‘Burroughs

B 2500
and

B 3500
SYSTEMS

COBOL REFERENCE MANUAL

B

Burroughs

B 2500/B 3500
INFORMATION PROCESSING SYSTEM

COBOL

REFERENCE MANUAL

B

Burroughs Corporation
Detroit, Michigan 48232

$5.00

ii

Copyright © 1966, 1967, 1968, 1969 Burroughs Corporation
AA 873007 AA 971839 AA 009428

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con-
sequences arising out of the use of this material. The infor-
mation contained herein is subject to change. Revisions may
he issued to advise of such changes and/or additions.

This reprint includes the information released under
the foliowing:

PCN 1033099-001 (Aug 28, 1969)
PCN 1033099-002 (Oct 8, 1969)
PCN 1033099-003 (Nov 11, 1969)

Correspondence regarding this document should be forwarded using the Kemarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation. 6071 Second Avenue, Detroit, Michigan 48232.

ACKNOWLEDGEMENT

Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this
report as the basis for an instruction manual or for any other
purpose is free to do so. However, all such organizations are
requested to reproduce this section as part of the introduction

to the document. Those using a short passage, as in a book review,
are requested to mention "COBOL" in acknowledgement of the source,

but need not quote this entire section.

COBOL is an industry language and is not the property of any com-

pany or group of companies, or of any organization or group of

organizations.

No warranty, expressed or implied, is made by any contributor or
by the COBOL Committee as to the accuracy and functioning of the
programing system and language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in connection
therewith.

Procedures have been established for the maintenance of COBOL. In-
quiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data

Systems Languages.

The authors and copyright holders of the copyrighted material used

herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programing
for the Univw:()]ﬁand 1T, Data Automation Systems copy-
righted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F 28-8013, copyrighted 1959 by IBM; FACT,
DST 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or
in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programing

manuals or similar publications.

Revised 8/28/69 iid
by PCN 1033099-001 i1

' TABLE OF CONTENTS

SECTION TITLE
INTRODUCTION . . v o & & o
1 COBOL LANGUAGE ELEMENTS. . .
General « . .

Character Set

Characters Used for Words.

Punctuation Characters

Characters Used in

Characters Used in

Editing

Formulas.

Relations

Characters Used in
Definition of Words . .
Types of Words

Nouns.

File-Name . .
Record-Name .
Data-Name . .
Condition-Name.

Procedure-Name.

Literals. . .

.

Numeric Literal.

Non-Numeric Literal.

Undigit Literals

Figurative Constant

Special Register Name

TALLY. .

.

TODAYS-DATE (Calendar)
DATE (Julian).

TIME . .
SPECIAL-NAMES. . .
Verbs. « « « . . .
Reserved Words . .

Connectives .

Optional Words.

PAGE
XV
1-1
1-1
1-1
1-1
1-2
1-2
1-2

1-10
1-10
1-10
1-10
1-11
1-11

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
1 (cont) Key WordsS. « « « o« « o o « o+ o 1-11
Statement and Sentence Formation . . ,., 1-11

Paragraph Formation. « . . . 1-11
Section Formation. . . « + + o« « o o+ o+ o 1-11

Notation Used In Verb and
Entry Formats. « + « « o o o o o o o+ o o 1-12

Key Words .« « + « « o« o o o o » o« » 1=12
Optional Words. . « + o o+ ¢ « o o« o 1-12
Lower Case Words. . « « o« o o o o o 1-12
Braces. « « s s o o o o o o o o o o 1=-12

BI’aCketS. 1—13

T
e
L W

Consecutive Periods . « « « « « « &

Periode o« o o o o o o o o s o o o o

2 IDENTIFICATION DIVISION . ¢ o + o o o o s o

General. . « « ¢ ¢ ¢ ¢ o o ¢ o o o o »
Syntax Rules .« « o o« ¢ o ¢ « o o ¢ o »

MONITOR « ¢ o + o o o o o o« s o o
Coding the IDENTIFICATION DIVISION . . .

WoN W
EW R R

3 ENVIRONMENT DIVISION. . . - « « o o« &« + o« « « 3-1
General. +« « « « o s s o o o o« « o o o« o 3=1
Organization . . + « ¢« « o « ¢ o o o o o« 3-1
StrUCtUTE. + o o o o o o o o s o o o o » 3-1
Syntax Rules « « o o o ¢« ¢ o o s o « o 3-1
Configuration Section. . « « . . « « . .+ 3-3

SOURCE-COMPUTER « + ¢ « ¢ ¢ ¢« o + » 3=3
OBJECT-COMPUTER . . + « + o +» « « » 3-4
SPECIAL-NAMES . ¢« +« « « & « « « + » 3-6
INPUT-OUTPUT SECTION . . + « « « + « » « 3-8
FILE-CONTROL. . « « &+ « « « « « +» . 3-8
I-0-CONTROL . .+« « « &« & o o & « « » 3-16

Coding the ENVIRONMENT DIVISION. 3-18

I DATA DIVISTON - - - - S . |

General- o L] . l"-l

SECTION
4 (cont)

TABLE OF CONTENTS (cont)

TITLE
DATA DIVISION Organization .
DATA DIVISION Structure. . .
Record Description Structure
Level~-Number Concept
Qualification. . « « « « o«
Tables ¢« ¢ ¢ o ¢ o ¢« o o o &
Subscripting« . « .
FILE SECTION . « ¢« o « o =+« &
FILE DESCRIPTION. . . .
BLOCK .« . « + « « « + &
DATA RECORDS.
FILE CONTAINS
LABEL . ¢ « ¢ o « o o &
RECORD. + ¢« ¢ ¢ o o o
RECORDING MODE.
VALUE OF ID . .« « o «
Record Description. . .
BLANK WHEN ZERO
Condition-Name.
Data-Name . . . « « « .
JUSTIFIED ¢« « « o o o o
Level~-Number. o
OCCURS. ¢ o o o o o o o«
PICTURE « .« « .
REDEFINES . .« . « . . .
RENAMES . . . « .« « .« &
SYNCHRONIZED.
USAGE ¢ ¢« ¢« « ¢ ¢ o o &
VALUE ¢ ¢ ¢ ¢ o « o o &
WORKING-STORAGE SECTION., . .

Organization. . . « « .

Non-Contiguous WORKING-STORAGE.

WORKING-STORAGE Records
Initial Values. . « + =

Condition-Names . . .« &

PAGE

SECTION
4 (cont)

viii

TABLE OF CONTENTS (cont)

TITLE
Translate Tables. « « ¢ « « o

Coding the WORKING-STORAGE SECTION

PROCEDURE DIVISTION. ¢« « o o o« o ¢ o o &

General. « ¢« « « ¢ ¢ o s o o o o @
Rules of Procedure Formation . . .
Statements . « « ¢« ¢ ¢« ¢ o ¢ o o
Imperative Statements
Conditional Statements. . . .
Compiler-Directing Statements
Sentences. « + o « o o o o o 0 e e
Imperative Sentences.
Conditional Sentences
Compiler-Directing Sentences.,
Sentence Punctuation
Verb Formats. « « « ¢« ¢« o+ + &
Sentence Formats.
Execution of Imperative Sentences.
Execution of Conditional Sentonces

Execution of Compiler-Directing

Sentences. « « ¢ ¢ o o o o s o s
Control Relationship Between

Procedures « « « o« ¢ ¢ ¢ o o o o o
Paragraphs . . ¢ ¢« ¢« ¢ s s o & o =

SECTI ONS L] L] . L] L] * . L] L] L] * L] L]
DEC IJARATIVES . . L] L] L] L] [] L] . . .
USE Statement . ¢« ¢« ¢« ¢ ¢ «

COPY Statement as a DECLARATIVE

Arithmetic Expressions . « « « « .

Arithmetic Operators.

.

Formation and Evaluation Rules.

Conditions « « ¢« ¢ o o o o o o o
Logical Operators . . « « . &
Relation Condition.
Reiaitionai Operators. « « «

Comparison of Operands. . . .

PAGE
L4
b7y

5-11
5-11
5-11
5-13

5-13

SECTION
5 (cont)

TABLE OF CONTENTS (cont)

TITLE

Non-Numeric. . .

Numeric. . + « .
Evaluation Rules. . .
Simple Conditions . .

Compound Conditions .

Abbreviated Compound Conditions

Segmentation . « « ¢« . o

Program Segments. . .

.

SEGMENT Classification.

Priority Numbers. . .

Internal Program Switches.

Vel"bs

Specific Verb Formats
ACCEPT. . ¢« ¢ « « o &
ADD
ALTER o« ¢ « ¢ « + o« &
CLOSE « + « « o « « &
COMPUTE+ . . &
COPY . . . « ¢« « o

DISPLAY . . « ¢ o «
DIVIDE. ¢ « « « o « &
END-OF-JO0B. .« « « .« .
ENTER ¢ ¢ ¢« & o o« « &
EXAMINE . . ¢« « « « &
EXIT. ¢« o &« o o« o o &
FILL. . « . ¢« « ¢« « &
GO. & v ¢« ¢ ¢ ¢ o . .
IFe ¢ ¢« o ¢ o o o o &

Simple Conditional

. . ° .

Tests .

Conditional Statements . .

Relation Tests .

. . . .

Relative Value Tests . . .

Class Tests. . .

Conditional Variable Test.

Revised 9/28/70

by PCN 1033099-004

SECTION

5 (cont)

DATA

TABLE OF CONTENTS (cont)

TITLE

MOVE. . .
MULTIPLY.
NOTE. . .
OPEN. . .
PERFORM .
READ. . .
RELEASE .
RETURN. .
SEARCH. .
SEEK. . .
SET . . .
SORT. . .
STOP. . .
SUBTRACT.
TRACE . .
UNLOCK.

USE . . .
WAIT. . .
WRITE . .
Z2IpP . .

Coding the PROCEDURE

COMMUNICATIONS

General
General. . . .

NOT

.

- - . - -

Specific Verb Formats. . . « .

ACCEPT. .
CLOSE . .
DISABLE .
DISPLAY .
ENABLE.

FILL. . .

INTERROGATE

READ L L] .

WATT.

WRITE . .

.

.

- - . . L

L] . L] . L)

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE

6 (cont) WRITE-READ. . . + ¢ « 4 v ¢« o o« « o 6-23
WRITE—READ_ TRANS 3 6- 25
WRITE-TRANS-READ. . « « + « & o« . . 6-26

7 C ODING FORM L] . . . [] L[] L] L] o L] L] . L2 L] L] L] .
General. « ¢ o o« o o o o o o o o o o o

Coding Form Representation

7-1
7-1
-1
Sequence Numbers (Columns 1-6) 7-3
Continuation Indicator (Column 7). e« o« o 7=3
Continuation of Undigit Literals 7-3
Continuation of Non-Numeric Literals . . 7-4

Continuation of Words and
Nu«meI’iC Literals 7-4

Division HeadeT. « « « « & o o « o o« « o 7=4
Section Header . . .« « ¢ ¢ &+ & &+ o o o o 7-

Paragraph Names And Paragraphs 7-5
DATA DIVISION Entries. « + « o o & « « o« 7-5
DECLARATIVES « ¢« ¢ o ¢ o« o o o o o o o o 7=7
Punctuation. « ¢ 4 ¢ o ¢ 4 e . . T7=7

8 COBOL COMPILER CONTROL. . . ¢ « o« 2« o« « « « o 8-1
General. . o o ¢ o o & o o o o s o « & o 8-1

Compilation Card Deck. +« +« « o « « +« » . 8-1

?Compile Card « ¢« « ¢ o ¢« & o« « o« «» 8=2

MCP Label Card. . . <« <« o « « « « « 8=2

$ Option Control Card . ¢« « « . . . 8-3

Source Data Cards « « + « +« « + + .« 8-6

Label Equation Card . . . «. . + . . 8-8

Compiler Limits. « « ¢« + ¢ « ¢ o « o« « « 8-9

9 READER SORTER AND LISTER. « « ¢ « « « s« « o« « 9-1
General. . + « o« « o« o o o o o o o+ o o & 9-1

Specific Verb Formats. « « « ¢« ¢« o o« + « 9=-1

CONTROL 4 9-2

CONTROL 6 &« v v v o o o o o o o« 9-3

OPEN. « ¢« v ¢« « 4 o « & o« « o o« o« « 9=4

Revised 9/28/70 xi
by PCN 1033099-004

SECTION

O

10

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDT

APPENDIX

INDEX. .

FIGURE

N
1
=

i
-

-F‘-{:‘\.«J
N =

xii

—_

(¢}

5 8 O Q W =

!

Q

mo@

ct

o’
g
3
s

[.

SELECT: « o ¢ o o o o o o =
USE ¢« ¢« ¢ o o o o o o o+ o @
CONTROL .+ + + & « ¢ o ¢ o« &
ENABLE: o ¢ ¢ « o « o « o »
WRITE ¢« ¢« ¢ ¢ o o o o o o =

COBOL FILTER PROGRAM.
General. &+ ¢« « « o o o o o o o

Configuration for Execution of
Filter . L] . . L) - L] L] . ® L] . L]

Execution Cards. . « ¢ ¢ ¢ o o &
Specification Input Example

Error And Advisory Messages

Output Messages And Image Code.

Repetitive Operations . . .

COBOL RESERVED WORDS. . .« « « « « « o &
COBOL SYNTAX. &+ ¢ ¢ o o o o o« o o o o =
EBCDIC, ASCII, AND BCL REFERENCE TABLES
WARNING AND DIAGNOSTIC ERROR MESSAGES .
ENTER SYMBOLIC RESERVED WORDS
DISK FILE HANDLING. « o« « o ¢ o o o s
PROGRAMING EXAMPLES . ¢ o &« o« o o o o o

UTILIZATION OF CORE DUMP FOR B 2500/
L

B 3500/B 4500 COBOL DEBUGGING . . s e

B 2500/B 3500/B 4500 COBOL
DEBUGGING TECHNIQUE . « « ¢ + &« & + o &

. . . L] [] L] . .]

LIST OF ILLUSTRATIONS
TITLE

Coding the IDENTIFICATION DIVISION. . .

£ TOATIZT D AATAMTIMAIM TVTYXPT O T AT
Vi A0N V A IVAN NN A A/ ALV AJaUiv e . . L] .

Coding of Level-Number. . « +« +« + « « .

Coding of Multi-Dimensioned Table . . .

10-1
10-2
10-4
10-4
10-7
10-9

I-1

one

PAGE

N
1
(%11

1
[
\D

P'-F (W]
N W

FIGURE

4-3
Loy

Ut ot Ut Ut \'J'l Ut Ut it it &
| ! } 1
o 0N Ot &L NN B OV

QQQPQ
00 ~J O W\

NUMBER

L-1

LIST OF ILLUSTRATIONS (cont)
TITLE

Coding of FD and DATA RECORDS . . .
Label Coding. « « « o o o o o o« o« &
Coding of Condition-Name.
Coding of WORKING-STORAGE SECTION, .
of COPY Coding. . « . .+ =
of COPY Coding. . . « « &
Example of COPY Coding.

Example 1
2
3
Example 4 of COPY Coding.
5
6
7

Example

of COPY Coding. « + + « o
of COPY Coding. . « « « =
Example of COPY Coding. . . + .« .
Example 8 of COPY Coding. . « « « .

Example
Example

Example of SEARCH Operation Relating

to Option 1 . .« ¢ ¢« « o o o o o o
Coding of PROCEDURE DIVISION. . . .
Coding Format for a Source Line . .

Sample Coding Form. . « « o « o o« =

Sample Coding Showing Continuation of

Lines, Special Remarks, and Actions

Compilation Card Deck « .« =

.

s

PAGE

e« « . . k10
e o e o o b-22
e e o o o L-34
e e e . e k75
.+ + « . 5-U45
e e . . . 5-46
e e e o o 5=47
e+ o « . 5-48
e o« + o .« 5=49
« + « . .« 5-50
e« e+ . 5-51
S T 4

s+ e . . 7-6A
8

s s s s s

Example of a Tape Parity Errors Routine G-2

Example of Use Procedures to Change Label

Fields .« ¢ ¢« ¢ o o o o o o s o o

e o s« o« G=3

Example of Copy Replacing and Square Root

Program . . ¢« ¢« ¢ o ¢ ¢ ¢« o o o o

Example Output of Copy Replacing and Square

Root Program. . « ¢« ¢ o ¢ o o o o
Example of MICR Reader Sorter . . .
Example of Sort Program . . « « + o
Example of SEARCH Verb Usage (Sheet

Example of Segmentation Gathering .

LIST OF TABLES
TITLE

Maximum Value of Integers

.

e e e o . G=-4

PAGE

h-12

Revised 9/28/70 .
by PCN 1033099-004 X111

xiv

Recordin

Editing Sign Control Symbol Results . . .

Order of Precedence When Using
Characters As symbols . « « o « ¢ o o « &

Numeric or Alphabetic Items . . . « « « &
Alphanumeric ItemsS. « « &+ o o o s o s o o
Editing Application of the Picture Clause

Combination of Symbols in Arithmetic
EXPressions « « o o o o s o o o o o s o

Relationship of Conditions, Logical
Operators, and Truth Values . « « o « o o

Combinations of Conditions and
Logical Operators . o« « + o« o o o o o o o

»

5-12

5-12

INTRODUCTION

This manual provides a complete description of COBOL (QQMMON
BUSINESS QRIENTED LANGUAGE) as implemented for use on the Burroughs
B 2500/B 3500 Electronic Data Processing Systems. This concept of
COBOL embraces the adoption of proposed American National Stan-

dards Institute (ANSI) COBOL-68.

COBOL's long list of advantages is derived chiefly from its in-
trinsic quality of permitting the programmer to state the problem
solution in English. The programing language reads much like or-
qinary English prose, and can provide automatic program and system
documentation. When users adopt in—house standardization of ele-
ments within files, plus well chosen data-names, before attempting
to program a system, they obtain maximum documentational advantages

of the language described herein.

To a computer user, the Burroughs B 2500/B 3500 COBOL offers the

following>major advantages:
a. Expeditious means of program implementation.

b. Accelerated programmer training and simplified

retraining requirements.

c. Reduced conversion costs when changing from a computer

of one manufacturer to that of another.
d. Significant ease of program modification.
e. Standardized documentation.

f. Documentation which facilitates non-technical management

participation in data processing activities.
g. Efficient object program code.

h., Segmentation capability which sets the maximum allowable

program size well in excess of any practical requirement.

i. Due to the incorporation of debugging language statements,

Revised 9/28/70
by PCN 1033099-004 XV

a high degree of sophistication in program design is

achieved.
j. A comprehensive scurce program diagnestic capability.

A program written in COBOL, called a source program, is accepted

as input by the B 2500/B 3500 COBOL Compiler. The compiler wveri-
fies that all rules outlined in this manual are satisfied, and
translates the source program language into an object program
language capable of communicating with the computer and directing

it to operate on the desired data. Should source corrections become
necessary, appropriate changes can be made and the program recom-
piled. Thus, the source deck always reflects the object program

being operationally executed.

A COBOL source program is always divided into four parts or DIVI-
STIONS in the following order:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.

PROCEDURE DIVISION.

The purpose of the IDENTIFICATION DIVISION is to identify the pro-

gram and to include an overall description of the program.

The ENVIRONMENT DIVISION consists of two sections. The Configu-
ration Section specifies the equipment being used. The Input-
Output Section associates files with the hardware devices that will
be used for their operation. This section also furnishes the com-

piler with information about mass storage parameters.

The DATA DIVISION is used to describe data elements which the object
program is to manipulate or create. These data elements may be items

within files, records or program work areas, and constants.

The PROCEDURE DIVISION defines the necessary steps which will accom-

Ta ok 41 o e r wrb oA - ~ Aan 1A ~ mm A
AL v A WIITUL U PpOALC UAllE Vil LT A A4S WMTL Lia

DATA DIVISION.

el

Xvi

This publication supercedes and replaces the Burroughs B 2500/
B 3500 COBOL Language Manual Form 1027406 dated June, 1968.

Revised 9/28/70 .
by PCN 1033099-004 XV11

SECTION 1
COBOL LANGUAGE ELEMENTS

GENERAL.
It has been stated that COBOL is a language based on English and

that the language is composed of words, statements, sentences,
paragraphs, etc. The following paragraphs define the rules to
be followed in the creation of this language. The use of the

different constructs formed from the created words is covered in

subsequent sections of this document.

CHARACTER SET.
The B 2500/B 3500 COBOL character set consists of the following

53 characters:

space or blank

+

plus sign
- minus sign or hyphen

asterisk

Nk

slash (virgule)

equal sign

$ dollar sign
, comma
. Period or decimal point

semicolon

-e

" quotation mark
left parenthesis
right parenthesis

greater than symbol

AV — ~

less than symbol

colon

@ at sign

CHARACTERS USED FOR WORDS.
The character set for words consists of the following 37 char-

acters:

9
A -2
(h

PUNCTUATION CHARACTERS .

The following characters may be used for punctuation:

@ at sign space or blank

" quotation mark . period

(left parenthesis , comma (see note below)

) right parenthesis ; semicolon (see note below)
NOTE

Commas and semicolons may be used
between statements, at the program-
mer's discretion, for enhanced read-
ability of the source program. Use
of these characters implies that a
following statement is to be included

as a portion of an entire statement.

CHARACTERS USED IN EDITING .
The COBOL Compiler accepts the following characters in editing:

$ dollar sign + plus

* asterisk (check protect) - minus

s comma CR credit

. actual decimal point DB debit

B space Z Zero suppress
0] Zero

CHARACTERS USED IN FORMULAS .

The COBOL Compiler accepts the following characters in arithmetic

expressions:
+ addition ** exponentiation
- subtraction (left parenthesis
* multiplication) right parenthesis
/ division

CHARACTERS USED IN RELATIONS.

The COBOL Compiler accepts the following characters in conditional

relations:

= equal
< less than
>

greater than

DEFINITIONS OF WORDS.

A word is created from a combination of not more than 30 charac-

ters, selected from the following:

A through Z
0 through 9
- (the hyphen)

A word is ended by a space, or by a period, comma, or semicolon.
A word may not begin or end with a hyphen. (A literal constitutes

an exception to these rules, as explained later.)

TYPES OF WORDS. .
COBOL (like English) contains types of words. These word. types

are:
a. Nouns.
b. Verbs.
c. Reserved words.
NOUNS.

Nouns are divided into nine special categories:

a. File-names.

b. Record-names.

c. Data-names.

d. Condition-names.
e. Procedure-names.

f. Literals.

g. Figurative constants.

1-3

h. Special register names.

i, Special names.

Since the noun is a word, its length may not exceed thirty char-
acters (exception: literals may not exceed 160 characters). For
purposes of readability, a noun may contain a hyphen. However,
the hyphen may neither begin nor end the noun (this does not apply
to literals).

FILEE-NAME.. A file-name is a collective name or word assigned to
designate a set of data items. The contents of a file are divided
into logical records that in turn are made up of any consecutive

set of data items.

RECORD-NAME. A record-name is a noun assigned to identify a logi-
cal record. A record can be sub-divided into several data items,

each of which is distinguishable by a data-name.

DATA-NAME. A data-name is a noun assigned to identify elements
within a record or work area and is used in COBOL to refer to an
element of data, or to a defined data area containing data elements.
Each data-name must be composed of at least one alphabetical char-

acter.

CONDITION-NAME. A condition-name is a special data-name which

is assigned to a specific value within a set of values. TFor illus-
trating a condition-name, consider this example. If THIS-YEAR
identifies the twelve months of a year, whereas its subordinate
data items are defined as JANUARY, FEBRUARY, etc., and the values
assigned to each month range from 01 to 12, then it follows that
JUNE would have the assigned value of 06. Using the condition-name
JUNE, the programmer can utilize it in conditional statements as
follows:

IF JUNE GO TO

s 9!:111'317‘2191’!1‘, to the statement:

1-4

IF THIS-YEAR IS EQUAL TO 06 GO TO

As a conditional-name, the special data-name itself is called a
conditional-variable. The value that it may assume is referred to
by condition-names. The condition-name is formatted according to

noun rules and may be used only in conditional statements.

PROCEDUREJQANE_ A procedure-name is either a paragraph-name or
section name, and is formulated according to noun rules. The ex-
ception is that a Procedure-name may be composed entirely of nu-
meric characters. Two pProcedure-names are identical only if they
both consist of the same character strings. For example: . proce-

dure-names 007 and 7 are not equivalent.

LITERALS. .. A literal is an item of data which contains a value iden-
tical to the characters being described. There are three classes

of a literal: numeric, non-numeric, and undigit.

Numeric Literal.

A numeric literal is defined as an item composed of characters
chosen from the digits O through 9, the plus sign (+) or minus

sign (-), and the decimal point. The rules for the formation of

a numeric literal are:

a. Only one sign character and/or more than one decimal
point may be contained in a numeric literal for use

with Sterling. Left-most decimal determines the scale.

NOTES
A comma must be substituted for the dec-
imal point if the DECIMAL-POINT IS comMMA
option is used (see SPECIAL-NAMES in the
ENVIRONMENT DIVISION).

The implied USAGE of numeric literals is
COMPUTATIONAL except when used with the
verbs DISPLAY or STOP.

1-5

b. There must be at least one digit in a numeric literal.

my

C. The sign of a numeric 1iteral must appear as the left-most
character. If no sign is present, the literal is defined

as a positive value.

d. The decimal point may appear anywhere within the literal
except for the right-most character of a numeric literal.
A decimal point within a numeric literal is treated as an
implied decimal point. Absence of a decimal point de-
notes an integer quantity. (An integer is a numeric

literal which contains no decimal point.)

e. A numeric literal used for arithmetic manipulations
cannot exceed 99 signed digits, otherwise, the maximum
is 160 digits. The following are examples of numeric

literals.

13247
.005
+1.808
-.0968
7894 .54

Non-Numeric Literal.

A non-numeric literal may be composed of any allowable character.
The beginning and end of a non-numeric literal is denoted by a
quotation mark. Any character enclosed within guotation marks is
part of the non-numeric literal. Subsequently, all spaces enclosed
within the quotation marks are considered part of the literal. Two
consecutive quotation marks within a non-numeric literal cause a
single quote to be inserted into the literal string. Four conse-

cutive quotation marks will result in a single " literal.

A non-numeric literal cannot itself exceed 160 characters. Examples

of non-numeric literals are:

1-6

Literal on source program level Literal stored by compiler

"ACTUAL SALES FIGURE" ACTUAL SALES FIGURE
n_1234.567" -1234.567
nunp IMITATIONS" " " "LIMITATIONS"
"ANNUAL DUES*" ANNUAL DUES
neHan "
HATRRN A"B

NOTE

Literals that are used for arithmetic computa-
tiom must be expressed as numeric literals and
must not be enclosed in quotation marks as non-
numeric literals. For example, "-7.7" and -7.7
are net egquivalent. The compiler stores the non-
nuseric literal as -7.7, whereas the numeric lit-
eral would be stored as 0077 if the PICTURE were
S999V9 DISPLAY with the assumed decimal point

leocated between the two sevens.

