencing the current closes the gata bsse.

The base size for a current is 632 Litse.

In acditions the current for every structure that has an

2ssociated key is increasec by the length c¢cf the key for that
structure. This adcitioral space is used by the DMSII system
kuilc the key whenever tte structure is accessed by that key.
For c3ta sets» beth cisjrint and embedded» a hidden tuffer is
gllocatec if it is5 required. For data setsr a set of status
strirgss three bits eachs is allocated» one status string for

each datz setr it5 setsr» and any embedded structures.

42.

to

1152444 E-11 01719/84

Lock Descriptors

Cne lock descriptor exists for every DMSII record in memcry that
is locked st any given time. Each descriptor contains tﬁe BEMCTY
édcress of the buffer for the recorce the user to whom it is
assignedr» and the disk acdress of tne record. Additionallys, the
lock descriptor identifies the reason for which this reccrd has

teen lockec. The rezson can te ocne of the followings

User Lock
A user prcecgram has explicitly tocked this records by means
of either a MOLIFY cperation or a SICRE after & CREATE
operation. Onily c¢ata set records» both disjoint and
ewbecdeds can be locked in this fashion. This lock is at
the recoro Levels that iss if severzi cata set records are
storec in a single tlock» and une of those records has been
locked ty a user» tten the other reccrds are stitd avzilatle
to other users. Altor the locking process 1s non~exclusive
in that a recorc thzt has been lockec by a user can still be
accessecd by other veers through a FIND operations only
concurrent MUODIFY ogperations are prevented by this type of

locka.

MCPII Read
This is5s used by the DMSII system whide s recorc¢ is being
read to insure that the Memory Management routines within
the operating systew (MCPII) do not averitay the recorc until
the CMS51IT systen hat cospleted the current operation. This

is 3 strictly tempovary conditions and the record is not

1152444 E-12 01/719/84

{ocked in and is unévailabie to other DMSII users.

#CPII Lock
This is alsc a tempcravry condition anc is used by the DRSII
systeg whenever a record has been altered by 3 partiatdy
completed opersztione This is an exclusive lock. Only the
operating systexs (MIPII) can access the information
contained withir the buffer until the operation has
completedr, at wEkich time the lock status of the record
returns tc the state which existed prior to the operation.
This function is nectessary since the cccurrence of an
exception durirg a rartially completec operation requires
that ali changes cowmpleted to that point be backed gut?
this type of lock prevents any other user from sccessing

information which i¢ in such an indeterminate state.

Each lock cescriptor is 93 bits in length» and the DFSII systew
zllocates them is a single table, five at a timesr 25 reguirecd.

If the nurber of lock descrigpters requirec increasesr» a3 nex tatle
is obtainecr and the old Lock descriptors are copied to the newu

table. The olc table is then discarded.

1152444 £=-13 01719784

Euffer Descriptors

Euffer descriptors are uted by the LMSII system in the allocation
anc saintenance cf data tuffers in memory. Each buffer
cescriptor is locatecr imwediately prior to the buffer descritec
anc within the same zrea of memory aliocated for the buffer.

{nily one memcry link is rvequired for each descriptor/buffer paire.

Lata set and Llist structires have buffer descriptors that are 144
tits Llong. Incex structares have buffer descriptors that sre £0
tits long. In addition tfo the fields containeg within a systes
cescriptor» information sfuch as the 24-bit logical disk address
of the block contained within the buffers, the number of Lserss an
aucit seriat number shict identifies the {last time tke buffer sas
upcatedr tuwo memcry cddress fields which point to the next and
prior DMSI] buffers» and three boolean fields used to contvrol the
upcating of the cisk copy of the information contained within the

tuffere.

Buffers

fuffers are allocatec as needed and are dezl located 3as requirec
Ly the mewcry sanagenent systeme« The point &t which a3 buffer can

te overtayed depends upov the foliowing criterias

1152444 E=14 01719/84

Has the buffer been uvpdated? If nots then thte buffer can te
relessed 25 soon as it if no longer in use. If the btuffer has
teen updatedr» then it must no 1onges be in user and it must te

written to disk before it can be released.

If the buffer kas been urdatedr does the data base use audit and
recovery? If nots tte buffer can be written to disk and
ctesllocated as scon &S necessary. Lf the cata base does use
gucit an¢ recoveryr the IMSII system uses a mechanism catled the
unreleased auvdit serial rusgber to deterwine when an updated
tuffer car be writter. 1he qlobals for the cata base contsin an
aucit serisl number shict is incremented by one each time any
dugited cperation occurs- The current value of this number is
then storec within thke carrent audit buffer znd within the buffer
cescriptcr for the buffer just affected by the update.
Therefores both the buffer descriptors and the audit buffers
contain fielcs which describe exactly when they were last
upcateo. When an aucit tuffer is writtens, its last sudit serizt
rupber is stored wittin snother fiedd in the globals. This
fielcr the unretleasec aucit serial numbers, then represents the
1ast audit which has beer physically written to the zudit traitl.
khen attempting to dealticcate buffers which have been updateds
the LMSII system reqguires that the audit serial number for that
tuffer canrnct be gresater then the unreleased audit serial
rumbers thus insurincg thet no part of the data base on disk
represents changes which are more recent than any part of the

aucit trail.

1152444 E~15 01715784

The size of any CMSI] buffer is equal to the vadue ot BLOCKSIZE
sttribute (in bits) cf tte structure referenced by that buffer

flus the tuffer cescripter.

Hidden Buffers

The implenrentation of revaps and {ogical dats bases require the
gccition of one 1evel of buffteringe This additional huffers
called the hidcen butfers is an intermediate storage docation
used in the process c¢f transforming the physical date sets into
the remap data setss and vice=-versa. The following rules apply

to the use of kidden buffers:

1. Hidden buffers are atlocated conditionalliy. A hidden

buffer is cnly reqguvired if transforgations are necessary to

buitle 3 regap from the physical datz setr or if any

REACCNLY items exitt in the remape.
‘e Hidden buffers are fixed in memory and cannot bte overiaic.

. Hidden buffers canvrot be shared by mul tiple users. If a3
given rexap recuires a hidden buffer» then one hidden

buffer is allocates for each user of that remape.

he If 2 hidocen buffer is requirec for a data sets then that
buffer is allocatec at each user?®s first reference to that
data set. Eachk hicden buffer remains zllocated until its
user closes the gata base. (lo this extents a hidoen
buffer can be considered to be an extension to the current

record pcinter for a data sets in factr» the two are

1152444 E=16 01/19/84

allocatec contiguoasly in some instances.)

S A hidden buffer is only used to staoare the cdata items wWithin
the physical déta s=et record. It does not include any list
heacs that migtt be required for embedded data sets or
manusl subsets. The dength of the hidden buffer»
thereforer is the TATASI2E parameter for the physical data

sets» a5 printec in the DMS/DASDL structure statistics.

€e Hidden buffers are used only for data setss both disjoint
anc embecdeds Hiccen tuffers are never used for index
sequential sets or subsetss for index random sets» or for

manual subsets.

Luring a find operation» the entire logical record is moved from
the system buffer irto tte hidden buffer. The remap is then
canstructec by the OMS/DESO0L~-generated coce. This code i5s
cptiwizecs thast iss fields which are contiguous in toth the
physical recorc and the remap are moved together. Items are

mover ingiviogually orly vhen necessarys

¥hen storing a rewmap recerd back into the data set» the
transformaticn operationt are reversed. READDNLY items are
cowparedr vather thar movedr a3t this time~ This code is also

cptimizeda

1132444 E~-17 01/1%9/84

When initializing data items during a create operationsr the items
vithin the hidcen buffer are initiaiizedr then they are
trensforsec into the user record area as in & find operation.

This ensures the validity of alt READONLY and HIDDEN data items.

A hicden buffer atlways ejists for a data set which has variable
format recordss since the RECORD TYPE fielc is READOALY. This is
the cnly case in which a hidden buffer can be sllocated for a

physical c¢ata set.

If either cf the CMS/DASIL SFILE or SS5TRUCTURE options is sets
then the D#S/DASCL 1listirg includes the ftodlowing information
sbout hicden bufferss by data set and remap:

Structure nusber and remsp number.

Lengths in becth tits and bytess of the user record area.

Length, in bcth tits and bytesr, of the hidcen buffer. If

these fielcs are zeros no hidoen buffer is required for
this it9l¢

i7C¢ Cescriptors

The UMSII system uses the program overlay descriptor for most
kutfer reac gperations. Two extra i/0 descriptors are atlaocated
dlong with the D¥S5{T glotal fields. One is used for lookszheasd

regd operaticns and the cther is for lookahesd write operationsa.

1152444 E=-18 01719784

C¥SI1 Morkasrea

I1f the DMSII system issues an I/0 request in order to satisfyva
recuests it can give up ctontrol of the processor until the I/C
cperation completess In order to restart that operation when the
170 operation comrpletesr» the DMSII system saves all of the
informatinﬁ necessary to do the restart in thke workarez for the
program which gade tte request. The workarea for each program is

723 bits in Llength &rd i¢ allocated during data base open timee.

Fath Dicticnaries

Fach entry in the path dicticnary contains information about tlre
structures referencec withir the program sucl as structure
rumbers version stamgps avd memory address of the structure
record. A path dictionavy is allocated for e€each program using
the [MS5I] system and is #llocated immediately after the DMSII

workarea.

Ezch entry in the path cictionary is a normal descriptors 64 Lits
in lengthe The number allocated for a program is egual to the

runter of structures referencec by the progsram plus one.

1152444 £E-19 01715784

OPERATIONAL REGQGUIREMENITS

{f the 13 types cf data structures» the mesory space usecd for the
cata buffers is the =ingle most volatile factor to be considered
when calculating the memery needed to access a data btase. This
is true because cnce a d2ta tase is openedr the globzlss lock
cescriptors» and I/0 descriptors vegain in memory. Once
allocatecr» the structure recordss disk file headers» and audit
structures also remain ir memory. uhen servicing & specific
recuests hcweverr the CMTII system allocates as many buffers as
needed to satisfy thst requestr» and as scon 3s the operation is
corpletesr immeciately marks as avaidable any of the tuffers which
were not updated by that operation. For any operation» all
tuffers invodved in that operation are imglicitly locked for the
curation of the operztior by the DMSII system- For find and lock
cperstionss» the buffers dor index tables or list tables are not
kert lockec longer ttan rvequited. Normally», only one btutfer is
kept lockea at a timee This 15 necessary for the following

reascnss

le Since the LMSIY syctem usually performs an operation in
several stepss» giving up control of the processor wnhile
waiting for an 1/0 operation to complete, storing any
information it neets in the workarea of the user programs
arc then restartinge the operation once the 170 operation 1is
compietes there car be several partially complete LCMSII
operations in grocess» each from a different programs. In

these circumstsnces»r it is5 absolutely imperative that no

1152444 E=-20 01/719/84

program te alicwed to atter or even access information
which may itsedf be in the process of teing alterec or
which wmay kave beer useg in a3 partisily establishec path

for another prcgrane.

2. In the case of updetes (storesr deleter inserts or remover
if the OFSII systew encounters an exception while part way
through the operation (for exampler 3 duplicate was
encounterec on an insert into an index for which duplicates
are not aliowWec)d)r it must back out all of the changes mace
to that gpointe This can only be dcne if no other user hzs
been allowed toc access any of the buffers which have been

affected by the partiatly completec operationa

The number of buffers recuired depends upon the type of coperation
anc the particudar structure being processed. There is no ugpper
1irit imposed upon tte nember of buitfers which may be required to

complete any operaticne.

Lpens Lloser Freer Lreater» and Recreate Operations

hNo buffer space is5 required to complete an opens closer freesr
creates or recreate cpergtion. For open operations the memory
recuired 15 equal to the memecry required for the glotalse I/0
cescriptorss and lock cescriptorss. The close operation rvequires
no extra wemoery. The freer» creater and recreate operations, as
well as ald4 cf the other operations mentionec in the followking
paragraphs, explicitly reference stiuctures znd can therefore

cause the structure recovds zna/or disk file headers to ke

1152444 E-21 017195784

Erought into memorye.

Find/Lock (Modify) Ogerations

Any find or lock operaticn requires at least one buffer for the
cata set recorce. In addition to that buffers» the path which is
teing usec to accomplish the operation wmay require extra buffers
for tables. If at any time the OMSLII system detects that a
record neeced is alreacy in memorys, the memory copy is

sutomatically used ard tltere is no additional memory required.

The remairing paragrzsphs of this sutsection further describe the
gsesory recuirec to perform a find or Lock operations in terms cf

the type of path usec to perform the operaticna.

Lisjoint Datas Set

Khen performing a fird or lock operation which does not referenrce

2 set or subset» only the data set Lbuffer is requirede.

1152444 E=-22 01719/84

Incex Random Sets

A firnd operation by say cf an index random set requiress 1in
édcition to the data set bufferr a cuffer for the index tables
the length of this buffer is the blocksize in bits for the set.

In acditicns overfios Luffers can be required.

Index Sequential Sets Ind Subsets

The buffers requirec for an index sequential find operation can
range from one to five buffers for index tables plus the data set

tuffer.

Embedded Data Sets

If the operation is & fird firsts find tasts, or find with 2 keys
two tuffers are requirede« One buffer is needed for the parent
cata set reccrags which centains the list heacs and ore buffer is

needed for the object record itself.

If the operaticn is z fird next or find priors only one buffer is

required for the embedcec¢ data set.

1152444 E-23 01/719/8%

¥anual Subsets

In acst cases» a finc operation by way of 3 manual subset
requires onre more buvffer than a simitar find operation on an
embecded data set. This additional buffer is for the cbhject dizta
sete The only exceptior to this is a fast subset (unordered
manual subset with a3 poptiation of oned» in which case only two
tufferss ore for eact data set are requirec» since there is no

tatle for the tist.

Insert QOperation

The number of buffers recuired to perform an insert operation can

range from one to fiwve depending on the following itemse.

Farent Data Set

Cne buffer is usually recuired for the parent data set in order
to get the tist teads for the subset. Houever» if the List is
Lnorcered and @ current tist table dtor the parent is already ir
gnegory» the List heacs are necessary onily if there is no space in
thst table or any of the successive tables. If there is space in
any of these tabless ther the entry can be inserted without
sffecting the list heacdss and no butfer is required for the
parent data set record. If there is no current tabler, or if a
new table must be atliocated to complete an insert on ar ungordered
listr ther the parent record must be made present in order to

sccess the List headse

1152444 E=24 01715%,84

Cbject Data Set

For orderec subsets, the object dats set must te made present in
crcer to build the key irforwmation §or the subset. This requires
cne tuffer. No buffer stace is regquired for the object record if

the subset is unorderede

List Tables

Zero to three buffers car be required for {ist tables depending
upon where the new entry is storeds If the new entry can ke
gaintained by 2 fast subtets, the new entry i5 stored in the
farent data setr» and no Yist tabie 15 needed. T4f the new entry
can te stored in an existing tabler» ondy that one tatle needs to
be present in memorys. I9 the new entry causes the creaticn of a
new tabler the 1ist tables on eithesr side of tlte new table must
ke mzde presents in crder to update the list heads within those
tabless requiring a totadl of three tables to be present. If tte
new table falls 2t either the head or the tail of the Listsr onty
tuc tuffers are required for list tables since only the table
which was greviously the heacs or previously the tail, needs to

be updated.

1152444 E=25 01719784

Unordered ¥anual Subset With One Entry Per Table

An unordered manual subset having one entry per tabie is treated
s a specizgl case. fince there can only te cocne entry per tables
€ach new €rtry must require a3 new tables; thereforer there is no
need for the OFSII syster to search for available space within
existing tables. Rathers, if no current table for the subset is
in memorys the OMSII system adds the new table to the enc of the
list. This recuires two table buffers», plus a buffer for the
parent data set to update its List headse If a current table
coes exist» the LMS51] system acdds the new table immediately after
thzt tabie, requirinc three tuffers: one for the new tatle anc
cne each for the next an¢ prior tabliles» ir order to update their
tist heacs (if the existing current is the tast table in the

Listes this case i5 icentical to thaxr of no current table)d.

femove Operation

A remove operaticon ncreally requires only one buf fer for the
current 1ist tsble. If, howevers the entry bteing removec is tte
fast active entry in a tzbles then one or two more buffers are
reguired in orcer to deallocate the current table. If this tatle
is the only tabde in the chain for the parent data set records
then only cocne gore buffer must be present in order toc update the
List heacs within the pavrent data set record. If there are more
tables in the listr then two buffers are reguired in order to

upgate the List heads within the prior anoc next records (either

one of these can be the gparent data set rather than znother List

1152444 E=26 01715/,84

tatle)d.

Store Operation

The zmount of gemory regtired to perform a store operation on &
cata set depencs prizarily upon the type cof cata set» either

cisjoint or embeddeds

Cisjoint Data Sets

The zmount of buffer space required for g store operation depends

upocn two thingss

1. The wanner in shict the current was establishted for the
data set recorc» ttat iss is this a store operation after a

create or a mocify operation?

2. If a2 store operaticn after a modi fy operations were any
critical fields (tlose referenced bty a KEY or WHERE

statements) chzngec?

1152444 E=-27 01719784

Store Cperation zftev a Create Uperation

Under normal circumstancess this operation is the single most
cesanding cperation in terms of memory requirements which the
CMSI] system can perforg sinces in addition to storing the record
in the dats sets the keye of the record must be inserted into
every setr both indexd secuential and index random» uwhich spans
the cata set as welt as into every automatic subset for which the

record qualifies for memtership. The buffer requirements zre zs

followss:
1. Une buffer for the data set recorde.
Ze One or two bufters for every index random set which spans

the cata set« The second bufiter is only needed when a

takble is fildec ane an overfiow table must be zllocated.

l. For every indey secuential set and every automsztic subset
for which the srecord qualifies for memtership» a minimum of
one 2nc¢ & maxiguk <f thirteen buffers are required. This
includes the fine table into which thke key is placeds anc
every coarse tsble necessary to get to that fine table.

The test case requirement (two buffers) occurs when the
fine table is gointed to directly ty the root coarse table.
The worst case requirement {(six buffers) occurs when the
fine table is fointed to by a fourth~tevel coarse takbtles
and the fine teble is full ang must be split to complete
the cperatione In the latter case» four bufters are neeced

for the coarse tabVes» and two buffers are needed for the

1152444 E-28 01/715/84

fine tablies. The rumber of 1evels of coarse tables deperds
upor the amount of tabde splitting which has occurrecd,

which is 3 functior of the foilouingithree itegss
1) The number of entries per table.

