‘Burroughs

B 2500
and

B 3500
SYSTEMS

COBOL REFERENCE MANUAL

B

Burroughs

B 2500/B 3500
INFORMATION PROCESSING SYSTEM

COBOL

REFERENCE MANUAL

B

Burroughs Corporation
Detroit, Michigan 48232

$5.00

ii

Copyright © 1966, 1967, 1968, 1969 Burroughs Corporation
AA 873007 AA 971839 AA 009428

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con-
sequences arising out of the use of this material. The infor-
mation contained herein is subject to change. Revisions may
he issued to advise of such changes and/or additions.

This reprint includes the information released under
the foliowing:

PCN 1033099-001 (Aug 28, 1969)
PCN 1033099-002 (Oct 8, 1969)
PCN 1033099-003 (Nov 11, 1969)

Correspondence regarding this document should be forwarded using the Kemarks Form at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation. 6071 Second Avenue, Detroit, Michigan 48232.

ACKNOWLEDGEMENT

Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this
report as the basis for an instruction manual or for any other
purpose is free to do so. However, all such organizations are
requested to reproduce this section as part of the introduction

to the document. Those using a short passage, as in a book review,
are requested to mention "COBOL" in acknowledgement of the source,

but need not quote this entire section.

COBOL is an industry language and is not the property of any com-

pany or group of companies, or of any organization or group of

organizations.

No warranty, expressed or implied, is made by any contributor or
by the COBOL Committee as to the accuracy and functioning of the
programing system and language. Moreover, no responsibility is
assumed by any contributor, or by the committee, in connection
therewith.

Procedures have been established for the maintenance of COBOL. In-
quiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data

Systems Languages.

The authors and copyright holders of the copyrighted material used

herein

FLOW-MATIC (Trademark of Sperry Rand Corporation), Programing
for the Univw:()]ﬁand 1T, Data Automation Systems copy-
righted 1958, 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F 28-8013, copyrighted 1959 by IBM; FACT,
DST 27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or
in part, in the COBOL specifications. Such authorization extends
to the reproduction and use of COBOL specifications in programing

manuals or similar publications.

Revised 8/28/69 iid
by PCN 1033099-001 i1

' TABLE OF CONTENTS

SECTION TITLE
INTRODUCTION . . v o & & o
1 COBOL LANGUAGE ELEMENTS. . .
General « . .

Character Set

Characters Used for Words.

Punctuation Characters

Characters Used in

Characters Used in

Editing

Formulas.

Relations

Characters Used in
Definition of Words . .
Types of Words

Nouns.

File-Name . .
Record-Name .
Data-Name . .
Condition-Name.

Procedure-Name.

Literals. . .

.

Numeric Literal.

Non-Numeric Literal.

Undigit Literals

Figurative Constant

Special Register Name

TALLY. .

.

TODAYS-DATE (Calendar)
DATE (Julian).

TIME . .
SPECIAL-NAMES. . .
Verbs. « « « . . .
Reserved Words . .

Connectives .

Optional Words.

PAGE
XV
1-1
1-1
1-1
1-1
1-2
1-2
1-2

1-10
1-10
1-10
1-10
1-11
1-11

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE
1 (cont) Key WordsS. « « « o« « o o « o+ o 1-11
Statement and Sentence Formation . . ,., 1-11

Paragraph Formation. « . . . 1-11
Section Formation. . . « + + o« « o o+ o+ o 1-11

Notation Used In Verb and
Entry Formats. « + « « o o o o o o o+ o o 1-12

Key Words .« « + « « o« o o o o » o« » 1=12
Optional Words. . « + o o+ ¢ « o o« o 1-12
Lower Case Words. . « « o« o o o o o 1-12
Braces. « « s s o o o o o o o o o o 1=-12

BI’aCketS. 1—13

T
e
L W

Consecutive Periods . « « « « « « &

Periode o« o o o o o o o o s o o o o

2 IDENTIFICATION DIVISION . ¢ o + o o o o s o

General. . « « ¢ ¢ ¢ ¢ o o ¢ o o o o »
Syntax Rules .« « o o« ¢ o ¢ « o o ¢ o »

MONITOR « ¢ o + o o o o o o« s o o
Coding the IDENTIFICATION DIVISION . . .

WoN W
EW R R

3 ENVIRONMENT DIVISION. . . - « « o o« &« + o« « « 3-1
General. +« « « « o s s o o o o« « o o o« o 3=1
Organization . . + « ¢« « o « ¢ o o o o o« 3-1
StrUCtUTE. + o o o o o o o o s o o o o » 3-1
Syntax Rules « « o o o ¢« ¢ o o s o « o 3-1
Configuration Section. . « « . . « « . .+ 3-3

SOURCE-COMPUTER « + ¢ « ¢ ¢ ¢« o + » 3=3
OBJECT-COMPUTER . . + « + o +» « « » 3-4
SPECIAL-NAMES . ¢« +« « « & « « « + » 3-6
INPUT-OUTPUT SECTION . . + « « « + « » « 3-8
FILE-CONTROL. . « « &+ « « « « « +» . 3-8
I-0-CONTROL . .+« « « &« & o o & « « » 3-16

Coding the ENVIRONMENT DIVISION. 3-18

I DATA DIVISTON - - - - S . |

General- o L] . l"-l

SECTION
4 (cont)

TABLE OF CONTENTS (cont)

TITLE
DATA DIVISION Organization .
DATA DIVISION Structure. . .
Record Description Structure
Level~-Number Concept
Qualification. . « « « « o«
Tables ¢« ¢ ¢ o ¢ o ¢« o o o &
Subscripting« . « .
FILE SECTION . « ¢« o « o =+« &
FILE DESCRIPTION. . . .
BLOCK .« . « + « « « + &
DATA RECORDS.
FILE CONTAINS
LABEL . ¢ « ¢ o « o o &
RECORD. + ¢« ¢ ¢ o o o
RECORDING MODE.
VALUE OF ID . .« « o «
Record Description. . .
BLANK WHEN ZERO
Condition-Name.
Data-Name . . . « « « .
JUSTIFIED ¢« « « o o o o
Level~-Number. o
OCCURS. ¢ o o o o o o o«
PICTURE « .« « .
REDEFINES . .« . « . . .
RENAMES . . . « .« « .« &
SYNCHRONIZED.
USAGE ¢ ¢« ¢« « ¢ ¢ o o &
VALUE ¢ ¢ ¢ ¢ o « o o &
WORKING-STORAGE SECTION., . .

Organization. . . « « .

Non-Contiguous WORKING-STORAGE.

WORKING-STORAGE Records
Initial Values. . « + =

Condition-Names . . .« &

PAGE

SECTION
4 (cont)

viii

TABLE OF CONTENTS (cont)

TITLE
Translate Tables. « « ¢ « « o

Coding the WORKING-STORAGE SECTION

PROCEDURE DIVISTION. ¢« « o o o« o ¢ o o &

General. « ¢« « « ¢ ¢ o s o o o o @
Rules of Procedure Formation . . .
Statements . « « ¢« ¢ ¢« ¢ o ¢ o o
Imperative Statements
Conditional Statements. . . .
Compiler-Directing Statements
Sentences. « + o « o o o o o 0 e e
Imperative Sentences.
Conditional Sentences
Compiler-Directing Sentences.,
Sentence Punctuation
Verb Formats. « « « ¢« ¢« o+ + &
Sentence Formats.
Execution of Imperative Sentences.
Execution of Conditional Sentonces

Execution of Compiler-Directing

Sentences. « « ¢ ¢ o o o o s o s
Control Relationship Between

Procedures « « « o« ¢ ¢ ¢ o o o o o
Paragraphs . . ¢ ¢« ¢« ¢ s s o & o =

SECTI ONS L] L] . L] L] * . L] L] L] * L] L]
DEC IJARATIVES . . L] L] L] L] [] L] . . .
USE Statement . ¢« ¢« ¢« ¢ ¢ «

COPY Statement as a DECLARATIVE

Arithmetic Expressions . « « « « .

Arithmetic Operators.

.

Formation and Evaluation Rules.

Conditions « « ¢« ¢ o o o o o o o
Logical Operators . . « « . &
Relation Condition.
Reiaitionai Operators. « « «

Comparison of Operands. . . .

PAGE
L4
b7y

5-11
5-11
5-11
5-13

5-13

SECTION
5 (cont)

TABLE OF CONTENTS (cont)

TITLE

Non-Numeric. . .

Numeric. . + « .
Evaluation Rules. . .
Simple Conditions . .

Compound Conditions .

Abbreviated Compound Conditions

Segmentation . « « ¢« . o

Program Segments. . .

.

SEGMENT Classification.

Priority Numbers. . .

Internal Program Switches.

Vel"bs

Specific Verb Formats
ACCEPT. . ¢« ¢ « « o &
ADD
ALTER o« ¢ « ¢ « + o« &
CLOSE « + « « o « « &
COMPUTE+ . . &
COPY . . . « ¢« « o

DISPLAY . . « ¢ o «
DIVIDE. ¢ « « « o « &
END-OF-JO0B. .« « « .« .
ENTER ¢ ¢ ¢« & o o« « &
EXAMINE . . ¢« « « « &
EXIT. ¢« o &« o o« o o &
FILL. . « . ¢« « ¢« « &
GO. & v ¢« ¢ ¢ ¢ o . .
IFe ¢ ¢« o ¢ o o o o &

Simple Conditional

. . ° .

Tests .

Conditional Statements . .

Relation Tests .

. . . .

Relative Value Tests . . .

Class Tests. . .

Conditional Variable Test.

Revised 9/28/70

by PCN 1033099-004

SECTION

5 (cont)

DATA

TABLE OF CONTENTS (cont)

TITLE

MOVE. . .
MULTIPLY.
NOTE. . .
OPEN. . .
PERFORM .
READ. . .
RELEASE .
RETURN. .
SEARCH. .
SEEK. . .
SET . . .
SORT. . .
STOP. . .
SUBTRACT.
TRACE . .
UNLOCK.

USE . . .
WAIT. . .
WRITE . .
Z2IpP . .

Coding the PROCEDURE

COMMUNICATIONS

General
General. . . .

NOT

.

- - . - -

Specific Verb Formats. . . « .

ACCEPT. .
CLOSE . .
DISABLE .
DISPLAY .
ENABLE.

FILL. . .

INTERROGATE

READ L L] .

WATT.

WRITE . .

.

.

- - . . L

L] . L] . L)

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE

6 (cont) WRITE-READ. . . + ¢ « 4 v ¢« o o« « o 6-23
WRITE—READ_ TRANS 3 6- 25
WRITE-TRANS-READ. . « « + « & o« . . 6-26

7 C ODING FORM L] . . . [] L[] L] L] o L] L] . L2 L] L] L] .
General. « ¢ o o« o o o o o o o o o o o

Coding Form Representation

7-1
7-1
-1
Sequence Numbers (Columns 1-6) 7-3
Continuation Indicator (Column 7). e« o« o 7=3
Continuation of Undigit Literals 7-3
Continuation of Non-Numeric Literals . . 7-4

Continuation of Words and
Nu«meI’iC Literals 7-4

Division HeadeT. « « « « & o o « o o« « o 7=4
Section Header . . .« « ¢ ¢ &+ & &+ o o o o 7-

Paragraph Names And Paragraphs 7-5
DATA DIVISION Entries. « + « o o & « « o« 7-5
DECLARATIVES « ¢« ¢ o ¢ o« o o o o o o o o 7=7
Punctuation. « ¢ 4 ¢ o ¢ 4 e . . T7=7

8 COBOL COMPILER CONTROL. . . ¢ « o« 2« o« « « « o 8-1
General. . o o ¢ o o & o o o o s o « & o 8-1

Compilation Card Deck. +« +« « o « « +« » . 8-1

?Compile Card « ¢« « ¢ o ¢« & o« « o« «» 8=2

MCP Label Card. . . <« <« o « « « « « 8=2

$ Option Control Card . ¢« « « . . . 8-3

Source Data Cards « « + « +« « + + .« 8-6

Label Equation Card . . . «. . + . . 8-8

Compiler Limits. « « ¢« + ¢ « ¢ o « o« « « 8-9

9 READER SORTER AND LISTER. « « ¢ « « « s« « o« « 9-1
General. . + « o« « o« o o o o o o o+ o o & 9-1

Specific Verb Formats. « « « ¢« ¢« o o« + « 9=-1

CONTROL 4 9-2

CONTROL 6 &« v v v o o o o o o o« 9-3

OPEN. « ¢« v ¢« « 4 o « & o« « o o« o« « 9=4

Revised 9/28/70 xi
by PCN 1033099-004

SECTION

O

10

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDT

APPENDIX

INDEX. .

FIGURE

N
1
=

i
-

-F‘-{:‘\.«J
N =

xii

—_

(¢}

5 8 O Q W =

!

Q

mo@

ct

o’
g
3
s

[.

SELECT: « o ¢ o o o o o o =
USE ¢« ¢« ¢ o o o o o o o+ o @
CONTROL .+ + + & « ¢ o ¢ o« &
ENABLE: o ¢ ¢ « o « o « o »
WRITE ¢« ¢« ¢ ¢ o o o o o o =

COBOL FILTER PROGRAM.
General. &+ ¢« « « o o o o o o o

Configuration for Execution of
Filter . L] . . L) - L] L] . ® L] . L]

Execution Cards. . « ¢ ¢ ¢ o o &
Specification Input Example

Error And Advisory Messages

Output Messages And Image Code.

Repetitive Operations . . .

COBOL RESERVED WORDS. . .« « « « « « o &
COBOL SYNTAX. &+ ¢ ¢ o o o o o« o o o o =
EBCDIC, ASCII, AND BCL REFERENCE TABLES
WARNING AND DIAGNOSTIC ERROR MESSAGES .
ENTER SYMBOLIC RESERVED WORDS
DISK FILE HANDLING. « o« « o ¢ o o o s
PROGRAMING EXAMPLES . ¢ o &« o« o o o o o

UTILIZATION OF CORE DUMP FOR B 2500/
L

B 3500/B 4500 COBOL DEBUGGING . . s e

B 2500/B 3500/B 4500 COBOL
DEBUGGING TECHNIQUE . « « ¢ + &« & + o &

. . . L] [] L] . .]

LIST OF ILLUSTRATIONS
TITLE

Coding the IDENTIFICATION DIVISION. . .

£ TOATIZT D AATAMTIMAIM TVTYXPT O T AT
Vi A0N V A IVAN NN A A/ ALV AJaUiv e . . L] .

Coding of Level-Number. . « +« +« + « « .

Coding of Multi-Dimensioned Table . . .

10-1
10-2
10-4
10-4
10-7
10-9

I-1

one

PAGE

N
1
(%11

1
[
\D

P'-F (W]
N W

FIGURE

4-3
Loy

Ut ot Ut Ut \'J'l Ut Ut it it &
| ! } 1
o 0N Ot &L NN B OV

QQQPQ
00 ~J O W\

NUMBER

L-1

LIST OF ILLUSTRATIONS (cont)
TITLE

Coding of FD and DATA RECORDS . . .
Label Coding. « « « o o o o o o« o« &
Coding of Condition-Name.
Coding of WORKING-STORAGE SECTION, .
of COPY Coding. . « . .+ =
of COPY Coding. . . « « &
Example of COPY Coding.

Example 1
2
3
Example 4 of COPY Coding.
5
6
7

Example

of COPY Coding. « + + « o
of COPY Coding. . « « « =
Example of COPY Coding. . . + .« .
Example 8 of COPY Coding. . « « « .

Example
Example

Example of SEARCH Operation Relating

to Option 1 . .« ¢ ¢« « o o o o o o
Coding of PROCEDURE DIVISION. . . .
Coding Format for a Source Line . .

Sample Coding Form. . « « o « o o« =

Sample Coding Showing Continuation of

Lines, Special Remarks, and Actions

Compilation Card Deck « .« =

.

s

PAGE

e« « . . k10
e o e o o b-22
e e o o o L-34
e e e . e k75
.+ + « . 5-U45
e e . . . 5-46
e e e o o 5=47
e+ o « . 5-48
e o« + o .« 5=49
« + « . .« 5-50
e« e+ . 5-51
S T 4

s+ e . . 7-6A
8

s s s s s

Example of a Tape Parity Errors Routine G-2

Example of Use Procedures to Change Label

Fields .« ¢ ¢« ¢ o o o o o o s o o

e o s« o« G=3

Example of Copy Replacing and Square Root

Program . . ¢« ¢« ¢ o ¢ ¢ ¢« o o o o

Example Output of Copy Replacing and Square

Root Program. . « ¢« ¢ o ¢ o o o o
Example of MICR Reader Sorter . . .
Example of Sort Program . . « « + o
Example of SEARCH Verb Usage (Sheet

Example of Segmentation Gathering .

LIST OF TABLES
TITLE

Maximum Value of Integers

.

e e e o . G=-4

PAGE

h-12

Revised 9/28/70 .
by PCN 1033099-004 X111

xiv

Recordin

Editing Sign Control Symbol Results . . .

Order of Precedence When Using
Characters As symbols . « « o « ¢ o o « &

Numeric or Alphabetic Items . . . « « « &
Alphanumeric ItemsS. « « &+ o o o s o s o o
Editing Application of the Picture Clause

Combination of Symbols in Arithmetic
EXPressions « « o o o o s o o o o o s o

Relationship of Conditions, Logical
Operators, and Truth Values . « « o « o o

Combinations of Conditions and
Logical Operators . o« « + o« o o o o o o o

»

5-12

5-12

INTRODUCTION

This manual provides a complete description of COBOL (QQMMON
BUSINESS QRIENTED LANGUAGE) as implemented for use on the Burroughs
B 2500/B 3500 Electronic Data Processing Systems. This concept of
COBOL embraces the adoption of proposed American National Stan-

dards Institute (ANSI) COBOL-68.

COBOL's long list of advantages is derived chiefly from its in-
trinsic quality of permitting the programmer to state the problem
solution in English. The programing language reads much like or-
qinary English prose, and can provide automatic program and system
documentation. When users adopt in—house standardization of ele-
ments within files, plus well chosen data-names, before attempting
to program a system, they obtain maximum documentational advantages

of the language described herein.

To a computer user, the Burroughs B 2500/B 3500 COBOL offers the

following>major advantages:
a. Expeditious means of program implementation.

b. Accelerated programmer training and simplified

retraining requirements.

c. Reduced conversion costs when changing from a computer

of one manufacturer to that of another.
d. Significant ease of program modification.
e. Standardized documentation.

f. Documentation which facilitates non-technical management

participation in data processing activities.
g. Efficient object program code.

h., Segmentation capability which sets the maximum allowable

program size well in excess of any practical requirement.

i. Due to the incorporation of debugging language statements,

Revised 9/28/70
by PCN 1033099-004 XV

a high degree of sophistication in program design is

achieved.
j. A comprehensive scurce program diagnestic capability.

A program written in COBOL, called a source program, is accepted

as input by the B 2500/B 3500 COBOL Compiler. The compiler wveri-
fies that all rules outlined in this manual are satisfied, and
translates the source program language into an object program
language capable of communicating with the computer and directing

it to operate on the desired data. Should source corrections become
necessary, appropriate changes can be made and the program recom-
piled. Thus, the source deck always reflects the object program

being operationally executed.

A COBOL source program is always divided into four parts or DIVI-
STIONS in the following order:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.

PROCEDURE DIVISION.

The purpose of the IDENTIFICATION DIVISION is to identify the pro-

gram and to include an overall description of the program.

The ENVIRONMENT DIVISION consists of two sections. The Configu-
ration Section specifies the equipment being used. The Input-
Output Section associates files with the hardware devices that will
be used for their operation. This section also furnishes the com-

piler with information about mass storage parameters.

The DATA DIVISION is used to describe data elements which the object
program is to manipulate or create. These data elements may be items

within files, records or program work areas, and constants.

The PROCEDURE DIVISION defines the necessary steps which will accom-

Ta ok 41 o e r wrb oA - ~ Aan 1A ~ mm A
AL v A WIITUL U PpOALC UAllE Vil LT A A4S WMTL Lia

DATA DIVISION.

el

Xvi

This publication supercedes and replaces the Burroughs B 2500/
B 3500 COBOL Language Manual Form 1027406 dated June, 1968.

Revised 9/28/70 .
by PCN 1033099-004 XV11

SECTION 1
COBOL LANGUAGE ELEMENTS

GENERAL.
It has been stated that COBOL is a language based on English and

that the language is composed of words, statements, sentences,
paragraphs, etc. The following paragraphs define the rules to
be followed in the creation of this language. The use of the

different constructs formed from the created words is covered in

subsequent sections of this document.

CHARACTER SET.
The B 2500/B 3500 COBOL character set consists of the following

53 characters:

space or blank

+

plus sign
- minus sign or hyphen

asterisk

Nk

slash (virgule)

equal sign

$ dollar sign
, comma
. Period or decimal point

semicolon

-e

" quotation mark
left parenthesis
right parenthesis

greater than symbol

AV — ~

less than symbol

colon

@ at sign

CHARACTERS USED FOR WORDS.
The character set for words consists of the following 37 char-

acters:

9
A -2
(h

PUNCTUATION CHARACTERS .

The following characters may be used for punctuation:

@ at sign space or blank

" quotation mark . period

(left parenthesis , comma (see note below)

) right parenthesis ; semicolon (see note below)
NOTE

Commas and semicolons may be used
between statements, at the program-
mer's discretion, for enhanced read-
ability of the source program. Use
of these characters implies that a
following statement is to be included

as a portion of an entire statement.

CHARACTERS USED IN EDITING .
The COBOL Compiler accepts the following characters in editing:

$ dollar sign + plus

* asterisk (check protect) - minus

s comma CR credit

. actual decimal point DB debit

B space Z Zero suppress
0] Zero

CHARACTERS USED IN FORMULAS .

The COBOL Compiler accepts the following characters in arithmetic

expressions:
+ addition ** exponentiation
- subtraction (left parenthesis
* multiplication) right parenthesis
/ division

CHARACTERS USED IN RELATIONS.

The COBOL Compiler accepts the following characters in conditional

relations:

= equal
< less than
>

greater than

DEFINITIONS OF WORDS.

A word is created from a combination of not more than 30 charac-

ters, selected from the following:

A through Z
0 through 9
- (the hyphen)

A word is ended by a space, or by a period, comma, or semicolon.
A word may not begin or end with a hyphen. (A literal constitutes

an exception to these rules, as explained later.)

TYPES OF WORDS. .
COBOL (like English) contains types of words. These word. types

are:
a. Nouns.
b. Verbs.
c. Reserved words.
NOUNS.

Nouns are divided into nine special categories:

a. File-names.

b. Record-names.

c. Data-names.

d. Condition-names.
e. Procedure-names.

f. Literals.

g. Figurative constants.

1-3

h. Special register names.

i, Special names.

Since the noun is a word, its length may not exceed thirty char-
acters (exception: literals may not exceed 160 characters). For
purposes of readability, a noun may contain a hyphen. However,
the hyphen may neither begin nor end the noun (this does not apply
to literals).

FILEE-NAME.. A file-name is a collective name or word assigned to
designate a set of data items. The contents of a file are divided
into logical records that in turn are made up of any consecutive

set of data items.

RECORD-NAME. A record-name is a noun assigned to identify a logi-
cal record. A record can be sub-divided into several data items,

each of which is distinguishable by a data-name.

DATA-NAME. A data-name is a noun assigned to identify elements
within a record or work area and is used in COBOL to refer to an
element of data, or to a defined data area containing data elements.
Each data-name must be composed of at least one alphabetical char-

acter.

CONDITION-NAME. A condition-name is a special data-name which

is assigned to a specific value within a set of values. TFor illus-
trating a condition-name, consider this example. If THIS-YEAR
identifies the twelve months of a year, whereas its subordinate
data items are defined as JANUARY, FEBRUARY, etc., and the values
assigned to each month range from 01 to 12, then it follows that
JUNE would have the assigned value of 06. Using the condition-name
JUNE, the programmer can utilize it in conditional statements as
follows:

IF JUNE GO TO

s 9!:111'317‘2191’!1‘, to the statement:

1-4

IF THIS-YEAR IS EQUAL TO 06 GO TO

As a conditional-name, the special data-name itself is called a
conditional-variable. The value that it may assume is referred to
by condition-names. The condition-name is formatted according to

noun rules and may be used only in conditional statements.

PROCEDUREJQANE_ A procedure-name is either a paragraph-name or
section name, and is formulated according to noun rules. The ex-
ception is that a Procedure-name may be composed entirely of nu-
meric characters. Two pProcedure-names are identical only if they
both consist of the same character strings. For example: . proce-

dure-names 007 and 7 are not equivalent.

LITERALS. .. A literal is an item of data which contains a value iden-
tical to the characters being described. There are three classes

of a literal: numeric, non-numeric, and undigit.

Numeric Literal.

A numeric literal is defined as an item composed of characters
chosen from the digits O through 9, the plus sign (+) or minus

sign (-), and the decimal point. The rules for the formation of

a numeric literal are:

a. Only one sign character and/or more than one decimal
point may be contained in a numeric literal for use

with Sterling. Left-most decimal determines the scale.

NOTES
A comma must be substituted for the dec-
imal point if the DECIMAL-POINT IS comMMA
option is used (see SPECIAL-NAMES in the
ENVIRONMENT DIVISION).

The implied USAGE of numeric literals is
COMPUTATIONAL except when used with the
verbs DISPLAY or STOP.

1-5

b. There must be at least one digit in a numeric literal.

my

C. The sign of a numeric 1iteral must appear as the left-most
character. If no sign is present, the literal is defined

as a positive value.

d. The decimal point may appear anywhere within the literal
except for the right-most character of a numeric literal.
A decimal point within a numeric literal is treated as an
implied decimal point. Absence of a decimal point de-
notes an integer quantity. (An integer is a numeric

literal which contains no decimal point.)

e. A numeric literal used for arithmetic manipulations
cannot exceed 99 signed digits, otherwise, the maximum
is 160 digits. The following are examples of numeric

literals.

13247
.005
+1.808
-.0968
7894 .54

Non-Numeric Literal.

A non-numeric literal may be composed of any allowable character.
The beginning and end of a non-numeric literal is denoted by a
quotation mark. Any character enclosed within guotation marks is
part of the non-numeric literal. Subsequently, all spaces enclosed
within the quotation marks are considered part of the literal. Two
consecutive quotation marks within a non-numeric literal cause a
single quote to be inserted into the literal string. Four conse-

cutive quotation marks will result in a single " literal.

A non-numeric literal cannot itself exceed 160 characters. Examples

of non-numeric literals are:

1-6

Literal on source program level Literal stored by compiler

"ACTUAL SALES FIGURE" ACTUAL SALES FIGURE
n_1234.567" -1234.567
nunp IMITATIONS" " " "LIMITATIONS"
"ANNUAL DUES*" ANNUAL DUES
neHan "
HATRRN A"B

NOTE

Literals that are used for arithmetic computa-
tiom must be expressed as numeric literals and
must not be enclosed in quotation marks as non-
numeric literals. For example, "-7.7" and -7.7
are net egquivalent. The compiler stores the non-
nuseric literal as -7.7, whereas the numeric lit-
eral would be stored as 0077 if the PICTURE were
S999V9 DISPLAY with the assumed decimal point

leocated between the two sevens.

Undigit Literals.

Binary 10 through 1% are represented as A through F and must be
bounded by @ signs. For example, binary 11 would be literalized
by @B@. An undigit literal cannot exceed 160 digits. Refer to

section 7 fer the cerrect declaration.

FIGURATIVE CONSTANT. A figurative constant is a particular value
that has been assigned a fixed data-name and must never be enclosed
in quotatioam marke except when the word, rather than the wvalue, is

desired. The figurative constant names and their meanings are:

ZERO Represents the value of 0.

ZEROS

ZEROES

SPACE ' Represents one or more spaces (blanks).

SPACES

HIGH-VALUE Represents the highest intermnal coding

HIGH-VALUES sequence (i.e., 999) value. When HIGH-VALUES l
Revised 9/28/70

by PCN 1033099-004 1-7

LOW-VALUE
LOW-VALUES

QUOTE
QUOTES

h
-
-

are moved to a signed numeric computa-
tional field, the sign will not be

changed,

Represents the lowest internal coding
Sequence (blanks) value. When LOW-
VALUES are moved to a signed numeric
computational field, the sign will not

be changed.

Represents one or more of the single
character " (quotation mark). The word
QUOTE or QUOTES does not have the same
meaning in COBOL as the symbol ", For
example, if "STANDARDS" appears as part
of the COBOL source program, the word
STANDARDS is stored in the object pro-
gram. If however, the full "STANDARDS"
is desired in a DISPLAY statement, it
can be achieved by writing QUOTE "STAN-
DARDS" QUOTE, in which case the object
Program will print "STANDARDS". The
same result can be obtained by writing
"NUSTANDARDS""" in the source program.
Only the latter method can be used in

MOVE statements and conditionals.

When followed by a non-numeric literal
or a figurative constant, the word ALL
represents a series of that literal.
For example, if the COBOL statement is
MOVE ALL iiteral TO ERROR-CODE, then
the resultant ERROR-CODE would take on

the following values:

ALL

literal

ALL
ALL
ALL
ALL
ALL

"ABG"

n3n or ALL 3
"HI-LO™"
QUOTE

SPACES

Size of ERROR-CODE Resulting value of
ERROR-CODE
7 characters ABCABCA
5 characters 33333
12 characters HI-LOHI-LOHI
3 characters nmnn
9 characters (nine spaces)

Revised 9/28/70
by PCN 1033099-004 1~ 8A

NOTE
The use of ALL with figurative constants,
as illustrated in the last two instances,
is redundant. MOVE ALL SPACES and MOVE
SPACES would yield the same result.

SPECIAL REGISTER NAME. The Burroughs COBOL Compiler provides four
special PROCEDURE DIVISION register mames which are:

a. TALLY.

b. TODAYS-DATE (Calendar).
c. DATE (Julian).

d. TIME.

TALLY.

The special register TALLY is automatically provided by the COBOL
Compiler and has a defined length of five COMPUTATIONAL digits.

The primary use of TALLY is in conjunction with the EXAMINE state-
ment, however, TALLY may be used as temporary storage oOr an accumu-
lative area during the interim when EXAMINE...TALLYING...is not

being executed in a program.

Todays-Date (Calendar).

This special register contains the current date and is maintained
by the Master Control Program (MCP). Its format is made of three
character pairs, each representing the month, day and year. For
example, if the current date is Dec. 13th, 1968, the TODAYS-DATE
register contains 121368. The function of TODAYS-DATE is to
provide the programmer with a means of referring to the current
date during program execution. TODAYS-DATE is maintained in COM-
PUTATIONAL form.

Date (Julian).

This special register contains the current Julian date and is
maintained by the MCP. Its format is YYDDD. For example, if the
current date were January 1, 1968, the DATE register would contain

68001. The function of DATE is to save programmatic evaluation

Revised 9/28/70
by PCN 1033099-004 1-9

of TODAYS-DATE when Julian dates are required. DATE is maintained
in COMPUTATIONAL form.

Time.

Access to an intermal clocking register reflecting the time of day

is programmatically available whenever TIME is requested. This
register is maintained in milliseconds by the MCP as a 10-digit
COMPUTATIONAL field. The contents of the TIME register will be
maintained in hours, minutes, seconds and 60th of seconds when

TIME 60 is declared in the OBJECT-COMPUTER paragraph.

SPECIAL-NAMES.

The SPECIAL-NAMES paragraph of the ENVIRONMENT DIVISION allows

the programmer to assign a significant character for a CURRENCY
SIGN, and to declare DECIMAL-POINT as being a COMMA and to provide
a means of relating implementor hardware-names to mnemonic-names

as desired by the programmer.

VERBS.

Another type of COBOL word is a verb. A verb in COBOL is a single
word that denotes action, such as ADD, WRITE, MOVE, etc. All
allowable verbs in COBOL, with the exception of the word IF, are
truly English verbs. The usage of the COBOL verbs takes place

the PROCEDURE DIVISTION

RS S N i VA R]

nrimarily within
primarily withir

RESERVED WORDS.

The third type of COBOL word is a reserved word. Reserved words
have a specific function in the COBOL language and cannot be used
out of context, or for any other purpose than the one for which
they were intended. Reserved words are for syntactical purposes

and can be divided intoc three categories:

a. Connectives.
b. Optional words.

c. Key words.

A complete list of reserved words in COBOL used by the compiler is

included in Appendices A and E.

1 TN
e

A -

CONNECTIVES. Connectives are used to indicate the presence of
a qualifier or to form compound conditional statements. The con-
nectives OF and IN are used for qualification. On the other hand,
AND, AND NOT, OR, or NOT are used as logical connectives in con-

ditional statements.

OPTIONAL WORDS. Optional words are included in the COBOL language

to improve the readability of the statement formats. These op-

tional words may be included or omitted, as the programmer wishes.
For example, IF A IS GREATER THAN B... is equivalent to IF A
GREATER B..... Therefore, the inclusion or omission of the words

IS and THAN does not influence the logic of the statement.

KEY WORDS. The third kind of reserved words is referred to as
being a key word. The category of key words includes the verbs and
required words needed to complete the meaning of statements and
entries. The category also includes words that have a specific
functional meaning. In the example shown in the above paragraph,

the words IF and GREATER are key words.

STATEMENT AND SENTENCE FORMATION.

Statements are formed by the completion of the various entry and

verb constructs discussed in the later sections of this manual.

A statement may be terminated by a period and thus become a sen-
tence. A group of statements, terminated by a period, forms a
Sentence. An example of a sentence made up of a group of state-
ments would be MOVE A TO B, ADD Ol TO COUNTER WRITE SUMMARY. Note
that the word THEXN can be used interchangeably with the semi-~colon

or comma.

PARAGRAPH FORMATION.

One or more sentences may comprise a paragraph. A paragraph begins

with a paragraph name and is terminated by the paragraph name of

the next paragraph.

SECTION FORMATION.

One or more paragraphs may formulate a section. A section includes

Revised 9/28/70
by PCN 1033099004 1-11

all paragraphs between one section name and a following section
name or the end of the source program. The method of referring to
procedures within sections and transferring of operational control

to these procedures is discussed in the PROCEDURE DIVISION section.

NOTATION USED IN VERB AND ENTRY FORMATS,

The notation comnventions that follow enable the reader to inter-

pret the COBOL syntax presented in this manual.

KEY WORDS.

All underlined upper case words are key words and are required when
the functions of which they are a part are utilized. Their omis-
sion will cause error conditions at compilation time. An example

of key words is as follows:

IF data-name IS [NOT]

NUMERIC
ALPHABETIC

The key words are: IF, NOT, NUMERIC, and ALPHABETIC.

OPTIONAL WORDS.
All upper case words not underlined are optional words and are
included for readability only and may be included or excluded in

the source program. In the example above, the optional word is:

IS.

LOWER CASE WORDS,
All lower case words represent generic terms which must be supplied
in that format position by the programmer. Integer-l and integer-2

are generic terms in the following example:

FILE-LIMIT IS integer-1 THRU integer-2

BRACES.

When words or phrases are enclosed in braces {}, a choice of one

of the entries must be made. In reference to the key words example
above, uiie U1 uUiie otiiei UL Ulie Words WNUMBRIC Ui ALTOADETLIC must ve

included in the statement.

=
1

1=

He)

BRACKETS.

Words and phrases enclosed in brackets [] represent optional por-
tions of a statement. If the programmer wishes to include the
optional feature, he may do so by including the entry shown between
brackets. Otherwise it may be omitted. In terms of the example
above, the word enclosed in brackets is optional. However, if the
programmer wishes to distinguish between NUMERIC and ALPHABETIC,

he must choose one of the words enclosed in braces.

CONSECUTIVE PERIODS.

The presence of ellipsis (...) within any format indicates that
the data immediately preceding the notation may be successively

repeated, depending upon the requirements of broblem solving.

PERIOD.

When a single period is shown in a format, it must appear in the
same position whenever the source program calls for the use of that
bparticular statement. A space after a period is not required, how-
ever, such a practice will enhance readability of the source pro-

gram.

SECTION 2
IDENTIFICATION DIVISION

GENERAL.

The first part or division of the source program is the IDENTI-
FICATION DIVISION. Its function is to identify the source program

and the resultant output of its compilation. In addition, the date I
the program was written, the date the compilation was accomplished,
plus other pertinent information may be included in the IDENTIFI-
CATION DIVISION.

The structuvre of this division is as follows:
[MONITOR...]

IDENTTIFICATION DIVISION.

[PROGRAM-ID. Any COBOL word. |

[AUTHOR. Any entry. |

[INSTALLATION. Any entry.]

[DATE-WRITTEN. Any entry.]

[DATE-COMPILED. Any entry - replaced by the current date

and time as maintained by the MCP.]
[SECURITY. Any entry. |

[REMARKS. Any entry. Continuation lines must be coded

in Area B of the coding form.]

SYNTAX RULES. ,

The following rules must be observed in the formation of the IDEN-
TIFICATION DIVISION:

a. The IDENTIFICATION DIVISION must begin with the reserved
words IDENTIFICATION DIVISION followed by a period.

b. All paragraph-names within this division must begin

under Area A of the coding form.

An entry following a paragraph-name cannot contain

periods, except that one must be present to denote

aft +haot arntoes
UL viia v CTii v

(o

T o~
viite ©li

NOTES
When DATE-~COMPILED is included,
the compiler automatically in-
serts the time of compilation
in the form of HH:MM and the
date of compilation in the form

of MM/DD/YY.

With the exception of the DATE-
COMPILED paragraph, the entire
division is copied from the input
source program by the compiler and
listed on the output listing for

documentational purposes only.

MONITOR

MONITOR.

This statement provides a debugging trace of specified data-names.

Construct of this statement is:

[MONITOR [DEPENDING]| file-name ([data—name] :

EE=—

This statement must begin under Area A of the coding form. The
parentheses and colon are required as part of the source program
statement. MONITOR is active only while the file-name is in OPEN

status.

Only one MONITOR statement per program is allowed and must precede
the IDENTIFICATION DIVISION header card in the source program.

The file-name must be ASSIGNed to a line printer and is recognized
by the compiler as being the output media for the MONITORed data-

names.

The data—name(s) may be any name(s) appearing in the DATA DIVISION

except for those which require subscripting or indexing.

Whenever a MONITORed elementary data-name is encountered as the
receiving field in a MOVE or arithmetic statement, data-name

and its current value are listed.

The MONITORing of paragraph-names within a USE AT END OF PAGE on
the output file that is also the MONITOR file (e.g., same LINE
PRINTER) will give undefined output when the physical End-of-Page

condition is encountered.

If a group item appears in the data-name-list, it will be MONITORed

Revised 9/28/70
by PCN 1033092-004 2-3

MONITOR

continued

only when explicitly used as a receiving field.

If the DEPENDING option is present, SW6 wilil be tested for an
ON-OFF condition. Print of MONITORed items will depend upon the

setting as being "ON",

All paragraph-names listed will be printed each time they are
encountered, along with a total indicating the number of times
that a paragraph-name has been passed. The total will be reset
to zero whenever the paragraph-name, if in an overlayable segment,

is overlayed in the operating program.

The use of the ALL option, instead of the paragraph-name list, will
cause all section and paragraph-names to be MONITORed, thus pro-

viding a trace of the programs control path during operation.

CODING THE IDENTIFICATION DIVISION.
Figure 2-1 provides an illustrative example of how the IDENTIFI-
CATION DIVISION may be coded in the source program. Note that

continued lines must be indented to the B position of the form,

or beyond.

2-4

BURROUGHS COBOL CODING FORM

¢-2

ease | Pmosman REQUESTED BY [TV oF

! 3 onconamen OATE TOENT. 73)
A_d AA A 4 A 1 1 1
4 slrle ule 12

‘ — —

o | D &N - N, DLV 0 N I I I I I I I N I I N I I |
oz= RGIGIRAM - LD . A = 1P EaRIF 105 RiMIALN SCURNVIE eyt 00 b L b s
03' WTHG R - o BHN DBE s 48 30 b b b b i 4
04 LNSTIALULATIT GiN oy MAIRKIETIIING JGOMPIMTIER IFIACI LW 1 1 L Lttt Lttt L1l
08 JA:In-lWMMMnlnn11111111111111111111L111141111111A
oel DIAT, -nC@LnPlllhEtDnnl1111141111_LL1111111111111111111111111111111111114
07 W&NWJILAL-JAllllLlAJnl L4011 4 P11y

0': RES &SMMMWMN@A&ML&AL@&M
09 | 1 U ISIAGLEST | T Sz 4T C

|o= 111EXPRﬁSS&&LmH@&h|LM4&&&4&&&&&4&@&MN“411111L11111111111111111|

[}

i d I TN NN N N
'2E I AR W 11@ Lol L0004 Lt bbb o b b 8 b8ttty it i1 1t
';l L1 4o e ettty 4o g gttt b4t 8k bt b b h bl bl Lt it i il
"E TN TN e NN NN NN
": 11 1 IllllljllllllllljlllllllliL,Ll_leJLlllllllllllllllllllljillll
": Lol 188088 44 i) b3 bbb bbb Lttt L a it it
'7: 1 1 1 llllllLlllllllllllllllllllLLLlllllllelllllllLlllllLllll;lll
..‘ L 11 llll‘lllllllllllllllllllllllllllllllllllllLJllll‘ll‘LJllllll
'9 i1 4 I N N NN N R N I N I I I I N W W I
20 NN NN NN NS N NN
2! - 1lllllllljllllll]lllllllllllllLl‘lllljll]llJlLlllllJllllllll
zz' i . 1llllllljlllllllullllll‘lllllJlllllllllllllJJllllllLlJlllll
75: e e NN NS EEe TN E N TN TN
?L% e TN NN N T
25 4 S W S VS VAU U T 100 T T W W WO O OO0 Y A A OE Wy B0 0 U I 0 W0 00 WY B V0 O A W I S S U S Y U 0 A O A A I S S A S S I O N O

Figure 2-1. Coding the IDENTIFICATION DIVISION

SECTION 3
ENVIRONMENT DIVISION

GENERAL.

The ENVIRONMENT DIVISION is the second division of a COBOL source
program. Its function is to specify the computer being used for
the program compilation, to specify the computer to be used for
object program execution, to associate files with the computer
hardware devices, and to provide the compiler with pertinent in-
formation about disk storage files defined within the program.
Furthermore, this division is also used to specify input-output

areas to be utilized for each file declared in a program.

ORGANIZATION.
The ENVIRONMENT DIVISION consists of two sectiomns. The CONFIGU-

RATION SECTION contains the over-all specifications of the computer.
The INPUT-OUTPUT SECTION deals with files to be used in the object

program.

STRUCTURE.

The structure of this division is as follows:

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.]

[SOURCE-COMPUTER . . .|
[OBJECT-COMPUTER . . .]
[SPECIAL-NAMES . . .]

[INPUT-OUTPUT SECTION.]
[FILE-CONTROL . . .]
[I-O-CONTROL . . .|

SYNTAX RULES.

The following syntax rules must be observed in the formulation of

the ENVIRONMENT DIVISION:

a. The ENVIRONMENT DIVISION must begin with the reserved
words ENVIRONMENT DIVISION followed by a period.

b. All entries other than the ENVIRONMENT DIVISION source I

Specific

given on

line are optional, but when used they must begin under

Area A of the coding form.

definitions for the ENVIRONMENT DIVISION paragraphs are

the following pages.

Uais - Woaaa

SOURCE-COMPUTER

CONFIGURATION SECTION.

The, CONFIGURATION SECTION contains information concerning the

system to be used for program compilation (SOURCE—COMPUTER) and
the system to be used for program execution (OBJECT—COMPUTER).

SOURCE-COMPUTER.

The function of this paragraph is to allow documentation of the

configuration used to perform the COBOL compilation.

The construct of this paragraph is:

B-3500

any entry

B-2500
[SOURCE—COMPUTER. .]

This paragraph is for documentation only.

Revised 9/28/70
bv PCN 1033009.004 3~ 73

OBJECT-COMPUTER

OBJECT-COMPUTER.

The function of this paragraph is to alliow a description of

ct
i

configuration used for the object program.

The construct of this paragraph is as follows:

[WITH SUPERVISOR CONTROL]

[.OBJECT—COMPUTER, [{
L \

to |
1

Aol
o] (o]
Qo
N ,——’
e

WORDS
MEMORY SIZE integer CHARACTERS [TIME 60]
MODULES

[SEGMENT-LIMIT IS priority number]

If section priority numbers are used in the PROCEDURE DIVISION,
they must be positive integers with a value from zero through 99.
The SEGMENT-LIMIT clause signifies the limit for non-overlayable
program segmentation of sections numbered from 00 through 49. See
SEGMENT CLASSIFICATION, PROGRAM SEGMENTS, AND PRIORITY NUMBERS on
pages 5-19 through 5-23.

WITH SUPERVISOR CONTROL is documentational only and is ignored by

the compiler.

The MEMORY SIZE clause is one of the factors used in determining
the size of a COBOL object program and is normally only beneficial
in programs containing the SORT verb or when a larger STACK is
desired. If MEMORY SIZE is larger than the resultant COBOL object
program, the recap at the end of the compilation will reflect the
additional core in the size of the STACK.

The compiler will automatically determine MEMORY SIZE when one of

viie options of the clause is specified. The value of the integer

ho)

OBJECT-COMPUTER

continued

will be multiplied times the specified option, giving a digit

product, where:

CHARACTERS = 2 digits
WORDS = 4 digits
MODULES = 1000 digits

If a MEMORY SIZE option is not specified, the value of the integer
entry will apply.

The MEMORY SIZE clause, if used, does not include core requirements
for disk file headers. In addition to the core specified in the
MEMORY SIZE clause, an additional 250 digits of memory are required
for each disk file. This area is reserved in increments of 1000
digits and resides immediately behind the operating object program,

just above the Program Limit Register, to avoid accidental destruc-

tion by internal operations being performed by the program.

The TIME 60 clause denotes that the contents of the internal TIME
clocking register is to be maintained as hours, minutes, seconds
and 60th of a second in the COMPUTATIONAL format: OOHHMMSS6O,
where 00 = zeros, HH = hours, MM = minutes, SS = seconds, 60 = 60th

of a second.

Revised 9/28/70
by PCN 1033099-004 3~

SPECIAL-NAMES

SPECIAL-NAMES.

The function of this paragraph is to allow the programmer to assign
a significant character for all currency signs, to declare decimal

points as being commas and to provide a means of relating implemen-

tor hardware-names to user specified mnemonic-names.

The construct of this paragraph is:

L SPECIAL-NAMES. [CURRENCY SIGN IS literal]

[implementor-name IS menmonic-name e

[DECIMAL-POINT IS COMMA |.]

This paragraph is required if all decimal points are to be inter-
changed with commas and/or if all currency signs are to be re-

presented by a character other than a dollar sign (§).

This literal is limited to a single character and must not be one
of the following:

b. Alphabetic characters -A, B, C, D, J, K,
P, R, S, V, X, Z, or blank.

c. Special characters * + - » + ;3 () ",

The clause DECIMAL-POINT IS COMMA signifies that the function of

.comma and period are to be exchanged in the PICTURE clause char-

acter-string and in numeric literals.

The implementor-name clause must be one of the allowable B 2500/

R 3500 COROL hardware-names ags listed on page 3-10. For examnpie:

3-6

SPECIAL-NAMES
continued

The mnemonic named device can be directly referred to in the

ASSIGN clause.

The SPECIAL-NAMES paragraph statement ends with a period as a

delimiter. Periods between clauses are not allowed.

Revised 8/28/69
by PCN 1033099-001 3-7

FILE - CONTROL

INPUT - QUTPUT SECTION.

vavavava n contains information concerning files to
be used by the object program.

FILE-CONTROL
The

the
The

function of this paragraph is to name each file, to identify
file medium, and to specify a particular hardware assignment.

Paragraph also specifies alternative input—output areas.

The construct of this baragraph has two options which are:

Option 1:

FILE-CONTROL.

SELECT [OPTIONAL] file-name-1 ASSIGN TO hardware-name-1

FILE 1
== WORK]
BY AREA { R OCESSOR } FOR MULTIPLE REEL
N —
, r
NO TRANSLATION | { NO BACKUP FORM |
{ TRANSLATION NON-STANDARD | | BACKUP L=
NO AREA
[SAVE } [RESERVE { integer-1 } [ALTERNATE <{AREAS}J]
[FILE-LIMIT IS | {literal-l1 | { THRU f%%% rales l
| EILE-LIMITS ARE f{ \data-name-1f | THROUGH era e

data-name-2

[{literal-m (THRU literal-n }]
L data~-name-m { THROUGH data-name-n

T s m—,

FILE - CONTROL

continued

_/\/\/

RANDOM
[ACCESS MODE IS { SBOUENTTAL }] [ACTUAL KEY IS data-name-3]

[PROCESSING MODE IS SEQUENTIAL]

KEY IS
[SYMBOLIC {KEYS ARE } data-name-4 [data-name-5]] cee |

Option 2:

[FILE-CONTROL.