Undigit Literals.

Binary 10 through 1% are represented as A through F and must be
bounded by @ signs. For example, binary 11 would be literalized
by @B@. An undigit literal cannot exceed 160 digits. Refer to

section 7 fer the cerrect declaration.

FIGURATIVE CONSTANT. A figurative constant is a particular value
that has been assigned a fixed data-name and must never be enclosed
in quotatioam marke except when the word, rather than the wvalue, is

desired. The figurative constant names and their meanings are:

ZERO Represents the value of 0.

ZEROS

ZEROES

SPACE ' Represents one or more spaces (blanks).

SPACES

HIGH-VALUE Represents the highest intermnal coding

HIGH-VALUES sequence (i.e., 999) value. When HIGH-VALUES l
Revised 9/28/70

by PCN 1033099-004 1-7

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

h
-
-

are moved to a signed numeric computa-
tional field, the sign will not be

changed,

Represents the lowest internal coding
Sequence (blanks) value. When LOW-
VALUES are moved to a signed numeric
computational field, the sign will not

be changed.

Represents one or more of the single
character " (quotation mark). The word
QUOTE or QUOTES does not have the same
meaning in COBOL as the symbol ", For
example, if "STANDARDS" appears as part
of the COBOL source program, the word
STANDARDS is stored in the object pro-
gram. If however, the full "STANDARDS"
is desired in a DISPLAY statement, it
can be achieved by writing QUOTE "STAN-
DARDS" QUOTE, in which case the object
Program will print "STANDARDS". The
same result can be obtained by writing
"NUSTANDARDS""" in the source program.
Only the latter method can be used in

MOVE statements and conditionals.

When followed by a non-numeric literal
or a figurative constant, the word ALL
represents a series of that literal.
For example, if the COBOL statement is
MOVE ALL iiteral TO ERROR-CODE, then
the resultant ERROR-CODE would take on

the following values:

ALL

literal

ALL
ALL
ALL
ALL
ALL

"ABG"

n3n or ALL 3
"HI-LO™"
QUOTE

SPACES

Size of ERROR-CODE Resulting value of
ERROR-CODE
7 characters ABCABCA
5 characters 33333
12 characters HI-LOHI-LOHI
3 characters nmnn
9 characters (nine spaces)

Revised 9/28/70
by PCN 1033099-004 1~ 8A

NOTE
The use of ALL with figurative constants,
as illustrated in the last two instances,
is redundant. MOVE ALL SPACES and MOVE
SPACES would yield the same result.

SPECIAL REGISTER NAME. The Burroughs COBOL Compiler provides four
special PROCEDURE DIVISION register mames which are:

a. TALLY.

b. TODAYS-DATE (Calendar).
c. DATE (Julian).

d. TIME.

TALLY.

The special register TALLY is automatically provided by the COBOL
Compiler and has a defined length of five COMPUTATIONAL digits.

The primary use of TALLY is in conjunction with the EXAMINE state-
ment, however, TALLY may be used as temporary storage oOr an accumu-
lative area during the interim when EXAMINE...TALLYING...is not

being executed in a program.

Todays-Date (Calendar).

This special register contains the current date and is maintained
by the Master Control Program (MCP). Its format is made of three
character pairs, each representing the month, day and year. For
example, if the current date is Dec. 13th, 1968, the TODAYS-DATE
register contains 121368. The function of TODAYS-DATE is to
provide the programmer with a means of referring to the current
date during program execution. TODAYS-DATE is maintained in COM-
PUTATIONAL form.

Date (Julian).

This special register contains the current Julian date and is
maintained by the MCP. Its format is YYDDD. For example, if the
current date were January 1, 1968, the DATE register would contain

68001. The function of DATE is to save programmatic evaluation

Revised 9/28/70
by PCN 1033099-004 1-9

of TODAYS-DATE when Julian dates are required. DATE is maintained
in COMPUTATIONAL form.

Time.

Access to an intermal clocking register reflecting the time of day

is programmatically available whenever TIME is requested. This
register is maintained in milliseconds by the MCP as a 10-digit
COMPUTATIONAL field. The contents of the TIME register will be
maintained in hours, minutes, seconds and 60th of seconds when

TIME 60 is declared in the OBJECT-COMPUTER paragraph.

SPECIAL-NAMES.

The SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION allows

the programmer to assign a significant character for a CURRENCY
SIGN, and to declare DECIMAL-POINT as being a COMMA and to provide
a means of relating implementor hardware-names to mnemonic-names

as desired by the programmer.

VERBS.

Another type of COBOL word is a verb. A verb in COBOL is a single
word that denotes action, such as ADD, WRITE, MOVE, etc. All
allowable verbs in COBOL, with the exception of the word IF, are
truly English verbs. The usage of the COBOL verbs takes place

the PROCEDURE DIVISTION

RS S N i VA R]

nrimarily within
primarily withir

RESERVED WORDS.

The third type of COBOL word is a reserved word. Reserved words
have a specific function in the COBOL language and cannot be used
out of context, or for any other purpose than the one for which
they were intended. Reserved words are for syntactical purposes

and can be divided intoc three categories:

a. Connectives.
b. Optional words.

c. Key words.

A complete list of reserved words in COBOL used by the compiler is

included in Appendices A and E.

1 TN
e

A -

CONNECTIVES. Connectives are used to indicate the presence of
a qualifier or to form compound conditional statements. The con-
nectives OF and IN are used for qualification. On the other hand,
AND, AND NOT, OR, or NOT are used as logical connectives in con-

ditional statements.

OPTIONAL WORDS. Optional words are included in the COBOL language

to improve the readability of the statement formats. These op-

tional words may be included or omitted, as the programmer wishes.
For example, IF A IS GREATER THAN B... is equivalent to IF A
GREATER B..... Therefore, the inclusion or omission of the words

IS and THAN does not influence the logic of the statement.

KEY WORDS. The third kind of reserved words is referred to as
being a key word. The category of key words includes the verbs and
required words needed to complete the meaning of statements and
entries. The category also includes words that have a specific
functional meaning. In the example shown in the above paragraph,

the words IF and GREATER are key words.

STATEMENT AND SENTENCE FORMATION.

Statements are formed by the completion of the various entry and

verb constructs discussed in the later sections of this manual.

A statement may be terminated by a period and thus become a sen-
tence. A group of statements, terminated by a period, forms a
Sentence. An example of a sentence made up of a group of state-
ments would be MOVE A TO B, ADD Ol TO COUNTER WRITE SUMMARY. Note
that the word THEXN can be used interchangeably with the semi-~colon

or comma.

PARAGRAPH FORMATION.

One or more sentences may comprise a paragraph. A paragraph begins

with a paragraph name and is terminated by the paragraph name of

the next paragraph.

SECTION FORMATION.

One or more paragraphs may formulate a section. A section includes

Revised 9/28/70
by PCN 1033099004 1-11

all paragraphs between one section name and a following section
name or the end of the source program. The method of referring to
procedures within sections and transferring of operational control

to these procedures is discussed in the PROCEDURE DIVISION section.

NOTATION USED IN VERB AND ENTRY FORMATS,

The notation comnventions that follow enable the reader to inter-

pret the COBOL syntax presented in this manual.

KEY WORDS.

All underlined upper case words are key words and are required when
the functions of which they are a part are utilized. Their omis-
sion will cause error conditions at compilation time. An example

of key words is as follows:

IF data-name IS [NOT]

NUMERIC
ALPHABETIC

The key words are: IF, NOT, NUMERIC, and ALPHABETIC.

OPTIONAL WORDS.
All upper case words not underlined are optional words and are
included for readability only and may be included or excluded in

the source program. In the example above, the optional word is:

IS.

LOWER CASE WORDS,
All lower case words represent generic terms which must be supplied
in that format position by the programmer. Integer-l and integer-2

are generic terms in the following example:

FILE-LIMIT IS integer-1 THRU integer-2

BRACES.

When words or phrases are enclosed in braces {}, a choice of one

of the entries must be made. In reference to the key words example
above, uiie U1 uUiie otiiei UL Ulie Words WNUMBRIC Ui ALTOADETLIC must ve

included in the statement.

=
1

1=

He)

BRACKETS.

Words and phrases enclosed in brackets [] represent optional por-
tions of a statement. If the programmer wishes to include the
optional feature, he may do so by including the entry shown between
brackets. Otherwise it may be omitted. In terms of the example
above, the word enclosed in brackets is optional. However, if the
programmer wishes to distinguish between NUMERIC and ALPHABETIC,

he must choose one of the words enclosed in braces.

CONSECUTIVE PERIODS.

The presence of ellipsis (...) within any format indicates that
the data immediately preceding the notation may be successively

repeated, depending upon the requirements of broblem solving.

PERIOD.

When a single period is shown in a format, it must appear in the
same position whenever the source program calls for the use of that
bparticular statement. A space after a period is not required, how-
ever, such a practice will enhance readability of the source pro-

gram.

SECTION 2
IDENTIFICATION DIVISION

GENERAL.

The first part or division of the source program is the IDENTI-
FICATION DIVISION. Its function is to identify the source program

and the resultant output of its compilation. In addition, the date I
the program was written, the date the compilation was accomplished,
plus other pertinent information may be included in the IDENTIFI-
CATION DIVISION.

The structuvre of this division is as follows:
[MONITOR...]

IDENTTIFICATION DIVISION.

[PROGRAM-ID. Any COBOL word. |

[AUTHOR. Any entry. |

[INSTALLATION. Any entry.]

[DATE-WRITTEN. Any entry.]

[DATE-COMPILED. Any entry - replaced by the current date

and time as maintained by the MCP.]
[SECURITY. Any entry. |

[REMARKS. Any entry. Continuation lines must be coded

in Area B of the coding form.]

SYNTAX RULES. ,

The following rules must be observed in the formation of the IDEN-
TIFICATION DIVISION:

a. The IDENTIFICATION DIVISION must begin with the reserved
words IDENTIFICATION DIVISION followed by a period.

b. All paragraph-names within this division must begin

under Area A of the coding form.

An entry following a paragraph-name cannot contain

periods, except that one must be present to denote

aft +haot arntoes
UL viia v CTii v

(o

T o~
viite ©li

NOTES
When DATE-~COMPILED is included,
the compiler automatically in-
serts the time of compilation
in the form of HH:MM and the
date of compilation in the form

of MM/DD/YY.

With the exception of the DATE-
COMPILED paragraph, the entire
division is copied from the input
source program by the compiler and
listed on the output listing for

documentational purposes only.

MONITOR

MONITOR.

This statement provides a debugging trace of specified data-names.

Construct of this statement is:

[MONITOR [DEPENDING]| file-name ([data—name] :

EE=—

This statement must begin under Area A of the coding form. The
parentheses and colon are required as part of the source program
statement. MONITOR is active only while the file-name is in OPEN

status.

Only one MONITOR statement per program is allowed and must precede
the IDENTIFICATION DIVISION header card in the source program.

The file-name must be ASSIGNed to a line printer and is recognized
by the compiler as being the output media for the MONITORed data-

names.

The data—name(s) may be any name(s) appearing in the DATA DIVISION

except for those which require subscripting or indexing.

Whenever a MONITORed elementary data-name is encountered as the
receiving field in a MOVE or arithmetic statement, data-name

and its current value are listed.

The MONITORing of paragraph-names within a USE AT END OF PAGE on
the output file that is also the MONITOR file (e.g., same LINE
PRINTER) will give undefined output when the physical End-of-Page

condition is encountered.

If a group item appears in the data-name-list, it will be MONITORed

Revised 9/28/70
by PCN 1033092-004 2-3

MONITOR

continued

only when explicitly used as a receiving field.

If the DEPENDING option is present, SW6 wilil be tested for an
ON-OFF condition. Print of MONITORed items will depend upon the

setting as being "ON",

All paragraph-names listed will be printed each time they are
encountered, along with a total indicating the number of times
that a paragraph-name has been passed. The total will be reset
to zero whenever the paragraph-name, if in an overlayable segment,

is overlayed in the operating program.

The use of the ALL option, instead of the paragraph-name list, will
cause all section and paragraph-names to be MONITORed, thus pro-

viding a trace of the programs control path during operation.

CODING THE IDENTIFICATION DIVISION.
Figure 2-1 provides an illustrative example of how the IDENTIFI-
CATION DIVISION may be coded in the source program. Note that

continued lines must be indented to the B position of the form,

or beyond.

2-4

BURROUGHS COBOL CODING FORM

¢-2

ease | Pmosman REQUESTED BY [TV oF

! 3 onconamen OATE TOENT. 73)
A_d AA A 4 A 1 1 1
4 slrle ule 12

‘ — —

o | D &N - N, DLV 0 N I I I I I I I N I I N I I |
oz= RGIGIRAM - LD . A = 1P EaRIF 105 RiMIALN SCURNVIE eyt 00 b L b s
03' WTHG R - o BHN DBE s 48 30 b b b b i 4
04 LNSTIALULATIT GiN oy MAIRKIETIIING JGOMPIMTIER IFIACI LW 1 1 L Lttt Lttt L1l
08 JA:In-lWMMMnlnn11111111111111111111L111141111111A
oel DIAT, -nC@LnPlllhEtDnnl1111141111_LL1111111111111111111111111111111111114
07 W&NWJILAL-JAllllLlAJnl L4011 4 P11y

0': RES &SMMMWMN@A&ML&AL@&M
09 | 1 U ISIAGLEST | T Sz 4T C

|o= 111EXPRﬁSS&&LmH@&h|LM4&&&4&&&&&4&@&MN“411111L11111111111111111|

[}

i d I TN NN N N
'2E I AR W 11@ Lol L0004 Lt bbb o b b 8 b8ttty it i1 1t
';l L1 4o e ettty 4o g gttt b4t 8k bt b b h bl bl Lt it i il
"E TN TN e NN NN NN
": 11 1 IllllljllllllllljlllllllliL,Ll_leJLlllllllllllllllllllljillll
": Lol 188088 44 i) b3 bbb bbb Lttt L a it it
'7: 1 1 1 llllllLlllllllllllllllllllLLLlllllllelllllllLlllllLllll;lll
..‘ L 11 llll‘lllllllllllllllllllllllllllllllllllllLJllll‘ll‘LJllllll
'9 i1 4 I N N NN N R N I N I I I I N W W I
20 NN NN NN NS N NN
2! - 1lllllllljllllll]lllllllllllllLl‘lllljll]llJlLlllllJllllllll
zz' i . 1llllllljlllllllullllll‘lllllJlllllllllllllJJllllllLlJlllll
75: e e NN NS EEe TN E N TN TN
?L% e TN NN N T
25 4 S W S VS VAU U T 100 T T W W WO O OO0 Y A A OE Wy B0 0 U I 0 W0 00 WY B V0 O A W I S S U S Y U 0 A O A A I S S A S S I O N O

Figure 2-1. Coding the IDENTIFICATION DIVISION

SECTION 3
ENVIRONMENT DIVISION

GENERAL.

The ENVIRONMENT DIVISION is the second division of a COBOL source
program. Its function is to specify the computer being used for
the program compilation, to specify the computer to be used for
object program execution, to associate files with the computer
hardware devices, and to provide the compiler with pertinent in-
formation about disk storage files defined within the program.
Furthermore, this division is also used to specify input-output

areas to be utilized for each file declared in a program.

ORGANIZATION.
The ENVIRONMENT DIVISION consists of two sectiomns. The CONFIGU-

RATION SECTION contains the over-all specifications of the computer.
The INPUT-OUTPUT SECTION deals with files to be used in the object

program.

STRUCTURE.

The structure of this division is as follows:

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.]

[SOURCE-COMPUTER . . .|
[OBJECT-COMPUTER . . .]
[SPECIAL-NAMES . . .]

[INPUT-OUTPUT SECTION.]
[FILE-CONTROL . . .]
[I-O-CONTROL . . .|

SYNTAX RULES.

The following syntax rules must be observed in the formulation of

the ENVIRONMENT DIVISION:

a. The ENVIRONMENT DIVISION must begin with the reserved
words ENVIRONMENT DIVISION followed by a period.

b. All entries other than the ENVIRONMENT DIVISION source I

Specific

given on

line are optional, but when used they must begin under

Area A of the coding form.

definitions for the ENVIRONMENT DIVISION paragraphs are

the following pages.

Uais - Woaaa

SOURCE-COMPUTER

CONFIGURATION SECTION.

The, CONFIGURATION SECTION contains information concerning the

system to be used for program compilation (SOURCE—COMPUTER) and
the system to be used for program execution (OBJECT—COMPUTER).

SOURCE-COMPUTER.

The function of this paragraph is to allow documentation of the

configuration used to perform the COBOL compilation.

The construct of this paragraph is:

B-3500

any entry

B-2500
[SOURCE—COMPUTER. .]

This paragraph is for documentation only.

Revised 9/28/70
bv PCN 1033009.004 3~ 73

OBJECT-COMPUTER

OBJECT-COMPUTER.

The function of this paragraph is to alliow a description of

ct
i

configuration used for the object program.

The construct of this paragraph is as follows:

[WITH SUPERVISOR CONTROL]

[.OBJECT—COMPUTER, [{
L \

to |
1

Aol
o] (o]
Qo
N ,——’
e

WORDS
MEMORY SIZE integer CHARACTERS [TIME 60]
MODULES

[SEGMENT-LIMIT IS priority number]

If section priority numbers are used in the PROCEDURE DIVISION,
they must be positive integers with a value from zero through 99.
The SEGMENT-LIMIT clause signifies the limit for non-overlayable
program segmentation of sections numbered from 00 through 49. See
SEGMENT CLASSIFICATION, PROGRAM SEGMENTS, AND PRIORITY NUMBERS on
pages 5-19 through 5-23.

WITH SUPERVISOR CONTROL is documentational only and is ignored by

the compiler.

The MEMORY SIZE clause is one of the factors used in determining
the size of a COBOL object program and is normally only beneficial
in programs containing the SORT verb or when a larger STACK is
desired. If MEMORY SIZE is larger than the resultant COBOL object
program, the recap at the end of the compilation will reflect the
additional core in the size of the STACK.

The compiler will automatically determine MEMORY SIZE when one of

viie options of the clause is specified. The value of the integer

ho)

OBJECT-COMPUTER

continued

will be multiplied times the specified option, giving a digit

product, where:

CHARACTERS = 2 digits
WORDS = 4 digits
MODULES = 1000 digits

If a MEMORY SIZE option is not specified, the value of the integer
entry will apply.

The MEMORY SIZE clause, if used, does not include core requirements
for disk file headers. In addition to the core specified in the
MEMORY SIZE clause, an additional 250 digits of memory are required
for each disk file. This area is reserved in increments of 1000
digits and resides immediately behind the operating object program,

just above the Program Limit Register, to avoid accidental destruc-

tion by internal operations being performed by the program.

The TIME 60 clause denotes that the contents of the internal TIME
clocking register is to be maintained as hours, minutes, seconds
and 60th of a second in the COMPUTATIONAL format: OOHHMMSS6O,
where 00 = zeros, HH = hours, MM = minutes, SS = seconds, 60 = 60th

of a second.

Revised 9/28/70
by PCN 1033099-004 3~

SPECIAL-NAMES

SPECIAL-NAMES.

The function of this paragraph is to allow the programmer to assign
a significant character for all currency signs, to declare decimal

points as being commas and to provide a means of relating implemen-

tor hardware-names to user specified mnemonic-names.

The construct of this paragraph is:

L SPECIAL-NAMES. [CURRENCY SIGN IS literal]

[implementor-name IS menmonic-name e

[DECIMAL-POINT IS COMMA |.]

This paragraph is required if all decimal points are to be inter-
changed with commas and/or if all currency signs are to be re-

presented by a character other than a dollar sign (§).

This literal is limited to a single character and must not be one
of the following:

b. Alphabetic characters -A, B, C, D, J, K,
P, R, S, V, X, Z, or blank.

c. Special characters * + - » + ;3 () ",

The clause DECIMAL-POINT IS COMMA signifies that the function of

.comma and period are to be exchanged in the PICTURE clause char-

acter-string and in numeric literals.

The implementor-name clause must be one of the allowable B 2500/

R 3500 COROL hardware-names ags listed on page 3-10. For examnpie:

3-6

SPECIAL-NAMES
continued

The mnemonic named device can be directly referred to in the

ASSIGN clause.

The SPECIAL-NAMES paragraph statement ends with a period as a

delimiter. Periods between clauses are not allowed.

Revised 8/28/69
by PCN 1033099-001 3-7

FILE - CONTROL

INPUT - QUTPUT SECTION.

vavavava n contains information concerning files to
be used by the object program.

FILE-CONTROL
The

the
The

function of this paragraph is to name each file, to identify
file medium, and to specify a particular hardware assignment.

Paragraph also specifies alternative input—output areas.

The construct of this baragraph has two options which are:

Option 1:

FILE-CONTROL.

SELECT [OPTIONAL] file-name-1 ASSIGN TO hardware-name-1

FILE 1
== WORK]
BY AREA { R OCESSOR } FOR MULTIPLE REEL
N —
, r
NO TRANSLATION | { NO BACKUP FORM |
{ TRANSLATION NON-STANDARD | | BACKUP L=
NO AREA
[SAVE } [RESERVE { integer-1 } [ALTERNATE <{AREAS}J]
[FILE-LIMIT IS | {literal-l1 | { THRU f%%% rales l
| EILE-LIMITS ARE f{ \data-name-1f | THROUGH era e

data-name-2

[{literal-m (THRU literal-n }]
L data~-name-m { THROUGH data-name-n

T s m—,

FILE - CONTROL

continued

_/\/\/

RANDOM
[ACCESS MODE IS { SBOUENTTAL }] [ACTUAL KEY IS data-name-3]

[PROCESSING MODE IS SEQUENTIAL]

KEY IS
[SYMBOLIC {KEYS ARE } data-name-4 [data-name-5]] cee |

Option 2:

[FILE-CONTROL.

SELECT sort-file-name ASSIGN TO SORT DISK.]

Files used in a program must be the subject of only one SELECT
statement. If it is to be OPENed INPUT-OUTPUT or I-O, it must be
present in the MCP disk directory.

The word OPTIONAL must be used in the SELECT statement whenever

an input file can be omitted during certain operational circum-
stances.

The ASSIGN clause must be used in order for the MCP to associate
the file with a hardware peripheral component. The allowable

hardware-name entries are:

Revised 9/28/70
by PCN 1033099004 3~ 2

FiLE - CONTROL

continuved
ATT-8A1 IBM-1030 SPO (7 or 9 channel,
B-500 IBM-1050 TAPE MCP to assign)
= B-2500 LISTER TAPE-PE (Phase encoded)
B-3500 0-L-BANKING TAPE-7 (7 channel only)
B-9350 PRINTER TAPE-9 (9 channel only)
B-9352 PT- PUNCH TC-500
I DCT-2000 PT-READER TC-700
DISK (or DISC) PUNCH TOUCH-TONE
l DISK SHARED READER TT-28
DISPLAY-UNIT SORTER TWX

Automatic changing of hardware device at object program run time
can be accomplished by the systems operator performing an "IL"
control message reflecting the "changed-to" peripherals channel

and unit number.

The BY clause is applicable to files ASSIGNed TO DISK only. It is
also applicable when the DISK system contains more than one elec-
tronic unit (EU's). If the BY clause is omitted, files are physi-
cally assigned to disk as space becomes available (from low to

high).

The FILE clause specifies the files to be distributed among the
electronic units by file number (i.e., order of appearance of the

FD).

The AREA option specifies that file-name-1 is to be distributed
among the electronic units by area (i.e., as defined in the FILE

CONTAINS XX BY XX clause).

The NN option indicates that file-name-1 is to be assigned to the

electronic unit specified by integer NN.

The WORK option specifies to the MCP that the SELECTed disk file

is to be used as a work file and that the MCP must insert the pro-
gram's mix-number in the second and third characters of the work
file's 1ile-1D, thus creating a unique file-name at object run time.
The use of this option allows multiprocessing of the same program

I without creating duplicate file ID's for commonly used work files.

3-10

FILE-CONTROL

continued

The PROCESSOR option will specify the ability to have multiple
systems sharing common disk. The MCP will insert the processor
number in the fifth character of the file ID. The PROCESSOR option
is not yet available in the MCP,

The MULTIPLE REEL option is for documentation only. This feature is
provided automatically by the MCP.

The NO TRANSLATION clause is used to cause a bypass of the hardware
translator of data transfers between hardware-name and internal

cCOre memory.

The TRANSLATION NON-STANDARD clause applies to remote devices which
are capable of transmitting different codes for upper and lower
case characters. If this clause is specified, all data characters
transmitted from the device are translated to upper case EBCDIC

codes before they are moved to the object program's record area.

The BACKUP option will cause printer output files to be placed on a
printer backup tape or disk file for subsequent printing. The
BACKUP option will cause punch output files to be placed on punch

backup disk files for subsequent punching.

The NO BACKUP option will prevent the file from going to printer
backup automatically when the MCP's printer backup option is set
"ON" and a Line Printer is not available. This file may be man-
ually assigned to printer backup by the operator with an "OU" or
"OUDK" message.

Use of the FORM option with printer files, will cause the program
to halt and a MCP message to be pPrinted declaring the need for

special forms to be loaded in the Line Printer.

It is recommended that a STOP literal be executed just prior to a
STOP RUN if the FORM option is used. This will allow the operator
sufficient time to remove the special forms before the printer is
released back to the MCP. Without a temporary halt, there is a
possibility that another job placed in the mix may start printing

on that same printer.
Revised 10/8/69

by PCN 1033099-002 3-11

FILE - CONTROL

continued

The SAVE option will cause file-name-1 to be CLOSEd WITH LOCK by
the MCP if file-name-1 is s :
option is omitted, then the standard MCP action will be invoked,

that is, file-name-1 will be automatically CLOSEd (but not LOCKed)

if it is still OPEN at object End-of-Job.

The RESERVE clause allows a variation of the number of input or
output physical record buffers to be supplied by the compiler.

Each ALTERNATE AREA reserved requires additional memory to be uti-
lized in the compiled object program and will be the size of a
physical record as defined in the FD statement of the DATA DIVI-
STION for that specific file. If a SEEK or FILL statement is used
in a program, then a RESERVE 1 ALTERNATE AREA clause must be speci-
fied. The RESERVE clause is not applicable to SORTER files.

No alternate areas are reserved when the NO option is specified

or if the entire option is omitted.

The MCP will keep track of passing record data to or from the buf-
fer and record work area if the dollar sign ($) card specifies
MCPB, otherwise the compilers will supply automatic object program
code to accomplish this function, thus resulting in a significant
increase in object program speed at a cost in users core. The

e o

in either case.

The FILE-LIMIT clause is invalid if specified for a sort file
description (SD) entry. The FILE-LIMIT clause for input and output
files associated with the SORT verb will not be effective when
executing the SORT unless there is an INPUT and/or OUTPUT PROCE-
DURE declared.