2) Whether the teozd is random or sequential relative to
the key specification of the set. The table splitting
glgorithm vsed by the DM35id system produces the same
resuit for eitter loading in seguence or reverse

. SEQUENCE.
3) The value cf tte SPLITFACIOR attritute for the sete

The effect that eact of these items has upon index
sequertial tabde splitting is aiscussed in detail in the

last subsection of this appendixe.

Store fperation Aftev a Modify Operation

If no critical fields are changeds the only buffer requirec is
that for the data set itself. If critical fields are changeds
thens for any set or subset whose key has changeds the old key
gust be deletec from the setr and the new key must be inserted.
The kuffers recuired for these operations are the same as those
required for a normal delete fromr and insert into, the specific
sety» either crdered cr retrievals Jsimultaneouslyr if the status
of the recordr relative to one or more automatic subsetss
changess the subsets must be adjusted accordingly? the record is

inserted into zny nes sutset for which it now quatifiesr and is

1152444 E=-29 01719784

celeted from any subset 49or which it no longer quatifies. The
tuffer reguirenrents in ttis case are identicai to those for key

changese.
NOTE

Althcugh 3 store oreration after 3 crecte operstion
is noermaily the most demanding operation in terms of
memcry requirec» tte extreme case ¢cf a store
opevation after a vodify operation in which every key
is changeds anc the status of every automatic sutset
is changeds recuires mcre memory than 2 store

operation after 3 treate operation.

Esbedded Bata Set

For & store cperatior after 3 create operation on an embedded
cata setr the tuffer regrirements are similar to those for an

insert intc a3 manual subret except thats

i. Since the d¢ata reccerd is included in the tablesr there can

be roc extra buffer éequired for an okbject recorde.
2e There is nothirg cemparable to a fast subset.

laking the above itegs irto sccounts, the number of buffers which
car be reguired for tist tables for a store cperation after 2
create operaticn on Zn ewbedded data set can range from one to

threece.

1152444 E~30 01/19/84

For a3 store cperatior after 3 modify operations only the table
buffer is necessary since key items cannot be changed on an

crgered emtecded seta

Celete Operation

For cisjoint data sets» vhen a recosrd is deleted from a data set»
the tuffer requiremerts ere approximately the sase as for the
criginal acditior of the record into the data set (store

cperation after a create operationl.

For embedded data sets» the Lbuffer requirements are analogous to

those for 2 resove cferaticrn fros a manual subset.

fegin~transaction anc En¥=transaction Operations

If a2 no aucit gperation is requested on either of these
gperstionss, no extra bufder space is necessarys. When an audit
eperation 15 requested or these operationss 2 store operation is
perfcrmeds and the requirements are the same as those for 3 store
operation on a simple citjoint data set. lherefores the tuffer
reguiresents for eitker 2z begin-transaction s&ith audit or
eng-transaction with aucit operation are dependent upon the
runmber of indexes declared for the restart data setr and whether
the current restart record was established by a create or s lock

cperation.

1152444 E-31 01719784

CATA MCRKING SET

When estiwating the cata working set for an applications the 112
types of cdata structiures can be classified into the following

five groups:

1. The cata structurer brought into memory at data tase open

tige: the glokals and two 1/0 descriptorse.

Ze The structure records», file recordsr» and disk file headers

for every structure referencea by the zpplication.

1. The zucit FIB #nd tuffers» if the dsta base uses audit anrd

recocverys 2nd the 2pplication updates the data base.

4. The cata structures specific to the program(s) involved in
the applicatior ar<« the DMSII workareas currents», anc

hicden buffersa

Sae Twice the number of butfers and buffer descrigtors
necessary to sctisiy the typical recuest made bty the
applicatione This precludes the necessity of the DMSII
system waiting the conpletion of a write to the data base
after an update operation before being able to reuse 3

buffere.

4 bstch progras usually rerforms a singte function and therefore
has a working set which is fairly simple tc calculate? howevers
the typicat on~line grogram performs several types of functions»
anc the working set for that program can change dramatically

curing execution as the wvaricus remote stations perform such

1152444 E=-32 01715784

operations as inquiries» maintenances or updates to trénsaction

files.

If the datz base uses aueit and recoverysr the previously
gsentionec Unreleased Audit Serial Number mechanism can cause a
significant increase in the working set fcr gprograms which add or
upcate large numbers of recordss. This can cause the number of
buffers within the werkirg set to be three or four times the
rusber requirec tor the typical requests» instead of twoe. This is
fecause the upcated tuffers cannot pe realiocated untitl their
respective audit reccrds have been writtenr to disk. Four times
as mény tuffers can te required if the updates in question affect
#any index structures sircer when updating index tabless the
cucit information gereratec is fairdiy ss3il (on the ordey of 1.5
to 2.5 times the entry sjze for the striucture) relative to the
size of the aucit buffers and the table records themselvess
therefores a series ¢f orerations could cause many table tufferss»
in acditicr to data tufferss to be held in memory even though the

zucits for those operaticns have not filled an audit buffer.

1152444 E=33 01/19/84

Exasples of Working fet Calculations

In each of the folliosring four exampiess the data working set for
¢ specific OF¥SII application is calculated. Each exzmple
includes a descripticn o9 the application as well 35 a3 detailec
tist of ary assuapticns shich must be made in order to perform
the calculstions. Thkese assumptions include such items as the
physical and 1cgical ccerosition of the dzta base and the
sequence in which DMSII cperstions occur. Atl of the
calculations are cdescribed in terms of the five types of data

structures ouvtlined in tte previous subsecticns

NOTE

Several explanzteory notes appear at the end of each
example. Within tte body of each exampler references
are sade to these rotes by means of an asterisk and a

sequence number enclosed within parenthesess such as

(*1).

1152444 E-34 01719784

Exanple 13

Application:

The initial load of a data set which includes two index
sequential sets» ore index random sets and four automatic

subsetse.

Assusptionss?

la The typical data record satisfies the conditions for

exactly one of the autcematic subsets.

2a All of the keys for the seven indexes are 10 digits (49

bits) long.

l. $ TAELESIZE 7 sas specified to the UMS/DASDL compilers
generating block sizes in bits of 1005€ for each ordered

path and 10080 for the retrieval sete.

4. Block size for the data set is two segsents (2880 bits).
5. Audit anc recovery is not used.
G Attt of the index setgquential sets have 2 maximum of two

levels of coarse tible (refer also to Note 3 in this

examgpled.

11524844 E=35 01719784

10.

Feg

1a

Each structure is =tored in a separate files

has a2 maximum ¢cf 2C areas.

ALl key fields and WHERE items are ccntiguous.

and each file

ALl of the indexes are to be toaded in pertfectly randor

orCers.

Ald four automiztic subsets use the same key field(s).

uirementss:

Globals 923
20 lock descriptors + Link info 1824
3 170 descriptors 1584
1 memeory link 187

Tetal 4518

bits
bhits
bits
bits

bits

structure records(xil)

1 data set 7B8%& tits
] retrieval set 968 tits
€ orcered sets 7032 tits
8 mencry lLinks 1496 bits
Jotals 10284 tits

Structure recorces plus DFH?s 22980

Audit and recovery is not used.

Path dictionary (23) 720
Status gask {1 inwvokel 100
Workares 661
Currents (x4) 0

Tctal 1481

1152444 E-3b

bits

bits
bits
bits
bits

bits

{565 bytes)

DFHYs{22)
1456 bits
1392 tits
B35Z bits
149¢ bits

1269¢€ bits

(2873 tytes)

(185 bytes)

01719/84

Euf fers:
2 data blocks
2 retrieval tables
9-15 ordered tzbles (=5)
13-19 buffer descrigtors
13~19 memory Links

Tctal

Totatl for ald 5 groups

1152444 E=-37

5760
20160
90504-150840
1872~ 2736
2431- 3553

120727-183049
(15091~ Z22¢£81

149706~21202¢
(18713~ 26504

tits
bits
bits
bits
tits

bits
bytes)

tits
bytes)

01719784

NOTES
Structure records zre composea of:

Data set: 644 bits (base)
32 bits (key table)
112 bits {current)

- - -

788 bits

Fetrieval sets 844 bits (base)
32 bits {key tzble)
972 bits (current)

968 bits

frdered set: 844 bits (base)
32 bits (key table)
256 bits (base current)
40 bits (key at end of current)

1172 bits x 6 structures = 7032 bits

1152444 E~-38 01715784

Disk file kraders zre composea of:

Bzse L[FH: 5S40 bits (DFH)
720 bits (20 area zddresses d 3t bits each)
68 bits (version stamp and cortrol info)

1328 bits
fata set: 1328 bits (base L[FH)

b4 bits (unused)
64 bits (NAHG)
1456 bits
Retrieval set: 1328 bits (base DFH)
b4 bits (NAHO)

1392 tits

Crdered sets: 1328 bits (base CFH)
64 bits (NAHO)

1392 bits x 6 Files = 8352 bits

The number of entries in the path dictionary is one
more than the rurster of structures referenced in the
prograsg» and ezch #ntry is B0 bits in tength. For
this appilicaticns €ight structures are referenceds
therefore, the patt dictionary contains nine entries»

and is 720 bDits in lengtha.

Only the base currents, which is appended to the
structure records is necessary since there is only

one 1ser for ecch structure.

The typical case for any two successive recordse
givenr a3 truly randcm tcacd of &an ordered sets is that
the keys for ttose records have no index tables in

cogrcn other ttan 1he rcot coarse tahles Thereforeos

1152444 E=39 01719784

the working set for such an index includes onty cne
copy of the roct ccarse tabler, two buffers for any
tower level cozrse tablesr» and two tuffers for fine
tabless In this edrampler best case is three buffers
per incex (rooat cozrse plus two fine)» and worst case
is five buffers (best case plus two extra buffers for
second=level ccarse tablesl). 3Since the typicad
record is spanned ty both ordered sets and one
automatic subsets the wminimum number of buffers
required for ordered pzths is nine {(=323), and the
maxisum is5 15 (=32%), The number of memory iinks

varies accorgingdya

Exanple 23

Application
The initisl 1o3c of the same data base describec in exasple

l» with audit ard recovery added.

Assumptions

1. ALl of the itews assumed true for example 1> except for

item S5» are also assumed true for this example.

1152444 E~40 01719/8%

4.

Fegquir

1.

4

3.

'{0.

1152444

Aucit is tc tagrer and the audit buffer

1ength.

The restart data set has &

(1440 bitsl.

is 1600 bytes in

biock size of one sequent

The restart set has a key size of €0 bits (10 bytes).

ements

Same as exanple 1»

structure records CFks
Festart data set 788 bits 1456 bits
Festart set 1172 bits 1352 bits
2 memory dinks 374 bits 374 bits
Jotal frcm erample 1» group 2 10284 bits 2€56 bits
Jotals 12618 bits 5918 bits
Structire records and DFH?%'s 28536 tits (3567 bytes)
Audit F18 568 Ltits
2 audit buffers Z2BBOC tits
2 1/C cescriptors 544 Ltits
Mewory Link 187 tits
Total 30099 bits (3762 bytes)
Path dictionzry (x1]1) 880 kits
Status mask (2 irvokes) 20C bits
Workarea 661 tits
Currents 0 tits
Total 1741 bits (214 bytes)
Buftferss:
3 data blocks B64C Lits
fiestart data set 1440 bits
I retrieval taties 30240 bits
12«21 ordered tables (x2) 120672-211176 tits
19-28 buffer descriptors 273€= 4032 tits
19-28 memory 1Links 3553= €236 bits

group 1

4518 tits

01715784

Total (*3) 167281~260764 tits
(20910- 32596 bytes)

Totat for ati 5 groups 232175-325654 bits
(29022~ 40707 Lbtytes)

NOTES
The path dicticnary requires il entries.

Because of audit ard recoverys there must be a
sufficiert numter cf buffers for three fine tatles
anc three secaond~level coarse tables per index
sequential set or =ubsetr instead of the two buffers
each required vhen zudit and recovery is not usede.
Only one copy ¢f tte root coarse table is needede.
Thereforer the best case becomes four fuffers per
incex» and the worst case hecomes sSeven buffers.
This makes the minimum number of buffers 12 (=2=4),

and the maximur nusber 21 (=3«7).,

Although the werst case requites 28 tuffers to be in
memory at cne times no single operation can ever
require sore ttan 12 buffers to be locked at one time
{one each for the cata sets restart cdata sets 2znd
incex random set» &nd three for each of three index
sequential sets)? thereforer at no time shoulc this
application recuire that an overflow tzble of fock

descrigtcecrs be atlccatedas

1152444 E-42 01/715/84

Exzample 33

Application
A single program doing incuiries into tte data kbase

described in exzmples 1 and 2.

Assumpticns

1« Either of the two grdered sets can be used for the

inquiry.

2e ((nly FIND cperztions are perforwed», and therefore the
tuffers are alvays immediately available. 5Space for

twe copies of €ach buffer is not needed.

fFeguirements
l1a
Same as exanples 1 and 2 4518 bits
2.
structure records DFHYs
1 data set 788 tits 1456 t i
2 ordered sets 2344 bits 2784 ki
3 memory lirks 561 tits 561 tit
Total 3693 bits 4801 t i1
Structure records and DFH?'s 8494 bits (1062 Ly

1152444 E=~473 01719484

Avdit ard recocvery is not usede.

[.
Same as exawnple 1 (1) 1481 bits
5
Bufferss
1 data bltorck ZBED bits
2=3 incex tables (%*2) 2€112-301¢8 bits
3=4 buffer descriptors 432=- 576 bits
34 mexory Links 561 748 bits
Total 23985-34372 bits

(2958~ #257 bytes)

Total for all 5 groups 3847 8~4EBES bLits
(4810~ €108 bytes)

NOTES

When a disjoint gata set is vnvokeds the COBOL
corpiler builds an entry in the path dictionary for
every structure cegcrihed within the
DSv/CASDL~generatec Library file for the data set
regardless of shict structures are actually
referenced in the vest of the program. In this case»
the path dicticnary includes entries for eight
structures» even ttough only three structures are

actualtly used in tte program.

At d1east the rcot roarse table and a3 fine table must
be presents; a secend=level coarse table may be

neeceds.

1152444 E=44 C1/15/84

Exanple 43

Application
A program ttat updates the data base described in examples
1» 2» and 3» anc which is running concurrently with the

inquiry prograw described in exampie 3.

Assumptions

1. The update proceram uses the retrieval set to access the

cata sete.

2. The key fielc for the automatic sutsets is changed Lkut

not the WHERE condition. Therefores, each tige a record

is storeds the old key vaiue must be deleted from

whichever subset references the recordsr and the new key

value nmust be reinserted into the same subset.

fFequirements

1.

Same as in examples 1 througt 3 4518 bits

Same as exanple 2 above (*1) 28536 bits

1152444 E=45 01719784

Same as exanple 2 above

4 »
For the inquiry program
for the updzte program (*2)
1 extra current for the data set (x3)
1 mewmory 1irk
Total
o 3

Buffers
For the irquiry program
For tte urdate program:
3 tata buffers
1 indey random butfer
1l restirt data set
7=13 crdeved tabdes (#5)
12-18 tuffer descriptors
12=-18 semovry links

(*4)

Total

Tctal for all 5 groups

NOTES

Fvery structure
programs. Actialilye

require all of the structure 1ecords since,

30099 bits

14€1
1741
112
1E7

3521

bits
bits
bits
bits

L]

bitse

23985~ 141372
8640 bits
1C080 bits
1440 bits
70352-130728
1728- 2t92
2244~ 3366
118509-191218
(14814~

165183-257¢€92
(23148~ 22237

is referenced by one or both of the
the update prograg alone swould

vwhenever

the (MSTI system detects a key change (from the data

set?s key tablel»

set?s structures

separately», anc determine which sets have been

affected by the key changee.

C 1152444 E=4%6

it must bring in att of that dstz

ir order to re~evaluate each key

01719784

{440 byt

bits

bits
bits
bits

bits

23502 bytes)

bits
bytes)

The update procram's requirements for path
dictionariess» statns masks» and Wworkareas are
identical to ttose of the program described in

example 2.

Only one extra curvent is required since the data set
is the only structare explicitly referenced by both
programs. Hitk this exceptionr neither program has

any direct effect «n the other for these items.

The inquiry prograw’s buffer requirements are the

sape as in exanple 3.

The LM511 system hezndies a key chamge ¢n an index by
performing a delete ogperation on the old key and an
insert on the rew key. Since the buffer requiresents
for & delete are tle same as those for an inserts the
working set for & ¥ey change should kte analogous tco
that fcr inserts irto two sets wWwith the excegtion
that since only one set is involved» there is need
for orly one rcot coarse table. Referring to note 1
for exampie 2» the best case is 7 buffers (root
coarse tabie pldus ¥ fine tables for the deletes and 3
fine tables for the inserts)s, and the worst case is
13 buffers (best czse plus 3 second-level coarse

tables for bott the delete ana the insert).

1152444 E=47 01/19/84

TABLE SPLITVING

¥ith the exception of tufferss the gata structures useag ty the
LMSI1 system are marked #s SAVE memorys that is» the data
structures such as globals and disk file headers cannot be
overlayec ty the MCPII ard must remain in memory until either the
cata base is closed cr tte structure has no active users. ODMSIT
tuffers» howevers are released as soon as possible. In spite of
thiss, buffers asre typicaflly the greatest single cemand upcn
gepory Withie the DMSII =ystem. In additicns the majority of
buffer spcae is norgstly occupied by index tsbles == dazta that is
pormzldly transparent to the user. in exasples 1 and 2» buffers
éccountec for approximately 752 to 60X of the total CMSII data
requivements» an¢ incex tables accounted for approximately 90X to
552 cf the toetzl buffer <=pace. Note that these two exzmples were
part of the extreme case of an initial 1oa3ac. For an application
which i5 not acding ¢r deleting great nusbers of recordss not
cniy do total mewcry requirements diminishr, tut the ratic of
incex tatle buffers to tctal buffers also cisinishes» as example
1 shows (approximatedy 5%X% ot total space is used by bufferss znd

sbout 852 of the buffers were index tables).