SELECT sort-file-name ASSIGN TO SORT DISK.]

Files used in a program must be the subject of only one SELECT
statement. If it is to be OPENed INPUT-OUTPUT or I-O, it must be
present in the MCP disk directory.

The word OPTIONAL must be used in the SELECT statement whenever

an input file can be omitted during certain operational circum-
stances.

The ASSIGN clause must be used in order for the MCP to associate
the file with a hardware peripheral component. The allowable

hardware-name entries are:

Revised 9/28/70
by PCN 1033099004 3~ 2

FiLE - CONTROL

continuved
ATT-8A1 IBM-1030 SPO (7 or 9 channel,
B-500 IBM-1050 TAPE MCP to assign)
= B-2500 LISTER TAPE-PE (Phase encoded)
B-3500 0-L-BANKING TAPE-7 (7 channel only)
B-9350 PRINTER TAPE-9 (9 channel only)
B-9352 PT- PUNCH TC-500
I DCT-2000 PT-READER TC-700
DISK (or DISC) PUNCH TOUCH-TONE
l DISK SHARED READER TT-28
DISPLAY-UNIT SORTER TWX

Automatic changing of hardware device at object program run time
can be accomplished by the systems operator performing an "IL"
control message reflecting the "changed-to" peripherals channel

and unit number.

The BY clause is applicable to files ASSIGNed TO DISK only. It is
also applicable when the DISK system contains more than one elec-
tronic unit (EU's). If the BY clause is omitted, files are physi-
cally assigned to disk as space becomes available (from low to

high).

The FILE clause specifies the files to be distributed among the
electronic units by file number (i.e., order of appearance of the

FD).

The AREA option specifies that file-name-1 is to be distributed
among the electronic units by area (i.e., as defined in the FILE

CONTAINS XX BY XX clause).

The NN option indicates that file-name-1 is to be assigned to the

electronic unit specified by integer NN.

The WORK option specifies to the MCP that the SELECTed disk file

is to be used as a work file and that the MCP must insert the pro-
gram's mix-number in the second and third characters of the work
file's 1ile-1D, thus creating a unique file-name at object run time.
The use of this option allows multiprocessing of the same program

I without creating duplicate file ID's for commonly used work files.

3-10

FILE-CONTROL

continued

The PROCESSOR option will specify the ability to have multiple
systems sharing common disk. The MCP will insert the processor
number in the fifth character of the file ID. The PROCESSOR option
is not yet available in the MCP,

The MULTIPLE REEL option is for documentation only. This feature is
provided automatically by the MCP.

The NO TRANSLATION clause is used to cause a bypass of the hardware
translator of data transfers between hardware-name and internal

cCOre memory.

The TRANSLATION NON-STANDARD clause applies to remote devices which
are capable of transmitting different codes for upper and lower
case characters. If this clause is specified, all data characters
transmitted from the device are translated to upper case EBCDIC

codes before they are moved to the object program's record area.

The BACKUP option will cause printer output files to be placed on a
printer backup tape or disk file for subsequent printing. The
BACKUP option will cause punch output files to be placed on punch

backup disk files for subsequent punching.

The NO BACKUP option will prevent the file from going to printer
backup automatically when the MCP's printer backup option is set
"ON" and a Line Printer is not available. This file may be man-
ually assigned to printer backup by the operator with an "OU" or
"OUDK" message.

Use of the FORM option with printer files, will cause the program
to halt and a MCP message to be pPrinted declaring the need for

special forms to be loaded in the Line Printer.

It is recommended that a STOP literal be executed just prior to a
STOP RUN if the FORM option is used. This will allow the operator
sufficient time to remove the special forms before the printer is
released back to the MCP. Without a temporary halt, there is a
possibility that another job placed in the mix may start printing

on that same printer.
Revised 10/8/69

by PCN 1033099-002 3-11

FILE - CONTROL

continued

The SAVE option will cause file-name-1 to be CLOSEd WITH LOCK by
the MCP if file-name-1 is s :
option is omitted, then the standard MCP action will be invoked,

that is, file-name-1 will be automatically CLOSEd (but not LOCKed)

if it is still OPEN at object End-of-Job.

The RESERVE clause allows a variation of the number of input or
output physical record buffers to be supplied by the compiler.

Each ALTERNATE AREA reserved requires additional memory to be uti-
lized in the compiled object program and will be the size of a
physical record as defined in the FD statement of the DATA DIVI-
STION for that specific file. If a SEEK or FILL statement is used
in a program, then a RESERVE 1 ALTERNATE AREA clause must be speci-
fied. The RESERVE clause is not applicable to SORTER files.

No alternate areas are reserved when the NO option is specified

or if the entire option is omitted.

The MCP will keep track of passing record data to or from the buf-
fer and record work area if the dollar sign ($) card specifies
MCPB, otherwise the compilers will supply automatic object program
code to accomplish this function, thus resulting in a significant
increase in object program speed at a cost in users core. The

e o

in either case.

The FILE-LIMIT clause is invalid if specified for a sort file
description (SD) entry. The FILE-LIMIT clause for input and output
files associated with the SORT verb will not be effective when
executing the SORT unless there is an INPUT and/or OUTPUT PROCE-
DURE declared.

The FILE-LIMIT clause specifies that:

a. For SEQUENTIAL access, logical records are obtained from,
or placed sequentially in, the disk storage Iile by the

implicit progression from segment to segment. The AT

3-12

FILE - CONTROL

continued

END imperative statement of a READ statement is executed
when the logical end of the last segment of the file is
reached and an attempt is made to READ another record.

The INVALID KEY clause of a WRITE statement is executed
when the end of the last segment is reached and an attempt
is made to WRITE another record. The END option specifies
that the compiler is to determine the upper limit of an

existing file.

b. For RANDOM access, logical records are obtained from, or
placed randomly in, the disk storage file within the spec-
ified FILE LIMIT. The contents of ACTUAL KEY not within
the specified limit will cause the execution of the INVALID
KEY branch in the READ and the WRITE statements.

In the FILE-LIMIT clause, each pair of operands associated with the
key word THRU represents a logical segment of a file. The logical
beginning of a disk storage file is considered to be that address
represented by the first operand of the FILE-LIMIT clause; the
logical end is considered to be that address as specified by the

last operand of the FILE-LIMIT clause.

In a FILE-LIMIT series, SEQUENTIAL records are accessed in the

order in which they are specified. For example:
FILE-LIMITS 1 THRU 5, 10 THRU 12, 3 THRU 7

This example will result in the sequential access of records 1, 2,
3, 4, 5, 10, 11, 12, 3, 4, 5, 6 and 7 in that order.

For the ACCESS MODE SEQUENTTIAL clause, the disk storage records
are obtained or placed sequentially. That is, the next logical
record is made available from the file on a READ statement exe-
cution, or a specific logical record is placed into the file on
a WRITE statement execution. The ACCESS MODE SEQUENTIAL clause
is assumed if ACCESS MODE RANDOM is not specified.

Revised 8/28/69
by PCN 1033099001 3-13

FILE - CONTROL

continued

If the ACCESS MODE RANDOM clause is specified, the ACTUAL KEY

entry must be used.

vValues of the ACTUAL KEY data-name-3 are controlled by the pro-
grammer, including any execution of the USE FOR KEY CONVERSION
statement. The value may range from 1 to n, where n equals the
number of records in the file or as reflected by the FILE-LIMITS
clause. The ACTUAL KEY signifies the relative position of a
record within the file and is equated to a data-name at any level
which is defined with a PICTURE of 9(8) COMPUTATIONAL. ACTUAL KEY
is not used for ACCESS MODE SEQUENTIAL files.

The ACTUAL KEY data-name-3 must be declared as PICTURE 9(6) COMPU-
TATIONAL if referencing data-communications files when the WRITE-
TRANS-READ or the WRITE-READ-TRANS verbs are used to communicate

between computers.
The ACTUAL KEY clause is not applicable to the SORTER.

The ACTUAL KEY clause is required for the LISTER and data-name-3
must be declared as a PICTURE 9(4) COMPUTATIONAL. Data-name-3
must contain the unit and tape designations to control printing

on the LISTER.

The PROCESSING MODE IS SEQUENTIAL clause denotes that disk file

e
records are to be available for processing by the object program

ss
ti

in the order in which they are seguentially accessed from segment

to segment.

The SYMBOLIC KEY entry is only for documentational purposes. The
conversion of SYMBOLIC KEY data-names to the ACTUAL KEY data-name
must be specified either by procedural statements preceding the

SEEK statements or by means of a USE FOR KEY CONVERSION section in

the PROCEDURE DIVISTION.

A1l integers must be of positive values.

3-14

FILE-CONTROL

continued

File-name-1 must be unique in the first six characters if the use
of an MCP label equation card is anticipated for non-disk storage

files.

The sort-file-name in Option 2 is the SD level file-name to be used
by the SORT verb.

Revised 9/28/70
by PCN $033090-004 J3-15

I-O-CONTROL

I-O-CONTROL.
The function of this paragraph is to specify memory area, to be
shared by different files during object program execution and the

point in time that a rerun procedure is to be established.

The construct of this paragraph is:

[RERUN EVERY integer-1 RECORDS OF file-name-1] ... [SAME
[{g&%ﬁ'@}] AREA FOR file-name-2 file-name-3 [file-name-4] ...]
[MULTIPLE FILE TAPE "multi-file-id"™ CONTAINS file-name-list
[POSITION integer-2 ...] “ee]
[APPLY [{ e }] e {4]
MICR-OCR) |]
-

WITH [NO-FORMAT] [NO—ERRORS]‘!

—_

[END-TRANSIT] ON file-name [...] .

L

The I-0-CONTROL paragraph name may be omitted from the program if

the paragraph does not contain any of the clause entries.

The RERUN clause sets up a communication with the MCP to create
control procedures whereby an operational program encountering a
malfunction can be restarted at the last RERUN control point instead
of restarting from the beginning of the program. Integer-l records
cannot exceed 99999,

I-O-CONTROL

continued

The SAME AREA clause saves memory space in the object program due to
the fact it allows more than one file to share the same file area,
associated ALTERNATE, and disk file header areas. As a result, only
one of the files sharing the SAME AREA can be OPEN at one time. The
length of each area will be determined by the file with the largest
record and/or block size. When the SAME SORT ARFA is specified it
will be considered as being for documentation only due to the unique
method of implementing the SORT function. All SORT files make use

of all memory area within a program containing the SORT verb.

When the RECORD option of the SAME AREA clause is used, only the
record area is shared and the associated alternate areas for each
file remain independent. In this case, any number of the files
sharing the same record area may be OPEN at one time, but only one

of the records can be processed at a time.

The use of the RECORD option may decrease the physical size of a
program as well as increase the speed of the object program. To
illustrate this point, consider file maintenance. If the SAME
RECORD AREA is assigned to both the o0ld and new files, a MOVE will
be eliminated which transfers each record from the input to the out-
put area. The records do not have to be defined in detail for both
files. Definition of a record within one file and the simple in-
clusion of an 01 level entry for the other file will suffice. Be-
cause these record areas are in fact in the same core location, one
set of data names is sufficient for all processing requirements

without requiring qualification.

The MULTIPLE FILE clause specifies that two or more files are resi-
dent on one magnetic tape. All files resident on a multi-file tape,
which are required in a program, must be represented in the source
program by a SELECT statement and an FD entry for each file. The
file-name-list entries do not have to be in the sequence in which
they appear on the tape, nor in the sequence of each FD in which
they appear in the source program. However, the MCP will go to

the very next file on tape, check the label and if not the file

Revised 9/28/70
by PCN 1033009-004 3-17

I-O-CONTROL

continued

for processing, the MCP will rewind the tape and commence looking

for it from the beginning of the tape.

All file-names in a single MULTIPLE FILE clause are implied as
utilizing the SAME AREA. The use of SAME AREA would therefore be
redundant. The "multi-file-id" is the file-name contained in the
physicai tape label of a magnetic tape containing multi-files.
File-name-list is a series of FD file-names in the program indicated
as residing on the multi-file-tape. Multi-files, or any file con-
tained within the file may be OPTIONAL. The POSITION clause is for

documentation only.
The APPLY clause is specified for SORTER only.
If no MICR, OCR, or MICR-OCR option is specified, MICR is assumed.

No alternating areas are assumed if ALTERNATING is not specified.
ALTERNATING applies to OCR only.

Formatting is assumed if NO-FORMAT is not specified (see READ,

section 9).
An error branch is assumed if NO-ERRORS is not specified.
The End-of-Document is assumed if END-TRANSIT is not specified.

The I-0-CONTROL paragraph can have only a terminating period.

CODING THE ENVIRONMENT DiVISION,
An example of ENVIRONMENT coding is provided in figure 3-1,.

0£/82/6 pasiney

Burroughs COBOL CODING FORM

6T~ V00-660EEOL NOd Aq

PG, REQUESTED BY PAGE oF

1 3| PROGRAMMER DATE IDENT. 73 80

11 T T T O |

LINE A 8 7

NO.

462 2 ne 120 124 128 132 136 140 L44 148 152 156 160 164 168 72
i

o1 ! ENVIL K@mﬂ&ﬁﬂﬁlﬂ)h&uﬁihﬁﬂ.lln [0 U0 NN N U U U0 W WU WA N N S U U S S A S WY A N S N N N N O N A A I G SN A SN A A |

o2 | @mﬂ[ljhﬂ&wyrujhﬂLﬁiEﬁIDLQHQ-1|| [N N NS W N U W U U U T WA TN N N U T YO U T N T Y S U U U W O 0 M N O
]

Eal SPid GEP&H@M&M{E&E&LjiJ&BDCMH1 [N N Y S Y W N NN NN U U N U U YO NN WY T WA U W0 WS S WY WA U A U N U WY AN O W O 1
. mwgyﬁamwm_w_Lw
I S—

L myPEChH AL-INAMES e CLRRENCY SILGN LS ™0 e 1 v b b bt b g
i ,

[WNPUT-OUTPLT SECTI @O v 1 111 b v by bbb e b
i Ellﬁ’ﬂCﬂMﬁE&Eﬁhunnll PR S W U U N T U W U T W T U T T T T U U W WO W O
]

! 111

]

9 | 111
T

o ! 111
]

L 1 i
1

2 | L SELECGT &Q.ET:E.Rn-LFanEh AS&!@N nT'm &(t\RnTIEJB.IIIH||||1|||11|||||||111

13 | |1|ﬁEluEGTuﬁASmEJ&_LELLLﬁ_ALS_LLﬁbthAH&.IlnI|||1|1111|||||||||1|11:1.1
]

14 1 L SBELEGT DETALL=-CGRANGES-RHLE ASSGN TAREer 1 4 1 43 1y 1 1 1t g

ISi L SNELECGT SUWMMARN-IFINLE ASSUGN TABE e 1 1 11 111 b v bt i

L T-.-(bu-(‘.-('hMILBO)nL.mnlln||1|1|1||11|1||||1LJ||||||||1|1|||||1|||1||11||1
i

iz b ISamE RECORN AREA 1EGR) IDAILILY-TAPEy ERRGR-TARE 1 1 1111111111

18 ! L IRERUWN EVERNY 5000 RECHROS $Gif MASTER-TARE 1 1111000111
|

‘9: L MUABLTILBUE FLhugE TIAPE 1“IMQ_MMWLEWM@MAN{

20:"411Wﬂﬁm-ﬁnuﬁ“n|||||1||||‘|11|||||||||1|||||111111
: L1l JNQ&jEBE@EE&Jé&MlﬂﬂEﬁﬂH&L]ﬂ BRSNS
! L1 1 | N S (N T 1 T T T T (N T N T NN N0 O TN (N O T (N TN S O TSV U NN O 1S N O N N T (I T T [T s W W N T (N O W |
1
| TR S U VA U0 U W T T T T W U T T U T T T T T U U U T U T W U U O M OO O O
; L1 1 N T T T T T T O T T T T T T U T U T T o O T ' | Ldd1 1
|
1 111 N N N I N Y VY T U T T Y O I (N S U N S W T (T T T T O Y T T N T T T O T

4 8 12 i3 T20 124 28 | 136 140 44 T4 152 156 Tso T64 1Y) 172

Printed in U. S. Americo

Form 1020716

Figure 3-1.

Coding the ENVIRONMENT DIVISION

SECTION 4
DATA DIVISION :

GENERAL.
The third part of a COBOL source program is the DATA DIVISION
which describes all data that the object program is to accept

as input, and to manipulate, create, or produce as output. The

data to be processed falls into three categories:

a. Data which is contained in files and enters or leaves
the internal memory of the computer from a specified

area Or areas.

b. Data which is developed internally and placed into
intermediate storage, or into a specific format for

output reporting purposes.

c. Constants which are defined by the programmer.

DATA DIVISION ORGANIZATION.
The DATA DIVISION is subdivided into two sections:

a. The FILE SECTION which defines the contents of data
files which are to be created or used by an external
medium. Fach file is defined by a file description,
followed by a record description or a series of file-

related record descriptions.

b. The WORKING~STORAGE SECTION describes records, con-
stants, and non-contiguous data items which are not
part of an external data field, but are developed

and processed internally.

DATA DIVISION STRUCTURE.
The general structure of the DATA DIVISION is as follows:

DATA DIVISION.
[FILE SECTION.]
[FD file-name-1

[Ol record-name-1 .]

[02 data-name-1 . ., .] .
[o2 . . .].

[03 data-name-2
[01 record-name-2 .l

[SD file-name-2 .
[WORKING-STORAGE SECTION.]
[77 data-name-3 . . . |

[77 data-name-4 . . . 1.

NOTE
The DATA DIVISTION cannot exceed
100,000 COMPUTATIONAL digits or
50,000 DISPLAY Characters.

[0l record-name-3 .]
[02 data-name-5
[02 data-name-6 . . .] .
etc.

[01 record-name-4 .]

etc.

RECORD DESCRIPTION STRUCTURE.,

A Record Description consists of a set of data description entries

which describe the elements within a particular record. Each data
element consists of a level-number followed by a data-name, followed
by a series of independent clauses, as required. A Record Descrip-
tion has a hierarchical structure and therefore the clauses used
with an entry may vary considerably, depending upon whether or not

it is followed by subordinate elementary entries.,

LEVEL-NUMBER CONCEPT. .

The level-number shows the hierarchy of data within a logical
record. In addition, it is used to identify entries for Condition-
Names , non-contiguous constants, Working-Storage items, and the

RENAMES clause.

Each record of a file begins with the level-number 01 (which may
also be shown as 1). This number is reserved for the record-name
only, as the most-inclusive grouping for a record. Less-inclusive
groupings are given higher numbers, but not necessarily succes-
sivelv. The numbers can range nn tn Lo, Figure /-1 illuctrotes

[EONRHRVNE SR PR R e

the use of level within a record.

L-2

BURROUGHS COBOL CODING FORM

PaRE | PmOGRAM REQUESTED BY PASE oF

NO
! 3 Moncenmeen DATE 108w] ®©
Al e e == S |
LINE a [] z
NO
4 [Jed L] niw Yg

Lo e u -) rec.erd,.-n

[]
i
1 [d
02| L j0i3 AInTAEM-MMMMMMMme
]

04 L 11 Jo13, |InT1EMLDJA1T|E1.|11111411J11114411111411111(1

o3 1 JOoi3y nuﬁmwww

08 a1 1105 MONTH PITICTWLRIES 998 4+ 44 14 44 4L 111t 1(|ﬁ|l|__&ﬂ|§!l|h&!d| |Q |Qg|!]2| 111
oel Lot 110105 DAYy g3 PILICTULRE 990 1 11 13 lLilllel(lel‘e]mﬁnjt&_m_Lm“_u_

o
~
b
-
-
-

1015, 1Yy EW&MMLMMMME}%J_

(-]
[]
-
-
b
-

013; 1S []AMWJ—‘J—LJ(&L&M!L I

o 1013 WPIRIGIDIMCITIDIGINI-ICIBIDIE ey 51 111 4 1111114411111(3@@8_4&&&@)1111111111

o
o

(-}

L)1 105 MACHIDINE - SIHIGP et 1111 ¢ 311 11 1 Alllillll(lﬂ]_jéjﬂﬁ__l‘.ji&ﬂl)llllllllll
L1l o011 1007 M Db UL NGy PITCTIVHRES 1 19093911 ¢ 11 4 1 |$|gl Iﬁlﬂﬁﬂlfh&ﬁ!l I.g!d:BLDh L4

~

L1 1110107 (BIL NG LeSINGT NGy (PG TANRIE) 995e1 1 114 4 ,Lgl |§|Iﬂ§‘“|i:|ﬂ‘||!a |$,|f:@!]]>| 1 111
L1 1015 I ASISIEMBILIYL 1 IPIC) 199919951 1 1 11 1t 111 d el n@dﬂﬁlh Q0 |(_.1' :!:Q!ﬂh L1

»

L1l 1015 IIANIM_MMW&QMM‘

i1 JOi D AIWAIRIRIAINITIVE - 1CI@D €L goge1 ey 4 4oy 1 1

$00-660£€0L NOd A
0£/8¢2/6 pasiray

€1

| . 1141118 A1 44 4 Lt L1t go o 1t o« 0§ 14 ¢ & & &2 4 £4 4 144 4 44411111 1t

~

AL 1 lllllllljlllllllllllllllelllljllllllljlllllllllllllllljlllj

("]
D R e P Y Y] Py Py L]
=3
-
-

‘e A1 1 lllllllllllliLlllllllllllllIJlllllllillLlJllllllelllllll]‘l
'9 Lt 1 1111111111111111111llLlllliljillllanLlnnl11141111111111J111
20 I T e NN e TN T
2 A4 AL b i 0 L8 g 4003 0o 8880 48 888 4000884488442 a1 a1
22 L4t e T NSRRI N TN T
’3: JUNEEY ALo0 ULt b)0 88 44 a1 a4 aaa
2‘: N e 1lllllllLJ_Jllllllllllllllllljllllilillllllllllllllllllllllll
25| I L L L L L LU L L L b L L L LAl Al b bl 1L Ll

Figure 4~1. Coding of Level-Number

For an item to be elementary, it can not have subordinate levels.
Therefore, the smallest element of a data description is called
tem In figure L-1, MONTH, DAY, YEAR, MILLING,
and FINISHING are elementary items. Since ITEM-NO, LOT-NO,
STANDARD-COST, ASSEMBLY, INSPECTION, and WARRANTY-CODE do not

have subsidiary clauses, they also represent elementary items.

A level that has further subdivisions is called a group item. In
figure 4-1, ITEM-DATE, PRODUCTION-CODE, and MACHINE-SHOP represent

items on a group level. A group is defined as being composed of

Q

all group and elementary items described under it. A group item
ends when a level-number of equal or lower numeric value than
the group item itself is encountered. In figure 4-1, group item
PRODUCTION-CODE ends with INSPECTION. A group item can only
consist of a level-number and a data-name followed by a period.
COBOL defines all group items to be alphanumeric and will be
byte aligned by the compiler. The FILLER ADDED message will
appear where such alignment has taken place. Apart from level-
numbers 0l through 49, three additional level-numbers exist in
COBOL. These are numbers 66, 77, and 88. They represent level-
numbers within RENAMES, WORKING-STORAGE, and Condition-Name

entries respectively.

To reiterate, a level-number is the first required element of
each record and data description entry. In value it can range
from 01 through 49 (1, 2, etc. is also permissible), plus special
numbers of 66, 77, and 88. It is important to remember that
multiple level 01l entries of a given File Description of the

File Section represent implicit redefinition of the same core area.

QUALIFICATION.
The data-names of the DATA DIVISION need not be unique as long

as the parent item of that data-name is unique in itself. Quali=
fication is accomplished by following the data-name to be quali-

)

fied wilh eiiher IN or OF and ithe qualifying data-name, record-iaime

C
or file-name., In the example below, all item descriptions (except the

h-4

data-name PREFIX) are unique. In order to refer to either PREFIX
item, qgualification must be used. Otherwise, if reference is
made to PREFIX only, the compiler would not know which of the two
is desired. Therefore, in order to move the contents of PREFIX
into PREFIX of the other, the PROCEDURE DIVISION must be coded

with one of the following sentences:

a. MOVE PREFIX OF ITEM-NO TO PREFIX IN CODE-NO.

b. MOVE PREFIX OF ITEM-NO TO PREFIX IN MASTER-FILE.

c. MOVE PREFIX OF TRANSACTION-TAPE TO PREFIX IN CODE-NO.
MOVE PREFIX OF TRANSACTION-TAPE TO PREFIX IN MASTER-FILE.

EXAMPLE:
01 TRANSACTION-TAPE 01 MASTER-FILE
03 ITEM-NO 03 CODE-NO
05 PREFIX 05 PREFIX
05 CODE 05 SUFFIX
03 QUANTITY 03 DESCRIPTION
TABLES.
Frequently, the need arises to describe data which appears in a
table or an array. For example, an annual sales total record
might have to be broken down by months. In order to accomplish

this, January sales would have to be referred to by a given
data-name, February sales by another, etc. By using the OCCURS
clause, the same result can be obtained without the need for 12
different data-names. Figure 4-2 illustrates how the OCCURS
clause may be used in order to have the compiler build a table
of twelve elements, each having a structure like MONTHLY-TOTALS.
The first element will be known as 1 of the table, the second as
2, etc. The technique of referring to elements within a table

or an array is known as subscripting.

The OCCURS clause may appear at any level except the 0l level
which is reserved for record-names. For more detailed informa-

tion, refer to the OCCURS clause.

4o

-
i

Q1

BURROUGHS COBOL CODING FORM

’::5‘ PROGNAM REQUESTED BY PASE oF
' L} DATE TOENT 75]
3 — T— A 4.4 4 4 1 i 2)
Line a . T
e« 6]r]s uie T2
- = p— == = S aa——— = =
o 1 1, 0 JANINUALISISIALGE S e 4 sttt e v b3l i1 FUE U U TS G B0 W A NS 6 O G
oazz L o3 MOINITIH IV T AT IAILLSE IGICICILhRSE 142 (TIUMESIe) ¢ 4 3 1 1 14 411 RN N
o:!' Lol 105 PIRBDIMCGTI=IAL JPICE D590 14 0 £o0 1010 11t 11 USRS U I
04 pa il 105 PIRIGIDWCIT =B PIC) 399D 1 1t 1 L Ll N W G BRI I I |
05 11t L1195 PIREDAWCIT) -1C) |QCIC|Q‘&§. TR RN 1L 10T N U U W U U0 U T I O O B O N EE NN
osl Laa i a0 PRODIMCTIDGMN 3 aPC) D9 et 0 144t 41111 NN NN
07; Coaa bl 1 13307 IRESIAMEL 11 o aPCe 99y 1o L4t gLt a1y A I |
0': Laa o S ALIESI - QUSITIAL PG S Dy 4 w4 bkt s IS I A S U A A B U S |
°l= L 13 1013 PIEIRICIEINITIANGIEL PGy 1o 1 L1 00 0 44 b 4 g 110101ty SN I |
_a_o’ RN NN E NSNS i G S A A S i | D 0 WY U W0 WO O N 0 O U W
]
WL NN ERE SN NI I N U G A W A O S G i 11 [RN UE N U W U N Y 0
|2= [T EE BTN N U TN U0 U N N U0 U5 G U U A W YO U WO WAV A WS WO S UV V0 S VS U U WS W O A U WU U W U0 U I A A S O d4o 1§ o i1t 14
_'_33 PEET ST U YN NS AU VAN VNN VS U NN U 155 U N UAON VY W NN OO0 A5 VA0 VY W0 % U AN WA WA VO D UG VA TN UG S N N0 SN0 WO VA O O O G o144 b4t b4
"! 111 [UES WS W T N WS U W U U G U N WA N WA WS NS WS W U0 V00 00 SN SO0 (U W A N0 S W0 U U N B S B S S T G | 1L U W N U W O W U N U0 O O
's: L1 1 [W U W U B U W U N TR U R T U U N U U U U S U U Y U S S R G N S S TN W S B W S e | L1 L 4 v 4 & & L A} o b A .l
'0: T [YS 0N W NN S U5 W U U U TN VNN NN N (NN U0 O (N DS WA WY WO W U U NN U5 NN 0 GRS U WO OO A WA W S U S O | L4 [E W Y TS W U OIS N U O O W
,_'r: 21 1 T O T B B O N R OO Y O T U U N T U N A U I W I U W GO e S S N T T N S S W U G W | 4 1 A 2 A 4 A 4 LA 3 4 A L1
'l 1114 N U U W G O U I D U U W U T U U N S N D N N G S W S N U U S S S S N U N W W R | A1 VU SN S SN U U W W U U G
‘9 U U B R U U W N0 U W N6 W A W0 WA N (OO0 U W0 S U UG W W00 U0 U0 VY SN WA W N N0 WA A A U W0 U G W A 0 B O | 1 4 0 412 L4 4484
30: L1 TR SR U WS U S S U U WA VAN N WS W U WD A0 W (5 WS U0 1N U0 S0 Y WY W SO T A WY U A U W G O G U B W 1 I U G S Y N WS U N A A Y
": NS A AN N S UGS N AN Ui U BE U W 0I5 U 0 N0 WY N N0 0 UV G W0 A5 WO W S0 T U U0 WS U0 U6 W0 0 N W U W O LAt b 4 LAk a
zz: i1 1 J TN U O U (N G G U NN A VU N S N N W S U G SN S B T W W U S S S T B S N S U S S S . A1 i U W U U W U S W N U N O 1
25: SO D S U B S U U0 UiV U0 WA S U S0 WA 1 U0 S S VA0 SN SV U 0 A WO U0 WY S W G U S Y AU G S U G G G U § 11 IS W I I W W W
_?4: TR N A U W 0 NN U U0 W WO W W WO U0 WA U U 0 WA U A0 U0 UL U6 W6 U500 U U0 W0 U0 NS A O Y OO0 WO O Y B A B O | Lt L4ttt
25 | R SN NSNS VU0 U WA JANS WS S S S N0 U 0 U0 N U0 (V06) WOUU.JNE O U0 U WA U0 S0 (0 00 VA U VS I A0 0 0 S AN O B G U U id ek dd Al 14 oig

Figure 4-2.

Coding of Multi-Dimensioned

The repetition of data elements applies to all subordinate fields.
OCCURS may be nested to describe tables of more than one dimension
by applying an OCCURS clause to a subordinate name. The COBOL com-

piler permits tables of up to three dimensions.

SUBSCRIPTING.

When a data-name OCCURS more than once, the particular element

desired within the array is referred to by using subscripts. The
subscripts follow the data-name representing the array in a COBOL
statement. A space may separate the data-name and the subscript
bounded by parentheses. A subscript may be either a numeric literal
or a data-name. A data-name being used as a subscript may not be
subscripted. If the value of a subscript is changed in a series
(e.g., MOVE A (B) to C (B), B, D (B).) the subscript (for D (B)

in this case) is not re-evaluated.

In order to reference the first occurrence of MONTHLY-TOTALS of
figure 4-2, one may write: ...MONTHLY-TOTALS (data-name), where
data-name must contain a 1, or MONTHLY-TOTALS (1).

If data-name INCREMENTER is used to refer to the desired element

in a table in terms of the sample illustration, MONTHLY-TOTALS
(INCREMENTER) would have to be written. In this case, the INCRE-
MENTER would have to contain that value which represents the desired
element. TIf a specific RESALE item within a given month is again
desired, RESALE (INCREMENTER, CODE-X) would have to be written.
CODE-X is a data-name that can have a value of 1, 2, or 3, depend-

ing on which of the levels is required.

At that point in time when a data-name is used for subscripting
purposes, its value must be greater than zero but not greater than

the value shown in the corresponding OCCURS clause¥*,

Where qualification and subscripting are to be used simultaneously,
the qualification has to be shown first, followed by the subscript-

ing.

* The generated object code will not check the validity of data-name
values used for subscripting or indexing and undefined results will
occur should the program reference a subscripted data-name or an
index-data-name containing a value of zero, or a value above the
defined subscript or index range as reflected in the OCCURS clause
pertaining to that item.

Revised 9/28/70
by PCN 1033009-004 %4-7

FILE DESCRIPTION.

FILE SECTION.

This section contains descriptions of the files used by the object

program

FILE DESCRIPTION
The function of this paragraph is to furnish information to the

compiler concerning the physical structure, identification, and

record names pertaining to a given file.

The construct of this paragraph contains four options:

Option 1:

FD file-name COPY "library-name",

Option 2:

_ . , e~ T . | STANDARD 1
FD file-name-1 [RECORDING MODE IS]\ﬁaﬁ:ETKﬁDARD f]

FILE CONTAINS integer-1 [BY integer-2] RECORDS

) . RECORDS
BLOCK CONTAINS [integer-3 TO]| integer-4 { CTARAGTERS }]

1
RECORD CONTAINS [integer-5 TO] integer-6 CHARACTERS J

, OMITTED 1
{ RECORD IS | STANDARD)
\ RECORDS ARE f USAST J

\ NON-STANDARD

LABEL

1

VA OF ID s "literal-1" }
{VALUE } _— IDENTIFICATION data-name-1

[SAVE-FACTOR TS 1iteral-2]]
[. (RECORD Is 1 . . e Foaia o n .
I_ DA LA i ms ARE f gata=-itae=g fuata=-lailie=_ .. | J

FILE DESCRIPTION

Option 3: continued

SD sort-file-name COPY "library-name".

Option 4:

SD sort-file-name
FILE CONTAINS integer-1 [BY integer-2] RECORDS
RECORD CONTAINS [integer-3 TO integer-4 CHARACTERS]]
L=

-

BLOCK CONTAINS [integer-5 TO] integer-6 { BECORDS }]

CHARACTERS

RECORD IS
RECORDS ARE

DATA { } data-name-1 [data-name-2] ... } . I

The level indicator, FD and SD identify the beginning of a File
Description or a Sort File Description and must precede the file

statement. Both entries must commence under Area A of the coding

form. Only one period is allowed in the entry and it must follow

the last used clause.

Options 1 and 3 can be used when the Systems library contains the

library-name entry, otherwise, Option 2 and/or 4 must be used.

In many cases, the clauses within the File Description, or Sort
File Description sentence are optional. Fach clause is discussed

in detail.

NOTE
Figure 4-3 illustrates the use of the File Des-
cription sentence followed by data record entries.
It is further noted that the three 0l levels im-
Plicitly redefine the record area and that the
DATA RECORDS clause is treated by the compiler
as being documentation only and does not cause

an explicit redefinition of the area.

Revised 9/28/70
by PCN 1033099-004 4-9

BURROUGHS COBOL CODING FORM

panuijuod

PROGAAM REQUESTED BY PASE oF.
PROGRANER DaTE {32 171)
B S
A [] z
Tie® Wie re
1D AUSITIE R =2 Fa b€l 100 o et dod bt Aot g v 4t ikt b (o et 4L A b d 1
sl s sbAREIL (REICIOIRIDL ILISI ISITAINIDARD: 11 4 4 1 0 1 &1 & & ¢ ¢ 4L+ 0 ¢4 81 8 841 48814

114 n1L1JVMM||I|§1|"MC|'|n11111111:1111111111111111111111

LA v e o aSIANIE - IFIAICITABiRL s TiS 13040100 ¢ s 1 b 4t b d g e bk Lk

pa L i DATAL IREIGIGIRIOIS JAREL (TSt DI @GDIES 1 TIRANSISTGRS- 1§ 4 1412 |

1.4 1 i 4t 44 b b L Lt 4 4o a 1 4 s oS A 4 A 0 L L L 1 & 4 4 & & & & 1 2 % L\ & & 2 1 4 4 & i & £ 4 0 4 2 0 2 A 1.1

Olu t ITUBIEIS ges 1 014 LA b b b L 4 Lo o d g4t bty g

TS TSI IR LI S N U U (N U U U0 U0 N 0 U6 W U WA U TS U W AN W0 U S U U NN VN U N SN0 A W U NS 0 WA AN A0 G Y G A A S NS O A6 N6 O 0 BN O O ¢

TN W O LY I T W U U T U U W O W U U A W U O N N N W VN U N 1 S W S U N N T T T U T U N N U G N T U A U W N U S W '

U U T L2V U U W U W S U U N U NN SN T U N U U S TN UNN SN Y U U SR T N N N S N SN R N W N N U N N T N W U U N N S SN T N G e . |

W W D 25 WS WA W WU W0 NS U W WS Wy R W VNN NP 1O NS NN VA N W U YN0 O Y U NN S U S0 VNS U W W 1 TS TN VA VNS W N TS YO T U S U U U S U U U W - 'y

01111DnIlQ@JEJSA-x1|1L||L1L111111111111|1111111nn||n|111|11||L1L1||11J1

("]

»

i 111#1511-1-1-1-1-111111111111.1:111111111111111111111111111_11L|11111111

VN W W0 2% W W N W W U WS WA WS U NN G NN U N VNN W U NN W W W VU W O T U U N U U U U U U SN U S W N U W S S W N SIS W U N S W U S S SN e |

A s Jes 4 o 4ot 4o ot o4 4o 4 4 oA A A A A 4 i 4 4 1 A 4 % 4t 2 A A % A 2 1 i & 8 A 2 A & & 2 2 2 2 % & 4 & 2 1. A

.t 4 12 ¢ 14 ¢ L Lt 4 ot 4o 4o bt oA Loa g At ot 4 4 1 1 4 1 & & % £ 2 & 2§ 2 & £ 4 & 1 3) 4 2 & 2 4 8 4 R % 4)

~

O, ITRANSITISITIGRS =1 4 44 4 a0 & bl 4L L 1t 40 A1 40 0L 4 AL 4 1 41 4 b Aa a1

IR I (0 5-TEYCIIS 17 U U U G U5 WA U0 W0 U W0 0 U0 U W Y W W0 O 10 10 G 0 U5 W00 WY WO G S5 WU S 0 U0 T U WY U VY WU A U SO0 W SO0 N S W G0 W O I S S Y 0

e p ey oo ot 4 Lo a 1 A 4 0 4ot t 4 4 g L L A 4 4 1 A 1 2 2 & 4 £ A & 2 % A A & 4) A % & 8. 4 B & 4 % 1 i

L2 1 oA 4 L A 4 L 4 4 Lot 4 % L & Lo 4 g J A A A0 b A 4 4 4 A L 1 L A A A A A A L1 A LA A A & A A A A_4 2) & 2. 4 & 4 A A 1 A_A

2! bocd L L W WY W W N U SR U SN S I O T SN G S U N R W VNN W Wy U N U TR U S W S T UGN U U U W U U S T U W N R U S W S U G S U N O O A O |
22 A1 J W W G U N SN S U SN SN S T N SR NN W N N W S W U S U N SN U SN U NN S N D T N G W S S I S S U N U D U S T S G U W S N W W |
23 FE S | At a i 4t toa 4 4o 24 4 4. o4 4 4 J L A L. A A 4 A b 4 L A L & & 4 A X A 4 A i A A & A % 4 A A 4 1 2 A A 4 4 b 1 2.2

~
»

~
W

P e N e L

Figure 4-3. Coding of FD and DATA RECORDS

BLOCK

BLOCK.

The function of this clause is to specify the size of a physical

record (block).

The construct of this clause is:

RECORDS 1]

[BLOCK CONTAINS [integer-1 TO] integer-2 { CHARAGTERS |

Integer-1l and integer-2 must be positive integer values. l

The clause is required if the block contains more than one logical

record.

When only integer-2 is used, it will represent logically blocked,
fixed-length, records if its value is other than 1. When the

integer-1 TO integer-2 option is used, it will represent the minimum

to maximum size of the physical record and indicates the presence of
blocked variable-length records. Integer-l is for documentation

purposes only.

The maximum value of the integer used in this clause is shown in

table L4-1 and refers to the number of characters in a block.

The word CHARACTERS is an optional word in the BLOCK clause. When-
ever the key word RECORDS is not present, the integers represent

characters and must be modulo 2. l

For object program efficiency, the use of blocked records is recom-
mended. The physical size of the block should be as large as pos-

sible depending on memory availability.

Blocks of records are READ into the input record buffer area by the
MCP. When the dollar sign ($) card reflects "MCPB", the MCP will
deliver each record to the programs record work-area as required by
every explicit READ command. Omission of the MCPB option will cause
the compiler to create object code for programmatic unblocking of

Revised 10/8/69 _
by PCN 1033099002 4-11

BLOCK

continued

records at a considerable increase in speed. In either case, un-

blocking of records is of no concern to the programmer.,

Table L4-1

Maximum Value of Integers

I/0 Medium Maximum Block Size - Characters

READER 80
PUNCH 80
TAPE Limited only by the amount of

memory available,

DISK Limited only by the amount of
memory available.

PRINTER One print line.

PT-READER Limited only by the amount of
memory available.

PT-PUNCH Limited only by the amount of
memory available.

SORTER 200

LISTER Ly

Every explicit WRITE verb causes compiler generated object code to
deliver a record to a files output record buffer area and to accumu-
late the number of logical records required to create a specified
block size before notifying the MCP to write the block. When a file
is CLOSEd, the records left in the output buffer area will be written
by the MCP before the file is physically CLOSEd. The coding of
record area to buffer is automatic and is of no concern to the pro-

o N .

grammer. The bleocking of rccords by the objecl program can be

L-12

BLOCK
continued

inhibited by placing "MCPB" in the dollar sign ($) card, thus assign-
ing the task to the MCP (see section 8) however, speed will be

sacrificed for the resultant core savings.

The user must specify the actual size of variable-~length records
in the first four bytes of each record. This four-character indi-

cator is counted in the physical size of each record.

The BLOCK clause is not applicable to the SORTER, LISTER, PT-PUNCH
or PT-READER peripherals.

This clause may be omitted for unblocked files.

Revised 8/28/69
by PCN 1033099-001 L-13

DATA RECORDS

DATA RECORDS.
The function of this clause is to document the names of the logical

record(s) actually contained within the file being described.

The construct of this clause is:

[DATA {ZRECORD IS }

RECORDS ARE data-name-2 [data-name-3...]]

This statement is only for documentation purposes. The compiler
will obtain this information from 01 level record description

entries,

-1y

FILE CONTAINS

FILE CONTAINS.
The function of this clause is to indicate the number of logical
records in a file. This statement is required for disk files,

and optional for all other files.

The construct of this clause is:

FILE CONTAINS integer-1 [BY integer-2] RECORDS

The indicated integers must be positive values.

Integer-1 may not exceed 20 when integer-2 is present. The product
of integer-1l BY integer-2 cannot exceed 99,999,999, When integer-1
is used by itself, it cannot exceed 99,999,999,

An entry of FILE CONTAINS 20 BY 9999 RECORDS will notify the MCP to
allot 20 separate areas (pages) of disk as each area is program-
matically required. The size of each page would be 9,999 logical

records in length.

The above technique allows the MCP to efficiently assign file pages
as needed, rather than immediately assigning one huge file area

during the first operation of the program.

Programmatic usage of the file can either enhance the paging tech-
nique or defeat its purpose completely. For example, assume that a
RANDOM file at some future date will require a maximum size of

20 x 9999 (199,980) logical records, and that no key conversion
formula is used due to the key being a six digit number running
from 1 thru 199,980 which exactly fills the key requirement, as is
the case in auto license numbers in some states. It could happen
that the first twenty records could open up an entire disk module
if they were in increments of 9999, which would negate the paging
technique completely and thus causes the MCP Disk Directory to
recognize the file as being of maximum size, even though only twenty

records were processed.
Revised 9/28/7C
by PCN 1033099-004 h-15

FILE CONTAINS

continued

The programmer should utidlize the USE FOR KEY CONVERSION technlque

o e s i o e 13~ 1321 s
0 prograniiavicCasrliy 411l T'€CoX rds to fir

ct
L

af o+
<L

Lo Yo Woaray FaY
ryPaeage v viic

H

~ = Fay
J-J-V = LT anda

to try and use up as many record spaces as possible within each

page before forcing the MCP to open another.

The following B 2500/B 3500 statistics define the maximum disk file
storage area for a given file as being 20 Electronic Units, where
each E.U. contains one page of the file on five contiguous disk
modules within the control of the E.U., A file page cannot continue
from one E.U. onto another, however, file pages continue from module

to module within the control of each E.U.

Model 1A Model 1C
Disk Storage Disk Storage
5 Modules of disk per E.TU. 5

20 E.U.s per system, 20
100,000 Segment addresses per module. 200,000

500,000 Segment addresses per E.U. 1,000,000
10,000,000 Bytes per module. 20,000,000
50,000,000 Bytes per E.U. 100,000,000

A disk file residing on Model 1C Disk Storage systems cannot contain

more logical records than the equivalent of 5,000,000 twenty byte

records, blocked 5 per physical record, in a single disk file page
and cannot contain more than twenty disk file pages per B 2500/B 3500

system,
EXAMPLE:

5,000,000 records x 20 bytes per record =
100,000,000 bytes (maximum for an E.U.)

100,000,000 bytes per E.U. + 100 byte segments =
1,000,000 segment address per E.U,

The FILE-LIMITS clause, if present, overrides this clause for
INVALID KEY and End-of-File checking. INVALID KEY (or AT END) must

andam o DITRAT /n'h'rrr\r\
X

£ Ao~
B A A o

lcs arvmand 4 AA '\‘1'!""1"\

FILE-LIMIT.

-4

LABEL

LABEL.

The function of this clause is to specify the presence or absence

of file label information as the first and last record of an input

or output file.

The construct for this clause is:

OMITTED

RECORD IS } STANDARD

RECORDS ARE USAST
NON-STANDARD I

LABEL {

The LABEL clause is not applicable to SORTER or LISTER. If this
statement is omitted, files will be assumed to contain or to have

been created with STANDARD labels.

STANDARD specifies that labels exist for the file or device to which

the file is assigned. It also specifies that input and output labels

conform to the MCP standards as implemented.

STANDARD, when specified for disk files, indicates that the six
character contents of the VALUE or ID clause will be inserted into
the disk file header. Should VALUE of ID be omitted, the first six
characters FD or SD file-name will be inserted into the disk file

header,

OMITTED specifies that the labels do not exist for the specific input
file or device to which the file is ASSIGNed. During object program
operation, the operator will be queried by the MCP as to where the

input is located. The operator must reply with mix-index UL channel/

unit control message.

NON-STANDARD indicates, that the files physical magnetic tape label
is formatted as an EDP installations own standard label which has
been appropriately defined in the System Specification Deck at "cold
start" time (see B 2500/B 3500 MCP Reference Manual for specifica-

tions relating to Installation Labels).

L-17

LABEL

continued

OMITTED specifies that labels are not to be created for the specific
output file ASSTGNed,.

L L1 2221 C0,

The Burroughs Standard B 2500/B 3500 label record serves as both
the beginning label record and the ending label record and is com-

prised of the following parts:

Positions Field Description
1 Invalid character for card files and

blank for other files.

2-8 "LABELbDb"
9 Zero.

10-15 "Multiple-file-id" or zeros.

16 Blank.

17 Zero,

18-23 "File-identifier",

24 Blank.
25=27 Reel number within a magnetic tape file.
28-32 Date written (creation date YYDDD).
33-34 Cycle (distinguishing multi-runs of the

program).,

35-39 Purge-date (YYDDD) at which time the MCP

assumes a magnetic tape as "scratch®.

40 Sentinel (0 = End-of-File and 1 = End-of-
Reel).
41-45 Block count (ending label only]).

4-18

LABEL

continued
Positions Field Description
L6-52 Record count (ending label only).
53 Memory dump key (1 = memory dump follows
beginning label).

54-58 External magnetic tape library reel number.
59-80 Reserved.

81- User's portion.

The COBOL compiler will obtain the value of "multiple-file-ID" from l
the I-0-CONTROL MULTIPLE FILE TAPE clause.

The COBOL compiler will obtain the value of the "file-identifier"
from the FD VALUE OF ID IS clause, or if it has been omitted it

will be taken from the first six characters of the FD-name.

The initial value of the reel number is preset at 001 and increased

as required during operation of the object program.

The value of date written is as maintained on the system for the

processing day and converted by the MCP to YYDDD,

The value of cycle is preset to Ol. It is desired to run the
same program more than once during a given days period, the operator

should be given the parameters of a VALUE control statement.

The value of sentinel will be set to 1 at the end of every reel

within a file and to zero at the end of the file.