The FILE-LIMIT clause specifies that:

a. For SEQUENTIAL access, logical records are obtained from,
or placed sequentially in, the disk storage Iile by the

implicit progression from segment to segment. The AT

3-12

FILE - CONTROL

continued

END imperative statement of a READ statement is executed
when the logical end of the last segment of the file is
reached and an attempt is made to READ another record.

The INVALID KEY clause of a WRITE statement is executed
when the end of the last segment is reached and an attempt
is made to WRITE another record. The END option specifies
that the compiler is to determine the upper limit of an

existing file.

b. For RANDOM access, logical records are obtained from, or
placed randomly in, the disk storage file within the spec-
ified FILE LIMIT. The contents of ACTUAL KEY not within
the specified limit will cause the execution of the INVALID
KEY branch in the READ and the WRITE statements.

In the FILE-LIMIT clause, each pair of operands associated with the
key word THRU represents a logical segment of a file. The logical
beginning of a disk storage file is considered to be that address
represented by the first operand of the FILE-LIMIT clause; the
logical end is considered to be that address as specified by the

last operand of the FILE-LIMIT clause.

In a FILE-LIMIT series, SEQUENTIAL records are accessed in the

order in which they are specified. For example:
FILE-LIMITS 1 THRU 5, 10 THRU 12, 3 THRU 7

This example will result in the sequential access of records 1, 2,
3, 4, 5, 10, 11, 12, 3, 4, 5, 6 and 7 in that order.

For the ACCESS MODE SEQUENTTIAL clause, the disk storage records
are obtained or placed sequentially. That is, the next logical
record is made available from the file on a READ statement exe-
cution, or a specific logical record is placed into the file on
a WRITE statement execution. The ACCESS MODE SEQUENTIAL clause
is assumed if ACCESS MODE RANDOM is not specified.

Revised 8/28/69
by PCN 1033099001 3-13

FILE - CONTROL

continued

If the ACCESS MODE RANDOM clause is specified, the ACTUAL KEY

entry must be used.

vValues of the ACTUAL KEY data-name-3 are controlled by the pro-
grammer, including any execution of the USE FOR KEY CONVERSION
statement. The value may range from 1 to n, where n equals the
number of records in the file or as reflected by the FILE-LIMITS
clause. The ACTUAL KEY signifies the relative position of a
record within the file and is equated to a data-name at any level
which is defined with a PICTURE of 9(8) COMPUTATIONAL. ACTUAL KEY
is not used for ACCESS MODE SEQUENTIAL files.

The ACTUAL KEY data-name-3 must be declared as PICTURE 9(6) COMPU-
TATIONAL if referencing data-communications files when the WRITE-
TRANS-READ or the WRITE-READ-TRANS verbs are used to communicate

between computers.
The ACTUAL KEY clause is not applicable to the SORTER.

The ACTUAL KEY clause is required for the LISTER and data-name-3
must be declared as a PICTURE 9(4) COMPUTATIONAL. Data-name-3
must contain the unit and tape designations to control printing

on the LISTER.

The PROCESSING MODE IS SEQUENTIAL clause denotes that disk file

e
records are to be available for processing by the object program

ss
ti

in the order in which they are seguentially accessed from segment

to segment.

The SYMBOLIC KEY entry is only for documentational purposes. The
conversion of SYMBOLIC KEY data-names to the ACTUAL KEY data-name
must be specified either by procedural statements preceding the

SEEK statements or by means of a USE FOR KEY CONVERSION section in

the PROCEDURE DIVISTION.

A1l integers must be of positive values.

3-14

FILE-CONTROL

continued

File-name-1 must be unique in the first six characters if the use
of an MCP label equation card is anticipated for non-disk storage

files.

The sort-file-name in Option 2 is the SD level file-name to be used
by the SORT verb.

Revised 9/28/70
by PCN $033090-004 J3-15

I-O-CONTROL

I-O-CONTROL.
The function of this paragraph is to specify memory area, to be
shared by different files during object program execution and the

point in time that a rerun procedure is to be established.

The construct of this paragraph is:

[RERUN EVERY integer-1 RECORDS OF file-name-1] ... [SAME
[{g&%ﬁ'@}] AREA FOR file-name-2 file-name-3 [file-name-4] ...]
[MULTIPLE FILE TAPE "multi-file-id"™ CONTAINS file-name-list
[POSITION integer-2 ...] “ee]
[APPLY [{ e }] e {4]
MICR-OCR) |]
-

WITH [NO-FORMAT] [NO—ERRORS]‘!

—_

[END-TRANSIT] ON file-name [...] .

L

The I-0-CONTROL paragraph name may be omitted from the program if

the paragraph does not contain any of the clause entries.

The RERUN clause sets up a communication with the MCP to create
control procedures whereby an operational program encountering a
malfunction can be restarted at the last RERUN control point instead
of restarting from the beginning of the program. Integer-l records
cannot exceed 99999,

I-O-CONTROL

continued

The SAME AREA clause saves memory space in the object program due to
the fact it allows more than one file to share the same file area,
associated ALTERNATE, and disk file header areas. As a result, only
one of the files sharing the SAME AREA can be OPEN at one time. The
length of each area will be determined by the file with the largest
record and/or block size. When the SAME SORT ARFA is specified it
will be considered as being for documentation only due to the unique
method of implementing the SORT function. All SORT files make use

of all memory area within a program containing the SORT verb.

When the RECORD option of the SAME AREA clause is used, only the
record area is shared and the associated alternate areas for each
file remain independent. In this case, any number of the files
sharing the same record area may be OPEN at one time, but only one

of the records can be processed at a time.

The use of the RECORD option may decrease the physical size of a
program as well as increase the speed of the object program. To
illustrate this point, consider file maintenance. If the SAME
RECORD AREA is assigned to both the o0ld and new files, a MOVE will
be eliminated which transfers each record from the input to the out-
put area. The records do not have to be defined in detail for both
files. Definition of a record within one file and the simple in-
clusion of an 01 level entry for the other file will suffice. Be-
cause these record areas are in fact in the same core location, one
set of data names is sufficient for all processing requirements

without requiring qualification.

The MULTIPLE FILE clause specifies that two or more files are resi-
dent on one magnetic tape. All files resident on a multi-file tape,
which are required in a program, must be represented in the source
program by a SELECT statement and an FD entry for each file. The
file-name-list entries do not have to be in the sequence in which
they appear on the tape, nor in the sequence of each FD in which
they appear in the source program. However, the MCP will go to

the very next file on tape, check the label and if not the file

Revised 9/28/70
by PCN 1033009-004 3-17

I-O-CONTROL

continued

for processing, the MCP will rewind the tape and commence looking

for it from the beginning of the tape.

All file-names in a single MULTIPLE FILE clause are implied as
utilizing the SAME AREA. The use of SAME AREA would therefore be
redundant. The "multi-file-id" is the file-name contained in the
physicai tape label of a magnetic tape containing multi-files.
File-name-list is a series of FD file-names in the program indicated
as residing on the multi-file-tape. Multi-files, or any file con-
tained within the file may be OPTIONAL. The POSITION clause is for

documentation only.
The APPLY clause is specified for SORTER only.
If no MICR, OCR, or MICR-OCR option is specified, MICR is assumed.

No alternating areas are assumed if ALTERNATING is not specified.
ALTERNATING applies to OCR only.

Formatting is assumed if NO-FORMAT is not specified (see READ,

section 9).
An error branch is assumed if NO-ERRORS is not specified.
The End-of-Document is assumed if END-TRANSIT is not specified.

The I-0-CONTROL paragraph can have only a terminating period.

CODING THE ENVIRONMENT DiVISION,
An example of ENVIRONMENT coding is provided in figure 3-1,.

0£/82/6 pasiney

Burroughs COBOL CODING FORM

6T~ V00-660EEOL NOd Aq

PG, REQUESTED BY PAGE oF

1 3| PROGRAMMER DATE IDENT. 73 80

11 T T T O |

LINE A 8 7

NO.

462 2 ne 120 124 128 132 136 140 L44 148 152 156 160 164 168 72
i

o1 ! ENVIL K@mﬂ&ﬁﬂﬁlﬂ)h&uﬁihﬁﬂ.lln [0 U0 NN N U U U0 W WU WA N N S U U S S A S WY A N S N N N N O N A A I G SN A SN A A |

o2 | @mﬂ[ljhﬂ&wyrujhﬂLﬁiEﬁIDLQHQ-1|| [N N NS W N U W U U U T WA TN N N U T YO U T N T Y S U U U W O 0 M N O
]

Eal SPid GEP&H@M&M{E&E&LjiJ&BDCMH1 [N N Y S Y W N NN NN U U N U U YO NN WY T WA U W0 WS S WY WA U A U N U WY AN O W O 1
. mwgyﬁamwm_w_Lw
I S—

L myPEChH AL-INAMES e CLRRENCY SILGN LS ™0 e 1 v b b bt b g
i ,

[WNPUT-OUTPLT SECTI @O v 1 111 b v by bbb e b
i Ellﬁ’ﬂCﬂMﬁE&Eﬁhunnll PR S W U U N T U W U T W T U T T T T U U W WO W O
]

! 111

]

9 | 111
T

o ! 111
]

L 1 i
1

2 | L SELECGT &Q.ET:E.Rn-LFanEh AS&!@N nT'm &(t\RnTIEJB.IIIH||||1|||11|||||||111

13 | |1|ﬁEluEGTuﬁASmEJ&_LELLLﬁ_ALS_LLﬁbthAH&.IlnI|||1|1111|||||||||1|11:1.1
]

14 1 L SBELEGT DETALL=-CGRANGES-RHLE ASSGN TAREer 1 4 1 43 1y 1 1 1t g

ISi L SNELECGT SUWMMARN-IFINLE ASSUGN TABE e 1 1 11 111 b v bt i

L T-.-(bu-(‘.-('hMILBO)nL.mnlln||1|1|1||11|1||||1LJ||||||||1|1|||||1|||1||11||1
i

iz b ISamE RECORN AREA 1EGR) IDAILILY-TAPEy ERRGR-TARE 1 1 1111111111

18 ! L IRERUWN EVERNY 5000 RECHROS $Gif MASTER-TARE 1 1111000111
|

‘9: L MUABLTILBUE FLhugE TIAPE 1“IMQ_MMWLEWM@MAN{

20:"411Wﬂﬁm-ﬁnuﬁ“n|||||1||||‘|11|||||||||1|||||111111
: L1l JNQ&jEBE@EE&Jé&MlﬂﬂEﬁﬂH&L]ﬂ BRSNS
! L1 1 | N S (N T 1 T T T T (N T N T NN N0 O TN (N O T (N TN S O TSV U NN O 1S N O N N T (I T T [T s W W N T (N O W |
1
| TR S U VA U0 U W T T T T W U T T U T T T T T U U U T U T W U U O M OO O O
; L1 1 N T T T T T T O T T T T T T U T U T T o O T ' | Ldd1 1
|
1 111 N N N I N Y VY T U T T Y O I (N S U N S W T (T T T T O Y T T N T T T O T

4 8 12 i3 T20 124 28 | 136 140 44 T4 152 156 Tso T64 1Y) 172

Printed in U. S. Americo

Form 1020716

Figure 3-1.

Coding the ENVIRONMENT DIVISION

SECTION 4
DATA DIVISION :

GENERAL.
The third part of a COBOL source program is the DATA DIVISION
which describes all data that the object program is to accept

as input, and to manipulate, create, or produce as output. The

data to be processed falls into three categories:

a. Data which is contained in files and enters or leaves
the internal memory of the computer from a specified

area Or areas.

b. Data which is developed internally and placed into
intermediate storage, or into a specific format for

output reporting purposes.

c. Constants which are defined by the programmer.

DATA DIVISION ORGANIZATION.
The DATA DIVISION is subdivided into two sections:

a. The FILE SECTION which defines the contents of data
files which are to be created or used by an external
medium. Fach file is defined by a file description,
followed by a record description or a series of file-

related record descriptions.

b. The WORKING~STORAGE SECTION describes records, con-
stants, and non-contiguous data items which are not
part of an external data field, but are developed

and processed internally.

DATA DIVISION STRUCTURE.
The general structure of the DATA DIVISION is as follows:

DATA DIVISION.
[FILE SECTION.]
[FD file-name-1

[Ol record-name-1 .]

[02 data-name-1 . ., .] .
[o2 . . .].

[03 data-name-2
[01 record-name-2 .l

[SD file-name-2 .
[WORKING-STORAGE SECTION.]
[77 data-name-3 . . . |

[77 data-name-4 . . . 1.

NOTE
The DATA DIVISTION cannot exceed
100,000 COMPUTATIONAL digits or
50,000 DISPLAY Characters.

[0l record-name-3 .]
[02 data-name-5
[02 data-name-6 . . .] .
etc.

[01 record-name-4 .]

etc.

RECORD DESCRIPTION STRUCTURE.,

A Record Description consists of a set of data description entries

which describe the elements within a particular record. Each data
element consists of a level-number followed by a data-name, followed
by a series of independent clauses, as required. A Record Descrip-
tion has a hierarchical structure and therefore the clauses used
with an entry may vary considerably, depending upon whether or not

it is followed by subordinate elementary entries.,

LEVEL-NUMBER CONCEPT. .

The level-number shows the hierarchy of data within a logical
record. In addition, it is used to identify entries for Condition-
Names , non-contiguous constants, Working-Storage items, and the

RENAMES clause.

Each record of a file begins with the level-number 01 (which may
also be shown as 1). This number is reserved for the record-name
only, as the most-inclusive grouping for a record. Less-inclusive
groupings are given higher numbers, but not necessarily succes-
sivelv. The numbers can range nn tn Lo, Figure /-1 illuctrotes

[EONRHRVNE SR PR R e

the use of level within a record.

L-2

BURROUGHS COBOL CODING FORM

PaRE | PmOGRAM REQUESTED BY PASE oF

NO
! 3 Moncenmeen DATE 108w] ®©
Al e e == S |
LINE a [] z
NO
4 [Jed L] niw Yg

Lo e u -) rec.erd,.-n

[]
i
1 [d
02| L j0i3 AInTAEM-MMMMMMMme
]

04 L 11 Jo13, |InT1EMLDJA1T|E1.|11111411J11114411111411111(1

o3 1 JOoi3y nuﬁmwww

08 a1 1105 MONTH PITICTWLRIES 998 4+ 44 14 44 4L 111t 1(|ﬁ|l|__&ﬂ|§!l|h&!d| |Q |Qg|!]2| 111
oel Lot 110105 DAYy g3 PILICTULRE 990 1 11 13 lLilllel(lel‘e]mﬁnjt&_m_Lm“_u_

o
~
b
-
-
-

1015, 1Yy EW&MMLMMMME}%J_

(-]
[]
-
-
b
-

013; 1S []AMWJ—‘J—LJ(&L&M!L I

o 1013 WPIRIGIDIMCITIDIGINI-ICIBIDIE ey 51 111 4 1111114411111(3@@8_4&&&@)1111111111

o
o

(-}

L)1 105 MACHIDINE - SIHIGP et 1111 ¢ 311 11 1 Alllillll(lﬂ]_jéjﬂﬁ__l‘.ji&ﬂl)llllllllll
L1l o011 1007 M Db UL NGy PITCTIVHRES 1 19093911 ¢ 11 4 1 |$|gl Iﬁlﬂﬁﬂlfh&ﬁ!l I.g!d:BLDh L4

~

L1 1110107 (BIL NG LeSINGT NGy (PG TANRIE) 995e1 1 114 4 ,Lgl |§|Iﬂ§‘“|i:|ﬂ‘||!a |$,|f:@!]]>| 1 111
L1 1015 I ASISIEMBILIYL 1 IPIC) 199919951 1 1 11 1t 111 d el n@dﬂﬁlh Q0 |(_.1' :!:Q!ﬂh L1

»

L1l 1015 IIANIM_MMW&QMM‘

i1 JOi D AIWAIRIRIAINITIVE - 1CI@D €L goge1 ey 4 4oy 1 1

$00-660£€0L NOd A
0£/8¢2/6 pasiray

€1

| . 1141118 A1 44 4 Lt L1t go o 1t o« 0§ 14 ¢ & & &2 4 £4 4 144 4 44411111 1t

~

AL 1 lllllllljlllllllllllllllelllljllllllljlllllllllllllllljlllj

("]
D R e P Y Y] Py Py L]
=3
-
-

‘e A1 1 lllllllllllliLlllllllllllllIJlllllllillLlJllllllelllllll]‘l
'9 Lt 1 1111111111111111111llLlllliljillllanLlnnl11141111111111J111
20 I T e NN e TN T
2 A4 AL b i 0 L8 g 4003 0o 8880 48 888 4000884488442 a1 a1
22 L4t e T NSRRI N TN T
’3: JUNEEY ALo0 ULt b)0 88 44 a1 a4 aaa
2‘: N e 1lllllllLJ_Jllllllllllllllllljllllilillllllllllllllllllllllll
25| I L L L L L LU L L L b L L L LAl Al b bl 1L Ll

Figure 4~1. Coding of Level-Number

For an item to be elementary, it can not have subordinate levels.
Therefore, the smallest element of a data description is called
tem In figure L-1, MONTH, DAY, YEAR, MILLING,
and FINISHING are elementary items. Since ITEM-NO, LOT-NO,
STANDARD-COST, ASSEMBLY, INSPECTION, and WARRANTY-CODE do not

have subsidiary clauses, they also represent elementary items.

A level that has further subdivisions is called a group item. In
figure 4-1, ITEM-DATE, PRODUCTION-CODE, and MACHINE-SHOP represent

items on a group level. A group is defined as being composed of

Q

all group and elementary items described under it. A group item
ends when a level-number of equal or lower numeric value than
the group item itself is encountered. In figure 4-1, group item
PRODUCTION-CODE ends with INSPECTION. A group item can only
consist of a level-number and a data-name followed by a period.
COBOL defines all group items to be alphanumeric and will be
byte aligned by the compiler. The FILLER ADDED message will
appear where such alignment has taken place. Apart from level-
numbers 0l through 49, three additional level-numbers exist in
COBOL. These are numbers 66, 77, and 88. They represent level-
numbers within RENAMES, WORKING-STORAGE, and Condition-Name

entries respectively.

To reiterate, a level-number is the first required element of
each record and data description entry. In value it can range
from 01 through 49 (1, 2, etc. is also permissible), plus special
numbers of 66, 77, and 88. It is important to remember that
multiple level 01l entries of a given File Description of the

File Section represent implicit redefinition of the same core area.

QUALIFICATION.
The data-names of the DATA DIVISION need not be unique as long

as the parent item of that data-name is unique in itself. Quali=
fication is accomplished by following the data-name to be quali-

)

fied wilh eiiher IN or OF and ithe qualifying data-name, record-iaime

C
or file-name., In the example below, all item descriptions (except the

h-4

data-name PREFIX) are unique. In order to refer to either PREFIX
item, qgualification must be used. Otherwise, if reference is
made to PREFIX only, the compiler would not know which of the two
is desired. Therefore, in order to move the contents of PREFIX
into PREFIX of the other, the PROCEDURE DIVISION must be coded

with one of the following sentences:

a. MOVE PREFIX OF ITEM-NO TO PREFIX IN CODE-NO.

b. MOVE PREFIX OF ITEM-NO TO PREFIX IN MASTER-FILE.

c. MOVE PREFIX OF TRANSACTION-TAPE TO PREFIX IN CODE-NO.
MOVE PREFIX OF TRANSACTION-TAPE TO PREFIX IN MASTER-FILE.

EXAMPLE:
01 TRANSACTION-TAPE 01 MASTER-FILE
03 ITEM-NO 03 CODE-NO
05 PREFIX 05 PREFIX
05 CODE 05 SUFFIX
03 QUANTITY 03 DESCRIPTION
TABLES.
Frequently, the need arises to describe data which appears in a
table or an array. For example, an annual sales total record
might have to be broken down by months. In order to accomplish

this, January sales would have to be referred to by a given
data-name, February sales by another, etc. By using the OCCURS
clause, the same result can be obtained without the need for 12
different data-names. Figure 4-2 illustrates how the OCCURS
clause may be used in order to have the compiler build a table
of twelve elements, each having a structure like MONTHLY-TOTALS.
The first element will be known as 1 of the table, the second as
2, etc. The technique of referring to elements within a table

or an array is known as subscripting.

The OCCURS clause may appear at any level except the 0l level
which is reserved for record-names. For more detailed informa-

tion, refer to the OCCURS clause.

4o

-
i

Q1

BURROUGHS COBOL CODING FORM

’::5‘ PROGNAM REQUESTED BY PASE oF
' L} DATE TOENT 75]
3 — T— A 4.4 4 4 1 i 2)
Line a . T
e« 6]r]s uie T2
- = p— == = S aa——— = =
o 1 1, 0 JANINUALISISIALGE S e 4 sttt e v b3l i1 FUE U U TS G B0 W A NS 6 O G
oazz L o3 MOINITIH IV T AT IAILLSE IGICICILhRSE 142 (TIUMESIe) ¢ 4 3 1 1 14 411 RN N
o:!' Lol 105 PIRBDIMCGTI=IAL JPICE D590 14 0 £o0 1010 11t 11 USRS U I
04 pa il 105 PIRIGIDWCIT =B PIC) 399D 1 1t 1 L Ll N W G BRI I I |
05 11t L1195 PIREDAWCIT) -1C) |QCIC|Q‘&§. TR RN 1L 10T N U U W U U0 U T I O O B O N EE NN
osl Laa i a0 PRODIMCTIDGMN 3 aPC) D9 et 0 144t 41111 NN NN
07; Coaa bl 1 13307 IRESIAMEL 11 o aPCe 99y 1o L4t gLt a1y A I |
0': Laa o S ALIESI - QUSITIAL PG S Dy 4 w4 bkt s IS I A S U A A B U S |
°l= L 13 1013 PIEIRICIEINITIANGIEL PGy 1o 1 L1 00 0 44 b 4 g 110101ty SN I |
_a_o’ RN NN E NSNS i G S A A S i | D 0 WY U W0 WO O N 0 O U W
]
WL NN ERE SN NI I N U G A W A O S G i 11 [RN UE N U W U N Y 0
|2= [T EE BTN N U TN U0 U N N U0 U5 G U U A W YO U WO WAV A WS WO S UV V0 S VS U U WS W O A U WU U W U0 U I A A S O d4o 1§ o i1t 14
_'_33 PEET ST U YN NS AU VAN VNN VS U NN U 155 U N UAON VY W NN OO0 A5 VA0 VY W0 % U AN WA WA VO D UG VA TN UG S N N0 SN0 WO VA O O O G o144 b4t b4
"! 111 [UES WS W T N WS U W U U G U N WA N WA WS NS WS W U0 V00 00 SN SO0 (U W A N0 S W0 U U N B S B S S T G | 1L U W N U W O W U N U0 O O
's: L1 1 [W U W U B U W U N TR U R T U U N U U U U S U U Y U S S R G N S S TN W S B W S e | L1 L 4 v 4 & & L A} o b A .l
'0: T [YS 0N W NN S U5 W U U U TN VNN NN N (NN U0 O (N DS WA WY WO W U U NN U5 NN 0 GRS U WO OO A WA W S U S O | L4 [E W Y TS W U OIS N U O O W
,_'r: 21 1 T O T B B O N R OO Y O T U U N T U N A U I W I U W GO e S S N T T N S S W U G W | 4 1 A 2 A 4 A 4 LA 3 4 A L1
'l 1114 N U U W G O U I D U U W U T U U N S N D N N G S W S N U U S S S S N U N W W R | A1 VU SN S SN U U W W U U G
‘9 U U B R U U W N0 U W N6 W A W0 WA N (OO0 U W0 S U UG W W00 U0 U0 VY SN WA W N N0 WA A A U W0 U G W A 0 B O | 1 4 0 412 L4 4484
30: L1 TR SR U WS U S S U U WA VAN N WS W U WD A0 W (5 WS U0 1N U0 S0 Y WY W SO T A WY U A U W G O G U B W 1 I U G S Y N WS U N A A Y
": NS A AN N S UGS N AN Ui U BE U W 0I5 U 0 N0 WY N N0 0 UV G W0 A5 WO W S0 T U U0 WS U0 U6 W0 0 N W U W O LAt b 4 LAk a
zz: i1 1 J TN U O U (N G G U NN A VU N S N N W S U G SN S B T W W U S S S T B S N S U S S S . A1 i U W U U W U S W N U N O 1
25: SO D S U B S U U0 UiV U0 WA S U S0 WA 1 U0 S S VA0 SN SV U 0 A WO U0 WY S W G U S Y AU G S U G G G U § 11 IS W I I W W W
_?4: TR N A U W 0 NN U U0 W WO W W WO U0 WA U U 0 WA U A0 U0 UL U6 W6 U500 U U0 W0 U0 NS A O Y OO0 WO O Y B A B O | Lt L4ttt
25 | R SN NSNS VU0 U WA JANS WS S S S N0 U 0 U0 N U0 (V06) WOUU.JNE O U0 U WA U0 S0 (0 00 VA U VS I A0 0 0 S AN O B G U U id ek dd Al 14 oig

Figure 4-2.

Coding of Multi-Dimensioned

The repetition of data elements applies to all subordinate fields.
OCCURS may be nested to describe tables of more than one dimension
by applying an OCCURS clause to a subordinate name. The COBOL com-

piler permits tables of up to three dimensions.

SUBSCRIPTING.

When a data-name OCCURS more than once, the particular element

desired within the array is referred to by using subscripts. The
subscripts follow the data-name representing the array in a COBOL
statement. A space may separate the data-name and the subscript
bounded by parentheses. A subscript may be either a numeric literal
or a data-name. A data-name being used as a subscript may not be
subscripted. If the value of a subscript is changed in a series
(e.g., MOVE A (B) to C (B), B, D (B).) the subscript (for D (B)

in this case) is not re-evaluated.

In order to reference the first occurrence of MONTHLY-TOTALS of
figure 4-2, one may write: ...MONTHLY-TOTALS (data-name), where
data-name must contain a 1, or MONTHLY-TOTALS (1).

If data-name INCREMENTER is used to refer to the desired element

in a table in terms of the sample illustration, MONTHLY-TOTALS
(INCREMENTER) would have to be written. In this case, the INCRE-
MENTER would have to contain that value which represents the desired
element. TIf a specific RESALE item within a given month is again
desired, RESALE (INCREMENTER, CODE-X) would have to be written.
CODE-X is a data-name that can have a value of 1, 2, or 3, depend-

ing on which of the levels is required.

At that point in time when a data-name is used for subscripting
purposes, its value must be greater than zero but not greater than

the value shown in the corresponding OCCURS clause¥*,

Where qualification and subscripting are to be used simultaneously,
the qualification has to be shown first, followed by the subscript-

ing.

* The generated object code will not check the validity of data-name
values used for subscripting or indexing and undefined results will
occur should the program reference a subscripted data-name or an
index-data-name containing a value of zero, or a value above the
defined subscript or index range as reflected in the OCCURS clause
pertaining to that item.

Revised 9/28/70
by PCN 1033009-004 %4-7

FILE DESCRIPTION.