As ment ioned previouslyr» buffer space for index random sets is
usually cnly as small as a single tables btut a second btuffer can
be required if the LCFSII system needs to adllccate an overflow
tattle. Fowever, index sequential sets and subsets csn require as
nary as five tabless The amount of memory required to perfors an

cperatior upon an incex sequential set depends heavily on the

1122444 E~48 01/715/84

rumber of tables which must be brought intoc memory tc cosplete
the cperation» and tkis in turn is dependent upon thke amount ot

table splitting whict hat been done on that set.

Although the splittirg algorithms which the DMSII system uses
gffects the amount of splitting that occurss the user has little
cortyol over these algorithms. Other factors which aftect the

emcunt of splittings and over which the user has controls ares

1. The maxinue nuxber of entries per table.
2e The order of the {icade.
1. The SPLITFACTLF setting for the structure.

Incex Table Formats

Eoth index rancos ant¢ incex sequential use tte same tatle form:zt.
This atlows both table sglitting algorithms to share significant
rarts of the cocde. Examples of this are insertion of an entry»

celetionr of an entrys» anc cthers. Jhe tabie format iss

01 Index Table Bitistructure.buffer.size)»
02 Flags Bitd2)» 20 = reserved for later use
02 Audit serizl number Bit(32)» 2 Last update if auciting
02 Index type Bit(2)» 2 0 = louwest level
2 1 = next level
2 2 = any higher level
02 Entry count Bitd<12)» 2 Count of valid entries
02 Next table Biti24)» X Each d1evel of table is
2 1inked together
02 Prior table Bitd24)» 2 I-5 = doutde 1inked

2 I-R =~ base table adcress
02 Index entries f(structure.scdsa.tlik)
it (structure.record.sizeds
Z each entry i5 structuresrecorde.size bLits long.
% there are structure.ycds.bilk (tabdesize) entries.
%2 the fcrmat of each entry is:

1152444 E=49 01/19/84

03 Address) bit(3Z2)»

04 Area Bit(8),
04 Disptacerent Bit€16)»
04 Record Bit(8l,
03 Key bit{stricture.key.size)»
02 Structure runber Bit(B8)» 2 Used for address check
02 Area Bit(8)» 2 Dun area = for &sddress check
02 Displacemenrt Bittl6)» % Oun displzcement
02 Thecksum Bitl24)» 2 0D = reserved for tater use

Yable Splitting Algorithas

Each time a record is adced to an ordered setr the DMSII systen
enters the key and acdrests for that record into a table. Entries
within each table are aaintained in sequence by the key. Entries
are sddec to a tabie until that tabie is fult. At that pcintr, 3
new table is createdr the existing entries are split between the
clc and the new tabler» avrd an entry is made in the next highest
ievel table thet poirts to the new table. This can recuire 2z
split at the higher 4evel» and 50 on. The algoritha werks the

same way at every levels. The detaids of tte algorithms follow.

Incex Randonm

Incex rancom uses a tashing algorithm to cause the base table to
te searched. Note ttat cnly the first 30 characters of the key

iTe useds

Incex random base taktes are initiaiized so that they have a
single entry containing #n address and key of g4l bits set. Ezch
rew entry is placed in tte table in ascencing key sequence. HWhen
an attewmpt is rade tc intert an entry intc a full tabilesr the

tabte is split prior to saking the insertion.

1152444 E-50 01/19/84

When a split occurss the first spliifactor entries are 1left in
the current tattes 2 new table is allocatec and linked irto the
cverflow list immedistely fotlowing the current entrys and the

remaining entries avte mowved to the new tabde in its sortec place.

The next tabde pcinter it used as a one=-way links linking the
tase table tc its overflew tabder and in turn tinking each of the
overfiow tables to tte next overflow table. The next tatble
pointer whose bits avre all set signifies the end link. Entries
for any table on the overfliox list are always sorted and are of
greater than or equal value to the entries for the preceding
table anc are cf 1ess thin or equal value to the entries for the
foltowing table. The initial entry with zil bits set is always
the tast valid entry in the last table of the base table and its
cverflow list. The initial entry is incluced in the count of the

rumber of entries in any table.

Since the tables are alwzys gaintained in & sorted order, &
tinary search c¢an be usec on index random as well as index
sequential. If duplicates are allowed» then the duplicates are
zlvays storec in the reverse ovder in whiclt they were entered
into the data base (cugplicates first). Recrganization preserves
the sequerce of duplicates on any set whict coes not have 3
roculus change or any key itewm chanye or goes from duplicates

ailowed to duplicates not aliowed.

1152444 E=51 01/19/84

The process cf executing a find operation at a specific key
consists of performirg 3 hash operation te find the tase tables
reading the desired table» and then doing a binary search ¢cn the
tatte., If the searchk is successfuls then it returns the first
entry in the table with the cgesired key value. If the search 1is
unsuccessful and the tast key in the table is tess than tte
cesired key» then the overfiow link is useg to access the next
table and the process precceecs with the reading of thte overflow
tatde. This process continies until the desired key is found or

@ key greater than thte desired key i5 founc.

The prior table pointer zlways contains its own logical address
if it is 2 base tabte. I1f it is an overflow table» it contains
the logical adcress cf its base table. The algorithm used for
secuential processing (required for the generalized selection
expressions) begins »ith the first wase tatle. It searches each
base tabiles then eack of the overfluw takles from that base
tatle. It proceeds to tte next base table and its over flow
tatles. This process cortintes untail the last base takle and its

cverflows have been searched.

An index randor delete removes the appropriate entryr 3nd if that
entry was in an cvertlosw tabtle, it then attempts to consolidate
tatles. If the number o1 entries in this table has been reduced
to 2zeror ther the tatle is delinked and returned to aveilable
spgces If the number of entries in this teble plus the preceding
table is 1ess than SFLITFACTOR entries» or if the number of

entries in this table is one and the prior table is not full>

1152444 E=52 01715784

then the entries in this table are moved to the prior table anc

this table is celinked ard returned to availsble space.

Index Sequentiatl

The CLMS/CASDL initialization of index sequential tables consists
of allocating a2 root tablle pcinter in the file record znac setting
it tc null (all bits setle The UMS.il system reccgnizes this
condition on the first store and aliocates a root taktler, sets the
roct table pecinters, anc wakes one entry in the root table with
g1d bits set (2 null key and 3 nudl address). The numter of
tevets of tablées can vary from zero to fivee Zero levels are
incicative of &n empty irdex. One devel is & valid Errangement
énc consists of a sirgle fine table referenced by the root table
rointer. The fifth level is arranged with one level of fine

taktles referenced by four devels of coarse tablese.

Atl tables are maintainer in sorted order and ascending sequence.
Eescending sequence is performed by complementing the key hLefore
sorting- Each entry in z fine table contains the key of the dzta
record and the data recovd address. There is one entry in the
fine tables for every record in the data set that should be
referenced by the incexe. There is one entry in a coerse table
for each table at the nest lower level referencecg ky this coarse
table. The key in tiatrt entry is the highest valued key in the

next lower table and the address is the address of that table.

1152444 E=53 01719/+84

The process of gettirg t¥rough all devels of the tables to finc
Zn entry consists ot obtzining the root table pointers reacing in
that tabtesr coing a tinavy search on that tables anc if the tatle
is nct the fine tables ccntinuing the process Lty taking the
gacress from the entry fcund and repeating the cycle by reading
that table. MWHhile searcting coarse tabless» the binary sezrch
ﬁeed not return an e€xact matchs, but returns the first entry with
¢ key value greater thar or equal to the desired key. ¥When the
fine table Ltevel is finafly reachedsr an exact match must be tfound
for 2 find operation or z NOTFQUND exception condition is
returneds For a delete cperationr an INTEGRITYERRCR exception
condition is returnec if the exact match is not found. Ncte that
in the delete cperations the address is also checked for amn exzct
matchs and in the case o0f a store operation» an exact match is

not neededs but is acceptable if duplicate records are alloweds

After finding where the %ey shouild Le Locatecs the store
cperation proceecs by checkirng for available space in this table.
If there is space aveéilatder then the entry is placec¢ in the
current takle in its sorted position. If there is no space

cvzilable» then the table must be splite
The glgorithm used tc split a3 table follows:

1. The first decision to be made is where to split the tabile.

1152444 E=54 01719484

If the new entry iz placed higher than SPLITFACTOR entries»

the split is at SPLITFACTIDR entriese.

If the new entry i1 placed tower than {tablesize =~
SPLITFACTOR) ertries» then the split is done at (tablesize
- SPLITFACTOR) entries. Otherwiser the split is done at

the place sihere the new entry goesa.

The entries in the table that are loxer than the split
tocation are mcved to a new table anc the remzining entries
are movec to tlte tcp of the table. The nes entry is placed
in the agpropriate table (if 1t falls on the splitr, it 1is
placed ir the 1irst entry of the old table). The last
entry in the new tzbde i5 then propagated as a store on the

next higher Level tables» which can sisc need to te split.

If the split cccurs on the highest level of 3 tables» then a
nex oot table must be allocated and the root table pointer
must be updatec aprropriately. The nex root tible has twuo
entries in it» one of shich references the key of the Last
entry in the new tzble and the address of the new table.

The cther has & key with atl Lits set to ON and an address
of the oid tablte (which was the previous root tahbled). The
maxisus nrueber of table levels of tables is five. If this

Limit is exceeceds a LIMITERRUR exception 0OCCurse.

1152444 E=55 01719484

The store cperation coes not have any special handling of
cupdicates if cuplicztes are allowea. Any additional entry is
placed in front of ary cirrent entries with duplicate keys
{duplicates first). Larce numbers of duplicate records cause no
overhead on the store operation. The only overhead associated
vith large numters of curlicates are those involveo durino delete
cperastionss the duplicate key with the correct address must te
founcs. For the average celete operations, this requires searching

talf of the duplicate key entries.

Each level of tabte is tinked together using the next table
gointer arc the prior tatle pointer. The OMSI1 system sets atl
tits to CN in the next tzble pcinter to incicate the end of the
links. Whenever a tébile is splits the new table is dinked

zprropriastely anc the odg table Llinks are adjusted.

These pointers in the fire tables are used during FIND NEXT» FIND
NEXT AT <key>» and or gereralizec selection requests to aliow
secuential access to all the entries without traversing the tree
structures Thus» only ore 1level of table pointers is kept in the

current information «f irdex sequential as well as index randon.

An index sequential celete starts by finding the proper entry &nd
searching cuplicatess if necessaryr» untit the proper key and
gdcress are ftounc. That entry is removed and an attempt is mace
to consolicate tablet. 1f the number of entries left in this
tatle is not less thin (tabtesize =~ SPLITFACTIOR)» or if it is the

Last table on this levels then no consolidation can sccur.

1152444 E=5%6 01719784

1f consolicaticn can occarr, then the next tatle is checked. If
the rumber of entries in that table plus the number ¢cf entries in
the current tabie is 1ess than the tablesize» then the current
table 1s combined with tte next tabder therety eliminating the
current table. The entry in the next higher devel tzble for the
current table must be cgeletede If combining takes places then
sdjustments are made to the next appropriste table and prior
table pointers and tte cirrent table is returned to available

SPpacCeE

If consolication can occtrs but combining cannots the entries in
the current table anc the next table are divided equzlly between
the tuwo tables. If the total number of entries is an cdc numters
then the extra entry goet into the current téble. Becsuse extra
entries have been adced to the end of the current tatdesr the key

in the next hicher level table must be adjusted.

I[f a2 deletion cccurs which reduces the root table to a single
entry» then the root table is dealliocated and the root table
pointer is updasted tc point at the next lower {evel table. If
the root table was 3 fine tabter then the index structure is
empty.s This is the same as after the DMS/DASDL compiler hzs

initializec the root table.

There is cne other sgecizl condition. If the highest entry in a
coarse table is deletecs then the key for that table in the next
higher tatle is adjusteds Each entry in the coarse tables alwzays
have the ey of the Lichest entry in the next lower takte. That

key cdjustsent may rkzve to propagate up to tre next level.

1152444 E=57 01715/84%

These algorithes have the property that each tables except the
tast on €3ch level, slways contain at Lleast (tablesize -

SPLITFACICR) entries.

Basec on the information presented in the previous péragraphs»
the cefault setting for SPLITFACTOR {75%) should generaliy be
useds If the inixial lozd is in oruer» SPLITFACTIOK can te
increased. The degree tc¢ which SPLATFACTOR epproaches 1002
gepends upcn the way in vhich additionadl reccords are to be added
after the load and whtat rercentage of the ultimate population of
the set the initial load represents. If almost atl cf the set is
to be Ltoacedsr cr if sll qJurther additions are in order, either

forwsrd or reverses, then SPLITFACTOK may be as high as 902.

Entries Per Table

The cptisur number ot entries per tabler in terms of efficiently
wagpping a sets is the scrare root of the expected pogulaticn of
that set. This is tsue tecause the maximum number of cata set

records that any coarse tabte can span is:

(entries per coarse table) X {(entries per fine table)
If the nuskter c¢f entries per table is the square rcocot of the
expected population c¢f tte setr then it is theoreticzlly possitle
for the root coarse table to span the entire set with no lower
level coarse tables. Howevers even with such & table size» sose
spliitting almost alwsys cccurs due to factors such as the crder

¢f the Llcads

1152444 E=-58 " 01719784

Atthough the scuare root of the expected population is the
cptimum setting for entries per table, memory consideraticns
cfter force 3 reduction in this setting for sets of any
zppreciable size. This is true since incdex tables can become
very large when using the square root of the population for
entries per table» especialdy if the key for the set is more tlan
just a few bytes tonc. For exampler a set with a population of
40,000 and 3 key size of 16 kytes would have index tsbles 32,000
tits (4000 bytes) in Ltength if the square root of the population
was used for entries per table. For a similar set and a key size
of onily five bytes» the table size would only te 14,400 bits

{1800 bytes).

Cosrse tabie splittirg i¢ 3 certainty if the maximum number of
entries per table is leses than the square root of the populaticne.
Entries per table shoculd never be set below the cube root of tte
population. If they ares it can cause fregquent splitting» dcur
to the fourth ltevel ¢f ccarse tabdes where any further attempts

to split would result in a LIMITERRUR exception conditiona

1152444 E=59 01/719/84

APPENDIX F

OMTII DATA STRUCTURES

This section contains the record descriptions for ati the CMSII
cata structures referenced in this document. This section is

civiced intec three sibsectionss

1. Lata structurez used by the DMSII system in the processing

of 2 data baseas

Ze Data structures used primarily by the IMS/DASDL compiter.

3. Aucit file and audit record formatse.

CMSI1 Data Structures

The cata structures cescribed in this section are used by the
LMSI] system in the processing of a data tase. These structures
car te maintainec in any of the fides in the data Ltaser irclucing
toth the catz base dictienary and the files which are used to

store the various structures in the data hase.

1152444 F=1 01719/84

CMSIT Gicbals

The CMSII Clobals are originally initiatized by the DME/DASDL
coppilers» and are alsays maintained as secgsent zerc of the datz
base dictionary. The CMYII Globals are first brought into memcry
when the data base is openedr and remain in memory until the lzst
user closes the data base. The DMS4iI Giotals contain pointers to
gtl of the other dats structures» both in memory and in the data

tase dicticnary» which are needed to process the datz tase.

All of the fodlowing fields that are prececed by a single
asterisk (*), 3are initialized by the DMS/DASDL compiter. All
fielcs precedec by tso asterisks (+x*) are initialized ty the
CMS/0ASDL compiler» tut can ke changed throuch use of the SM
input message~ ALl cther fields in the OMSIIY Globals zre

initialized by the CMSI] system when each cata base i5 opened.

1152444 F=2 01/719/84

CECLARE 2
01 DM_CLCBALS BITA(14407% X
402 Cv_CASCL_VERSICN BIT(8)»
% Must gatchk the current MLPII to process the data tasee.
2 B0 = 27 Se1 = 35 6.0 = 43 6.1 = 57 7.0 = 6>
T B0 = 85 (7 it usecd for an intermediate stage by the
2 Reorgnization used to convert 3 data base to the B.0
% forpat.
N2 CV_USERS BIT4Hh)» X current active users
02 CM_USERS_UPCETE FIT(E)»
Y numter of active users Who have actually upcatec the
% dats baseas
02 CM_DOL_OICT_#DCR BIT(36), X disk address of db dictionery
%02 OM_GLOBALS_TCTAL_SIZE BIT(1&)»
%2 Lencth in bite of Globalss» incliuding the structure cictionary
D2 CM_GLOEALS_AUDRESS BIT(24)» X address in memcry of the Globatls
02 CF¥_GLOEAL_LOCK_BITS BIT(2Z2)»
02 CM_IO_LESC_HEAD FI7(24)» % memory address of first I/C desc
202 [V_NAX_STR BIJT(82» X highest valid structure number
202 CM_GLOEAL_FLAGS FIT(b)
«03 DN_CMSII EITC1)» X this is a DMSII data bzse
03 FILLER BIT(S53},
02 FILLER BI¥{(3G)»
02 UM_DATA_BASE_LINYK BIT(24)»
%2 usec to Link the Globals of adl active cata bases
02 CM_STATUS_FLAGS FIT(8)»
03 DM_CPEN_UFDATE BITC(1), % an updste has cccusrreg
03 CM_KWRITE_ERROF BIT(1)» % db must be shut douwn
03 DM_RECOVNEFY_IM_PROCESS 84T{1)s 2 Oump Recovery required
03 DMN_RECRGANIZAVICON BITC1)» %X no users can sccess the db
03 FILLER B811(4)s X 4 more ftlags
D2 C¥_LOD_KEAD BIT(Z24)» 2 memory address of lock descriptor tatle
02 CM_NEXT_LD BIVT(1€)>»
2 offset of the next available entry in the lock
% descriptor tatle
02 CM_LL_TABLE_LENGTH BIT(16)»
¥ size in bits ¢f the allocated lock descrigtor table
2002 CE_CICT_PACK_IL THARACTERI(1UVU)»
202 CM_DATA_BASE_NAME CHARACTER(10)»
*02 CM_STR_OFFSEY BIN(16)»
2 starting fecord numbers in db cictionary» of first
X structure recerd
22 OM_DFHE_OFFSEY BIT(16),
X starting record numbers in db dictionarys, of DFH tatle
202 LCM_WAIT_LENGIH BIT(1¢E)»
2 tenths of secends to wait for contention resolution
#02 OV_NMBR_I0_DESC EIT(4),
% ignored = Mark 10.0 always has one descriptor for lookahead
% reacs and one for {ookahead wurites
02 DV_AUDIT_SBSTATUS EITCZ20),
#2003 DM_AUDIT £1T7(2)»
=204 CM_AUDITED_DB BIT(1)» X => restart data set exists
a4 L[M_AUCIT_F1AG BIT{1)» X current setting of AUDIT option
03 DM_AULITFILE_CK BIT(1)»

1152444 F=3 01/719/84

X audit records can be placec into audit trail
03 DM_SYNC_LCCK EITK(1)»
Z# reset => [MS saiting for syncpoint to complete
03 CM_SYNC_IC_COINT BIT(2)» X # of syncpoint I/0%s in progress
03 DN_FRCGRANMS_OX BIT(1)» % 0O => Program Abort has occurred
03 DM_AUCIT_FIB_®LLOCATYED Bi¥(1)» 2 audit file has been opened
U3 DM_INCUIRY_GK BIT(1)»
2 0 => Procram Abort necovery schedulecd or runnirg
03 FILLER BIT(3)»
02 CM_AUDIT_EXCEPYICN_STATUS BiT(4)>»
Z indicates the status of the audit buffers when CMS
2 is switching zudit files
02 CM_AUDITFILE_STATUS BIT(4)»

2 0 2 closec
21 2 open

22 2 no disk
Y3 : file full
2 4 2 closirng
25 : openirg
26 2 I/0 error
27 * not ready

02 UDM_AUDIT_SERIAL_M™MBR BIT(32)»
% Next ASN to be assigned. DMS/0ASDL generates a randcm value
¥ for this tiele when the caata bsse is first createds from that
2 pocint on» OMSIT incremencs this field by one esch time anothe
Z recorc¢ is wuritten to the audit trail.