The block count value will contain the number ot record blocks on

the tape and is written on the output reel's ending label. The MCP
will keep count of all blocks read as input and will verify that
it has read all blocks by comparing the created total and the block

count entry of each reel's ending label.

The record count value will contain the number of logical records
on a tape and is written on the output reel's ending label. The

Revised 9/28/70
by PCN 1033009-004 4-19

LABEL

continued

MCP will verify the number of records read in the same manner as

for block count.

The memory dump key notifies the MCP to format the output into

memory dump notation for the printer.

The external magnetic tape library reel number is initially placed
in the label, by a user program, and is permanently maintained by
the MCP regardless of the tape status of being a scratch or current
data tape. This area of the tape label may be altered by a DECLARA-

TIVE in a user program.

The STANDARD label may contain data designed by the programmer to
accommodate miscellaneous information pertinent to magnetic tape
files only. This user's portion along with the STANDARD informa-
tion, or FILLER, must be described within the first Ol record des-
cription entry of the file. The compiler recognizes only an entry
of 01 LABEL as containing a label description for a given file which
precedes an actual record description (see figure L4-4 for an example

of Level Coding).
The user's portion of the STANDARD label may be of any length.

The ANSI Standard B 2500/B 3500 label record serves both the be-

ginning label record and the ending label record. Its format is as
follows:
Positions Field Description
1-3 HDR.
L 1
5-173 blank. The MCP recognizes

the middle six char-
acters as the file-
14-21 "file identifier". ID. Position 1 must
be a zero and posi-
tion 8 must be a
blank. E.G.,
\ OAAAAAA A

22-27 "multiple-file-ID".

LoD

Positions

28
29-31
32-35
36-39

Lo-41

h2-L7y
48-53
54

55-60
61-67

68-72
73
7L-80

81-

LABEL
continued

Field Description

0] (zero).

Reel number within a magnetic tape file.

0001 (file sequence number).
Blanks (generation numbexr optional).

Cycle number (generation version

number optional).
bYYDDD (creation date).
bYYDDD (purge date).
Blank (accessability).

000000 (block count (end label block

count)).

0000000 (record count (end label

record count)).
Physical tape number.
B (optional).
blanks.

User's portion.

L-21

BURROUGHS COBOL CODING FORM

A]

139V1

panuijuos

woe | rosman REQUESTED BY PASE
’NMIM oATE 1DENT ™)
=éﬁf‘ e T T T e S i
F '
4 [] L4
== e e PR e e
ol WA-IFALILIElllllllllllllllillllllllllllllllllllj
OIT 111KE.ClMWM&Q¢I:AI]AJ::Jl[1L:11111111
os| Ll E. L L1411 YRR EE |
0 L1l VxAlL-LWMMQAJ&M_U&SMUHJ“
0s 114 llllllIlllLAllLJlllllllllllllllll [W I O O | U Y U T W |
0oe 01 4 A AT I N T BT U N N U N0 U U0 A U T TN U0 W0 U WA U0 A T S W W 0 A 0 W W B A e e
07 s g oy B LLLER | TR - STRN UYL CT - ("0 WU S T T U T N U U 1 O 0 I 0 W 0 W B S B B
ce |l llLiOlZl WM (4.4, FUET SIS U U U AN A U TS U U0 NN N A U U N G S W {
C" L lone, lDIlVlClGIDlEILl]IlPlC_[lIlllgl(l&)l°lllllllllLllllllLlllllLl
i°= L1 102, lh'F'PLCmM“MI)I'IIIllllJllllllllLlJlLLIJ
t‘: Ly oz 1 SIECTICEDE 31 (PLGTIMRE D C1C L N TR AT U U U N0 U S T U0 G N 0 S U0 O O S O O W
20 FTET S U U U N U T WA T U0 U T Y U VA W W T W U W W W G T T U W B T U W W W 0 B B S B e e
‘ll 01111R.E’.nC@anDn-WanEanl NN NI I I I A U A S S S
"l L1 1o2y INAMEL 3 a1 1 PG OIS 4 oAGZIO0D ey o011 a1 it
[Lllolzllllllllllllllllllllllllllllljliljlllllllljlllljl
161 TS (o YA I I N U U0 U U0 U 0 N0 WL WA T TN U YUY L0 W WA VAT W S U T N W0 W U W 0 T T W0 W 0 W 0 e B B e e e
[
'7: [P B Yo - TR U U N0 T TN W0 W TN U S U U 0 T WA T W W A A W S G W U W W WY D T B S e e B
'8 4 1.4 1 llol&llllllllllllllllll]lllllljllllllTlLlllllllLALLLl
'9 T (o V- N U U U U U U0 U NN U 0 10 WY U U 0 WO 0 WA T A Y W W 0 H T G W D O W W W B S SV R B e e
20 141 Y- - S S T U UV I N U N0 5 T WA WA U GO U VO WA U T WA W A WA W T U A T W W T WD W T W W B W -
21 O . llal&llllllllllllllLllLllll]lllllllllllllllllllell
22. .41 llBIgllllllljlllllllLllllllllll‘llLlll‘\lllL‘LllllLLl
zs: U . ¥ llllllllllJlllllLlLlllllLlllllLllllllllllllJlleLl
2‘: PP Y T A N U0 NAPUAT S 0 V0 N0 VAN W U S0 VA WA U WU S U N U U U W A0 U Y U S T S T S W O TG W W0 B O B
25| P R U U U VA TN N N U 1000 YU U WS U0 0 W U V00 W VA GO AN U N AU W VO G A U D W0 O O VO I T W W W W W S W S W

Figure 4-4. Label Loding

RECORD

RECORD.

The function of this clause is to specify the minimum and maximum
variable record lengths. This clause is not applicable to disk
files.

The construct of this clause is:

l:RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS]

Integer-1 and integer-2 must be positive integer values.

If integer-1 and integer-2 are indicated, the wvariable length

record technique is utilized.

If only integer-2 is indicated, the compiler will treat the clause

as documentational only.

If integer-l and integer-2 are indicated, they refer to the minimum
and maximum size of the variable records to be processed. At least
one record description must reflect the maximum size record length

as specified in the RECORD CONTAINS clause.

The user must specify the actual size of variable-length records
in the first four bytes of each record and the record size must
contain an even number of characters (MOD 2). The four-character
variable-size indicator is counted in the physical size of each

record.

Revised 9/28/70
by PCN 1033099-004 4-23

RECORDING MODE

RECORDING MODE.

The function of this clause is to specify the recording mode for

peripheral devices where a choice can be made.

The construct for this clause is:

[w MODE IS { STANDARD } J

NON-STANDARD

The RECORDING MODE clause is not applicable to SORTER. The
SORTER control will translate the L4-bit MICR code from the SORTER
into EBCDIC.

STANDARD RECORDING MODE is assumed if this clause is absent from
the FD sentence. The MCP automatically checks the parity of input
magnetic tapes and will read the tape in the intelligent mode.

For this reason, this clause is required only for tapes when the
output is to be NON-STANDARD. RECORDING MODE for the card readexr
is determined at execution time by a Label Card containing ?DATA

(EBCDIC as STANDARD) or ?DATAB (BCL as NON=-STANDARD).

The MCP will automatically assign STANDARD RECORDING MODE on 9-
channel magnetic tape drives if a SELECT clause indicates TAPE,
even though the programmer has designated the unit as being
NON-STANDARD.

The recording modes for the peripheral devices are provided in
table 4-2.

Table 4-2

RECORDING MODE

continued

Recording Modes for Peripheral Devices

Device Standard Non-Standard
TAPE-7 0dd Parity Even Parity
TAPE-9 0dd Parity -
DISK Memory Image -
READER Documentational Only Documentational Only
PUNCH EBCDIC BCL
PT-READER BCL Binary
PT-PUNCH BCL Binary
PRINTER BCL -
SORTER - -
LISTER BCL -

Revised 9/28/70

by PCN 1033099-004 h-25

VALUE-OF-ID

VALUE-OF-ID.
b

™h o

The function of this clause is to define the identification value
assigned, or to be assigned, to a file of records and to declare the

length of time that a file is to be saved.

The construct of this clause is:

VA OF ID Is { "literal-1" } 1
| VALUE IDENTIFICATION data-name-1 § |

[SAVE-FACTOR IS literal-2]

This clause may be used when label records are present in the file
being described. If this clause is not present, the VALUE OF ID
will be taken from the first six characters of the FD name which
must be uniquely constructed so that the MCP will be able to recog-

nize the files. For example:

Would create a VALUE of ID
FD OUTPUT-TO-DISK1 } as OUTPUT for both files
FD OUTPUT-TO-DISK2 and will cause DUP FILE
action by the MCP.

To make them unique:

Would create a VALUE of ID
FD DISK10UT as DISK10 and one of DISK20,
FD DISK20UT | thus causing no trouble during
object program execution.

Literal-1l cannot exceed six characters in length. Data-name-1 may
be described as greater than six characters in length, however only
the most significant six characters will be used for the "file-iden-
tifier". The literal or wvalue of data-name~1 up to six characters
is the actual value to be contained in the "file-identifier" portion

of the standard magnetic tape label record or disk file header.

When data-name-.1 1s used the data-name musti be delined iua vihe
WORKTNG-STORAGE section of the program and must be described as

alphabetic or alphanumeric,.

h-26

VALUE-OF-ID

continued

The VALUE OF ID declared for OUTPUT, or 0-I, disk files will cause I
literal-1l or the value of data-name-1 up to six characters to be
inserted into the disk file header. Inversely, literal-1l or the

value of data-name-1 up to six characters will be checked against

the MCP Disk File Directory to obtain the files physical location

on disk when files are declared as being INPUT or INPUT-OUTPUT

disk files.

This clause must be used if communication with specific data com-
munication remote device is required. Literal-l cannot exceed six
characters/digits/special characters (or a mix of each) in length.

The first character must be alphabetic. l

The UNIT card in the MCP System Specification Deck specifies the
adapter-ID to be assigned to a remote device, which will be compared
with the contents of literal-l or data-name-1 at object program

execution time.

SAVE-FACTOR is not applicable to a data communication remote device.

SAVE-FACTOR is used only for output magnetic tape files. Literal-2

represents the number of days the file is to be saved before it can

o

be manually purged and used for other purposes by the system. Lit-
eral-2 is limited to an unsigned positive integer not to exceed
three digits in length with values from 001 to 999,

SAVE-FACTOR declared for a disk file is only for documentational
purposes due to the fact that files residing on disk should only be
purged by mutual consent within an EDP organization and can only be

performed as a physical action by the systems operator.

WORK tapes are automatically assigned a SAVE FACTOR of one day to
preclude expiration action when the system is being operated during

the period just prior to midnight and thereafter.

Revised 9/28/70
by PCN 1033099-004 4-27

RECORD DESCRIPTION

RECORD DESCRIPTION

iz 3 3
This portion of a COBOL scurce

a record in a given file.

The construct of these entries contain four options which are:

Option 1:

01 data-name-1 COPY "library-name'.

Option 2:

entries and serves to completely 1dent1fy each data element within

L-28

INDEXED BY index-name-1 [index-name-2}

|

J

01 FILLER
{1eve1-numbeI }{ Totername-1 } [MOD] [REDEFINES data-name-2]

T (BC 1
PIC IS (allowable PICTURE characters) l
_ { PICTURE]
" (BZ] [(oc)
\ BLANK WHEN ZERO J Li CCURS |
integer-1 TIMES
integer-2 TO integer-3 TIMES
1
[DEPENDING ON data-name-3] J
ASCENDING | co A
{DESCENDING } KEY IS data-name-U4 {data-name-5] ...] vee

RECORD DESCRIPTION

continued

e —

DISPLAY
- CMP
CMP-~1
COMP
COMPUTATIONAL
COMPUTATIONAL-1
COMPUTATIONAL-3
— INDEX

[USAGE IS]

VA . THRU
{ VALUE } IS literal-1 [{ THROUGH }
_ THRU ;
I: literal-3 :, [{ THROUGH } titeral-d :, o

n

LEFT
RIGHT

n
Q

|]

Y
SYNCHRONIZED } {

—

(s
JUST RIGHT

| JUSTIPIED
literal—Z]

Option 3:

THRU
_é data~name-1 RENAMES data-name-2 [{THROUGHj} data-name-3].

Option 4:

88 condition-name

VA
VALUE

THRU
THROUGH

[literal-2...] [{

IS literal-1

} literal-n...] .

Revised 10/8/69

by PCN 1033099-002 4-29

T

RECORD DESCRIPTION

The optional clauses shown may occur in any order, except if RE-

DEFINES is used it must foliow data-name-1.
The record description must be terminated by a period.
Level-numbers in Option 2 may be any number from 1-49.

The clauses PICTURE, BLANK WHEN ZERO, JUSTIFIED, and SYNCHRONIZED

must occur on elementary item level only.

Option 1 can be used when the COBOL library contains the record
description entry. Otherwise, one of the other options will have

to be used.

In many cases, the clauses within the record description sentence

are optional. FEach clause is discussed in detail.

In Option 4, there is no practical limit to the number of literals

in the condition-name series.

The record description for a SORTER file must be declared as 200
characters. Record positions 1-100 are for OCR and positions
101-200 are for MICR. If the record description is more than 200
characters, a syntax error will result. If the record description
is less than 200 characters, the compiler will provide FILLER ADDED
at the end of the description to create a record area 200 charac-

ters in length.

The record description for a LISTER file must be declared as Uk

characters.

The MOD clause following the record-name will cause the beginning

address of that record to start on the next modulus 1000,

4-30

BLANK WHEN ZERO

BLANK WHEN ZERO.

The function of this clause is to supplement the specification

of a PICTURE.

The construct of this clause is:

Bz
BLANK WHEN ZERO

BLANK WHEN ZERO may be abbreviated BZ.

This clause overrides the zero suppress float sign functions

in a PICTURE. If the value of a field is all zeros, the BZ
clause will cause the field to be edited with spaces. However,
it does not override the check protect function (zero suppression

with asterisks) in a PICTURE.

The BZ clause can only be used in conjunction with an item on

an elementary level.

BLANK WHEN ZERO may be associated only with PICTUREs describing

numeric or numeric edited fields of 99 characters or less.

Revised 8/28/69 -31L
by PCN 1033099-001 b 3

CONDITION-NAME

CONDITION-NAME
Condition-name is a special name which the user may assign to a
given code within a data element. This value may then be refer-

red to by the specified condition-names.

The construct of this clause is:

.. (VA .
88 condition-name VALUE } IS literal-1

. - THRU .
[literal=-2...] [{ THROUGH } literal-n... J .

Since the testing of data is a common data processing practice,
the use of conditional wvariables and condition-names supplies a
short-hand method which enables the writer to assign meaningful
names (condition—names) to particular code values that may appear

in a data-field (conditional variable).

When defining condition-~-names, the following rules must be

observed:

a. FEach condition~-name requires a separate entry with

the level-number 88.

b. If reference to a conditional variable reguires
subscripting, then references to its condition-names

also require subscripting.

EXAMPLES :

0z CONDITION-VARIABLE PC A, OCCURS 10 TIMES.
88 GIRL VALUE IS "G".
88 BOY VALUE IS "B".
88 MAN VALUE IS "M",
88 WOMAN VALUE IS "w".

TE CONNDNTTTON_VADTART R
e CUONDZ T ZUON-VARIAZSLE

: R (SUR) = wan THEN GO TO SER-

IF-SHES-PURDY.

CONDITION-NAME

continued

IF GIRL (SUB) THEN GO TO SEE-IF-SHES-PURDY.

Both of the above examples will generate object

code to accomplish the same result.

c. A conditional variable may be used as a qualifier

for any of its condition-names.

d. Condition-names can only appear in conditional

statements.

e. Condition-names cannot be associated with index-data-

names.

f. Figure 4-5 provides an example of the coding of

condition-name.

4-33

7e -4

BURROUGHS COBOL CODING FORM

panu14uod

AOE] PROSRAM REQUESTED BY PAGE o
*0
' L] 5 TATE OENT 73 ®©
*=*l-— e e B e e e e e e e e S e !
LwE a . 1
0
4 elrle nwie - 72
-?Im_ e e B e e e e e
CI' 2 4 JSIL Y islTlu‘REll9191’lllllllllelllllllllllllllll“llJLllllll
|
ce Lol B SSANWARYG WVIAILMLES 3US Qb e 100 b0 11 L b it i
[}

3 Lo b B8 EEBRILAIRYG IVAILIME, LS OQiey ¢ 4 4 4 (g 1081011 L i Ly

IWVN-NOILIANOD

ca paa fa 1 88 MARCIH g VALAESL DS OBt 1 100 U L L gt

us poa b 88 AMPIREL 30 VALLKES TS O g 0 01 1o L i st

oe 1 28 (BTHERS: 1 4 aVALMMES LS 08 THRU: A i2ries & 40 14 0 4 18 4 bl

e
=
=3
=

0r paa la 1 B8 GBS s 41 VMALSWE (LS Ol 03, 4105 107 109 didier 4wy 14]
ve | pa el 88 JEVENS 3 VIALME LS 02 04 06 OB 430 12 it Ll

oel Lo o B8 QTR 1y VIALE (DS OO0 THRM OBieg 481 1088101 it

|o= 1) 88 QTR-2Z) 5 VIALMKEL LS O THRU O & ottt Ll
u: el 8% JUASTHAILE VA 1 ISt O (THRM o30@iey 4o 004 41 48 ga
'2= et B8 SIELECTED (VA 100 O3 THRA 105 07 Oer ¢4 14 L4 4 &t 1 41ttt
'3: A1 41 goa a0 4 by 4k bbb a4 4 o8 bbbl o168 F 1118t oar bbbt
"l L1 L3t 4 4 4 LA 08 41 444 & 4o 4.4 AL A 4% 40 to4 bo4o4 & g4 4 2 o4y b o4 A 4244414 or it iiiid
) NN EE e TSN E NN e R NN TN
": L4 1 s A i L A L L tos 4 L b1y s At At 444418 to2oa 4 #o & & 402 & 4 4 4L 41 F A A i1 it 11111
' 7 .11 lllllllllllllllll'lLJLL'll]llllLlll‘lLJJJJ‘lLJlljlllL‘Jllllll
1o Aol onoao ot o a4t g 8 4o 48 b g b g0 b g0 L8l Lt 4 f8 88 43t it i 1
'9 Ll e e 4ot 48 b8 b oa o8 kA b4 48ttt i i 1ad
to Lot b gLtk 8t o8 4 4o a4 a8 a8 4 44 4404 83484418 ada
": i W . § lllllllllllllJl]“llljj‘ll]lll‘lllllll‘lll‘JlLllllJlllllllll
':: .41 lllll‘lllllllllll‘Ll]jl‘lLlllllLll‘lllliillll‘lllitlllllll‘l
'3: L4 I I U I S R A A A R I I I I I I A I I I I I I S N A N I I i N I N e T Y e
2e L b U g b o g 0 L 4t s L4 ot f) b4l k111 Lt
i ,

25|

Figure 4-5. Coding of Condition-Nawme

DATA-NAME

DATA-NAME.

The purpose of this mandatory clause is to specify the name of each

data element to be used in a program. If a data element requires a

definite label, a data-name is assigned. Otherwise, the word FILLER

can be used in its place.

The construct of this clause is:

{ FILLER }
data-name-=1

The word FILLER can be used to name a contiguous description area I

that does not require programmatic reference.

This entry must immediately follow a level-number. FILLER is only I

applicable to elementary levels.

A simple FILLER entry can, with fore-thought, cause the creation of
a more efficient object code. For example, a record or data
description comprised of an even number of characters may be more
efficiently MOVEd than one which is comprised of an odd number of

characters.

A data-name need not be unique if it can be made unique through

qualification by using data-names on higher levels than itself.

It is not permissible to relationally compare an index~-data-name

against data-name-=1.

4-35

JUSTIFIED

JUSTIFIED.
The functien of this clause is to specify a non-standard MOVE

of alphabetic or alphanumeric data within a receiving data fiel

[oR

The construct of this clause is:

Js \ .
JUST RIGHT
JUSTIFIED |

The JUSTIFIED clause can be specified only on an elementary item
level where the receiving field is described as being alphabetic

or alphanumeric. JUSTIFIED can be abbreviated as JS or JUST.

This clause cannot be specified for a receiving field described

as being numeric or numeric edited.

When the receiving field is described with the JUSTIFIED clause
and the sending field is larger than the receiving field, the

left-most characters are truncated.

EXAMPLE :
SENDING RECEIVING
Pc x(7) A123CDE PC X(5) 23CDE

When the receiving field is described with the JUSTIFIED ciause
and the sending field is smaller than the receiving field, the

data will be positioned right with space £ill to the left.

EXAMPLE :
SENDING RECEIVING
PCc x(5) Al23C PC X(7)AQA123C

JUSTIFIED cannot be associated with an index-data-name.

L-36

LEVEL-NUMBER.

LEVEL-NUMBER

The function of this clause is to show the hierarchy of data within

a logical record.

Its further function is to identify entries for

condition-names, non-contiguous constants, working-storage items,

and for re-grouping.

The construct of this clause is:

level-number

{

FILLER }
data-name-1

A level-number is the first required element of each record and

data-name description entry.

Level-numbers may be as follows:

a. 01l
b. 66
c. 77
d. 88

to 49

record description and WORKING-STORAGE entries.

RENAMES clause used as a record description or

WORKING~-STORAGE entry.

applicable to WORKING-STORAGE only as non-

contiguous items and must precede all other

level numbers.

condition names clause used as

tion or WORKING-STORAGE entry.

Level-numbers 01 through 49 are used for record or

descriptions.

Level number 01 is reserved for the

a record description. Level-number 66 is reserved

a record descrip-

WORKING~STORAGE
first entry within

for RENAMES en-

tries. Level-number 77 is used for miscellaneous elementary items in

the WORKING~STORAGE SECTION when these items are unrelated to any

record. They are called non-contiguous items since it makes no dif=

ference as to the order in which they actually appear. Level-number

88 is used to define the entries relating to condition-names in

record descriptions or WORKING-~STORAGE entries,

h-37

LEVEL-NUMBER

continued

(=)

a

CONCEPT on page L4-=2.

4-38

OCCURS

OCCURS.

The function of this clause is to define a sequence of data-items

which possess identical formats, and to define a subscripted item

or indices.

The construct of this clause is:

[o]¢] integer-1 TIMES }
OCCURS integer-2 TO integer-3 TIMES
[DEPENDING ON data-name-3]]

ASCENDING
[:{ DESCENDING }- KEY IS data-name-4 [data-name-5]... } e

[INDEXED BY index-name-1 [index-name-2] ... }

This clause cannot be used in a record description entry whose

level-number is 01, and can only be used with fixed-size items.

Any item described with this clause must be subscripted or indexed
whenever referenced in a statement other than SEARCH, and ail sub-
divisions of the item must also be subscripted or indexed. Up to

three levels of subscripting are acceptable. OCCURS can be abbrev-
iated OC.

If only integer-1l appears, it refers to the exact number of occur-
rences of the data. Integer-1 must not be zero. Integer-2 TO
integer-3 indicates a variable number of occurrences of this item. I

When integer-2 TO integer-3 is used, the following rules must be
observed:

a. Integer-3 must be greater than integer-2 and both must be I

positive integers.

b. The item must be the last area of a record. No part of

a record may follow an item of variable occurrences.

k-39

OCCURS

continued

c. Only the first dimension of a table can be defined with
this clause. The fcollowing definition is not permitted:

02 RATE-TABLE OCCURS 10 TIMES ...
03 WHOLE-TABLE ...
03 AGE OCCURS 4 TO 8 TIMES

d. The user must employ his own tests to determine how many
occurrences of the item are actually present in the record

at any time. The DEPENDING ON option is for documenta-

tional purposes only.

Integer-2 TO integer-3 indicates variable-length records and the

user must specify the actual size of variable-length records in the
first four bytes of each record and the record size must contain an
even number of characters (MOD2). The four-character variable size

indicator is counted in the physical size of each record.

The following example illustrates a use of the OCCURS clause to

provide nested descriptions. A reference to ITEM-4 requires the

.

use of three levels of subscripting; e.g., ITEM-4 (2, 5, 4).

u
Cy
g

.

reference to ITEM-3 requires two subscripts; e.g., ITEM-3 (I

In the example below there are 50 ITEM-4's,

oA AE

T YT TN
LAAMYL/ o

. . .
. L] °

02 ITEM OCCURS 2 TIMES ...
03 ITEM-1 ...
03 ITEM-2 OCCURS 5 TIMES ...
O4 ITEM-3 ...
O4 ITEM-4 OCCURS 5 TIMES ...
05 ITEM-5 ...
05 ITEM-6 ...

4-40

OCCURS

continued

The following example shows another use of the OCCURS clause.

Assume that the user wishes to define a record consisting of five
"amount" items, followed by five "tax" items. Instead of describing
the record as containing 10 individual data items, it could be de-

scribed in the following manner:
EXAMPLE:

1 TABLE ...
2 AMOUNT OCCURS 5 TIMES ...
2 TAX OCCURS 5 TIMES ...

The above example would result in memory allocated for five AMOUNT
fields and five TAX fields. Any reference to these fields is made
by addressing the field by name (AMOUNT or TAX) followed by a sub-

script denoting the particular occurrence desired.

The ASCENDING/DESCENDING KEY option is for documentation only.

The operands in the INDEXED BY option are index-names or indices.

The operands of an INDEXED BY option must appear in association
with an OCCURS clause and are usable only when referencing that
level of the table. When using three-level indexing, each level

must have an INDEXED BY option and in a given indexing operation,

only one operand from each option may be used.

Other than their use as an index into an array, an index-name may
be referred to only in a SET, SEARCH, PERFORM, or in a relation con-
dition. All index-names must be unique. Index-names have an

assumed construction of PC 9(5) COMPUTATIONAL.

Using an index-name associated with one (row of a) table for index-
ing into another (row of a) table will not cause a syntax error,

but will, in most cases, cause incorrect object time results since
it is. the index-name that contains the information pertinent to the

element sizes.

Revised 9/28/70
by PCN 1033099-004 4-41

OCCURS

continued

I When using an index-name series (e.g., INDEXED BY A, B, C):

a. The indexes should be used only when referencing the

associated Tow.

b. All "assumed" reference are to the first index-name in a
series. Others in the series are affected only during an

explicit reference.

Indexing into a table follows much the same logic as subscripting.
There is a limit of three indexes per operand (e.g., A (INDEX—l,
INDEX-2, INDEX-B). The use of a relative index allows modification

of the index-name without actually changing the value of the index-

name.
EXAMPLE :
A (INDEX-1 +3, INDEX-2 -4, INDEX-3)
Relative indexing is indicated by a + or a - integer following an

index-name and causes the affected index to be incremented or decre-

mented by that number of elements within the table.

A data-name whose USAGE is defined to be INDEX is an index-data-

name

Condition-names, PICTURE, VALUE, SYNCHRONIZED or JUSTIFIED cannot

be associated with an index-data-name.

The B 2500/B 3500 COBOL Compilers will assign the comstruction of a
PC 9(5) COMPUTATIONAL area for each index-data-name specified.

It is not permissible to relationally compare an index-data-name

against a literal or a regular data-name.

PICTURE

PICTURE.

The function of this clause is to describe the size, class, general

characteristics, and editing requirements of an elementary item.

The construct of this clause is:

PC
{/PIC IS (character string)
PICTURE

The word PICTURE may be abbreviated as PC or PIC. Character string
denotes letters of the alphabet, special characters, and digits
which are used in conjunction with one another to describe a data- I

name. See USAGE for a description of characters and digits.

The maximum number of characters and symbols allowed in the char-

acter string used to describe a data-name or FILLER, is 30. A

character string consists of a certain allowable combination of
characters defined as PICTURE descriptors, plus insert characters
encompassing the entire character set employed by the systems line

printer that have no PICTURE descriptor value or action.

This clause must appear for every elementary item level entry and

cannot be used at group levels.
PTICTURE cannot be associated with an index-data-name. I

A PICTURE of A(5) indicates that the item is a five character (byte)
alphabetic field. The integer within parentheses indicates how
many times A occurs in order to constitute the desired PICTURE.

The PICTURE A(5) can also be represented by AAAAA, The value of

the integer within parentheses must always be greater than zero.

Record descriptions do not necessarily have to conform to the
physical characteristics of an ASSIGNed hardware-name. The flow
of input-output data will terminate at the end of the prescribed
PICTURE size. For example:

L-43

PICTURE
continued

READER (can read 80 columns) description can be PICTUREd
from 1 through 80.

PUNCH (can punch 80 columns) description can be PICTUREd
from 1 through 80.

PRINTER (120/132 character lines) description can be PICTUREd

from 1 through maximum.

SPO (one character at a time) description can be PICTUREd

£ 1 445 iy 3 3
iToii L TO aiy limit.

There are five categories of data that can be described with a

PICTURE clause. These are alphabetic, numeric, alphanumeric,

alphanumeric-edited, and numeric-edited.

The

symbols used to define the category of an elementary item and

their functions are explained as follows:

L-LL

a. The letter A in a character string represents a position
which can only contain a letter of the alphabet or a

space.

b. The letter B in a character string represents a position

into which the space character is to be inserted.

c. The letter J in a character string indicates that the op-
erational data sign is appearing as an over-punch in the

£ USAGE IS DISPLAY is

I.h

ieast-significant digit position
associated with the item. However, if USAGE has been in-
dicated as COMPUTATIONAL, J takes on the same function as
an S, A J is not counted in the length of a DISPLAY item.
Only one operational sign may appear in any one PICTURE
and, if specified, the J must appear as the left-most
character of the PICTURE. Data elements requiring a J
PICTURE descriptor may not be described by a VALUE clause
with a signed literal. PICTURE J should be used only in
those cases where PICTURE S is not applicable,

PICTURE

continued

NOTE
If J appears within a PICTURE
descriptor, it no longer per-
forms as an operational sign
but serves to reinitiate zero

suppression.

The letter K in a character string indicates the presence
of an 8-bit (byte) sign appearing in the first character
position of a PICTURE descriptor when USAGE is implicitly
or explicitly DISPLAY and is counted in the length of the
PICTURE. If USAGE IS COMPUTATIONAL, the letter K becomes
the same as an S. Data elements requiring a K PICTURE
descriptor may not be described by a VALUE clause with a
signed literal.

The letter P in a character string indicates an assumed
decimal scaling position and is used for specifying the
location of an assumed decimal point when the point is not
within the number that appears in the data item. The scal-
ing position character P is not counted in the length of the
allowable number of characters within a PICTURE description.
Scaling position characters are counted in determining the
maximum number of digit positions (99) in numeric edited
items or numeric items which appear as operands in arith-
metic statements. The character P can appear only to the
left or right as a continuous string of P's within a
PICTURE description. Since it implies an assumed decimal
point (to the left of the P's if P's are left-most PICTURE
characters and to the right of P's if P's are right-most
PICTURE characters), the assumed decimal point symbol V is
redundant as either the left-most of right-most character

within such a PICTURE description.

The letter S in a character string is used to indicate the
presence of the standard operational sign in the form of an

overpunch in the most-significant digit position of an item

L-k5

PICTURE

continued

h-L4e

if USAGE IS DISPLAY and is not counted in the length of the
PICTURE. If USAGE IS CMP, it will denote an operational
sign digit in front of the most-significant digit position
and is counted in the length of the PICTURE. The S must be
written as the first character of the character string of a
PICTURE. A signed item may not be more than 99 characters/
digits in length. Wherever possible, PICTURE S should be

used rather than J or K.

The letter V in a character string indicates the location
of an assumed decimal point and may only appear once in a
character string. It does not represent a character posi-
tion and therefore is not counted in the length of the
item. When the assumed decimal point character V is the
right-most character of the PICTURE character string, it

is redundant. The maximum number of decimal places is 99.

The letter X in a character string indicates an alphanumeric
position which can contain any allowable character in the

computer's character set.

Each letter Z in a character string represents a zero
suppress editing action and may only be used to cause the
left-most leading numeric character positions to be re-
placed by a space at object time when the contents of that
character position is zero. FEach Z is counted as part of
the PICTURE length. Zero suppression is terminated with
the first non-zero numeric character in the data. Inser-
tion characters are also replaced by spaces while suppres-
sion is in effect. Z can also appear to the right of J
when the J symbol is used to reinitiate zero suppression.
For additional information on zero suppression, see the
BLANK WHEN ZERO clause. FILLER entries cannot be defined

by the letter Z usage.

PICTURE

continued

The number 9 in a character string represents numeric data.
If USAGE IS explicitly or implicitly DISPLAY, the data will
be operated on as 8-bit (byte) characters. If USAGE IS
CMP, it will be operated on as L4-bit digits. Each 9 is
counted in the length of the PICTURE.

The number O (zero) in a character string represents a
position into which zero is to be inserted when that item
is a receiving field and it is counted in the length of the

PICTURE.

The special character comma in a character string represents
a position into which a comma will have to be inserted. It
is counted as part of the PICTURE length. (Also see
DECIMAL-POINT IS COMMA in section 3 of this document.) If
zero suppression is indicated, a blank character will
replace each applicable comma until meaningful data is

encountered in the data stream.

The special character period in a character string is an
editing symbol which represents the decimal point for data
alignment purposes. In addition, it represents a character
position into which a period will be inserted. It is
counted as part of the PICTURE length. If more than one
period is indicated in the PICTURE, the left-most period
determines the scale of the PICTURE., The PICTURE must not
terminate with a period except when it is used to indicate
the end of the item clause. For a given program, the
function of the period and comma are exchanged if the
DECIMAL-POINT IS COMMA clause appears in the SPECIAL-NAMES
paragraph., If exchanged, the rules that apply to the use
of periods apply to commas and vice versa. (Also see

DECIMAL~-POINT IS COMMA in section 3 of this document.)

The symbols +, -, CR, and DB are used as editing sign con-
trol symbols. When used, they represent the character posi-

tion into which the editing sign control symbol will be

-7

PICTURE

continued

placed.

The symbols are mutually exclusive in any one

character string and each character used in the PICTURE

is counted in the length.

1)

Fixed insertion characters. A single + or - can be
of a PICTURE. The

extreme right end of

used at the extreme left or right
CR and DB can be used only at the

a PICTURE. The CR and DB symbols represent a two char-

the length of the

Only one currency symbol and only one of the

acter position and are counted in

item.

editing sign control symbols can be used in a given
PICTURE. The currency symbol ($) must be the left-
most character position except that it can be preceded
by either a + or - symbol. Fixed insertion editing
results in the insertion character occupying the same
character position in the edited item as it occupied

in the PICTURE character string. Editing sign control
symbols (sometimes referred to as report signs) pro-
duce the results shown in Table 4-3, depending upon

the value that the item contains.

Table 4-3
Editing Sign Control Symbol Results

Editing Symbol In
Picture Character String

S R S

Result

Data Item
Positive

Data Item
Negative

+ + -
- space -
CR 2 spaces CR
DB 2 spaces DB

448

Floating Insertion Characters., When used as floating

replacement and suppression characters, + and - are

DS I I S, . b R A)
LL L L e cAaLLEIE Lol u 4

ck

I o . Eo P ~ T~
4 LOUHE Ll v il

[d]
n
F
Q

PICTURE
continued

represent each leading numeric character into which the
sign (+ or —) is to be floated. At least two symbols
must be shown to use the subject symbols as floating
characters. The floating symbol may not appear to the
right of the decimal point unless all replacement posi-
tions consist of that symbol. In this case, the field
will consist of all spaces when the value is zero. The
currency symbol and editing symbols + and - are the
insertion characters, and they are mutually exclusive
as floating insertion characters in a PICTURE character

string.

3) In a PICTURE character string, there are only two ways
of representing floating insertion editing. One way
is to represent, by the insertion characters, any or all
of the leading numeric character positions to the left
of the decimal point. The other way is to represent all

of the numeric character positions in the PICTURE char-

acter string by the insertion characters. If the first
method is employed, a single insertion character will
be placed into the character position immediately pre-
ceding the first non-zero digit in the data represented
by the insertion symbol string to the decimal point,
whichever is encountered first. If the second method

is used, the result depends upon the value of the data.
If the value is zero, the entire data item will contain
spaces. If the value is not zero, the result is the
same as when the insertion character is only to the left
of the decimal point. The PICTURE must contain at least
one more floating insertion character than the maximum

number of significant digits in the item to be edited.

The special character asterisk in a character string repre-
sents a leading numeric character position into which an
asterisk will be placed when the content of that position is

zero and asterisk replacement has not disabled. Asterisk

4149

PICTURE

replacement is disabled when the first mon-zero character
is encountered, or when the decimal poimnt (implicit ox
explicit) is reached. When the PICTURE character string
specifies only asterisks (*), and the value of the item
is zero, the entire output item will consist of asterisks
and the decimal point, if present. BLANK WHEN ZERO does

not override the insertion of asterisks.

p. The special character dollar sign in a character string
represents a character position into which a currency symbol
is to be inserted. The currency symbol in a character
string is represented automatically by a dollar sign ($).

If the CURRENCY clause of the SPECIAL-NAMES paragraph is
indicated, the dollar sign is replaced by the character
specified as a replacement CURRENCY SIGN and is counted in
the length of the item.

1) Fixed insertion character. The currency sign may

appear anywhere in the PICTURE.

2) Floating insertion character. At least two currency
signs must appear as the left-most characters in the
PICTURE. The currency sign is written to represent
each leading numeric character position into which the
currency sign may be floated. A single sign is placed
in the least-significant suppressed position shown by
the currency symbol in the PICTURE. The output item
must contain at least one more currency sign character
position than the maximum number of significant digits

in the source item.

The length of an elementary item, where the length means the number
of character positions occupied by the elementary item in standard
data format, is determined by the number of allowable symbols which

represent character positions.,

4-50

PICTURE

continued

An integer which is enclosed in parentheses describing the character
string of a PICTURE and following the symbols A, ’, X, 9, P, Z, ¥,
By, O, +, -, or the currency sign indicates the number of consecutive
occurrences of the symbol. Note that the K, S, CR, and DB symbols

may appear only once in a given PICTURE character string.

To define an item as alphabetic, its PICTURE character string can

only contain the symbols A and B.

To define an item as numeric, its character string of the PICTURE
can only contain the symbols 0, 9, J, K, P, S, and V. Its contents,
when represented in standard data format, must be a combination of
the numerals O, 1 through 9. The item may include an operational

sign symbol.

To define an item as alphanumeric, its PICTURE character string

is restricted to certain combinations of the symbols A, X, and 9.

The item is treated as if the character string contained all X's.
The PICTURE character string which contains all A's or all 9's does

not define an alphanumeric item.

To define an item as alphanumeric edited, its PICTURE character

string is restricted to the following combinations of symbols:

a. The character string must contain at least one B, one X,

and one O (zero).

b. Another alternative is that the character string must have

at least one O (zero) and one A.

To define an item as numeric edited, its PICTURE character string

is restricted to certain combinations of the symbols B, J, K, P,

v, 2, 0, 9, comma, period, ¥, +, -, CR, DB, and the currency sign.
The allowable combinations are determined by the order of precedence
of symbols and the editing rules. The number of positions which may

be represented in the character string is 99.

4-51

PICTURE

continued

There are two general methods of performing editing in the PICTURE
clause, either by insertion or by suppression and replacement.

There are four types of insertion editing available.

a. Simple insexrtion.
b. Special insertion.
c. Fixed insertion.

d. Floating insertion.
There are two tvpes of suppression and replacement editing modes:

a. Zero suppression and replacement with spaces.

b. Zero suppression and replacement with asterisks.

Ploating insertion editing and editing by zero suppression and re-
placement are mutually exclusive in a PICTURE clause. Only one type

of replacement may be used with zero suppression in a PICTURE clause.

Simple insertion editing involves the usage of comma, B, and O
(zero) as the insertion characters. The insertion characters are
counted in the length of the item and represent the position in the

item into which the character will be inserted.

Special dinsertion editing character period (.) is used to represent
the decimal point for alignment in addition to acting as an inser-
tion character. The insertion character used for the actual decimal
point is counted in the length of the item. The use of the assumed
decimal point, represented by the symbol V and the actual decimal
point, represented by the insertion character period (.) in the same
PICTURE character string is disallowed. If the insertion character
is the last symbol in the character string, it must be immediately
followed by one of the punctuation characters, semicolon, or period,
followed by a space. The result of special insertion editing is the
appearance of the insertion character in the item in the same posi-
tion as shown in the character string. Any character or digit other
than those defined with PICTURE meanings can be used as special in-

sertion characters and will be counted in the size of the PICTURE.

L-52

PICTURE

continued

EXAMPLE:

99/99/99 could be a date mask and 999=99=9999

could represent a social security number mask.

Zero suppression editing of leading zeros in numeric character
positions is indicated by the use of the character Z, or the char-
acter * (asterisk) as suppression symbols in a PICTURE character
string. These symbols are mutually exclusive in a given PICTURE
character string. Fach suppression symbol is counted in deter-
mining the length of the item. If Z is used, the replacement char-
acter will be the space and if the asterisk is used, the replace-~

ment character will be *.

Zero suppression and replacement is indicated in a PICTURE charac-
ter string by using a string of one or more of the allowable sym-~
bols to represent leading numeric character positions which are to
be replaced when the character contains a zero. Any of the simple
insertion characters embedded in the string of symbols or to the

immediate right of this string are part of the string.

In a PICTURE character string, there are two ways of representing
Zersc suppression. One way is to represent any or all of the leading
numeric character positions to the left of the decimal point by
suppression characters. The other way is to represent all of the
numeric character positions in the PICTURE character string by
suppression characters. If the suppression symbols appear only to
the left of the decimal point, any leading zero in the data which
corresponds to a symbol in the string is replaced by the replacement
character. Suppression terminates at the first non-zero digit in
the data represented by the suppression symbol string or at the
decimal point, whichever is encountered first. If all numeric
positions in the PICTURE character string are represented by
suppression symbols, and the value of the data is not zero, the
result is the same as if the suppression characters were only to

the left of the decimal point. If the value is zZzero, the entire

data item will be spaces if the suppression symbol is Z, whereas

h-53

PICTURE

continued

asterisks will cause the field (except for decimal point) to be
replaced with asterisks. Even if the BLANK WHEN ZERO clause is used
in conjunction with asterisks, the replacement of character positions

containing zeros will be conducted with asterisks.

The symbols +, -, *, 7, and the currency symbol, when used as float-
ing replacement characters, are mutually exclusive within a given
character string. At least two floating replacement characters must

appear as the left-most characters in the PICTURE.

Table 4-4 shows the order of precedence when using characters as
symbols in a character string. For a given function in the left
column, a small x in its row indicates that the arguments, used as
column headings, are the only ones that may immediately precede the
first appearance of the function in a particular string. Arguments
appearing in braces ({}) indicate that the symbols are mutually ex-

clusive. The currency symbol is represented by $.

Table 4-4L

Order of Precedence When Using Characters As Symbols

S P $ {+ -} {zz ** $% ++ --}
S
P X (l) (l) x X X X X
$ X X x b'd
+ b d X X X
- x x X x
77 X X X b'd
** x X x x
$$ x x x
++ X X
-— l A x |

L-5k

PICTURE
continued

The symbols A, B, V, X, 0, 9, period, and comma can be preceded by
any symbols in the PICTURE character string except CR and DB.

NOTE
When the + or - appears on the right of
a character string and the P is also on

the right, P precedes the sign indicator.

To simplify the explanation of allowable character pairs in the
character string of a PICTURE, table 4-5 and 4-6 are provided. These
tables have been constructed so that they reflect the use of all
allowable symbols, depending upon whether the item is numeric, alpha-
betic, or alphanumeric. For example, if the item is numeric and

the programmer wishes to determine whether the symbol V can follow

a 9, then table 4-5 should be used. In the numeric item section of
table 4-5, the letter Y (Yes) can be found at the crossing point of
horizontal, first symbol, 9 and vertical, second symbol, V. On the
other hand, the use of J after 9 is indicated with N (No).

4-55

PiCTURE

continued
Table 4-5
Numeric or Alphabetic Items
SECOND SYMBOL
Numeric Alphabetic
Item Item
N
9 VS JKZP A B
u
I
m YYNNNY
t
YNNNNY
F e
e
I r YYNNNY
m
R i YYNNNY
S
c YYNNNY
T
YYNDNNY
S
A
Y
M 1
B P
o ©m I
L a ¢t Y Y
b e Y Y
€ m
t
i
c

L-56

PICTURE

continued
Table 4-6
Alphanumeric Items
SECOND SYMBOL
Non-Editing Editing

9 X A B J9V, . +-2Z *%CRDBBO §

9 YYYY

X YYYY

A YYYY

B YYYY
9 YYYYYYYNNY Y Y YN
v YYNNNYYYYY Y Y YN
, YYNYNYYYYY Y Y YN
YYNYNYYYYY Y Y YN
+ YYYYYYNYYN N N YY
- YYYYYNYYYN N N YY
Z YYYYYYYYNY Y Y YN
* YYYYYYYNYY Y Y YN
CR NNNNNNNNNN N N NN
DB NNNNNNNNNN N N NN
B YYYYYNNNNY Y Y YN
) YYYYYYYYNY Y Y YN
$ (BUT NoT FIRST Y YYYYYYYYY Y Y Y¥Y

oL P

J SYMB IN PC) YYYYYYYYNY Y Y YY

Revised 9/28/70

by PCN 1033099-004 4-57

PICTURE
continued

Table 4-7 demonstrates the editing function of the PICTURE

clause.
Table 4-7
Editing Application of the Picture Clause
Source Area Receiving Area
Picture Data Editing Edited Data
Picture
9(5) 12345 $22,229.99 $12,345.00
vo(5) 12345 4%,%$%$9.99 $0.12
vo(5) 12345 $27,229.99 $ 0.12
9(5) 00000 $44,4$%$9.99 $0.00
9(3)v99 12345 $27,229.99 $ 123..45
9(5) 00000 $84,858.6%
9(5) 01234 $58,888. 48 $ 1,234,00
9 5) 00000 $*%,%¥%9,99 KK KKK, ¥*
9 5) 00123 Grx, XXX, KK $*%%123,00
9(3)v99 00012 $272,229.99 $ 0.12
9(3)v99 12345 $6%,$$9.99 $123.45
9(3)v99 00001 $27,22Z.99 $.01
9(5 12345 $$%,8%9.99 $12,345.00
9(5 00000 $77,7227 .27
9(3)v99 00001 $865,888.98 $.01
s9(5 (+) 12345 72272729.99+ 12345,00+
s9(5) (-) 00123 ~=99999.99 - 123.00
9(3)v99 12345 999,00 123,00
s9(5) é-) 12345 77779 .99~ 12345.00-
s9(5) +) 12345 727279.99- 12345.00
9(5) 12345 BBB99.99 Ls.00
s9z5)v (-) 12345 -772779.99 -12345.00
S9(5) 5-) 12345 $568$$%.99CR $12345.00CR
S99v9(3) -) 12345 I —---—-. 99 -12.34
s9(5) (+) 12345 $$48%%.99CR $12345.00
9(3)v99 12345 999 .BB 123.
9(5) 12345 00999. 00 00345.00
9%7) 0012003 7799JZ79 12 3

REDEFINES

REDEFINES.
The function of this clause is to allow an area of memory to be
referred to by more than one data-name with different formats and

sizes.

The construct of this clause is:

[level-number data-name-1 REDEFINES data-name-2 |

The level-numbers of data-name-1 and data-name-2 must be identical

and must not be 66 or 88.

This clause must not be used in 01 level entries of the FILE SECTION
as an implicit REDEFINES is assumed when multiple 01 level entries
within a file description are present. The size of the record(s)
causing implicit redefinition do not have to be equal to that of the
record being redefined. The various sizes of implicitly redefined
record descriptions create no restriction as to which description is

to be coded first, second, third, etc., in the source program.

Redefinition starts at data-name-2 and ends when a level-number less
than or equal to that of data-name-2 is encountered in the source

program,

When the level-number of data-name-2 is other than Ol (REDEFINES can
not be used on the Ol level in the FILE SECTION), it must specify a
storage area of the same size as specified by data-name-1l. It is
important to observe that the REDEFINES clause specifies the redef-
inition of a storage area, not simply of the data items occupying

that area.

The entries giving the new description of the storage area must

immediately follow the entries describing the area being redefined.

Revised 9/28/70
by PCN 1033099-004 4-59

REDEFINES

continued

The data description entry being redef

r ined camnnot contain an 0C
clause, nor can it be subordinate to an entry which contain:

b Wil Ll - ¥

b
b
{
«
¢
¥
b

The entries giving the new description of the storage area must

contain VALUE clauses, except in condition-name entries.

Data-name-2 need not be qualified.

not

RENAMES

RENAMES.
The function of this clause is to permit alternative and possi-

bly overlapping, grouping of elementary items.