FILE SECTION.

This section contains descriptions of the files used by the object

program

FILE DESCRIPTION
The function of this paragraph is to furnish information to the

compiler concerning the physical structure, identification, and

record names pertaining to a given file.

The construct of this paragraph contains four options:

Option 1:

FD file-name COPY "library-name",

Option 2:

_ . , e~ T . | STANDARD 1
FD file-name-1 [RECORDING MODE IS]\ﬁaﬁ:ETKﬁDARD f]

FILE CONTAINS integer-1 [BY integer-2] RECORDS

) . RECORDS
BLOCK CONTAINS [integer-3 TO]| integer-4 { CTARAGTERS }]

1
RECORD CONTAINS [integer-5 TO] integer-6 CHARACTERS J

, OMITTED 1
{ RECORD IS | STANDARD)
\ RECORDS ARE f USAST J

\ NON-STANDARD

LABEL

1

VA OF ID s "literal-1" }
{VALUE } _— IDENTIFICATION data-name-1

[SAVE-FACTOR TS 1iteral-2]]
[. (RECORD Is 1 . . e Foaia o n .
I_ DA LA i ms ARE f gata=-itae=g fuata=-lailie=_ .. | J

FILE DESCRIPTION

Option 3: continued

SD sort-file-name COPY "library-name".

Option 4:

SD sort-file-name
FILE CONTAINS integer-1 [BY integer-2] RECORDS
RECORD CONTAINS [integer-3 TO integer-4 CHARACTERS]]
L=

-

BLOCK CONTAINS [integer-5 TO] integer-6 { BECORDS }]

CHARACTERS

RECORD IS
RECORDS ARE

DATA { } data-name-1 [data-name-2] ... } . I

The level indicator, FD and SD identify the beginning of a File
Description or a Sort File Description and must precede the file

statement. Both entries must commence under Area A of the coding

form. Only one period is allowed in the entry and it must follow

the last used clause.

Options 1 and 3 can be used when the Systems library contains the

library-name entry, otherwise, Option 2 and/or 4 must be used.

In many cases, the clauses within the File Description, or Sort
File Description sentence are optional. Fach clause is discussed

in detail.

NOTE
Figure 4-3 illustrates the use of the File Des-
cription sentence followed by data record entries.
It is further noted that the three 0l levels im-
Plicitly redefine the record area and that the
DATA RECORDS clause is treated by the compiler
as being documentation only and does not cause

an explicit redefinition of the area.

Revised 9/28/70
by PCN 1033099-004 4-9

BURROUGHS COBOL CODING FORM

panuijuod

PROGAAM REQUESTED BY PASE oF.
PROGRANER DaTE {32 171)
B S
A [] z
Tie® Wie re
1D AUSITIE R =2 Fa b€l 100 o et dod bt Aot g v 4t ikt b (o et 4L A b d 1
sl s sbAREIL (REICIOIRIDL ILISI ISITAINIDARD: 11 4 4 1 0 1 &1 & & ¢ ¢ 4L+ 0 ¢4 81 8 841 48814

114 n1L1JVMM||I|§1|"MC|'|n11111111:1111111111111111111111

LA v e o aSIANIE - IFIAICITABiRL s TiS 13040100 ¢ s 1 b 4t b d g e bk Lk

pa L i DATAL IREIGIGIRIOIS JAREL (TSt DI @GDIES 1 TIRANSISTGRS- 1§ 4 1412 |

1.4 1 i 4t 44 b b L Lt 4 4o a 1 4 s oS A 4 A 0 L L L 1 & 4 4 & & & & 1 2 % L\ & & 2 1 4 4 & i & £ 4 0 4 2 0 2 A 1.1

Olu t ITUBIEIS ges 1 014 LA b b b L 4 Lo o d g4t bty g

TS TSI IR LI S N U U (N U U U0 U0 N 0 U6 W U WA U TS U W AN W0 U S U U NN VN U N SN0 A W U NS 0 WA AN A0 G Y G A A S NS O A6 N6 O 0 BN O O ¢

TN W O LY I T W U U T U U W O W U U A W U O N N N W VN U N 1 S W S U N N T T T U T U N N U G N T U A U W N U S W '

U U T L2V U U W U W S U U N U NN SN T U N U U S TN UNN SN Y U U SR T N N N S N SN R N W N N U N N T N W U U N N S SN T N G e . |

W W D 25 WS WA W WU W0 NS U W WS Wy R W VNN NP 1O NS NN VA N W U YN0 O Y U NN S U S0 VNS U W W 1 TS TN VA VNS W N TS YO T U S U U U S U U U W - 'y

01111DnIlQ@JEJSA-x1|1L||L1L111111111111|1111111nn||n|111|11||L1L1||11J1

("]

»

i 111#1511-1-1-1-1-111111111111.1:111111111111111111111111111_11L|11111111

VN W W0 2% W W N W W U WS WA WS U NN G NN U N VNN W U NN W W W VU W O T U U N U U U U U U SN U S W N U W S S W N SIS W U N S W U S S SN e |

A s Jes 4 o 4ot 4o ot o4 4o 4 4 oA A A A A 4 i 4 4 1 A 4 % 4t 2 A A % A 2 1 i & 8 A 2 A & & 2 2 2 2 % & 4 & 2 1. A

.t 4 12 ¢ 14 ¢ L Lt 4 ot 4o 4o bt oA Loa g At ot 4 4 1 1 4 1 & & % £ 2 & 2§ 2 & £ 4 & 1 3) 4 2 & 2 4 8 4 R % 4)

~

O, ITRANSITISITIGRS =1 4 44 4 a0 & bl 4L L 1t 40 A1 40 0L 4 AL 4 1 41 4 b Aa a1

IR I (0 5-TEYCIIS 17 U U U G U5 WA U0 W0 U W0 0 U0 U W Y W W0 O 10 10 G 0 U5 W00 WY WO G S5 WU S 0 U0 T U WY U VY WU A U SO0 W SO0 N S W G0 W O I S S Y 0

e p ey oo ot 4 Lo a 1 A 4 0 4ot t 4 4 g L L A 4 4 1 A 1 2 2 & 4 £ A & 2 % A A & 4) A % & 8. 4 B & 4 % 1 i

L2 1 oA 4 L A 4 L 4 4 Lot 4 % L & Lo 4 g J A A A0 b A 4 4 4 A L 1 L A A A A A A L1 A LA A A & A A A A_4 2) & 2. 4 & 4 A A 1 A_A

2! bocd L L W WY W W N U SR U SN S I O T SN G S U N R W VNN W Wy U N U TR U S W S T UGN U U U W U U S T U W N R U S W S U G S U N O O A O |
22 A1 J W W G U N SN S U SN SN S T N SR NN W N N W S W U S U N SN U SN U NN S N D T N G W S S I S S U N U D U S T S G U W S N W W |
23 FE S | At a i 4t toa 4 4o 24 4 4. o4 4 4 J L A L. A A 4 A b 4 L A L & & 4 A X A 4 A i A A & A % 4 A A 4 1 2 A A 4 4 b 1 2.2

~
»

~
W

P e N e L

Figure 4-3. Coding of FD and DATA RECORDS

BLOCK

BLOCK.

The function of this clause is to specify the size of a physical

record (block).

The construct of this clause is:

RECORDS 1]

[BLOCK CONTAINS [integer-1 TO] integer-2 { CHARAGTERS |

Integer-1l and integer-2 must be positive integer values. l

The clause is required if the block contains more than one logical

record.

When only integer-2 is used, it will represent logically blocked,
fixed-length, records if its value is other than 1. When the

integer-1 TO integer-2 option is used, it will represent the minimum

to maximum size of the physical record and indicates the presence of
blocked variable-length records. Integer-l is for documentation

purposes only.

The maximum value of the integer used in this clause is shown in

table L4-1 and refers to the number of characters in a block.

The word CHARACTERS is an optional word in the BLOCK clause. When-
ever the key word RECORDS is not present, the integers represent

characters and must be modulo 2. l

For object program efficiency, the use of blocked records is recom-
mended. The physical size of the block should be as large as pos-

sible depending on memory availability.

Blocks of records are READ into the input record buffer area by the
MCP. When the dollar sign ($) card reflects "MCPB", the MCP will
deliver each record to the programs record work-area as required by
every explicit READ command. Omission of the MCPB option will cause
the compiler to create object code for programmatic unblocking of

Revised 10/8/69 _
by PCN 1033099002 4-11

BLOCK

continued

records at a considerable increase in speed. In either case, un-

blocking of records is of no concern to the programmer.,

Table L4-1

Maximum Value of Integers

I/0 Medium Maximum Block Size - Characters

READER 80
PUNCH 80
TAPE Limited only by the amount of

memory available,

DISK Limited only by the amount of
memory available.

PRINTER One print line.

PT-READER Limited only by the amount of
memory available.

PT-PUNCH Limited only by the amount of
memory available.

SORTER 200

LISTER Ly

Every explicit WRITE verb causes compiler generated object code to
deliver a record to a files output record buffer area and to accumu-
late the number of logical records required to create a specified
block size before notifying the MCP to write the block. When a file
is CLOSEd, the records left in the output buffer area will be written
by the MCP before the file is physically CLOSEd. The coding of
record area to buffer is automatic and is of no concern to the pro-

o N .

grammer. The bleocking of rccords by the objecl program can be

L-12

BLOCK
continued

inhibited by placing "MCPB" in the dollar sign ($) card, thus assign-
ing the task to the MCP (see section 8) however, speed will be

sacrificed for the resultant core savings.

The user must specify the actual size of variable-~length records
in the first four bytes of each record. This four-character indi-

cator is counted in the physical size of each record.

The BLOCK clause is not applicable to the SORTER, LISTER, PT-PUNCH
or PT-READER peripherals.

This clause may be omitted for unblocked files.

Revised 8/28/69
by PCN 1033099-001 L-13

DATA RECORDS

DATA RECORDS.
The function of this clause is to document the names of the logical

record(s) actually contained within the file being described.

The construct of this clause is:

[DATA {ZRECORD IS }

RECORDS ARE data-name-2 [data-name-3...]]

This statement is only for documentation purposes. The compiler
will obtain this information from 01 level record description

entries,

-1y

FILE CONTAINS

FILE CONTAINS.
The function of this clause is to indicate the number of logical
records in a file. This statement is required for disk files,

and optional for all other files.

The construct of this clause is:

FILE CONTAINS integer-1 [BY integer-2] RECORDS

The indicated integers must be positive values.

Integer-1 may not exceed 20 when integer-2 is present. The product
of integer-1l BY integer-2 cannot exceed 99,999,999, When integer-1
is used by itself, it cannot exceed 99,999,999,

An entry of FILE CONTAINS 20 BY 9999 RECORDS will notify the MCP to
allot 20 separate areas (pages) of disk as each area is program-
matically required. The size of each page would be 9,999 logical

records in length.

The above technique allows the MCP to efficiently assign file pages
as needed, rather than immediately assigning one huge file area

during the first operation of the program.

Programmatic usage of the file can either enhance the paging tech-
nique or defeat its purpose completely. For example, assume that a
RANDOM file at some future date will require a maximum size of

20 x 9999 (199,980) logical records, and that no key conversion
formula is used due to the key being a six digit number running
from 1 thru 199,980 which exactly fills the key requirement, as is
the case in auto license numbers in some states. It could happen
that the first twenty records could open up an entire disk module
if they were in increments of 9999, which would negate the paging
technique completely and thus causes the MCP Disk Directory to
recognize the file as being of maximum size, even though only twenty

records were processed.
Revised 9/28/7C
by PCN 1033099-004 h-15

FILE CONTAINS

continued

The programmer should utidlize the USE FOR KEY CONVERSION technlque

o e s i o e 13~ 1321 s
0 prograniiavicCasrliy 411l T'€CoX rds to fir

ct
L

af o+
<L

Lo Yo Woaray FaY
ryPaeage v viic

H

~ = Fay
J-J-V = LT anda

to try and use up as many record spaces as possible within each

page before forcing the MCP to open another.

The following B 2500/B 3500 statistics define the maximum disk file
storage area for a given file as being 20 Electronic Units, where
each E.U. contains one page of the file on five contiguous disk
modules within the control of the E.U., A file page cannot continue
from one E.U. onto another, however, file pages continue from module

to module within the control of each E.U.

Model 1A Model 1C
Disk Storage Disk Storage
5 Modules of disk per E.TU. 5

20 E.U.s per system, 20
100,000 Segment addresses per module. 200,000

500,000 Segment addresses per E.U. 1,000,000
10,000,000 Bytes per module. 20,000,000
50,000,000 Bytes per E.U. 100,000,000

A disk file residing on Model 1C Disk Storage systems cannot contain

more logical records than the equivalent of 5,000,000 twenty byte

records, blocked 5 per physical record, in a single disk file page
and cannot contain more than twenty disk file pages per B 2500/B 3500

system,
EXAMPLE:

5,000,000 records x 20 bytes per record =
100,000,000 bytes (maximum for an E.U.)

100,000,000 bytes per E.U. + 100 byte segments =
1,000,000 segment address per E.U,

The FILE-LIMITS clause, if present, overrides this clause for
INVALID KEY and End-of-File checking. INVALID KEY (or AT END) must

andam o DITRAT /n'h'rrr\r\
X

£ Ao~
B A A o

lcs arvmand 4 AA '\‘1'!""1"\

FILE-LIMIT.

-4

LABEL

LABEL.

The function of this clause is to specify the presence or absence

of file label information as the first and last record of an input

or output file.

The construct for this clause is:

OMITTED

RECORD IS } STANDARD

RECORDS ARE USAST
NON-STANDARD I

LABEL {

The LABEL clause is not applicable to SORTER or LISTER. If this
statement is omitted, files will be assumed to contain or to have

been created with STANDARD labels.

STANDARD specifies that labels exist for the file or device to which

the file is assigned. It also specifies that input and output labels

conform to the MCP standards as implemented.

STANDARD, when specified for disk files, indicates that the six
character contents of the VALUE or ID clause will be inserted into
the disk file header. Should VALUE of ID be omitted, the first six
characters FD or SD file-name will be inserted into the disk file

header,

OMITTED specifies that the labels do not exist for the specific input
file or device to which the file is ASSIGNed. During object program
operation, the operator will be queried by the MCP as to where the

input is located. The operator must reply with mix-index UL channel/

unit control message.

NON-STANDARD indicates, that the files physical magnetic tape label
is formatted as an EDP installations own standard label which has
been appropriately defined in the System Specification Deck at "cold
start" time (see B 2500/B 3500 MCP Reference Manual for specifica-

tions relating to Installation Labels).

L-17

LABEL

continued

OMITTED specifies that labels are not to be created for the specific
output file ASSTGNed,.

L L1 2221 C0,

The Burroughs Standard B 2500/B 3500 label record serves as both
the beginning label record and the ending label record and is com-

prised of the following parts:

Positions Field Description
1 Invalid character for card files and

blank for other files.

2-8 "LABELbDb"
9 Zero.

10-15 "Multiple-file-id" or zeros.

16 Blank.

17 Zero,

18-23 "File-identifier",

24 Blank.
25=27 Reel number within a magnetic tape file.
28-32 Date written (creation date YYDDD).
33-34 Cycle (distinguishing multi-runs of the

program).,

35-39 Purge-date (YYDDD) at which time the MCP

assumes a magnetic tape as "scratch®.

40 Sentinel (0 = End-of-File and 1 = End-of-
Reel).
41-45 Block count (ending label only]).

4-18

LABEL

continued
Positions Field Description
L6-52 Record count (ending label only).
53 Memory dump key (1 = memory dump follows
beginning label).

54-58 External magnetic tape library reel number.
59-80 Reserved.

81- User's portion.

The COBOL compiler will obtain the value of "multiple-file-ID" from l
the I-0-CONTROL MULTIPLE FILE TAPE clause.

The COBOL compiler will obtain the value of the "file-identifier"
from the FD VALUE OF ID IS clause, or if it has been omitted it

will be taken from the first six characters of the FD-name.

The initial value of the reel number is preset at 001 and increased

as required during operation of the object program.

The value of date written is as maintained on the system for the

processing day and converted by the MCP to YYDDD,

The value of cycle is preset to Ol. It is desired to run the
same program more than once during a given days period, the operator

should be given the parameters of a VALUE control statement.

The value of sentinel will be set to 1 at the end of every reel

within a file and to zero at the end of the file.

The block count value will contain the number ot record blocks on

the tape and is written on the output reel's ending label. The MCP
will keep count of all blocks read as input and will verify that
it has read all blocks by comparing the created total and the block

count entry of each reel's ending label.

The record count value will contain the number of logical records
on a tape and is written on the output reel's ending label. The

Revised 9/28/70
by PCN 1033009-004 4-19

LABEL

continued

MCP will verify the number of records read in the same manner as

for block count.

The memory dump key notifies the MCP to format the output into

memory dump notation for the printer.

The external magnetic tape library reel number is initially placed
in the label, by a user program, and is permanently maintained by
the MCP regardless of the tape status of being a scratch or current
data tape. This area of the tape label may be altered by a DECLARA-

TIVE in a user program.

The STANDARD label may contain data designed by the programmer to
accommodate miscellaneous information pertinent to magnetic tape
files only. This user's portion along with the STANDARD informa-
tion, or FILLER, must be described within the first Ol record des-
cription entry of the file. The compiler recognizes only an entry
of 01 LABEL as containing a label description for a given file which
precedes an actual record description (see figure L4-4 for an example

of Level Coding).
The user's portion of the STANDARD label may be of any length.

The ANSI Standard B 2500/B 3500 label record serves both the be-

ginning label record and the ending label record. Its format is as
follows:
Positions Field Description
1-3 HDR.
L 1
5-173 blank. The MCP recognizes

the middle six char-
acters as the file-
14-21 "file identifier". ID. Position 1 must
be a zero and posi-
tion 8 must be a
blank. E.G.,
\ OAAAAAA A

22-27 "multiple-file-ID".

LoD

Positions

28
29-31
32-35
36-39

Lo-41

h2-L7y
48-53
54

55-60
61-67

68-72
73
7L-80

81-

LABEL
continued

Field Description

0] (zero).

Reel number within a magnetic tape file.

0001 (file sequence number).
Blanks (generation numbexr optional).

Cycle number (generation version

number optional).
bYYDDD (creation date).
bYYDDD (purge date).
Blank (accessability).

000000 (block count (end label block

count)).

0000000 (record count (end label

record count)).
Physical tape number.
B (optional).
blanks.

User's portion.

L-21

BURROUGHS COBOL CODING FORM

A]

139V1

panuijuos

woe | rosman REQUESTED BY PASE
’NMIM oATE 1DENT ™)
=éﬁf‘ e T T T e S i
F '
4 [] L4
== e e PR e e
ol WA-IFALILIElllllllllllllllillllllllllllllllllllj
OIT 111KE.ClMWM&Q¢I:AI]AJ::Jl[1L:11111111
os| Ll E. L L1411 YRR EE |
0 L1l VxAlL-LWMMQAJ&M_U&SMUHJ“
0s 114 llllllIlllLAllLJlllllllllllllllll [W I O O | U Y U T W |
0oe 01 4 A AT I N T BT U N N U N0 U U0 A U T TN U0 W0 U WA U0 A T S W W 0 A 0 W W B A e e
07 s g oy B LLLER | TR - STRN UYL CT - ("0 WU S T T U T N U U 1 O 0 I 0 W 0 W B S B B
ce |l llLiOlZl WM (4.4, FUET SIS U U U AN A U TS U U0 NN N A U U N G S W {
C" L lone, lDIlVlClGIDlEILl]IlPlC_[lIlllgl(l&)l°lllllllllLllllllLlllllLl
i°= L1 102, lh'F'PLCmM“MI)I'IIIllllJllllllllLlJlLLIJ
t‘: Ly oz 1 SIECTICEDE 31 (PLGTIMRE D C1C L N TR AT U U U N0 U S T U0 G N 0 S U0 O O S O O W
20 FTET S U U U N U T WA T U0 U T Y U VA W W T W U W W W G T T U W B T U W W W 0 B B S B e e
‘ll 01111R.E’.nC@anDn-WanEanl NN NI I I I A U A S S S
"l L1 1o2y INAMEL 3 a1 1 PG OIS 4 oAGZIO0D ey o011 a1 it
[Lllolzllllllllllllllllllllllllllllljliljlllllllljlllljl
161 TS (o YA I I N U U0 U U0 U 0 N0 WL WA T TN U YUY L0 W WA VAT W S U T N W0 W U W 0 T T W0 W 0 W 0 e B B e e e
[
'7: [P B Yo - TR U U N0 T TN W0 W TN U S U U 0 T WA T W W A A W S G W U W W WY D T B S e e B
'8 4 1.4 1 llol&llllllllllllllllll]lllllljllllllTlLlllllllLALLLl
'9 T (o V- N U U U U U U0 U NN U 0 10 WY U U 0 WO 0 WA T A Y W W 0 H T G W D O W W W B S SV R B e e
20 141 Y- - S S T U UV I N U N0 5 T WA WA U GO U VO WA U T WA W A WA W T U A T W W T WD W T W W B W -
21 O . llal&llllllllllllllLllLllll]lllllllllllllllllllell
22. .41 llBIgllllllljlllllllLllllllllll‘llLlll‘\lllL‘LllllLLl
zs: U . ¥ llllllllllJlllllLlLlllllLlllllLllllllllllllJlleLl
2‘: PP Y T A N U0 NAPUAT S 0 V0 N0 VAN W U S0 VA WA U WU S U N U U U W A0 U Y U S T S T S W O TG W W0 B O B
25| P R U U U VA TN N N U 1000 YU U WS U0 0 W U V00 W VA GO AN U N AU W VO G A U D W0 O O VO I T W W W W W S W S W

Figure 4-4. Label Loding

RECORD

RECORD.

The function of this clause is to specify the minimum and maximum
variable record lengths. This clause is not applicable to disk
files.

The construct of this clause is:

l:RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

Integer-1 and integer-2 must be positive integer values.

If integer-1 and integer-2 are indicated, the wvariable length

record technique is utilized.

If only integer-2 is indicated, the compiler will treat the clause

as documentational only.

If integer-l and integer-2 are indicated, they refer to the minimum
and maximum size of the variable records to be processed. At least
one record description must reflect the maximum size record length

as specified in the RECORD CONTAINS clause.

The user must specify the actual size of variable-length records
in the first four bytes of each record and the record size must
contain an even number of characters (MOD 2). The four-character
variable-size indicator is counted in the physical size of each

record.

Revised 9/28/70
by PCN 1033099-004 4-23

RECORDING MODE

RECORDING MODE.

The function of this clause is to specify the recording mode for

peripheral devices where a choice can be made.

The construct for this clause is:

[w MODE IS { STANDARD } J

NON-STANDARD

The RECORDING MODE clause is not applicable to SORTER. The
SORTER control will translate the L4-bit MICR code from the SORTER
into EBCDIC.

STANDARD RECORDING MODE is assumed if this clause is absent from
the FD sentence. The MCP automatically checks the parity of input
magnetic tapes and will read the tape in the intelligent mode.

For this reason, this clause is required only for tapes when the
output is to be NON-STANDARD. RECORDING MODE for the card readexr
is determined at execution time by a Label Card containing ?DATA

(EBCDIC as STANDARD) or ?DATAB (BCL as NON=-STANDARD).

The MCP will automatically assign STANDARD RECORDING MODE on 9-
channel magnetic tape drives if a SELECT clause indicates TAPE,
even though the programmer has designated the unit as being
NON-STANDARD.

The recording modes for the peripheral devices are provided in
table 4-2.

Table 4-2

RECORDING MODE

continued

Recording Modes for Peripheral Devices

Device Standard Non-Standard
TAPE-7 0dd Parity Even Parity
TAPE-9 0dd Parity -
DISK Memory Image -
READER Documentational Only Documentational Only
PUNCH EBCDIC BCL
PT-READER BCL Binary
PT-PUNCH BCL Binary
PRINTER BCL -
SORTER - -
LISTER BCL -

Revised 9/28/70

by PCN 1033099-004 h-25

VALUE-OF-ID

VALUE-OF-ID.
b

™h o

The function of this clause is to define the identification value
assigned, or to be assigned, to a file of records and to declare the

length of time that a file is to be saved.

The construct of this clause is:

VA OF ID Is { "literal-1" } 1
| VALUE IDENTIFICATION data-name-1 § |

[SAVE-FACTOR IS literal-2]

This clause may be used when label records are present in the file
being described. If this clause is not present, the VALUE OF ID
will be taken from the first six characters of the FD name which
must be uniquely constructed so that the MCP will be able to recog-

nize the files. For example:

Would create a VALUE of ID
FD OUTPUT-TO-DISK1 } as OUTPUT for both files
FD OUTPUT-TO-DISK2 and will cause DUP FILE
action by the MCP.

To make them unique:

Would create a VALUE of ID
FD DISK10UT as DISK10 and one of DISK20,
FD DISK20UT | thus causing no trouble during
object program execution.

Literal-1l cannot exceed six characters in length. Data-name-1 may
be described as greater than six characters in length, however only
the most significant six characters will be used for the "file-iden-
tifier". The literal or wvalue of data-name~1 up to six characters
is the actual value to be contained in the "file-identifier" portion

of the standard magnetic tape label record or disk file header.

When data-name-.1 1s used the data-name musti be delined iua vihe
WORKTNG-STORAGE section of the program and must be described as

alphabetic or alphanumeric,.

h-26

VALUE-OF-ID

continued

The VALUE OF ID declared for OUTPUT, or 0-I, disk files will cause I
literal-1l or the value of data-name-1 up to six characters to be
inserted into the disk file header. Inversely, literal-1l or the

value of data-name-1 up to six characters will be checked against

the MCP Disk File Directory to obtain the files physical location

on disk when files are declared as being INPUT or INPUT-OUTPUT

disk files.

This clause must be used if communication with specific data com-
munication remote device is required. Literal-l cannot exceed six
characters/digits/special characters (or a mix of each) in length.

The first character must be alphabetic. l

The UNIT card in the MCP System Specification Deck specifies the
adapter-ID to be assigned to a remote device, which will be compared
with the contents of literal-l or data-name-1 at object program

execution time.

SAVE-FACTOR is not applicable to a data communication remote device.

SAVE-FACTOR is used only for output magnetic tape files. Literal-2

represents the number of days the file is to be saved before it can

o

be manually purged and used for other purposes by the system. Lit-
eral-2 is limited to an unsigned positive integer not to exceed
three digits in length with values from 001 to 999,

SAVE-FACTOR declared for a disk file is only for documentational
purposes due to the fact that files residing on disk should only be
purged by mutual consent within an EDP organization and can only be

performed as a physical action by the systems operator.

WORK tapes are automatically assigned a SAVE FACTOR of one day to
preclude expiration action when the system is being operated during

the period just prior to midnight and thereafter.

Revised 9/28/70
by PCN 1033099-004 4-27

RECORD DESCRIPTION

RECORD DESCRIPTION

iz 3 3
This portion of a COBOL scurce

a record in a given file.