D2 CM_UNRELEASEL_AUTIT_SERTAL_NMBR B8IT1(32)»
2 Highest ASN wtich has been physically uritten to the aucdit
2 trail. No updéted buffer with 3 higher ASk can Lte uritten
2 to Cisks

02 O¥_AUDIT_DESCRIPIOR BIT(E0)»
X systew descriftor pointing to audit FIB in memory

02 DM_AUDIT_FIRST_OVERFLOW BIT(24)»
%2 EM511 allocates overflow audit tuftfers if a temporary
Z concition presvents the normal emptying of the
? audit butterss This fielo points the first CFLL buffer.

02 CM_AUCIT_LAST_OVERFLOM BIT(ch4)» 2 memory addresss» last OFLQO

«02 LM_SEG_DICT_CLESC BIT(64),
% Ncrwal descrirtor which points to the code segment
2 dictignary in the data base dictionary. This code is
¥ found in the MCPII at data base open.

*02 CV_SEG_DICV_CFFS¥T B8IT(16)»
%2 reccrc nusber in the data base cdictionary for the working
2 copy ¢f tke D¥S code segment dictionary

02 CM_CCLE_PAGE BIT{(6)»
% which of FCPI]1 segments ¢ through 7 was last used
2 for this cata base

*02 DM_VERSICN_CCDE_SEG BIT(6)»
¥ seguent ir CMY/DASDL code containing the version
% checking code .

%02 OM_VERSION_CCDE_CTISP BIT(16J»
% disclacesent vithin previous code segment

02 DM_IN_FRCOC_TFANS BIT(6)» X total users in transaction state.

02 CM_THRAAS_COUNT BIT(12)» 2 transactions since last syncgoint

1152444 F=4 01719784

02 DM_SYNC_COUNT BIT(12)s % syncpoints since last cecrtrolpoint
2202 LCM_SYNCPCINTS EIT(12)s % transactions per syncpoint
202 CV_CONTROLPCINTS BIT(12)» X syncpoints per contrcigoint
02 FILLER BIY(31,
«x(02 DM_KEVYCCMPARE BIT(1)»
%2 => gompare keys when accessing by way of &n automatic set
4 or subset
202 CM_STR_NAME_CFFSFT BIT(16)»
% recerc nusber in ¢b dictionary of a table contzining the
2 names of 2l ¢f the structurese.
202 DM_DB_NAME_CGFFSEY BIT(16)»
X record nusber in ob dictionary of a table containing the
Z names of zl1 Vogical data base names.
2 Entyy O s the physical gata base name.

Logical Addresseos

The CMSII system mairtairs no absolute disk sddresses in the
processing of a cata bas¢. Instead, all zddresses are maintained
in relation to the disk fidle area in whick a given recorc 15
loctated. These relative» or LOGICAL» addresses can ke either Zzi4»

3125 or 36 bits in lengthe

Incex tables» including index sequential coarse and fine tabless»
s well as all index rantor tables» are normadly referenced Lty 2
c4=bit address. Specific entries within an index tabde are

referencec by 36-bit acdresses.

Cata set records ano 1ist tables are referenced by 32-bit
cdcressess ¥Yowevers there are tuwo distinct formats for these
32=bit addressess derending upon the place in which the address
is stored. The norszl 37-bit address is used whenever the
sderess is maintainec within the data base dictionary or an incex
taktdier» or is used in any of the cata structures used by the IMSI]

system which ondy exist in memorye.

1152444 F=5 01/719/84

The following is the logical address formata.

LECLARE 2
01 ADDRESS_24 81T(24)»]
02 AREA_24 BITUL(E), X disk fidle area nuwbers zerc relative
02 0IsSP_24 BIT(16)» X starting segwent number within AREA 24
01 ADDRESS_36 BIT(26)» %2 Useg for all addresses in currents
02 AREA_36 BIT(8)» X same as AREA_24
02 CIsSP_36 B8IT1(16)» X same as DISP_24
02 ENTRY_36 8IT(12),» X entry numter within this table for
12 indexes or secord number for other structures

01 ADDRESS_32 817(32)»
02 AREA_32 BIT(E)»
02 CLISP_32 6IT(16)»
02 RECORD_32 BITCE),»

Mark B.0 tformat
same as AREA_24%
same as DISP_24

NN NN

01 OLD_ACDRESS_32 EIT(%2)»
02 FILLER BITC1)»
02 CLL_AREA_32 EIT(7)»
02 CLL_RECORD_32 BIV(7)»
D2 FILLER BIT{13»
02 CLE_DISP_32 EIT{16)5

pre=Mark 8.0 format

same as AREA_24
same as RECORD_32

MNP NN M N

same as DISP_24

CFH Table

Each entry of the OFF Tatle contains static informations
initiatizec by the CV¥S/DESDL compiler and tvsed by the CMSII
systems concerring trte files in the data tasee Each entry is 480
tits in dengths mith three entries per disk sector. One file is
assigned for each structiure. The total nusber of entries in the
LFH Table is (CM_MAX_STR + 1). If an entry is inactive (a3
structure has been deleted from the data Lase description» and
that structure number has not been reused)r the DFH_FILE_N¥VBE
fielc in the correspencirg DFH Tabie entry is set to 0 {zero).

Entry zeroc of the DFF Tatle is not usede.

1152444 F=b 01715784

relative record numsber wWwithin this block

CECLARE 2
01 DFH_TABLE_ENTRY BIT(480)» X
02 DFE_FILE_NMBF BIT(B), %

02 CFE_RECCRE_PIR BIT{16)» % oftfset into dictionary for FILE rec

02 OFH_RECORD_SI12E FITC1€)» % Length in bits of FILE rec
02 CFE_TITLE CEZRACYER(30)» ¥ externzl file name
03 DFH_PACK_ID CHARACTERC10)D» ¥
03 DFH_MULTI_FILF_ID CHARACIERC10), 2
03 CFH_FILE_JIC CHARACTERC10)» X%
02 FILLER BIT(B)» X
N2 CFE_AREAS BIT{(B)y Z maximum number of areas
02 LCFr_AREALENGTH BIT(16)» ¥ sectors per area
D2 CFE_SECURITYTIYPE BIT(2)» ¥
02 CFE_SECURITYLSE EIT(2), 2
D2 FILLER BIT(44)» I
D2 CFH_INIT_EOF_PTR BIT(24)s %
02 OFH_NAFME CHAFACTER(10)? X not used

File Records

The File Recorcs are initialized by the DMS/0ASDL compilerr anc
saintained by the DMEII szysteme. The DFH_RECCRD_PTR field within
each DFH tsble entry poirts to the File Record for that file.
The CFH_RECORD_SIZE tielc describes the kit tength of the File
fecorde Fach File Recorc starts on a secter boundarys any

unused space at the end ¢f 2 sector is unusede

The CMSII system wmairtairs the Next Available - Highest Cpen
(NAHC) informaticn fcr ezch cata base file within the File Record
for that file. Each NAHC consists of a pair of JI2-bit logicatl
zdcresses. The first 32-bit address is the Next Availzble (NA)
fielcr anc it cescrites the next record to be allocated. The
secord 32-bit address is the Highest Open (HC) fields snc it

contzins the acdress just beyond the highest allocated record.

1152444 F=7 01719/84

If a file contsins 3@ datez set» then one NAHD exists for each area

cecléred fcr the file. FYor a1l other filess, one NAHG exists for

the ent

LECLARE

ire file.

]

01 FILE FRECOFD BITADFH_RECORD_SIZE)» X

02
02
02
02

02

FILE_ACDRESS BIT(Ib6)» 2 seld=-relstive pointer nithin dictionary
FILE_S51Z€ BI1(163» % = DFH_KECORD_SIZE
FILE_VERSION BITI(36)» X version stamg for this file
FILE_NCN_PRIME_DS_NAHO» 2
¥ This is used only if the file is used to store 3 non-price
Z cata set., For tides wnich store indexess» lists» cr prime
2 cata setss the field FILE_SIMPLE_NAHC is used.
03 FILE_DS_NRHUOCIFH_AREAS)» X one for every &srea in the fite
D4 FILE_DS_NA BIT(32)» % 32-bit address
D4 FILE_DS_HO BIT(32)» % 32-bit address
FILE_SIMPLE_NAHO REMAPS FILL_NON_PRIME_DS_NAHO, 2
¥ used fcr all other filLes
03 FILE_NA BIT(3%)» 2 32-bit address
03 FILE_HO BITL37); 2 32-bit address
03 FILE_RCOT_PIR BIT(24)5 2%
24=bit address of the root table if this file i5 used
to store ar index sequential structure. If this field
is equil tc AFFFFFFd» the root table has not beer
allocatecr» and the index is empty.
Not used fer files swhaich store any other type of
structirea

MO N NN

Structure Records

The structure records ar€ one sector in Lengthr and each

structure record is 2t ar offset of (DM_STR_UFFSEY + STR_NMBR)

from the start of the data base dictionary. The last structure

record

ére any

celeted

is 3t an offset of {DM_STR_QFFSET ¢ DM_MAX_STR). If there
gaps in the structure nusberss due tc structures being

from the dat: base description» then the structure record

3t the appropriate cffset for the missing structure rusber is et

t0 Z2€ETOCES

1152444

F-8 01719/84

ALl the fields ir the stvucture record are static and maintained
ty the DMS5S/DASCL compilers except for those marked by an asterisk
(*) charscterr which the DMSII system maintains while the

structure is active.

1152444 F=9 01719784

CCL 2

01 STRUCTURE_RECORL EBIT(1440)» X

02
02

)2
2()2

02
02

02
02

02
02
*0)2
02

202
0z

02

ne
02

02

102
02

1152444

STR_NMER BIT(8)» ¥ = => Inactive structure record

SYR_TYFE BITH4)»

1 3 disjoint cata set

¥ 2 3 index rancom set

¥ 3 : index sequential set
T 4 2 List

STR_USER_CCGUNT BIT(H)>»
STR_BUFFER_LCCK E®IT(2)»

2 If non—zerosr t0o buffers for this structure can be overlaved.
STR_BUFFER_LIST_FOINTER BITW24)» 2 memory eddr of first buffer
STR_RCLS_BLK BITH(12)»

7 data sets records per block

% indexes ertries per table

X Lists tzbles per biock
STR_SEGS_BLK BIT18)»

STR_RECORL_SIZE FIT(16)»

% data sets 3 lcgical recosd size

X indexes 2 ertry size (key + address)

Z Lists s tzbie size
SYR_BUFFER_SIZE FIT(16)»
STR_BLKS_AREA EIT(16)»
STR_SEGS_ARER® BIT(16)»
STR_OF¥_PTR EIT(%4)» % memory adaress of this structure®s CFH
STR_CFE_CFFSET_TC_EXTENSION BIT(16)»

Z 0ffset into DFH for DMSI4 fide record
STR_CURRENY_FTR EIT(24)» X Memory address of first current
STR_STF_FLACE BIV(8),

03 STR_PRIME BIT(1),

03 STR_DUPLICATES BIT(1)»

03 STR_SIMPLE_KEY BIT(1)»
2 The #ey Jor this structure is:
4 1. Unsigned (index sequential or ordered list onty)
] 2« Ascending (index sequential or orderedg tist)
2 3. A single itemsr or items uwhich are ccntigucus
b the dats set record.

03 FILLER BIV(5),

STR_STYR_PARTICULERS

03 STR_SPLITFACTIR BIT(12)» % indexes onlys

03 STR_TABLE_ENTFIES REMAPS STR_SPLITFACTOR

03 STR_MCDULLS BIT(16)» % index randaom only

03 STR_ENTRY_SIZ¥ REMAPS STh_MODULUS BITC168)»2 lists

03 STR_HIDCEN_EBUFFER(G4) BIT(1)» 2 Data sets» emb or disjr» onily

STH_EMBECDED_INFC_SIZE BITCib)» 2 64 times # of ewmbedded str's

STH_STATUS_STRINE_INDEX BITL(8),

¥ 0ffset into status striny of outermost data set for status
X string for this structure.

STR_STATUS_STRINC_SCOPE BITL(8)»

% Total length cf status strings for this structure and all

XY structures emtedded in this structure.

STR_CLCBALS_FTR FIT(24)» % wmemory address of DB Globats.
STAR_CMS_FLAGS BIT(B).»
03 STR_ORDER_FLAC BIT(1)»

Y total active users

% Physical block size ir bits

in

in # of entries
BIT(12)» 2 lists

F=10 0171984

4
e

0z
e
02
02

D2
02

02
02

03 STR_RESTART_D2TA_SEY BIT(1)»
03 STR_MANUAL_SUESET BIT(1)»
03 STR_NEW_FLRMATY BIT(1)»
¥ This strecture uses new 32-bit address formats and has
2 new klock control information in each table
03 STR_EVMBECEEL EIT(1)»
03 FILLER BI1(3)»
STR_LCATA_SIZE BITC(16])»
% Length of recerdr» excluding List heads
STR_HEAD_OQFFSET FIT(16)»
¥ Offset into pzrent data set reccro for list heads
FILLER BIT(24)»
STHR_PARENT BIT(BJ» X% parent structure nuwmber
STR_OBJECT BI1T(87» ¥ obhject structure number
STR_NEXT_STR BIT¢(8)»
¥ Used to tink z11 indexes associated with a disjoint data set
STF_CURRENT_SIZE BIT(16)» 2 lengtt in bits for current string
STR_COCE_ANDEX(8»
2 up tc 8 code addresses pointing into thke CMS/CASCL-
2 generatec code tc perform various functions
2 on thkis =tructure.
03 STF_COCE_SEG BIT(5)»
03 STHA_COBE_DISF BIT(16)»
SYF_KEY_SIZE BIT(12)»
STR_LIST_XKEY_OFFSET BITC(16)»
Z Dffset irto ordered 1ist table for the key

%2 The remainder of the Structure Record exists only within the cata

2 bzse
Z irto
N2
02
N2

1152444

gictionary. lThe IMSII systew does not read the foldowing fields
gesory when vsine a structures

FILLER BIT(2386)»

STR_NO_KEYS EIT{€)» 2 number of key items for this striucture
STR_KEY_INFO(26)»

03 STR_KEY_CFFSEY BIT(16)s 4 starting location in data set rec
03 STR_KEY_SIZE FIT(12)» % key field length

03 STR_KEY_SIGNET B8IT(1)» 2 1 => key has sign declared

03 STR_KEY_CIRECTION BIT(1)5 X 1 => descencing

F=11 01715784

Standard {(Bisjoint) Data Set Records

Each disjoint cata set record is composed of user data and
control information. The¢ user data contains all the dsta items
cefired in the DMS/ECASLCL source. It the reccrd kas variable
formats» then all the tived format tields precede the fields
contained in the wvariable format parte The length of the user
cata is equal to the STR_DATA_SIZE tield in the Structure Record
of the datz sete. The cortrol information is only present if
there are any lists embecded within the data sets Ezch embedded

{ist reaquires 64 Dits of control information.

The fielc STR_RECORD_SIZY in the Structure Record is normally
equal to the sum of STR_TATA_SIZE and (64 x number of embedded
lists). Hcwevers, if thie sum is less than 80 bitss, the DMS/DASCL
compiler ircreases tte size to B0 bits. 1his is done Lecause the
[MSI1 system reqguires 80 bits at the begirring of each record to
gaintain the Next Avzilatle (NA) links and a dead flzg. The cead
flag 15 é special bit patterns 438 bits in lengths which
identifies 3 record that Lies below Highest Open for the file»
fut has been deleted anc is available to te reallocated. The

format of the cead flag is:

«7FFFFQ CAT JHHHS CAY QFFFER
Where aHHta = JE01d 4 2 ¢ structure number. When processing
sequentially through a dzta sets the DMSII system ignores any

records containing thke dead flags

1152444 F=12 01715/84

The format for a dats set record is as followuss

CECLARE 2
01 STANCARD_CATA_SETVT_RYCORC BITL(SIR RECCRD SIZE)» 2
02 DATA_SET_CAYA BITA(STR_DATA_SiZE)» 2
02 LIST_HEADS BIT(STF_EMBEDDED_UNFD_SIZE) 2
03 LIST_HEADA(STR_FYMBEDOED_INFD_S12€t/54) X One for esch tlist
U4 LIST_FIFST EIT(32)» 2
X 04d 3Z2=bit address of the first table in the tlist
04 LIST_LAZY BIT(32)» 2 0td 32-bit address of last teble
01 DEAC_RECOFRD REMAPS STANDARD_DATA_SET_RECORD BIT{(BOC)» 2
02 NA_LINK BIT(32), ?
2 Cid 32=bit zdoress’ when this record is reuseds this field
X tecomes the new NA for the data seta.
02 DEAL_FLAG BITt(4B)5 X

List Tables

Each List tabie is a Logical records, contzining control
informaticr (the Next List and Prior List fields and a ccunt of
sctive entries)s enoaigh =pace for SIR_TABLE_ENTRIES» and & 32-tit
gucit seriatl numbers The audit serial number represents the
current ASN when this tatle was tast updated (or zerc if the dzta

base does not use Aucit &nd Recovery).