The construct of this clause is:

THRU
66 data-name-1 RENAMES data~name-2 [{ THROUGH } data-name-3 }.

All RENAMES entries associated with a given logical record must

immediately follow its last data description entry.

Data-name~2 and data-name-3 must be names in the associated
logical record and cannot be the same data-name or have the
same logical address. A 66 level entry cannot rename another

66 level entry nor can it rename a 77, 88, or Ol level entry.

Data-name-1 cannot be used as a qualifier, and can only be
qualified by the names of the level 01 or FD entries. Neither

data-name-2 nor data-name-3 may have an OCCURS clause in its

(

data description entry nor be subordinate to an item that has

an OCCURS clause in its data description entry.

Data-name-2 must precede data-name-3 in the Record Description,

and data-name-3 cannot be subordinate to data-name-~2.
One or more RENAMES entries can be written for a logical record.

When data-name~3 is specified, data-name-1l is a group item which
includes all elementary items starting with data-name-2 (if data-
name-~2 is an elementary item) or the first elementary item in
data-name~2 (if data-name-2 is a group item), and concluding
with data-name-3 (if data-name-3 is an elementary item) or the
last elementary item in data-name-3 (if data-name-3 is a group

item).

h-61

RENAMES
continued

When data-name~3 is not specified, data-name-2 can be either a

group or an elementary

data-name-~1 is treated

item. When data-name-2 is a group item,

[o)

1 data~-name~2

whe

[\
n

a croun item. an
- o= T 7L - F =7

data-name-1 is treated as an elementary

When data~-name-3 is specified, none of the elementary items

within the range, including data-name-2 and data-name-3, can

be of variable length.

h-62

SYNCHRONIZED

SYNCHRONIZED.
The function of this clause is to specify positioning of an

elementary item within a computer word or words.

The construct of this clause is:

= | frLerr
[{ ggggHRONIZED j { RIGHT } J I

SYNCHRONIZED may be abbreviated as SY or SYNC and may only appear

with a description of an elementary item.

This clause specifies that the compiler, in creating the inter-
nal format of this item, must Place the item in the minimum

number of computer words which can contain the item. If the

size of the item, explicitly or implicitly, is not an exact
multiple of the number of characters in a computer word, the
character positions between the item and the computer word
boundary cannot be assigned to another item. Such unused

character positions are included in:

a. The length of any group to which the elementary item
belongs.

b. The computer storage area allocation when the elemen-

tary item appears as the object of a REDEFINES clause.

SYNCHRONIZED LEFT specifies that the elementary item is to be
positioned so that it will begin at the left boundary of a

computer word.

SYNCHRONIZED RIGHT specifies that the elementary item be posi-
tioned so that it will terminate at the right boundary of a

computer word.

4k-63

SYNCHRONIZED
continued

Whenever the SYNCHRONIZED item is referenced in the source pro-
gram, the original length of item, as shown in the PICTURE
clause, is used in determining any action which depends on the

length, such as justification, truncation, or overflow.

If the data description of an item contains the SYNCHRONIZED
clause and an operational sign, the sign of the item appears
in the normal operational sign position regardless of whether

the item is SYNCHRONIZED RIGHT or SYNCHRONIZED LEFT.

When the SYNCHRONIZED clause is specified for an item within
the scope of an OCCURS clause, each occurrence of the item
is SYNCHRONIZED.

A word in the B 2500/B 3500 contains two 8-bit characters (2
bytes).

SYNCHRONIZED cannot be associated with an index-data-name.

Lh-64

USAGE

USAGE.
The function of this clause is to specify the format of a data item

in compiler storage.

The construct of this clause is:

DISPLAY

CMP

CMP-~1

COMP
COMPUTATTIONAL
COMPUTATIONAL~1
COMPUTATIONAL-3

INDEX

[USAGE IS]

The USAGE clause can be written at any level. If USAGE is written

on group level, it applies to each elementary item in that group.

COMPUTATIONAL-1, CMP-1, or COMPUTATIONAL-3 are acceptable substi-
tutes for, and are equivalent to, COMPUTATIONAL, COMP, or CMP

entries.

A warning message of POSSIBLE CMP GROUP USAGE ERROR will appear
whenever the receiving field is a group CMP item. It indicates
that the resultant contents during object program execution of the

group CMP item may not contain expected results.

NOTE
Group moves are performed whenever the
sending or receiving field is a group
item and both will be treated as alpha-
numeric (byte) data, regardless of USAGE.

The USAGE of an elementary item cannot contradict the USAGE of a
group to which the item belongs.

Revised 9/28/70
by PCN 1033099-004 4-65

USAGE

continued

USAGE is a declaration for the EBCDIC internal representation of

the svstem and is defined as follows:

a. When USAGE IS DISPLAY, the data item consists of 8-bit
(byte) characters; two such characters comprise a B 2500/

B 3500 computer word.

b. When USAGE IS COMPUTATIONAL, the data item consists of
L-bit coded digits.

c. When USAGE IS INDEX, a PICTURE may not be specified.

The PICTURE of a COMPUTATIONAL item can contain only 9's, the opera-
tional sign character S, J, or K, the decimal point character V, one

or more P's and the insertion character O (zero).

COMPUTATIONAL items may be declared for 9-channel magnetic tape
files (TAPE-9), disk file (DISK), Supervisory Printer, paper tape
files (PT-READER or PT-PUNCH), or for WORKING-STORAGE SECTION items.

A DISPLAY item is automatically converted to its 4-bit equivalent
whenever the receiving area is defined as COMPUTATIONAL except when
the receiving area is a group item. A CMP item is automatically
converted to its 8-bit equivalent whenever the receiving area is

declared DISPLAY except when the sending CMP item is a group item.

Arithmetic operations utilizing COMPUTATIONAL and DISPLAY operands
in the same statement arc of no concern tc the user. The B 2500/
B 3500 efficiently uses these operands with no prior conversion of

data format by the programmer.
In the absence of a USAGE clause, USAGE IS DISPLAY will be assumed.

For the most efficient use of hardware storage and internal record
storage areas, records should be devised so as to avoid inter-mixing
of odd-length COMPUTATIONAL items with DISPLAY items. This rule is
due to the compiler automatically placing the machine addresses of

DISPLAY areas to modulo two. For example:

03
03

03
03
03

BAD RECORD LAYOUT

data-name-1 PC 9 USAGE IS DISPLAY
data-name-2 PC 9 USAGE IS CMP.
FILLER ADDED (see note below) .

data-name-3 PC 9 USAGE IS DISPLAY.

data-name-4 PC 9 USAGE IS CMP.

data-name=n...

NOTE

USAGE
continued

} (takes up one word)

FILLER PC 9 USAGE IS CMP was automatically

inserted to move the location counter to MOD 2.

GOOD RECORD LAYOUT (Rearrangement of the above record)

03
03
03
03
03

data-name-1 PC 9 USAGE IS DISPLAY.
data-name-3 PC 9 USAGE IS DISPLAY.

data-name-2 PC 9 USAGE IS CMP.
data-name-4 PC 9 USAGE IS CMP.

data-name~-n ...

} (takes up one-
half word)

} (depends on next entry)

}(takes up one word)

(depends on next entry)

The compiler adjusts the resultant object code addresses of group

items to

byte boundaries. The following examples reflect four

COMPUTATIONAIL data fields in two different data element arrangements:

01

EXAMPLE 1 EXAMPLE 2
A, 01 Al.
02 B PC 9 CMP. 02 Bl PC 9 CMP.
02 ¢ PC 9 CMP. 02 C1.
02 D PC 9 CMP. 03 D1 PC 9 CMP.
02 E PC 9 CMP. 03 D2 PC 9 CMP.
02 F. . . 02 E1 PC 9 CMP.
02 Fl.

(group)
(elem.)

(group)
(elem.)

(elem.)
(elem.)

(group)

4-67

USAGE

continued

Record A will occupy two contiguous bytes of memory, while record Al
will consist of three contiguous bytes. The Al description wilil

cause the following object code format to be produced:

1 B 2500/B 3500 word

A \
1 byte /_i;Byte 1 Pyte
PREVIOUS PREVIOUS
Bl STATE Di Dz El STATE
Al

Data-names whose USAGE IS INDEX are referred to as index-data-names.
They are never referred to as an "index", cannot be used for indexing
and are not associated with a table. They should be considered only
as temporary storage areas for index-names. They may be referenced

only in a SET or SEARCH statement or in a relation condition.

Condition-names, PICTURES, VALUE, SYNCHRONIZED or JUSTIFIED cannot

be associated with an index-data-name.

Every index-data-name will be automatically assigned a PC 9(5)

COMPUTATIONAL area by the B 2500/B 3500 COBOL Compilers.

L-68

VALUE

VALUE.
The function of this clause is to declare an initial value to
WORKING-STORAGE items, or the value associated with a condition-

name,

The construct of this clause is:

VA . THRU . .
[{ VALUE} IS literal-l [{ THROUGH } literal-2] [llteral-B]

THRU . .

Abbreviation VA can be used in lieu of VALUE.

Literals may consist of Figurative Constants; e.g.s ZEROS, QUOTES,

etc.

Literals may be replaced by the reserved word DATE-COMPILED. If
DATE-COMPILED is used in the VALUE clause, the date that the program
was compiled will be placed in the data-name in the JULIAN form of
YYDDD.

In the FILE SECTION, the VALUE clause is allowed only in condition-
name (88 level) entries. VALUE entries in other data descriptions

in the FILE SECTION are considered as being documentation only.

In the WORKING-STORAGE SECTION, the entire VALUE clause may be used

with condition-name entries. All levels other than 88 are restricted

to the use of literal-l only.

The VALUE clause must not be stated in a Record Description entry
with an OCCURS clause, or in an entry which is subordinate to an
entry containing an OCCURS clause. This rule does not apply to

condition-name entries.

4-69

VALUE

continyed

The VALUE clause must not conflict with other clauses in the data

description o :

o AAaa~vmiadS - o
v £

ot

i +hao 3
L1311 Tiie iiC

e
£
[¢
U
¢
I
fede
R
c
i
O
o
<
2

a. If the category of an item is numeric, all literals
in the VALUE clause must be numeric literals; e.g.;

VA 1, 3 THRU 9, 12, 16 THRU 20, 25 THRU 50, 51, 56.

b. If the category of the item is alphabetic or alpha-
numeric, all literals in the VALUE clause must be
specifically stated non-numeric literals; e.g.,

'V'A IS "A 1" ’ "B" ’ HC" ’ "F" N "M" ’ "N" ’ "O" ’ "PH) "Q" ’ "ZH .

c. All literals in a VALUE clause of an item must have a
value which requires no editing to place that value

in the item as indicated by the PICTURE clause.

d. The function of any editing clauses or editing charac-
ters in a PICTURE clause is ignored in determining the
initial appearance of the item described. However,
editing characters are included in determining the

length of the item.

In a condition-name entry, the VALUE clause is required and is the
only clause permitted in the entry. The characteristics of a

condition-name are implicitly those of its conditional variable.

If this clause is used in an entry at the group level, the literal
must be a figurative constant or a non-numeric literal (byte char-
aoters). The group area is initialized ﬁithout consideration for
the USAGE of the individual elementary items. Subordinate levels

within the group cannot contain VALUE clauses.

The VALUE clause must not be specified for a group containing items

requiring separate handling due to the SYNCHRONIZED or USAGE clause.

4-70

VALUE

continued

The VALUE clause must not be stated in a Record Description entry
which contains a REDEFINES clause, or in an entry which is sub-
ordinate to an entry containing a REDEFINES clause. This rule

does not apply to condition-name entries.

A literal must not contain a sign when the VALUE clause is used

with a data-name whose PICTURE specifies a J or K sign position.

In a VALUE clause, there is no practical limit to the number of
literals in a series. VALUE cannot be associated with an index-

data-name.

4h-71

WORKING-STORAGE

WORKING-STORAGE SECTION.

The WORKING-STORAGE SECTION is optional and is that part of the
DATA DIVISION set aside for intermediate processing of data. The
difference between WORKING-STORAGE and the FILE SECTION is that
the former deals with data that is not associated with an input

or output file.

ORGANIZATION.
Whereas the FILE SECTION is composed of file description (FD or SD)

entries and their associated record description entries, the WORKING-
STORAGE SECTION is composed only of record description entries and
non-contiguous items. The WORKING-STORAGE SECTION begins with a
section-header and a period, followed by item description entries

for non-contiguous WORKING-STORAGE items, and then by record des-
cription entries for WORKING-STORAGE records, in that order. The
format for WORKING-STORAGE SECTION is as follows:

[WORKING-STORAGE SECTION]
[77 data-name-1]
[88 condition-name-1]

[77 data-name-n]
[01 data-name-2]
[02 data-name-3]

[66 data-name-m RENAMES data-name-3]
[01 data-name-4]
[02 data-name-5]
[03 data-name-n]

[88 condition-name-2]

NON-CONTIGUOUS WORKING-STORAGE.
Items in WORKING-STORAGE which bear no relationship to one another
need not be grouped into records provided iiiey do nuvi need Lu e

further subdivided. Instead, they are classified and defined as

h-72

WORKING-STORAGE

continued

non-contiguous items. Each of these items is defined in a sepa-
rate record description entry which begins with the special level-
number 77. The following record description clauses are required

in each entry:

a. Level-number.
b. Data-name.

c. PICTURE clause or equivalent.

The OCCURS clause is not meaningful on a 77 level item and will
cause an error at compilation time if used. Other record des-
cription clauses are optional and can be used to complete the

description of the item if necessary.

All level 77 items must appear before any 0l levels in WORKING-
STORAGE.

WORKING-STORAGE RECORDS.

Data elements in WORKING-STORAGE which bear a definite relationship
to one another must be grouped into records according to the rules
for the formation of record descriptions. All clauses which are
used in normal input or output record descriptions can be used

in a WORKING-STORAGE record description, including REDEFINES,
OCCURS, and COPY. Fach WORKING-STORAGE record-name (0Ol level)

must be unique since it cannot be qualified by a file-name. Sub-

ordinate data-names need not be unique if they can be made unique

by qualification.

INITIAL VALUES.

The initial value of any item in the WORKING-STORAGE SECTION is
specified by using the VALUE clause of the record description. If
VALUE is not specified, the initial values are set to 4-bit zeros
(COMPUTATIONAL) .

CONDITION-NAMES.
Any WORKING-~STORAGE item may be a conditional variable with which

one or more condition-names are associated. Entries defining

4-73

WORKING-STORAGE

continued

condition-names must immediately follow the conditional wvariable
entry. Both the conditional variable entry and the associated

condition-name entries may contain VALUE clauses.

TRANSLATE TABLES.

If translate tables are desired in WORKING-STORAGE for referencing
by the TRN operator im ENTER SYMBOLIC, the starting address must
be modulo 1000. This can be accomplished by following the record-

name with the reserved word MOD.

CODING THE WORKING-STORAGE SECTION.
Figure 4-6 illustrates the coding of the WORKING-STORAGE SECTION.

GL-1

BURROUGHS COBOL CODING FORM

REQUESTED BY PASE

PROSRAM
PROJRAMER oATE 10EN
% W

= - l'llellljlllllllllllLLllll]lllllll
01 | 170 OISIK= C@NTIRGLY 1P LICITIMRIE) 1918101 1/ CGMPILTIATILGNALL L ¢ ¢ 1 41 1111 14 1
ost | 7,70) TOTA-ISALES PG 9D VALIIE ZERGISIet 110
o D SIALESI-QIMABTA PC (BG100) 1e0 103 030 48 1 00 80 108 L L Ll L gLt
(Y] o1, 4 TiA| - Erey 00 8 00084 04000 0888t Lttt d 1L
(X] 111 O 2 aSTIATES s 1 18113 8l b b bl L4414t
or a0) 10103 MULCH PC 91998 11 100011t il i

oe| A4l Lllolachdlal(l4l)l'lllllljlllllllLlllellllllllijllll

raa l 1 O3 PENN PG DG er 0o L L

Lo 10,21 SITATE - KEY, JRIEDIESF LNGES (SITATES) (GCCURS B T ME S 11 1 L1

1 21§13 103 151T1A4T@L-_|§L¢1015tnp£1191~1|1|111114111111111111111111111

AN 1110131w19|9l°l|l11111llll_ll_LllAllllLLJllllll!Jl

Oidy o MiDIG- U TN et 00 0 0 000 00 40 10 808 b ot b bl LA da

11;0131 ILL z V S'llllllljjlllll*ljllll

1«1 013 It PiCy o 147 \ v L MANCGE " e 0 10 11 11 14

|
|
1
[}
]
|
|
|
'3= 111 LLIOISLICIImIJEISIIPICllsl'IlllllIll1]llllJlellllllllJJLillll
!
]
|
[]
1
]
: 11103 (BT GER PG A5 VAL SPACE S e Lt i Lt L4 4sd s 111114

'e 01111T1R1A1N151-1T1AL51LM1D1'11111111111 L 44 4 444 d 8o) 8883434 a2
'9 111OfﬁlAﬁn'l‘l‘llnl111111111L1|1|414LL11111:1:;:4;1111.11111
20 A4 4L 4 6404108 08448 to8 b 44 a0 18188 a1t s
2 Lo b0 o Lo 8 b 444 L b8 bbbttt i a
22 AL 1 ll‘lllllllllj‘ljkll‘llllllllllllllllllllll‘lllljl‘l“
”: I NN NN TN
24| Lo 4ot b L L g bty bbb bbb il bt bt it Ll
25,

penuijuos

Figure 4-6. Coding of WORKING-STORAGE SECTION

JOVIOLS-ONINIOM

SECTION 5
PROCEDURE DIVISION

GENERAL.

The fourth part of the COBOL source program is the PROCEDURE DIVI-
SION. This division contains the Procedures needed to solve a given
problem. These procedures are written as sentences which may be
combined to form bparagraphs, which in turn may be combined to form

sections.

RULES OF PROCEDURE FORMATION.

COBOL procedures are expressed in a manner similar (but not iden-

tical) to normal English prose. The basic unit of procedure for-
mation is a sentence, or a group of successive sentences. A pro-
cedure is a bParagraph, or a group of successive bParagraphs, or a
section, or a group of successive sections within the PROCEDURE
DIVISION. The first entry following the PROCEDURE DIVISION header
must be a section-name or a Paragraph-name. If the first entry is
a section-name, then it must be followed by a bParagraph-name. Sen-
tence structure is not governed by the rules of English grammar,
but rather, dictated by the rules and formats outlined in this man-

ual.

STATEMENTS.

There are three types of statements: imperative statements, con-

ditional statements, and compiler~directing statements.

IMPERATIVE STATEMENTS

An imperative statement is any statement that is neither a condi-
tional statement nor a compiler~-directing statement. An imperative
statement may consist of a sequence of imperative statements, each
possibly separated from the next by a separator. A single impera-
tive statement is made up of a verb followed by its operand. A se-
quence of imperative statements may contain either a GO TO statement
or a STOP RUN statement which, if present, must appear as the last
imperative statement of the sequence. Some of the imperative verbs

are.:

Revised 9/28/70
by PCN 1033099-004 5-1

ACCEPT MOVE
ADD* MULTIPLY*
ALTER OPEN
CLOSE PERFORM
COMPUTE* SEARCH
DISPLAY SEEK
DIVIDE* SET
EXAMINE STOP
EXIT SUBTRACT*
GO WAIT
INTERROGATE WRITE**

CONDITIONAL STATEMENTS.

A conditional statement specifies that a truth value of a condi-
tion is to be determined for subsequent action of the object pro-

gram,

COMPILER-DIRECTING STATEMENTS.

A compiler-directing statement is one that comnsists of a compiler

directing verb (COPY, ENTER and NOTE) and its operand(s).

SENTENCES.

There are three types of sentences: dimperative sentences, condi-
tional sentences, and compiler-directing sentences. A sentence
consists of a sequence of one or more statements, the last of which

is terminated by a period.

IMPERATIVE SENTENCES.

An imperative sentence is an imperative statement terminated by a
period. An imperative sentence can contain either a GO TO state-
ment or a STOP RUN statement which, if present, must be the last

statement in the sentence. Examples would be:

ADD MONTHLY-SALES TO TOTAL-SALES, THEN GO TO PRINT-TOTAL.

* Without the SIZE ERROR option.
*¥%¥ Without the INVALID KEY option.

5-2

DISPLAY "PGM-END" THEN STOP RUN.

CONDITIONAL SENTENCES.
A conditional sentence is a conditional statement which may op-
tionally contain an imperative statement and must always be term-

inated by a period.
EXAMPLES:

IF HEIGHT IS GREATER THAN SIX-FEET-NINE GO TO
TALL-MEN, ELSE ADD 1 TO PUNIES, GO GET-ANOTHER-
RECORD.

IF SALES IS EQUAL TO BOSSES-QUOTA THEN MOVE SALESMAN I
TO HONOR-ROLL OTHERWISE MOVE HIS-NAME TO PINK-SLIP-
LIST, GO TO NEXT-SENTENCE.

If the phrase NEXT-SENTENCE immediately precedes a period, then
the phrase may be eliminated and a GO TO NEXT-SENTENCE will be
implied.

COMPILER-DIRECTING SENTENCES.

A compiler-directing sentence is a singie compiler-directing state-

ment terminated by a period.

EXAMPLE:

COPY "SCANER".

SENTENCE PUNCTUATION.
VERB FORMATS.

Punctuation rules for individual verbs are as shown in the wverb

formats and in section 1 of this manual.

SENTENCE FORMATS.

The following rules apply to the punctuation of sentences:
a. A sentence is terminated by a period.

b. A separator is a word or character used for the purpose

Revised 10/8/69 5-3
by PCN 1033099-002

of enhancing readability. The use of a separator

(other than a space) is optional,

c. The allowable separators are: spaces, the semicolon (;),

the comma (,), and the reserved word THEN.
d. Separators may be used in the following places:

1) Between statements.

2) In a conditional statement.

a) Between the condition and statement-1.

b) Between statement-1 and ELSE.

e. A separator (other than a space) should be followed

by at least one space but is not required.

EXECUTION OF IMPERATIVE SENTENCES.

An imperative sentence is executed in its entirety and control is

passed to the next applicable procedural sentence.

EXECUTION OF CONDITIONAL SENTENCES.

In the conditional sentence:

OTHERWISE

IF condition statement-1 { FLSE

} statement-2

the condition is an expression which is TRUE or FALSE. If the
condition is TRUE, then statement-1l is executed and control is
immediately transferred to the next sentence. If the condition is
FALSE, statement-2 is executed and control passes to the next

sentence.

If statement-l is conditional, then the conditional statement must
be the last (or only) statement comprising statement-1. For

example, the conditional sentence would then have the form:

5-4

IF condition-1 imperative-statement-1l IF condition-2

statement-4

statement-3 {.QIEEEKE§E }

OTHERWISE
ELSE

ELSE
statement-2.

If condition-1 is TRUE, imperative-statement-1l is executed. If
condition-2 is TRUE, statement-3 is executed and control is trans-
ferred to the next sentence. If condition-2 is FALSE, statement-4
is executed and control is transferred to the next sentence. If
condition-1 is FALSE, statement-2 is executed and control is trans-
ferred to the next sentence. Statement-3 can in turn be either
imperative or conditional and, if conditional, can in turn contain
conditional statements to an arbitrary depth. In an identical
manner, statement-4 can either be imperative or conditional, as

can statement-2. The execution of the phrase NEXT SENTENCE causes
a transfer of control to the next sentence written in order, except
when it appears in the last sentence of a procedure being PERFORMed,

in which case control is passed to the return control.

EXECUTION OF COMPILER-DIRECTING SENTENCES.

The compiler-directing sentences direct activities during compi-

lation time. On the other hand, procedural sentences denote action
to be taken by the object program. Compiler-directing sentences
may result in the inclusion of routines into the object program.
They do not directly result in either the transfer or passing of
control. The routines themselves, which the compiler-directing
sentences may have included in the object program, are subject to
the same rules for transfer or passing of control as if those

routines had been created from procedural sentences only.

CONTROL RELATIONSHIP BETWEEN PROCEDURES.

In COBOL, imperative and conditional sentences describe the pro-

cedure that is to be accomplished. The sentences are written
successively, according to the rules of the coding form (section
7), to establish the sequence in which the object program is to

execute the procedure. In the PROCEDURE DIVISION, names are used

5-5

so that one procedure can reference another by naming the proce-
dure to be referenced. In this way, the sequence in which the
object program is to be executed may be varied simply by trans-

ferring to a named procedure.

In executing procedures, control is transferred only to the begin-
ning of a paragraph or section. Control is passed to a sentence

within a paragraph only from the sentence written immediately pre-

ceding it. If a procedure is named, control can be passed to it
from any sentence which comtains a GO TC or PERFORM, followed by

the name of the procedure to which control is to be transferred.

PARAGRAPHS.

So that the source programmer may group several sentences to con-~

vey one idea (procedure), paragraphs have been included in COBOL.

In writing procedures in accordance with the rules of the PROCE-
DURE DIVISION and the requirements of the coding form (Section 7),
the source programmer begins a paragraph with a name. The name
consists of a word followed by a period, and the name precedes the
paragraph it names. A paragraph is terminated by the next para-
graph-name. The smallest grouping of the PROCEDURE DIVISION which
is named is a paragraph. The last paragraph in the PROCEDURE DIVI-
STON is terminated by the optional special paragraph-name END-OF-.JO0R

which can be the last card in the source program.

Programs may contain identical paragraph-names provided they are
resident in different sections. Il such paragraph-names are notl
qualified when used, the current section is assumed. They may be

used in GO, PERFORM and ALTER statements if desired.

SECTIONS.

A section consists of one or more successive paragraphs and must
be named when designated. The section-name is followed by the
word SECTION, a priority number which is optional, and a period.
If the section is a DECLARATIVE section, then the DECLARATIVE
sentence {i.e., USE or COPY) foliows the section header and begins

on the same line. Under all other circumstances, a sentence may

5-6

not begin on the same line as a section-name. The section-name
applies to all paragraphs following it until another section-name

is found. It is not required that a program be broken into sec-
tions, but this technqgiue is exceptionally useful in trimming down
the physical size of object programs by stating a priority number

to declare overlayable program storage (see SEGMENT CLASSIFICATION).

Since paragraph-names and section-names both have the same desig-
nated position on the reference format (i.e., position A), section-
names, when specified, are written on one line followed by a para-
graph name on a subsequent line. When PERFORM is used in a non-
DECLARATIVE procedural section to call another section, the same
rules apply as when PERFORM is used in a DECLARATIVE section.

DECLARATIVES.

Declaratives are procedures which operate under the control of the

input-output system. Declaratives consist of compiler-directing
sentences and their associated procedures. Declaratives, if used,
must be grouped together, at the beginning of the PROCEDURE DIVI-
SION. The group of declaratives must be preceded by the key word
DECLARATIVES, and must be followed by the words END DECLARATIVES.
Each DECLARATIVE consists of a single section and must conform to
the rules for procedure formation. There are two statements that
are called declarative statements in the COBOL Compiler. These

are the USE and the COPY statements.

USE STATEMENT,

A USE declarative is used to supplement the standard procedures
provided by the input-output system. The USE sentence, immediately
following the section-name, identifies the condition calling for
the execution of the USE procedures. Only the PERFORM statements
may reference all or part of a USE section. The USE sentence
itself is never executed. Within a USE procedure, there must be

no reference to the main body of the PROCEDURE DIVISION. The

format for the USE declarative is as follows:

SeCtiOl’l—ﬂal’He SECTION- USE.. ® 8 5 06 60 00 0090 0 0 0

paragraph-name. First procedure-statement ...

5-7

Complete rules for writing the formats for USE are stated under

the USE verb.

COPY STATEMENT AS A DECLARATIVE,
A COPY declarative is used to incorporate a DECLARATIVE library

routine in the source program. That is, a routine which is a USE

declarative. The format of the COPY declarative is:
section-name SECTION. COPY "library-name'.

Complete rules for writing the format for COPY are stated under
the COPY wverb.

ARITHMETIC EXPRESSIONS.

An arithmetic expression is an algebraic expression which is

defined as:
a. An identifier of a numeric elementary ditem.

b. A numeric literal.

c. Such identifiers and literals separated by arithmetic
operators.
d. Two arithmetic expressions separated by an arithmetic
operator.
e. An arithmetic expression enclosed in parentheses.
Any arithmetic expression may be preceded by a unary + or -. The

permissible combinations of identifiers, literals, and arithmetic
operators are given in table 5-1. Those identifiers and literals
appearing in an arithmetic expression must represent either numeric
elementary items or numeric literals on which arithmetic operation

may be performed.

5-8

Table 5-1

Combination of Symbols in Arithmetic Expressions

Second Symbol
First .
* /%% -
Symbol Variable / + ()
Variable - P P - P
*/** P - P P -
+- P - - P -
P - P P -
) - P P - p
NOTE
In the above table, the letter P represents
a permissable pair of symbols. The character
- represents an invalid character pair. Vari-

able represents an identifier or literal.

ARITHMETIC OPERATORS.

There are five arithmetic operators that may be used in arithmetic

Hh

expressions. They are represented by speci

must be preceded by a space and followed by a space.

Character Meaning
+ addition

- subtraction

* multiplication
/ division
*% exponentiation

FORMATION AND EVALUATION RULES.

Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be used. Expressions within paren-
theses are evaluated first and, within a nest of parentheses,
evaluation proceeds from the least inclusive set to the most in-
clusive set. When parentheses are not used, or parenthesized

Revised 10/8/69
by PCN 1033099-002 5-9

expressions are at the same level of inclusiveness, the following

hierarchical order of operations is implied:

Unary + or -
*¥
* and /

+ and -

The symbols + and -, if used without parenthesizing, may only follow
one of the arithmetic operators ¥*, *, /, or appear as the first
symbol in a formula. Parentheses have a precedence higher than any
of the operators and are used to eliminate ambiguities in logic
where consecutive operations of the same hierarchical level appear,
or to modify the normal hierarchical sequence of execution in for-
mulas where it is necessary to have some deviation from the normal
pPrecedence. When the sequence of execution is not specified by
parentheses, the order of execution of consecutive operations of
the same hierarchical level is from left to right. Thus, ex-
Pressions ordinarily considered to be ambiguous, e.g., A / B ¥ C,

A / B / C, and A¥¥B¥*¥C are permitted in COBOL. They are inter-
preted as if they were written (A / B) * C, (A / B) / C, and (A**B)

*%¥C, respectively. Without parenthesizing, the following example:
A+B/C+D*XE*F -G
would be interpreted as:

A+ (B/c)+ ((D**E) *F) -G

with the sequence of operations working from the inner-most paren-
theses toward the outside, i.e., first exponentiation, then mul-

tiplication and division, and finally addition and subtraction.

The way in which operators, variables, and parentheses may be com-

bined in an arithmetic expression is summarized in table 5-1.

An arithmetic expression may only begin with the symbols (, +, -

N a sraviahla and ma~xr nanl-xr and with - \ ovr o =

s v
sl i o J R ~ e~ - e~y

be a one-to-one correspondence between left and right parenthesis

5~10

of an arithmetic expression such that each left parenthesis is to

the left of its corresponding right parenthesis.

CONDITIONS.

A condition causes the object program to select between alternate

paths of control depending upon the truth value of a test. Con-
ditions are used in IF and PERFORM statements. A condition is one

of the following:

a. Relation condition..

b. Class condition.

c. Condition-name condition.
d. Sign condition.

e. NOT condition.

f. Condition { %%2‘} condition.

The construction NOT condition, where condition is one of the first
four types'of conditions listed above, is not permitted if the con-

dition itself contains NOT.

LOGICAL OPERATORS.
Conditions may be combined by logical operators. The logical oper-
ators must be preceded by a space and followed by a space. The

meaning of the logical operators is as follows:

Logical Operator Meaning
OR Logical Inclusive OR
AND Logical Conjunction
NOT Logical Negation

Table 5-2 indicates the relationships between the logical operators
and conditions A and B. Table 5-3 indicates the way in which con-

ditions and logical operators may be combined.

RELATION CONDITION.
A relation condition causes comparison of two operands, each of
which may be a data-name, a literal, or an arithmetic expression

(formula). Comparison of two elementary numeric items is permitted

Revised 9/28/70
by PCN 1033009-004 5-11

regardless of the format as specified in individual USAGE clauses.

However,

USAGE.

for

Group numeric items are defined to be alphanumeric.

all cther comparisons the operands must have the same

It is

not permissible to compare an index-data-name to a literal or a

data-name.

Relationship of Conditions,

Table 5-2

Logical Operators, and Truth Values

Combinatiocons of Conditions

Condition Condition and Value
A B A AND B A OR B NOT A
TRUE TRUE TRUE TRUE FALSE
FALSE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE TRUE FALSE
FALSE FALSE FALSE FALSE TRUE
Table 5-3

and Logical Operators

(%14

-12

First Second Symbol
Symbol Condition OR AND NOT {)
F========== —— — — ——— =
Condition - P P - - P
OR P - - P P -
AND P - - P P -
NOT P - - - P -
(P - - P P -
) - P P - - P
NOTE

The letter P represents a
permitted pair of symbols.
The character - represents

an invalid character pair.

The general format for a relation condition is as follows:

data-name-1 data-name-2
literal-1 relational-operator literal-2
arith. expression-1 arith. expression-2

The first operand, data-name-1, literal-1, or arithmetic expression-
1l is called the subject of the condition. The second operand, data-
name-2, literal-2, arithmetic expression-2 is called the object of

the condition. The object and the subject may not both be literals.

RELATIONAL OPERATORS.
The relational operators specify the type of comparison to be made
in a relation condition. The relational operators must be preceded

by a space and followed by a space. Relational operators are:

a. IS [NOT] GREATER THAN.
b. IS [NOT] LESS THAN.

c. IS [NOT] EQUAL TO.

d. IS [NoOT] >.

e. Is [NOT] <.

f. Is [NOT] =.

COMPARISON OF OPERANDS,

NON-NUMERIC. For non-numeric (byte) operands, a comparison will
result when determination is made that one operand is less than,
equal to, or greater than the other with respect to a specified
internal coding sequence of characters (see appendix C). The size
of an operand is the total number of characters or digits in the
operand. Non-numeric operands may be compared only when their
USAGE is the same, implicitly or explicitly. There are two cases

to consider:

a. If the operands are of equal size, characters or digits
in corresponding character or digit positions of the

two operands are compared starting from the high-order

5-13

end through the low-order end. If all pairs of charac-
ters or digifs compare equally through the last pair,

d equal when the low-order end
is reached. The first pair of unequal characters or
digits to be encountered is compared to determine their
respective relationship. The operand that contains the
character or digit that is positioned higher in the in-
ternal coding sequence is considered to be the greater

operand.

b. If the operands are of unequal size, the comparison of
characters or digits proceeds from high-order to low-
order positions until a pair of unequal characters or
digits is encountered, or until one of the operands has
no more characters or digits to compare. If the end of
the shorter operand is reached and the remaining charac-
ters or digits in the longer operand are spaces OI zeros,

the two operands are considered to be equal.

NUMERIC. For operands that are numeric, a comparison results in
the determination that one of them is less than, equal to, or
greater than the other with respect to the algebraic wvalue of the
operands. The length of the operands, in terms of number of digits,
is not significant. Zero is considered a unique value regardless
of the sign. Comparison of these operands is permitted regardless
of the manner in which their usage is described. Unsigned numeric

operands are considered positive for purposes of comparisons.

The signs of signed numeric operands will be compared as to their

algebraic value of being plus (highest) or minus (lowest).

EVALUATION RULES.
The evaluation rules for conditions are analogous to those given

for arithmetic expressions except that the following hierarchy

applies:
a. Arithmetic expressions (formulas).
b. All reliational operators.

5-1h

c. NOT.
d. AND.
e. OR.

SIMPLE CONDITIONS.

Simple conditions, as distinguished from compound conditions, are
subdivided into four general families of conditional tests: Re-
lation Tests, Relative Value Tests, Class Tests, and the Condi-
tional Variable Tests. A detailed explanation of each of these

can be found under the IF verb discussion.

COMPOUND CONDITIONS.

The most common format of a compound condition is:

simple-condition-1 { %%2 } simple-condition-2
AND AND simple-condition-n
OR OR

Simple conditions can be combined with logical operators according
to specified rules to form compound conditions. The logical op-
erators AND, OR, and NOT are shown in table 5-2 where A and B re-
present simple conditions. Thus, if A is TRUE and B is FALSE, then
the expression A AND B is FALSE, while the expression A OR B is
TRUE.

The following are illustrations of compound conditions:
a. AGE IS LESS THAN MAX-AGE AND AGE IS GREATER THAN 20.
b. AGE IS GREATER THAN 24 OR MARRIED.

c. STOCK-ON-HAND IS LESS THAN DEMAND OR STK-SUPPLY IS
GREATER THAN DEMAND + INVENTORY.

d. A IS EQUAL TO B, AND C IS NOT EQUAL TO D, OR E IS NOT
EQUAL TO F, AND G IS POSITIVE, OR H IS LESS THAN I * J,.

5-15

e. STK-ACCT IS GREATER THAN 72 AND (STK-NUMBER IS LESS
THAN 100 OR STK-NUMBER EQUAL TO 76920).

Note that it is not necessary to use the same logical connective
throughout. The rules for determining the logical (i.e., truth)

value of a compound condition are as follows:

a. If AND's are the only logical connectives used, then the
compound condition is TRUE if, and only if, each of

the simple conditions is TRUE.

b. 1If OR's are the only logical connectives used, then the
compound condition is TRUE if, and only if, one or

more of the simple conditions is TRUE.

c. If both logical connectives are used, then the conditions
are grouped first according to AND, proceeding from left

to right, and then by OR, proceeding from left to right.

Parentheses may be used to indicate grouping as specified in the
examples below. Parentheses must always be paired the same as in
algebra, i.e., the expressions within the parentheses will be
evaluated first. In the event that nested parenthetical expres-
sions are employed, the innermost expressions within parentheses
are handled first. Examples of using parentheses to indicate

grouping are:

a. To evaluate Cl and (C2 OR NOT (C3 OR C4)), use the
first part of rule ¢ above and successively reduce

this by substituting as follows:

Let C5 equal "C3 OR C4" resulting in
Cl AND (C2 OR NOT C5)

Let C6 equal "C2 OR NOT C5" resulting
in C1 AND C6

Tiiis can e evaluaied Dy taple 5-Z2.

5-16

b. To evaluate Cl1l OR C2 AND C3, use the second part of
rule ¢ and reduce this to Cl1 OR (C2 AND C3), which

can now be reduced as in example a.

c. To evaluate Cl AND C2 OR NOT C3 AND C4, group first
by AND from left to right, resulting in:

(c1 AND c2) OR (NOT G3 AND Ch4)
which can now be evaluated as in example a.

d. To evaluate Cl AND C2 AND C3 OR C4 OR C5 AND C6 AND C7
OR C8, group from the left by AND to produce:

((c1 AND C2) AND C3) OR C4 OR ((C5 AND C6)
AND C7) OR C8

which can now be evaluated as in example a.

ABBREVIATED COMPOUND CONDITIONS.
Any relation condition other than the first that appears in a

compound conditional statement may be abbreviated as follows:

a. The subject, or the subject and relational operator,
may be omitted. In these cases, the effect of the abbre-
viated relation condition is the same as if the omitted
parts had been taken from the nearest preceding complete
relation condition within the same condition. That is,

the first relation in a condition must be complete.

b. If, in a comnsecutive sequence of relation conditions
(separated by logical operators) the subjects are iden-
tical, the relational operators are identical and the
logical connectors are identical, the sequence may be

abbreviated as follows:

1) Abbreviation 1 - when identical subjects are
omitted in a consecutive sequence of relation
conditions. An example of Abbreviation 1

would be:

5-17

5-18

IF A = B AND = C,

This is equivalent to IF A = B AND A = C.

2) Abbreviation 2 - when identical subjects and
relational operators are omitted in a consecutive
sequence of relation conditions. An example of

Abbreviation 2 is:

IF A = B AND C,

This is equivalent to IF A = B AND A = C.

3) Abbreviation 3 - when identical subjects, relational
operators, and logical connectors are omitted in a
consecutive sequence of relational conditions. Only
the first occurrence of the subject and relation
are written; all objects but the last are written as
a series (can but need not be preceded by commas).

The logical connector is written only once and appears
immediately preceding the last of the objects. An

example of Abbreviation 3 would be:

IF A = B, C AND D

This is equivalent to TF A = B AND A = C AND A = D.

As indicated in the previous pParagraphs, compound con-
ditions can be abbreviated by having implied subjects,

or implied subjects and relational operators, providing
the first simple condition is a full relation. The
missing term is obtained from the last Previous complete
relation in the sentence. The following examples further

illustrate the abbreviated compound conditions:

1) IF A =B OR C is equivalent to IF A = B OR A = C.

2) IFA<BOR=CORD isAequivalent to IF A < B OR
A =C OR A < D. Note that the missing relational

symbol for U 1s < rather than = since the last

SEGMENTATION.

COBOL segmentation is a facility that pProvides a means by which

communication with the compiler, to specify object program overlay
requirements, can be accomplished. COBOL segmentation deals only
with segmentation of procedures. As such, only the PROCEDURE
DIVISION and the ENVIRONMENT DIVISION are considered in determining

segmentation requirements for an object program.

PROGRAM SEGMENTS,

Although it is not mandatory, the PROCEDURE DIVISION for a source
program may be written as a consecutive group of sections, each of
which are operations that are designed to collectively perform a
particular function. FEach section must be classified as belonging
either to the fixed portion or to one of the independent segments
of the object program. Segmentation in no way affects the need

for qualification of procedure-names to ensure uniqueness.

The object program is composed of two types of segments: A fixed

segment and overlayable segments.

a. The fixed segment is the main program segment and is

never overlaid by any other part of the program.,

b. An overlayable segment is a segment which, although
logically treated as if it were always in memory, can
be overlaid, if necessary, by another segment to opti-
mize memory utilization. However, such a segment, if
called for by the program, is always made available
in its "initial" state except for ALTERed switches

which are always set to their last used state.

Also, depending on availability of memory, the number of permanent
segments in the fixed and overlayable portions can be varied by

changing the SEGMENT-LIMIT clause in the OBJECT-COMPUTER paragraph.

SEGMENT CLASSIFICATION.
Sections which are to be segmented are classified using a system
of priority numbers and the following criteria:

Revised 8/28/69
by PCN 1033099-001 5-19

a. Logic requirements - sections with priority numbers
from 00 thru 49 in a program may reside in the fixed

= QT RATVATT
LIl OLATPLIVIN L™

segment depending on the value specified im
LIMIT. Sections containing a priority number lower

than that specified in SBEGMENT-LIMIT, regardless of

their physical location in the program, will be assigned
to the fixed segment; all other sections will be assigned
as overlayable segments. Fall-through control from one
SECTION to another SECTION is accomplished in their order

of appearance in the source program.

b. Relationship to other sections - sections coded within
the SEGMENT-LIMIT range will become the fixed segment
and can communicate freely with each other. Those coded
outside the stated SEGMENT-LIMIT range fall into the
overlayable category and can also communicate from one
to the other, except that a PERFORM may nct have within
its range any procedure-name contained in another over-
layable segment. The compiler will create one non-over-
layable (fixed) program area which will include all
sections with priority numbers below the value specified
in SEGMENT-LIMIT. One overlayable area in memory, the size
of the largest declared section, will be created for prior-
ity numbers equal to, or higher than, the value specified
in SEGMENT-LIMIT. This method allows the smaller overlays

to be called in without requiring memory alignment.

PRIORITY NUMBERS..

Section overlay classifications are accomplished by means of a
system of priority numbers. The priority number is included in
the section header. The general format of a section header is as

follows:

section-name SECTION priority-number.

— I e T LTy 3 3
Tiie priviivy fiWwiigel musSt o& an InNTveger ranging - volue from

through 99 (also 0, 1, 2, etc., are permissible priority numbers).

5-20

If the priority number is omitted from the section header, the
priority number is assumed to be 0. Segments with priority numbers
ranging from O up to, but not including, the value specified in the

SEGMENT-LIMIT clause (or 49 if no SEGMENT-LIMIT clause has been

specified) are considered as being located in the fixed (non-over-
layable) portion of the object program. Segments with priority num-
bers equal to or higher than, the value specified in SEGMENT-LIMIT,
but not exceeding 99, are independent segments (overlayable) and
fully ALTERable. Sections in DECLARATIVES are assumed to be 00

and must not contain priority numbers in their section headers.

Priority numbers may be stated in any sequence and need not be in

direct sequence. The fixed segment does not end when the first
priority number equal to or greater than SEGMENT-LIMIT is encoun-

tered.

All segments, regardless of their physical location in the source
program, whose priority number is less than that which is specified
in SEGMENT-LIMIT will be "gathered"™ into a single non-overlayable
segment. All other segments equal to, or greater than that which
is specified in SEGMENT LIMIT will be "gathered" into overlayable
segments according to equal priority numbers regardless of their

pPhysical location in the source program.

The use of the "gathering" technique will allow programmers to
create tailored segments which will reduce disk access times. For
example:

Program A: SEGMENT-LIMIT equals 17.

Non-Gathered

Segment Description Size in Digits
00-16 Main body of the program 20,000
17 Used frequently 1,000
18 Used frequently 5,000
19 Used infrequently 4,000
20 Used at EOJ only 500
21 Used frequently 2,000

5-21

Segment Description Size in Digits

22 Used at BOJ only 1,000
23 Used frequently 500
24 Used if TRACE desired 1,500
25 Used infrequently 3,000
Gathered
Segment Description Size in Digits
00-16 Main body of the program 20,000
17 Used frequently 1,000
18 Used infrequently 5,000
19 Used infrequently L4,000
20 Used at EOJ 500
17 Used frequently (was segment 21) 2,000
19 Used at BOJ (Was segment 22) 1,000
17 Used frequently (Was segment 23) 500
20 Used if TRACE desired (was segment 24) 1,500
20 Used infrequently (was segment 25) 3,000
Results of Gathering
Segment Description Size in Digits
00-16 Main body of the program 20,000
17 Used frequently 3,500
18 Used infrequently 5,000
19 Used infrequently 5,000
20 Used infrequently 5,000

"Fall through" will be performed in the sequence as outlined in
the above Non-Gathered example and not as they appear in the Re-
sults of Gathering example above, therefore preserving the logical

integrity of the original program.

The Burroughs unique head-per-track disk file permits B 2500/B 3500
Systems users to efficiently handle the COBOL techmnique of over-

laying segments without requiring a programmer to state varied

5-22

hardware inadequacies and is the decided factor by which the B 2500/

B 3500 excels in its multiprocessing capabilities.

The MCP will automatically check to see if an overlay being called
for by an object program is already present in the object programs
overlayable memory storage area. If it is present, no disk access
is required and the program is not interrupted. If it is not pre-
sent, the MCP interrupts the program and will access the disk for
the desired overlayable portion of the program. The MCP uses over-
lay segments directly from the program library where the object
program was compiled to and is called in as an overlay in its ini-

tial generated code each and every time it is required by the

operating program. Although the initial code is retrieved each
time, the latest addresses of ALTERed exits are still applicable

and are in force by the use of an automatic ALTER table.

INTERNAL PROGRAM SWITCHES.

Every compiled object program contains eight programmatic switches

provided automatically. Switches SW1 through SW7 are composed of
one unsigned digit in length and are located in memory locations
(base relative) 1 through 7. SW8 is located in memory location

(base relative) O. These switches can be set optionally as follows:

a. Option 1. Switches can be initially set at the start of
an object program's execution by punching one of the

following MCP Control Cards:

1) ? EXECUTE program-name VALUE O = nnnnnn#¥
2) ? EXECUTE program-name VALUE 1 = nnnnnn¥%%
3) ? EXECUTE program-name VALUE 2 = nnnnnn¥¥%

nnnnnn represents internal program switches which may be
set by placing a zero (OFF) or any digit 1-9 (ON) in the

appropriate positions.

* VALUE O sets switches 812345 as coded in nnnnnn.
*%¥ VALUE 1 sets switches 123456 as coded in nnnnnn.
**¥¥VALUE 2 sets switches 234567 as coded in nnnnnn.