The construct of these entries contain four options which are:

Option 1:

01 data-name-1 COPY "library-name'.

Option 2:

entries and serves to completely 1dent1fy each data element within

L-28

INDEXED BY index-name-1 [index-name-2}

|

J

01 FILLER
{1eve1-numbeI }{ Totername-1 } [MOD] [REDEFINES data-name-2]

T (BC 1
PIC IS (allowable PICTURE characters) l
_ { PICTURE]
" (BZ] [(oc)
\ BLANK WHEN ZERO J Li CCURS |
integer-1 TIMES
integer-2 TO integer-3 TIMES
1
[DEPENDING ON data-name-3] J
ASCENDING | co A
{DESCENDING } KEY IS data-name-U4 {data-name-5] ...] vee

RECORD DESCRIPTION

continued

e —

DISPLAY
- CMP
CMP-~1
COMP
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-3
— INDEX

[USAGE IS]

VA . THRU
{ VALUE } IS literal-1 [{ THROUGH }
_ THRU ;
I: literal-3 :, [{ THROUGH } titeral-d :, o

n

LEFT
RIGHT

n
Q

|]

Y
SYNCHRONIZED } {

—

(s
JUST RIGHT

| JUSTIPIED
literal—Z]

Option 3:

THRU
_é data~name-1 RENAMES data-name-2 [{THROUGHj} data-name-3].

Option 4:

88 condition-name

VA
VALUE

THRU
THROUGH

[literal-2...] [{

IS literal-1

} literal-n...] .

Revised 10/8/69

by PCN 1033099-002 4-29

T

RECORD DESCRIPTION

The optional clauses shown may occur in any order, except if RE-

DEFINES is used it must foliow data-name-1.
The record description must be terminated by a period.
Level-numbers in Option 2 may be any number from 1-49.

The clauses PICTURE, BLANK WHEN ZERO, JUSTIFIED, and SYNCHRONIZED

must occur on elementary item level only.

Option 1 can be used when the COBOL library contains the record
description entry. Otherwise, one of the other options will have

to be used.

In many cases, the clauses within the record description sentence

are optional. FEach clause is discussed in detail.

In Option 4, there is no practical limit to the number of literals

in the condition-name series.

The record description for a SORTER file must be declared as 200
characters. Record positions 1-100 are for OCR and positions
101-200 are for MICR. If the record description is more than 200
characters, a syntax error will result. If the record description
is less than 200 characters, the compiler will provide FILLER ADDED
at the end of the description to create a record area 200 charac-

ters in length.

The record description for a LISTER file must be declared as Uk

characters.

The MOD clause following the record-name will cause the beginning

address of that record to start on the next modulus 1000,

4-30

BLANK WHEN ZERO

BLANK WHEN ZERO.

The function of this clause is to supplement the specification

of a PICTURE.

The construct of this clause is:

Bz
BLANK WHEN ZERO

BLANK WHEN ZERO may be abbreviated BZ.

This clause overrides the zero suppress float sign functions

in a PICTURE. If the value of a field is all zeros, the BZ
clause will cause the field to be edited with spaces. However,
it does not override the check protect function (zero suppression

with asterisks) in a PICTURE.

The BZ clause can only be used in conjunction with an item on

an elementary level.

BLANK WHEN ZERO may be associated only with PICTUREs describing

numeric or numeric edited fields of 99 characters or less.

Revised 8/28/69 -31L
by PCN 1033099-001 b 3

CONDITION-NAME

CONDITION-NAME
Condition-name is a special name which the user may assign to a
given code within a data element. This value may then be refer-

red to by the specified condition-names.

The construct of this clause is:

.. (VA .
88 condition-name VALUE } IS literal-1

. - THRU .
[literal=-2...] [{ THROUGH } literal-n... J .

Since the testing of data is a common data processing practice,
the use of conditional wvariables and condition-names supplies a
short-hand method which enables the writer to assign meaningful
names (condition—names) to particular code values that may appear

in a data-field (conditional variable).

When defining condition-~-names, the following rules must be

observed:

a. FEach condition~-name requires a separate entry with

the level-number 88.

b. If reference to a conditional variable reguires
subscripting, then references to its condition-names

also require subscripting.

EXAMPLES :

0z CONDITION-VARIABLE PC A, OCCURS 10 TIMES.
88 GIRL VALUE IS "G".
88 BOY VALUE IS "B".
88 MAN VALUE IS "M",
88 WOMAN VALUE IS "w".

TE CONNDNTTTON_VADTART R
e CUONDZ T ZUON-VARIAZSLE

: R (SUR) = wan THEN GO TO SER-

IF-SHES-PURDY.

CONDITION-NAME

continued

IF GIRL (SUB) THEN GO TO SEE-IF-SHES-PURDY.

Both of the above examples will generate object

code to accomplish the same result.

c. A conditional variable may be used as a qualifier

for any of its condition-names.

d. Condition-names can only appear in conditional

statements.

e. Condition-names cannot be associated with index-data-

names.

f. Figure 4-5 provides an example of the coding of

condition-name.

4-33

7e -4

BURROUGHS COBOL CODING FORM

panu14uod

AOE] PROSRAM REQUESTED BY PAGE o
*0
' L] 5 TATE OENT 73 ®©
*=*l-— e e B e e e e e e e e S e !
LwE a . 1
0
4 elrle nwie - 72
-?Im_ e e B e e e e e
CI' 2 4 JSIL Y islTlu‘REll9191’lllllllllelllllllllllllllll“llJLllllll
|
ce Lol B SSANWARYG WVIAILMLES 3US Qb e 100 b0 11 L b it i
[}

3 Lo b B8 EEBRILAIRYG IVAILIME, LS OQiey ¢ 4 4 4 (g 1081011 L i Ly

IWVN-NOILIANOD

ca paa fa 1 88 MARCIH g VALAESL DS OBt 1 100 U L L gt

us poa b 88 AMPIREL 30 VALLKES TS O g 0 01 1o L i st

oe 1 28 (BTHERS: 1 4 aVALMMES LS 08 THRU: A i2ries & 40 14 0 4 18 4 bl

e
=
=3
=

0r paa la 1 B8 GBS s 41 VMALSWE (LS Ol 03, 4105 107 109 didier 4wy 14]
ve | pa el 88 JEVENS 3 VIALME LS 02 04 06 OB 430 12 it Ll

oel Lo o B8 QTR 1y VIALE (DS OO0 THRM OBieg 481 1088101 it

|o= 1) 88 QTR-2Z) 5 VIALMKEL LS O THRU O & ottt Ll
u: el 8% JUASTHAILE VA 1 ISt O (THRM o30@iey 4o 004 41 48 ga
'2= et B8 SIELECTED (VA 100 O3 THRA 105 07 Oer ¢4 14 L4 4 &t 1 41ttt
'3: A1 41 goa a0 4 by 4k bbb a4 4 o8 bbbl o168 F 1118t oar bbbt
"l L1 L3t 4 4 4 LA 08 41 444 & 4o 4.4 AL A 4% 40 to4 bo4o4 & g4 4 2 o4y b o4 A 4244414 or it iiiid
) NN EE e TSN E NN e R NN TN
": L4 1 s A i L A L L tos 4 L b1y s At At 444418 to2oa 4 #o & & 402 & 4 4 4L 41 F A A i1 it 11111
' 7 .11 lllllllllllllllll'lLJLL'll]llllLlll‘lLJJJJ‘lLJlljlllL‘Jllllll
1o Aol onoao ot o a4t g 8 4o 48 b g b g0 b g0 L8l Lt 4 f8 88 43t it i 1
'9 Ll e e 4ot 48 b8 b oa o8 kA b4 48ttt i i 1ad
to Lot b gLtk 8t o8 4 4o a4 a8 a8 4 44 4404 83484418 ada
": i W . § lllllllllllllJl]“llljj‘ll]lll‘lllllll‘lll‘JlLllllJlllllllll
':: .41 lllll‘lllllllllll‘Ll]jl‘lLlllllLll‘lllliillll‘lllitlllllll‘l
'3: L4 I I U I S R A A A R I I I I I I A I I I I I I S N A N I I i N I N e T Y e
2e L b U g b o g 0 L 4t s L4 ot f) b4l k111 Lt
i ,

25|

Figure 4-5. Coding of Condition-Nawme

DATA-NAME

DATA-NAME.

The purpose of this mandatory clause is to specify the name of each

data element to be used in a program. If a data element requires a

definite label, a data-name is assigned. Otherwise, the word FILLER

can be used in its place.

The construct of this clause is:

{ FILLER }
data-name-=1

The word FILLER can be used to name a contiguous description area I

that does not require programmatic reference.

This entry must immediately follow a level-number. FILLER is only I

applicable to elementary levels.

A simple FILLER entry can, with fore-thought, cause the creation of
a more efficient object code. For example, a record or data
description comprised of an even number of characters may be more
efficiently MOVEd than one which is comprised of an odd number of

characters.

A data-name need not be unique if it can be made unique through

qualification by using data-names on higher levels than itself.

It is not permissible to relationally compare an index~-data-name

against data-name-=1.

4-35

JUSTIFIED

JUSTIFIED.
The functien of this clause is to specify a non-standard MOVE

of alphabetic or alphanumeric data within a receiving data fiel

[oR

The construct of this clause is:

Js \ .
JUST RIGHT
JUSTIFIED |

The JUSTIFIED clause can be specified only on an elementary item
level where the receiving field is described as being alphabetic

or alphanumeric. JUSTIFIED can be abbreviated as JS or JUST.

This clause cannot be specified for a receiving field described

as being numeric or numeric edited.

When the receiving field is described with the JUSTIFIED clause
and the sending field is larger than the receiving field, the

left-most characters are truncated.

EXAMPLE :
SENDING RECEIVING
Pc x(7) A123CDE PC X(5) 23CDE

When the receiving field is described with the JUSTIFIED ciause
and the sending field is smaller than the receiving field, the

data will be positioned right with space £ill to the left.

EXAMPLE :
SENDING RECEIVING
PCc x(5) Al23C PC X(7)AQA123C

JUSTIFIED cannot be associated with an index-data-name.

L-36

LEVEL-NUMBER.

LEVEL-NUMBER

The function of this clause is to show the hierarchy of data within

a logical record.

Its further function is to identify entries for

condition-names, non-contiguous constants, working-storage items,

and for re-grouping.

The construct of this clause is:

level-number

{

FILLER }
data-name-1

A level-number is the first required element of each record and

data-name description entry.

Level-numbers may be as follows:

a. 01l
b. 66
c. 77
d. 88

to 49

record description and WORKING-STORAGE entries.

RENAMES clause used as a record description or

WORKING~-STORAGE entry.

applicable to WORKING-STORAGE only as non-

contiguous items and must precede all other

level numbers.

condition names clause used as

tion or WORKING-STORAGE entry.

Level-numbers 01 through 49 are used for record or

descriptions.

Level number 01 is reserved for the

a record description. Level-number 66 is reserved

a record descrip-

WORKING~STORAGE
first entry within

for RENAMES en-

tries. Level-number 77 is used for miscellaneous elementary items in

the WORKING~STORAGE SECTION when these items are unrelated to any

record. They are called non-contiguous items since it makes no dif=

ference as to the order in which they actually appear. Level-number

88 is used to define the entries relating to condition-names in

record descriptions or WORKING-~STORAGE entries,

h-37

LEVEL-NUMBER

continued

(=)

a

CONCEPT on page L4-=2.

4-38

OCCURS

OCCURS.

The function of this clause is to define a sequence of data-items

which possess identical formats, and to define a subscripted item

or indices.

The construct of this clause is:

[o]¢] integer-1 TIMES }
OCCURS integer-2 TO integer-3 TIMES
[DEPENDING ON data-name-3]]

ASCENDING
[:{ DESCENDING }- KEY IS data-name-4 [data-name-5]... } e

[INDEXED BY index-name-1 [index-name-2] ... }

This clause cannot be used in a record description entry whose

level-number is 01, and can only be used with fixed-size items.

Any item described with this clause must be subscripted or indexed
whenever referenced in a statement other than SEARCH, and ail sub-
divisions of the item must also be subscripted or indexed. Up to

three levels of subscripting are acceptable. OCCURS can be abbrev-
iated OC.

If only integer-1l appears, it refers to the exact number of occur-
rences of the data. Integer-1 must not be zero. Integer-2 TO
integer-3 indicates a variable number of occurrences of this item. I

When integer-2 TO integer-3 is used, the following rules must be
observed:

a. Integer-3 must be greater than integer-2 and both must be I

positive integers.

b. The item must be the last area of a record. No part of

a record may follow an item of variable occurrences.

k-39

OCCURS

continued

c. Only the first dimension of a table can be defined with
this clause. The fcollowing definition is not permitted:

02 RATE-TABLE OCCURS 10 TIMES ...
03 WHOLE-TABLE ...
03 AGE OCCURS 4 TO 8 TIMES

d. The user must employ his own tests to determine how many
occurrences of the item are actually present in the record

at any time. The DEPENDING ON option is for documenta-

tional purposes only.

Integer-2 TO integer-3 indicates variable-length records and the

user must specify the actual size of variable-length records in the
first four bytes of each record and the record size must contain an
even number of characters (MOD2). The four-character variable size

indicator is counted in the physical size of each record.

The following example illustrates a use of the OCCURS clause to

provide nested descriptions. A reference to ITEM-4 requires the

.

use of three levels of subscripting; e.g., ITEM-4 (2, 5, 4).

u
Cy
g

.

reference to ITEM-3 requires two subscripts; e.g., ITEM-3 (I

In the example below there are 50 ITEM-4's,

oA AE

T YT TN
LAAMYL/ o

. . .
. L] °

02 ITEM OCCURS 2 TIMES ...
03 ITEM-1 ...
03 ITEM-2 OCCURS 5 TIMES ...
O4 ITEM-3 ...
O4 ITEM-4 OCCURS 5 TIMES ...
05 ITEM-5 ...
05 ITEM-6 ...

4-40

OCCURS

continued

The following example shows another use of the OCCURS clause.

Assume that the user wishes to define a record consisting of five
"amount" items, followed by five "tax" items. Instead of describing
the record as containing 10 individual data items, it could be de-

scribed in the following manner:
EXAMPLE:

1 TABLE ...
2 AMOUNT OCCURS 5 TIMES ...
2 TAX OCCURS 5 TIMES ...

The above example would result in memory allocated for five AMOUNT
fields and five TAX fields. Any reference to these fields is made
by addressing the field by name (AMOUNT or TAX) followed by a sub-

script denoting the particular occurrence desired.

The ASCENDING/DESCENDING KEY option is for documentation only.

The operands in the INDEXED BY option are index-names or indices.

The operands of an INDEXED BY option must appear in association
with an OCCURS clause and are usable only when referencing that
level of the table. When using three-level indexing, each level

must have an INDEXED BY option and in a given indexing operation,

only one operand from each option may be used.

Other than their use as an index into an array, an index-name may
be referred to only in a SET, SEARCH, PERFORM, or in a relation con-
dition. All index-names must be unique. Index-names have an

assumed construction of PC 9(5) COMPUTATIONAL.

Using an index-name associated with one (row of a) table for index-
ing into another (row of a) table will not cause a syntax error,

but will, in most cases, cause incorrect object time results since
it is. the index-name that contains the information pertinent to the

element sizes.

Revised 9/28/70
by PCN 1033099-004 4-41

OCCURS

continued

I When using an index-name series (e.g., INDEXED BY A, B, C):

a. The indexes should be used only when referencing the

associated Tow.

b. All "assumed" reference are to the first index-name in a
series. Others in the series are affected only during an

explicit reference.

Indexing into a table follows much the same logic as subscripting.
There is a limit of three indexes per operand (e.g., A (INDEX—l,
INDEX-2, INDEX-B). The use of a relative index allows modification

of the index-name without actually changing the value of the index-

name.
EXAMPLE :
A (INDEX-1 +3, INDEX-2 -4, INDEX-3)
Relative indexing is indicated by a + or a - integer following an

index-name and causes the affected index to be incremented or decre-

mented by that number of elements within the table.

A data-name whose USAGE is defined to be INDEX is an index-data-

name

Condition-names, PICTURE, VALUE, SYNCHRONIZED or JUSTIFIED cannot

be associated with an index-data-name.

The B 2500/B 3500 COBOL Compilers will assign the comstruction of a
PC 9(5) COMPUTATIONAL area for each index-data-name specified.

It is not permissible to relationally compare an index-data-name

against a literal or a regular data-name.

PICTURE

PICTURE.

The function of this clause is to describe the size, class, general

characteristics, and editing requirements of an elementary item.

The construct of this clause is:

PC
{/PIC IS (character string)
PICTURE

The word PICTURE may be abbreviated as PC or PIC. Character string
denotes letters of the alphabet, special characters, and digits
which are used in conjunction with one another to describe a data- I

name. See USAGE for a description of characters and digits.

The maximum number of characters and symbols allowed in the char-

acter string used to describe a data-name or FILLER, is 30. A

character string consists of a certain allowable combination of
characters defined as PICTURE descriptors, plus insert characters
encompassing the entire character set employed by the systems line

printer that have no PICTURE descriptor value or action.

This clause must appear for every elementary item level entry and

cannot be used at group levels.
PTICTURE cannot be associated with an index-data-name. I

A PICTURE of A(5) indicates that the item is a five character (byte)
alphabetic field. The integer within parentheses indicates how
many times A occurs in order to constitute the desired PICTURE.

The PICTURE A(5) can also be represented by AAAAA, The value of

the integer within parentheses must always be greater than zero.

Record descriptions do not necessarily have to conform to the
physical characteristics of an ASSIGNed hardware-name. The flow
of input-output data will terminate at the end of the prescribed
PICTURE size. For example:

L-43

PICTURE
continued

READER (can read 80 columns) description can be PICTUREd
from 1 through 80.

PUNCH (can punch 80 columns) description can be PICTUREd
from 1 through 80.

PRINTER (120/132 character lines) description can be PICTUREd

from 1 through maximum.

SPO (one character at a time) description can be PICTUREd

£ 1 445 iy 3 3
iToii L TO aiy limit.

There are five categories of data that can be described with a

PICTURE clause. These are alphabetic, numeric, alphanumeric,

alphanumeric-edited, and numeric-edited.

The

symbols used to define the category of an elementary item and

their functions are explained as follows:

L-LL

a. The letter A in a character string represents a position
which can only contain a letter of the alphabet or a

space.

b. The letter B in a character string represents a position

into which the space character is to be inserted.

c. The letter J in a character string indicates that the op-
erational data sign is appearing as an over-punch in the

£ USAGE IS DISPLAY is

I.h

ieast-significant digit position
associated with the item. However, if USAGE has been in-
dicated as COMPUTATIONAL, J takes on the same function as
an S, A J is not counted in the length of a DISPLAY item.
Only one operational sign may appear in any one PICTURE
and, if specified, the J must appear as the left-most
character of the PICTURE. Data elements requiring a J
PICTURE descriptor may not be described by a VALUE clause
with a signed literal. PICTURE J should be used only in
those cases where PICTURE S is not applicable,

PICTURE

continued

NOTE
If J appears within a PICTURE
descriptor, it no longer per-
forms as an operational sign
but serves to reinitiate zero

suppression.

The letter K in a character string indicates the presence
of an 8-bit (byte) sign appearing in the first character
position of a PICTURE descriptor when USAGE is implicitly
or explicitly DISPLAY and is counted in the length of the
PICTURE. If USAGE IS COMPUTATIONAL, the letter K becomes
the same as an S. Data elements requiring a K PICTURE
descriptor may not be described by a VALUE clause with a
signed literal.

The letter P in a character string indicates an assumed
decimal scaling position and is used for specifying the
location of an assumed decimal point when the point is not
within the number that appears in the data item. The scal-
ing position character P is not counted in the length of the
allowable number of characters within a PICTURE description.
Scaling position characters are counted in determining the
maximum number of digit positions (99) in numeric edited
items or numeric items which appear as operands in arith-
metic statements. The character P can appear only to the
left or right as a continuous string of P's within a
PICTURE description. Since it implies an assumed decimal
point (to the left of the P's if P's are left-most PICTURE
characters and to the right of P's if P's are right-most
PICTURE characters), the assumed decimal point symbol V is
redundant as either the left-most of right-most character

within such a PICTURE description.

The letter S in a character string is used to indicate the
presence of the standard operational sign in the form of an

overpunch in the most-significant digit position of an item

L-k5

PICTURE

continued

h-L4e

if USAGE IS DISPLAY and is not counted in the length of the
PICTURE. If USAGE IS CMP, it will denote an operational
sign digit in front of the most-significant digit position
and is counted in the length of the PICTURE. The S must be
written as the first character of the character string of a
PICTURE. A signed item may not be more than 99 characters/
digits in length. Wherever possible, PICTURE S should be

used rather than J or K.

The letter V in a character string indicates the location
of an assumed decimal point and may only appear once in a
character string. It does not represent a character posi-
tion and therefore is not counted in the length of the
item. When the assumed decimal point character V is the
right-most character of the PICTURE character string, it

is redundant. The maximum number of decimal places is 99.

The letter X in a character string indicates an alphanumeric
position which can contain any allowable character in the

computer's character set.

Each letter Z in a character string represents a zero
suppress editing action and may only be used to cause the
left-most leading numeric character positions to be re-
placed by a space at object time when the contents of that
character position is zero. FEach Z is counted as part of
the PICTURE length. Zero suppression is terminated with
the first non-zero numeric character in the data. Inser-
tion characters are also replaced by spaces while suppres-
sion is in effect. Z can also appear to the right of J
when the J symbol is used to reinitiate zero suppression.
For additional information on zero suppression, see the
BLANK WHEN ZERO clause. FILLER entries cannot be defined

by the letter Z usage.

PICTURE

continued

The number 9 in a character string represents numeric data.
If USAGE IS explicitly or implicitly DISPLAY, the data will
be operated on as 8-bit (byte) characters. If USAGE IS
CMP, it will be operated on as L4-bit digits. Each 9 is
counted in the length of the PICTURE.

The number O (zero) in a character string represents a
position into which zero is to be inserted when that item
is a receiving field and it is counted in the length of the

PICTURE.

The special character comma in a character string represents
a position into which a comma will have to be inserted. It
is counted as part of the PICTURE length. (Also see
DECIMAL-POINT IS COMMA in section 3 of this document.) If
zero suppression is indicated, a blank character will
replace each applicable comma until meaningful data is

encountered in the data stream.

The special character period in a character string is an
editing symbol which represents the decimal point for data
alignment purposes. In addition, it represents a character
position into which a period will be inserted. It is
counted as part of the PICTURE length. If more than one
period is indicated in the PICTURE, the left-most period
determines the scale of the PICTURE., The PICTURE must not
terminate with a period except when it is used to indicate
the end of the item clause. For a given program, the
function of the period and comma are exchanged if the
DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES
paragraph., If exchanged, the rules that apply to the use
of periods apply to commas and vice versa. (Also see

DECIMAL~-POINT IS COMMA in section 3 of this document.)

The symbols +, -, CR, and DB are used as editing sign con-
trol symbols. When used, they represent the character posi-

tion into which the editing sign control symbol will be

-7

PICTURE

continued

placed.

The symbols are mutually exclusive in any one

character string and each character used in the PICTURE

is counted in the length.

1)

Fixed insertion characters. A single + or - can be
of a PICTURE. The

extreme right end of

used at the extreme left or right
CR and DB can be used only at the

a PICTURE. The CR and DB symbols represent a two char-

the length of the

Only one currency symbol and only one of the

acter position and are counted in

item.

editing sign control symbols can be used in a given
PICTURE. The currency symbol ($) must be the left-
most character position except that it can be preceded
by either a + or - symbol. Fixed insertion editing
results in the insertion character occupying the same
character position in the edited item as it occupied

in the PICTURE character string. Editing sign control
symbols (sometimes referred to as report signs) pro-
duce the results shown in Table 4-3, depending upon

the value that the item contains.

Table 4-3
Editing Sign Control Symbol Results

Editing Symbol In
Picture Character String

S R S

Result

Data Item
Positive

Data Item
Negative

+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

448

Floating Insertion Characters., When used as floating

replacement and suppression characters, + and - are

DS I I S, . b R A)
LL L L e cAaLLEIE Lol u 4

ck

I o . Eo P ~ T~
4 LOUHE Ll v il

[d]
n
F
Q

PICTURE
continued

represent each leading numeric character into which the
sign (+ or —) is to be floated. At least two symbols
must be shown to use the subject symbols as floating
characters. The floating symbol may not appear to the
right of the decimal point unless all replacement posi-
tions consist of that symbol. In this case, the field
will consist of all spaces when the value is zero. The
currency symbol and editing symbols + and - are the
insertion characters, and they are mutually exclusive
as floating insertion characters in a PICTURE character

string.

3) In a PICTURE character string, there are only two ways
of representing floating insertion editing. One way
is to represent, by the insertion characters, any or all
of the leading numeric character positions to the left
of the decimal point. The other way is to represent all

of the numeric character positions in the PICTURE char-

acter string by the insertion characters. If the first
method is employed, a single insertion character will
be placed into the character position immediately pre-
ceding the first non-zero digit in the data represented
by the insertion symbol string to the decimal point,
whichever is encountered first. If the second method

is used, the result depends upon the value of the data.
If the value is zero, the entire data item will contain
spaces. If the value is not zero, the result is the
same as when the insertion character is only to the left
of the decimal point. The PICTURE must contain at least
one more floating insertion character than the maximum

number of significant digits in the item to be edited.

The special character asterisk in a character string repre-
sents a leading numeric character position into which an
asterisk will be placed when the content of that position is

zero and asterisk replacement has not disabled. Asterisk

4149

PICTURE

replacement is disabled when the first mon-zero character
is encountered, or when the decimal poimnt (implicit ox
explicit) is reached. When the PICTURE character string
specifies only asterisks (*), and the value of the item
is zero, the entire output item will consist of asterisks
and the decimal point, if present. BLANK WHEN ZERO does

not override the insertion of asterisks.

p. The special character dollar sign in a character string
represents a character position into which a currency symbol
is to be inserted. The currency symbol in a character
string is represented automatically by a dollar sign ($).

If the CURRENCY clause of the SPECIAL-NAMES paragraph is
indicated, the dollar sign is replaced by the character
specified as a replacement CURRENCY SIGN and is counted in
the length of the item.

1) Fixed insertion character. The currency sign may

appear anywhere in the PICTURE.

2) Floating insertion character. At least two currency
signs must appear as the left-most characters in the
PICTURE. The currency sign is written to represent
each leading numeric character position into which the
currency sign may be floated. A single sign is placed
in the least-significant suppressed position shown by
the currency symbol in the PICTURE. The output item
must contain at least one more currency sign character
position than the maximum number of significant digits

in the source item.