If a table is ceietecr tte space occupied by that table is placed
into the N2& chain for the list. Onity a Next Available link is
fresente Since lists are never accessed in the physiczl sequerce
of the file containirg tte lists there is no need for a dead

flags The format for List tables iss3

CECLARE 2
01 LIST_TABLE BITU(STR_FECORD_SIZE)» X

02 LIST_CCNTROL_INFC BIT(ZI2)» 4

03 NEXT_TABLE B17(32), %
2 01ld 32-tit zddresss also NA tink for deletec tables

03 PRICR_TABLE BIT(32)» % Oid 32~bit address
03 LIST_ACTIVE_EMTRIES BITCL)» %

N2 LIST_ENTRIES(STR_TABLE_ENTRIES) BITCSTR_ENTRY_SIZE), 2
03 EMBEDLED_CATA_SET_ENTRY» X

1152444 F=13 01/15/84

04 EMBECDED_DS_DAYA BIT(STR_DATA_SIZE)» 2
Q4 EMEEDCED_KFY BITL(STR_KEY_SIZE = NOT STR_SIMPLE_KEY)» X
2 Cnty present for complex keys
04 EMBEDDED_LIST_HEADS BIT(STR_EMBEDDED_INFO_SIZE) 2
2 Cnly precent if 1lists are emtedded in this datz set
05 EMBECDET_LIST_HEAD(STR_EMBEODED_INFO_SIZE/bB4) X
06 EMBETIDED_LIST_F4URST BIT(32)» % 0Oild 32=tit zddress
06 EMBEUDED_LIST_LAST BIT(32)» % Cid 32-bit acdress
03 MANLAL_SUESET_ENTRY REMAPS EMBEDDED_DATA_SET_ENTRY» ¥
04 SUBSET_KEY BIT(STR_KEY_SIZE)» 2 Only if STR_CRCER_FLAG = 1
04 SUESET_AQDDFESS BIT(32)» % 0OAld 32-address ot object recorc
02 LIST_ASN BIT(32)7 X Audit serial numter of last update

Incex Tables

Cne format is used focr a'l index tabless whether they be index
seguential coarse or fine tabler or index rvandom table. Ezch

E£MSTIY index table is divided into three parts:

1. Header irformation. This includes thke Next and Frior Tatte
fielcss a3 table identification fieldr an audit serial

nuster» and a count of active entriese.

2 e The actual index ertries.

1. Traiter informatior. This includes the structure rumber
anc & self-relstive logical aadress. These fields are 3t
the end of eact blcck for checking purposess to ensure that
the entire block wezs read or written during each I/C

operitione

For inactive tasbles» the NA tink field is the first 22 bits of
the first incex entrye. £Fs in the case of list tabless no dead

fisg is required for index tablese.

1152444 F=14 0171984

1152444 F=-15 01715784

CECLARE

2

01 INCEX_TABLE

02

1 4

02
02

1152444

INCEX_KEAD BIT(9€)s X

03 INDEX_FLACS BIT(2)» X Not used

03 INDEX_ASN BIT(32)» X Audit serial number of last upcate
03 INCEX_TBL_TYPF BIY{(2)» 2

¥ 0 2 points £t data set records (index rzncdoe tables» or

4 irdex seguential fine tables)

2 1 2 index sequential coarse tables» pointing at 3 fine table
2 2 3 index sequential coarse tablesr pointing 2t ancther

2 ccarse table

¥ 3 32 not usec

U3 INDEX_ACTIVE FEITL{12)» X Lurrent active entries in tzble
03 INDEX_NEXT_TAFLE BIT(24), X
X2 For index sequential tables, points to next table on the

X same levels if = IFFFFFF2» rno more tables at this level
X For index random tabless points to next overflow table for
2 the current hash vatues if = 3FFFFFFd» nc more

b4 cverfloy tables

03 INDEX_PRICR_TEBLE BIT(240» 2
Y For index sequential tzbiless points to grior table on the

)4 same lewels if = QAFFFFFFa, this is first tatle at
4 this lewel

X For index rendom tables» points to base table for this
X hask vallues; base table points to self

INCEX_CATA BITC(STR_RCDS_BLK x STR_RECORD_SIZE), 2
03 INDEX_ENTFY(STR_RCDS_BiKJ, X
04 INDEX_CBJ_?DDRESS BIT(32)» 2 32-bit address of otject
1 recorg
04 INCEX_FKEY FITCSTR_KEY_SIZE)» 2
INCEX_NMNA_LINK REMAPS INDEX_ULATA BIT(Z24)s X
INCEX_TAIL BIT(S5€)» X
03 INDEX_STR_NO EIT(8)» Y The index's structure rumber
03 IMDEX_SELF_RADTRESS BIT{24)» X This table?s zddress
03 INDEX_CHECK_SIM BIT(24)» Z Not used

F~16 01715784

CMS/DASEL Data Structures

After the CMSII Globalss the Structure and File Recordss and tte
LFE Tables the remairder of the data structures within the dzte
base dicticnary are uvsed o store the information requirec by
CM3/CASEL to perform an \PLCATE compile of the data base. ALl cof
the tables discussed in this section are initially maintained in
remory by the LMS/DASDL compider during thke compilation of the
cata base. They are written to the dicticnary at the end of the

cogpite.

CMS/DASCL Glcbais

The CMS/CASDL glchal infermation is storec in segment 3 of the
c3ta base cictionary- Ttis cata structure is the DME/DASCL
ccepiler®s analog to the DMSII Globats. This is the first datas
structure {oaded by the TMS/DASDL compiler when performing an
LPLATE compiles The CMSsDASDL Globals contain fields which
cescribe the locaticr ant size of the rest of the data structures

to bte reloaded from the cictionary.

For each table of the CMS/DASDL compilers there is a psir of
fielcs labeled xx»x_CSK_PTF_ and xx_ToL_CNY. These fields contain
the starting segeent nuwter within the dicticnaryr and the numter
cf entries», respectivelys for each table of the DMS/CASDL

compiler.

1152444 F=17 01/715/84

1152444 F-18 01719784

CECLARE 2

01 DASCL_GLOEALS EIV(1%40),
CASCL_CATE_TIME EITC36)»

02

02
02
02
02
02
02
nez
0e
02
02
02
0z
N2
02
ne
02
0z
D2
02
02
02
(174
02
02
0e
02
1 I
D2

2

% hhen the DMS/DASDL compiler
% was compiied

CREATE_DAVYE_1IME BIT(36)» % When data base was first compiled

CRIGINAL_DASIL_VERSION BIT(o)>»
CICYT_ECF_PTR BITI16),

HICHEST_STR
COL_CSK_PTR
CCL_TBL_CNT

NAME_DSK_PTIR B8IT(16),
NAME_TEL_CNT B8IT(16)»

PTH_CSK_PTR

DATAEASE_PTIR BIT(16)»

KEY_CSK_PTR
KEY_TBL_CNT
PCL_LCSK_PIR
PCL_TBL_CNT
ATT_DSK_PIR
ATT_TBL_CNT
DFH_DOSK_FIR
CFH_TBL_CNT
STR_CSK_PIR
INV_TBL_CNT
LIT_CSK_PTR
LIT_TBL_CNT
SNT_DSK_PTR
CBA_TBL_PIR
CBA_TBL_CNT
INV_TBL_CNT

EITCE),
EIT(I6)»
ETIT(16)»

EI11{16)»

EITC16)»
EIT(16),
EITC16)»
EITCI6)»
EITC16)»
EIT(16)»
EIT1{16)»
EITC16),
EIT(16)»
ELT(16)»
EIT(16)>»
EITC16)»
EI1¢16),
EIT(I6)»
£E1ITC(16),
EITC(156)»

FILLER BIT(8l» 2%
HASH_TABLECG1) BITC16)» 2

2 A hash vadue is generateq for eack
2 bases this tatie points to the first entry
2 for each ¢f tte pessible hash values»

MM NN N NN MNNMNNMMNMNNNNNN NN

%

2 See DASDL=NERSICGN
Last record of dats tase dicticnary
Highest structure number

DDL Table info

Name Table info

Path Table address
DOL pointer of Llast logicsl cata base
Key Table into

Polish Table info

Attribute Takle info

DFH Table info

First Structure Record address
Invoke Table Address
Literal Tahkle info

Address of the Structure Nzme Table
Data Base Name Table Info

Numuer of entries in Invoke Tatle

identifier in the data
in the DIEL table
0 to €60. ALl of the

% DCL entries hzving the same hash value are tinked tcgether.

The following exceptions from the xx_DSK_PIR and xx_TBL_CNT pairs

ére noteg:

1.

There are no fields labeled SIR_TBL_CNT, PTH_TEL_CNT, or

SNT_TBL_CNT.

The

linits for

the Structure Recordss and for

the Fath and Structure Name Tabless are exactly egual to

the FIGHEST_STR fields making specitic fields for these

{igits redundart.

1152444

01719784

in [M-GLOEALS

2s The INV_CSK_PTF anc INV_TBL_CNT fields are non-centigucus
within the OM3/0A3IL Globals only for reasons of space

availabitlity.

DL Table

The CDL tatle entries are 380 bits an lengths with three entries
(1140 bits) per cisk sector. The remaining 300 bits per segment
ére not used. Entry 2er¢ is not used. Many of the fields witrin
each DBL ertry are cc=~spgtial; that is» 38 field has more than
one meaning» dependirg uron the nature of the item described by
the entry. These co-spatial fields are identified by either
recefinitions of a field» or by describing subfields. For
examples COL_VERIFY_FTR is used for data sets only. The
subtfietds CDL_CCCURS and DDL_FRACTIUN are used onply for cata
items. Yhese fields share the same area of the DDL entrys, but
the eaeaning shculd be clears since LDL_V¥ERIFY_PTR anc
LOL_FRACTICN cannot toth occur in the description of any ane
items Untess any astiguities cccurs, no extrza mention i5 made in

the cescription of thkese co-spatial fields.

1152444 F=20 01719/84

CECLARE

Z

01 DDL_TABLE_ENTRY BIT(380), %
CCL_NAME_PTF BITU16)» 2 O0ffsetr into the NAME table for this item
COL_MAME_LENCGTR EIT{8)» X Length in kytes cof the ites’s name

CCL_STF_NMER BITI(B)» ¥ Structure it gccurs in
CCL_RMF_NMER BIT(B)s Z The remap it occurs in
CCL_VRE_NMEBR BIT(B)» % The wvariable format
CCL_TYFE BITt4)» 2 HWhat type of item does this entry describe

02
02
22
02
D2
02

02

1152444

e
[

LC

NN NN MNNN NN NN Y NNNNNNNNMMNMMNNNN MNMNMMMNNNNNNMNNNNNN

—

-w Ve Wi

U

S e NN NN TN TN O e e e e e £ 0D

46 U5 83 8 8% 08 a5

@6 84 9 @v B8 B3 3% w6 B0 64 EQ we N2 BB e

se e

TYPE EIT(%),

gata base
data set
set

subset
access peth
data iten

it cccurs ir

invoke of a structure. An entry exists in the [CL Table
for etvery invoke of a data set. Since the cefiniticn
cf a physical data set is also an implicit
cf ttat cata set within the physical cata
tases the OCMS/DASDL compiler constructs
two YDL entries for each physical cata set?
cne entry for the datz set definitions and
cne entry for the implicit invoke cf the deta set.

file name

restart ¢ata set

index secuential set

inder secuentiat fautomatic) subset
groug item

internal file name - not used
gcrdered fata set

crdered sanual subset

alphs data itenm

sutti~file~id

unorcerec data set

unorceret wanual subset

index rardom set

numeric cata item

file-id

cisjcint data set

pack=ig

forwerc vreference -

2 Further descrites the item 2 DDL_

Wherever the DnS/DASCL encounters a
reference to an ites which has not yet been
dectared (for exampler & manual subset
declaration might refer to a data set which
has not yet been descriteds similarly» the
key deciaration for such @ subset references
datz items which have not been declared)s a
DCL entry must be buitt for such zn iteme.
forsard references must be resolved tefore the

dsts base can be initializec’

wher this

invoke

TYPE

BN DO WSENDD OSSN SN

At

resclution occcurss the DDL entry is updated.
Theveforesr there can te no DDL entries with
8 stbtype field of "forward reference™ in

F=21

01719/

a

B4

2 datz base dictionary on diske.
02 DCL_HASH_LINK BIN(16)» X Next DOL item with same hash value
2 tabeled "HL"™ by DMS/UDASULANALY
02 CCL_VERSION EIT(26) X version stamp of this item
02 CCL_COFMMENT_FTYR EIT(24), X
X If there was a quoted comment for this itesms this points
2 into the LITFRAL table. Same foreat as PCL_OPERANC_PTR in
2 the POLISH tzble.
02 CDL_LENEL BIT(8)» 2 COBOL level number» = U for cata bases
92 CCL_PARENY BITK1€¢)s 2 Previous item at DDL_LEVEL~}
2 1abeled "PT™ by DMS/CASLLANALY
02 CCL_PREV_SAME BIV(16), X Previous item at same OCL_LEWEL
2 labeled "PS™ by DOMS/DASULANALY
02 CCOL_NEXT_SAME BIT(16)» X Next time at same DDL_LEWVEL
2 Lateled "NS™ by DMS/UDASLLANALY
N2 COL_SON BIT(16)» X% First time at DOL_LEVEL+1
2 Labeted "SN"™ by DMS/DASDLANALY
02 LCL_OBJECT REMAPY DDL_SON BLT(C1l8)» X
X For set znd tubsetses points to the DOL entry for the
Z tojeclt structure.
02 CCL_SIZE BIT416)» % Item length» in bits
03 COL_CUFH_MMEBR BIY(8)» % UFH nunbter if DDL_TYPE = B (fitle)
02 CCL_CFFSET 8IT(1¢)» 2 Offsets in bitsr within its record
02 CCL_VERIFY_PIR BIT{16)» 2 it data sets points intc PCLISH tabtle
03 DOL_CCCUFS BIT(10)» X if data items size of CCCURS clause
03 COL_FRACTIION BIT(6)» % if numericrs number of decimzl places
02 DCL WHERE_PTF REWAPS DDL_VERKIFY_PTR B8ITC16)
7 Points ipnto FOLISH tabler for auto subsets
02 CCL_FLAGS 8I1(16)» X Shoulu be self-explanatory
03 DOL_FEQUIRED BIT(1)» X%
03 CDL_REQUIRED_ALL REMAPS DDL_REQUIRED BIT(1)» 2
03 CDL_ALL_SETS REMAPS DOL_REQUIED BITC1), 12
1 This remap has all sets decdared for physical data set
03 CCL_KEY EIT{(1)», X
03 DOL_VERIFY RE¥MAPS DDL_KLY BIT(1),» X
03 CDUL_WHERE REWAPS DCL_KEY BIT(1)» X
03 CDL_NCNE REME®PS DDL_KEY BITC1)» 2 This remap has nc sets
03 COL_KEY_I1TEM BIT(1), X
03 CDL_RESTRICTED_IVTEM BITL1)» X Key items which can't change
03 CDL_SIGNED BITC1)» %
03 CDL_CECIMAL EIT(1)» 2
03 TOL_MANUAL_SSET REMAPS LDL_DECIMAL BIT{1)» X
03 COL_FILLER_ATDED BIT(1), X For index keys
03 COL_SELECT RYMAPS DDL_FILLER_ADDED BITC(1)s 2
03 COL_SUBSCRIPTI_CNT BIT(2)» 2
04 DLL_EMBEDTED BIT(1)» X
04 DCL_OLD_STIRUCTURE BIIC1)» 2
X The 3Z=bit logical addresses stored within this
2 structaure are in the pre~Mark 8.0 format
03 COL_INIT_SIGHMED BIT{1)» X The initial value is negative
03 COL_RECOFD_TYPE BITC(1)» X
03 COL_FIDDEN BITC1)» X
03 DDL_REACCNLY BIT(1)» %
03 COL_EXCEPTION BIY(1)» % For READONLY fields

1152444 F=22 0171584

02 DOL_ANALOG BITC(163s X
2 Cnly usec if DOL_RMP_NMbR is not = 0» this describes

%2 the CDOL entry nueber for the itea which this ites remaps

02 DCL_INITVAL_PIR BIT(24)» 2
Z Pointer into the Literail Tabie for this item®s initial
%2 value., Refer to the description of the Polish Takle
2 (section 6) for the format of a Literal taktle pointer.
02 DOL_INIT_FRACYICN BIT(E)S 2

2 the pumber o9 fractionai digits within the initial value

Nase Table

Name Table entries are 17 bytes dlong» with 10 entries (170 bytes)
per cisk sector. The revaining 10 Lytes per disk sector are not

USEC. ENtry 2erc is not usege.

LECLARE 2
01 NAME_TABLEC10) CHARMICTERC17)S

Fath Table

The CMS/CASDL compiler generates one Path Table entry for each
structure in the uvats ba<e. Each Path Table entry is 54 btits in
Ltengthy, with 15 entries rer gisk sector. 1The remaining 30 bits

fer sectcr are nct usece. Entry 2erc is not used.