5-23

Note that the VALUE statement in an MCP control message

must always contain a six digit integer, thus only six

switches can be affected using this method. The prograim-
name must be the object program identifier.

b. Option 2. Switches can be referred to in the PROCEDURE
DIVISION by the use of the reserved words SW1, SW2...
SW8. Each individual switch setting can be changed during
operation by a MOVE, ADD, SUBTRACT, etc., for example:
MOVE O TO Swi.
ADD 1 TO Sw2.
SUBTRACT 1 FROM SW3.

c. Option 3. The systems operator can be programmatically
informed that a switch requires setting by stating in the

source program:
STOP "SET SW2 ON".
The proper keyboard entry to set the switch would be:
mix-index IN 2 1 UN = 1

The proper keyboard entry to resume operation would be:

Note that SW6 has an affect on the MONITOR DEPENDING....requirement

if the statement is present.

The
the

All
the

switch memory locations are reserved and operate exactly like

reserved TALLY locations.

three options of setting switches can be incorporated during

operation of a given program.

of the verbe available for uce with the CORNT. Comniler are

categorized below. Although the word IF is not a verb in the

5-2L

English language, it is utilized as such in the COBOL language.
Its occurrence is a vital feature in the PROCEDURE DIVISION.

a. Arithmetic:
ADD
SUBTRACT
MULTIPLY
DIVIDE
COMPUTE

b. Compiler directing declaratives:
NOTE
USE

c. Compiler directing:
COPY

d. Data manipulations:
MOVE
EXAMINE
SORT

e. Ending:

STOP

f. Input-output:
WRITE
READ
OPEN
CLOSE
ACCEPT
DISPLAY
SEEK

g. Logical Control:
IF

h. Procedure Branching:

GO

5-25

ALTER
PERFORM

T TMm
LAl L

ZTP

i. Source-level Debugging:
TRACE

SPECIFIC VERB FORMATS.
The specific wverb formats, together with a detailed discussion of

the restrictions and iimitations associated with each, appear on

the following pages in alphabetic sequence.

5-26

ACCEPT

ACCEPT.
The function of this verb is to permit the entry of low-volume data

from the console typewriter.

The construct of this verb is:

ACCEPT data-name [FROM { SPO . , }]
—_— —_— mnemonic-name

This statement causes the operating object program to halt and

wait for appropriate data to be entered on the SUPERVISORY PRINTER
(sPO0). The SPO entry will replace the contents of memory specified
by the data-name. The systems operator answers an ACCEPT halt by

keying in the following message:
mix-index AXdata-required
If a blank appears between the AX and data-required, the blank

character will be included in the data-stream.

The number of characters ACCEPTed must correspond to the size of

the receiving data-name.

If mnemonic-name is used, it must appear in the SPECIAL-NAMES para-

graph equated to the hardware-name SPO.

The receiving data-name may be a group level entry and cannot be

subscripted.

Because of the inefficiency of entering data through the keyboard,
this technique of data transmission should be solely restricted

to low-volume input data.
The maximum number of characters per ACCEPT statement is unlimited.

ACCEPT's of greater than 60 characters must be entered thru the SPO
in exact groups of 60 characters, except for the last group, which

can be of any size up to 60.

5-27

ADD

ADD.

The function of this verb is to add two or more numeric data

items and adjust the value of the receiving field(s) accordingly.

The construct of this verb has four options:

Option 1:
ADD literal-1 literal-=2
—_ data-name-~1 data-name-2 e

data-name-n [ROUNDED]

(g} cvnvnene] |

r
L ON SIZE ERROR any statement

OTHERWISE
ELSE

Option 2:

{literal—l

literal-2
data-name-1

data-name-2

[data-name—n [ROUNDED] s]

} statement]]

oL

TO data-name-3 [ROUNDED]

ADD

OTHERWISE
ELSE

[ON SIZE ERROR any statement [{

Option 3:
ADD literal-1 literal-2 literal-3 } 1
=== data-name-1 data-name-2 | | data-name-3 T

[ROUNDED |

GIVING data-name-n [ON SIZE ERROR any

statement

e

LA/DL

statement }]

o]
-

OTHERWISE l
)

5-28

ADD
continued

Option U4: .
CORR
ADD { CORRESPONDING } data-name-1 TO data-name-2 [ROUNDED]

\ ELSE

[ON SIZE ERROR any statement [J OTHERWISE } statement]]

If Option 1 is used, the operands will be added together and the

sum will be stored as the value of the last operand.

With Option 2, the value(s) of the operand(s) preceding the word

TO will be added together and the sum will be added to the existing
value(s) of operand(s) following the word TO. A resumation does
not occur if the value of one of the data-names changes in the

process. For example:
ADD A TO B,A,C.

In Option 3, the sum of the operands preceding the word GIVING
will be inserted as a replacement value of data-name following the

word GIVING.

In Options 1, 2, and 3, the data-names must refer to elementary
numeric items only, except that data-names appearing only to the
right of the word GIVING may refer to data-names which contain

editing symbols.
An ADD statement must have at least two operands.

Editing items can only be used as the receiving field with the
GIVING format. Operational signs and implied decimal points are

not considered as editing symbols.

The composite of operands, which is that data item resulting from
the superimposition of all operands, excluding the data item that

follows the word GIVING, aligned on their decimal points, must not

5-29

ADD

continued

contain more than 98 digits/characters.

The internal format of operands referred to in an ADD statement
may differ among each other. Any necessary format transformation
and decimal point alignment is automatically supplied throughout

the calculation.
Fach literal must be a numeric literal.

If, after point alignment with the receiving data item, the cal-
culated result would extend to the right of the receiving data

item (i.e., a data-name whose value is to be set equal to the sum),
truncation will occur. Truncation is always in accordance with

the size associated with the resultant data-name. When the ROUNDED
option is specified, it causes the resultant data-name to have its
absolute value increased by 1 whenever the most-significant digit

of the truncated portion is greater than or equal to five.

Whenever the magnitude of the calculated result exceeds the largest
magnitude that can be contained in a resultant data-name, a size
error condition arises. In the event of a size error condition, one
of two possibilities will occur, depending on whether or not the

ON SIZE ERROR option has been specified. The testing for the size
error condition occurs only when the ON SIZE ERROR option has been

specified.

a. In the event that ON SIZE ERROR is not specified and
size error conditions arise, the value of the 1_sultant

data-name is unpredictable.

b. If the ON SIZE ERROR option has been specified and size
error conditions arise, then the value of the resultant
data-name will not be altered. After determining that
there is a size error condition, the "any imperative-
statement" associated with the ON SIZE ERROR option will

be executed.

If Option 4 is used, multiple operations are performed. The

5-30

ADD
continued

operations are executed by pairing identical data-names of numeric
elementary items subordinate in hierarchy to data-name-l and data-
name-2. Data-names match if they, and all their possible qualifiers
up to, but not including data-name-1 and data-name-2, are the same.
All general rules pertaining to the ADD verb apply to each indivi-
dual ADD operation. For instance, if the size of matched data-
names does not correspond in that the decimal point is out of
alignment or the sizes differ, the decimal point alignment or trun-

cation takes place according to the rules previously discussed.

In the process of pairing identical data-names, any data-name with
the REDEFINES clause is ignored. Similarly, data-names which are
subordinate to the subordinate data-names with the REDEFINES clause

are ignored.

NOTE
This restriction does not preclude data-name-1
or data-name-2 themselves from having REDEFINES
clauses or from being subordinate to data-names
with REDEFINES clauses.

If the CORR or CORRESPONDING option is used, no item in the group

referred to can contain an OCCURS clause.

If, in Option 4, either data-name-1 or data-name-2 is a group item
which contains RENAMES entries, the entries are not considered in

the matching of names.

In Option 4, data-name-1 and data-name-2 must not have a level
number of 66, 77, or 88.

In Option 4, CORR is an acceptable substitute for CORRESPONDING.

5-31

ALTER

ALTER.
The function of this verb is to modify a predetermined sequence
of operations by changing the operand of a labeled GO TO paragraph.

The construct of this verb is:

ALTER procedure-name-i TO [PROCEED TO] procedure-name-2

[procedure—name—S [TO PROCEED TO] procedure-name-4 ...]
L J

Procedure-name-1, procedure-name-3, ... are names of paragraphs,
each of which contains a single sentence consisting of only a GO
TO statement as defined under Option 1 of the GO TO verb. Proce-
dure-name-2, procedure-name-4, ... are not subject to the same
restrictions and thus may be either paragraph names or section

names.

When control passes to procedure-name-1, control is immediately
passed to procedure-name-2 rather than to the procedure-name ref-
erred to by the GO TO statement in procedure-name-1i. Procedure-
name-1 is therefore a "gate" which remains set until again referen-

ced by another ALTER statement.

Segmentation does not affect ALTER. Any GO TO paragraph may be
ALTERed from anvwhere in the program to PROCEED to any section

or paragraph-name contained in the program.

5-32

CLOSE.

CLOSE

The function of this wverb is to communicate to the MCP that the

designated file-name being operated on or created is programmati-

cally completed, and also to fulfill the stated action requirements.

The construct of this verb is:

LOCK
PURGE
RELEASE
NO REWIND

CLOSE file-name-1 [REEL] WITH

[file—name—2...]

File-names must not be those defined as being SORT files.

The file must have been opened previously before a CLOSE statement

can be executed.

This statement applies to the following categories of input and

output files:

a. FPFiles whose input and output media involve print files,

card files, etc.

b. Files which are contained entirely on one reel and are

the only files on that reel.

c. Files which may be contained on more than one
reel. Furthermore, the number of reels might
higher than the number of physical tape units

on the system.

d. Disk files.

To show the effects of the CLOSE options, each type of

be discussed separately.

a. Card and MICR Input.

physical
possibly be

provided

file will

5-33

CLOSE

continued

5-34

L)

5)

CLOSE - releases the input areas, but does not

release the reader.

LOSE

VITH NO REWIND -~ same as CLOSE.

CLOSE WITH RELEASE - releases the input areas and
returns the reader to the MCP.

CLOSE WITH LOCK - same as CLOSE WITH RELEASE.

CLOSE WITH PURGE - same as CLOSE WITH RELEASE.

Card Output.

1)

2)

3)

CLOSE - punches the trailer label (if any), releases

the output areas, but does not release the punch.
CLOSE WITH NO REWIND - same as CLOSE.

CLOSE WITH RELEASE - releases the output areas and
returns the punch to the MCP.

CLOSE WITH LOCK - same as CLOSE WITH RELEASE.

CLOSE WITH PURGE - same as CLOSE WITH RELEASE.

Tape Input.

1)

CLOSE - checks the trailer label (if any) and rewinds
the tape. It does not release input areas, and the

unit remains assigned to the program.

CLOSE WITH NO REWIND -~ same as CLOSE except the tape

is not rewound.

CLOSE WITH LOCK - releases the input areas, checks
the trailer label (if any), rewinds the tape, and
the MCP marks the unit not ready.

CLOSE WITH RELEASE - releases the input areas. checks
the trailer label (if any), rewinds the tape, and

returns the unit to the MCP.

5)

CLOSE

continued

CLOSE WITH PURGE - releases the input areas, checks
the trailer label (if any), rewinds the tape, and
if a write ring is in the reel, over-writes the label,

making the tape a scratch tape.

Tape Output.

1)

3)

)

5)

CLOSE - writes the trailer label (if any), and
rewinds the tape. The unit remains assigned to

the program.

CLOSE WITH NO REWIND - writes the trailer label
(if any). The tape remains positioned beyond the
trailer label (or tape mark if there is no trailer

label). The unit remains assigned to the program.

CLOSE WITH LOCK - releases the output areas, writes
the trailer label (if any), rewinds the tape, and
the MCP marks the unit not ready.

CLOSE WITH RELEASE - releases the output areas,
writes the trailer label (if any), rewinds the tape,

and returns the unit to the MCP.

CLOSE WITH PURGE - releases the output areas, writes
the trailer label (if any), rewinds the tape, returns
the unit to the MCP, and the MCP over-writes the label

making it a scratch tape.

Printer and Lister Output.

1)

3)

CLOSE - prints the trailer label (if any), releases
the output areas but does not release the printer or

lister.
CLOSE WITH NO REWIND - same as CLOSE.

CLOSE WITH RELEASE - releases the output areas and

returns the printer or lister to the MCP.

5-35

CLOSE

continued

4) CLOSE WITH LOCK - same as CLOSE WITH RELEASE.
5) CLOSE WITH PURGE - same as CLOSE WITH RELEASE.

f. Disk Files. The actions taken on files ASSIGNED to
DISK will be discussed in terms of old files and new
files. An old file is one that already exists on disk
and appears in the MCP Disk Directory. A new file is
one created by the program and does not appear in the
Directory. A mnew file may only be referenced by the

program which creates it.
1) CLOSE.

a) For an old file, the file is left in the Direc-

tory and is available to other programs.

b) For a new file, the file is not entered in the
Directory, however, it remains on the disk and

may be OPENed again by this program.

2) CLOSE WITH NO REWIND - not permitted on
disk files.

3) CLOSE WITH RELEASE.

aj) For an old file, same as CLOSE file-name.

b) For a new file, the file is entered in the
Directory (thereby making it an old file).
The file is available to be OPENed by any

program.
4) CLOSE WITH LOCK.

a) For an old file, the file remains in the

Directory and is made available.

. ST
V.I.-y . »~oeaws T

o
N

A b mmmad dan dla TV o~ e e
PO IITEYXEG 4 w4l LirccyT

sequent action is identical to an old file.

5-36

CLOSE

continued

5) CLOSE WITH PURGE.

a) An old file is immediately removed from the disk

and deleted from the Directory.

b) A new file will be immediately removed from
the disk.

g. Remote Devices (Data Communications).

l) CLOSE ~ releases the input areas, but does not

release the adapter.

2) CLOSE WITH RELEASE - releases the input areas and

returns the remote device to the system.

If a file has been specified as being OPTIONAL, the standard END-
OF-FILE processing is not permitted whenever the file is not pre-

sent.

If a CLOSE statement without the REEL option has been executed for
a file, a READ, WRITE, or SEEK statement for that file must not be
executed unless an intervening OPEN statement for that file is

executed.

The CLOSE REEL option signifies that the file-name being CLOSEd

is a multi-reel magnetic tape input/output file. The reel will be
CLOSEd at the time of encountering the CLOSE REEL statement and an
automatic OPEN of the next sequential reel of the multi-reel file

will be performed by the MCP.

5-37

COMPUTE

COMPUTE.

The function of this wverb is to assign to a data item the wvalue

of a numeric data item, literal, or arithmetic expression.

The construct of this wverb is:

data-name-2 l
COMPUTE data-name-1 |[ROUNDED] = numeric-literal
 arithmetic expression 5

[ON SIZE ERROR any statement [{:%%g%ﬂﬂl§@ } statement]]

The literal must be numeric literal.

Data-name-2 must refer to an elementary numeric item. Data-name-1

may describe a data item which contains editing symbols.

The arithmetic expression option permits the use of any meaningful
combination of data-names, numeric literals, arithmetic operators,

and parenthesization, as required.
The maximum size of an operand is 99 decimal digits.

All rules regarding ON SIZE ERROR, ROUNDED options, truncation and

editing arc the same as for ADD.

If numeric-literal exponents are used, the results are accurate up

to 18 digits in length or to as many decimal places.

If data-name-2 exponent is used, the accuracy of the result is
dependent upon whether or not; and the manner in which, the result
is rounded, truncated and/or defined. An example of a numeric

literal exponent would be,

COMPUTE X = A¥*%2

5-38

COMPUTE

continued

where A is equal to 4. The result will be the X equals 16.
An example of data-name-2 exponent would be,
COMPUTE X = A¥*¥*B

where A equals 4 and B equals 2. The result will be that X equals
15.999 if X is defined as PC 99.999 or X equals 15 if X is defined
as PC 99.

An example of data-name-2 exponent (ROUNDED) would be,
COMPUTE X ROUNDED = A**B

where A equals 4 and B equals 2. The result will be that X = 16
if X is defined as PC 99 or X equals 16.000 if X is defined as

PC 99.999.

When data-name-1 is specified as being ROUNDED, regardless of the

decimal point location, the result will reflect greater accuracy.

NOTE
The 17 KB version of the COBOL Compiler will
accept only integer numeric-literal exponents

consisting of six digits or less in length.

The 30 KB version of the COBOL Compiler will
accept the entire COMPUTE construct, however,
the use of exponents comprised of data-name-2,
fractionalized literals or numeric-literals
longer than six digits require the presence

of floating point hardware.

Revised 9/28/70
by PCN 1033009-004 5-39

CopPYy

COPY.

The function of this verb is to allow library routines contained

on a source language library file to be incorporated into the

program.

The construct of this verb contains two options which are:

Option 1:

COPY library-name -

Option 2:

COPY library-name

data-name-1 | data-name-2

[REPLACING A{W°rd“1 } BY { word-2 }

\

word-3 BY word-4
data-name-3 } - {data—name-h} v ’

The COPY statement may refer only to one library entry in the 1li-
brary for every time it is used. Library-name is the value placed
in a library entry bounded by quotes or a procedure-name type word.
The library entry bounded by quotes cannot contain more than six
characters, where the procedure-name entry may be more than six char-
acters, however, if the procedure-name type entry is greater than

six characters, only the most significant six will be used for the

library-name. If the library-name is a procedure-name type word and
. . . IR - ’ D . Y S N

18 TUNSilae v WUdUL we peEpdiduied Livik wlée period \11L presenuv) Ly a
space.

5-40

COPY

continued

The library file is inserted in the source program immediately
after the COPY statement at compilation time. The result is the
same as if the library data were actually a part of the source

program.

Library data can encompass an entire procedure which may be any
number of statements, paragraphs, or entire source program divi-

sions or parts thereof.
Library files may not contain COPY statements.

No statement may appear to the right of the COPY statement on the

sSame source card.

COPY during the PROCEDURE or ENVIRONMENT divisions must follow a
SECTION or paragraph-name and all information contained in the

library file is included and can be fully referenced.

On a COPY during the DATA DIVISION, the FD file-name, or the level
01 data-name preceding the COPY is saved and the relative constructs

from the library file are discarded. For example, the statement
FD MASTER-INPUT COPY "MASTER".

will cause the library file titled MASTER to be inserted into the
source program immediately following the COPY statement. The source
program must refer to the FD file-name as MASTER-INPUT and not as
MASTER. The library FD file-name will appear on the output listing,

but cannot be referenced in the source program.

Library files copied from the library are flagged on the output

listing by an L preceding the sequence number.

In Option 2, a word is defined as being any COBOL word that is not
a COBOL Reserved Word. For example, the following statement re-
flects non-reserved COBOL words AAA,BBB and 1234, where AAA and BBB

are data-names and 1234 is a COBOL word:

MULTIPLY AAA BY BBB, THEN GO TO 1234,

Revised 9/28/70
by PCN 1033099-004 5-41

COPY

continued

If the COPY REPLACING option is specified, each word-1 or data-name-

1 stipulated will be replaced BY the word-2 or data-name-2 entries

specified in the option. Data-names may not be subscripted, indexed

or qualified.

5-42

COoPY

continued

Use of the COPY REPLACING option requires that the "library-name"
COBOL source image file be present, on disk, prior to compiling the
source program containing the COPY REPLACING option. The use of
this option will not cause alteration of the library file residing

on disk.

In Option 2, literals contained in a library file cannot be replaced

by literals, words or data-names.

In Option 2, if an integer is used for a word and it is the last
entry in a replacing list, it must be followed by a blank and then

a period. For example:

COPY REPLACING AAA BY HOURS,
BBB BY PAY-SCALE, 1234 BY 58b.

The COPY REPLACING option is exceptionally beneficial for conversion
of generalized COBOL source language library routines into specific
and well-named routines within a given program. For example, a
generalized COBOL source language library routine may use the

following data-names for their noted purposes:

Data-name Purpose
AAA Monthly hours worked per employee.
BBB Employee pay-rate.
CCC Employee social security number.
DDD Employee income tax rate.
EEE Employee year to date gross income.
FFF Employee year to date net income.
GGG Employee gross pay for month.
HHH Employee gross pay for month.
1234 Specifies a GO exit from the routine.

Revised 11-11-69
by PCN 1033099-003 5-42A

CorY

continued

A program calling upon the above generalized routine can replace
the non-descript data-names with descriptive names as defined in
the programs record description or WORKING-STORAGE area. For

example:

COPY... REPLACING AAA BY HOURS-WORKED

COPY... REPLACING BBB BY RATE-OF-PAY
COPY... REPLACING CCC BY SOC-~SEC-NR
COPY... REPLACING DDD BY INC-TAX-RATE

COPY... REPLACING EEE BY YR-TO-DATE-GROSS
COPY... REPLACING FFF BY YR-TO-DATE-NET
COPY... REPLACING GGG BY THIS-MONTHS-GROSS
COPY... REPLACING HHH BY THIS-MONTHS-NET

COPY... REPLACING 1234 BY WRITE-EMPLOYEE-DRAFT.

The specified source program data-names and exit points will be
inserted into the library file routine at every occurrence of the

assigned generalized names within the routine.

See appendix G for an example of a generalized Square Root Routine
being specified by a COPY REPLACING option.

LIBRARY CREATION. A library file will be created only during a
COBOL compilation each time that a source card is encountered con-
taining an L in column 7 with a library-name, bounded by quotation
marks starting in Field A of the same card. A library-file may

contain up to a maximum of 20,000 card images.

Each library file in the source program will be terminated when a
card containing an L in column 7 followed by all blanks or another

library-name is encountered.
Library-names cannot start with a blank character or a dash (-).

Once a file has been created, it may be COPYed by other programs.

Revised 10/8/69
by PCN 1033099-002 5-43

COPY

continued

or the creating program in succeeding FD, Ol, or procedure COPY

statements.

The source data used to create an original library file will also

be compiled into the object program at the point of appearance.

All assigned library-names must be unique to other library-names
contained in the library to preserve the integrity of the COBOL

library system.

Library files to be used with the COPY verb can be created by a

user program which creates an unblocked card image file on disk.

Figure 5-1 through 5-8 provide examples of the COBOL COPY feature.

5- 4k

CH-S

BURROUGHS COBOL CODING FORM

REQUESTED BY PASE

OATE 10ENY 1]
% L

create a library-file named MASTER.

]lllLlllllllljlllLlllllJllllJlllll

3 A it 1o 2 41 1 1 211 JllLlIllllllllllllllllllllllllllllllillil

04 Ao 191 11 011111 4llllllllllllllllllljlllllllllllllllllll

(-]
C
2
-t
>
v
=
m
E

4llllllllllllllllllllllllllllljljljllljl

AdOD

L1 00D b0 g4y <L These entries would be the source card con- L
or TN o1 VI W > -1 tent of the library-file named MASTER and i
“: et O <~ would be compiled into the program as well 44
°9= Loy 105 o101 L becoming a library-file ' U TETTE NN
101 A A Y S N N T O |
[L1 1 i1 Iol7llll L' & 0 0 001 11431011 AL L 41 1 02 0 & 2 & 4 &2 3111111 1
129 Lt 1 11015111111 e N T NN NN

[

'3 11 1 0!3!1! 14 1 11 J N NN N | LAt 1 & ¢ §) 0 4 22111 bLi1i11 1
14 sty e v g g3y Terminates the MASTER library-file. Ll L1114
'9 L1 4 AL 2 1 1 4 1 & 4 2 & £ 4 14 L3 L4 A 4 4 & 4 0 2 & & 2 1 2 32 2 12 qd I N I I A Y 1
": L1 4 L 4 1 4 1 1.4 41248 82 ¢ Ll 1.1 4 3 4 4 111111 L.t 1 A A & 441 111 f s LA 1 41 1 1
7 | L L 4 & 1 1 & % 8 4.0 &t 01ty LA 4 4 4 ¢ 0§ 1441112 ¢ AL A 4 0 & 4 2 4 1 241 2 2t A4 1 1
' L4 i1 ¢ 2 1 1118 1111 LA 4 & 1 1 4 4 4 44 41 111 A4 2 A 4 4 1 1 .11 81 LA 1 _J 4 1 4 1 1 12
'9 11 1 Lt 14t 1t 11 111111 | T T W T T N G O Y O Y 1 I T A I G A Y | A A 4 4 1.1 11
20 L1 1 AL L A 4 & 4 4 4 4 ¢ 1.1 4 & & & 41 At A A 4 4 4 4 4.4 4 1 4 8 22 4 L 42 LA At A A 4 A 2 4 31 3 3
2 W -\ AL A 4 1 & 4 2 4 & &0 & 4o Qo114 Lt A L 4 .1 i 11 1221121 A A A 0 4 4 A 4 1 2 4 & 1 221 1 L
22 i i 1 LA 4 1 ¢+ 4 & & 4 14111411 L4 i 4 1 1 3 £ 3.0 1 0 2 112 Lo A 4L 4 2 2. 4 1 2 1.2 8 22 11 Aod 4.4 4 4
:’: A1 1 I S A I I O I T T T Y | LA L1) 1 14 1.1 4 1412 121 Aod L L A 4 2 4 1 1 11 311
?" J - | I N T T N A A O L 4 L L & 1 1 2 011 111141 L4 11 4 L1 ! 11111 L1
25:

LAl llllL[lllllILJl-lJlllLlll_l_lJJAJJAJIIIJLLILJAlllllllJlJ

panuijuos

Figure 5-1. Example 1 of COPY Coding

of-%

BURROUGHS COBOL CODING FORM

Page | PeoeAM REQUESTED BY PAGE oF 80
=]

' S Rconaen T TOERT. 75 ® = Q
i 118
‘-—_T:‘r 3 __———————W——-———————————————————"

— # mare—————1 —.————-———-—————-——-——‘

0! i 1 Ll a1 11 [W N WA N UG NV WO WG WU TN N SN U SN A W N G W O [T EE U NS U U W N WA UOUN WO A U O T S

02 - C s = .., This statement would cause NN

os. \ 1 it td 4 a1t il lines 02-13 of figure 5-1 to A I 1

e 1 1 L3 L 11wt a1 ai11l be compiled. The file-name L1t

(4K] 1 1 [T . | [T U T . | Ll LAl referenced in the program would [T W W

ce 1 1 [T S B | U U B | LLllld (o MAST-FILE and the record-name IR A |

07 1 1 [U I | [S W W L.l llLWOUld be MASTER-IN. [W A O

oel 1 1 LA 411 [U O B O | [UE ST V0 NIY 0 U0 U WA T U N U W B U NS N T . "IN U W NS WY TN SN U U U U (N U U O T |

"’: 1 | 14 111 | W O | llllllllllllllllllllll U0 U U N U T U W N N TN U N O U o |

|o= 1 1 A | [E N I N I | 'SR I U I B U N5 U N0 N N N N N B O W T B e | U0 U N U W U W A A T O I O |

||= 1 1 L1114 W O O WS T WS NN UE U0 06 U N5 T O UG U U BN O A I B | 'O U U U5 U0 WO N A U S O O O B O

|1= 1 1 A | AN | 'SI0 U U U AR (0 U5 NS U0 U UK WS TN U U IO Y S OO U W "IN U U WS U U WA U W T T U O B B

'3= i 1 [| [I O | 'ERT N 0 WO U W0 WO N N U N AN U O U U O | [W WS W0 VR N WY W U WU T T W O A

"'| 1 1 144t 111141 PEEE U I U U 5 U W N WO T G S G N O N O B ' U U U W T U A U WU U U W I O O B |

15 i I [H I U | 14 1111 'SR T U U G NS WA U 0 NS U S U T A S W G | I I U I e e

181 i 1 111 [UR I U O | PR U TR U N U NN NN U U0 T S VO 0 U W I Y W | 'EEE N N VN N S VN T T U0 S WY U B U I S |

‘Tl 1 L 'R W S| L1 it1 [ETEE TN O U N 00 AN S0 W W U A W N U N N W U FUS U N N0 W0 W NN N UG A N G W B U W |

"' i A 4113 [PE S TU U NN UE U U0 U T U U U R 0 U A T U B A A W -1 IR S US VN NS WU W N U N W WY (N U G B |

‘9 1 1 s 401 L1 a1 [R U T E U NN U U0 AN N U WA T WO U U G U S 'S U U W N U S U S W S VA Y B B |

20 1 L [) AN E | [T O N U U U0 U0 VO TS N TN U0 TN T T SO W O PRI U U UV SN VS VU VY U SN U U U O B WY

2 A i Al L4 L1411 PSP ST U U U N IO VS T N G AN G O T B U 0 | PUNE U0 N N0 W WS U SV U WA N WS VO N S O N |

22 L L U G [U W U . . Illlllllllllllllllllll [U I U U U U U WA W U B U W S S . |

231 A 1 a1 444 PRIV G W0 UAE N U NN UG SN T W N N N U O A1 A I AN U S A T U U U U U U U B |

“' N 1 Ll 11t 4 'SR TE B 0 N5 1 U U PO N U SN A U O A U A A | [N U D U T NS B U U W U S U 0 B W W |

23 L 1 [O 1 4114 [T U T N N U W0 A N WO U0 TS U0 A N O T [YE U G U0 U0 0 N0 5 S U B AU B 0 U9 S |

Figure 5-2. Example 2 of COPY Coding

BURROUGHS COBO. CODING FORM

PAGE | PROSRAM REQUESTED BY PAGE oF
|~°s DATE 10ENT TS)
il A 4 4 & 1 1 4 1
z
T2
:, Eu/ies 401111111 would create a library-file named FYLE. e EE
oz} FlDllFIlLlEL‘[lLLW LA 0 Lot 81 odogostoboeo0 b3 ob b8 Lpofopito0adot4 Lt i1t i
°5| L1 sy 41 L1 llllljllLl!lllllllllllllllllllllllllllllllill) - |
04 [U L4t 0404 to4n 1088ttt a1
os I These entries would be the source card e — e W S T W T N W0 W W '
oet | IFD) FILL -2 1 L content of the library-file named FYLE e
LR e and would be compiled into the program e
oo: I EEEEEE— as well as becoming a library-file. B
os| Dy FILLE-3 Ll L0 4 Lo aoa o doaoaawov o ao s UL Ll sl s il
l0= 1.1 1 Je4 t 1 1 1 1 A4 L 0 1 & &t & A 0 a4 4 & & 0 & & 4 & 4 0 1+ 4t ¢4ttt it i1 L1I1L i1 11
||= [A 11 llllllllllllllllllllllllllllllllillllLLllllll . |
|2= 111 LILJJIILJ it 114 Terminates the FYLE library-file. a1 4 04 34 v a1 21011 111
": L i d L4 1 | . lljlllllllllljllll]lLlllelllllllljlllLJlllllll 11 1
e b e o T T T e T T T T A I T O I T T
s FiD: JFi P v e This statement would cause the above noted ., ,
": Lt Lttt Lt source images to be included in any calling 11|
": ittt ittt it program once the library-file has been) -
- b L created. FILE-1 would be referenced in L
= L L iy bggram as FILE-DATA but FILE-2 & S
2 S B l‘LllllllanILE—3 would be referenced as themselves.
2 L4 Lo41 L1t T U S A T N T T T T T T e T N i1 1
22 L1 1 J . . A1 1 1 llllllluLlllllllllLllllllllllllllllllllltlllll -
231 FORTr U BT A U I O Bt I G I A G I IS T S IS U I W A I A S A S I I I S A W A A I N I T N e N T o
2‘i 1 11 A4 L4 4411 lJlllllLlLlllllll111411lllLJLLlLllLllllllllllll 111 %8
25| L1 L4 11 VIS SO VA VA O R O WO T W W Y W 0 B B ST OV I B B B O 0 G0 D B B B O U A S SR T G N D A I A U U é._-g
8
Figure 5-3. Example 3 of COPY Coding

BURROUGHS COBOL CODING FORM

panuijuod

AdOD

"? PROGRAM REQUESTED BY PASE oF
' 3 | Seconmwen DATE DENT 75 0
=!! - A4 A 0 & A A
LINE A] 2
NO
4 sir]e "wie T2
.="".T=? e P =...._.__...._.——*
9‘: (8 ¥ ey i a0 a3 a1 41y would create a library-file named WORKER. Lt 111 11114
o2l Ol MNIBIRKi-AIREIAL-L 1 W AR SN U N AT S 1 I N N AT U0 SN U U0 U U0 U U0 WA VR A W T VA U T 0 U Y U U 0 A T OO W VA O B &
[}
03 1L10|511Lllllll ll
oe a1 11 OS TR SN TN U AU U N U S U N NN N T 0 W0 W8 N6 U W TN U U U VA U O T W N U T W U G M A W OV
oS Al 4 llol7llllllll lllllllllllllllllllllLllllllllllllllllllllllll
os! 111 Jlolgllllllll lljlllllljllllllllllljllllllllllllll'lllllllll
1
ozl TR - Y W I e 114 These entries would be the source card con- Lt 1111
]
°': o b 050 L $ 441 tent of the library-file named WORKER and S W S B S A B
09 . .
: N ey 4L yould be compiled into the program as well T e ———
101l paa e 110 O 1 . . . RN E NN
1 + as becoming a library-file. - 1
ll: SIS OJ- TN U S O S A A | NI I RN A AN UE U U U T N VO WO U 1O 0 W0 U N U U (N5 U W00 AN U AN N AN S (N SN T VA T O W U N N -
|2: lllOISIllllllll llllllllllllllllllllllllllllllllllllellllllll
'13) lljolslllilllll LlllllllllllllllllllllllllLllllllllllllllll]ll
|
": a1t O T g a1 [UN S RN I G US B 1 U U 1 N U W 0 U0 W U U N6 U A NN U5 UNS (N U 0 U N GO T VY T N AU N W U UV T W -
's: Lllolglllllllll lllllllllllllllljllllllllllllljllllllJllJilllAA
J . . «
": Caoal s st sttt 1t 11 v 111 terminates the WORKER library-file. .t 1t a3 a2 s w2241
"l L1 lllllllllllllllllllllllllllll]llLllllllll‘llelLlllllllLllllL
tel L 1 llllllll'llllll‘llllllllllllllllll]‘lllllllllllll‘llllllllll]ll.
9 W@ RIJT NG SITBRAGE (SECITIGMN- 4 v g1 3 This statement would cause the above _1]
ANN [. . .
ol O, (1IN T - W RK - AREA (CGPN o« WNBRKER"1e noted source images to be included in wa-d
2 | : . .
i T - JUNE G U WK N U UG U B YO D U U U NS N N U0 N S W W R U U S | any— Calllng pI“OgI‘am once the llb ."ElI‘Y Lk of
22| TS O U U T MY NN A U NN SO U N0 TN W Y U VOO0 N WONN V0 U0 T GO W O WS W
i 1 has been created. WORKER would be —
23§
Wil U - | U N U NN 1ONE U TN WA B S (N U SHEN UENW G G0 U BN DD N TN SN G N " | . |
1 referenced in the program as INPUT- —
241 [AETUNT U U U NN W5 VAN O U S VTN YO VO WO U0 W VU G U U U N W N U O U O | 1]
, 1 WORK-AREA.
s deeads TR RS DAV U W U NS U U NN VN U WY U N U0 NS U MY VUV G A N S W T T U U W U S U U (U W U W N5 W U W W W U W U W T U W S S S W e

Figure 5-4.

Example_ 4 of COPY Coding

100-660£€01 NOd 44
69/87/8 pas1ady

6t=G

BURROUGHS COBL. CODING FORM

ease | rrosmaN REQUESTED BY PAGE oF
1 3 DATE 10ENT 73)
_ —— L4 4 4.2 4 4 14
?T . e >
e efr]e nie _ - r2
Ol; F D NP AT - E L€ 0y g g FEN I U U T U W N W T W A T T W B U U A U Y O G T N U S B O S a
02! Lot ooy Ll 4L b o0 00 o b0 don g ko4t 4818t 8Lt it Lt b Lttt
03' R b L1 1 TR ST U U U U U S U S U S O B L4 4 4 4t 0 4t & 880444448 d1Lo4o bt i g1
0a 0,1, 31 - - » “1e This statement would cause the noted |
(X] e P U U N 0 U U U G A U W AN U AN O A N O A 111 work area shown in figure 5-4 to be 4
o6e 11111 11 L4 3411144t 1111 14 included in the above FD entry in any -
o7 Lo g Ll L L L calling program once the file has been A
0.: e A L oo ted. . WORKER would be referenced 1
00: Ll 1 111 N U O Y O U W U W O O O Y O | 11 | in the program as INPUT-WORK-AREA. §
101 Ll L1t AU S I U U SN G U B O B O B O L4 eI NN NN
n|= N L4 NSNS NN
'2= 111 1 111 TS T S U T U ST O G N A U O O B A Li1 NN NN E !
'3= A A1 111 (SN ! L1 8 4403 o3¢0 b f o) 118144481t tsy
'4E [| 1 111 AL 4 4 % 1 0 1 4t 4t & & &1 11 111 LA A L 0t &0 4 0 op 4 4 4 & 4 4 & 4 4 4 4 o4& 4 Qi
'5: L1 i4. 1 4 4 4 ¢t 5 4 ot 4411141111 1 1.1 lllllllljjllllllllllllllLLLlil
'.: A | 1 11 AL 4 4 & ¢ 1 & L1 11 ¢4.1111 111 L4 4 L) 4 A2 4 12 % 4 3 4 1 4 : 4 103 2 2441 iiai
l': 41 A 1 1 4 A4 0L 4 ¢+ 4+ L 1 1 4. .41 1411 L1 4 llllllllllillllll‘JllllllLllJl
'e j O . | 1 L1 4 J T W W U W W N U U U G U U A T O A 111 lllllll‘llJllllllllA‘lllLlAllj
'9 L1 1 | 11 1 L4 1 4 44 1241 411111121 W . | AL A L 4 A & A 4 4 4 & 3 2 4 2 % 2) 2142t 421 itoR
20 Ll L1y L0 46 41 4 48448111119 141 Lob o d g A A 0 & 4 80 A & 4 L4 A b 33144 402282
L 2] Ao 1 A At 1 A4 2 4 1 4 4 % 4 4 4.4 112021 1 1 1lllllllljlllJlllllJAAllllllll
22 A 1 i 11 1) S N S N U N S W S W A A G S 'V L1 1 llll“l‘.J‘lllJlllL“‘lll‘Jlll
23: A A1l A i1 1 A A L. 4 s+ 4 & 4 1 4 1 4 1 4 2 1 5 1 [S . lllJllllllllllilllLJlAljl‘lll‘
2‘{ 11 L 114 L0 414tk bt Lol od 04 4 h b4 b8 d 0 b 413l it
25| Lol i I [| D S N U T W W TR TS TO O G TR MY I N Oy | W I I I D I I I I A N I A N T N |

Figure 5-5.

Example 5 of COPY Coding

panuijuoo

AdOD

BURROUGHS COBOL CODING FORM

06 -6

AdOD

panuijuod

PFOSRAM REQUESTED BY Past o
PHOGRAMEN OATE TOENT s @
) U ¥ i a4 1

m‘_’—‘mm
A * z
78 uie 2
e o = =

I_N]‘llllllllll_llll|lllllllllllljlllllllll U W U A U U ¢
RiSUKPlIer SECTT@MNer ¢ 40ttt 1 g a1 i st a1 g1 would create a library-file a1 11111011
LGOS e 1 et bt L s s, named HOUSKP. I !

MM'IEIMI'ML&:ML:LLJML U U N U W0 N N U O U N T O N O N U VO O S O N0 G G0 O G S O O B A A A |
L P elegepedegotcy 1 4. NN TN TSN E NN Y I e
L g BPEN (BT PT et oo aoeg 40 43 These entries would be the source card L]
L JIREAD = ey o tegototo1e1e1 1100 4 - content of the library-file named HOUSKP 11 __
iid A alicaeisdeie sl 4 - and would be compiled into the program L
W N U DU UL TR ETETER LI R -4 as well as becoming a library-file. e

j . . | IlFl'l‘l'J'l’l‘j'l'l'l'j'L'l'l'l'A Ll [N N U T A A I I O O S U O TN I T N T U TR W U U U S W I O e
. ll-rl¢l'l'l’l'l‘l'l‘l‘l‘l’l"“lll A4 4 4 1 L & & & 1 ¢ 4 4 & L 4 4 & & t 3 % £ 2 4) & 4 A 5 % K K A .JF
oy o b L Lttt sttt a1 4 4y terminates the HOUSKP library-file. |, ¢4 ¢ |
T il T O s T T T e e O T o S g s e s L

T - | U U U W U VN DA O O N N I W U U N R T U U S U BN U U U G S U S S T U NI R SN N N TR U T S S G T U TN SN U U W U T S N e Y

R M_Lu_x_n This statement would cause the above noted a1t 4 . & 14]

: HiSIKiPIo1 ASIESCTIi@BiNieg g 41 1 1 11 source images to be included in any calling 4444 11t i i |
11 CGBIPY) AHMEJ_L&EL&.J_L program once the library has been created. 44111 4]

1.4 1 ¥ U U U Y U A U T T U . Lt b i A2 4 2 4 2 4 2 0 A & & & A A A A A A & 1 A L2 4 4 4 4 . A A0 4 & 4 A _2_A

| - FUE U O I G G O O O U U T O U T U U U Y U VI N W U NN NN N TN W S W T W U Ua U T U W G . A4l A A i 4 A _J3_ 4

a1 U U N U GRS U G UA G U S T U O O T U U N U SN G U D SO U U A T Y T B I T S T U U S W W A1 A A 3 A 0 L _A_A_A

i G . | (Ul U U U B W S G OO0 S SN U GA G IO T U U W U SN S N N N VI U U WY U S T W U T Y S T U T W J S | A1 2 A 0 A S 2

Lol L s i s s 14141 ¥¥Note that Procedure Division library-file AT S A AL NS U

'5: sl e e a g s i s g gentries must immediately follow either SECTION 144 a0 4 444 33
“: Lol Ll Lt or paragraph names. TN E NN .

25l SR SRS U U U Ui 1N 1 Y U0 A W0 U0 A0 N N 1 N U S WV T SO0 U0 0 SN () N) WO I S0 O B B AU U N0 U U U U6 Y U AU S ST UND ST U WP U WD WS U O Y U

Figure 5-6. Example #ypf COPY Coding

0£/8¢/6 pasinay

$00-660££01 NOd AQ

TG-G

BURROUGHS COBOL CODING FORM

ease | Pmosnau REQUESTED BY PASE oF
! sm DATE . TOENT. b4) o0
Liwe A N z
e = L
[N S U N U U N S N 0 0 U N U S S N U B W B0 G A W U G O B U B AT U U U U U G U
L4400 g1ttt it ety
would create a library 41441 ogbog11otoajtggry
04 CﬂMiEIEhHdﬂ&lﬂdﬁﬂLJﬁLﬂlIﬂJﬁﬂL;4_LL.flle named MYPGM. TN NS WS
os | LM M1 1er 1 13t a1 IO U W N U T N U O B A U N O G0 S Y U N A S B G0 O S0 BN G U B O G S U 0 OF Y O A '
os R I I S I B A U S B G O LA 8 4 8 &t & 0 4 8 0 88 o404t opoto4o44o4 4 g4t 4t 444 124t
o7 IS HTEE N N SR 2 U U B S S O N A § LA 444444844040 4ogonoto8o8o4o8o 8144ttt tgree
oe| IR U T N U U U A G U G W G U A A | A A 4 0 A4 44 4 42 0 4 4 4 A & & & 4 & 2 % £ 2 4 4 4 0 & 1) 48 4 441 L1R Y
oo= P.A,IA—||)|[|!|1|§‘L|Q|N|-|||||| U U W N U U6 A T U U S U U U U U N N T N U 0 T N T U U U U U T O O O

[}

oo: TR TS U T S0 U S T S S N U S N I O | 41414 The entire source language program from L 111
||: NN | 11 line 06 to 19 would be put to the library 1141
'2: T U T L U T T T T T T T Y W W O > 44 and would be compiled into the program 111
": TN L 1 W W W W W W W Ll during the compilation pass. ' L
18 C Sy . A4 0 0 & ¢ & 408 00448480t o404 o§o3o4-8 444 14404 12§ 44444y
'8 Lll:llllllllllllLLL A4 44 4 4 2 20 ¢t 2 0 4 3 1o ro2oroA4A2oaartorrartosoraro2LrloAilraia
": TS RSN R RN TN e TS T ST NN
4 lll:llllllLLlllllll N U G U O T U Y N T T B U T U U W I B T T U A N U T U U A G B U B A I Y O O O
'e lll;lllllllllllllll I N I N I D I I I I I I T I T I I T T T O {
19 LART-STATIEMENT el 411 1 TN U T T T W TN N 0 A Y T Y U T W A W WY W WA O S O U U A U U U B O B A O
20 coa s e e e v et a2,y terminates the MYPGM library file. ¢4 4 444 1414,
2 Lo i ' U U U U U B U U O i O U U B0 1l 0 A G O S e S I I S D I S E I N N W N NI S W |
zzl L b e bttt a4t)8t 4R h 4 i i a2 21112
231 Y NN NN NN TN YT
?‘i too ol gt ety bttt 8o g b 4o s gt 3 8ttt Lttt il
25) eSS NN NSNS NN NS N I

Figure 5-7. Example 7 of COPY Coding

penuijuod
AdOD

BURROUGHS COBOL CODING FORM

PROSRAM REQUESTED BY PASE oF
PFOGRAMER DATE 1DENT 73)
Pl B U W G U W Y
A [1

T| 8 1] T2

==L —

e — e e e et W e S e e Ve

s me———
L |

1DE CATIAN, Dy

[S U U0 V0 U U U W G U A BN N U U NN W U (NN U DAY W S G W U WS U W T U S

AdOD

panuijuod

PR RAMAIDer A2 345 4o L1 L4t L 48 8 tog 0 8 4 448t 8 1§ 8¢ 403 1e) e etad

ENVIIRONMENT DT VISR 10 o0t s 3440 4 18403 411188t d a4t it aii

CABINIF | RS A0 CT TN U T S U N U U U U0 00 N0 U 0 U A A WO 0 U WO U U 0 0 0 0 O 0 0 0 O B A O AW

0, B LEIC T -1 CAMBIWTIER - GG (MY PiGM“y.y The source language program noted in figure

Lol e v s et a1 5-7 will be brought into the compilation

.
[1lllnnlllllllllnllllLlLl‘Jatthispoint. 4
ose | Loid RN U G N UhE 0 BT N S5 W 6 NI VOIS WS WG U (N WA U U U (N WS W N NN W N NS N N U PN U U TS U U U U N VO NN S U 0 UOR T T W S N N . |
00: L1 U T IR UE I N U U B MR N U NN WU 0 (5 U5 N 0 U WA VAN WONS N TN (N (NN (N TN TR NN [T WY WU U0 T IS T T T N S N U W W VW S U W B 0 W W
l0= 144 AR IR U I A T U U S U i U5 6 N U U N U T WA N U (N A U G G50 NN AN U W W (D U U VOO N (N T U T T Y T T T U VY O WS W Yy U W
n= 131 SIS U N T U U T S N G N0 U WS GO 10 5 U WO N0 U W U5 U U U U N NS SN (NS AW UNN WON (U (NN WA U (U0 G U U U N U W U N NN N TN U G U |
'2= lll'l‘lllllllLlJLLlljllllllellllllll_LlllllllllllllllllellllllllL
: 111 [N IT RN UG I O SN U U TS A W 10 U NN U A0 A N G A U U U N U N N U N U N N U G S N U W U N R U U U T N T N S U S S |
T llllllllLLlllllJllllLllllllllllllllllllLllllllllllllllell(j
1 4 i 1lllllllllllllllLlllLl]AlllllllllllllllJllllllllLlJlJleLLlJ
441 SRR E N U U OF S O U U TN U 0 U N U5 U0 S0 0 WA WY G (X NS U UHN0 T (UN U U G WA S U U U W W O T U A T W N W U A S A W S |
| . LllllLllllllLllLlllllllllLlllllllljllllJ‘LAlLillLllllll‘ijlll
1 .D.D.-O‘;N;—.E.N;IL&:(M_J__L [N U U U U U OO0 UG U0 VU0 A T W WO BN A T U U U U U W WO U U N U S G U B U N S SN N SN U W W U U S N I
18§12 S N T T L LI LT (f 1 1141 Will be included in compilation as La a1
'8 L (MO NE g \ 113111 additional program requirement. N A A
1 A Al U U UN W SR SN B S W U U U UR U U A0 WA U U WS GEN U UONN AN WU AN TN U R N W U N T TN W SN T W W S T U U T W S Y W S .
2 W . | llllllllllllel‘LLlllllllllLlllllllljlllllllljllLALA‘Llelllll
i3 A1 1 LlLLllLlllJ1llJlLllll1LllllllllllllllelllLAALALAILAAAllllAL

~
»

. [T R R U VI WY SN ST U U U U G U N WS (NS W U T W U U U U NI U N U U W G N U I W N S T U S S U S W N S S e e |

w

~

Lodod 'S U SN NS WU N N NN NN WS WS AL DU SN N N TN VNN A NN NN TN NN ' Y NN WO N S N A S [I N T G VI W N W N S U S T G W S W G S S W N S 'Y

Figure 5-8. Example 8 of COPY Coding

DISPLAY

DISPLAY.
The function of this verb is to provide for the printing of low-
volume data, error messages, and operator instructions on the con-

sole typewriter.