The length of an elementary item, where the length means the number
of character positions occupied by the elementary item in standard
data format, is determined by the number of allowable symbols which

represent character positions.,

4-50

PICTURE

continued

An integer which is enclosed in parentheses describing the character
string of a PICTURE and following the symbols A, ’, X, 9, P, Z, ¥,
By, O, +, -, or the currency sign indicates the number of consecutive
occurrences of the symbol. Note that the K, S, CR, and DB symbols

may appear only once in a given PICTURE character string.

To define an item as alphabetic, its PICTURE character string can

only contain the symbols A and B.

To define an item as numeric, its character string of the PICTURE
can only contain the symbols 0, 9, J, K, P, S, and V. Its contents,
when represented in standard data format, must be a combination of
the numerals O, 1 through 9. The item may include an operational

sign symbol.

To define an item as alphanumeric, its PICTURE character string

is restricted to certain combinations of the symbols A, X, and 9.

The item is treated as if the character string contained all X's.
The PICTURE character string which contains all A's or all 9's does

not define an alphanumeric item.

To define an item as alphanumeric edited, its PICTURE character

string is restricted to the following combinations of symbols:

a. The character string must contain at least one B, one X,

and one O (zero).

b. Another alternative is that the character string must have

at least one O (zero) and one A.

To define an item as numeric edited, its PICTURE character string

is restricted to certain combinations of the symbols B, J, K, P,

v, 2, 0, 9, comma, period, ¥, +, -, CR, DB, and the currency sign.
The allowable combinations are determined by the order of precedence
of symbols and the editing rules. The number of positions which may

be represented in the character string is 99.

4-51

PICTURE

continued

There are two general methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement.

There are four types of insertion editing available.

a. Simple insexrtion.
b. Special insertion.
c. Fixed insertion.

d. Floating insertion.
There are two tvpes of suppression and replacement editing modes:

a. Zero suppression and replacement with spaces.

b. Zero suppression and replacement with asterisks.

Ploating insertion editing and editing by zero suppression and re-
placement are mutually exclusive in a PICTURE clause. Only one type

of replacement may be used with zero suppression in a PICTURE clause.

Simple insertion editing involves the usage of comma, B, and O
(zero) as the insertion characters. The insertion characters are
counted in the length of the item and represent the position in the

item into which the character will be inserted.

Special dinsertion editing character period (.) is used to represent
the decimal point for alignment in addition to acting as an inser-
tion character. The insertion character used for the actual decimal
point is counted in the length of the item. The use of the assumed
decimal point, represented by the symbol V and the actual decimal
point, represented by the insertion character period (.) in the same
PICTURE character string is disallowed. If the insertion character
is the last symbol in the character string, it must be immediately
followed by one of the punctuation characters, semicolon, or period,
followed by a space. The result of special insertion editing is the
appearance of the insertion character in the item in the same posi-
tion as shown in the character string. Any character or digit other
than those defined with PICTURE meanings can be used as special in-

sertion characters and will be counted in the size of the PICTURE.

L-52

PICTURE

continued

EXAMPLE:

99/99/99 could be a date mask and 999=99=9999

could represent a social security number mask.

Zero suppression editing of leading zeros in numeric character
positions is indicated by the use of the character Z, or the char-
acter * (asterisk) as suppression symbols in a PICTURE character
string. These symbols are mutually exclusive in a given PICTURE
character string. Fach suppression symbol is counted in deter-
mining the length of the item. If Z is used, the replacement char-
acter will be the space and if the asterisk is used, the replace-~

ment character will be *.

Zero suppression and replacement is indicated in a PICTURE charac-
ter string by using a string of one or more of the allowable sym-~
bols to represent leading numeric character positions which are to
be replaced when the character contains a zero. Any of the simple
insertion characters embedded in the string of symbols or to the

immediate right of this string are part of the string.

In a PICTURE character string, there are two ways of representing
Zersc suppression. One way is to represent any or all of the leading
numeric character positions to the left of the decimal point by
suppression characters. The other way is to represent all of the
numeric character positions in the PICTURE character string by
suppression characters. If the suppression symbols appear only to
the left of the decimal point, any leading zero in the data which
corresponds to a symbol in the string is replaced by the replacement
character. Suppression terminates at the first non-zero digit in
the data represented by the suppression symbol string or at the
decimal point, whichever is encountered first. If all numeric
positions in the PICTURE character string are represented by
suppression symbols, and the value of the data is not zero, the
result is the same as if the suppression characters were only to

the left of the decimal point. If the value is zZzero, the entire

data item will be spaces if the suppression symbol is Z, whereas

h-53

PICTURE

continued

asterisks will cause the field (except for decimal point) to be
replaced with asterisks. Even if the BLANK WHEN ZERO clause is used
in conjunction with asterisks, the replacement of character positions

containing zeros will be conducted with asterisks.

The symbols +, -, *, 7, and the currency symbol, when used as float-
ing replacement characters, are mutually exclusive within a given
character string. At least two floating replacement characters must

appear as the left-most characters in the PICTURE.

Table 4-4 shows the order of precedence when using characters as
symbols in a character string. For a given function in the left
column, a small x in its row indicates that the arguments, used as
column headings, are the only ones that may immediately precede the
first appearance of the function in a particular string. Arguments
appearing in braces ({}) indicate that the symbols are mutually ex-

clusive. The currency symbol is represented by $.

Table 4-4L

Order of Precedence When Using Characters As Symbols

S P $ {+ -} {zz ** $% ++ --}
S
P X (l) (l) x X X X X
$ X X x b'd
+ b d X X X
- x x X x
77 X X X b'd
** x X x x
$$ x x x
++ X X
-— l A x |

L-5k

PICTURE
continued

The symbols A, B, V, X, 0, 9, period, and comma can be preceded by
any symbols in the PICTURE character string except CR and DB.

NOTE
When the + or - appears on the right of
a character string and the P is also on

the right, P precedes the sign indicator.

To simplify the explanation of allowable character pairs in the
character string of a PICTURE, table 4-5 and 4-6 are provided. These
tables have been constructed so that they reflect the use of all
allowable symbols, depending upon whether the item is numeric, alpha-
betic, or alphanumeric. For example, if the item is numeric and

the programmer wishes to determine whether the symbol V can follow

a 9, then table 4-5 should be used. In the numeric item section of
table 4-5, the letter Y (Yes) can be found at the crossing point of
horizontal, first symbol, 9 and vertical, second symbol, V. On the
other hand, the use of J after 9 is indicated with N (No).

4-55

PiCTURE

continued
Table 4-5
Numeric or Alphabetic Items
SECOND SYMBOL
Numeric Alphabetic
Item Item
N
9 VS JKZP A B
u
I
m YYNNNY
t
YNNNNY
F e
e
I r YYNNNY
m
R i YYNNNY
S
c YYNNNY
T
YYNDNNY
S
A
Y
M 1
B P
o ©m I
L a ¢t Y Y
b e Y Y
€ m
t
i
c

L-56

PICTURE

continued
Table 4-6
Alphanumeric Items
SECOND SYMBOL
Non-Editing Editing

9 X A B J9V, . +-2Z *%CRDBBO §

9 YYYY

X YYYY

A YYYY

B YYYY
9 YYYYYYYNNY Y Y YN
v YYNNNYYYYY Y Y YN
, YYNYNYYYYY Y Y YN
YYNYNYYYYY Y Y YN
+ YYYYYYNYYN N N YY
- YYYYYNYYYN N N YY
Z YYYYYYYYNY Y Y YN
* YYYYYYYNYY Y Y YN
CR NNNNNNNNNN N N NN
DB NNNNNNNNNN N N NN
B YYYYYNNNNY Y Y YN
) YYYYYYYYNY Y Y YN
$ (BUT NoT FIRST Y YYYYYYYYY Y Y Y¥Y

oL P

J SYMB IN PC) YYYYYYYYNY Y Y YY

Revised 9/28/70

by PCN 1033099-004 4-57

PICTURE
continued

Table 4-7 demonstrates the editing function of the PICTURE

clause.
Table 4-7
Editing Application of the Picture Clause
Source Area Receiving Area
Picture Data Editing Edited Data
Picture
9(5) 12345 $22,229.99 $12,345.00
vo(5) 12345 4%,%$%$9.99 $0.12
vo(5) 12345 $27,229.99 $ 0.12
9(5) 00000 $44,4$%$9.99 $0.00
9(3)v99 12345 $27,229.99 $ 123..45
9(5) 00000 $84,858.6%
9(5) 01234 $58,888. 48 $ 1,234,00
9 5) 00000 $*%,%¥%9,99 KK KKK, ¥*
9 5) 00123 Grx, XXX, KK $*%%123,00
9(3)v99 00012 $272,229.99 $ 0.12
9(3)v99 12345 $6%,$$9.99 $123.45
9(3)v99 00001 $27,22Z.99 $.01
9(5 12345 $$%,8%9.99 $12,345.00
9(5 00000 $77,7227 .27
9(3)v99 00001 $865,888.98 $.01
s9(5 (+) 12345 72272729.99+ 12345,00+
s9(5) (-) 00123 ~=99999.99 - 123.00
9(3)v99 12345 999,00 123,00
s9(5) é-) 12345 77779 .99~ 12345.00-
s9(5) +) 12345 727279.99- 12345.00
9(5) 12345 BBB99.99 Ls.00
s9z5)v (-) 12345 -772779.99 -12345.00
S9(5) 5-) 12345 $568$$%.99CR $12345.00CR
S99v9(3) -) 12345 I —---—-. 99 -12.34
s9(5) (+) 12345 $$48%%.99CR $12345.00
9(3)v99 12345 999 .BB 123.
9(5) 12345 00999. 00 00345.00
9%7) 0012003 7799JZ79 12 3

REDEFINES

REDEFINES.
The function of this clause is to allow an area of memory to be
referred to by more than one data-name with different formats and

sizes.

The construct of this clause is:

[level-number data-name-1 REDEFINES data-name-2 |

The level-numbers of data-name-1 and data-name-2 must be identical

and must not be 66 or 88.

This clause must not be used in 01 level entries of the FILE SECTION
as an implicit REDEFINES is assumed when multiple 01 level entries
within a file description are present. The size of the record(s)
causing implicit redefinition do not have to be equal to that of the
record being redefined. The various sizes of implicitly redefined
record descriptions create no restriction as to which description is

to be coded first, second, third, etc., in the source program.

Redefinition starts at data-name-2 and ends when a level-number less
than or equal to that of data-name-2 is encountered in the source

program,

When the level-number of data-name-2 is other than Ol (REDEFINES can
not be used on the Ol level in the FILE SECTION), it must specify a
storage area of the same size as specified by data-name-1l. It is
important to observe that the REDEFINES clause specifies the redef-
inition of a storage area, not simply of the data items occupying

that area.

The entries giving the new description of the storage area must

immediately follow the entries describing the area being redefined.

Revised 9/28/70
by PCN 1033099-004 4-59

REDEFINES

continued

The data description entry being redef

r ined camnnot contain an 0C
clause, nor can it be subordinate to an entry which contain:

b Wil Ll - ¥

b
b
{
«
¢
¥
b

The entries giving the new description of the storage area must

contain VALUE clauses, except in condition-name entries.

Data-name-2 need not be qualified.

not

RENAMES

RENAMES.
The function of this clause is to permit alternative and possi-

bly overlapping, grouping of elementary items.

The construct of this clause is:

THRU
66 data-name-1 RENAMES data~name-2 [{ THROUGH } data-name-3 }.

All RENAMES entries associated with a given logical record must

immediately follow its last data description entry.

Data-name~2 and data-name-3 must be names in the associated
logical record and cannot be the same data-name or have the
same logical address. A 66 level entry cannot rename another

66 level entry nor can it rename a 77, 88, or Ol level entry.

Data-name-1 cannot be used as a qualifier, and can only be
qualified by the names of the level 01 or FD entries. Neither

data-name-2 nor data-name-3 may have an OCCURS clause in its

(

data description entry nor be subordinate to an item that has

an OCCURS clause in its data description entry.

Data-name-2 must precede data-name-3 in the Record Description,

and data-name-3 cannot be subordinate to data-name-~2.
One or more RENAMES entries can be written for a logical record.

When data-name~3 is specified, data-name-1l is a group item which
includes all elementary items starting with data-name-2 (if data-
name-~2 is an elementary item) or the first elementary item in
data-name~2 (if data-name-2 is a group item), and concluding
with data-name-3 (if data-name-3 is an elementary item) or the
last elementary item in data-name-3 (if data-name-3 is a group

item).

h-61

RENAMES
continued

When data-name~3 is not specified, data-name-2 can be either a

group or an elementary

data-name-~1 is treated

item. When data-name-2 is a group item,

[o)

1 data~-name~2

whe

[\
n

a croun item. an
- o= T 7L - F =7

data-name-1 is treated as an elementary

When data~-name-3 is specified, none of the elementary items

within the range, including data-name-2 and data-name-3, can

be of variable length.

h-62

SYNCHRONIZED

SYNCHRONIZED.
The function of this clause is to specify positioning of an

elementary item within a computer word or words.

The construct of this clause is:

= | frLerr
[{ ggggHRONIZED j { RIGHT } J I

SYNCHRONIZED may be abbreviated as SY or SYNC and may only appear

with a description of an elementary item.

This clause specifies that the compiler, in creating the inter-
nal format of this item, must Place the item in the minimum

number of computer words which can contain the item. If the

size of the item, explicitly or implicitly, is not an exact
multiple of the number of characters in a computer word, the
character positions between the item and the computer word
boundary cannot be assigned to another item. Such unused

character positions are included in:

a. The length of any group to which the elementary item
belongs.

b. The computer storage area allocation when the elemen-

tary item appears as the object of a REDEFINES clause.

SYNCHRONIZED LEFT specifies that the elementary item is to be
positioned so that it will begin at the left boundary of a

computer word.

SYNCHRONIZED RIGHT specifies that the elementary item be posi-
tioned so that it will terminate at the right boundary of a

computer word.

4k-63

SYNCHRONIZED
continued

Whenever the SYNCHRONIZED item is referenced in the source pro-
gram, the original length of item, as shown in the PICTURE
clause, is used in determining any action which depends on the

length, such as justification, truncation, or overflow.

If the data description of an item contains the SYNCHRONIZED
clause and an operational sign, the sign of the item appears
in the normal operational sign position regardless of whether

the item is SYNCHRONIZED RIGHT or SYNCHRONIZED LEFT.

When the SYNCHRONIZED clause is specified for an item within
the scope of an OCCURS clause, each occurrence of the item
is SYNCHRONIZED.

A word in the B 2500/B 3500 contains two 8-bit characters (2
bytes).

SYNCHRONIZED cannot be associated with an index-data-name.

Lh-64

USAGE

USAGE.
The function of this clause is to specify the format of a data item

in compiler storage.

The construct of this clause is:

DISPLAY

CMP

CMP-~1

COMP
COMPUTATTIONAL
COMPUTATIONAL~1
COMPUTATIONAL-3

INDEX

[USAGE IS]

The USAGE clause can be written at any level. If USAGE is written

on group level, it applies to each elementary item in that group.

COMPUTATIONAL-1, CMP-1, or COMPUTATIONAL-3 are acceptable substi-
tutes for, and are equivalent to, COMPUTATIONAL, COMP, or CMP

entries.

A warning message of POSSIBLE CMP GROUP USAGE ERROR will appear
whenever the receiving field is a group CMP item. It indicates
that the resultant contents during object program execution of the

group CMP item may not contain expected results.

NOTE
Group moves are performed whenever the
sending or receiving field is a group
item and both will be treated as alpha-
numeric (byte) data, regardless of USAGE.

The USAGE of an elementary item cannot contradict the USAGE of a
group to which the item belongs.

Revised 9/28/70
by PCN 1033099-004 4-65

USAGE

continued

USAGE is a declaration for the EBCDIC internal representation of

the svstem and is defined as follows:

a. When USAGE IS DISPLAY, the data item consists of 8-bit
(byte) characters; two such characters comprise a B 2500/

B 3500 computer word.

b. When USAGE IS COMPUTATIONAL, the data item consists of
L-bit coded digits.

c. When USAGE IS INDEX, a PICTURE may not be specified.

The PICTURE of a COMPUTATIONAL item can contain only 9's, the opera-
tional sign character S, J, or K, the decimal point character V, one

or more P's and the insertion character O (zero).

COMPUTATIONAL items may be declared for 9-channel magnetic tape
files (TAPE-9), disk file (DISK), Supervisory Printer, paper tape
files (PT-READER or PT-PUNCH), or for WORKING-STORAGE SECTION items.

A DISPLAY item is automatically converted to its 4-bit equivalent
whenever the receiving area is defined as COMPUTATIONAL except when
the receiving area is a group item. A CMP item is automatically
converted to its 8-bit equivalent whenever the receiving area is

declared DISPLAY except when the sending CMP item is a group item.

Arithmetic operations utilizing COMPUTATIONAL and DISPLAY operands
in the same statement arc of no concern tc the user. The B 2500/
B 3500 efficiently uses these operands with no prior conversion of

data format by the programmer.
In the absence of a USAGE clause, USAGE IS DISPLAY will be assumed.

For the most efficient use of hardware storage and internal record
storage areas, records should be devised so as to avoid inter-mixing
of odd-length COMPUTATIONAL items with DISPLAY items. This rule is
due to the compiler automatically placing the machine addresses of

DISPLAY areas to modulo two. For example:

03
03

03
03
03

BAD RECORD LAYOUT

data-name-1 PC 9 USAGE IS DISPLAY
data-name-2 PC 9 USAGE IS CMP.
FILLER ADDED (see note below) .

data-name-3 PC 9 USAGE IS DISPLAY.

data-name-4 PC 9 USAGE IS CMP.

data-name=n...

NOTE

USAGE
continued

} (takes up one word)

FILLER PC 9 USAGE IS CMP was automatically

inserted to move the location counter to MOD 2.

GOOD RECORD LAYOUT (Rearrangement of the above record)

03
03
03
03
03

data-name-1 PC 9 USAGE IS DISPLAY.
data-name-3 PC 9 USAGE IS DISPLAY.

data-name-2 PC 9 USAGE IS CMP.
data-name-4 PC 9 USAGE IS CMP.

data-name~-n ...

} (takes up one-
half word)

} (depends on next entry)

}(takes up one word)

(depends on next entry)

The compiler adjusts the resultant object code addresses of group

items to

byte boundaries. The following examples reflect four

COMPUTATIONAIL data fields in two different data element arrangements:

01

EXAMPLE 1 EXAMPLE 2
A, 01 Al.
02 B PC 9 CMP. 02 Bl PC 9 CMP.
02 ¢ PC 9 CMP. 02 C1.
02 D PC 9 CMP. 03 D1 PC 9 CMP.
02 E PC 9 CMP. 03 D2 PC 9 CMP.
02 F. . . 02 E1 PC 9 CMP.
02 Fl.

(group)
(elem.)

(group)
(elem.)

(elem.)
(elem.)

(group)

4-67

USAGE

continued

Record A will occupy two contiguous bytes of memory, while record Al
will consist of three contiguous bytes. The Al description wilil

cause the following object code format to be produced:

1 B 2500/B 3500 word

A \
1 byte /_i;Byte 1 Pyte
PREVIOUS PREVIOUS
Bl STATE Di Dz El STATE
Al

Data-names whose USAGE IS INDEX are referred to as index-data-names.
They are never referred to as an "index", cannot be used for indexing
and are not associated with a table. They should be considered only
as temporary storage areas for index-names. They may be referenced

only in a SET or SEARCH statement or in a relation condition.

Condition-names, PICTURES, VALUE, SYNCHRONIZED or JUSTIFIED cannot

be associated with an index-data-name.

Every index-data-name will be automatically assigned a PC 9(5)

COMPUTATIONAL area by the B 2500/B 3500 COBOL Compilers.

L-68

VALUE

VALUE.
The function of this clause is to declare an initial value to
WORKING-STORAGE items, or the value associated with a condition-

name,

The construct of this clause is:

VA . THRU . .
[{ VALUE} IS literal-l [{ THROUGH } literal-2] [llteral-B]

THRU . .

Abbreviation VA can be used in lieu of VALUE.

Literals may consist of Figurative Constants; e.g.s ZEROS, QUOTES,

etc.

Literals may be replaced by the reserved word DATE-COMPILED. If
DATE-COMPILED is used in the VALUE clause, the date that the program
was compiled will be placed in the data-name in the JULIAN form of
YYDDD.

In the FILE SECTION, the VALUE clause is allowed only in condition-
name (88 level) entries. VALUE entries in other data descriptions

in the FILE SECTION are considered as being documentation only.

In the WORKING-STORAGE SECTION, the entire VALUE clause may be used

with condition-name entries. All levels other than 88 are restricted

to the use of literal-l only.

The VALUE clause must not be stated in a Record Description entry
with an OCCURS clause, or in an entry which is subordinate to an
entry containing an OCCURS clause. This rule does not apply to

condition-name entries.

4-69

VALUE

continyed

The VALUE clause must not conflict with other clauses in the data

description o :

o AAaa~vmiadS - o
v £

ot

i +hao 3
L1311 Tiie iiC

e
£
[¢
U
¢
I
fede
R
c
i
O
o
<
2

a. If the category of an item is numeric, all literals
in the VALUE clause must be numeric literals; e.g.;

VA 1, 3 THRU 9, 12, 16 THRU 20, 25 THRU 50, 51, 56.

b. If the category of the item is alphabetic or alpha-
numeric, all literals in the VALUE clause must be
specifically stated non-numeric literals; e.g.,

'V'A IS "A 1" ’ "B" ’ HC" ’ "F" N "M" ’ "N" ’ "O" ’ "PH) "Q" ’ "ZH .

c. All literals in a VALUE clause of an item must have a
value which requires no editing to place that value

in the item as indicated by the PICTURE clause.

d. The function of any editing clauses or editing charac-
ters in a PICTURE clause is ignored in determining the
initial appearance of the item described. However,
editing characters are included in determining the

length of the item.

In a condition-name entry, the VALUE clause is required and is the
only clause permitted in the entry. The characteristics of a

condition-name are implicitly those of its conditional variable.

If this clause is used in an entry at the group level, the literal
must be a figurative constant or a non-numeric literal (byte char-
aoters). The group area is initialized ﬁithout consideration for
the USAGE of the individual elementary items. Subordinate levels

within the group cannot contain VALUE clauses.

The VALUE clause must not be specified for a group containing items

requiring separate handling due to the SYNCHRONIZED or USAGE clause.

4-70

VALUE

continued

The VALUE clause must not be stated in a Record Description entry
which contains a REDEFINES clause, or in an entry which is sub-
ordinate to an entry containing a REDEFINES clause. This rule

does not apply to condition-name entries.

A literal must not contain a sign when the VALUE clause is used

with a data-name whose PICTURE specifies a J or K sign position.

In a VALUE clause, there is no practical limit to the number of
literals in a series. VALUE cannot be associated with an index-

data-name.

4h-71

WORKING-STORAGE

WORKING-STORAGE SECTION.

The WORKING-STORAGE SECTION is optional and is that part of the
DATA DIVISION set aside for intermediate processing of data. The
difference between WORKING-STORAGE and the FILE SECTION is that
the former deals with data that is not associated with an input

or output file.

ORGANIZATION.
Whereas the FILE SECTION is composed of file description (FD or SD)

entries and their associated record description entries, the WORKING-
STORAGE SECTION is composed only of record description entries and
non-contiguous items. The WORKING-STORAGE SECTION begins with a
section-header and a period, followed by item description entries

for non-contiguous WORKING-STORAGE items, and then by record des-
cription entries for WORKING-STORAGE records, in that order. The
format for WORKING-STORAGE SECTION is as follows:

[WORKING-STORAGE SECTION]
[77 data-name-1]
[88 condition-name-1]

[77 data-name-n]
[01 data-name-2]
[02 data-name-3]

[66 data-name-m RENAMES data-name-3]
[01 data-name-4]
[02 data-name-5]
[03 data-name-n]

[88 condition-name-2]

NON-CONTIGUOUS WORKING-STORAGE.
Items in WORKING-STORAGE which bear no relationship to one another
need not be grouped into records provided iiiey do nuvi need Lu e

further subdivided. Instead, they are classified and defined as

h-72

WORKING-STORAGE

continued

non-contiguous items. Each of these items is defined in a sepa-
rate record description entry which begins with the special level-
number 77. The following record description clauses are required

in each entry:

a. Level-number.
b. Data-name.

c. PICTURE clause or equivalent.

The OCCURS clause is not meaningful on a 77 level item and will
cause an error at compilation time if used. Other record des-
cription clauses are optional and can be used to complete the

description of the item if necessary.

All level 77 items must appear before any 0l levels in WORKING-
STORAGE.

WORKING-STORAGE RECORDS.

Data elements in WORKING-STORAGE which bear a definite relationship
to one another must be grouped into records according to the rules
for the formation of record descriptions. All clauses which are
used in normal input or output record descriptions can be used

in a WORKING-STORAGE record description, including REDEFINES,
OCCURS, and COPY. Fach WORKING-STORAGE record-name (0Ol level)

must be unique since it cannot be qualified by a file-name. Sub-

ordinate data-names need not be unique if they can be made unique

by qualification.

INITIAL VALUES.

The initial value of any item in the WORKING-STORAGE SECTION is
specified by using the VALUE clause of the record description. If
VALUE is not specified, the initial values are set to 4-bit zeros
(COMPUTATIONAL) .

CONDITION-NAMES.
Any WORKING-~STORAGE item may be a conditional variable with which

one or more condition-names are associated. Entries defining

4-73

WORKING-STORAGE

continued

condition-names must immediately follow the conditional wvariable
entry. Both the conditional variable entry and the associated

condition-name entries may contain VALUE clauses.

TRANSLATE TABLES.

If translate tables are desired in WORKING-STORAGE for referencing
by the TRN operator im ENTER SYMBOLIC, the starting address must
be modulo 1000. This can be accomplished by following the record-

name with the reserved word MOD.

CODING THE WORKING-STORAGE SECTION.
Figure 4-6 illustrates the coding of the WORKING-STORAGE SECTION.