1152444 F=23 01719784

LECLARE 2
01 PATH_TABLE_ENTRY EIV(94)» %
02 PATH_TYPE BIT(4), 2

7 1 2 disjoint cata set
72 2 index segvential
3 : index rancom

2 4 2 ovrdered 1list

95 2 unordered list

N2 PATH_STR_NMEBF_BIT(8)» X Structure nusber for thkis path
02 PATH_DLL_PTR BIT(16)» X DDL entry for this path
2 For ordered embedded data sets only» this points to the
2 DDL entery for the access set of the data set? tc get the DDL
¥ entry for suct a d¢ata setr use PATH_OBJ_DDL_PIR.
02 PATH_DEJ_STR_NMBF BIT(8)» 2
%2 Fer sets &and tubsets» this is the structure number of the
? dats set gpointed to by the path.
¥ For 3dl deta sets» this i5 eoual to PATH_STR_ANMER
02 FATH_OBJ_ECDL_PTIR BIT(16)» % DDL ertry for object structure
02 PATH_NEXT_PTF B8IT(16)» 2 Next path with same okject structure
02 FATH_KEY_PTR BIT(16)» X First entry in KEY tatie for this path
02 FATH_FILE _NMER BIT(B)» % Where the psth is stored
02 PATH_DLUP_FLAC BIVC1)» 2 1 => Duplicates allovec
02 PATH_DUP_TYPE EITC1)> 2 Not used

Key Tatile

There is ore entry ir the key table for each item used in a key
clzuse. Ffach item ir the tabler in addition to the information
zbout the key» pecints to a DOL entry. If an item is used s 3
key in several pathss, then there is one key table entry for each
path in which that item s used. Adisosr if 2 group item is usec
25 a key», then there is cnly one key table entry for the entire
group. The subitems wittin the group can bte expanged Lty
frocessing through trke DIL table. Lach key table entry is 3¢
tits tongs with 40 ertries per disk sector. Entry 2ero is not

Useda

1152444 F=24 01715:84

[ECLARE 2
01 KEY_TABLE_ENTRY 8IT136), 2

02 KEY_TYFE BITt4), X
2 1 3 ascencing
¥ 2 : descerding
% 3 % data (not usecg)

02 KEY_CDL_PTR EIT(16)» % DDL entry for this item

02 KEY_NEXT_PTR BIT(16)> 2
Z Next key entey for this pathe If = 0» this is the lést
%2 key item for this pathe

Attribute Table

Each entry in the Attribaete Table corresponds to a physical
rarareter whick was explicitly set in the original DFS/DASCL
source. Fach entvy dis 6C bits longs, with 24 entries per disk

sector. Entry 2evro is nct usede

1152444 F=-25 01719784

CECLARE 2

01 ATTRIBUTE_TABLE_ENTFY BIT(60) X

D2 ATI_IDENT BIT(12}»

03 ATT_FILE EITC%)», Z Not used

03 ATT_IC BIT(B)s Z stre.

D2 ATTI_TYPE BIT48), X

02 ATT_LDL_

18

B8 G600 &6 03 3 W5 a6 e E8 A3 M0 s 8 ¥ W

. &8

KINT

PACK~-10

MULTI_FIVE_ID

FILE_1ID

AREAS

PRIME

PCGFULATIIN

LOACFACTIR =~ no longer used
SPLITFACTOR

MODULUS

AREALENGTH

8LOCKSIZE

TABLESIZE

SECUFITYTYPE

SECUFITYLUSE

SECUFITYCUARDE FILE pACK~IC
SECUFITYCUARD FILE MULTI-FILE-~id
SECUFITYCUARD FILE FILE-ID
PTR EIT(16)» %

02 ATT_ATTRIBUTE EIT(24)5 X

H

NI N R NN NN NN

1152444

17
24
25
26
21

any cisk {note: FPB.HDWR)
9=trzck tape
7T-track tape
PE=tspe

any tape

T 3 3 84

0L entry nuater
attritute valwe

1

2
0
1
2
tH

68 oS4 &8 &3 Sa

public file
privete dile

I/0 tile
input=only fite
cutpLt=orly fide

CL entry numter

F=26

2 To what does this attribute apply

to which this attritute agprtlies

ATT_TYPE
1
1
1
1
1
2=4
5-13
14
14
15
15
15
16=1£

01719/84

Polish Table

Every WHERE» VERIFY» and SELECT statement in the data Lkase
cescripticn is encoded irto Polish notaticons where esch simple
cordition is represerted 3as a series of cperasndss followed by &n
cperztor« Ccmplex cencitions are represented by ctencateration of
the strings for each sigrle condition within the complex
condition, followed Lty tte operators representing the logical
rvelationship between the simple congitions. FfFor examplesr the

cogplex condition:

A > B AND C = 0 ANC ¥ NEQ O

Can te decoded into the Yollowing?

ArBo®> s Lo lom=" " AND"»E»0»"NEQs"AND ™
The first three items in the string represent A > B8» and the next
three represent € = L. #fter both of these simple relaticns have
teen evaluateds, there are tuo boolean values (TRUE or FALSE)
ceneratecs the first ANT in the Podish string indicates that
these two values are to te ccmpareds and the resulting becclezn
value storede. The next three items in the string represent the
expression E NEG O» inc 2lso resutt in a btcolean value being
generatecs JThe tast AND indicates again that the top two values
(this timer the result of the previous AND operations and E NEY
U) are tc be ccmparec. The result of this (&ast operztion, eitter
TRLE or FALSE, deterginet if the WHLREs VERIFY» or SELECT claucse

has keen sstistied.

1152444 F=27 01719/84

FOLISH table ertries are 60 bits iongr with 24 entries per disk

sectcre. Entry 2erc is nct usede.

1152644 F-28 01/719/84%

[ECLARE %
01 POLISH_TAELE_ENTRY EIT(60)» %
02 FCL_CPERAND_FLAG BIT(1)» % U => operztors 1 => operand
2 Next 9 fielcs are valid only if POL_OPERAND_FLAGC =
D2 PCL_LITERAL_FLAG BIT(1)» X i => fiteral
02 FCL_NUMERIC_FLAG BIT{1)» X 0 => alghzs 1 => numeric
2 Next three fields are vadid only if POL_NUMERIC_FLAC = 1
02 PCL_CECIMAL_FLAG BIT(1)» 2
02 FCL_SICNED_FLAG EIVTL1)» X
2 next is vélid only if POL_DECIMAL_FLAG = 1
02 PCL_FRACTIGN_SIZF¥ BIT{(S5)» % Number of decimal places
D2 FCL_CPERANDSIZE EIT(10)» % Length in bits
02 PCL_CPERAND_FTR FITL24)» % LDL entry # if ron- llteral cperand
03 FCL_OPERAAD_IMDEX BIT(11)» %X Pointer into LITERAL t:zble
03 PCL_COPERAND_OFFSET BIT(15)» X Cifset within LITERAL entry
02 FCL_CPERATOR REMEPS POL_QOPEKAND_PTR BITL2)» 2

2 3404 3 LSS
2 3413 3 LEAL
X 3423 = EQL
¥ 2433 32 NEGC
¥ A&43 3 GEYC
% 3452 : GTF
X 3503 3 NO1
% 3603 = ANI
X 3704 : QR

02 PCL_CDATA_CFFSET 81YT(16)7 2
¥ If the operanc is 2 subscriptec data items» this contains the
2 offset of the actual array element referenced in the WHERE or
X VERIFY clzuseas

Literal Table

The Literal Table is comrosed of entries that are one disk sector
in Ltengthr and it is usect to store Literals for either Polish
exgressiors or commert strings within guotation marks. Several
literals céen be stored within each Literad Table entrys, depencing
upon the length of esch literal. Literads cannot overiap two or

norve Literal Table entries. Entry zero is not used.

]
1

1152444 29 01715784

CTECLARE 2
C1 LITERAL_TABLE_ENTRY BITC1440)» X
02 LITERAL, 2

% Fach literal sithin a LITERAL table entry starts at
% PCL_OPERAND_QFFSEY bits from the teginning of
7 LITERAL_TABLEIPOL_OPERANUL_INDEX)

03 LITERAL_SIZE EITC(16)» X dength in bits of the literal

03 LITERAL_VALUE BITCLITERAL_SIZE)S X

CMS511 Audit File Inforwation

[MSI] aucit records zre wariable in Ltengths howevers, they are
rot the sase type of varfable lengtn records that can te created
ty a user grograg. Every user~created variatle length recorg
kas» as the first tielec in each record» a cescription of the
tength of the records Foer DOMSIT auait Tecords» the tergth of
each recoerc is a functior of the type of audit information which
the record containss. Each DMSI¥ augit record contains a
gfreaxbles and usually & rostamblesr which jcentifies the aucit
record type anc the structire number affected by the sudit. The
preasble and pocstamble determine the total Length of the audit
record. The preamble anc postamble contain the sare informaticons
gliowing the DVMS/RECCVEFRIB program to process these variable

length records either fortward or backuwarde.

The TMSI] system writes zudit recoras intc each physical audit
tlock until e€ither tte block is full or a syncpoint operation
cccurses In either céser the UMSII system initiates & write IJ/C
cperstion cn the buftfer contszining the block. If tape 15 used as
the sudit mediar the CMSIT system switches audit buffers
autowaticatly st a syncpeint operation (the CMSII systenm

gllocates two asudit tufters 3t audit file open). If disk is

1152444 F=30 01/19/84

teing useds the [MSI] sys=tem continues to use an audit buffer
sfter the syncpoint 1/0 tas completeds rewriting the buffer when

the tuffer fills. Tte fermat of the audit buffer is:

TECLARE 2
01 AUDIT_BLOCK BIT(FPE_RECORD_SIZE)» 2 From the AULIT FPE
02 AUCIT_CATA EBIT(FFB_RECORD_SI2E-104), %
02 AUCIT_CONTRCOL_INFO BITC104), 2
03 AB_LAST_RECORT 8IT(16), %
2 Dffset into tte audit block for the last recorc. If = AFFFFa»

X no aucit records begin or end in this tlock? the entire
b4 blcck contzins 3 continuation of a record from 3 previous
% Edccks. See also AB_FULL_BLCCK belowe.
03 AB_FIRST_ASN EIT(32)» X
% ASN associatec with the tirst audit record in this tlock
03 AE_LAST_ASN BIT(32), 2
X2 ASN associatec with the ftirst audit record in the next block
03 AB_FULL_BLOCK BIT(1)» 2
X If = 1, AE_LAST_RECORD points to the starting position cf the
4 tast recorc.
Y If = 0» AE_LAST_RECORDL points to unused portion of the
X tiocka
03 AB_BLOCK_MUMBER BIT(23); X
2 Current tlock numbter within this zucit files 0 relative.

Aucit Types

The first eight bits of each audit record contain the audit type
tfielcs which is used tc cescribe the type of information
contzinec within the audit reccercd. There are tuwo general classes

of audit reccrcs:s

1. Control records. These audit records are used for events
which affect thte ertire data base. Each control recorcd

consists of just tte eight bit audit type field.

1152444 F=31 01715784

The

The

the

Upcate reccrdse. Ttese audit fecords are used to describe
chenges to specific structures within the data base. The
upcate recoras contain the informatiaon necessary to either

reapplys or back ottsr sn updatee.

following is the fornét of thke update records:?

spreamble> = «xvariable-data> : <postamtle>

<preamble> consists cf» in orded» the zudit record type anc

structure numsber. Ezch of these fields is eight bits in

lengthe The <postamstle> contains the same two fieldsr but the

crcer of the fields is reverseds allowing the DMS/RECOVERLH

grogram to reac backsarce through an audit file.

hWith the exception of aurcit record type &€33» the beginning of

the <yariable=-cata>» gortion of ecach update record zlways contains

the following two fielcds:

1.

Previous audit serial number (ASN). Ttris field is 32 tits
in 1engths and is the ASN which was contained in the
upcateg blcck grior to the upaate being currently auditec.
This field is used by the CMS/RECOVERDB program to
determine if a particular audit reccrd should or shoutld rot
be applied a3gainst a physical record on disk. Since
gisjoirt set recorc formats do not incluce an ASN fielcs
the previous ASN i« noreadly zero for sudits of dataz set
records. Howeserr if a cata set block is updatecd more than
once while in nemcry» the audits of z2ll updates other theén

the first update ccntain valic previous ASN fields.

1152444 F=32 01/19/84

2. Logical asdcress. This is always a 24-bit address.
regardless of the structure type being audited. For dzte
sets and listsy the record or table nusber appears

inmediately after this 24-bit address in the audit reccrc.

All sudit record types which share a commeon function are groupede.
This grouping 35 indicated by the first four bits of the audit

record type field.

Controd Records (Type = 3Bx3)

<813 2 Syncpaint
aB23 3 fCortroigpoint
«833 32 Datsg Base Close
2 Used for phy=ical claose onlys and should be the
2 tast reccrc in the audit fitle. A Syncpoint is generated
2 if a procram closes the data ktase while cther users
2 still hawe tte data base opene
«B43d : Data Base Oper ¥ Initial open only.
aB33 : Program Abort

L Sase as cata base closes but used to indiczte that
i an abort has forced the data tase to be shut downa

Standard Data S5et tpdates (Type = 31x3)

In ail of the audit record descriptions in the remainder of this

cocurents the preyviors ASN and dogical address fields are
omitteds the presence oY these fields is implied in all casess

except for audit reccrd type 3b33d.

1152444 F=33 01719784

2103 : Data Set After Imzge (STORE after CREATE)
Format:
Fecord numter ¢ BIT(3)
Mew Tecord ¢t BITCSTR_RLCDRD_SIZE)
alla 2 Data Set Before Inage (DELETL)
Forpat:
fecord numbter @ BIT(8)
Cld record ! BITC(STR_RECORD_SIZE)
«123 2 Data Set Eefore ard After Image (STORE after MOCIFY)
Format:
ffecord numter 3 BIT(R)
Clc record T BIT(STR_DATA_SIZE)
New record * BITASTR_DATA_5S5126)

Incex Entry lUpdates (Type = 32x3)

<203 3 Insert Table Entry
Format:
labtle entry nywrber 3 BIT(i2)
New entry T BITLSTR_RECQRD_SIZE)
2213 2 Ffemove Table Entry
Format:
Tablie entry nuaber 3 BIT(i2)
Clc entry : BIT(OTR_RECORD_SIZE)
a2Zd 2 Change Index fequential Root Tabtle
Format:
(ld root tibte address ¢ BIT(32)
New roct tzble address 2 IT(32)
2233 2 Index Sequential ¥ey Change

2 Used if the tighest key in a 4dcower level index
% tabie chénge:

Format:
Entry rumber 2 BIT(12)
{lc key : BIT(STR_KEY_SIZE)
hew key : BIT(STR_KEY_SIZE)

1152444 F=34 01719/84

Update Index Table Control Fields (Type = 33x3)

«303

Set Block Type
Format:

Clc tleock type 32 BIT(2)

hew bleock type 3 B3IT(2)
Change Table Pext Pointer
Format:

Cic next pcinter = BIT(24)

New next pcinter 3 BIT(24)
Change Table Frior Pointer
Forgat:

(td prior gointer 3 B8IT(24)

MNew prior gointer 2 BIT(24)
Charge Table hext and Prior Fointers
Formgat:

glc Next

Clo Prior

hew Next

hNew Frior

«31a

#

«3234

[13

<334

[1)

BI11(24)
BIT(24)
BIT(24)
BIT(24)

ds B3a e s

Update List Tables (Type = 34x3)

at3d 3 Before Image c¢f List Control Info
Forgat:
List table numter 3z BIT(B)J
Cld cortrel indo 3 BIT(72)
a4ld 2 After Image of List Caontrol .info
format:
List tahie nuaster 2 BIT(B)
New controd info = BIT(IZ2)
ahZ23 2 Insert List Recore Into List Tabile
Format:
List table numter = BIT(&)
List recorc nuwber : BIT(&)
New Llist recorc 2 BITCLTR_ENTRY_SIZE)
a433 * femove List FKecorc From List Table
Format:
List table numter 3 BIT(&)
List recorc nunber 3 BIT(b)
cilc record 2 BIT(STR_ENTRY_SIZE)
<h4d ® Remcve List fecorce and Delete List Tatde
Formats
List table numter = BIT(8)
Cld controdl indo 3 BIT{(ic)
Cld record 2 BIT(SIR_ENTRY_=IZE)
4453 % Stove List Tatle #nd Insert List Record

Format:
List table numter = BIT(8)
hew control indfo 3 BIT(7c)

1152444 F=35 0171984

New record 2 BIT(SIR_ENTRY_SIZE)
<463 : Change List Recorc
Format:
List table nunmter
List recorc nusber
(lc record
Aew record

[1]

BIT(12)

BIT(6)
BITCSTR_DATA_SIIE)
BITCSTR_DATA_SIZE)

4 0 W

List Heac Upcates (Type = 35x3)

In all czssess» the parent data set record i5 kteing audited. The
gucit records tave tle szme format whether the parent data set is
a cisjoint data set cr ar embedded data set. Howevers, tsc of the
fielcs ir each auvdit recerd have ditferent meaningss depencing
upcn the structure type ¢f the parent datz set. Tte némes of

these fielcsy, and their neanings», are:x

1. Parent record rumber. If the parent is 3 cisjoint data
setr this i5 the record number of the parent dsta set
recorde If the parent is a List» this is the table numter

of the parent cata set number.

2 Tabte entry nugsber-. If the parent datz set is a disjoint
dats setsr this field is atlways zero. If the psrent is a
List» this is the €entry number of the parent cTecords witrin

the list table aiready descritede.

<503 3 List Head After Iwmage
Forgat:
Farent reccrag rumber 2 BIT(12)
List head cffset S BITCLs)
Tagle entry nusber 2 BIi(1s)
Mew Llist heac 2 BIT(64)
513 2 List Head Befcre Image
Forgat:
Farent reccrd rumber 2 BII(12)
List head coffset 2 BIT(16)
Taple entry nusber 2 BIT(B)

1152444 F=36 01719,84

Clo 1list heaga : BIjido4)

Space Allocation (Type = 36x3)

2603 2 Update Next Availzbie and Highest Opened
Formats

flg Next Availzble

Mew hext Ayvailzble

BITL32) X HC = NA
BIT(s2)

[1]

«b13d 3 Updste Next Aax3ilzbte Only
Format:
{1a Next Availzbtle =2 BIT(32)
Aew Next Awvailzble 2 BIT(52)
«a6Zd * Return Space to Next Availabie
format?
hew Next Avagilzble 3 BIT(32)
Cld Next Awvailzble : BIT(32)
ab3ad : Oper New Area

% The format of the <variable~data> for this record
¥ only includes the following fietds? there are no
2 fields in thie audit record for previous ASN or
X logical acdress
Formats
New area nurber 3 BIT(8)

Index Splits and Cocmbires (Type = ATx3)

Khen DMSII splits or comtines index tabless» entries are removec
frem an existing tabtle ard inserted into @ new tables these
zetions Tequiresr in zdcition to the two records for the insertion
gnc celeticns records which reflect the space aliocstion for the
revw tabdes ard require tte modification ¢f the next énc prior

grointers in the affectec tables.