The construct of this verb is:

literal-1 literal-2
DISPLAY '{data—name—l } ['{data—name—z } "']

[UPON { SPO . }]
mnemonic-name

Fach literal may be any figurative constant except ALL.
All special registers (DATE, TIME, etc.) may be DISPLAYed. I

The DISPLAY statement causes the contents of each operand to be
written on the supervisory printer (SPO) from the MCP SPO queue

to ensure that a program is not operationally deterred while a

message is printing.

If a figurative constant is specified as one of the operands, only

a single character of the figurative constant is displayed.

The data-names may be subscripted and can be PICTUREd as COMPUTA- I
TIONAL or DISPLAY items.

An infinite amount of characters may be displayed with one state-
ment. The compiler will supply automatic carriage returns and line

feeds, as may be appropriate.

The DISPLAY series option will cause the literals or data-names
to be printed on one line and, if required, the compiler will cause
automatic carriage returns and line feeds for information extending

to other lines of print. The compiler will format each line so

5-53

DISPLAY

continued

-

that a partial word at an end of a line will not be printed on that

L Y 1 IR
{1 LUl

owing 1in

ct

iine, and continued on

a

When mnemonic-name is used, it must appear in the SPECTAL-NAMES

paragraph equated to the hardware-name SPO.

5-54

DIVIDE

DIVIDE.

The function of this verb is to divide one numerical data-item

into another and set the value of an item equal to the result.

The construct of this verb contains two options which are:

Option 1:

DIVIDE [MOD]

{literal-l 1

data-name-1 | INTO data-name-2 [ROUNDED]

[ON SIZE ERROR any statement [{%%RWISE— } statement]]

Option 2:

literal-1 BY 1 literal-2
DIVIDE [MOD] {data—name—l} { INTO {data—name—z }

GIVING data-name-3 [ROUNDED]

[REMAINDER data-name-4 [ROUNDED]]

[ON SIZE ERROR any statement [{ %%%%EEEéE } statement]}

Data-name-3 and data-name-4 of Option 2 may refer to a data item

that contains editing symbols.
Each literal must be a numeric literal.

Division by zero is not permissible and, if executed, will result
in a size error indication. This can be handled programmatically,

either by doing a zero test prior to the division, or by the use

5-55

DIVIDE

continued

of the SIZE ERROR clause. If SIZE ERROR is not written, an attempt
to divide by zero will result in unpredictable results. Processing

will continue.
All data-names must refer to elementary numeric items.

In Option 1, the value of the operand preceding the word INTO will
be divided into the operand following INTO and the resulting quo-

tient stored as the new value of the latter.

The use of the BY option will cause literal-1/data-name-1 to be
divided by literal-2/data-name-2, whereas the INTO option will
cause literal-l/data-name-1 to be divided into literal-2/data-

name-2.

In Option 2, the resulting quotient will be stored as the new
value of data-name-3. The value of the operands immediately to

the left of the word GIVING will remain unchanged.

The ROUNDED option and ON SIZE ERROR clause and truncation are
the same as discussed for the ADD statement (page 5-30).

The size of the operands is determined by the sum of the divisor

and the quotient. The sum of the two cannot exceed 99 digits.
The use of the MOD option will cause the remainder to be placed
in data-name-2 of Option 1 and data-name-3 of Option 2. The re-

mainder will be carried to the same degree of accuracy as defined
in the PICTURE of the quotient and all extra positions will be

filled with zeros.
Literals cannot be used as dividends.

The use of the REMAINDER option will cause the remainder to be
placed in data-name-4 and data-name-3 will contain the quotient,
unless the MOD option is also included. If the MOD option is
included, both data-name-3 and data-name-4 will contain the

remainder.

5-56

END-OF-JOB

END-OF-JOB.

The function of this verb is to notify the COBOL Compiler that

all source statements within a program have been read.

The construct for this indicator is:

END-OF-JOB.

The END-OF-JOB statement is for documentation only but if used

it must be the last source program card in a B 2500/B 3500 COBOL
deck. It immediately precedes the MCP END Control Card.

Revised 9/28/70
by PCN 1033099-004 5-57

ENTER

ENTER.

This verb provides for the use of an alternate language.

~ I,

mr. ~ — - —~ — o N S . -
ifne CcoIrrsvrucuv Ol LIlls ver

7

ENTER { SYMBOLIC }.

COBOL

ENTER COBOL is used at the point in the source program that ends
the alternate language and where the programmer wants to continue

with COBOL,

ENTER SYMBOLIC begins in column 12 or after and must be followed by
a period. Each symbolic entry (instruction) may be followed by a
period or the period may be omitted, however, the last instruction

of a procedure must be followed by a period.

Procedure-names must start in columns 8-11 and must be followed by
a period. Procedure-names may be used freely and referenced by
branching instructions. It is permissible to reference procedure-

names located outside of ENTER SYMBOLIC.

COBOL data-names may be used in the A, B, or C operands. No de-

tailed syntax checking is performed other than data-name look-up,
therefore, use of the symbolic language requires knowledge of the
B 2500/B 3500 Assembler Language.

The symbolic operators can appear anywhere on the card after column

11, Any word or value in excess of the required number of operators
will result in a syntax error. Literals (123, +123) of any size may
be used in the A operand. If it is desired to carry an in-line lit-

eral the symbolic operator LIT is used. For example:

LIT 123456789
LIT @ABCDEF@
LIT "ABC567"
LIT @eClz234e

5-58

ENTER
continued

The operating system requires that all in-line constants be char-
acter adjusted. In order to accomplish this, a zero may be added;
thus, a literal 2 will generate as a literal 20. If it is neces-
sary to use numbers such as this, it will be the programmer's
responsibility to use leading zeros or at least be aware of this

condition.

The following instructions may be used and require two operands,
the first of which may be a literal. The length for AF and BF

is taken from the data definition.

INC SZU MVA
MVN DEC CPN
MVR CPA SDU
SDE SZE

The following instructions require three operands, the first of
which may be a literal. The length for AF and BF is taken from

data definitions.

ADD SUB MPY
DIV FAD FSU
FMP FDV AND
ORR NOT EDT

The following instructions require one operand that must be a pro-
cedure-name which appears either within or outside the ENTER state-

ment.

NOP LSS EQL
LEQ GTR NEQ
GEQ BUN OFL
HBR

The following are exceptions to the above classification and must

be used as shown.

Revised 9/28/70
by PCN 1033099-004 5-59

ENTER

continued
Required No. Description

Operator of Operands of Operands
BCT i Literal.
HBK 1 Literal.
NTR 2 Literal and procedure-name.
EXT 0) Only normal exits are allowed.
MVW 1 3 Literal for number of words to be
MVC) moved, A-ADDRESS, and B-ADDRESS.
TRN'} 4 Literal size, A-ADDRESS, B-ADDRESS,
Sk and C-ADDRESS.
BZT‘} 3 Literal AF, literal BF, and
BOT A-ADDRESS.
SMF 1 Literal AF (O or 1).
SEA 4 Literal BF, A-ADDRESS, B-ADDRESS,

and C-ADDRESS (see pages 5-61 and 5-62

for more detailed explanation).

All the operators, literals (LIT), index regi (1, 1IXz2,
(
\

s es (IX
b) AS (ba

V2N

and R

Y]
UJ
(]

ter nam
3\
7

nd TX3), data formats (INA, TUNS, SGN, and D

L 2AD2] Ll

\ SaToe
7 E= A~

reserved words within ENTER (only).

A symbolic operand has the following format:

\
data~name
file-name
IX1 INA
X2)JUNs ([, f + XL
T35 *<sen _ numeric-literal : numeric literal: IX2§
BAT DSP =2
TALLY
SW1-Sw8

-
~—

5-60

ENTER
continued

All options must be separated by a colon (:). The INA, UNS, SGN,
and DSP specify data formats of indirect addressing, unsigned 4-
bit, and DISPLAY 8-bit respectively.

The signed numeric literal option specifies that the starting
address is to be incremented or decremented by the specified num-
ber of digits or characters, depending on the data format speci-

fied at that time.

The unsigned numeric literal specifies that the size of the field
is to be changed to that value. The value should not exceed that

allowed for the particular instruction or it will be truncated.

Index registers IX1l, IX2, and IX3 used in conjunction with a
data-name indicate that the index register bit for that operand
is to contain that register setting. IX1l, IX2, and IX3 may also
be used as a data-name in which case the contents of the register

will be affected.

No consistency checking is performed on any of these options; all,

none, or any combination may appear. Duplicate appearances are

not considered errors. The options are processed in the order in
which they appear. Particular care must be exercised when changing
data-format and also address on the same data-name. If the incre-
ment value precedes the UNS, etc., the address will be incremented
according to the old format. Conversely, if it follows the format

change, it will be incremented according to the changed format.

BAS (base) will provide the address 000000 with length specified
as one, unsigned numeric. By using address and size modification,

it is possible to reference any area within the program.
SEA (Searoh) requires four operands in the following format:
a. Increment - a numeric literal for BF.

b. A-ADDRESS - a literal or a data-name. Its size is used

in the AF (size may be modified as previously described).

Revised 10/8/69 -
by PCN 1033099002 5-61

ENTER
continued

c. B-ADDRESS - data-name only. It must meet the require-
ments of SEARCH as in the B 2500/B 3500 Assemblers

Reference Manual.

d. C-ADDRESS - any data-name. To set the C-ADDRESS as
described in the Assemblers Reference Manual, use UNS,

SGN, or DSP to set it to 00, 01, or 10 respectively.
The following is an example of the SEA (Search) command :
SEA 05 AX BX BX:+500:SGN

COBOL type subscripting is not allowed in ENTER SYMBOLIC. It is

the programmer's responsibility to set up any required indexing.

The use of a file-name as an operand will result in an address
pointing to the start of the File Information Block (FIB) for
that file, with 4-bit usage indicated. The size of the FIB is
200 digits, therefore, since the size field in an instruction is

only two digits long, care must be exercised.

If a BUN or some other branching instruction is referencing a proce-
dure-name in an overlayable segment, the programmer must do his own
overlaying by setting up the segment dictionary or by being sure that

the specific overlay is already in core. Another way is to code:

ENTER SYMBOLIC.

ENTER COBOL.
GO TO (overlay segment label).

ENTER SYMBOLIC.

® o 0 0 0 0 0

instead of using BUN. This will cause the COBOL Compiler to

generate the overlay code.

If IX1, IX2, or IX3 are used in the ENTER SYMBOLIC statement,
their values are not saved and, after re-entry of ENTER SYMBOLIC,

LR U Lo el e ' ST R N N P | b I
LIl CUliuvEiivs Ua LVILEDE I CE1L1DUEL D di € ullproculrivauvdit.

Modifiers may not be used with procedure-names {labels).

5-62

EXAMINE

EXAMINE.

The function of this verb is to replace a specified character,
and/or to count the number of occurrences of a particular charac-

ter in a data item.

The construct of this wverb is:

EXAMINE data-name

ALL | f literal-1 1
TALLYING { LEADING ‘{d core l}[:REPLACING 21-{ Iteral-2 }]
UNTIL FIRSTS ata-name- data-name-2

ALL l
REPLACING ! LEADING
[UNTIL | FIRSTS

{1iteral-3 } BY.‘{literal-h }

data-name-3 = data-name-4

The description of data-name must be such that USAGE is DISPLAY
explicitly or implicitly.

Fach literal used in an EXAMINE statement must consist of a single
DISPLAY character. Figurative constants will automatically re-

present a single DISPLAY character.
Examination proceeds as follows:

a. For items that are not numeric (4-bit), examination
starts at the left-most character and proceeds to the
right. Each 8-bit character in the item specified by
the data-name is examined in turn. Any reference to the

first character means the left-most character.

5-63

EXAMINE
continued

b.

If an item referenced by the EXAMINE verb is numeric,
it must consist of numeric (8—bit) characters and may
possess an operational sign. Examination starts at
the left-most character (excluding the sign) and pro-
ceeds to the right. FEach character except the sign is
examined in turn. Regardless of where the sign is
pPhysically located, it is completely ignored by the
EXAMINE verb. Any reference to the first character

means the left-most numeric character.

The TALLYING option creates an integral count (i.e., a tally)

which replaces the value of a special register called TALLY. The

count represents the number of:

When either of the REPLACING options is used (i.e.

a.

Occurrences of literal-l or data-name-1 when the

ALL option is used.

Occurrences of literal-1l or data-name-1 prior to
encountering a character other than literal-1l or

data-name-1 when the LEADING option is used.

Characters not equal to literal-l1 or data-name-1
encountered before the first occurrence of literal-1

or data-name-1 when the UNTIL FIRST option is used.

, with or with-

out TALLYING) the replacement rules are as follows:

5-64

When the ALL option is used, then literal-2 or data-name-2

or literal-4 or data-name-4 is substituted for each
occurrence of literal-l or data-name-1 or literal-3 or

data-name-3.

When the LEADING option is used, the substitution of
literal-2 or data-name-2 or literal-4 or data-name-4
terminates as soon as a character other than literal-1
or data-name-1 or literal-3 or data-name-3 or the right-

hand boundary of the data item is encountered.

EXAMINE
continued

c. When the UNTIL FIRST option is used, the substitution of
literal-2 or data-name-2 or literal-4 or data-name-4 term-
inates as soon as literal-l or data-name-1l or literal-3 or
data-name-3 or the right-hand boundary of the data item is

encountered.

d. When the FIRST option is used, the first occurrence of
literal-3 or data-name-3 is replaced by literal-4 or data-

name-14.

The field called TALLY is a 5-digit field provided by the compi-
ler. Its usage is COMPUTATIONAL and will be reset to zero automa-
tically when the EXAMINE...TALLY option is encountered.

Revised 10/8/69
by PCN 1033099-002 5-65

EXIT

ion of this wverb
N S ero

< L

"

to provide a terminatin

a PERFORM loop, whenever required.

The construct of this verb is:

EXIT.

If the EXIT statement is used, it must be preceded by a paragraph-
name and appear as a single one-word paragraph. EXIT is documen-

tational only, but if used, must follow the rules of COBOL.

The EXIT is normally used in conjunction with conditional state-
ments contained in procedures referenced by a PERFORM statement.
This allows branch paths within the procedures to rejoin at a

common return point.

If control reaches an EXIT paragraph and no asscciated PERFORM cr
USE statement is active, control passes through the EXIT peint
to the first sentence of the next paragraph and is treated for

all intents and purposes as a NOP (No Operation).

5-66

FILL

FILL.
The function of this verb is to pass data from one program to another

when both programs are operating in the same multiprogramming mix. I

The construct of this verb has two options which are:

Option 1:

FILL data-name-1l INTO {non—numerlc literal-1 }

data-name-2

[PROCEED TO paragraph-name]

Option 2:

FILL data-name-3 FROM ‘{non-numerlc literal-2 }

data-name-4

[PROCEED TO paragraph-name |

The MCP Core to Core (CRCR) option must be set "ON" when an object
program containing the FILL verb is being operated under the con-

trol of a standard version of the MCP,.

Option 1 is the data-sending construct whereby a program using this

statement can converse from a self-contained data-name, with another
operating program in the same multiprogramming mix. The size of
data-name-1l is restricted only by the amount of memory required by

the programs themselves. Data-name-l must be declared as alphanum- l
eric in a DISPLAY mode. Data-name-2 must be declared as a PICTURE

X(6) which specifies the program-identifier of the receiving program

Revised 9/28/70
by PCN 1033099-004 5-67

FILL

centinuved

as reflected in the MCP Program Directory. The receiving program

ML LB

- T 1-1 is
ix adi=4 4S5 (82030283038

must be in the MCP Mix.

P o T B |
Ii—jiumc i ae

the no
(blank), it specifies that any number of receiving programs are to
become eligible for the transmission of data. The PROCEED TO clause,
when specified, will cause a branch to a paragraph-name when there
is no receiving program ready to receive a transmission. If this
clause is not used, the program will wait until the FILL has been

completed, before proceeding to the next instruction.

Option 2 is the data-receiving construct whereby a program using

this statement can receive data from a multiprogramming sending pro-
gram (data—name—h) into a self contained data-name-~3. Data-name-3
must be declared as alphanumeric in a DISPLAY mode. The sending
program must be in the MCP Mix. If the non-numeric-literal-2 is
"bbbbbb" (blank), it specifies that any number of sending programs
are to become eligible for the transmission of data. The PROCEED
TO clause, when specified, will cause a branch to a paragraph-name

if the sending program is not ready to transmit.
Data-name-2 and data-name-4 may not be subscripted or indexed.

Reference should be made to the FILL verb located in section 6 (Data
Communications) of this manual. That construct, when specified,
requires the presence of a version of the Data Communications MCP

at object program execution time.

;
{0

R
I

GO

GO.

The function of this verb is to provide a means of breaking out of
the sequential, sentence by sentence, execution of code, and to
pPermit continuation at some other location indicated by the pro-

cedure—name(s).

The construct of this verb has two options which are:

Option 1:

GO TO [procedure—name];

Option 2:

GO TO procedure-name-l procedure-name-2 [procedure—name—S...]

DEPENDING ON data-name.

Fach procedure-name is the name of a paragraph or section in the
PROCEDURE DIVISION of the program.

In Option 2, GO... DEPENDING... may specify up to 999 procedure-

names in a single statement.

In Option 2, the data-name in the format following the words DE-
PENDING ON must be a numeric elementary item described without

any positions to the right of the assumed decimal point. Further-
more, the value must be positive in order to pass control to the
bProcedure-names specified. Control will be transferred to proce-
dure-name-1 if the value of the identifier is l, to procedure-name-2

if the value is 2, etc. If the value of the identifier is anything

5-69

GO

continued

other than a positive integer, or if its value is zero, or its
value is higher than the number of procedure-names specified, con-

A~
viL VUL

A

a3 11
vill be pas

sed to the next statement in normal sequence. For

example:
GO TO MFG, RE-SALE, STOCK, DEPENDING ON S-0.

Value of S-0 GO TO procedure-name

next sentence
next sentence
MFG

RE-SALE

STOCK

VRV R

next sentence

Whenever a GO statement (represented by Option l) is executed,
control is unconditionally transferred to a procedure-name, Or

to another procedure-name if the GO statement has been changed by
an ALTER statement.

A GO statement is unrestricted as to where it branches to in a
segmented program. It can call upon any segment (fixed or over-
layable) at either section level or paragraph levels nested to

any depth within a section.

When, in Option 1, the GO statement is referred to by an ALTER
statement, the following rules apply regardless of whether or not

procedure-name is specified:
a. The GO statement must have a paragraph~name.

b. The GO statement must be the only statement in the
paragraph.

c. If the procedure-name is omitted, and if the GO state-
ment is not referenced by an ALTER statement prior to
the firet execution of the GO statement. the MCP will
terminate the job and cause an error message reflecting

an invalid address.

5-70

GO

continued

If a GO statement represented by Option 1 appears in an imperative
statement, it must appear as the only or the last statement in a

sequence of imperative statements.

5-71

IF.
The function of this verb is to control the sequence of commands to

xecuted depending on either a condition, the class status of a

be
field, or the relative value of two quantities. The purpose of a
condition is to cause the object program to select between alter-

nate paths depending on the passing or failing of the test.
The conditions are subdivided into six major categories which are:

a. Simple conditional tests.
b. Conditional statements.
c. Relation tests.

d. Relation value tests.

e. Class tests.

f. Conditional wvariable tests.

SIMPLE CONDITIONAL TESTS. The simple conditional tests are contained

in option 1.

Option 1:

iF condition-1 statement-1

CONDITIONAL STATEMENTS . A conditional statement specifies thal the
truth value of "yes" in a given condition is to be determined and
that subsequent action of the object program is contingent upon the
resultant value. READ and WRITE statements which specify an INVALID
KEY option, or arithmetic statements (ADD, COMPUTE, DIVIDE, MULTI-
PLY, and SUBTRACT) which specify a SIZE ERROR option are considered

as being conditiomnal.

In Option 2, statement-1 or statement-2 can be either imperative or
conditional. If conditional, it can in-turn contain conaitionail

nested statements +to an arbitrarv depth.

5-72

IF

continued

See Section 8, COBOL Compiler Option Card, for information per-
taining to the generation of the SEARCH operator into an object

program for conditional statements.

Option 2:

.. statement-1 OTHERWISE statement-2
1F condition —

NEXT SENTENCE ELSE NEXT SENTENCE

RELATION TESTS. A relation test involves a comparison of two
operands; either of which c¢an be a data-name, a literal, or a
formula. The comparison of two literals is not permitted. Com-
parison of elementary numeric items is pPermitted regardless of
their individual USAGEs. All other comparisons require that the
USAGE of the items being compared be the same. Group numeric items
are defined to be alphanumeric. It is not pPermissable to compare
an index-data-name against a literal or a data-name. The format

of relation tests is shown in Option 3.

Option 3:

Vo

S literal-1
IFr 1 data-name-1 IS [NOT]

<
arithmetic expression-1 LEQUAL TO

LESS THAN
GREATER THAN

EQUALS

literal-2
data-name~2

arithmetic expression-2

Revised 9/28/70
bv PCN 1033098-004 D-73

IF

continued

RELATIVE VALUE TESTS. The relative value test is an alternate way

B el

- o £ +ha ol a oo
i vil€e Vaiud ZCi

of stating a comparison O ¢ with a nmula,
data-name. An iteﬁ or formula is POSITIVE only if its wvalue is
greater than zero. An item or formula is NEGATIVE only if its
value is less than zero. The value zero is considered neither
POSITIVE nor NEGATIVE. This form of comparison with zero is not
considered a relational test. The format of relative value tests

is as follows:

Option U4:
data-name ZERO
iF i{arithmetic expression } 1S [ng] POSITIVE
p NEGATIVE
CLASS TESTS. The class test is used to determine whether the

contents of the data-name is made up entirely of NUMERIC or ALPHA-
BETIC DISPLAY characters. For example:

"JOHN DOE" is ALPHABETIC [PC X(8)]
"R. JOHN DOE" is not ALPHABETIC [PC X(11)]
"37373" is NUMERIC [PC 9(5)]
"234" is NUMERIC [PC 9(3)]
"_37452% is NUMERIC [PC S9(5)]
"685.57" is not NUMERIC [PC X(6)]

The format of the class test is as follows:

Option 5:

{ NUMERTC]

it dava-name 1> { ALPHABETIC f

i
=z
C
'—

Ly

IF
continued

CONDITIONAL VARIABLE TESTS. A conditional variable test is one in
which an item is tested to determine whether or not the value
associated with a condition-name is present. The rules for com-
paring a conditional variable with a conditional value are the same
as those for relation tests. The format for a conditional variable

test is:

Option 6:

IF [NOT]| condition-name

Not Logic.

The statement:

IF A IS NOT EQUAL TO B OR C OR D, GO TO paragraph-name-1
ELSE GO TO paragraph-name-2.

a. Condition-1. If A is not equal to B, control will trans-

fer immediately to paragraph-name-1l.

b. Condition-2. If A equals B, a test of C for inequality
is set up. If C is unequal, control transfers immediately
to paragraph-name-1l; but if C is also equal, a test of D
for inequality is set up. If D is unequal, control trans-
fers immediately to paragraph-name-1; but if D is also
equal, program control transfers immediately to para-

graph-name-2.

c. Conclusion. The above explanation reflects that a test
of field A versus the fields B OR C OR D for unequal
status in all fields during one operation is an impossi~
bility when using NOT/OR logic. The first data field
reflecting inequality will cause a branch to be executed

to paragraph-name-1.

Revised 10/8/69)
by PCN 1033099-002 5-75

iF
continued

d. In the above example, had AND logic been applied, the

tests would have been accomplished in the very same

maniner.

5-76

MOVE

MOVE.

The function of this verb is to transfer data from one area of
memory to one or more data areas (receiving fields). The data
will be automatically edited or adjusted as to the applicable
PICTURE and USAGE clauses.

The construct of this wverb is:

Option 1:

MOVE { literal-1 } O

data-namee 1 data-name-2 [data-name-3...]

Option 2:

MOVE { %%%%ESPONDING } data-name-~1 TO data-name-2

The MOVE statement without the CORR or CORRESPONDING option may not
be used to MOVE a group item if editing or conversion of elemen-
tary items is desired. To do this, either the CORR or CORRESPON-
DING option must be used, or each elementary item must be moved

individually. CORR is an acceptable substitute for CORRESPONDING.

If the CORR or CORRESPONDING option is used, selected sending fields
are MOVEd to selected receiving fieids. Data-name-1l and data-name-
2 must be group items. A pair of data items, one from data-name-1
and one from data-name-2, correspond if the data items in both

have the same name and the same qualification up to, but not in-
cluding, data-name-1 and data-name-2. At least one of the data
items of both data-name-l1l and data-name-2 must be an elementary
item. Neither data-name-1l nor data-name-2 may be data items with

levels 66, 77, or 88. Fach data item which is subordinate to

5-77

MOVE

continued

data-name-1 and data-name-2, and which contains a RENAMES clause,

ignored.

1l and data-name-2 and contains a REDEFINES or OCCURS clause is ig-

nored.

OCCURS clauses or be subordinate to data items with these clauses.

However,

is

Furthermore, a data item that is subordinate to data-name-

The CORR or CORRESPONDING option generates the following:

Elementary to elementary.
Elementary to group.
Group to elementary MOVEs within the two record descrip-

tions.

data-name-1 and data-name-2 may have REDEFINES or

Any MOVE in which the sending field and receiving items are elemen-

tary items is an elementary MOVE.

Every elementary item belongs to

one of the following categories: alphabetic, numeric, alphanumeric,

numeric edited, or alphanumeric edited. These categories are dis-

cussed in PICTURE.

Numeric literals belong to the numeric (4-bit)

category, and non-numeric literals belong to the alphanumeric (byte)

category.

The following rules apply to an elementary MOVE between

these categories:

5-78

In a MOVE of ALPHABETIC information to numeric field,

the results will be unpredictable.

A numeric edited, alphanumeric edited, or alphabetic data

item must not be MOVEd to a numeric or numeric edited

data item.

A numeric or numeric edited data item must not be MOVEd

to an alphabetic item.

A numeric item whose implicit decimal point is not imme-
diately to the right of the least-significant digit must
not be MOVEd to an alphanumeric or alphanumeric edited

data item.

All other elementary moves are legal and are performed

according to the rules outlined below:

1) An alphanumeric to alphanumeric elementary MOVE

passes data constructed of bytes to a receiving

2)

3)

MOVE

continued

field constructed of bytes.

When an alphanumeric edited, alphanumeric, or alpha-
betic item is a receiving item, left justification
occurs and any necessary space filling takes place
to the right. If the length of the sending item is
greater than the length of the receiving item, the
right-most characters are truncated (see JUSTIFIED

for the inverse procedure).

When a numeric or numeric edited item is a receiving
item, alignment by decimal point and any necessary
zero filling takes place except where zeros are re-
Placed because of editing requirements. If the
receiving item has no operational sign, the absolute
value of the sending item is used. If the sending
item has more digits to the left or right of the
decimal point than the receiving item can contain,
the excess digits are truncated. If the sending
item contains non-numeric characters, the following

actions occur:

a) Zone bits will be stripped if the receiving
field is COMP.

b) Zone bits may be replaced with the numeric

stick if the receiving field is DISPLAY.

Any necessary conversion of data from one form of
internal representation to another takes place during
the MOVE, along with any specified editing in the

receiving item.

NOTE
Alphabetic or alphanumeric fields which are
word aligned and contain an even number of
bytes in length may create more efficient

object code than those not synchronized.

Revised 9/28/70
bv PCN 1033099-004 D=79

MOVE

continued

NOTE (cont)
This is due to the fact that the compiler
may generate the operation code for MOVE
WORDS instead of the normal MOVE ALPHA-
NUMERIC. As much as one-half of the
normal operational time can be saved on
selecting routines where the program loops
through many iterations of data movement

operations.

Any MOVE in which one or both operands is a group item, regardless
of USAGE, is treated exactly as if it were an alphanumeric to
alphanumeric elementary MOVE. There will be no conversion of data
from one form of internal representation to another unless one cof
the fields is an elementary COMPUTATIONAL item. Group COMPUTATION-
AL receiving fields are treated as if they are alphanumerically de-

clared.
The following are examples of the MOVE statement:

a. The following examples show truncation of digits in

moving numeric informatiomn.

Receiving

Field .
Picture 9999 9900 9009 990099 0099 99/99
Value 1234 1234 1234 1234 1234 1234
Receiving
Field 1234 3400 3004 120034 0034 12/34
Warning
Message No Yes Yes No Yes No

b. The following examples show alignment of decimal points
in moving numeric data. The symbol V denotes the assumed

decimal point given by item description PICTURE clause,

but which is not physically present.

Uit
i
O

MOVE

continued

Sending Field Receiving Field
Before and After Before After
123vhs5 0020V20 0123V45
123Vi4s 002v020 123V450
123vh5 - 00202V0 00123V

c. The following example shows results of MOVE ALL state-
ments. The use of a figurative constant ZERO in a MOVE
statement will result in the entire DISPLAY or COMPU-
TATIONAL elementary receiving field being composed of
zeros, with or without the use of the reserved word ALL.
Therefore, MOVE ALL ZEROS, MOVE ZEROS, and MOVE ALL O
are synonymous and will cause the DISPLAY or COMPUTATIONAL
elementary receiving field to be composed of 8-bit or

L-bit zeros respectively.

Five Position Receiving Field After Execution

Statement COMPUTATIONAL DISPLAY
MOVE ALL 9 99999 FOFIFIF9F9
(or "9")

MOVE ALL 57 57575 F5F7F5F7F5
MOVE ALL 057 05705 FOF5F7FOF5
MOVE ALL "ABC" * clca2c3cicz
MOVE ALL ZEROS 00000 FOFOFOFOFO0
MOVE ALL O 00000 FOFOFOFOFO

* Unpredictable

5-81

MULTIPLY

MULTIPLY.
The function of this verb is to multiply two operands and store

. o T 3 fo5 = 3 L 1 2
the results in the last-named field (which must De a numeric

data-name).

The construct of this wverb is:

MULTIPLY '{llteral'l }

jliteral-Z
data-name=1 BY }

== | data-name-2

[GIVING data-name-3] [ROUNDED] [ON SIZE ERROR any

OTHERWISE
statement [{ZELSE } statement]}

All rules specified under the ADD statement regarding the presence
of editing symbols in operands, the ON SIZE ERROR option, the
ROUNDED option, the GIVING option, truncation, and the editing
results apply to the MULTIPLY statement, except the maximum operand

size is 99 digits for the sum of two operands.

The data-names must be elementary item references. If GIVING is
used, the data description of data-name-3 may contain editing
symbols. In all other cases, the data-names used must refer to

numeric items only.

If the GIVING option is used, the result of the multiplication
replaces the contents of data-name-3, otherwise, it replaces the
contents of data-name-2. If GIVING is not used, literal-2 is 10T

permitted, i.e., data-name-2 must appear.

5-82

NOTE

NOTE.
The function of this verb is to allow the programmer to write ex-
planatory statements in his program which are to be produced on

the source program listing for documentational clarity.
The construct of this verb is:

Option 1 - Paragraph NOTE:

label. NOTE any comment.

Option 2 - Paragraph NOTE:

NOTE. any comment.

NOTE any comment.

Any combination of the characters from the allowable character

set may be included in the character string of a NOTE statement.

If a NOTE sentence is the first sentence of a paragraph, the entire
paragraph is considered to be commentary. Either Option 1 or

Option 2 may be used as NOTE statements on a paragraph level.

If a NOTE statement appears as other than the first sentence of a

paragraph,; only the sentence constitutes a commentary. The first

5-83

NOTE

continued

the word NOTE will cause the compiler to

-+

(¥

i1~
11

ilew sentence commences with the word

Refer to page 7-3 of Section 7, CONTINUATION INDICATOR, for an ex-

pPlanation of notes (* or / in column 7) appearing anywhere within

the source program,

5-81

OPEN

OPEN.

The function of this verb is to initiate the processing of both
input and output files. The MCP performs checking or writing, or

both, of labels and other input-output operations.

The construct of this wverb is:

OPEN

WITH LOCK [ACCESS]
INPUT file-name-1 REVERSED [file-name-2...]

WITH NO REWIND

OUTPUT file-name-3 [WITH NO REWIND]| [file-name-4 ...] J

[{%?gUT‘OUTPUT } file-name-5 [:WITH LOCK [ACCESS]]

[file—name-6...]]

{ 0-I file-name-7 [file-name-8 ...] 1

File-names must not be those defined as being SORT files.

At least one of the options must be specified before a file can be
read. A statement of OPEN INPUT....+...0UTPUT e eeeel=0ceecocsones

O-IT¢s.....can appear in one source language card. Continuation

of source card lines is allowed.

The I-0, INPUT-OUTPUT and O-I options pertain to disk storage files.
The I-0 and INPUT-OUTPUT options may be used by data communication

remote devices.

The OPEN statement must be executed prior to the first SEEK, READ,
or WRITE statement for that file.

A second OPEN statement for a file cannot be executed prior to the

Revised 9/28/70
by PCN 1033099-004 5-85

OPEN

continued

execution of a CLOSE statement for that file.

Thhe OPEN statement does not obtain or release the first data record.
A READ or WRITE statement must be executed to obtain or release,

respectively, the first data record.

When checking or writing the first label, the user's beginning

label subroutine is executed if it is specified by a USE statement.

The REVERSED and the NO REWIND options can only be used with SE-
QUENTIAL, single reel, tape files.

If the peripheral ASSIGNed to the file permits rewind action, the
following rules apply:

a. When neither the REVERSED nor the NO REWIND option is speci-
fied, execution of the OPEN statement for the file will
cause the file to be positioned ready to read the first

data-record.

b. When either the REVERSED or the NO REWIND option is speci-
fied, execution of the OPEN statement does not cause the
file to be positioned. When the REVERSED option is speci-
fied, the file must be positioned at its physical end. When
the NO REWIND option is specified, the file must be posi-
tioned at its physical beginning.

c. When the NO REWIND option is specified, it applies only to

sequential, singlie reel files stored on magnetic tape units.

When the REVERSED option is specified, the subsequent READ state-
ments for the file make the data-records available in reverse record
order starting with the last record. Each record will be read into
its record-area and will appear as if it had been read from a for-

ward moving file.

If an input file is designated with the OPTIONAL clause in the
File-Control paragraph of the ENVIRONMENT DTVTSTON., the ohiect
program causes an interrogation to the MCP for the presence or

absence of a pertinent magnetic tape file. If this file is not

5-86

OPEN

continued

present, the first READ statement for this file causes the impera-

tive statement in the AT END clause to be executed.

The I-0 or INPUT-OUTPUT option permits the OPENing of a disk file
for input and/or output operations. This option demands the ex-
istence of the file to be on the disk and cannot be used if the
file is being initially created. That is, the file to be OPENed
must be present in the MCP Disk Directory.

When the I-O0 or INPUT-OUTPUT option is used, the MCP immediately
checks the MCP Disk birectory to see if the file-name is present.
The system operator will be notified in its absence, and the file
can then be loaded if it is available or the program can be DSed
(Discontinued). If the decision is to load the file, the operator
does so and then notifies the MCP to proceed with the program by

a mix-index OK message.

The O-I option is identical to OPEN I-O with the exception being
that the file is assumed to be a new file to the Disk Directory.
The OPEN O-I option will shortcut the usual method of initially
creating I-0 work files within a program, e.g., OPEN OUTPUT,

write record(s), CLOSE WITH RELEASE, OPEN I-O, etc. The O-I op-
tion does not, nor was it intended to, replace the OPEN I-O option,
since the use of OPEN O-I assumes that a new file is to be created

each time.

When processing mass storage files for which the access mode is
sequential, the OPEN statement supplies the initial address of the

first record to be accessed.

The contents of the data-names specified in the FILE-LIMIT clause
of the File-Control paragraph (at the time the file is OPENed) is
used for all checking operation while that file is OPEN. The FILE-
LIMIT clause is dynamic only to this extent.

When an OPEN OUTPUT statement is executed for a magnetic tape file,

the MCP searches the assignment table for an available scratch tape,

Revised 9/28/70
by PCN 1033099-004 5-87

OPEN

continued
writes the label as specified by the program, and executes any
USE declaratives for the file. If no scratch tape is available,

a message to the operator is typed and the program is suspended
until the operator mounts one, or one becomes available due to the

termination of a multiprocessing program.

OPENing of subsequent reels of multi-reel tape files is handled
automatically by the MCP and requires no special consideration

from the programmer.

OPEN WITH LOCK on a permanent disk file (contained in the Disk
Directory) denies the OPENing of that file to all other operating
programs in the Mix. If another program attempts to OPEN INPUT
of a file already OPENed with LOCK, the MCP control message **
LOCKED FILE file-name program-name = mix-index will appear on the
SPO. The systems operator may continue the operation of the pro-
gram by performing the control message mix-index OK only after

the program LOCKing the file has performed a CLOSE on it.

OPEN WITH LOCK ACCESS on a permanent file (contained in the Disk
Directory) allows the subsequent OPENing of that file by other

operating programs in the Mix, as long as they only use the OPEN
INPUT convention.

PERFORM.

PERFORM

The function of this wverb is to depart from the normal sequence

of execution in order to execute one or more procedures,

either

a specified number of times or until a specified condition is

satisfied. Following this departure,

returned to the normal sequence.

control is automatically

‘ The construct of this verb has four options which are:

Option 1:

PERFORM procedure—name—lI;{ggﬁgUGH } procedure-name-2]

Option 2:

PERFORM procedure-name—l.[{g%ﬁgUGH } procedure-name-2]
{éﬁﬁifii;i_l } TIMES

Option 3:

PERFORM procedure-name—l[{ggggUGH } procedure-name=2]

UNTIL. condition-1

Revised 8/28/69

by PCN 1033099-001 5-89

PERFORM
continued

Option L:

PERFORM procedure-name-1 [{.ggggUGH } procedure-name-2 J
index-name-1 index-name-2
VARYING {data—name—l } FROM data-name-2 BY
numeric-literal-1l
data-name-3 | yNTIL condition-1 [apTER | index-name-3
{numeric-literal-2 j B L { data-name-4

index-name-4
FROM data-name-5

BY { data-name-6 }
numeric-literal-3

- numeric-literal-4

UNTIL condition-2 AFTER index-name-5 FROM
e —_— data-name-"7 —_—

index-name-6 data-n 9
data-name-38 BY { a .aTiTt 1-6 }
numeric-literal-5 numeric-literal-

UNTIL condition-3]

PERFORM is the means by which subroutines are executed in COBOL.

The subroutines may be executed once, or a number of times, as de-
termined by a variety of controls. A given paragraph may be PER-
FORMed by itself, in conjunction with another paragraph, contrel may
pass through it in sequential operation, and it may be the object of
a GO statement, all in the same program. The range of a PERFORM
starts with the first executable statement of procedure-name-1l and
continues in logical sequence through the last executable statement
of:

a. THRU procedure-name-2, if specified, automatically sets up

a return to the statement following the PERFORM statement.

b. Procedure-name-1 only, if procedure-name-Z 1s not speci-

fied automatically sets up a return to the statement

following the PERFORM statement.
5-90

PERFORM

continued

c. The automatic return is implied as immediately following

the last statement in a PERFORM range.

Each procedure-name is the name of a section or a paragraph in

the PROCEDURE DIVISION.

Each data-name is a numeric elementary item described in the DATA
DIVISION. All literals must represent numeric items with no

positions to the right of the assumed decimal point.

There is no necessary relationship between procedure-name-1 and
procedure-name-2 except that a consecutive sequence of operations
is to be executed beginning at procedure-name-1 and ending with
the execution of procedure-name-2. In particular, GO and PERFORM
statements may only occur within procedure-name-l and before the
end of procedure-name-2. If there are two or more direct paths to
the return point in procedure-name-~1l, then procedure-name-2 may

be the name of a paragraph consisting solely of the EXIT statement,

to which all of the procedure-name-l1l paths must lead.

If the object program control passes to procedure-name-l or pro-
cedure-name-2 from a statement other than a PERFORM, the proce-
dure(s) will be accomplished and control will fall through to the
next sentence following the procedure(s). If procedure-name-2 con-
sists of an EXIT, program control will pass to the next sentence

following procedure-name-2.

If a statement within procedure-name-1 or procedure-name-2 contains
a nested PERFORM, object program control will pass to the procedure-
name contained in the nested statement and the procedure will be
accomplished. Program control will automatically return to the
next sentence following the executed PERFORM statement. Nested
PERFORM statements are allowed to any reasonable depth. Nesting
depth is dictated by STACK size in the object program. Additional
depth may be obtained by use of an MCP CORE card at object program
execution time, or by the MEMORY SIZE clause, to give the object
program additional memory to increase the STACK size. However,

the procedure named must return to the statement following the

Revised 9/28/70
by PCN 1033099-004 D5=-91

PERFORM

continued

previously executed PERFORM and cannot contain a GO out of range of

- - Lol
pirocedure=-name~1 ¢or procedure-name-2.

A PERFORM statement appearing in an overlay section can have within

its range only the following:

a. Procedures within the fixed (non—overlayable) segment

of the program.

b. Procedures within the overlay segment containing the

PERFORM.

A PERFORM statement appearing within the fixed segment of the pro-

gram can range unrestricted to any point in the program.

Option 1 is the basic PERFORM statement. A procedure referred to
by this type of PERFORM statement is executed once and then control
passes to the statement following the PERFORM statement.

Option 2 is the TIMES option and, when used, the procedures are
performed ‘the number of times specified by data-name-1 or integer-1.
Data-name-1 cannot be described as larger than 6 digits in length.
The value of data-name-1 or integer-l1l must be positive. Control is
transferred to the statement following the PERFORM statement. If
the value is zero, control passes immediately to the statement fol-
lowing the PERFORM sentence. Once the PERFORM statement has been
initiated, any reference to or manipulation of data-name-1 will not

affect the number of times the procedures are executed.

Option 3 is the UNTIL option. The specified procedures are per-
formed until the condition specified by the UNTIL condition is TRUE.
At this time, control is transferred to the statement following the
PERFORM statement. If the condition is TRUE at the time that the
PERFORM statement is encountered, the specified procedure is not

executed.

Option 4 is the VAKYILNG option. This option is used wien it is de=-

sired to augment the value of one or more data-names or index-names

-
\,
"

PERFORM

continued

in an orderly fashion during the execution of a PERFORM statement.
When index-names are used, the FROM and BY clauses have the same

effect as in a SET statement.

In option 4 where only one condition is required to control the num-
ber of iterations that a procedure is to be PERFORMed, the following

actions take place:

a. Data-name-1 is set at the start of the PERFORM to a
starting value as contained in data-name-2 (or numeric-

literal-1).

b. Condition-1 is compared for an EQUAL condition. If

condition-1 is true, control passes to next statement.
c. Procedure-name will be executed one time.
d. Data-name-3 is added to the contents of data-name-1.
e. Loop to step b above.

The above cycle continues until an equal comparison occurs, at which
peint program control directly passes to the next sentence following

the executed PERFORM statement.

In option 4 where two conditions are required to control the number
of iterations that a given procedure is to be PERFORMed, the fol-

lowing actions occur:

a. Data-name-1l and data-name-4 are set at the start of the
PERFORM to starting values as contained in data-name-2
(or numeric-literal-1) and data-name-5 (or numeric-lit-

eral-3) respectively.
b. Condition-1l is compared to data-name-1 and:

l) If an equal condition occurs, control is passed to
the next sentence following the executed PERFORM

statement, or else:

Revised 9/28/70
bv PCN 1033099-004 0= 93

PERFORM

continued

2) Condition-2 is compared to data-name-4 and:

S

T " 11a 1 1 3
If an equal condition occurs

~ — 1
con on urs, me-4 is set

o

to the value contained in data-name-5. Data-name-
3 is added to the data-name-1l and loop toc step b

above, or else:

b) Procedure-name will be executed one time, after
which data-name-6 is added to data-name-4 and

loop to step a above.

The above cycle continues until an equal comparison occurs, at which
point program control directly passes to the next sentence following

the executed PERFORM statement.

NOTE
Data-name-3 and data-name-6

cannot contain zeros.

In option 4 where three conditions are required to control the num-
ber of iterations that a given procedure is to be PERFORMed, the
mechanism is the same as for two-conditional control except that
data-name-7 goes through a complete cycle each time that data-name-
6 is added to data-name-4, which in turn goes through a complete

cycle each time that data-name-1 is varied.

After the completion of Option 4, data-name-4 and data-name-7 con-
tain their initial values, while data-name-1 contains a value which
exceeds its last used setting by one increment or decrement unless
condition-1 is TRUE when the PERFORM statement is entered, in which
case data-name-1, data-name-4 and data-name-7 all contain their

initial values.

Since the return control information is placed in the stack rather
than directed through instruction address modification, a PERFORM
statement executed within the range of another PERFORM is not re-
stricted in the range of paragraph names it may include. The ex-
amples shown on the following page arTe permitted and will execute

correctly.

5-al

B w H Qo p oM

H oo M

g8

PERFORM a THRU m

PERFORM f THRU j

PERFORM a THRU m

“ BB o M

PERFORM

PERFORM
continued

THRU m PERFORM a THRU m

PERFORM

THRU j

PERFORM f THRU j
IF condition THEN e
PERFORM a THRU m

o

—————

PERFORM f THRU j

Q2w B H o M

x PERFORM a THRU m

IF condition THEN
PERFORM a THRU m

Revised 9/28/70
by PCN 1033099-004 5~95

READ

READ.

The function of this verb is twofold, namely:

When processing sequential input files, a READ statement
will cause the next sequential record to be moved from the
input buffer area to the actual work area, thus making the
record available to the program if the file has been de-
clared BLOCKED, or, if an ALTERNATE AREA has been ASSIGNed.
An input buffer area is not used where records are un-
blocked or an ALTERNATE AREA has not been ASSIGNed, there-
fore, all sequential records will be physically read into
the work area of the program. Physical READs are performed
as a function of the MCP. The READ statement permits the
performance of a specified imperative statement when an

end-of-file condition is detected by the MCP.

For random file processing, the READ statement communicates
with the MCP to explicitly cause the reading of a physical
record from a disk file and also allows performance of a
specified imperative statement if the contents of the

associated ACTUAL KEY data item is found to be invalid.

The construct of this wverb is:

READ file-name RECORD [{WITH LOCK }:H: {AT END }

any imperative statement [{ OTHERWISE .} any statement]]

INTO data-name INVALID KEY

ELSE

The AT END of file clause is used only for non-disk files or for

disk files being processed in the sequential access mode. NEXT-

SENTENCE is implied if AT END is not explicitly stated.

5-96

READ
continued

If, during execution of a READ statement with AT END, the logical

End-of-File is reached and an attempt is made to read that file,
the statement specified in the AT END phrase is executed. After
the execution of the imperative statement of the AT END phrase,
a READ statement for that file must not be given without prior

execution of a CLOSE statement and an OPEN statement for that file.

The WITH LOCK option makes the current record (physical record)
unavailable to other programs and is only applicable for Shared
Disk MCP usage.

The INTO and WITH LOCK options are mutually exclusive.

Revised 9/28/70
by PCN 1033099-004 5-96A

READ
continued

When the AT END clause is specified in a conditional sentence, the
clause can be thought of as being preceded by an IF and that all
exits within the sentence are controlled by using the rules per-

taining to the matching of IF...ELSE pairs. For example:

IF AAA = BBB THEN READ FILE-A, AT END GO TO WRAP-TUP,
ELSE GO TO PROCESS-THE-RECORD, ELSE STOP RUN,

a. When AAA does not equal BBB, control will be passed
to STOP RUN.

b. When AAA equals BBB, FILE-A is read, end-of-file is
tested and if the result is "TRUE" program control
will be transferred to the WRAP-UP procedure, however,
a result of "FALSE" will cause program control to be

transferred to PROCESS-THE-RECORD.

The INVALID KEY applies to files that are ASSIGNed to disk. The

access of the file is controlled by the value contained in ACTUAL
KEY.

An AT END or INVALID KEY clause must be specified when reading a
file described as containing FILE-LIMITS.

The INTO option may only be used when the input file contains
records of one type. The data~-name must be the name of a WORKING-

STORAGE area or output record area.

An OPEN statement must be executed for a file prior to the exe-

cution of the first READ statement for that file.

When a file consists of more than one type of logical record,
these records automatically share the same storage area and are
equivalent to an implicit redefinition of the area. Only the in-

formation that is present in the current record is available.