GL-1

BURROUGHS COBOL CODING FORM

REQUESTED BY PASE

PROSRAM
PROJRAMER oATE 10EN
% W

= - l'llellljlllllllllllLLllll]lllllll
01 | 170 OISIK= C@NTIRGLY 1P LICITIMRIE) 1918101 1/ CGMPILTIATILGNALL L ¢ ¢ 1 41 1111 14 1
ost | 7,70) TOTA-ISALES PG 9D VALIIE ZERGISIet 110
o D SIALESI-QIMABTA PC (BG100) 1e0 103 030 48 1 00 80 108 L L Ll L gLt
(Y] o1, 4 TiA| - Erey 00 8 00084 04000 0888t Lttt d 1L
(X] 111 O 2 aSTIATES s 1 18113 8l b b bl L4414t
or a0) 10103 MULCH PC 91998 11 100011t il i

oe| A4l Lllolachdlal(l4l)l'lllllljlllllllLlllellllllllijllll

raa l 1 O3 PENN PG DG er 0o L L

Lo 10,21 SITATE - KEY, JRIEDIESF LNGES (SITATES) (GCCURS B T ME S 11 1 L1

1 21§13 103 151T1A4T@L-_|§L¢1015tnp£1191~1|1|111114111111111111111111111

AN 1110131w19|9l°l|l11111llll_ll_LllAllllLLJllllll!Jl

Oidy o MiDIG- U TN et 00 0 0 000 00 40 10 808 b ot b bl LA da

11;0131 ILL z V S'llllllljjlllll*ljllll

1«1 013 It PiCy o 147 \ v L MANCGE " e 0 10 11 11 14

|
|
1
[}
]
|
|
|
'3= 111 LLIOISLICIImIJEISIIPICllsl'IlllllIll1]llllJlellllllllJJLillll
!
]
|
[]
1
]
: 11103 (BT GER PG A5 VAL SPACE S e Lt i Lt L4 4sd s 111114

'e 01111T1R1A1N151-1T1AL51LM1D1'11111111111 L 44 4 444 d 8o) 8883434 a2
'9 111OfﬁlAﬁn'l‘l‘llnl111111111L1|1|414LL11111:1:;:4;1111.11111
20 A4 4L 4 6404108 08448 to8 b 44 a0 18188 a1t s
2 Lo b0 o Lo 8 b 444 L b8 bbbttt i a
22 AL 1 ll‘lllllllllj‘ljkll‘llllllllllllllllllllll‘lllljl‘l“
”: I NN NN TN
24| Lo 4ot b L L g bty bbb bbb il bt bt it Ll
25,

penuijuos

Figure 4-6. Coding of WORKING-STORAGE SECTION

JOVIOLS-ONINIOM

SECTION 5
PROCEDURE DIVISION

GENERAL.

The fourth part of the COBOL source program is the PROCEDURE DIVI-
SION. This division contains the Procedures needed to solve a given
problem. These procedures are written as sentences which may be
combined to form bparagraphs, which in turn may be combined to form

sections.

RULES OF PROCEDURE FORMATION.

COBOL procedures are expressed in a manner similar (but not iden-

tical) to normal English prose. The basic unit of procedure for-
mation is a sentence, or a group of successive sentences. A pro-
cedure is a bParagraph, or a group of successive bParagraphs, or a
section, or a group of successive sections within the PROCEDURE
DIVISION. The first entry following the PROCEDURE DIVISION header
must be a section-name or a Paragraph-name. If the first entry is
a section-name, then it must be followed by a bParagraph-name. Sen-
tence structure is not governed by the rules of English grammar,
but rather, dictated by the rules and formats outlined in this man-

ual.

STATEMENTS.

There are three types of statements: imperative statements, con-

ditional statements, and compiler~directing statements.

IMPERATIVE STATEMENTS

An imperative statement is any statement that is neither a condi-
tional statement nor a compiler~-directing statement. An imperative
statement may consist of a sequence of imperative statements, each
possibly separated from the next by a separator. A single impera-
tive statement is made up of a verb followed by its operand. A se-
quence of imperative statements may contain either a GO TO statement
or a STOP RUN statement which, if present, must appear as the last
imperative statement of the sequence. Some of the imperative verbs

are.:

Revised 9/28/70
by PCN 1033099-004 5-1

ACCEPT MOVE
ADD* MULTIPLY*
ALTER OPEN
CLOSE PERFORM
COMPUTE* SEARCH
DISPLAY SEEK
DIVIDE* SET
EXAMINE STOP
EXIT SUBTRACT*
GO WAIT
INTERROGATE WRITE**

CONDITIONAL STATEMENTS.

A conditional statement specifies that a truth value of a condi-
tion is to be determined for subsequent action of the object pro-

gram,

COMPILER-DIRECTING STATEMENTS.

A compiler-directing statement is one that comnsists of a compiler

directing verb (COPY, ENTER and NOTE) and its operand(s).

SENTENCES.

There are three types of sentences: dimperative sentences, condi-
tional sentences, and compiler-directing sentences. A sentence
consists of a sequence of one or more statements, the last of which

is terminated by a period.

IMPERATIVE SENTENCES.

An imperative sentence is an imperative statement terminated by a
period. An imperative sentence can contain either a GO TO state-
ment or a STOP RUN statement which, if present, must be the last

statement in the sentence. Examples would be:

ADD MONTHLY-SALES TO TOTAL-SALES, THEN GO TO PRINT-TOTAL.

* Without the SIZE ERROR option.
*¥%¥ Without the INVALID KEY option.

5-2

DISPLAY "PGM-END" THEN STOP RUN.

CONDITIONAL SENTENCES.
A conditional sentence is a conditional statement which may op-
tionally contain an imperative statement and must always be term-

inated by a period.
EXAMPLES:

IF HEIGHT IS GREATER THAN SIX-FEET-NINE GO TO
TALL-MEN, ELSE ADD 1 TO PUNIES, GO GET-ANOTHER-
RECORD.

IF SALES IS EQUAL TO BOSSES-QUOTA THEN MOVE SALESMAN I
TO HONOR-ROLL OTHERWISE MOVE HIS-NAME TO PINK-SLIP-
LIST, GO TO NEXT-SENTENCE.

If the phrase NEXT-SENTENCE immediately precedes a period, then
the phrase may be eliminated and a GO TO NEXT-SENTENCE will be
implied.

COMPILER-DIRECTING SENTENCES.

A compiler-directing sentence is a singie compiler-directing state-

ment terminated by a period.

EXAMPLE:

COPY "SCANER".

SENTENCE PUNCTUATION.
VERB FORMATS.

Punctuation rules for individual verbs are as shown in the wverb

formats and in section 1 of this manual.

SENTENCE FORMATS.

The following rules apply to the punctuation of sentences:
a. A sentence is terminated by a period.

b. A separator is a word or character used for the purpose

Revised 10/8/69 5-3
by PCN 1033099-002

of enhancing readability. The use of a separator

(other than a space) is optional,

c. The allowable separators are: spaces, the semicolon (;),

the comma (,), and the reserved word THEN.
d. Separators may be used in the following places:

1) Between statements.

2) In a conditional statement.

a) Between the condition and statement-1.

b) Between statement-1 and ELSE.

e. A separator (other than a space) should be followed

by at least one space but is not required.

EXECUTION OF IMPERATIVE SENTENCES.

An imperative sentence is executed in its entirety and control is

passed to the next applicable procedural sentence.

EXECUTION OF CONDITIONAL SENTENCES.

In the conditional sentence:

OTHERWISE

IF condition statement-1 { FLSE

} statement-2

the condition is an expression which is TRUE or FALSE. If the
condition is TRUE, then statement-1l is executed and control is
immediately transferred to the next sentence. If the condition is
FALSE, statement-2 is executed and control passes to the next

sentence.

If statement-l is conditional, then the conditional statement must
be the last (or only) statement comprising statement-1. For

example, the conditional sentence would then have the form:

5-4

IF condition-1 imperative-statement-1l IF condition-2

statement-4

statement-3 {.QIEEEKE§E }

OTHERWISE
ELSE

ELSE
statement-2.

If condition-1 is TRUE, imperative-statement-1l is executed. If
condition-2 is TRUE, statement-3 is executed and control is trans-
ferred to the next sentence. If condition-2 is FALSE, statement-4
is executed and control is transferred to the next sentence. If
condition-1 is FALSE, statement-2 is executed and control is trans-
ferred to the next sentence. Statement-3 can in turn be either
imperative or conditional and, if conditional, can in turn contain
conditional statements to an arbitrary depth. In an identical
manner, statement-4 can either be imperative or conditional, as

can statement-2. The execution of the phrase NEXT SENTENCE causes
a transfer of control to the next sentence written in order, except
when it appears in the last sentence of a procedure being PERFORMed,

in which case control is passed to the return control.

EXECUTION OF COMPILER-DIRECTING SENTENCES.

The compiler-directing sentences direct activities during compi-

lation time. On the other hand, procedural sentences denote action
to be taken by the object program. Compiler-directing sentences
may result in the inclusion of routines into the object program.
They do not directly result in either the transfer or passing of
control. The routines themselves, which the compiler-directing
sentences may have included in the object program, are subject to
the same rules for transfer or passing of control as if those

routines had been created from procedural sentences only.

CONTROL RELATIONSHIP BETWEEN PROCEDURES.

In COBOL, imperative and conditional sentences describe the pro-

cedure that is to be accomplished. The sentences are written
successively, according to the rules of the coding form (section
7), to establish the sequence in which the object program is to

execute the procedure. In the PROCEDURE DIVISION, names are used

5-5

so that one procedure can reference another by naming the proce-
dure to be referenced. In this way, the sequence in which the
object program is to be executed may be varied simply by trans-

ferring to a named procedure.

In executing procedures, control is transferred only to the begin-
ning of a paragraph or section. Control is passed to a sentence

within a paragraph only from the sentence written immediately pre-

ceding it. If a procedure is named, control can be passed to it
from any sentence which comtains a GO TC or PERFORM, followed by

the name of the procedure to which control is to be transferred.

PARAGRAPHS.

So that the source programmer may group several sentences to con-~

vey one idea (procedure), paragraphs have been included in COBOL.

In writing procedures in accordance with the rules of the PROCE-
DURE DIVISION and the requirements of the coding form (Section 7),
the source programmer begins a paragraph with a name. The name
consists of a word followed by a period, and the name precedes the
paragraph it names. A paragraph is terminated by the next para-
graph-name. The smallest grouping of the PROCEDURE DIVISION which
is named is a paragraph. The last paragraph in the PROCEDURE DIVI-
STON is terminated by the optional special paragraph-name END-OF-.JO0R

which can be the last card in the source program.

Programs may contain identical paragraph-names provided they are
resident in different sections. Il such paragraph-names are notl
qualified when used, the current section is assumed. They may be

used in GO, PERFORM and ALTER statements if desired.

SECTIONS.

A section consists of one or more successive paragraphs and must
be named when designated. The section-name is followed by the
word SECTION, a priority number which is optional, and a period.
If the section is a DECLARATIVE section, then the DECLARATIVE
sentence {i.e., USE or COPY) foliows the section header and begins

on the same line. Under all other circumstances, a sentence may

5-6

not begin on the same line as a section-name. The section-name
applies to all paragraphs following it until another section-name

is found. It is not required that a program be broken into sec-
tions, but this technqgiue is exceptionally useful in trimming down
the physical size of object programs by stating a priority number

to declare overlayable program storage (see SEGMENT CLASSIFICATION).

Since paragraph-names and section-names both have the same desig-
nated position on the reference format (i.e., position A), section-
names, when specified, are written on one line followed by a para-
graph name on a subsequent line. When PERFORM is used in a non-
DECLARATIVE procedural section to call another section, the same
rules apply as when PERFORM is used in a DECLARATIVE section.

DECLARATIVES.

Declaratives are procedures which operate under the control of the

input-output system. Declaratives consist of compiler-directing
sentences and their associated procedures. Declaratives, if used,
must be grouped together, at the beginning of the PROCEDURE DIVI-
SION. The group of declaratives must be preceded by the key word
DECLARATIVES, and must be followed by the words END DECLARATIVES.
Each DECLARATIVE consists of a single section and must conform to
the rules for procedure formation. There are two statements that
are called declarative statements in the COBOL Compiler. These

are the USE and the COPY statements.

USE STATEMENT,

A USE declarative is used to supplement the standard procedures
provided by the input-output system. The USE sentence, immediately
following the section-name, identifies the condition calling for
the execution of the USE procedures. Only the PERFORM statements
may reference all or part of a USE section. The USE sentence
itself is never executed. Within a USE procedure, there must be

no reference to the main body of the PROCEDURE DIVISION. The

format for the USE declarative is as follows:

SeCtiOl’l—ﬂal’He SECTION- USE.. ® 8 5 06 60 00 0090 0 0 0

paragraph-name. First procedure-statement ...

5-7

Complete rules for writing the formats for USE are stated under

the USE verb.

COPY STATEMENT AS A DECLARATIVE,
A COPY declarative is used to incorporate a DECLARATIVE library

routine in the source program. That is, a routine which is a USE

declarative. The format of the COPY declarative is:
section-name SECTION. COPY "library-name'.

Complete rules for writing the format for COPY are stated under
the COPY wverb.

ARITHMETIC EXPRESSIONS.

An arithmetic expression is an algebraic expression which is

defined as:
a. An identifier of a numeric elementary ditem.

b. A numeric literal.

c. Such identifiers and literals separated by arithmetic
operators.
d. Two arithmetic expressions separated by an arithmetic
operator.
e. An arithmetic expression enclosed in parentheses.
Any arithmetic expression may be preceded by a unary + or -. The

permissible combinations of identifiers, literals, and arithmetic
operators are given in table 5-1. Those identifiers and literals
appearing in an arithmetic expression must represent either numeric
elementary items or numeric literals on which arithmetic operation

may be performed.

5-8

Table 5-1

Combination of Symbols in Arithmetic Expressions

Second Symbol
First .
* /%% -
Symbol Variable / + ()
Variable - P P - P
*/** P - P P -
+- P - - P -
P - P P -
) - P P - p
NOTE
In the above table, the letter P represents
a permissable pair of symbols. The character
- represents an invalid character pair. Vari-

able represents an identifier or literal.

ARITHMETIC OPERATORS.

There are five arithmetic operators that may be used in arithmetic

Hh

expressions. They are represented by speci

must be preceded by a space and followed by a space.

Character Meaning
+ addition

- subtraction

* multiplication
/ division
*% exponentiation

FORMATION AND EVALUATION RULES.

Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be used. Expressions within paren-
theses are evaluated first and, within a nest of parentheses,
evaluation proceeds from the least inclusive set to the most in-
clusive set. When parentheses are not used, or parenthesized

Revised 10/8/69
by PCN 1033099-002 5-9

expressions are at the same level of inclusiveness, the following

hierarchical order of operations is implied:

Unary + or -
*¥
* and /

+ and -

The symbols + and -, if used without parenthesizing, may only follow
one of the arithmetic operators ¥*, *, /, or appear as the first
symbol in a formula. Parentheses have a precedence higher than any
of the operators and are used to eliminate ambiguities in logic
where consecutive operations of the same hierarchical level appear,
or to modify the normal hierarchical sequence of execution in for-
mulas where it is necessary to have some deviation from the normal
pPrecedence. When the sequence of execution is not specified by
parentheses, the order of execution of consecutive operations of
the same hierarchical level is from left to right. Thus, ex-
Pressions ordinarily considered to be ambiguous, e.g., A / B ¥ C,

A / B / C, and A¥¥B¥*¥C are permitted in COBOL. They are inter-
preted as if they were written (A / B) * C, (A / B) / C, and (A**B)

*%¥C, respectively. Without parenthesizing, the following example:
A+B/C+D*XE*F -G
would be interpreted as:

A+ (B/c)+ ((D**E) *F) -G

with the sequence of operations working from the inner-most paren-
theses toward the outside, i.e., first exponentiation, then mul-

tiplication and division, and finally addition and subtraction.

The way in which operators, variables, and parentheses may be com-

bined in an arithmetic expression is summarized in table 5-1.

An arithmetic expression may only begin with the symbols (, +, -

N a sraviahla and ma~xr nanl-xr and with - \ ovr o =

s v
sl i o J R ~ e~ - e~y

be a one-to-one correspondence between left and right parenthesis

5~10

of an arithmetic expression such that each left parenthesis is to

the left of its corresponding right parenthesis.

CONDITIONS.

A condition causes the object program to select between alternate

paths of control depending upon the truth value of a test. Con-
ditions are used in IF and PERFORM statements. A condition is one

of the following:

a. Relation condition..

b. Class condition.

c. Condition-name condition.
d. Sign condition.

e. NOT condition.

f. Condition { %%2‘} condition.

The construction NOT condition, where condition is one of the first
four types'of conditions listed above, is not permitted if the con-

dition itself contains NOT.

LOGICAL OPERATORS.
Conditions may be combined by logical operators. The logical oper-
ators must be preceded by a space and followed by a space. The

meaning of the logical operators is as follows:

Logical Operator Meaning
OR Logical Inclusive OR
AND Logical Conjunction
NOT Logical Negation

Table 5-2 indicates the relationships between the logical operators
and conditions A and B. Table 5-3 indicates the way in which con-

ditions and logical operators may be combined.

RELATION CONDITION.
A relation condition causes comparison of two operands, each of
which may be a data-name, a literal, or an arithmetic expression

(formula). Comparison of two elementary numeric items is permitted

Revised 9/28/70
by PCN 1033009-004 5-11

regardless of the format as specified in individual USAGE clauses.

However,

USAGE.

for

Group numeric items are defined to be alphanumeric.

all cther comparisons the operands must have the same

It is

not permissible to compare an index-data-name to a literal or a

data-name.

Relationship of Conditions,

Table 5-2

Logical Operators, and Truth Values

Combinatiocons of Conditions

Condition Condition and Value
A B A AND B A OR B NOT A
TRUE TRUE TRUE TRUE FALSE
FALSE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE
FALSE FALSE FALSE FALSE TRUE
Table 5-3

and Logical Operators

(%14

-12

First Second Symbol
Symbol Condition OR AND NOT {)
F========== —— — — ——— =
Condition - P P - - P
OR P - - P P -
AND P - - P P -
NOT P - - - P -
(P - - P P -
) - P P - - P
NOTE

The letter P represents a
permitted pair of symbols.
The character - represents

an invalid character pair.

The general format for a relation condition is as follows:

data-name-1 data-name-2
literal-1 relational-operator literal-2
arith. expression-1 arith. expression-2

The first operand, data-name-1, literal-1, or arithmetic expression-
1l is called the subject of the condition. The second operand, data-
name-2, literal-2, arithmetic expression-2 is called the object of

the condition. The object and the subject may not both be literals.

RELATIONAL OPERATORS.
The relational operators specify the type of comparison to be made
in a relation condition. The relational operators must be preceded

by a space and followed by a space. Relational operators are:

a. IS [NOT] GREATER THAN.
b. IS [NOT] LESS THAN.

c. IS [NOT] EQUAL TO.

d. IS [NoOT] >.

e. Is [NOT] <.

f. Is [NOT] =.

COMPARISON OF OPERANDS,

NON-NUMERIC. For non-numeric (byte) operands, a comparison will
result when determination is made that one operand is less than,
equal to, or greater than the other with respect to a specified
internal coding sequence of characters (see appendix C). The size
of an operand is the total number of characters or digits in the
operand. Non-numeric operands may be compared only when their
USAGE is the same, implicitly or explicitly. There are two cases

to consider:

a. If the operands are of equal size, characters or digits
in corresponding character or digit positions of the

two operands are compared starting from the high-order

5-13

end through the low-order end. If all pairs of charac-
ters or digifs compare equally through the last pair,

d equal when the low-order end
is reached. The first pair of unequal characters or
digits to be encountered is compared to determine their
respective relationship. The operand that contains the
character or digit that is positioned higher in the in-
ternal coding sequence is considered to be the greater

operand.

b. If the operands are of unequal size, the comparison of
characters or digits proceeds from high-order to low-
order positions until a pair of unequal characters or
digits is encountered, or until one of the operands has
no more characters or digits to compare. If the end of
the shorter operand is reached and the remaining charac-
ters or digits in the longer operand are spaces OI zeros,

the two operands are considered to be equal.

NUMERIC. For operands that are numeric, a comparison results in
the determination that one of them is less than, equal to, or
greater than the other with respect to the algebraic wvalue of the
operands. The length of the operands, in terms of number of digits,
is not significant. Zero is considered a unique value regardless
of the sign. Comparison of these operands is permitted regardless
of the manner in which their usage is described. Unsigned numeric

operands are considered positive for purposes of comparisons.

The signs of signed numeric operands will be compared as to their

algebraic value of being plus (highest) or minus (lowest).

EVALUATION RULES.
The evaluation rules for conditions are analogous to those given

for arithmetic expressions except that the following hierarchy

applies:
a. Arithmetic expressions (formulas).
b. All reliational operators.

5-1h

c. NOT.
d. AND.
e. OR.

SIMPLE CONDITIONS.

Simple conditions, as distinguished from compound conditions, are
subdivided into four general families of conditional tests: Re-
lation Tests, Relative Value Tests, Class Tests, and the Condi-
tional Variable Tests. A detailed explanation of each of these

can be found under the IF verb discussion.

COMPOUND CONDITIONS.

The most common format of a compound condition is:

simple-condition-1 { %%2 } simple-condition-2
AND AND simple-condition-n
OR OR

Simple conditions can be combined with logical operators according
to specified rules to form compound conditions. The logical op-
erators AND, OR, and NOT are shown in table 5-2 where A and B re-
present simple conditions. Thus, if A is TRUE and B is FALSE, then
the expression A AND B is FALSE, while the expression A OR B is
TRUE.

The following are illustrations of compound conditions:
a. AGE IS LESS THAN MAX-AGE AND AGE IS GREATER THAN 20.
b. AGE IS GREATER THAN 24 OR MARRIED.

c. STOCK-ON-HAND IS LESS THAN DEMAND OR STK-SUPPLY IS
GREATER THAN DEMAND + INVENTORY.

d. A IS EQUAL TO B, AND C IS NOT EQUAL TO D, OR E IS NOT
EQUAL TO F, AND G IS POSITIVE, OR H IS LESS THAN I * J,.

5-15

e. STK-ACCT IS GREATER THAN 72 AND (STK-NUMBER IS LESS
THAN 100 OR STK-NUMBER EQUAL TO 76920).

Note that it is not necessary to use the same logical connective
throughout. The rules for determining the logical (i.e., truth)

value of a compound condition are as follows:

a. If AND's are the only logical connectives used, then the
compound condition is TRUE if, and only if, each of

the simple conditions is TRUE.

b. 1If OR's are the only logical connectives used, then the
compound condition is TRUE if, and only if, one or

more of the simple conditions is TRUE.

c. If both logical connectives are used, then the conditions
are grouped first according to AND, proceeding from left

to right, and then by OR, proceeding from left to right.

Parentheses may be used to indicate grouping as specified in the
examples below. Parentheses must always be paired the same as in
algebra, i.e., the expressions within the parentheses will be
evaluated first. In the event that nested parenthetical expres-
sions are employed, the innermost expressions within parentheses
are handled first. Examples of using parentheses to indicate

grouping are:

a. To evaluate Cl and (C2 OR NOT (C3 OR C4)), use the
first part of rule ¢ above and successively reduce

this by substituting as follows:

Let C5 equal "C3 OR C4" resulting in
Cl AND (C2 OR NOT C5)

Let C6 equal "C2 OR NOT C5" resulting
in C1 AND C6

Tiiis can e evaluaied Dy taple 5-Z2.

5-16

b. To evaluate Cl1l OR C2 AND C3, use the second part of
rule ¢ and reduce this to Cl1 OR (C2 AND C3), which

can now be reduced as in example a.

c. To evaluate Cl AND C2 OR NOT C3 AND C4, group first
by AND from left to right, resulting in:

(c1 AND c2) OR (NOT G3 AND Ch4)
which can now be evaluated as in example a.

d. To evaluate Cl AND C2 AND C3 OR C4 OR C5 AND C6 AND C7
OR C8, group from the left by AND to produce:

((c1 AND C2) AND C3) OR C4 OR ((C5 AND C6)
AND C7) OR C8

which can now be evaluated as in example a.

ABBREVIATED COMPOUND CONDITIONS.
Any relation condition other than the first that appears in a

compound conditional statement may be abbreviated as follows:

a. The subject, or the subject and relational operator,
may be omitted. In these cases, the effect of the abbre-
viated relation condition is the same as if the omitted
parts had been taken from the nearest preceding complete
relation condition within the same condition. That is,

the first relation in a condition must be complete.

b. If, in a comnsecutive sequence of relation conditions
(separated by logical operators) the subjects are iden-
tical, the relational operators are identical and the
logical connectors are identical, the sequence may be

abbreviated as follows:

1) Abbreviation 1 - when identical subjects are
omitted in a consecutive sequence of relation
conditions. An example of Abbreviation 1

would be:

5-17

5-18

IF A = B AND = C,

This is equivalent to IF A = B AND A = C.

2) Abbreviation 2 - when identical subjects and
relational operators are omitted in a consecutive
sequence of relation conditions. An example of

Abbreviation 2 is:

IF A = B AND C,

This is equivalent to IF A = B AND A = C.

3) Abbreviation 3 - when identical subjects, relational
operators, and logical connectors are omitted in a
consecutive sequence of relational conditions. Only
the first occurrence of the subject and relation
are written; all objects but the last are written as
a series (can but need not be preceded by commas).

The logical connector is written only once and appears
immediately preceding the last of the objects. An

example of Abbreviation 3 would be:

IF A = B, C AND D

This is equivalent to TF A = B AND A = C AND A = D.

As indicated in the previous pParagraphs, compound con-
ditions can be abbreviated by having implied subjects,

or implied subjects and relational operators, providing
the first simple condition is a full relation. The
missing term is obtained from the last Previous complete
relation in the sentence. The following examples further

illustrate the abbreviated compound conditions:

1) IF A =B OR C is equivalent to IF A = B OR A = C.

2) IFA<BOR=CORD isAequivalent to IF A < B OR
A =C OR A < D. Note that the missing relational

symbol for U 1s < rather than = since the last

SEGMENTATION.

COBOL segmentation is a facility that pProvides a means by which

communication with the compiler, to specify object program overlay
requirements, can be accomplished. COBOL segmentation deals only
with segmentation of procedures. As such, only the PROCEDURE
DIVISION and the ENVIRONMENT DIVISION are considered in determining

segmentation requirements for an object program.

PROGRAM SEGMENTS,

Although it is not mandatory, the PROCEDURE DIVISION for a source
program may be written as a consecutive group of sections, each of
which are operations that are designed to collectively perform a
particular function. FEach section must be classified as belonging
either to the fixed portion or to one of the independent segments
of the object program. Segmentation in no way affects the need

for qualification of procedure-names to ensure uniqueness.

The object program is composed of two types of segments: A fixed

segment and overlayable segments.

a. The fixed segment is the main program segment and is

never overlaid by any other part of the program.,

b. An overlayable segment is a segment which, although
logically treated as if it were always in memory, can
be overlaid, if necessary, by another segment to opti-
mize memory utilization. However, such a segment, if
called for by the program, is always made available
in its "initial" state except for ALTERed switches

which are always set to their last used state.

Also, depending on availability of memory, the number of permanent
segments in the fixed and overlayable portions can be varied by

changing the SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph.

SEGMENT CLASSIFICATION.
Sections which are to be segmented are classified using a system
of priority numbers and the following criteria:

Revised 8/28/69
by PCN 1033099-001 5-19

a. Logic requirements - sections with priority numbers
from 00 thru 49 in a program may reside in the fixed

= QT RATVATT
LIl OLATPLIVIN L™

segment depending on the value specified im
LIMIT. Sections containing a priority number lower

than that specified in SBEGMENT-LIMIT, regardless of

their physical location in the program, will be assigned
to the fixed segment; all other sections will be assigned
as overlayable segments. Fall-through control from one
SECTION to another SECTION is accomplished in their order

of appearance in the source program.

b. Relationship to other sections - sections coded within
the SEGMENT-LIMIT range will become the fixed segment
and can communicate freely with each other. Those coded
outside the stated SEGMENT-LIMIT range fall into the
overlayable category and can also communicate from one
to the other, except that a PERFORM may nct have within
its range any procedure-name contained in another over-
layable segment. The compiler will create one non-over-
layable (fixed) program area which will include all
sections with priority numbers below the value specified
in SEGMENT-LIMIT. One overlayable area in memory, the size
of the largest declared section, will be created for prior-
ity numbers equal to, or higher than, the value specified
in SEGMENT-LIMIT. This method allows the smaller overlays

to be called in without requiring memory alignment.