Since the actuzl size of the audit record degends upon the numter
cf entries to ke moveds the number of entries moved fielc appesrs
twice in esch sudit vrecord to allow the augit file tc ke read in

reversce

1152444 F=37 01715/84

Each of the four types o% audit records have exactly the same

foreats this tormat is listec only for the first of these.

a70a3 2 Insert Entries Into Front of Table
format:

Number of entries to be moved 3 BIT(12)
Entries moved 3 (=)
hNumber of entries to be moved 3 BIT(12)

(*) The total lencth» in bits» of the entries to te moved is
€qual to:

{entries to be moved) x STR_RECDORD_SIZE

<713 2 Irsert Entries Inte Back of Table
Formats: same s fcr 3703

«72a > Femove Entries Frem Front of Table
Forgat: same &5 fer 270a

al733 3 Remcve Entriez Frem Back of lable

Fecrxat: same zs fer 3704

115244 4 F=318 01715784

APPENLIX 6

NCTATION COAVENTIONS AND SYNTAX SPECIFICATIONS

The follcwing paragraphs describe the notatien and syntax

conventions used in this manuale.

KOTATICN CCNVENTIONS

The following paragriphs describe the notation conventionse.

Left and Right Broker Brackets (<>)

Left and right broken brecket characters are used to enclose
letters anc¢ cdigits which are supplied by the user. The letters
anct cigits can represent a variables, a numbters, a file namer» or 3

commznd e
Example=z

<job #>AX<commanc>

1152444 6-1 01/715/84

AT SIGN (3)

The at sign () charzcter is used to enclose hexadecimat

informatione.
Exzmples

eF33 is the hexaderimal representation of the EBCDIC

character 3.

The at sign (3) charécter is also used to enclose tinary or

"

hexacecinad information vhen the initial 3§ character is followed

ty 3 (1) or (4}» resgectively.
Examples:

2012111160113 is tte binary representation of the EBCDIC

character 3.

3{4)F33 is the hexidecimal representation of the EECDIC

character 3.

1152444 G=-2 0171984

cjdentifier>

An icentifier i1s a strinc of characters used to represent some
entity» such as an ites rame composed of {etterss, cigitss and
hyphen. Ar icgentifier czn vary in idength from 1 to 17
characterss. Tke characters must be adjacent» the first character
of an identifier must be a letterr» and the 1ast charscter cannot

te 3 hypher.

<integer>

An integer is specified ty a string of adiacent numeric cigits

representing the decimal value of the intecer.

<hexadecimad=number>

A hexadecirmal rumber is specified by a string of numeric digits
enc/or the characters A through F5; this string is enciosed

within the at sign (d) claracters.

1152444 G-3 01/719/84

<delimiter>

A celimiter can be ary nen-alphanumeric character. The hyphen

excluded.

<literat>

A literal is a data item whose value is identical to the

is

chérscters contained wittin the ites. A literal can be either an

glphanumeric (or simply glpha) literals or a numeric literal.
Alghs 1iterals can ccntadn any combinatior of valia printable
characterss, cr spaces» ard must be enclosed ty quotation (™)
cheracterss a quotation character within an alpha literal is
regresentec by two stccessive quotation charécters within the

character stringa.

Exzmples

ABC""DEF
The prececing slpha literal could be used to represent the

cherzcter string ABC™DEF.

MNumeric diterals carn contain only the decimatl digits O through §

and sre not encliosed withtin any delimiters.

1152444 G- 01715/84

SYARTAX CONVEATIONS

Railroad diagrams shcw hew syntactically valid statewents can te

constructece.

Irzversing a railroac diggraas from 4deft to rights or in the
girection of the arrcwhezds» and adhering to tte limits
itlustratec by bridges produces a syntacticadly valic¢ statement.
Continuation froe one Llivre of a diagram to another s represented
ky 2 right arrcow {(1rg) arpearing at the endg of the current line
anc the bteginning of the next 1line. The ccmplete syntéex diagrza

is terminated by 3 vertical tar (lvi).

Items contsinec in broker brackets (< >) are syntactic variabiles
which are further detined or require the user to supply the

recuestec informaticre.

Lpper~case itess must aprear literaily. Minimum abbreviations of

upper=case itess are undeértiineaas

1152444 G=5 01719/84

D e-

1g==j 3 \===

A RAILRCAL CIAGFAN C(ONSISTS OF ======

ANC IS5 TERMINATELC EY A VERTICAL BAR.

i
<br idges) s eeme e mm-e)
i

1
<gptionsl items> =--1
] (|
Lrequired itegs> =-=-1|

»

<{oops>

The tollewing syntactically wvalid statements can be constructec

frce th

1152444

e preceding diagrems

A RAILRCALD DIAGRAY CONSISTS OF

BY A VERTICAL BAR.

DIAGRA¥ CONSISTS uF
BY A VERTICAL BAR.

A RAILRCAC
TERVINATEL

DI#GRAY CONSISTS uf
BY A YERVTICAL BAR.

A RAILRCAC
TERMINATEL

DIAGRANM CONSISTS UuF
<lcops> AND

A RAILRCAD
itews>» <hridges>y
BAR.

G=6

<bridges> AND IS TERMINATED
<optional iteamas> ANLC IS
<bridges>» <loops> AND IS

<optional items>» <required
IS TERVINATED EY A& wERTICAL

D1/719/84

Required Iteas

ho alternate path througt the railroad diagram exists for

required items or recuired punctuatione.

Examples

~== FEQUIRED ITEW ===m=emmeceeeeccsemcacca-ao]

Cptional Itess

Items shown as a wvertical! List indicate that the user mnust make a
chcice of the items specifieda An empty path through the List

Zilows the optional item to be absent.

Examgples

=== REQUIRED ITEMN ==r====we=-=- bbb b bbbl bl b E il
:-- <optionad item-1> —-:
:-- <gptionatL item-2> --:
The following valid statements can e constructed from the

freceding ciagraes

REGUIREL ITEM
REQUIFREL ITEM <optional item=1>

FEQUIRED ITEM <gptional item-2>

1152444 G=7 01719784

Loops

A loop is & recurrent path through a railroac diagram and has the

foldowing generatl format:

1<=== <bridge> <return character> ===-{
i 1
- - (ohiect Cf t'e l°0p> —------nu-----—-------—---u—-'

Exzmples
I(—-/ 1 \---n-u- p Wmmewmna \---nf-‘
1 i
- - - - gop—ti‘)nal it‘m-l) --m--n--n—--u-—----«---o-----:——l
1 1

1=- <ogptional item=2> =~{
The following statements can be constructec from the rzilroad

ciadgram in the example:s

<gptional item=1>
<optional item=2>
<optional item=1>s<optional item-1>
<gptional item=-1>s<optionatl item=-2>
<gptional item<=2>s<optional item=-1>
<gptional item~2>s<optional item=2>
A <loop> must be traversed in the direction of the arrowheads,

gnc the ligits specitied by bridges cannot be exceededs

1152444 G- 8 01/719/84

Bridges

A tridge indicates thke minimum or maximum number of times a path

can te traversed in & vaitrosd diagsams
There are tuo forms cf <tridges>.
/ n A\ r is an integer which specifies the saxinmus

rumber ot times the path can be traversec.

/ nx \ r* it an integer which specifies the nininue
rumber of times the path must Le traverseda

Excmple:

I<==s/ 2 \=m=eee-cmece , cecaeccceamces]

- e .(optiﬂna’ itemol) Ll R R D e L LR R]

1 1
==/ 1x V=~ <«gptional item=g> =-|

The loop can be traversee 3 maximum of twoc times? however, the

path for <cptional itea~¢> must be traversed at least once.

1152444 G=9 01715484

The follaowing statements can be constructec from the rzilroad

ciggram in the examples

<gptional itea—-2>
<gptional itea=1>e¢<Xoptional item—2>
<gptional ites=2>»s<optional item=2Z>»<optional item=-1>

<gptionai itew=2>s<opticognal item=2>s<optionzl item=2>

11524644 G=10 0171984

INDEX

>y Left and Right Broker Brackets

<gudit reccrd typed> 10-19

<AX or AL commanc> 11-1
<cata base name> 1(-6
<delimiter> C~=4

<disjoint cata set> I~-4
<cembeddec structure> 3=-5
<fzmily narned 10=7

<file equates> 11~3
<hexzdecimal-number> 6~3
<identifier> G~3

cirdex seovential set> 3=5
<integer> £~3

<{literal> €E=4

<numter1> 10~-8

<numter2> 10-8

<option> 10-3

<str id> 11-13
<structure name> 16-15

«<structure number> 10-15

1152444 IX=-1

G=-1

01719/84

«swWitch settings> 11-3
<switches> 7=5
<usercode>» 5=9

<yirtual disk> 11=4

a» At Sign Character g=2

“CANTT CPEN FILE FOR <strl#>: <str name>" 11-64

Abnormal Concitions 3-12

Abort Messsges 11-62

ACLCEFT (AX or AC) SYSTEM COMMAND il=9

Accept Systes Commancs DNS/DEMAP Program 11-9
ACCESS A=-1

Accesss CMSII 5=5

Adcing DNatez Items I-14

Adding Emtedded Dats Sets anc Manuad Subsets 3-18

Adcing Sets anc Automatic Sutsets j-18

#ccition and Deletior of Datz Items 3=-19

Accitionad Multiprograseing Considerations 4=50

ADCITIONAL MULYIPROGFAMPING CONSIDERATIONE 4=5(

Adeiristrator 1-1

AFTEF 10-19

Algorithms 3=-30

Algorithes» MCFII Mesory Management E-2
ALL 3-10, 11-12

ALL LDS 11-12

1152444 IXx=-2

01/719s84

ALL ES 11-12

ALL 1DX 11=-12

ALL Initialization ot Lata Items
ALL INITIALIZATICN OF CATA IYEMS
Anslyzing, DMS/7AUCITANALY Progranm
Anzlyzings DMS/DASDLANALY 7-1
Applicaticn E=40» E=43» E~4CS
AREAS 10-14

ASKS Statesent 10-16

Assignment of Cocde Segmerts g=5
Assumptions E-40» E~-435 E-45

AT SIGN (3) £-2

Attribute Table /=3, F=25

Aucit Blocksize 4=24

Aucit Euffers E~7

Audit by Program 4=42

Auycit by Statiaon 4=42

Aucit File Informaticn Elock £=-6
Aucit File Parzameter Block (FPB)
Aucit Function 4L-5

Aucit Mecis 4=23

Aucit Traid 4=2

Aucit Types F=31

Autosatic Sets 2=3

Automatic Subset 2=-10

-

Autoratic Subsets =4

1152444 IX-3

b=3

10~-1

i=2

01719784

Backed Out Transacticns 4=4b6

Ealarce of an Incex fet ¢r Subset 3-39
Basic Praocedures 4=33

Eatch Programs 4=38

EEFORE 10-19

Eegin-transaction anc Enc—~transaction Operations
Eegin~Transaction Operation E=-31

ELLCKS 10~14

Elocksize for Aucit File 4=24

Br idges £=9

Ercken Brackets (<>)» Leit and Right G-1
Euffer Descriptors E-14

Buffers E=14

fuffers» ¥idcden E-16

CAN CNLY MAP 11.0 DATAEASES 11-63

CAN'T REAL LICTICNARY FILE HEADER 11-64

CANNCT MAP ACTINE DATABATE 11-63

CANNCT MAP DATRABASE »ITH ACYIVE FILE: <filenzme>
CARD 11-8

Changing Groupings or Lewels 3-156

Changing Populations 3-18

Charging Structure Attritutes I-1¢

Chaznging the Description of Lata Items 3-15

11-63

Changing the Descriptiont of Sets and Autcmatic Subsets

Cheznging thke Ordering of Datz Items 3-16

Clear=Start Recovery 4=15

1152444 IX~4

=16

01715784

Close Operstion E-21

Clesing @ Lata Base 4=¢

CLUSTER 11-13

CLLSTER EXFECTED 11-19

Coce Requirements of MCPIYI E-3

Coce Segment Assignments 8-5

COLE SEGMEMNT ASSIGNMENTS B=S

COMMAND ERFORS 11-19

Cormand Evrrorss DMS/IBMAF Program i1-19
Cowmznds 11-10

Compiling Frograms 5=1¢

Corpiling the Tata Bese 5-i1
Compiling the LMS/DBMAP Frogram 1i=4
Cowpletion of 2 Single Transaction 4=6
Conclusion 5=-13

Considerations», Multiprocramming 4=50
Considerationss Throughptt 4=22
CONTENTICN A-1

COMTFOL 10-16

Control fecords {Type = sBxa) F~33
Controlpoint 4= 10

Cortrolpoints 4-29

Conventionss File Naxing 3-28
Corventions» Ngtatiors G-1
Conventions» Syntax Ifescription &6=5
COPY BACK 3-9

CGFY Stateament I-7

1152444 IX=5 01715784

Counting Transactions anc Syncpoints

freate Operaticn E-21

CATA
Cata
Cata
Cata
CATA
Lata
Lata
Lata
lata
CATA
Lata
Cata
Lata
Lata
Catsa
Cata
fata
Lata
Lata
Lata

CATA

[CATABASE CICTICNARYS

10=14
Base Admirnistrator 1-1
Base Coapitatior =11

Communicaticns Frograms L=40
IMAGES 10-14

Items» ALL Initiatization B-5
Printing 11-3¢

Requiremerts of MCPII E-4

Set Structures 2=1

SET SIRLCTURES 2=1

4~

Set with €mbedded Data Set (No Sets)

2=7

Set with Index Fancem Set and Automatic Subset 2=10

Set with Multiple Ordered 5ets and One Retrieval Set Z2=11

Set wnith No Sets =5

Set with [(rderec (Irdex Sequential) Set 2=t

Set with (rderec Emtedded Data 5Set

Structures F=1

Transformation Fute:s =22

Transformations 3-19
Working Set E-32

WORKING SET E-32

CATAEASE Statement 10~-¢

LBA

1-1

1152444 IX-6

<title> IS MISSING

il

11-64

01/15/84

LOL Tabtle 7=2» F=2¢C

CEADLY EMBRACE A=1

Lecogpilings DVS/DECCMPILER Program 6=-1
CEFALLY 5=9

Lelete Operaticon E=-31

Leleting Cata Items 3=15

Lescriptorss, 1/0 E~18

LFH Table F=¢

CFk Table anc File Recorcs 7-3
Lictionariess Fath E-1%

Cictionary on User Pzck 11-4

CISJCINT A=2

fisjcint LCata Set E=-22

fisjoint Tats Set (LLS) Ffopulaticn 11-37
Lisjcint Cata fet (CLS) Fecords 1i-30
Lisjoint Cata Sets 3-2€, E-27

CISK 10-6

Lisk File Headers E-8

CMS/AUCITANALY Examples 10-27
CMS/AUDITAMALY OFTICOMS 10-2
CMS/AUDITANALY Progrzm 10-1
EMS/AUDITANALY Program COreration Instructions
CMS/CASCL Compiler B=6

CMS/DASDL Cata Structures F=17
[MS/CASCL €igbals 7=1, F=17
CMS/CASDLYANALY Program 7=1

LMS/CASOLYANALY Prograw fperating Instructions

1152444 IX-7

=5

0171984

CMS/DBBACK Program 9=1

[M5/7(BLCCK Procgraa 8-1

CMS/CBMAP Frogram Accept System Command
LMS/7/CBNMAF Frogram Coamanc Errors il=1
CMS/CBMAP Frogram Executdon Examples
CMS/0BMAP Frogram Files 11-8
L[MS/CBMAP Program Operating Instruction
CMS/CBMAP FRCGRAM QGUIPUY 11=-25
CMS/CBMAFP Frograe Output 1i-25
CMS/CBMAP Freograsx Perforwance 11=-i7
CMS/DBMAF Frograe Stitus Information
CMS/CBMAP Frogram Switches 11-5
LMS/CBMAP Frogram VIFTUAL_DISK 11-9
CLMS/CECOMPILER Progranm 6~1
C#S/7INQUIRY Program 5=13
LMS/REQREANIZE Program 3-11

LMETI1 Access 5=5

CMSId ACCESS 5=5

[MSIT Aucit File Infcrmation F=-30
CLMSIT Data Structures F=1

L¥SI1 Gilgbsts 71y F=2

[MEIY Workarea E-19

C[MSII Horking Set E-1

CoUBLE 10-21

Luap Recovery 4=15

flements, Sytax of 4=2

1152444 IX~-8

11-9
9

11-21

5 11=2

11-23

01719784

EMBECDEL A~-2

Embecded Lata Set ¢=7» E-30

Emtecded Lata Sets E-21

Embecded Data Sets ard Mznual Subsets 3=17
Emtecded Structure (ES) Fopulation 11-38
Emtecded Structure (ES5) Tlables 11-31

ENE 10-3

Enc-Transaction Cperztior E~-31

Entries Per Tatle E-58

Error anc Warning Messages 11-41

ERFCHF IN CCMMAND FILE. <nsg>» SEEINGL2 <last thing rezd> 11-65
ERFCF IN SET QOFTION 11-65