Revised 9/28/70
by PCN 1033099-004 5-97

READ
continued

If the TINTO option is specified, the current record is MOVEd from
the input area to the area specified by data-name according to the
rules for the MOVE statement without the CORRESPONDING option. If
multiple Ol levels are declared in the file description, the size

of the first 01 level is used.

When the INTO option is used, the record being read is available
in both the data area associated with data-name and the input

record area.

If a file described with the OPTIONAL clause is not present, the
imperative statement in the AT END phrase is executed on the first
READ. The standard End-of-File procedures are not performed. (See
the OPEN and USE statements, and the FILE-CONTROL paragraph in the
ENVIRONMENT DIVISION.)

If the end of a magnetic tape file is recognized during execution

of a READ statement, the following operations are carried out:

a. The standard ending reel label procedure and the user's
ending reel label procedure, if specified by the USE
statement, are carried out. The order of execution of

these two procedures is specified by the USE statement.
b. A tape swap is performed.

c. The standard beginning reel label procedure and the
user's beginning label procedure, if specified, are
executed. The order of execution is again specified

by the USE statement.
d. The first data record on the new reel is made available.

READ with INVALID KEY is used for disk files in the random access
mode. The READ statement implicitly performs the functions of the
tatement, except for the function of the KEY CONVERSION op-

Lo B e aital [T Lo [v ~ r . L. ’ -
LT e JSLd Vil LUl vl vl vite adbsuvulliauvedu

5-98

READ

continued

ACTUAL KEY data item is out of the range indicated by FILE LIMITS,
the INVALID KEY phrase will be executed.

For random disk files, the sensing of an INVALID KEY does not pre-
clude further READs on that file nor need it be closed and reopened

before doing so.

If a READ parity error occurs, the MCP will pass the record back
and forth under the read head until the record is successfully
read, or until a specified amount of retry passes has been reached.
1f the parity error is unrecoverable, the MCP will branch to the
USE... routine provided by the programmer. If a USE... routine is
not found, the MCP will notify the systems operator to discontinue
(DS) or dump the contents of memory pertaining to the program and
then discontinue (DP) the run when the TERM option of the MCP
(terminate automatically) is "OFF". If the TERM option is "ON"
during the discovery of an unrecoverable magnetic tape parity
error, a progfam which doesn't contain a USE... routine will be
automatically terminated and all tapes re-wound, otherwise, the
tapes will be setting one record beyond the parity when NO ALTER-

NATE AREAS are explicitly or implicitly specified for the file.

Object code will be generated, automatically at compile time, within
every program declaring blocked logical records, which will cause
de-blocking of physical records under control of the object program
itself. An exception to this procedure of unblocking can be
achieved by declaring "MCPB" in the dollar sign (§$) card (see
Section 8), however, speed will be sacrificed for a small savings

in core used by the unblocking routine for the specific file.

5-99

RELEASE

RELEASE.
The function of thiis verb is to cause rvecords to b

the initial phase of a SORT operation.

The construct of this verb is:

RELEASE record-name [FROM data-name]

A RELEASE statement may only be used within the range of an input

procedure associated with a SORT statement.

In the FROM option, the data-name must refer to a WORKING-STORAGE,

or an input-record area.

Record-name and data-name must name different memory areas when

specified.

The RELEASE statement causes the contents of record-name to be
released to the initial phase of a sort. Record-name will be trans-

ferred to the specified sort-file (SD) and becomes controlled by

the sort operation.

In the FROM option, the contents of data-name are MOVEd to record-

name, then the contents of record-name are released to the initial
phase of a sort. Moving takes place according to the rules speci-

fied for the MOVE statement without the CORRESPONDING option. The
record-name area will not contain intelligible data after the MOVE,

however, the information in data-name is still available.

After the RELEASE has been executed, record-name is no longer avail-
able. When control passes from the input procedure, the SD file
consists of all those records that were placed in it by the execu-

tion 0 KRELEASE Srtalveiiciivo .

5-100

RETURN

RETURN.
The function of this verb is to obtain sorted records from the final

phase of a SORT operation.

The construct of this verb is:

RETURN file-name RECORD [INTO data—name]

[AT END any statement]

File-name must be a sort file with a Sort File Description (SD)

entry in the DATA DIVISION.

A RETURN statement may only be used within the range of an output

procedure associated with a SORT statement for file-name.

The INTO option may only be used when the input file contains just
one type of record. The data-name specified must be the name of

a WORKING-STORAGE, or an output-record area.

Records automatically share the same area when a file consists of
more than one type record and only the information pertinent to the

current record is available.

The execution of the RETURN statement causes the next record, in
the order specified by the Keys listed in the SORT statement, to
be made available for processing in the record area associated with

the SORT file (SD).

Moving is performed according to the rules specified for the MOVE

statement without the CORRESPONDING option.

When the INTO option is specified, the sorted data is available
in toth the input-record area and the data-area specified by data-

name.

Revised 9/28/70
by PCN 1033099004 5-10

RETURN
continued

put procedure after the AT END clause has been executed.

5.102

SEARCH

SEARCH.

The function of this verb is to cause a search of a table to locate
a table-element that satisfies a specific condition and, in turn,

to adjust the associated index-name to indicate that table-element.
The construct of this verb has two options which are:

Option 1:

data-name-2

SEARCH data-name-1 [VARYING 4{1ndex'name'l} }

[AT END imperative statement-1]

{ imperative statement-2 |

WHEN condition-1 NEXT SENTENCE f

imperative statement-3 }]

[WHEN condition-2 { NEXT SENTENCE

Option 2:

SEARCH ALL data-name-3 [AT END imperative statement-4]

imperative statement-5
NEXT SENTENCE

WHEN condition-3 {

Data-name-1 and data-name-3 may not be subscripted or indexed, but

their descriptions must contain an OCCURS clause and an INDEXED

BY option.

When Option 2 is specified, the description of data-name-3 may

5-103

SEARCH

continued

optionally contain the ASCENDING/DESCENDING KEY clause.

W A 13 o t'ln A DYIT\T

3 .
nell Usiiig

escribed as

I T
nmnusv pe

-
[@

USAGE IS INDEX, or as the name of a numeric elementary item des-
cribed without any positions to the right of the assumed decimal
point. Data-name-2 will be incremented at the same time as the occ-
urrence number (and by the same amount) represented by the index-

name associated with data-name-1.

g Option 1, condition-1,

etc., may be com-

prised of any conditional as described by the IF wverb.

When using Option 2, condition-3 may consist of a relational con-~
dition incorporating the relation EQUAL, or a condition-name con-
dition where the VALUE clause that describes the condition-name
contains only a single literal. Condition-3 may be a compound
condition formed from simple conditions of the type just mentioned,

with AND being the only acceptable connective.

When using Option 2, any data-name that appears in the KEY option
of data-name-3 may appear as the subject or object of a test, or
be the name of the conditional variable with which the tested con-

dition-name is associated.

When using Option 1, a serial type search operation takes place,
starting with the current index setting. The search is immediately
terminated if, at the start of execution of the statement, the
index-name associated with data-name-1l contains a value that corres-
ponds to an occurrence number that is greater than the highest per-
missable occurrence number for data-name-1l. Then, if the AT END
option is specified, imperative statement-1l is executed; if AT END

is not specified, control passes to the NEXT SENTENCE.

When using Option 1, if at the start of execution of the SEARCH
statement, the index-name associated with data-name-1l contains a
value that corresponds to an occurrence number that is not greater

than the highest permissible occurrence number for data-name-1, the

5-104

SEARCH

continued

SEARCH statement will begin evaluating the conditions in the order
that they are written, making use of index settings wherever speci-
fied, to determine the occurrences of those items to be tested.

If none of the conditions are satisfied, the index-name for data-
name-1 is incremented to obtain a reference to the next occurrence.,
The process is repeated using the new index-name setting for data-
name~l which corresponds to a table element which exceeds the last
setting by one more occurrence until such time as the highest per-
missible occurrence number is exceeded, in which case the SEARCH

terminates as indicated in the previous pParagraph.

When using Option 1, if one of the conditions is satisfied upon
its evaluation, the SFARCH terminates immediately and the impera-
tive statement associated with that condition is executed; the
index-name remains set at the occurrence which caused the condi-

tion to be satisfied.

In Option 1 and 2, if the specified imperative statements do not
terminate with a GO statement then brogram control will pass to

the next sentence after the execution of the imperative statement.

In the VARYING option, if index-name-1 appears in the INDEXED BY
option of data-name-1, then that index-name will be used for the
SEARCH, otherwise, the first index-name given in the INDEXED BY
option of data-name-1 will be used. If index-name-1 appears in

the INDEXED BY option of another table entry, the occurrence number
represented by index-name-1 is incremented by the same amount as,
and at the same time as, the occurrence number represented by the

index-name associated with data-name-1 is incremented.

In Option 2, the initial setting of the index-name for data-name-3

is ignored, the effect being the same as if it were SET to 1.

In Options 1 and 2, if data-name-1 and data-name-3 is an item in a
group, or a hierarchy of groups, whose description contains an
OCCURS clause, then each of these groups must also have an index-

name associated with it. The settings of these index-names are used

5-105

SEARCH

continued

throughout the execution of the SEARCH statement to refer to data-

names-1 and 3, oxr items
are not modified by the
stated as index-name-1)

data-names-1 and 3 (and

within its structure. These index setti
execution of the SEARCH statement (unless
and only the index-name associated with

data-name-2 or index-name-1) is incremented

by the SEARCH. Figure 5-9 provides an example of SEARCH operation

as related to Option 1.

5-106

SEARCH
continued

AT END¥*

INDEX SET:
HIGHEST PERMISSIBLE
OCCURRENCE NUMBER

GREATER THAN ACCOMPLISH
] IMPERATIVE [~—P»
STATEMENT-1

CHECK
CONDITION-1

TRUE ACCOMPLISH
—»| IMPERATIVE |—#) see **
STATEMENT- 2

CHECK
CONDITION-2%

TRUE ACCOMPLISH
| IMPERATIVE |~—®
STATEMENT-3*

INCREMENT INDEX-
NAME FOR DATA-
NAME-1 OR INDEX-
NAME IF APPLICABLE

l

INCREMENT INDEX-
NAME (FOR A DIFF-
ERENT TABLE) OR

DATA-NAME- 2%

Figure 5-9. Example of SEARCH Operation
Relating to Option 1
Q
These operations are only included when called for in the SEARCH
statement.
*% BPach of the control transfers is to NEXT SENTENCE unless the im-
perative statement ends with a GO statement.

*

Revised 9/28/70
by PCN 1033099-004 5-107

SEEK

SEEK.
The function of this verb is to initiate the accessing of a disk
file record for subsequent reading and/or writing.

The construct of this verb is:

SEEK file-name RECORD [WITH KEY CONVERSION] [LOCK]

The specification of the KEY CONVERSION ciause indicates that the
user provided USE FOR KEY CONVERSION section in the DECLARATIVE
SECTION is to be executed prior to the execution of the SEEK state-~
ment. If there are no DECLARATIVES for KEY CONVERSION in a SEEK
statement, then the KEY CONVERSION clause will be ignored.

A SEEK statement pertains only to disk storage files in the random
access mode and may be executed prior to the execution of each READ
and WRITE statement. Use of the LOCK clause makes the record un-
available to other programs (shared disk MCP only).

The SEEK statement uses the contents of the data-name in the ACTUAL
KEY clause for the location of the record to be accessed. At the
time of execution, the determination is made as to the validity of
the contents of the ACTUAL KEY data item for the particular disk
storage file. If the key is invalid, the imperative statement in
the INVALID KEY clause of the next executed READ or WRITE statement

for the associated file is executed.

Two SEEK statements for a disk storage file may logically follow
each other. Any validity check associated with the first SEEK state-
ment is negated by the execution of a second implicit or implied
SEEK statement.

An dmplied SEEK is executed 7 the MCD whenever an

is missing for the specified record. An implied SEEK never executes

any USE KEY CONVERSION Declaratives.

5108

SEEK

continued

If a READ/WRITE statement for a file ASSIGNed to DISK is executed,
but an explicit SEEK has not been executed since the last Previous
READ or WRITE for the file, then the implied SEEK statement is
executed as the first step of the READ/WRITE statement.

An explicit alteration of ACTUAL KEY after the execution of an ex-
plicit SEEK has been performed, but prior to a READ/WRITE, will
cause the initiation of an implied SEEK of the initial record in

the sequence. For example,

a. If ACTUAL KEY is 10, then
b. READ record 10, then

c. MOVE 50 to ACTUAL KEY, then
d. WRITE record 50.

An implied SEEK of record 50 will be performed between actions c.

and d. above.

Revised 10/8/69
by PCN 1033099-002 5-109

SET

SET.

The function of this wverb is t
table handing operations by se

with table elements.

The construct of this wverb has

Option 1:

o establish reference points for
tting index-name values associated

two options which are:

SET index-name-1 index-name-2 }
== data-name-1 data-name-2 f °°°
index-name-3
TO data-name-3
literal-1
Option 2:
SET index-name-4 [index-name-5 ...]

UP BY
DOWN BY

data-name
literal-2

{Bowrer} |

-4

j

All data-items must be either
elementary items described wit
the assumed decimal point, exc
index-data-name.

integer. Index-names are cons

When a literal is used,

index-data-names or numeric

hout any positions to the right of
ept that data-name-4 must not be an
it must be a positive

idered related to a given table and

are defined by being specified in the INDEXED BY clause.

An index-data-name cannot be SET...TO...

name,

5-110

a literal or to a data-

SET

continued

A data-name cannot be SET...TO... an index-data-name, a literal or

another data-name. A data-name can only be SET to an index-name.
Literals cannot be SET...TO anything.

The SET verb appears somewhat similar to the MOVE but has a major
difference in that the receiving field appears as the first op-

erand(s) in the statement. For example:
SET A TO B

The above statement causes the contents of A to change to the wvalue
contained in B. Series statements may result in more efficient ob-

ject code than separate statements., For example:
SET A, C, D, E, F TO B

Depending on the operands in a SET statement, code generated will
vary from a single MVN through a series of MVN, MUL and DIV in-
structions. Because of this, care must be used in determining
what type of receiving operand is going to be SET to what type of
sending operand, since this is the primary step in calculating the

location within the row. For example:

SET INDEX-DATA-NAME-A TO INDEX-A
SET INDEX-B TO INDEX-DATA-NAME-A

Both of the above statements are, by COBOL definition, plain MOVEs
and unless the two indexes refer to rows of exactly the same size,
will probably not result in an address which the programmer has
perceived. If instead, the statement had been written: SET INDEX-
B TO INDEX-A, the necessary MOVE, DIVIDE and MULTIPLY instructions
would be generated to reduce the "sending" index to a relative
occurrence (subscript) and then to expand it to the receiving add-

resse.

Revised 9/28/70

by PCN 1033099-004 5-1 11

SORT

SORT.

The function of this verb is to sort a magnetic tape or disk input
file of records by transferring such data into a disk sort-file
(work file) and sorting those records on a set of specified keys.
The final phase of the sort operation makes each record available
from the sort-file, in sorted order, to an output procedure or to a

l magnetic tape or disk output file.

The construct of this wverb is:

SORT file-name-1

SPURGE
RUN ON ERROR

END

ON { DESCENDING

- -l - "2.00
ASCENDING } KEY data-name [data name]

[on { DESCENDING

. - t - _L"oo.
ASCENDING } KEY data-name-3 [data-name] 1

\

r

. THRU . A
INPUT PROCEDURE IS section-name-1 {THROUGH } sectlon—name—Q}
[o

LOCK
USING file~name-2 PURGE

RELEASE) |

.

THRU
THROUGH

OUTPUT PROCEDURE IS section-name-3 [{ } section—name—%

GIVING filo-name-3 [{Z0K 1]

— —_

S —— e =~
e

File-name-1 must be described in a Sort File Description (SD) entry

AT
4

. T S] e o N ~ . ~ TN [T L TS .
411 LILEe UALA 1LV LD aAllu L lLiT—liauues—4a altlu) uaus o (SR> VAR =L RN UL A 2E "5 ¥ Sy - A

I
File Description (FD) entrv.

5-112

SORT

continued

Section-name-1 specifies the name of the input procedure to be
used before passing each record to the sort-file, while section-
name-3 specifies the output procedure to be used to obtain each

sorted record from the sort-file.

Each data-name must represent data-items described in records
associated with file-name-1l. Data-names following the word KEY

%
are listed from left to right in the order of decreasing signifi-

cance without regard as to their division into optional KEY clauses.

A maximum of 40 KEYs are allowed in each SORT statement and each

KEY may be comprised of up to 99 digits or characters in length, I
except for signed KEYs, which may be comprised of up to 50 charac-
ters. The total accumulated size of KEYs cannot exceed 3,960. I

characters or digits.

The PROCEDURE DIVISION of a source program may contain more than
one SORT statement appearing anywhere in the program, except in
the DECLARATIVES portion or in the input/output procedures associ-

ated with a sort statement.

The input procedure must consist of one or more sections that are

written consecutively and which do not form a part of an output
procedure. The input procedure must include at least one RELEASE
statement in order to transfer records to the sort-file after the
object program has accomplished the required input data manipula-
tion specified in the procedure. Input procedures can select,
create and/or modify records, one at a time, as specified by the

programmer.

There are three restrictions placed on procedural statements within

an input or output procedure:
a. The procedure must not contain any SORT statements.

b. The input or output procedures must not contain any
transfers of program control outside the range of the

procedure; ALTER, GO and PERFORM statements within the

Revised 8/28/69
by PCN 1033099-001 5-113

SORT

continued

procedure are not permitted to refer to procedure-names

outside of the input or outpul procedure.

c. The remainder of the PROCEDURE DIVISION must not contain
any transfers of program control to points within the
input or output procedure; ALTER, GO, and PERFORM state-
ments in the remainder of the PROCEDURE DIVISION must not
refer to procedure-names within the range of the input

or output procedure.

The output procedure must consist of one or more sections that are
written consecutively and which do not form a part of an input
procedure. The output procedure must include at least one RETURN
statement in order to make each sorted record available for pro-
cessing after the file has been sorted and the object program has
accomplished the required output data manipulation specified in
the procedure. Output procedures can select, create and/or modify

records, one at a time, as they are being returned from the sort-
file.

When the ASCENDING clause is specified, the sorted sequence of the
affected records is from the lowest to the highest value according

to the collating sequence of the B 2500/B 3500, per specified KEY.

When the DESCENDING clause is specified, the sorted sequence of

the affected records is from the highest to the lowest value accord-
ing to the collating sequence of the B 2500/B 3500, per specified
KEY.

The SD record description of the sort-file must contain fully de-
fined data-name KEY items in the relative positions of the record
as applicable. A rule to follow when using these KEY items is that
when a KEY item appears in more than one type of record, the data-
names must be relatively equivalent in each record and may not con-

tain, or be subordinate to, entries containing an OCCURS clause.

5-114

SORT
continued

When an input procedure is specified, object program control will be
bPassed to that procedure automatically as an implicit function of
encountering the generated SORT verb object code compiled into the
program. The compiler will insert a return-to-the-sort mechanism

at the end of the last section in the input procedure and when pro-
gram control passes the last statement of the input procedure, the
records that have been RELEASED to file-name-1 commence being

sorted.

If the USING option is specified, all records residing in file-name-
2 will be automatically transferred to file-name-l1l upon encountering
the generated SORT verb object code. At the time of execution of
the SORT statement, file-name-2 must not be OPEN. The SORT state-
ment automatically performs the function necessary to OPEN, READ,
USE and CLOSE file-name-2. If file-name-2 is a disk file, it must
be in the Disk Directory before the SORT Intrinsic is called.

When an output procedure is specified, object program control will
be passed to that procedure automatically as an implicit function
when all records have become sorted. The compiler will insert a

return-to-the-object program mechanism at the end of the last sec-

tion in the output procedure and when program control passes the

last statement of the output procedure, the object program will ex-

ecute the next statement following the pertinent SORT statement.

If the GIVING option is specified, all sorted records residing in
file-name-1 are automatically transferred to the OUTPUT file as
specified in file-name-3. At the time of execution of the sort
statement, file-name-3 must not be OPEN. File-name-3 will be auto-
matically OPENed before the sorted records are transferred from the
sort-file and in turn, will be automatically CLOSEd after the last

record in the sort-file has been transferred.

The ON ERROR option is provided to allow programmers some control l
over irrecoverable parity errors when INPUT/OUTPUT PROCEDURES are

not present in a program. PURGE will cause all records in a block
containing an irrecoverable parity error to be dropped and proces-

sing will be continued after a SPO message giving the relative

Revised 9/28/70
by PCN 1033099-004 5-115

SORT

continued

position in the file of the bad block has been printed. This option

is always assumed if no other has been defined. RUN will cause the
bad block to be used by the program and will provide the same SPO

message as defined for PURGE. END will cause the usual DS or DP

SPO message.

The PURGE, LOCK, and RELEASE options may be used to specify the type
of file close on file-name-2 and file-name-3 (see CLOSE, page 5-33).
The options only apply to the USING/GIVING options.

Example:

SORT file-name~1 ASCENDING KEY data-name-1
USING file-name-3 PURGE
GIVING file-name-3 LOCK.

Beginning and ending label USE procedures are provided as follows
when INPUT/OUTPUT PROCEDURES are present in the SORT statement:

a. OPEN INPUT file-name.
USE...(The programmer's USE procedure will be invoked.)

b. OPEN OUTPUT file-name.

USE...(The programmer's USE procedure will be invoked.}

c. CLOSE input-file-name.
USE...(The programmer's USE procedure will be invoked,
however, the contents of the ending input label will

not be available to the USE procedure.)

d. CLOSE output-file-name.
USE...(The programmer's USE procedure will be invoked;
however, the ending label will have been written prior

to executing the USE procedure.)

NOTE
The above actions provide USE on

label facilities at beginning and

reels of multi-reel files.

5-116

STOP

STOP.
The function of this verb is to halt the object program tempo-

rarily or to terminate execution.

The construct of this wverb is:

RUN
STOP { literal }

If the word RUN is used, then all files which remain OPEN will be
CLOSED automatically. Files ASSIGNED to DISK will be CLOSED WITH
PURGE and all others will be CLOSED WITH RELEASE. All storage

areas for the object program are returned to the MCP and the job I

is then removed from the MCP Mix.

The STOP RUN is not used for temporary stops within a program.
STOP RUN must be the last statement of the program execution

sequence.

If the literal option is used, the literal will be DISPLAYed on the I
message printer and the program will be suspended. When the oper-
ator enters the MCP continuation message mix-index AX, program I
execution resumes with the next sequential operation. This option
is normally used for operational halts to cause the system's opera-

tor to physically accomplish an extermnal action.

If a STOP statement with the RUN option appears in an imperative
statement, then it must appear as the only statement or last

statement in the imperative statement.

5-117

SUBTRACT

SUBTRACT.

The function of this verb is to subtract one, or the sum of two

Oor more, numeric data items from another item, and set the wvalue

of an item equal to the result(s).

The construct of this verb has three options which are:

Option 1:
literal-1 literal-2
SUBTRACT {data—name—l } [{data—name-Z } "'] FROM

data-name-m [ROUNDED] [data—name—n [ROUNDED] ...]

[ON SIZE ERROR any statement [{i%%g%ﬂﬂlﬁ@ } statement] }

Option 2:
literal—l 3 /(literal“‘? l

swptract {giveralsl L [[literal-z b] o

{é;i:fi;;z_m } GIVING data-name-n [ROUNDED]

[ON SIZE ERROR any statement [{ %%%%EE£§E '} Statement] }

SUBTRACT
continued

Option 3:

{ CORR \
SUBTRACT | CORRESPONDING data-name-1l FROM data-name-2
[ROUNDED | |:ON SIZE ERROR any statement [{ .E{I;gRWISE }

statement]

In Options 1 and 2, the data-names used must refer only to ele-
mentary numeric items. If Option 2 is used, the data-description
of data-name-n may contain editing symbols, except when data-name-n

also appears to the left of GIVING.

All rules specified under the ADD statement with respect to the
operand size, presence of editing symbols in operands, the ON

SIZE ERROR option, the ROUNDED option, the GIVING option, trunca-
tion, the editing of results, the handling of intermediate results,
and the CORR or CORRESPONDING option apply to the SUBTRACT state-

ment.

When the GIVING option is not used, a literal may not be specified

as the minuend.

When dealing with multiple subtrahends, the effect of the sub-
traction will be as if the subtrahends were Tirst summed, and then

the sum subtracted from the minuends.

Revised 9/28/70
by PCN 1033099-004 5-119

TRACE

TRACE.

The function of this verb is to create deocumentation of all nor-

mal and/or control mode processing events and to output this data

on a line printer.

The construct of this wverb is:

TRACE

P, NS
N Vg

'olulmh—-lo

When a TRACE statement is encountered during object program execu-

tion, one of the following actions will take place at that point

in the program:

The O option will turn the TRACE off.

The 1 option will cause a TRACE of all normal mode in-
structions until such time as any of the other options

are encountered.

The 2 option will cause a TRACE of all control mode in-
structions until such time as any of the other options

are encountered.

The 3 option will cause a TRACE of all control and nor-
mal mode instructions until such time as any of the other

options are encountered.

The 20 option will cause a memory dump to be taken of lo-
cations base relative to the program's memory assignment.

Processing will continue after the memory "snap-shot."

If TRACE is turned ON during multiprocessing, all processing will

be trace

5-120

d

N) . , . ‘ - ‘
according to the selected opticon. Uutput will go o a

TRACE
continued

printer regardless of its MCP job assignment to a specific program

in the Mix,

The following is an example of TRACE output:

2 3 4 2 6 z 8 91011 12 i3
15036 GEQ 16900
15044 MVN 0705 10004 1s 12010 2s
15062 OFL 16024
16024 BCT 0354
10000 MVA 0202 25 AL 10000 A

(=]

+12345

2222 |
VAAAA

25

Column Explanation
1 Normal State = N, Control State = blank.

Address of Instruction in Memory.
Operation Code. The number of an invalid Operation Code.
AF-BF Field.
A-Address,
AI-AC Field:
ATI-1,2,3 = Index Register.
AC-S = Signed Numeric Data.
A
I = Indirect Address.

[oANNAS L BENP S V I N]

Alphanumeric Data.

Blank = Unsigned Numeric Data.
For literal types of data in the A-Address Field, the
following descriptions appear in the combined AI-AC
Fields:
AL
NL = Numeric Literal. -
SL Signed Literal.
FL Floating Point Literal.
7 B-Address.
8 BI-BC Field:
BI-1,2,3 = Index Register.
BC-S = Signed Numeric Data.
A Alphanumeric Data.
I = Indirect Address.
Blank = Unsigned Numeric Data.
9 C-Address.
10 CI~-CC Field:
CI-1,2,3 = Index Register.
CC~-S = Signed Numeric Data.
A = Alphanumeric Data.
I = Indirect Address.

Alphanumeric Literal.

Blank = Unsigned Numeric Data.
11 Status of Compare Toggle.
12 Status of Overflow Toggle:
Blank = No Overflow Condition.
O = Overflow Condition.
13 Contents of Result Field in memory to a maximum
of 68 characters.

5-121

TRACE

continued

The Result Field in memory is defined for the wvarious operators

below:
OP MNE _FIELD OP MNE FIELD OP MNE__FIELD OP MNE _FIELD
01 INC B 13 MVC B 42 AND (o] 91 SRD IX1 (MCP)
02 ADD c 14 MVR B 43 ORR c 92 RAD A-SHOW 6
03 DEC B 15 TRN c 44 NoT c 94 ITO A-SHOW 18
o4 SUB c 16 SDE B 4s CcPA B 95 RDT A-SHOW 6
05 MPY c 17 SDU B 46 CPN B 96 RCT A-SHOW 6
06 DIV C 18 SZE B 49 EDT c 97 STT A-SHOW 6
09 MVL C 19 SzZU B 80 FAD c .
10 MVA B 31 NTR STK [IX3] 81 FSU C ::3:°n2°;ei:i:ed
11 MVN B 40 BZT A 82 FMP c Field
12 MVW B 41 BOT A 83 .FDV C '

Numbers higher than nine in a 4-bit configuration are called

UNDIGITS and will be represented on the TRACE and memory dump as:

Binary Printed
Number Character

10 A

11 B

12 C

13 D

14 E

15 F

The Memory Dump routine for TRACE 20 prints a starting location of

. . . / .
the first of 100 digits/letters per line for as many

=

3 Ao [|
lines as il

y
encompass the entire program while resident in memory, plus its
working storage and the area used for segmentation. Tie output
data will be represented as per the EBCDIC Code Reference Table
in appendix C of this manual. The following example of a memory

dump reflects the technigue utilized:

0900 E205C540C8 D6E64OCYE3 LOE6D6EDID2 E26FL401234 56789----- ~ocmoeoo--
SEE H OW IT WORK S °? 1234 56789

1000 FOF1F2F3F4 FS5F6F7F8F9 FAFBFCFDFE FFe-eo-ecce cocccmmcon mcmccccaa-
01234 567 89 1011121314 15

2100 DODID2D3DA DSDEDTDBDY ==---=mmm== mmmmmmomm eemmeonel oo
01 2 2 bk

2200 F1F2DOF9¥'8 D9---===== ====m-c=moo cmemeeemee mmeeeoooo oo
12 09 R Q

5-122

UNLOCK

UNLOCK.

The function of this verb is to make a shared disk file record

available to other programs.

The construct of this wverb is:

UNLOCK record-name

This statement does not WRITE a record; it only makes the record

available.

Revised 9/28/70
by PCN 1033099-004 5-122A

USE

USE.

The function of this verb is to specify procedures for any input/
output error and/or label handling which are in addition to the
standard procedures supplied by the MCP, to calculate the ACTUAL
KEY for files assigned to DISK, and to accomplish various user re-
quired actions when a 12 punch (overflow) in the printer carri-

age control tape is encountered, and for Shared Disk stalemate I

conditions.

The construct of this verb has four options which are:

Option 1:
file-name.,.
INPUT
OUTPUT
USE AFTER STANDARD ERROR PROCEDURE ON INPUT-OUTPUT
I-0
0-T
Option 2
AFPTER ENDING
USE { BEFOREq} STANDARD {\BEGINNING}’
file-name...
[{ ?—?—% } J LABEL PROCEDURE ON INPUT .
4LtLn OUTPUT

Option 3:

USE

AT END OF PAGE . .
{ZFOR KEY CONVERSION } ON file-name-1 [flle—name—Z...].

Revised 9/28/70
by PCN 1033099-004 D5-123

USE

continued

Option U4:

USE ON STALEMATE ON file-name-3.

A USE statement, when present, must immediately follow a section
header in the DECLARATIVE portion of the PROCEDURE DIVISION and must
be followed by a period followed by a space. The remainder of the
section must consist of one or more procedural paragraphs that de-

fine the procedures to be used.

If the file-name option is used as part of Option 2, the File Des-
cription entry for the file-name must not specify a LABEL RECORDS
ARE OMITTED clause.,

A USE statement specified for input and/or output files associated
with the SORT verb will not be affected when executing the SORT
unless an INPUT and/or OUTPUT PROCEDURE has been included in the

program.

The USE statement itself is never executed rather, it defines the

conditions calling for the execution of the USE procedures.

Tf neither REEL nor FILE is included in Option 2, the designated
procedures are executed for both REEL and FILE labels. The REEL

option is mnot applicable to mass storage files.

Within a given format, a file-name must not be referred to implicit-~

ly or explicitly in more than one USE statement.
USE procedures will be executed by the MCP:

a. After completing the standard I/O error retry routine
(this applies only to option l) the record in error has

been read, thus another READ cannot appear in the USE

Lism since the MOD iz merformin~ the Aandd A hanntrea

- s FolF: S v r ‘ ~
A vda aDddie O Vil iav i S o R e) Vi & MW W was R A i

of a previous READ which has been completed. Upon

=124

-

USE

continued

completion of the USE procedure, control is returned to
the statement following the READ which detected the error
condition. In the case of blocked or unblocked magnetic
tape input, the tape will be sitting ready to read the
next record as soon as the Option 1 procedure is com-
pPleted. For example, if the user wishes to print the
records which cannot be read because of an unrecoverable
parity error, a procedure may be included as illustrated

on page G-1, appendix G.

The USE AFTER STANDARD BEGINNING clause designates that

the procedure following the clause must be called upon

to check data on input magnetic tape beginning-file-labels,
or to insert data as an output magnetic tape beginning-
file-label before it is written. For example, if the user
wishes to change fields within the BURROUGHS STANDARD LABEL
and wants to add mnew fields to the Label Record, he may do
so by including a procedure similar to that illustrated on

page G-2, appendix G.

When the USE BEFORE STANDARD ENDING clause designates that
a following procedure must be called upon to check user
created data contained on input magnetic tape ending file
labels or to insert data onto the user's portion of an out-

put magnetic tape ending file label before it is written.

NOTE
USE AFTER STANDARD ENDING and
USE BEFORE STANDARD BEGINNING
are both illegal entries in

B 2500/B 3500 COBOL.

After a physical 12 punch is sensed on the printer's
carriage control tape for the USE AT END OF PAGE state-

ment.

Prior to any SEEK WITH KEY CONVERSION statement on
files named in the USE FOR KEY CONVERSION statement.

Revised 9/28/70
by PCN 1033099-004 5-125

USE
continued

References to common label items need not be qualified by a file-
name within a USE statement. A common label item is defined as

being an elementary data item that appears in every magnetic tape
beginning and/or ending file-label record, but does not appear in

any data record of the program.

A common label item must have the same name, description, and rel-
ative position in every magnetic tape file-label record and may

only be referenced while in a USE...LABEL PROCEDURE for that file.

If the INPUT or OUTPUT option is specified, the USE...LABEL PROCE-
DUREs do not apply when files are described as having LABEL RECORDS
OMITTED.

There must not be any reference to non-declarative procedures within
a USE procedure. Conversely, in the non-declarative portion there
must be no reference to procedure-names that appear in the declara-
tive portion, except that a PERFORM statement may refer to a USE
declarative, or to the procedures associated with such USE declara-

tives.
Option 2 is not applicable to disk files,

The USE AT END OF PAGE procedure in option 3 allows the object pro-
gram to automatically branch to a central user routine at the time
that a paper overflow condition on a line printer is sensed by the
physical reading of a 12 punch in the carriage control tape. If two
line printers are being used in the object program, both may use the

same procedure where the actions to be fulfilled are identical.
Option 4 applies only to Shared Disk.

When shared disk is used, and two processors are accessing the same
file, one processor may try to read a record which was locked by the
second processor. At the same time, the second processor is trying
to read a record locked by the first processor. This condition
causes both processors to wait indefinitely, unless the USE ON
TALEMATE option is 1used. This option allows the uuser to specify

the action to be taken at that precise moment.

5-126

L

WAIT

WAIT.

The function of this wverb is to cause the suspension of an executing

object program for a specified number of seconds.

The construct of this wverb is:

WATT literal
e data-name

WAIT may be executed when using any version of the MCP.

A WAIT statement specifying a literal will cause the executing
object program to be suspended for that number of seconds and
automatically become re-instated, after the specified period of

time has expired, by the MCP.

The WAIT statement is particularily effective in continuous polling
loops where polling is required every few seconds, thus releasing

the intervening time to the other programs in the mix.

If data-name is specified as containing the WAIT value, it must be
PICTUREd as PC 9(5) COMPUTATIONAL.

Reference should be made to the WAIT verb in section 6 (Data
Communications) of this manual. That construct when specified,
requires the presence of a version of the Data Communications

MCP at object program execution time.

Revised 9/28/70
by PCN 1033099-004 5-127

WRITE

WRITE,

The function of this verb is to release a jiogical record for an
output file. It is also used to vertically position forms in the
printer. For mass storage files, the WRITE statement also allows
the performance of a specified imperative statement if the contents

of the associated ACTUAL KEY item are found to be invalid.
The construct of this wverb has two options which are:

Option 1:

WRITE record-name [FROM data-name-1]

/[§{ integer-1 }
LINES
AFTER S {data—name—z)
{ SEFORE } ADVANCING) g
? TO CHANNEL { ‘Pteger-2 } s
\ —_— data-name-3 |] -
T0 ERROR
-— AUXTLIARY
Option 2:

—

-
WRITE record-name t{ WITH LocK }J

FROM data-name

[INVALID KEY any statement [{ %M} Statement] }

An OPEN statement for a file must be executed prior to executing

the first WRITE statement for that file.

The record-name must be defined in the DATA DIVISION by means of

~

WRITE

continued

a 01 level entry under the FD entry for the file. The record-name
and data-name-1 must not be the same name, or be in two files that

have the same record area.

The ADVANCING option allows the control of vertical positioning of

each record on the printed page. The options are:

a. When LINES is used, data-name-2 must be declared as PC 99
COMPUTATIONAL or integer-l must be a positive integral
value of 00 THRU 99.

b. WRITE BEFORE ADVANCING is more efficient than AFTER

ADVANCING.
¢c. When CHANNEL is used, data-name-3 or integer-2 must possess
a positive integral wvalue of 01 ... 11. Data-name-3 must

be declared as PC 99 COMPUTATIONAL. The MCP will advance
the line printers carriage to the carriage control

channel specified.
Option 2 must be used for writing on disk files.

If the FROM option is specified, the data is moved from the area
specified by data-name-1 in Option 1, and data-name in Option 2,
to the output area, according to the rules specified for the MOVE
statement without the CORR or CORRESPONDING option. After execu-
tion of the WRITE statement is completed, the information in the
data-name following the word FROM is available, even though that

record-name is not available.

When the WRITE statement is executed at object time, the logical
record is released for output and is no longer available for ref-
erencing by the object program. Instead, the record area is ready
to receive items for the next record to be written. If blocking
is called for by the COBOL program, the records will be blocked

by object code automatically generated at compile time. When the
blocking area becomes full, or partially full at EOJ or EOF, the
object program will transfer control to the MCP to cause the block

Revised 9/28/70
by PCN 1033099-004 D=129

WRITE

continued

to be physically wribtten. An exception to this procedure of
blocking can be achieved by declaring "MCPB" in the dollar sign
($) card (see section 8), however, speed will be sacrificed for a
small savings in core used by the blocking routine for the speci-
fied file. Short blocks of records which were written during EOF
or EOJ will be of no programmatic concern to the user when using

the file as INPUT at a later period of time.

If a write error is detected during a magnetic tape write operation,
the tape record in error will be erased and a rewrite will be
attempted further down the tape until the record is finally written
correctly. A punch or printer write error will result in a message
to the operator. The COBOL programmer need not include any USE

procedures to handle write errors.

The shortest allowable blocks which can be written on 7 and 9

channel magnetic tape units are 8 and 18 bytes respectively.

If a CLOSE statement has been executed for a file, any attempt to
WRITE on the file until it is OPENed again will result in an error

termination.

For files which are being accessed in a SEQUENTIAL manner, the
INVALID KEY clause is executed when the end of the last segment of
the file (last record) has been reached and another attempt is made
to WRITE into the file. The last segment of a file is specified

in the FILE-LIMITS clause or ilhie FILE CONTAINS clause. Similarly,
for files being accessed in a RANDOM manner, the INVALID KEY clause
will be executed whenever the value of the ACTUAL KEY is outside
the defined limits. An INVALID KEY entry must be specified when
writing to a file described as containing FILE-LIMITS.

Records will be written onto DISK in either a SEQUENTIAL or RANDOM
manner according to the rules given under ACCESS MODE. For RANDOM
accessing, SEEK statements will be explicitly used for record de-

A N NTN UTATNES = TIYTNA T

termination as defined under ACCESS MODE, SLEXK, &G [BAD.
If the size and blocking of records being accessed in a RANDOM

5=130

WRITE

continued

manner is such that a WRITE statement must place a record into the
middle of a block without disturbing the other contents of the block,
then an implicit SEEK will be given to load the block desired (if

an explicit SEEK has not been given). If the file is being pro-
cessed for INPUT/OUTPUT, then either an explicit or implicit SEEK
for a READ statement will suffice to load the block between the READ
and WRITE statements.

If the value of the ACTUAL KEY is changed after a SEEK statement has
been given and prior to the WRITE statement, an implied SEEK will be
performed and the WRITE will use the record area selected by the im-
plied SEEK as the output record area. The value contained in ACTUAL
KEY will not be affected.

For RANDOM access, when records are unblocked, the use of a SEEK
statement related exclusively to WRITE is unnecessary, and may re-
sult in an extra loading of the record from disk because the com-
piler is, in general, unable to distinguish between SEEK statements
that are intended to be related to a READ and those intended to be
related to a WRITE.

The card record being written will be seilected to the ERROR or to
the AUXILIARY stackers if indicated in the particular WRITE being

executed.

The WITH LOCK option WRITEs the current record and then makes it

available to other programs.
This entry is only applicable to Shared Disk MCP use.

The FROM and WITH LOCK options are mutually exclusive.

Revised 9/28/70
by PCN 1033099-004 5-131

ZIP

ZIP,

The function of this

T verb is to cause the MCP to execute a control

instruction contained within the operating object program.

The construct of this wverb is:

ZIP data-name

Data-name (any level) must be assigned a value equivalent to the
information contained in a MCP Control Card. If the VALUE uses
more than one statement card, the first character inside of the
leading quote marks of the first card must be a period. Value is
always ended with a period inside of the ending quote marks. ZIP
may be used for programmatic scheduling of subordinate object pro-
grams contained in the Systems program library or to accomplish
any of the "CC" MCP control functions as performed through the SPO

or card reader.

In the statement ZIP TO-CALL-PGM2, the DATA DIVISION of the source

program could contain the following entry:
01 TO-CALL-PGM2 PIC X(13), VALUE IS "EXECUTE PGM2."

The MCP will be called upon when the object program encounters the
7ZIP statement and will reference data-name (TO-CALL-PGM2 in the
above example) to find out which control function is being called
for. Using the above example, the MCP will schedule PGM2. When
the time comes and the priority for PGM2 is recognized and

memory space becomes available, the MCP will retrieve PGM2 from the
program library and place it in the Mix for subsequent operation.
The program containing the ZIP verb will proceed to ‘the next se-

quential instruction following the ZIP.

Reference must be made to the B 2500/B 3500 Master Control Programs

Informational Manual for MCP Control Information formats.

5-132

CODING THE PROCEDURE DIVISION.

Figure 5-10 illustrates the manner in which the PROCEDURE DIVISION
may be coded.

5-133

BURROUGHS COBOL CODING FORM

7CL-C

PAGE | PROGRAM REQUESTED BY Past [
ND
M- DATE. 10ENT 73 ~
A M—_——J dddt L 1)1
LINE |] 2
~§NO
re

1
| mem'\h‘lill\lllllllllllLlllLLlllllllllllllllllJLJlllll
1
\ LI SKl-RACK SEICTIL@G N L4 po s 1o e i L el bl e e bl L L et b
]

3 - VP R U U U0 U U U U U N0 U VO UAE WA VO WO Y U0 U 100 U U NG T W U YO N W U U W U U 0 W G T T O S W T T A S S S e

) | "1 |D|I| |5| ‘Q‘ulh)l lgju |E|u‘|| |E|B|I|!*!| |QU1T1-1 J NN O W U U U N O U WS WO A T U 0 TS U S W &

B 111‘M|Q|¥|E||1|]I|Q]W Ll odl TSRS ST R N U U U S5 0 U U AT WO O O S A B O S A

s ! 111 I&B‘E&j_ﬁ_ﬂmmglmolllllllllllllllllllLllIllllllllllllllll}lllllllJ

r P\IEALM-IlIIIIIIlllllllLllljl'lLllllllllJllLLIllllllllLlll‘lllllJLL

sl L E.A@_@m|gu|l|mIDALSAKI-npnA;RLTJ-J1111:11111111111|1111L41|1111nl
|

ol L JADIDI L M@ DS CGNT RBibger 1oy 01 1ttt et n e et it
|o= p o1 .@1V|§;|B|£|L|E|W4Mﬁﬁﬁxujn11111111111111111L1111111111|11
||= L e ATEL Pl iNA L= CARDE 121 SHENDIER" 1@ TS E TN T SWie gy R IR AU T UE G U N 0 B Y W S0 A |
i

(121 o L E G@ILULNT W—MLMM&~AL'111-IAAIIL
o L] LE RECRD FRGM NEM-PRTNT BEFGRE ADVANCING G2 baLNES o 11 a 1]
,_'_‘| L1 UADIDL 20 TG aCBIUNTE R (G |T|Q| WREADTI NG -1 4 4 18 ¢ 138 Lk v e bkt
aE) AR S A I I A SN O S U B U5 W U WAT SN U U N0 S U T U G U0 U5 U0 W T U U U WA S WA S U A W U0 G U W WY W WA WA T W T 0 TS U T S Wy s
,__'_': L MRITE RECRD (FREM NEW-PRITNT -1 1 1 gttt a1ttt ettt st
,_'"’: 11;PxEﬁan@lRMMM&Q_MM-AnlnxJLnninleanl111111L1L1111L
__": HiEADER -4 & £ 4 4 L 1ttt 4 4 4 bt o d o441 ¢4 14 4011 421484 T |

(19} L1 IMEVIER 1ISIPAIGIES g (RiEICRID WRITE AREICARWMMJML_&MM_
(20 o WRLTE PRINT FRG M T T E BEFGRIE JADVANCING 08 L lNESi=0 11 4 L aa s 0]
_’": o MBS WVE R T CGUNTIER e el Al b b LA Rl
_“: [T ST TV VT I U W0 W N VA U WY WY YT U0 VA U0 VAN U T VY T S U W0 U UK W0 SO0 T WY Y U U WA S0 U0 W0 A U W W 0 U0 A U0 W W W G S W S S0 W W0 W W 4
,_3": Lo e (PRI INT - LT DI SKi =Bl Ten L3 3 & b4 4 44ty p b 484 1) 44 A A AL AL A A A
__“% Ly S TP RUMNGe, g gttt et e et bt
‘s élNlbx'¢1FL'1J1¢'&'L1111111111IlL-J__LJwL_L_m[_J,,L111L11JAlLJlLlllliAlljlllllxlll

Figure 5-10. Coding «édm PROCEDURE DIVISION -

SECTION 6
DATA COMMUNICATIONS

GENERAL.

This section deals with the COBOL constructs of the PROCEDURE
DIVISION required to activate the data communications equipment

as defined by the ASSIGN to hardware-name clause.

SPECIFIC VERB FORMATS.

The specific verb formats together with a detailed discussion of

the restrictions and limitations associated with each, appear

the following pages in alphabetic sequence.

on

NOTE
The use of any of the verbs in
this section requires the pre-
sence of a version of the Data

Communications MCP.

ACCEPT

ACCEPT.

The function of this verb is to permit the entry of low-volume

I data from a remote SPO.

The construct of this wverb is:

ACCEPT data-name FROM {1“61”31 \

data-name-1

This statement causes the operating object program to halt and
wait for appropriate data to be entered through a remote SPO. The
remote SPO operator responds to an ACCEPT halt by keying in the

following message:
? MIX-INDEX AXdata-required

If a blank appears between the AX and data-required, the blank

character will be included in the data-stream.

When the object program executes an ACCEPT statement, the infor-

mation will be transmitted from the remote SPO keyboard into

memory locations assigned to the data-name. .

The number of characters transmitted must correspond to the size

of the receiving data-name.

Because of the inefficiency of entering data through the remote
keyboard, this techngiue of data transmission should be used

sparingly and solely restricted to low-volume data.

The maximum number of characters per ACCEPT statement is unlimited.
ACCEPTS of greater than 60 characters must be entered thru the SPO
in exact groups of 60 characters, except for the last group which

can be any size up to 60 characters.

ACCEPT

continued

The values of literal or data-name-1 describe the name of the
remote SPO from which data will be transmitted into the receiving-
data-name and must be the alphanumeric name assigned to that speci-
fic remote SPO (this is the adapter ID which is specified in the
MCP's UNIT CARD of the System Specification Deck). Literal-1l and

data-name-1 cannot exceed six characters in length.

Revised 9/28/70
by PCN 1033009-004 6-3

CLOSE

CLOSE.

The function of this verb is to cause a data communications file to

be CLOSEd with or without disconnecting the remote terminal,

The construct of this wverb is:

NO DISCONNECT

CLOSE data-comm~file-name [{

WITH RELEASE }]

The specified data communications file will be CLOSEd by the ini-

tiating program.

CLOSE will keep the file assigned to the program.

CLOSE WITH RELEASE will release the remote device to the system.

If the NO DISCONNECT option is used, the file is released to the

system, but the line is not disconnected.