PRIORITY NUMBERS..

Section overlay classifications are accomplished by means of a
system of priority numbers. The priority number is included in
the section header. The general format of a section header is as

follows:

section-name SECTION priority-number.

— I e T LTy 3 3
Tiie priviivy fiWwiigel musSt o& an InNTveger ranging - volue from

through 99 (also 0, 1, 2, etc., are permissible priority numbers).

5-20

If the priority number is omitted from the section header, the
priority number is assumed to be 0. Segments with priority numbers
ranging from O up to, but not including, the value specified in the

SEGMENT-LIMIT clause (or 49 if no SEGMENT-LIMIT clause has been

specified) are considered as being located in the fixed (non-over-
layable) portion of the object program. Segments with priority num-
bers equal to or higher than, the value specified in SEGMENT-LIMIT,
but not exceeding 99, are independent segments (overlayable) and
fully ALTERable. Sections in DECLARATIVES are assumed to be 00

and must not contain priority numbers in their section headers.

Priority numbers may be stated in any sequence and need not be in

direct sequence. The fixed segment does not end when the first
priority number equal to or greater than SEGMENT-LIMIT is encoun-

tered.

All segments, regardless of their physical location in the source
program, whose priority number is less than that which is specified
in SEGMENT-LIMIT will be "gathered"™ into a single non-overlayable
segment. All other segments equal to, or greater than that which
is specified in SEGMENT LIMIT will be "gathered" into overlayable
segments according to equal priority numbers regardless of their

pPhysical location in the source program.

The use of the "gathering" technique will allow programmers to
create tailored segments which will reduce disk access times. For
example:

Program A: SEGMENT-LIMIT equals 17.

Non-Gathered

Segment Description Size in Digits
00-16 Main body of the program 20,000
17 Used frequently 1,000
18 Used frequently 5,000
19 Used infrequently 4,000
20 Used at EOJ only 500
21 Used frequently 2,000

5-21

Segment Description Size in Digits

22 Used at BOJ only 1,000
23 Used frequently 500
24 Used if TRACE desired 1,500
25 Used infrequently 3,000
Gathered
Segment Description Size in Digits
00-16 Main body of the program 20,000
17 Used frequently 1,000
18 Used infrequently 5,000
19 Used infrequently L4,000
20 Used at EOJ 500
17 Used frequently (was segment 21) 2,000
19 Used at BOJ (Was segment 22) 1,000
17 Used frequently (Was segment 23) 500
20 Used if TRACE desired (was segment 24) 1,500
20 Used infrequently (was segment 25) 3,000
Results of Gathering
Segment Description Size in Digits
00-16 Main body of the program 20,000
17 Used frequently 3,500
18 Used infrequently 5,000
19 Used infrequently 5,000
20 Used infrequently 5,000

"Fall through" will be performed in the sequence as outlined in
the above Non-Gathered example and not as they appear in the Re-
sults of Gathering example above, therefore preserving the logical

integrity of the original program.

The Burroughs unique head-per-track disk file permits B 2500/B 3500
Systems users to efficiently handle the COBOL techmnique of over-

laying segments without requiring a programmer to state varied

5-22

hardware inadequacies and is the decided factor by which the B 2500/

B 3500 excels in its multiprocessing capabilities.

The MCP will automatically check to see if an overlay being called
for by an object program is already present in the object programs
overlayable memory storage area. If it is present, no disk access
is required and the program is not interrupted. If it is not pre-
sent, the MCP interrupts the program and will access the disk for
the desired overlayable portion of the program. The MCP uses over-
lay segments directly from the program library where the object
program was compiled to and is called in as an overlay in its ini-

tial generated code each and every time it is required by the

operating program. Although the initial code is retrieved each
time, the latest addresses of ALTERed exits are still applicable

and are in force by the use of an automatic ALTER table.

INTERNAL PROGRAM SWITCHES.

Every compiled object program contains eight programmatic switches

provided automatically. Switches SW1 through SW7 are composed of
one unsigned digit in length and are located in memory locations
(base relative) 1 through 7. SW8 is located in memory location

(base relative) O. These switches can be set optionally as follows:

a. Option 1. Switches can be initially set at the start of
an object program's execution by punching one of the

following MCP Control Cards:

1) ? EXECUTE program-name VALUE O = nnnnnn#¥
2) ? EXECUTE program-name VALUE 1 = nnnnnn¥%%
3) ? EXECUTE program-name VALUE 2 = nnnnnn¥¥%

nnnnnn represents internal program switches which may be
set by placing a zero (OFF) or any digit 1-9 (ON) in the

appropriate positions.

* VALUE O sets switches 812345 as coded in nnnnnn.
*%¥ VALUE 1 sets switches 123456 as coded in nnnnnn.
**¥¥VALUE 2 sets switches 234567 as coded in nnnnnn.

5-23

Note that the VALUE statement in an MCP control message

must always contain a six digit integer, thus only six

switches can be affected using this method. The prograim-
name must be the object program identifier.

b. Option 2. Switches can be referred to in the PROCEDURE
DIVISION by the use of the reserved words SW1, SW2...
SW8. Each individual switch setting can be changed during
operation by a MOVE, ADD, SUBTRACT, etc., for example:
MOVE O TO Swi.
ADD 1 TO Sw2.
SUBTRACT 1 FROM SW3.

c. Option 3. The systems operator can be programmatically
informed that a switch requires setting by stating in the

source program:
STOP "SET SW2 ON".
The proper keyboard entry to set the switch would be:
mix-index IN 2 1 UN = 1

The proper keyboard entry to resume operation would be:

Note that SW6 has an affect on the MONITOR DEPENDING....requirement

if the statement is present.

The
the

All
the

switch memory locations are reserved and operate exactly like

reserved TALLY locations.

three options of setting switches can be incorporated during

operation of a given program.

of the verbe available for uce with the CORNT. Comniler are

categorized below. Although the word IF is not a verb in the

5-2L

English language, it is utilized as such in the COBOL language.
Its occurrence is a vital feature in the PROCEDURE DIVISION.

a. Arithmetic:
ADD
SUBTRACT
MULTIPLY
DIVIDE
COMPUTE

b. Compiler directing declaratives:
NOTE
USE

c. Compiler directing:
COPY

d. Data manipulations:
MOVE
EXAMINE
SORT

e. Ending:

STOP

f. Input-output:
WRITE
READ
OPEN
CLOSE
ACCEPT
DISPLAY
SEEK

g. Logical Control:
IF

h. Procedure Branching:

GO

5-25

ALTER
PERFORM

T TMm
LAl L

ZTP

i. Source-level Debugging:
TRACE

SPECIFIC VERB FORMATS.
The specific wverb formats, together with a detailed discussion of

the restrictions and iimitations associated with each, appear on

the following pages in alphabetic sequence.

5-26

ACCEPT

ACCEPT.
The function of this verb is to permit the entry of low-volume data

from the console typewriter.

The construct of this verb is:

ACCEPT data-name [FROM { SPO . , }]
—_— —_— mnemonic-name

This statement causes the operating object program to halt and

wait for appropriate data to be entered on the SUPERVISORY PRINTER
(sPO0). The SPO entry will replace the contents of memory specified
by the data-name. The systems operator answers an ACCEPT halt by

keying in the following message:
mix-index AXdata-required
If a blank appears between the AX and data-required, the blank

character will be included in the data-stream.

The number of characters ACCEPTed must correspond to the size of

the receiving data-name.

If mnemonic-name is used, it must appear in the SPECIAL-NAMES para-

graph equated to the hardware-name SPO.

The receiving data-name may be a group level entry and cannot be

subscripted.

Because of the inefficiency of entering data through the keyboard,
this technique of data transmission should be solely restricted

to low-volume input data.
The maximum number of characters per ACCEPT statement is unlimited.

ACCEPT's of greater than 60 characters must be entered thru the SPO
in exact groups of 60 characters, except for the last group, which

can be of any size up to 60.

5-27

ADD

ADD.

The function of this verb is to add two or more numeric data

items and adjust the value of the receiving field(s) accordingly.

The construct of this verb has four options:

Option 1:
ADD literal-1 literal-=2
—_ data-name-~1 data-name-2 e

data-name-n [ROUNDED]

(g} cvnvnene] |

r
L ON SIZE ERROR any statement

OTHERWISE
ELSE

Option 2:

{literal—l

literal-2
data-name-1

data-name-2

[data-name—n [ROUNDED] s]

} statement]]

oL

TO data-name-3 [ROUNDED]

ADD

OTHERWISE
ELSE

[ON SIZE ERROR any statement [{

Option 3:
ADD literal-1 literal-2 literal-3 } 1
=== data-name-1 data-name-2 | | data-name-3 T

[ROUNDED |

GIVING data-name-n [ON SIZE ERROR any

statement

e

LA/DL

statement }]

o]
-

OTHERWISE l
)

5-28

ADD
continued

Option U4: .
CORR
ADD { CORRESPONDING } data-name-1 TO data-name-2 [ROUNDED]

\ ELSE

[ON SIZE ERROR any statement [J OTHERWISE } statement]]

If Option 1 is used, the operands will be added together and the

sum will be stored as the value of the last operand.

With Option 2, the value(s) of the operand(s) preceding the word

TO will be added together and the sum will be added to the existing
value(s) of operand(s) following the word TO. A resumation does
not occur if the value of one of the data-names changes in the

process. For example:
ADD A TO B,A,C.

In Option 3, the sum of the operands preceding the word GIVING
will be inserted as a replacement value of data-name following the

word GIVING.

In Options 1, 2, and 3, the data-names must refer to elementary
numeric items only, except that data-names appearing only to the
right of the word GIVING may refer to data-names which contain

editing symbols.
An ADD statement must have at least two operands.

Editing items can only be used as the receiving field with the
GIVING format. Operational signs and implied decimal points are

not considered as editing symbols.

The composite of operands, which is that data item resulting from
the superimposition of all operands, excluding the data item that

follows the word GIVING, aligned on their decimal points, must not

5-29

ADD

continued

contain more than 98 digits/characters.

The internal format of operands referred to in an ADD statement
may differ among each other. Any necessary format transformation
and decimal point alignment is automatically supplied throughout

the calculation.
Fach literal must be a numeric literal.

If, after point alignment with the receiving data item, the cal-
culated result would extend to the right of the receiving data

item (i.e., a data-name whose value is to be set equal to the sum),
truncation will occur. Truncation is always in accordance with

the size associated with the resultant data-name. When the ROUNDED
option is specified, it causes the resultant data-name to have its
absolute value increased by 1 whenever the most-significant digit

of the truncated portion is greater than or equal to five.

Whenever the magnitude of the calculated result exceeds the largest
magnitude that can be contained in a resultant data-name, a size
error condition arises. In the event of a size error condition, one
of two possibilities will occur, depending on whether or not the

ON SIZE ERROR option has been specified. The testing for the size
error condition occurs only when the ON SIZE ERROR option has been

specified.

a. In the event that ON SIZE ERROR is not specified and
size error conditions arise, the value of the 1_sultant

data-name is unpredictable.

b. If the ON SIZE ERROR option has been specified and size
error conditions arise, then the value of the resultant
data-name will not be altered. After determining that
there is a size error condition, the "any imperative-
statement" associated with the ON SIZE ERROR option will

be executed.

If Option 4 is used, multiple operations are performed. The

5-30

ADD
continued

operations are executed by pairing identical data-names of numeric
elementary items subordinate in hierarchy to data-name-l and data-
name-2. Data-names match if they, and all their possible qualifiers
up to, but not including data-name-1 and data-name-2, are the same.
All general rules pertaining to the ADD verb apply to each indivi-
dual ADD operation. For instance, if the size of matched data-
names does not correspond in that the decimal point is out of
alignment or the sizes differ, the decimal point alignment or trun-

cation takes place according to the rules previously discussed.

In the process of pairing identical data-names, any data-name with
the REDEFINES clause is ignored. Similarly, data-names which are
subordinate to the subordinate data-names with the REDEFINES clause

are ignored.

NOTE
This restriction does not preclude data-name-1
or data-name-2 themselves from having REDEFINES
clauses or from being subordinate to data-names
with REDEFINES clauses.

If the CORR or CORRESPONDING option is used, no item in the group

referred to can contain an OCCURS clause.

If, in Option 4, either data-name-1 or data-name-2 is a group item
which contains RENAMES entries, the entries are not considered in

the matching of names.

In Option 4, data-name-1 and data-name-2 must not have a level
number of 66, 77, or 88.

In Option 4, CORR is an acceptable substitute for CORRESPONDING.

5-31

ALTER

ALTER.
The function of this verb is to modify a predetermined sequence
of operations by changing the operand of a labeled GO TO paragraph.

The construct of this verb is:

ALTER procedure-name-i TO [PROCEED TO] procedure-name-2

[procedure—name—S [TO PROCEED TO] procedure-name-4 ...]
L J

Procedure-name-1, procedure-name-3, ... are names of paragraphs,
each of which contains a single sentence consisting of only a GO
TO statement as defined under Option 1 of the GO TO verb. Proce-
dure-name-2, procedure-name-4, ... are not subject to the same
restrictions and thus may be either paragraph names or section

names.

When control passes to procedure-name-1, control is immediately
passed to procedure-name-2 rather than to the procedure-name ref-
erred to by the GO TO statement in procedure-name-1i. Procedure-
name-1 is therefore a "gate" which remains set until again referen-

ced by another ALTER statement.

Segmentation does not affect ALTER. Any GO TO paragraph may be
ALTERed from anvwhere in the program to PROCEED to any section

or paragraph-name contained in the program.

5-32

CLOSE.

CLOSE

The function of this wverb is to communicate to the MCP that the

designated file-name being operated on or created is programmati-

cally completed, and also to fulfill the stated action requirements.

The construct of this verb is:

LOCK
PURGE
RELEASE
NO REWIND

CLOSE file-name-1 [REEL] WITH

[file—name—2...]

File-names must not be those defined as being SORT files.

The file must have been opened previously before a CLOSE statement

can be executed.

This statement applies to the following categories of input and

output files:

a. FPFiles whose input and output media involve print files,

card files, etc.

b. Files which are contained entirely on one reel and are

the only files on that reel.

c. Files which may be contained on more than one
reel. Furthermore, the number of reels might
higher than the number of physical tape units

on the system.

d. Disk files.

To show the effects of the CLOSE options, each type of

be discussed separately.

a. Card and MICR Input.

physical
possibly be

provided

file will

5-33

CLOSE

continued

5-34

L)

5)

CLOSE - releases the input areas, but does not

release the reader.

LOSE

VITH NO REWIND -~ same as CLOSE.

CLOSE WITH RELEASE - releases the input areas and
returns the reader to the MCP.

CLOSE WITH LOCK - same as CLOSE WITH RELEASE.

CLOSE WITH PURGE - same as CLOSE WITH RELEASE.

Card Output.

1)

2)

3)

CLOSE - punches the trailer label (if any), releases

the output areas, but does not release the punch.
CLOSE WITH NO REWIND - same as CLOSE.

CLOSE WITH RELEASE - releases the output areas and
returns the punch to the MCP.

CLOSE WITH LOCK - same as CLOSE WITH RELEASE.

CLOSE WITH PURGE - same as CLOSE WITH RELEASE.

Tape Input.

1)

CLOSE - checks the trailer label (if any) and rewinds
the tape. It does not release input areas, and the

unit remains assigned to the program.

CLOSE WITH NO REWIND -~ same as CLOSE except the tape

is not rewound.

CLOSE WITH LOCK - releases the input areas, checks
the trailer label (if any), rewinds the tape, and
the MCP marks the unit not ready.

CLOSE WITH RELEASE - releases the input areas. checks
the trailer label (if any), rewinds the tape, and

returns the unit to the MCP.

5)

CLOSE

continued

CLOSE WITH PURGE - releases the input areas, checks
the trailer label (if any), rewinds the tape, and
if a write ring is in the reel, over-writes the label,

making the tape a scratch tape.

Tape Output.

1)

3)

)

5)

CLOSE - writes the trailer label (if any), and
rewinds the tape. The unit remains assigned to

the program.

CLOSE WITH NO REWIND - writes the trailer label
(if any). The tape remains positioned beyond the
trailer label (or tape mark if there is no trailer

label). The unit remains assigned to the program.

CLOSE WITH LOCK - releases the output areas, writes
the trailer label (if any), rewinds the tape, and
the MCP marks the unit not ready.

CLOSE WITH RELEASE - releases the output areas,
writes the trailer label (if any), rewinds the tape,

and returns the unit to the MCP.

CLOSE WITH PURGE - releases the output areas, writes
the trailer label (if any), rewinds the tape, returns
the unit to the MCP, and the MCP over-writes the label

making it a scratch tape.

Printer and Lister Output.

1)

3)

CLOSE - prints the trailer label (if any), releases
the output areas but does not release the printer or

lister.
CLOSE WITH NO REWIND - same as CLOSE.

CLOSE WITH RELEASE - releases the output areas and

returns the printer or lister to the MCP.

5-35

CLOSE

continued

4) CLOSE WITH LOCK - same as CLOSE WITH RELEASE.
5) CLOSE WITH PURGE - same as CLOSE WITH RELEASE.

f. Disk Files. The actions taken on files ASSIGNED to
DISK will be discussed in terms of old files and new
files. An old file is one that already exists on disk
and appears in the MCP Disk Directory. A new file is
one created by the program and does not appear in the
Directory. A mnew file may only be referenced by the

program which creates it.
1) CLOSE.

a) For an old file, the file is left in the Direc-

tory and is available to other programs.

b) For a new file, the file is not entered in the
Directory, however, it remains on the disk and

may be OPENed again by this program.

2) CLOSE WITH NO REWIND - not permitted on
disk files.

3) CLOSE WITH RELEASE.

aj) For an old file, same as CLOSE file-name.

b) For a new file, the file is entered in the
Directory (thereby making it an old file).
The file is available to be OPENed by any

program.
4) CLOSE WITH LOCK.

a) For an old file, the file remains in the

Directory and is made available.

. ST
V.I.-y . »~oeaws T

o
N

A b mmmad dan dla TV o~ e e
PO IITEYXEG 4 w4l LirccyT

sequent action is identical to an old file.

5-36

CLOSE

continued

5) CLOSE WITH PURGE.

a) An old file is immediately removed from the disk

and deleted from the Directory.

b) A new file will be immediately removed from
the disk.

g. Remote Devices (Data Communications).

l) CLOSE ~ releases the input areas, but does not

release the adapter.

2) CLOSE WITH RELEASE - releases the input areas and

returns the remote device to the system.

If a file has been specified as being OPTIONAL, the standard END-
OF-FILE processing is not permitted whenever the file is not pre-

sent.

If a CLOSE statement without the REEL option has been executed for
a file, a READ, WRITE, or SEEK statement for that file must not be
executed unless an intervening OPEN statement for that file is

executed.

The CLOSE REEL option signifies that the file-name being CLOSEd

is a multi-reel magnetic tape input/output file. The reel will be
CLOSEd at the time of encountering the CLOSE REEL statement and an
automatic OPEN of the next sequential reel of the multi-reel file

will be performed by the MCP.

5-37

COMPUTE

COMPUTE.

The function of this wverb is to assign to a data item the wvalue

of a numeric data item, literal, or arithmetic expression.

The construct of this wverb is:

data-name-2 l
COMPUTE data-name-1 |[ROUNDED] = numeric-literal
 arithmetic expression 5

[ON SIZE ERROR any statement [{:%%g%ﬂﬂl§@ } statement]]

The literal must be numeric literal.

Data-name-2 must refer to an elementary numeric item. Data-name-1

may describe a data item which contains editing symbols.

The arithmetic expression option permits the use of any meaningful
combination of data-names, numeric literals, arithmetic operators,

and parenthesization, as required.
The maximum size of an operand is 99 decimal digits.

All rules regarding ON SIZE ERROR, ROUNDED options, truncation and

editing arc the same as for ADD.

If numeric-literal exponents are used, the results are accurate up

to 18 digits in length or to as many decimal places.

If data-name-2 exponent is used, the accuracy of the result is
dependent upon whether or not; and the manner in which, the result
is rounded, truncated and/or defined. An example of a numeric

literal exponent would be,

COMPUTE X = A¥*%2

5-38

COMPUTE

continued

where A is equal to 4. The result will be the X equals 16.
An example of data-name-2 exponent would be,
COMPUTE X = A¥*¥*B

where A equals 4 and B equals 2. The result will be that X equals
15.999 if X is defined as PC 99.999 or X equals 15 if X is defined
as PC 99.

An example of data-name-2 exponent (ROUNDED) would be,
COMPUTE X ROUNDED = A**B

where A equals 4 and B equals 2. The result will be that X = 16
if X is defined as PC 99 or X equals 16.000 if X is defined as

PC 99.999.

When data-name-1 is specified as being ROUNDED, regardless of the

decimal point location, the result will reflect greater accuracy.

NOTE
The 17 KB version of the COBOL Compiler will
accept only integer numeric-literal exponents

consisting of six digits or less in length.

The 30 KB version of the COBOL Compiler will
accept the entire COMPUTE construct, however,
the use of exponents comprised of data-name-2,
fractionalized literals or numeric-literals
longer than six digits require the presence

of floating point hardware.

Revised 9/28/70
by PCN 1033009-004 5-39

CopPYy

COPY.

The function of this verb is to allow library routines contained

on a source language library file to be incorporated into the

program.

The construct of this verb contains two options which are:

Option 1:

COPY library-name -

Option 2:

COPY library-name

data-name-1 | data-name-2

[REPLACING A{W°rd“1 } BY { word-2 }

\

word-3 BY word-4
data-name-3 } - {data—name-h} v ’

The COPY statement may refer only to one library entry in the 1li-
brary for every time it is used. Library-name is the value placed
in a library entry bounded by quotes or a procedure-name type word.
The library entry bounded by quotes cannot contain more than six
characters, where the procedure-name entry may be more than six char-
acters, however, if the procedure-name type entry is greater than

six characters, only the most significant six will be used for the

library-name. If the library-name is a procedure-name type word and
. . . IR - ’ D . Y S N

18 TUNSilae v WUdUL we peEpdiduied Livik wlée period \11L presenuv) Ly a
space.

5-40

COPY

continued

The library file is inserted in the source program immediately
after the COPY statement at compilation time. The result is the
same as if the library data were actually a part of the source

program.

Library data can encompass an entire procedure which may be any
number of statements, paragraphs, or entire source program divi-

sions or parts thereof.
Library files may not contain COPY statements.

No statement may appear to the right of the COPY statement on the

sSame source card.

COPY during the PROCEDURE or ENVIRONMENT divisions must follow a
SECTION or paragraph-name and all information contained in the

library file is included and can be fully referenced.

On a COPY during the DATA DIVISION, the FD file-name, or the level
01 data-name preceding the COPY is saved and the relative constructs

from the library file are discarded. For example, the statement
FD MASTER-INPUT COPY "MASTER".

will cause the library file titled MASTER to be inserted into the
source program immediately following the COPY statement. The source
program must refer to the FD file-name as MASTER-INPUT and not as
MASTER. The library FD file-name will appear on the output listing,

but cannot be referenced in the source program.

Library files copied from the library are flagged on the output

listing by an L preceding the sequence number.

In Option 2, a word is defined as being any COBOL word that is not
a COBOL Reserved Word. For example, the following statement re-
flects non-reserved COBOL words AAA,BBB and 1234, where AAA and BBB

are data-names and 1234 is a COBOL word:

MULTIPLY AAA BY BBB, THEN GO TO 1234,

Revised 9/28/70
by PCN 1033099-004 5-41

COPY

continued

If the COPY REPLACING option is specified, each word-1 or data-name-

1 stipulated will be replaced BY the word-2 or data-name-2 entries

specified in the option. Data-names may not be subscripted, indexed

or qualified.

5-42

COoPY

continued

Use of the COPY REPLACING option requires that the "library-name"
COBOL source image file be present, on disk, prior to compiling the
source program containing the COPY REPLACING option. The use of
this option will not cause alteration of the library file residing

on disk.

In Option 2, literals contained in a library file cannot be replaced

by literals, words or data-names.

In Option 2, if an integer is used for a word and it is the last
entry in a replacing list, it must be followed by a blank and then

a period. For example:

COPY REPLACING AAA BY HOURS,
BBB BY PAY-SCALE, 1234 BY 58b.

The COPY REPLACING option is exceptionally beneficial for conversion
of generalized COBOL source language library routines into specific
and well-named routines within a given program. For example, a
generalized COBOL source language library routine may use the

following data-names for their noted purposes:

Data-name Purpose
AAA Monthly hours worked per employee.
BBB Employee pay-rate.
CCC Employee social security number.
DDD Employee income tax rate.
EEE Employee year to date gross income.
FFF Employee year to date net income.
GGG Employee gross pay for month.
HHH Employee gross pay for month.
1234 Specifies a GO exit from the routine.

Revised 11-11-69
by PCN 1033099-003 5-42A

CorY

continued

A program calling upon the above generalized routine can replace
the non-descript data-names with descriptive names as defined in
the programs record description or WORKING-STORAGE area. For

example:

COPY... REPLACING AAA BY HOURS-WORKED

COPY... REPLACING BBB BY RATE-OF-PAY
COPY... REPLACING CCC BY SOC-~SEC-NR
COPY... REPLACING DDD BY INC-TAX-RATE

COPY... REPLACING EEE BY YR-TO-DATE-GROSS
COPY... REPLACING FFF BY YR-TO-DATE-NET
COPY... REPLACING GGG BY THIS-MONTHS-GROSS
COPY... REPLACING HHH BY THIS-MONTHS-NET

COPY... REPLACING 1234 BY WRITE-EMPLOYEE-DRAFT.

The specified source program data-names and exit points will be
inserted into the library file routine at every occurrence of the

assigned generalized names within the routine.

See appendix G for an example of a generalized Square Root Routine
being specified by a COPY REPLACING option.

LIBRARY CREATION. A library file will be created only during a
COBOL compilation each time that a source card is encountered con-
taining an L in column 7 with a library-name, bounded by quotation
marks starting in Field A of the same card. A library-file may

contain up to a maximum of 20,000 card images.

Each library file in the source program will be terminated when a
card containing an L in column 7 followed by all blanks or another

library-name is encountered.
Library-names cannot start with a blank character or a dash (-).

Once a file has been created, it may be COPYed by other programs.

Revised 10/8/69
by PCN 1033099-002 5-43

COPY

continued

or the crea