Error List 11-42

Evrror Susmm:zry 11-35

Error» Warnings and #Abort! Messages 11-41
Exzmple 132 E-35

Exsmple 23 E=40

Exomple 33 E~43

Examplie 43 E=45

Exzmples of Horking fet fatculations E=34
Executing Frograms 5=1¢

Executing the CMS/DBMAP Frogram 1i=4
EXECLYIOMN EXAMFLES 11-21

Execution Examgpless [MS/UBMAP Program 11-21
EXVENDED VALIDITY 11-1°%

EXTENDED VALIDITY PRINT 11-15

External Procecures rot Felated to the DMSII System 4=15

1152444 [X=-9 01719/84

External Procecures Felated to the LMSII System 4=34

FAMILYNANE 3-8

FILCX 11-8

File Names 10-25

File Namirg Conventicns I-28
File Recorcs F=7

FILE Staterent 10~1

FILES 11-8

fFiles» DNS/DBMAP Program 11-8
FINAL MECILM 3-8

fFind Operation £=-22

Find/lLock (Modify) Operations E~2c¢
Forms of Fecovery 4-11

FORMS OF FECCVERY 4-11
FCRYWARD 10-8

Free Dperation E=21

Frequency of Syncpoints L=46

FRCM 10=~16

Garbzsge Lotllection I=-1%, 3-25

Ceneral Prccedures 4=3%

General Restarting ot Lata Communication Procrans 4=43
CENEFATE Statement 3-3

Giobals E-S

tuarc Fides» SECULRITYGLAFD 5=7

1152444 IX=-19 01715784

Heading Pages 11-27

Hicden Buffers E=1¢

1/C Cescrigptors £-138

ILLEGAL VALID_NAHQO CALL <string> i1-65

IN 5=4

INDEX A=2

Incex Entry Upgoates (Type = 232x3) F=-34
Incex Random 3-27» E~51

Incex Ranoce (IDXANC] Perulation i1=39
Incex Ranccm 3¢t 2=10

Index Random Sets E-23

Incex Rancdom Sets anc New Index Sequentiat Structures
Incex Random Tables 11-35

Incex Segquential 3-27» 330, E=53

Incex Sequentizl (ICXSEQ: Population 11-33
Incex Seguential Set 2=b6

Incex Sequential Sets Ane Subsets E=-23
Incex Seguential Tables 11-32

Incex Splits and Combtines (Type = 3¢x3) F=-3r7
Incex Taktle Formats E-£9

Incex Tables F=14

INMEF LEWEL A=2

Insert Operation E=24

Instructionss LMS/DASDLAMNALY Program 7=3
INTEFNAL FILES Statenent 3-10

Internal Frocecures 4=14

1152444 IX=11

3~31

01719/84

Invoke Table 7T=4
1 5=4
item Size Changes i-20

Item Type Changes 3=-22

KA 11-13
Key Table 1=3, F=24
Key=btuilcing Code E-1

KEY-BUILCING CCDE E-1

Left and Right Broker Brzckets (<>») G=-1
LIERARY 6-2

LINE 11-8

List Heac Updates (Type = 3Sxa) F=3b6
List Tables E=2%» F=13

Lists (Manuad Subsets anc Embedded bLata Sets)
Literal Table T=4y F-29

Lock Descriptors £-12

Lock Operatian E=-2¢

Logical Adcresses F-5

Logical Transactions 427

Loops c-8

LOKEF 10-21
¥anagement of temorys, MCFII Aigori;nms £-2
danusl Sutsets 2=4y E=¢4

danuals» FKeference 2

1152444 IX=-12

I-27

01/719/84

MASTER A=2

MCFII Coce Reguiremerts E=-2
#*CFI1 COLE REQUIREMEMNTS E-3
MCFI1 Data Requiremerts E=4
VCFI] DATA REQUIREMEMNTS E~4
*CFII Lock £E=-13

FCFITI MEMCRY MANAGEMENT fLGORITHMS
PCPI1 Read E~-12

#CS» Use of 4=59

VEMBER A-3

Vemory Management Alcorithms of the MCPII

dbessage Control System 4=-50
MISSING CCLON 1i-19
FISSING CTNMMA 11-1%

docify Operatian E-22

boving a Cata Item from Fixec to Variabtle Format

pAEG COUNTY 11-14

hNane Table 7=-2» F~23

NG 5=-10

bon-Festartable Conditiors 3=34
Motation Ccnventions G-1

MCTATION CONVENTIONS G-1

Cbject Datz Set £E=-25

{ccurrences 3=240

LN 10-6

1152444 IX=13

£-2

01/15/84

{pen Operation E-21

Cpens Closer Freesr Creater and Recreate Operations E=-21
fperzting Instructiors =1, 7=5

CPERATING INSTRUCTIOANS 10-2, 11-2

Cperating Instructiors» IMS/DBMAP Progranm 11=2
Cperasting System Security (Non-DMS5SI4i Access) 5=2
(perational Aecuirements E=29

CPERATIONAL FEQUIRENENTS E-20

CPTICN SPECIFICATIONE: 10~-5

Cpticnal Itenms G-7

Cptions ang Cowmand ftrirgs 10~-5

CPTICNS Statement 10=-21

CRCEFED A-3

(rogered Embecded Datz Set 2=-8

{rocered Set 2=6

cut S=4

Cutputs» C¥S/0BMAP Prcgrarn 11-25

CWMEF 4=3

Fage 1 11-27

Fage 2 11-27

Fage 3 11-27

PARENT 2-3

Farent Dats Set E=24
FPartial Cump Recovery £-20
PATH A=3

Fath Dicticnaries E~19

1152444 IX=14

01719/84

Path Table 7=2» F=23

FERFCRMANCE 11-17

Fer formances DFS/DEBMAP Program 11=17
Fhysical Cata Set Recorcs» Transforwation Code
Polish Tabte 73, F=27

FOFULATICN A-3

Fopulatior Summary 11-7%

Print Aucit File #4» Struicture #7) 10=-28

Frint Audit Files 1 Throuegh 5 10=c7

Print Aucit Files 1 1hrowtgh 5» BeforesAfter Images

Frirnter Cutput 10=4

FRIVATE 5+3

froceduress Basic 4=33
Frocedures, Festartirg 4=-31
Frccess» Updating 1-1
Frogram Atort FRecovery 4=11
Program Atorts in Trznsacttion State 4=6
Frogram Cospilation 5=12
Program Execution 5~12
Frogram Switches 1¢=-5
Frcygranm Synchronization 4=52
Frograms CHS7ALDIVANALY 10-1
Frogram» CMS/DASCLANALY =1
Frogrames CMS/DEBACK 9=-1
Frograms CNMS/DBLCCK 8=
Frograms CMS/DECOMPILER 6-1

Frogramss Batch 4=38

1152444 IX=15

10=-27

01719/84

Frcgramss

FRCPERTIES
Prctection
Protection
Frotection

Frotection

FUELIC 5
Furge 3=
FURGE Stat

Lata Commurication 4= 40
A=3
of Entire Physical and Logical Data Bases Using S-7
of Items »ith Logical Data Bases and Remaps S=5
of Structires with Logical Data 3ases and Remars £=5
using SECLRIVTYGUARD Files 5=17
-3
37

ement 3=-¢

FEAD EQOF CF FILE F<#>2 <q{itename> AT ADDRESS <address> 11-6%

RECOFD A
fecoverys
Recoverys
fecovery»
Fecovery»
kecovery,
Fecreation
fkeference
ffegrouping
Felated Lo
FELATED CC
Fewag Reco
femove (pe
Regrganiza
Feorganiza

Reorganiza

1152444

-4

Clear=Start =15
Cump h=1%

Forms of 4=-11
Partial Dusp 4-20
Frograms Abcrt 4-11
Operation E-21
Fanuals 2

of Late Items 3=-21
cuments l

CUNENTS e

rdss» Transformstion Code B=4

ration £E-256

ticn of a [ata Set or Manuai‘Sutset 3-37
ticn Process 3-2

ticn Rules I=-14

IX=1b6 01/715,84

FEQGUIRED Ciause Checting B~2
Fecuired Itenms 6=7

Requirements E~41y E=47» E-4S
Requirements of the Sfystem 3-36
Requivenments of User Pro«ram E-2
fequirementss MCFII Cocge £E-3
Feguirementss, MCPII fata E-4
fequirments» Operaticnal £=-20
Festart Data Set 4=5

festart Prccedures 4-31

FESTART FRCCEDLRES 4=31

festart Record Handling 4=~36
fiestartable Conditions 3=-35
Festarting Remcte Stztiors 4=4]

REVERSE 10~-3

RO 5«10

fules of Reorganization =14
fules» Reoganization 3=14

FH 5=10

SCCPE A=4

Security Checking £E-1
Security Features 5=2
Securitys, SECURITYTYFE 5=-3
Security, SECUFITYUSE bt
SECUFIYYGUARD Files 5=7» 5-8

SECURITYTYFE 5=-3

1152444 IX-17

01/715/84

SECURITYUSE 5=4

SELECT clause verificaticn 8=4

SELECY CLAUSE VERIFICATICN B-4

SET A=4

SET AND SUESET STRUCTURES 2=2

fet 3Structures 2=2

Signed Dats 3=20

SINGLE 10-21

SPACE 10-19

Spzce Allocation {Tyre = 36x3) F=537

SPAN A=4

SPLITTING A=4

Stancard (Lisjcint) [ata Set Records F=12
Stancard Data fet Upcates (Type = 3ix) F-33
STATIC INFC 11-13

Static Information 11-%8

STATISTICS Statements 10~213

STATLS 10-4&

STATUS INFCRMATICN 11-23

Stétus Irformaticns [MS/TBMAP Program 11~-213
Store Operation E=-27

Stcre Cperation after a freate Operation £E=-28
Store Uperétion After 2 Yodify Operation E-25
Structure and Item Frotection with Logical Dzta Bases znd Remags
Structure Currents E-1¢C

Structure Mame Table 7=4%

Structure Fecords i-%» E-8» F=-8

1152444 IX-18 01/19/84

Structure Types 2=5

STRUCTURE TYPES 2=5

Structures of 3 Set =7
Structures of 2 Subset 2=2
Structures of LData Sets 2=1
STRUCTURES Statement ict-11

SUBSET A=4

Sutset Structures -2

SWITCH 6-2

Switch Settings 10-26

SWITCH SETTINGS 11-5

Switchess UMS/LBMAF Frogram 11=-5
Synchronizatior of @ Procran 4=52
Syncpoint 4L-E

Syncgoints 4~29

Syncpoints and Contrclpoints 4=29
SYNTAX 6=2

Syrtex Conventions 6=5

SYNTAX CCNVENTIONS G=5

Syntzx Edenents 4=¢

SYNTAX ELEMENTS 4-2

System Reguiresents 3-16
SYSTEM/MAFK=SECS Program B8-%6
SYSTEM/MAFK=SECS PROCRAM AND DMS5/DASDL COMPILER

SYIPES 10-14

TABLE 10-19

11524644 IX=-19

01/719/84%

Table Splitting E-48

TABLE SPLITVING E-48

Table Splitting Algorithes E-50

TAPE 3=-9

TEXT FOLLCWhS PERICD 11-20

Throughput Considerations 4=22

THROUGHPLT CONSICERATICNS 4=22

1C 10-9» 10-16

Iransactions 4=5

Transacticrss Back Qut 4=4b

Transactionss Logical =27

fransformstiocn Code for Fhysical Data Set Records B8-S
TRANSFORMATICN CCDE FOR FHYSICAL DATA SET RECORDS E-5
Iransformation Code for Femap Recoras B=4

TRANSFORMATION CUOLE FOR FEMAP RECORWS B=4

Irsnsformaticns of Czta 3=-19

Two Data Sets» Each fefevenced by a Subset of the Qther 2=14
Tuc Lata Setss Cne Feferenced by a Manual Sutset of the Cther (No Key)
Iypes of Structures 2=%

TYFES Ststement 10-18

UMKNCHWN ALL VAFRIANT 11-20

UNKNCWN STRUCTURE 11=-2¢

UNCRCERECL A=5

Unorcered ¥Fanuzsl Subset Yith One Entry Per Table £E~2¢
UNRECOGNIZED OFTION 11-20

Upcate Index Tabie Ccntrecl Fields {(Type = 23x3) F=35

1152444 IX=20 01715784

Lpdate List Tables {(Type = 34x3) F=35
Lpcate Process I-1

UPCATE PRCCESS -1

LPFEF 10-21

Use ¢f an Fessage Cortrot System (MCS) 4=50
LUser Lock £-12

User Progrzam Requiregsents E-2

LSER PROGRAM REQUIREMENTS E-2

VALICITY 11-14

VALICITY PFRIMNT 11=14
verifications, SELECTY Clarse B=4
VERIFY Clause Checkirg B-2

VERIFY Statement 1l=24

YERSION AND SECURITY CRE(KINE 8-1
version CLhecking 3I=24, B-1
yIRTUAL CISK 11-9

VIFRTUAL_CISK» LCMS/DBMAP Frogram 11~-9

WHERE anc SERIFY 3=17

WHERE Clause Checking -2

WHERE» WVERIFY», ANDU FEQUIFED CLAUSE LHECKING. B=-2
Horkarea of TMEII tE-19

KCRKING SET E-1

Working Set Calculations» Exzmples of E=-34
korking Set of DMSII E-1

Horking Setr Data £E-32

1152444 IX=21

01715784

Krite Errors and Partial Dump Recovery 4272

1 ACTIVE RECURL COUNTYT CIFFERS FROM NAHO PCPULATICN 11-413

10 EFPTY EASE TAELE L[OES NGT COMTAIN NULL ENTRY 11-46

11 ENTRY CCUNT = 0O IS INMALID 11=46

12 ENTRY CCUNT DIFFERS FFOM GBJECT DS PCPULATION: <number> 11-47
13 ENTRY CLT OF QORCEF IN TABLE: <adaress>. LASY KEY: <key> 11=47
14 FILE MISSING 11~47

15 FINE TAELE ENTRY COUNY CIFFERS FhOM ODBJECT 11-48

16 FINE TABLE ENTRY (GCUNT GREATER THAN OBJEC?T 11-48

17 IN ADLRESS: <address> (INVALID DiSK AREA NUMBER) 11-48

18 IN NAHC:® <acdress> (RATDRESS IS NULL) 11-50

19 INVALIC NAHC LINK IN <address>» ABORTVTING MAHO SEARCH 11-51

2 ACTIVE TABLE CCULNT DIFFERS FROM NAHO POPLLATION 11~43

20 INVALIC NEXT ALCCRESS 11-51

21 INVALIC NEXT FCINTER. EXPECTED xaddress> 11-52

¢2 IMVALIC NUMEER OF ENTFIES == USES <numter> 11-52

23 INVALIC PARENT TYFE: <number> 11-52

24 IMVALIC PRICR PCINTER. EXPECTED <address> 11-52

25 INVALIC SELF ACDRESS IN TAIL: <audress> 11-53

26 INVALIC STRLCTURE NUMEER IN TAIL: <numter> 11-53

27 INVALIC TAIL <addrl> FOR EMBECDEL <str name> IN RECOREC <addr2> 11-5
¢6 INVALIC TYPE <numter 1>. EXPECTEL <number 2> 11-54

29 KEY IMN WRCNEC BASE TABLE. SHOULD BE IN <address> 11=55
I AUCIT MNUMBER: «numteri1> > GLOBAL AUDIT NUMBER: <rumber2> 11=44

1152444 IX=22 0171984

30 KEY IS INVALID DUFLICPTE 11-55

31 KEY IS T10C HICH FCR THIS TABLE. MAX IS <key> 11-55

312 KEY OLY OF CRCER IN TH#BLE: <address>. PRICR KEY: <key> 11-56
33 LASY ENTRY CF CHAIN SHOULD BE A NULL 11-58

34 LAST ENTRY CN LEVEL SHOULD HAVE NULL KEY 11-5¢

35 LAST FINE TABLE EMTRY SHOULD BE nULL 11-57

36 NEXT LINK IS SELF (EDY»MS5] I1=57

37 NCN-DEAC RECORD IM NEYT AVAILABLE CHAIN AT <address> 11-57

18 NOCN-EMFTY TABLE IM NEXT AVAILABLE CHAIN AT <acdress> 11-5¢&

4 AVAILAELE CHAIN IS CIRCULAR 11=44

41 OBJECT RECORD IS5 [ERC 11-58

42 TABLE KEY - OBJECT XEY MISMATCH. OBJECT RECORD CONTAINS 2 <key> 11~
43 TABLE KEY - TAGBLE DAT#® MISMATCH. DATA CONTAINS: <key> 11-59

45 VERSICN MISPATCH. VERSION ON CISKR IS <version> 11-60

46 ZERQ ACLRESS F{OR AREA <number> 11-61

47 IN OLC ADORESS® <gddress> (FILLER BIT SET) 11-50

48 UFDATE FLAG IS SET 11-60

49 RECOVERY=IN-PRCCEXS FULAG IS SET 11-5¢8

5 CAMN'T CPEN FILE FCF <str neme> FOn EXTENCED vALIDITY CHECK 11-44
50 WRITE-EFRCR FLAG 1S5 SET 11-640

51 REORGANIZATICN-IN-PROCESS FLAG IS SET 11-59

52 INTEGRITY-EFRCR FLAG 15 SEY 11-51

53 ABNORMAL STATUS IN DATA BASE GLOBALS 11-42

€ CAN"T CPEN FILE FCF <str neme> FOk NAHO COLNT 1145

1152444 IX=23 01719784

7 CIRCULAF TABLE POINTERT 11-45

8 CEPD RECCRD NOT IN AVAJLABLE CHAIN 11-45

S <number> DEAC RECORDS OV FOUNC ON AVAILABLE CHAIN 1146

1152444 IX-24 017195/84

	00-001
	00-002
	00-003
	00-01
	00-02
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	01-01
	01-02
	01-03
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	06-01
	06-02
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	11-35
	11-36
	11-37
	11-38
	11-39
	11-40
	11-41
	11-42
	11-43
	11-44
	11-45
	11-46
	11-47
	11-48
	11-49
	11-50
	11-51
	11-52
	11-53
	11-54
	11-55
	11-56
	11-57
	11-58
	11-59
	11-60
	11-61
	11-62
	11-63
	11-64
	11-65
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	D-01
	D-02
	D-03
	D-04
	D-05
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	E-39
	E-40
	E-41
	E-42
	E-43
	E-44
	E-45
	E-46
	E-47
	E-48
	E-49
	E-50
	E-51
	E-52
	E-53
	E-54
	E-55
	E-56
	E-57
	E-58
	E-59
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	F-11
	F-12
	F-13
	F-14
	F-15
	F-16
	F-17
	F-18
	F-19
	F-20
	F-21
	F-22
	F-23
	F-24
	F-25
	F-26
	F-27
	F-28
	F-29
	F-30
	F-31
	F-32
	F-33
	F-34
	F-35
	F-36
	F-37
	F-38
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10
	X-11
	X-12
	X-13
	X-14
	X-15
	X-16
	X-17
	X-18
	X-19
	X-20
	X-21
	X-22
	X-23
	X-24