N

b

DISABLE

DISABLE.

The function of this verb is to ignore input requests, either
conditionally or unconditionally, from an ENABLEd device. It is
also used to stop the flow of data to or from a remote device with
or without disconnecting a dial line and with or without signalling

a break to the operator of the remote device.

The construct of this wverb is:

BREAK
DISABLE file-name ON (! NO-DATA }

DISCONNECT

The DISABLE statement permits the object program to ignore an

input request from the remote device or to interrupt a data flow.

When the NO-DATA option is used and an input request has not been
received or an operation is not in process, the input request from

a remote device is ignored; otherwise, the DISABLE statement will

be ignored.

An unconditional disable with break will be transmitted to the
remote device when the BREAK option is used. BREAK is applicable
only to full duplex Data Sets.

A telephone line will be disconnected when the DISCONNECT option

is used and all input requests (ringing) are ignored.
The DISABLE statement is used in the following situations:

a. After a remote device has satisfied the ENABLE and
programmatic conditions arise which indicate that a
WRITE is in order, the programmer must code a DISABLE
file-name ON NO-DATA statement followed by an appropriate
WRITE or WRITE-READ, etc.

Revised 9/28/70
by PCN 1033099-004 ©-5

DISABLE

continued

[9)
|
[6)

Conditions arise in the process of reading from a remote
device which indicates to the object program that a READ
must be interrupted (one such condition might be a run-

away device for which a DISABLE file-name ON BREAK would

have to be initiated).

DISCONNECT is used with dial lines as appropriate.

DISPLAY

DISPLAY.
The function of this verb is to provide for the printing of low-

volume data, error messages, and operator instructions on a remote
SPO.

The construct of this wverb is:

) f literal-1" literal-2)
DISPLAY | data-name-1 { data-name-2 | T

f{ literal-3 1

UPON | data-name-3 f

Data-name~-1 and literal-1 (and their associated series) are speci-
fied as being the area within an object program from which data

is to be transmitted to a receiving remote SPO.

The DISPLAY statement causes the contents of each operand to be
transmitted from the MCP SPO queue to ensure that an operational
bProgram is not delayed while the remote SPO message is being

printed.

Literal-1l and literal-2 may consist of any figurative constant,
except ALL.

If a figurative constant is specified as literal-1l and/or literal-2,
only a single character of the figurative constant will be DIS-
PLAYed.

Data-name-1 and data-name-2 may be subscripted and can be PICTUREd
as being composed of COMPUTATIONAL or DISPLAY data.

An infinite amount of characters may be contained in a literal, or

data-name to be DISPLAYED. The compiler will automatically supply

6-7

DISPLAY
continued

the proper number of carriage returns and line feeds into the

object program, as may be appropriate.

The DISPLAY series (15 maximum) option will cause the literals or
data-names to be printed one after another. If required, the com-
piler will cause automatic carriage returns and line feeds to be
executed by the object program for information extending to con-
tinued lines of print. The compiler will not supply partial word
formatting at the end of a line. Data will be printed as received,
until a carriage return and line feed is inserted by the object
program, thus, words of data can be split between continued lines

of output.

The value contained in literal-3, of data-name-3, describe the naime
of the remote SPO to which data will be transmitted and must be

the alphanumeric name assigned to that specific remote SPO as
defined in the MCPs UNIT CARD of the Systems Specification Deck.

Literal-3 and data-name-3 cannot exceed six characters in length.

(lj\
o0

ENABLE

ENABLE.

The function of this verb is to recognize input inquiry requests
from a remote device, to disconnect the telephone line for dial
lines, recognize a ringing signal, or, recognize an inquiry (ENQ)

from an appropriate remote device.

The construct of this verb is:

ENABLE file-name [PROCEED TO paragraph-name]

File-name must have been OPENed before an ENABLE cén be executed.

Once the file-name has been ENABLEd, a WATIT statement may be used
to suspend processing until appropriate response is received. Ref-
erence must be made to the WAIT verb, as contained in this section,

for proper definition.

ENABLE allows the device to establish a connection with the B 2500/
B 3500 System by depressing the Inquiry Key (ENQ) if the device is I
connected on leased lines or by dialing the systems telephone

number if the device is on dialed lines.

Paragraph-name must be in the non-overlayable program segment or

in the same segment as the WAIT.

The ENABLE statement will cause dial telephone lines to be dis-~
connected and will recognize input requests from the device in the

form of a telephone ringing signal.

The ENABLE statement for leased lines will recognize input requests

from the remote device in the form of an inquiry (ENQ). I

6-9

FILL

FILL.

The function of this verb is to initiate a specified type of I-0
and allow a program to run without waiting for an I-0 to be com-
pleted. It is useful when a program is handling more than one

remote device or when a program does not require the input data

to continue processing.

The construct of this wverb is:

FILL file-name [NO-TIME-OUT]| [START-TEXT] [DIAL] [END-TEXT]

WRITE

READ

WRITE-READ
[PoLL] [VOICE] [TONE] [STREAM] WITH TRITE-TRANS-READ
WRITE-READ-TRANS

[PROCEED TO paragraph-name |

FILL causes the operation to be initiated. The program must accom-

plish a READ to move the required data to the record-area.

If the option NO-TIME-OUT WITH WRITE-READ is used, the time-out
feature will be inhibited on the READ of the WRITE-READ clause.

If the option START-TEXT WITH READ is used, the first code received
is considered text and is used in generating the longitudinal re-

dundancy check character. The start-of-text character will not

be utilized.

If the option DIAL WITH READ is used, a dial number is accessed
from memory starting at the 01 level entry of the record-descrip~

tion for the file-name specified. The dial numbers must be de-

L

cliared USAGE COMPUTATIONAL and tue dial numosr £32z18 must e tormi-

{

nated by the binary control code of 1100 (undigit 12) which can be

6-10

FILL

continued

represented in B 2500/B 3500 COBOL as an undigit literal @C@. The
total number of digits comprising the dial number must be even, and
a FILLER digit with a zero value must be inserted after the undigit
literal if necessary. The rest of the record-description for file-
name will describe the input data from the control code or FTILLER,

whichever is applicable, to the end of the record description.

If the option END-TEXT WITH WRITE-READ is used, the control code
denoting End-of-Text (ETX) is not transmitted. The ETX function
is ignored and the longitudinal redundancy check (LRC) character
is not generated or sent. This option is used for polling opera-

tions only.

1If the option VOICE WITH WRITE-READ is used, the voice response
adapters are ENABLEd automatically. Characters received from
memory are sent to the voice responder and are used as voice-track
addresses. The resulting signals from the voice responder are

sent over the line.

If the option TONE WITH WRITE-READ is used, the tone leads on the
Tone Data Sets are activated. The character "A" produces a 1017
hz (hertz) tone and the "B" produces a 2025 hz (hertz) tone. Any
other character produces silence. The tones will continue for

300 milliseconds per character sent.

The POLL option is used only with WRITE-READ. The output area will
consist of a series of contiguous polling or selection sequences.

A WRITE-READ will be executed with the first such sequence; if a
message other than a negative response is returned, the entire
Operation terminates with the control character at the end of the
message, otherwise, the negative response is discarded and another
WRITE-READ is automatically initiated using the next sequence.

When only negative responses are returned, the operation is term-
inated by two successive ending characters. If a message is re-
turned, it will be written in the area following the sequence which

received the response, thus overlaying the successive sequences.

6-11

FILL

continued

If the STREAM option is specified, the information is transferred

into ascending memory locatioms starting at the 01 level
record description for the specified file-name. See the
option of the READ statement in this section for further

tion.

FILL statements normally are initiated to several remote

and are followed by a WAIT statement.

6-12

of the
STREAM

informa-

devices

INTERROGATE

INTERROGATE.
The function of this verb is to obtain a result descriptor repre-

senting the operational status of a remote device.

The construct of this wverb is:

INTERROGATE [END-TEXT] file-name INTO data-name

Data-name, when END-TEXT is not specified, must be defined as an
elementary item with a PICTURE 9(16) COMPUTATIONAL and must be RE-
DEFINEd to make programmatic reference to each element within the

result descriptor.

The COBOL result descriptor contains 16 digits which indicate con-
ditions that occurred during an I/O operation. The digits of in- -
formation within the result descriptor are assigned the following

meanings when turned YONY,

Digit Number Meaning

Operation complete.

2 Exception condition.
3 Not ready local (single—line).
(Multi-line if during operation).
L Data error.
5 Abandon call retry (ACR).
6 Cancel complete
7 End-of-transmission (EOT).
8 Attempt to exceed maximum address.
9 Time out.
10 Memory parity error.
11 Write error.
12 Carrier loss.

13 through 16 Reserved.

6-13

INTERROGATE

continued

Digit Number

L and 5
6 and 7

Meaning

Data loss.

Break detected.

ON status is indicated by a value of 1. OFF status is indicated

by a value of zero.

Digits are independent of one another and can

reflect varied combinations.

Explanation of the result descriptor digits is as follows:

Digit Number

6-14

1

4 and 5

Status

Always ON if the attempted operation was
completed.

Will be ON if any combination of three through
16 are ON. This is the test position to see
if any exception exists. If this position is
ON by itself, a partial complete condition
exists due to the use of READ STREAM MODE

and will not occur in any other situation.

Will be ON if the single line control or the
local Data Set is not ready and the operation
will be terminated. For multi-line control
the digit is set ON in the
descriptor unless it occurs during an opera-
tion, in which case it is set ON in the adap-

ter result descriptor.

If a data error (message or character parity)
occurs, a READ operation continues until ter-
minated in a normal manner. The phone line

is not disconnected. Attempts to exceed max-
imum address, time out, End-of-Text (ETX), or

End-of-Transmission (EOT) can also occur.

If data loss (missed memory access or MLC

) . .
cyclie), o KbDAD Oleild

[S, T T o
LA ULL LU L LI e D LS R

cr

Digit Number

6 and 7

INTERROGATE
continued

Status

terminated in a normal manner. Attempts to
exceed maximum address, time out, End-of-Text
(ETX), or End-of-Transmission (EOT) can also
occur. The phone line is not disconnected.

A WRITE operation is terminated immediately

and position 11 is set.

If an abandon call retry condition exists,
this position will be set ON and the telephone

line is disconnected.

If a cancel complete condition exists, this
position will be set ON and CANCEL is dini-
tiated.

If a break is detected, these positions will
be set ON for a WRITE operation only and the
operation is immediately terminated. The

telephone line is not disconnected.

If the End-of-Transmission exists, this
position is set ON and the telephone line

is disconnected.

If an attempt to exceed maximum address
exists, a READ operation will initiate a

time out and wait for a control code denoting
End-of-Text (ETX). This position will be set
ON if an End-of-Text (ETX) is received before
time out. This position along with position
7 will be set ON if an (EOT) is received be-
fore time out. This position and position 9
will be set ON if time out occurs without

ETX or EOT. A WRITE operation is immediately
terminated and this position along with posi-
tion 11 is set ON. The telephone line is
disconnected in each case.

Revised 9/28/70
by PCN 1033099-004 6-15

INTERROGATE
continued

Digit Number

(o)
7

10 and 11

12

13

14 and 16

If the

number

Status

Tf +time out exists, this position is

(= S~

et ON

n

and the telephone line is not disconmected.

Time out occurs on READ instructions omnly.

If a memory parity error exists, these posi-

tions are set ON and the telephone line is not
disconnected. Memory parity error occurs only
during a WRITE operation, and will immediately

terminate the operation.

A READ operation continues until terminated in
a normal manner. The phone line is not dis-
connected. Attempt to exceed maximum address,
time out, End-of-Text (ETX) or End-of-Trans-

mission (EOT) can also occur.

Used in multi-line control to check end-of-

stream, when operating in stream mode.

Reserved.

END-TEXT option is specified, data-name will contain the

of characters transmitted to and/or from the current buffer

of the file. Counting begins when the descripter is initiated and

continues until it is complete. Data-name must be defined as PC

9(6) COMPUTATIONAL.

fer,

If the I-0 is not complete on the current buf-

the INTERROGATE END-TEXT is ignored.

READ

READ.
The function of this verb is to load data from a remote device
into ascending memory locations beginning with the location speci-

fied by the 01l level of the record-description of a file.

The construct of this wverb is:

READ file-name [INTO record-name] [NO-TIME-OUT]| [START-TEXT)]

[STREAM] [DIAL] [AT END any statement]

OTHERWISE
ELSE

any statement]

Loading will continue until an ending code such as End-of-Trans-
mission (EOT), End-of-Text (ETX) or End-of-Block (EOB) is de-
tected, or until the buffer is filled.

The time out feature is inhibited on the READ if the NO-TIME-OUT

option is used.

If the START-TEXT option is used, the first code received is con-
sidered text and is used in generating the Longitudinal Redun-
dancy Check (LRC) Character. The start of text character will not

be used.

If the STREAM option is used, the information is written into
ascending memory locations starting at the 01 level of the record-
description for the file-name specified. The record-description
entry must define at least 200 digits (100 bytes). A control code
denoting End-of-Text (ETX) will terminate the operation. The use
of a FILLER after the End-of-Text (ETX) character in the record-
description will be required to ensure that the End-of-Text (ETX)

control code will not be the last position in that entry.

Revised 9/28/70
by PCN 1033099-004 6-17

READ

See the DIAL WITH READ option of the FILL statement for the DIAL

requirements.

If the AT END option is used, an End-of-Transmission (EOT) char-
acter received will cause the program to accomplish the indicated
actions. NEXT SENTENCE is implied in the absence of an AT END

statement.

WAIT

WAIT.
The function of this verb is to suspend an object program until
an ENABLE or FILL statement is initiated and/or to suspend an ob-

Ject program for a specified number of seconds.
The construct of this verb has two options which are:

Option 1:

WAIT

Option 2:

WAIT UNTIL {llteral }

data-name

Literal reflects the number of seconds that the object program is
to be suspended. The maximum WAITing period is 23 hours, 59

minutes, and 59 seconds (86,399 seconds).

Option 1 is used in conjunction with the ENABLE or FILL statements
if a WAITing period is desired. It normally follows either state-

ments.

In Option 1, FILL statements are normally initiated to several
lines and are followed by a WAIT statement. This statement would I
not ordinarily be used when only one device is involved, as a FILL

statement by itself will affect the same action.

In Option 2, the object program is suspended until an ENABLE or

FILL statement is initiated or until the number of seconds have

6-19

WAIT

continued

elapsed,

whichever comes first. Data-name must be described as

PC 9(5) COMPUTATIONAL.

The following rules apply when WAIT is used in conjunction with
the ENABLE of FILL constructs:

N

~-20

If an ENABLE and/or FILL statement contains a PROCEED
TO paragraph-name and either statement comes "true',

the object program will be reinstated at the appropriate
PROCEED TO
If the PROCEED TO option is omitted and an ENABLE and/or
FILL statement comes “true", the object program will be
reinstated at the next instruction following the WAIT

UNTIL statement. This rule does not apply to Option 1.

If a PROCEED TO option is omitted, the object program
will not know how it got to the next instruction. That
is: Did a FILL or ENABLE come "true" or did the WAIT
UNTIL time expire? An INTERROGATE of all ENABLEd or
FILLed files will have to be performed to determine

TNe answer,

WRITE

WRITE.

The function of this verb is to pass data to a remote device from
ascending memory locations beginning at the 0l level of the per-

tinent record-description.

The construct of this verb is:

WRITE record-name-1 [FROM record-name-2] [END-TEXT]

[START-TEXT] [STREAM] [DIAL] [VOICE] [TONE] [AT END

any statement] [{ %%%%BEL§E } any statement]

Data will be passed until a control code denoting End-of-Trans-

mission (EOT) or End-of-Text (ETX) is detected in record-name-1.

If the END-TEXT option is used, the End-of-Transmission (EOT) con-
trol code is not transmitted, the End-of-Transmission function is
ignored, and the Longitudinal Redundancy Check Character (LRC) is

not generated or sent.

If the START-TEXT option is used, the first code sent is consi-
dered text and is used in generating the LRC. The start of text

function is automatically preset.

If the STREAM option is used, the information is passed from
ascending memory locations starting at the 01 level of record-name-1

See the STREAM option of the READ statement for further information.

If the DIAL option is used, the dial number is accessed from memory
starting at the 01 level entry of record-name-l. Information to
be passed to a remote device will begin at the level entry following

the @C@ control code or the FILLER digit, whichever is applicable.

Revised 9/28/70
by PCN 1033099-004 6-21

WRITE

continued

If the VOICE option is
ENABLEd automatically.

used, the voice response adapters are

Characters are passed from memory to the

voice responder and are used as voice track addresses.

sulting signals from the voice responder are sent over

If the TONE option is used, the tone leads on the Tone

)

are activated. Characters received from memory by the

are sent to the tone leads as follows:

a. "B" characters to the 2025 hz lead.
b. "A" characters to the 1017 hz lead.

Ce. All others +to

the silent lead.

The re-

the line.

Data Sets
I/0 adapter

The tones or silence will continue for 300 milliseconds per char-

acter sent.

Reference the FILL and WAIT constructs, this section,
ments of FILL WITH WRITE and FILL WITH WRITE and WAIT.

6-22

for require-

WRITE-READ

WRITE-READ.

The function of this verb is to pass data to a remote device from
memory locations and, when successfully completed, to cause data
to be read from the remote device and passed to appropriate memory

locations.

The construct for this wverb is:

WRITE-READ record-name-1 [FROM record-name-2] [NO-TIME-OUT)]

[END-TEXT] [START-TEXT] [VOICE] [DIAL] [TONE] [POLL] [STREAM]

[AT END any statement |

Data will be passed to the remote device from ascending memory
locations starting at the Ol level of record-name-1 and will con-
tinue until a control code denoting End-of-Transmission (EOT) or
End-of-Text (ETX) is detected. A READ will then be initiated on
the remote device and the data will be passed to ascending memory
locations beginning with the location immediately following the
End-of-Transmission (EOT) or End-of-Text (ETX) control code which
terminated the WRITE and will continue until an End-of-Text (ETX)
control code from the remote device is encountered. Each portion
of the message being written and read must be terminated by an

End-of-Transmission (EOT) or End-of-Text (ETX) control code.
NO~-TIME-OUT, see the READ statement.

END-TEXT, see the WRITE statement.

START-TEXT, see the READ statement.

VOICE, see the WRITE statement.

DTAL, see the WRITE statement.

Revised 9/28/70
by PCN 1033009-004 6-23

WRITE-READ

continued

TONE, see the

POLL, see the

WRITE statement.

WRITE statement.

STREAM, see the WRITE statement.

If the AT END

received will

NEXT SENTENCE

Reference the

ments of FILL

6-24

option is used, an End-of-Transmission control code

cause the program to accomplish the indicated actioms.
is implied in the absence of an AT END statement.

FILL and WAIT constructs, this section, for require-
WITH WRITE and FILL WITH WRITE and WAIT.

WRITE-READ-TRANS

WRITE-READ-TRANS.

The function of WRITE-READ-TRANSparent is to pass data to a remote
device (normally a computer) from memory locations and, when suc-
cessfully completed, to cause data to be read from the remote de-
vice and passed to appropriate memory locations and terminating

at the end of the record-description without passing an End-of-

Transmission (EOT) or End-of-Text (ETX) control code.

The format of WRITE-READ-TRANS is:

WRITE-READ-TRANS record-name-1 [FROM record—name—Z]

[NO-TIME-OUT| [DIAL] [AT END any statement]

Data will be passed to the remote device from ascending memory
Jocations starting at the 01 level of record-name-l and will con-
tinue until a control code denoting End-of-Transmission (EOT) or
End-of-Text (ETX) is detected. A READ will then be initiated on

the remote device and the data will be passed to ascending memory
locations beginning with the location immediately following the
End-of-Transmission (EOT) or End-of-Text (ETX) control code which
terminated the WRITE and will continue until the end of record-name-
l. The Attempt To Exceed Maximum Address in the Result Descriptor

will not be turned ON when the end of record-name-1 is reached.
NO-TIME-OUT, see the READ statement.
DIAL, see the WRITE statement.

The AT END option will be initiated when NEXT SENTENCE is implied

in the absence of an AT END statement.

This statement is normally used for remote computers to the system.

Revised 9/28/70
by PCN 1033099-004 6-25

WRITE-TRANS-READ

WRITE-TRANS-READ.

The function of this verb is to pass data to the remote device
(normally a computer) until the end of the record description is
reached and, when successfully completed, to cause data to be
passed from the remote device to memory locations starting at the
end of the record-description and continuing until an End-of-

Transmission (EOT) or End-of-Text (ETX) control code is detected.

The construct of this wverb is:

WRITE-TRANS-READ record-name-1 [FROM record-name—Z]

[NO-TIME-OUT] [DIAL] [AT END any statement]

The READ portion of this statement will continue passing data until
an End-of-Transmission (EOT) or End-of-Text (ETX) control code is
detected but will cut off the flow when location ending record-

name-1 address + 199 is reached.
NO-TIME-OUT, see the READ statement.
DIAL, see the WRITE statement.

The AT END option will be initiated when NEXT SENTENCE is implied

in the absence of an AT END statement.
This statement is normally used for remote computers to the system.

The end of the record-area may be programmatically altered by use
of the ACTUAL KEY clause in the FILE-CONTROL paragraph. The ACTUAL
KEY data-name must be defined as PC 9(6) COMPUTATIONAL. The value
contained there-in will be used when the I-0 is dinitiated to de-
termine the number ol characters 1n the record area. ‘I'he ending

address of the result descriptor will be adiusted accordingly.

6-26

SECTION 7
CODING FORM

GENERAL.

The coding form, which provides a standard method for describing
COBOL source programs, has been defined by CODASYL specifications
and common usage. The B 2500/B 3500 COBOL Compiler accepts this
standard coding format, but also allows certain departures from the

standard, at the user's discretion.

The same coding form is used for all four divisions of the source
program. The four divisions must appear in the following order:
IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, DATA DIVISION, and
PROCEDURE DIVISION. Each division must be written according to the

rules for the coding form.

The rules for spacing given in the following discussion of the
coding form take precedence over all other rules for the coding

form.

CODING FORM REPRESENTATION.

The coding format for a line is represented in figure 7-1. The

digits designate columns.

11

123456 7 8901 11 ...7 7 ... 8

23 ... 2 3 ... 0
e~ A \'\/\/\'\/\/ N,
Sequence Continuation Area A Area B Identification
Number Area Area Area
MARGIN L MARGIN C MARGIN A MARGIN B MARGIN R

Figure 7-1. Coding Format for a Source Line

Figure 7-2 provides a sample of the COBOL Coding Form.

BURROUGHS COBOL CODING FORM

we PROGRAM REQUESTED BY PASE oF
'@)‘W DATE ﬁuf®n ®©
%’ — A 4 A & 4 4 A)
LN [] 1
S @
:@’c [uie "#
f— P = —
0") - | J U G VI U UGN W U U W S U WS G G S G W § lllllllllLlllllllilAllJlAll
oz’ 141 TR WS WA WO VS W U (N VNN VN G U NN WS S I G B [NV SN T N N S U O N N NS U WO U Y U WO (U Y U B N U U SN SN G T T O S W W W
_Q__!_| L1 1 TSR G U0 U O N U U U VAN U WS N W WO W U lllelllllellllllllljllLLlllllLLllllll
04 111 U TS NN WY W U N VN U N N N U U B T | [WIE TN 0 NN T O W U (N N U T O A A O T O T N WO U U (S U N W U T T T T S W S A
X] [| [US VO U VU U T U U N T G (N GO U U WO T I | (U S NN T I U U U U S A U U G U0 U T N U SN U O B B B S U U U T I 1 D B S
_u' L1l J U W 3NN N T NN U U U D S U W N SN T S [N W SIS U UN UU W S W UN G N S WU G UNS GN GH U0 S G U BN U N U T S T U U T R W S S
97 11 [N U U N0 U N U U W N G N NS G U W S S § [N U SR U O T U I A W U U (N U S WS U S N U U U0 U U U G NS T W T [U W I
_9_1' J . A J W WS N T U U U WS U N U S U SN U N W S | lLLlllllllllllllllllllllllllllllll‘llll
_0_9_: L i1 U WS U W U O U A O I U A U W T N [U N U T W U U U U N U O U U U Y (A NS U S N T N U U U N T W U U S . |
,1_o= 141 U NS AN U U WS U N0 U N W NS GO W B W A O | IS IR U I Ul U G B U U 0N U 06 N (0 U G0 N O U A U U U U SN U W U U N G U .
[}
ll; 4. 1.1 J I W W W U U U U U U U N T S S T PO 0 IS NN U NN A U0 (O I U A U U N G U W U UOY U U U G U S U G N G W N N G G e |
'2: 1 114 U N U U WO U U G U W W N N T S T e | FUR U U T UEE WA G U W N U U (O U G N G VU A GO G U GRS BN GN5 SN GH W D SN SN U N N W S .
V31 L1 TR W U U WS U N NN W N U U N N S S | PO U T U G N U0 S WS (5 (Y S W5 (NS WS U0 B0 A U U N U WIS N (0 G0 N W O WY U S U T Y U O B
_L:E L1 1 [S U U W U W N T S N S T G N S . | JON U O U U U0 GO U U U O W N U S U BN U N U U NN G GE U R T UGN G T S U U S S |
,__'_2: L4 1 lllilLJLl.lllllllLll TN I U U GAY U TN TN WS U T D GO0 U G U G U B N S B SN N U N S U T W SR N U S N S S
,_l,,!: L. 4 | U W S U W W U U O U U WA N W S . [N S U U OO U U U U (N U0 BN A U U Y D G U N U VU W W W W W W T S T W S S S S
r—!: 1 411 J I U U U (O U U U U T G S N W S e ' TR G W G NN T U U N U U N U UGN SN N0 W G NS U U N G G S S T W SN S S S W e
'.;:) S . | W W U N U U U TR O N SN S N W N S ' [W S UGN U0 DN U U UAO OO G G B0 W GHN W W WA VORI N Y U U W S G SN S G W U I S G U T W
.g' W . | U W U N U U U U WO WO W U U N U R I N U O G T G G OO G B GO B DO U B U U N U A T U T T W A Y W I S S . .
..z_" L4 L [N A NN U WS OO WIS SN G GHS SN G U S U W S S L4 12 42 2 44 2o b2 oa g 2 A 4 2 A A A A A A A A A 3 A 2 L& A A A A L _A._A
1': i 1 FUNE (N U U G U U G U NN G G U U N S e PO SN W U G U U U UE U O S N B SN U UA GH G G SN G N WA TR G U U U O G B O S B B B O O
.i_z: i 1 J U U U U G T SN U VRN W G U W N B B S [WIS U U G0 G U UANU W A U0 WA GH GIS GIY SN UIN B U BNV U SR U N TR W TN S S SR S T S S W
_2__“: A A S GRS N U G U U NN GNNS U S N W U N G S S | [S0 N U U RO U U0 U B U (O Y A GO SUN U U SR BN U U W W U W S S S D G G U W G S W WS u
?": \ i PENS S U5 N0 U WS VN WA S WS U U S G WA W A 1 C 4Lttt ety 4 b1 oo oy oy 4o o1 o2 11181
21 jl " § WS D WU Y SN W VO WU SN S NN SO SO SO O S [00 VN U T VU N TRV UG U W NN (N NN WS SIS S W W U U W D SN S S S S N U W U T S S S e |
Figure 7-2 Samplae Coding Form

SEQUENCE NUMBERS (COLUMNS 1-6).

The sequence number field may be used to sequence the source program

cards. Normally, numeric sequence numbers are used; however, the
COBOL Compiler allows any combination of characters from the allow-
able character set. The compiler generates a warning message during

compilation time if a sequence error (other than ascending) occurs.

CONTINUATION INDICATOR (COLUMN 7).

A hyphen in the Continuation Area of the continuation line indicates

that the first character in Area B is the continuation of a
word or a literal from the previous line. If a hyphen does not
occur in the Continuation Area, the word or literal starting in
Area B is not a continuation of an entry which started on the

previous line and is separated from the previous entry with a space.

An asterisk (¥) indicates that the source line is for documentation
purposes only and can appear anywhere within the source program.
Continuation of following lines is denoted by an asterisk in column 7
of the continued data. All entries of this type are free form from

Area A through Area B.

A slash (/) indicates that the source line is for documentation
purpose only and that a skip to the head of a new page is required

during the listing phase of the compiler output.

The letter L followed by a "library-name" entry, will cause all
succeeding source card data to be placed into the COBOL Library File
during compilation. Termination of the aption takes place when an

L card is encountered followed by spaces;‘

CONTINUATION OF UNDIGIT LITERALS.

When an undigit literal is continued from one line to another, a

hyphen is placed in the Continuation Area (column 7) of the con-
tinuation line, but the at sign (@) is not placed in the first
character position of Area B (column 12). The continuation of the

undigit literal commences in column 12 of Area B.

Revised 9/28/70
by PCN 1033099-004 7-3

Whaen 2 non
Y non

1

e

na +on
ne ©T¢e

nother
A

-numeri n one ancther; a
hyphen is placed in the Continuation Area (column 7) of the contin-
uation line and a qﬁotation mark must be the first non blank posi-
tion of Area B. The continuation of the non-numeric literal com-
mences immediately following the quotation mark. All spaces at the
end of the continued line and any spaces following the quotation
mark of the continuation line and preceding the final quotation mark

of the non-numeric literal are considered part of the literal.

CONTINUATION OF WORDS AND NUMERIC LITERALS.

When a word or numeric literal is continued from one line to another,

a hyphen is placed in the Continuation Area of the continuation line.
This indicates that the first character of Area B of the continuation
line is to follow the last non-blank character of the continued line

without an intervening space.

Figure 7-3 illustrates the use of the Continuation Indicator for

both non-numeric literals and other word entries.

DIVISION HEADER.

The Division Header must be the first line of a division coding

format. The Division Header starts in Area A with the division
name, is followed by a space, then the word DIVISION, and then a
period. No other text may appear on the same line as the Division

Header.

SECTION HEADER.

The name of a section starts in Area A of any line except the first

line of a division coding format. It is followed by a space, then
the word SECTION, and then a period. 1In the PROCEDURE DIVISION, an
option may be exercised by which the word SECTION would be followed
by a space followed by a priority number. As above, the priority

number would be followed by a period. No other text may appear on

~

i PN ’

~ o~ T L A A C© 3 A WTAanA A AvAanmdtd 4 +haAa AAanaTanratdera nAasd 3 A
vaxrll wlenaT o ~

~ ~ e~
L vaa LR S A T (ORI —an L R R S R

of the PROCEDURE DIVISION. In this case, the USE and COPY sentences
may begin on the same line as the Section Header. A section con-
sists of paragraphs in the ENVIRONMENT and PROCEDURE DIVISIONs and
-data description entries in the DATA DIVISION. Paragraph names, but
no section names, are permitted in the IDENTIFICATION DIVISTION.

PARAGRAPH NAMES AND PARAGRAPHS.

The name of a paragraph starts in Area A of any line following the

first line of a division coding format and ends with a period. A
paragraph consists of one or more successive sentences. The first
sentence in a paragraph begins in Area B of either the same line as
the paragraph name or any succeeding line. Successive sentences
either begin in Area B of the same line as the preceding sentence
or in Area B of the next line. A sentence consists of one or more

statements, followed by a period.

DATA DIVISION ENTRIES,
Each DATA DIVISION entry begins with a level indicator or a level

number, followed by one or more spaces, followed by the name of a
data item, followed by a sequence of independent clauses described
in the DATA DIVISION. FEach clause, except the last clause of an
entry, may be terminated by a semicolon or comma. This last clause

is always terminated by a period.

There are two types of DATA DIVISION entries: those which begin
with a level indicator and those which begin with a level number.

A level indicator is an FD. In those DATA DIVISION entries which
begin with the level indicator FD, the level indicator begins in
Area A followed by a space and then by its associated file name and

appropriate descriptive information and terminated with a period.

DATA DIVISION entries that begin with level numbers are called data
description entries. A level number may be one of the following
set: Ol through 49, 66, 77, and 88. Level numbers are written
either as a space followed by a digit or a zero followed by a digit.
At least one space must separate the level number from the word that
follows it.

Revised 9/28/70
by PCN 1033099-004 7-5

Level numbers 01, 66 and 77 should be coded in Area A. Other level
numbers should be coded in Area B. FEach successively higher level
number should be indented four positions. This makes the coding
easier to follow, and structure is readily apparent. Using odd num-

bered level numbers permits easy patching of record descriptions.

Coding repetitive information in the same columns makes keypunching

easier; such as, PIC in columns 36-37, VALUE columns 52-56.
For example:

01 INPUT-RECORD.

03 AMOUNT PC 9(5)Vv99.
03 AMOUNT-OUT PC 9(5)v99.
03 FACTORS PC 9(3)v9(5).
03 PERCNT PC V999.
03 NAME-CITY pc x(10).
03 CODR PC XX.
03 DATER.

05 MONTH PC 99.

05 DAY PC 99.

05 YEAR PC 99.

88 CUR-DECADE VA
60 THRU 69.

03 FILLER PC Xx(33).

66 IN-DATE RENAMES MONTH THRU YEAR.

NOTE
The above 88 level is continued on
the following line, however, a dash
in column 7 must not appear, inasmuch
as the compiler continues to scan the
following line in an effort to satisfy

the VAlue requirement.

B s

0L/82/6 Pasinay

V9=, ¥00-660£E0L NOd Ad

BURROUGHS COBOL CODING FORM

PAGE | PROSRAM REQUESTED BY PAGE oF

NO
1 3 DATE TOENT. 7S)
- 1 41 1 1 4 1 1
INE

OI: 11 lllllllllllllllllll|llllllllllllllllllllilll'llll‘lllllilllll-
oz‘ S O T T T U T U U W U N U W VAT U W A U U A U U Y T T Y T U WO T U T U O U W W D T O W A A e
o3l LWWMM
oal I-l 4 4018 T u (@) S5 IS LS DS K- 1ChiNT R
N N W A I A U U0 U U U U TN N T T U W U U N U VY U U VO T T N N N T W W N VA W T T W VY U T Y T W Y O Y W B
ose ’ | - '
07 m&mﬂﬁ&:‘ﬁmnnunlnninnl-n|n||lnlnnlnllnnllllnlnl'lil|11||1||
os| Lol llllllllllljlllllllllllLL[llllllLllllllllllllLllllllllljllll
.
09: o111 1 JHIEADEIR - TINE PITCTWRE (AGH200; MALME (TS 5" 018ttt a1
|o= -1yt CSANUARY 11 s a1 BIEIBIRIWARY) Lt Lttt tMAIRCY g 1 APIRITb 1
ll:"111ullllllllMlAlYlllLlllllllll (STTA TV T T W0 U U S WX AN g .Y U T U (00 T U N N U0 U U 0 Y W U W O O O O O |
|2= L1 L1 1 [S W B I U T . N U S U U B S UN U N U U U N T U U
l!{ O, 4 WlAlRlN|L|!SMEu&M—MM—uMM—MM&wML—LM
RN ST W LTI US T UGN U N U NN S U W5 A U A U U A TN WS (O U SN A W S T O W | A |
'S L1 1 lllllll.lllLllllJllllllllllllllllllllllllllllLllllllIlllllll
": S I O I U N U U U U6 WY UL S0 W NN UG WY WA A G Y T W U UGN U VU WO W S (N U W RO T (OO T T W T W N WD W G W W W
v 7 %] TN, NT TATLOMNAL ¢ 0§ L ¢ ¢t 8308141l
ved | 1 DIATIA I Tig (BE G DINGERTIED: AT ANY PG LNT TN A (SOURCGE PROGRAM 41111410
19 i1 1 lllLllJlll‘lllllllllll‘llllllllIlllllllllllllllllllllll‘Lllll
20 Oty 4 U I - - B l 1S c
2] —1 2 411 ‘Lllllllllll]llllllllllllllllllllllllllllllllllll]lllll
22 | - | ‘llLlllllllIllllllllllllllllllllllllllllllllllllleAlllll‘ll
2" i1 1 lll‘lllllellllllllllll_Llllllllll‘l.‘lllll‘llllllll‘ﬂlllllll
24' S T, -
251 |/ > C,E S et 1 4 4 L4 Lt Lt Lttt i i

Figure 7-3. Sample Coding Showing Continuation of
Lines, Special Remarks, and Actiomns

DECLARATIVES.

The key word DECLARATIVES and the key words END DECLARATIVES that

precede and follow the Declaratives portion of the PROCEDURE DIVI-

SION, respectively, must each appear on a line by itself. FEach must

begin in Area A and be followed by a period.

PUNCTUATION.

The following rules of punctuation apply to the writing of COBOL
programs for the B 2500/B 3500:

Q.

A sentence is terminated by a period. A period may not
appear within a sentence unless it is within a non-numeric
literal or is a decimal point in a numeric literal or is
in a PICTURE.

Two or more names in a series must be separated by a space

or a comma.,

Semicolons are used for readability and are never required.
The semicolon is used for separating statements within a

sentence or clauses within data description entries.

The reserved word THEN is also used for readability and
can be used to separate two statements within a sentence.
It can also be used between the condition and the first

statement within an IF statement. TFor example:
IF THEN THEN ELSE

A space must never be imbedded in a name; hyphens may be
used instead. However, a hyphen may not start or terminate

a name. For example:

PRODUCTION-PERIOD is a good data-name, section-

name, or paragraph-name.

~PRODUCTION-PERIOD or ~PRODUCTION-PERIOD- or
PRODUCTION-PERIOD- are all

bad entries.

7-7

SECTION 8
COBOL COMPILER CONTROL

GENERAL.

There are currently two versions of the B 2500/B 3500 COBOL Compiler:
COBOLL (30KB) and COBOL (17KB). The COBOLL (or COBOL) Compiler, in
conjunction with the MCP, allows for various types of actions dur=

ing compilation and is explained in the text that follows.

COMPILATION CARD DECK.

Control of the COBOL Source Language input is derived from present-

ing the Compilation Card Deck, illustrated in figure 8-1, to the
MCP.

?END

[?OURCE DAT

: $ OPTION CONTROL CARD

/
j —J
SOURCE DATA
5 $ OPTION CONTROL CARD
/ l _

SOURCE DATA

r,$ OPTION CONTROL CARD

?DATAB CARD

r;LABEL EQUATION CARD

?COMPILE CARD

Figure 8-1. Compilation Card Deck

The Compilation Card Deck is comprised of several cards; these cards,

along with a detailed discussion of their function are presented in
the paragraphs that follow.

Revised 9/28/70
by PCN 1033099.004 8-1

?COMPILE CARD.
The first input

co
the COBOLL or COBOL Com

indicated
viae LLSLVLL, O avcd

ingaic

a. To compile and run the resultant object program, the card
is coded:

?COMPILE P-N WITH COBOLL (or COBOL)

b. To compile for a syntax check only, the card is coded:

?COMPILE P-N WITH COBOLL SYNTAX (or COBOL)

c. To compile and place the resultant object code into the
Systems Library, the card is coded:
?COMPILE P-N WITH COBOLL LIBRARY (or COBOL)

d. To compile and place the resultant object code into the
Systems Library., and then run the object program, the card
is coded:

?COMPILE P-N WITH COBOLL SAVE (or COBOL)

e. To give the compiler more core space to operate in, the
card is coded:

?COMPILE P-N WITH COBOLL CORE nnnnnn (or COBOL)

The nnnnnn entry must be larger than the compiler size

being used.

The absence of the ?COMPILE card will cause the System O ator to

3

e

™

manually execute one of the abové options through the SPO, using

the MCP's CC notation in place of the question mark (?).

MCP LABEL CARD.
The second control card is the MCP LABEL card and is formatted in

either of the following forms:

a. ?DATA CARD (indicates EBCDIC source language input).
b. ?DATAB CARD (indicates BCL source language input).

The absence of the MCP LABEL card will cause the message,

¥¥NO FILE file-name program-name = mix-index

to be displayed on the SPO. The System Operator will not know the
proper IL message to give the MCP (because of the options involved),

without being given specific instructions by the programmer.

$ OPTION CONTROL CARD.
The third card is the COBOLL (or COBOL) Compiler Option Control card

($ sign in column 7). This card is used to notify the compiler as
to which options are required during the compilation. If this card
is omitted, § CARD LIST is assumed. The format of the Compiler
Option Control card is as follows:

$ option (option) ...

The options available for both COBOLL and COBOL Compiler Option

Control cards are as follows:

a. CARD - input is from the source language cards or paper

tape.
b. CODE - list object code from the point of insertion.

c. MCPB - inhibits the COBOL Compiler from generating object
code for blocking and unblocking of input and/or output
records. The omission of this option will generally cause
the object program to operate faster when reading and
writing blocked logical records. However, the user will
forfeit a small portion of core, for each file, to obtain
the benifits of an increase in speed. The COBOL blocking
and unblocking intrinsic will only be used by the compiler

when the MCPB Compiler Option is not present and:

l) Files are declared as containing fixed-length records

without a FILE-LIMITS clause.

2) Records are contained on magnetic tape or reside on

disk as SEQUENTIAL files.

The MCP option can be inserted into the source program at
a point just prior to every FD for which MCP blocking or

deblocking is desired. ©Note that this option card must

contain all other options required to control the comp-

Revised 9/28/70 8-3
by PCN 1033099-004

8-4

ilation from point of dinsertion.

TAPE - input is from a SOurce Language Tape (file—ID is
SOLT) with correction/inserts and change cards included
from either the card reader, paper tape, or magnetic tape.
CARD is assumed by the compiler if TAPE is omitted. The
SOLT tape is created 80 character records, blocked five
logical records per block. A user created SOLT may contain

multiple files of source language programs.

NEWT - creates a new SOLT from cards or from an old SOLT
plus pertinent changes. The presence of a NEWT in the con-
trol card does not require that a magnetic tape be available
when another card immediately follows it without the NEWT

option.

LIST - creates a double-spaced output listing of the source

language input, with error messages, where required.

LST1 - same as LIST, except that the listing will be single

spaced.
SUPR - suppresses warning messages.

SPEC -~ negates LIST or LST1 if syntax errors occur. If
both SPEC and SUPR are specified and no syntax errors occur,

all printing is suppressed including the final summary.

BLNK - causes all cards with columns 7-72 blank to be auto-
matically purged. A subsequent control card without BLNK

will turn off this option.

Non-numeric literal - is inserted in columns 73-80 of all
following card images when creating a new tape (NEWT) and/or
printing. This option can be turned off or changed by a

subsequent control card.

+nnnnnn - re-sequencing increment of source language input
in the output 1list and a new SOLT if applicable. Re-seq-

uencing is re-initialized by each subsequent control card,

m.

or turned off if a subsequent control card does not contain

this option.

nnnnnn - re-sequencing starting number of Source Language
input. Re~sequencing is re-initialized by each subsequent
control card, or turned off if a subsequent card does not

contain this option.

The COBOLL compiler contains all of the above options, plus the

following:

Qe

JAPN - causes the output listing to be compressed and to

start in column 37 of the print line.

SKIP nn - used by the programmer to specify the number of
lines on a page for a COBOL source print-out. The letters
nn designate the number of lines desired. If this option

is omitted from the § CARD, channel 12 is used.

XREF - when coded in the $§ CARD, a cross-reference of the
compiled program is printed out, after compilation by the
COBXR Program which is on the SYSTEM tape. This cross~ref-
erence is noct generated by the Cross-reference Program,

CBXRIN.

DISK - input is from a SOurce Language Disk file (file-ID
is SOLD) with corrections/inserts and change cards included
from either the card reader, paper tape, or magnetic tape.
The SOLD disk file is created as 80 character records,
blocked five logical records per block. The TAPE option
and the DISK option are not permitted on the same control
card. If neither TAPE nor DISK is specified, CARD will be
assumed. The NEWT option may be used with the DISK option
to create a new SOLT from an old SOLD file plus changes.

NEWD - creates a new SOLD from cards or from an old SOLD
(or SOLT) plus pertinent changes. If both the NEWT option
and the NEWD option are specified, a nmew SOLT and a new

SOLD will be created.

Revised 9/28/70
by PCN 1033099-004 8-5

The NEWT option does not have to be included when operating with a

SOLT, thus allowing temporary source language alterations without

creating a new SOLT.

The TAPE option without the NEWT option allows a SOLT tape to be
referenced and to have external source images included on the output
listing and in the object program. A new SOLT will not be created.
Likewise, option NEWD does not have to be included when operating
with a SOLD, thus allowing temporary source language alterations

QAT T
UL/ .

Wi ing a new

Columns 1-6 of the Compiler Option Control card may be left blank
when compiling from cards. A sequence number is required when com-
piling from tape or disk when the insertion of the $§ option is re-

quested within the source input.

SOURCE DATA CARDS.
These cards follow the § Option Control cards. The following source
cards are used to create an updated version of a SOLT (or SOLD) or

cause temporary changes to the SOLT (or SOLD) source language input:

a. Delete Patch Card. Punch sequence number in card columns

1-6 with the remainder of card blank.

b. Change or Addition Patch Card. Punch sequence number in

card columns 1-6 and changed or added source language data

in applicable card columns.

Patch card decks may reside on a labeled (users choice on file-ID)
magnetic tape as 80 column, unblocked records. The deck cannot be
preceded by the MCP LABEL card image, e.g., ?DATA or ?DATAB, nor be
followed by the MCP's ?END end-of-file control card image. A1l §
CARD options are available. The systems operator must be advised of
the presence of a patch deck tape so that an IL control message can
be initiated at the time when the compiler requests the whereabouts

of the source language input file.

The COBOL Compiler has the capability of merging inputs from two

l sources (punched cards or paper tape, either of which may be merged

8-6

with magnetic tape) on the basis of the sequence numbers.

The COBOLL Compiler will merge inputs from two sources (punched cards
or paper tape, either of which may be merged with magnetic tape or

disk) also on the basis of sequence numbers.

When merging inputs, the output compilation listing will indicate all

inserts and/or replacements.

All § options may be inserted at any point within the source language
input data with the exception of the TAPE and the DISK options. It is
important that each $ card included in the compiler deck contains all

of the desired options from point of insertion.

A card reader is not required to compile COBOLL or COBOL Programs
from a SOLT magnetic tape or to compile COBOLL Programs from a SOLD
disk file. Control information may be entered via the SPO or the ZIP
statement when using the COBOLL or COBOL Compiler. When using the
COBOL Compiler, the format is:

LIBRARY
CC COMPILE ... WITH COBOL SAVE VALUE O = Nl NZ N3 N4 N5 N6

where:
N, = 1 Tape input (SOLT)
N, = O NO LIST
1 LIST
N, = O NO NEWT

3 1 CREATE A NEWT

Nh = O NO CODE

1 CODE

N5 = 0 NO SUPR
1 SUPR

N6 = 0 NO SPEC
1 SPEC

Revised 9/28/70
by PCN 1033099-004 8-7

When using the COBOLL Compiler, the format is:

LIBRARY
CC COMPILER ... WITH COBOLL === VALUE O = N, N, N, N, N_ N,
VDAV LY - i <~) “+ D o]

N, = 1 Tape input (SOLT)
2 Disk input (SOLD)

NO LIST
LIST

2
|
= O

NEWT OR NEWD

CREATE A NEWT

CREATE A NEWD

CREATE A NEWT AND A NEWD

WO

NO CODE
CODE

=z
=~
1}
= O

N5 = 0 NO SUPR
1 SUPR

N, = O NO SPEC
1 SPEC

NOTE
Card input is not permitted when using

the SPO or ZIP statement.

LABEL EQUATION CARD.
This card may be used to change a compiler file-name in order to avecid
duplication of file-names when operating in a multiprocessing environ-

ment. The format for this card is:

?COBOLL FILE (file-name) = (users choice of file-id)

or:

?COBOL FILE (file-name) = (users choice of file-id)

The Tahel Ranatinn Card {ar carde). +F used, must 4mmoﬂ4n+c1y follgw
Ihe . mation Card tor cards if neged, must immodiatel focllow

the ?COMPILE ... Control Card and precede the MCP LABEL Control Card
I (refer to figure 8-1).

8-8

The COBOLL and COBOL file-names which may be changed are:

a. Card file-name = DATA
TATA
SOLT

b. New tape file-name

c. Old tape file-name

]

The following file-names may be changed only if using the COBOLL

Compiler:

TATAD
SOLD

a. New disk file-name

b. 0ld disk file-name

COMPILER LIMITS.
The compiler limits for the COBOLL and COBOL Compilers are as follows:

Description COBOL (17K) COBOLL (30K)

Data-names (excluding 2100 Max. 3700 Max.
filler)

PROCEDURE DIVISION 1750 Max. 3200 Max

procedure-names (less
one for each switch)

Unique PICTUREs (average 150 approx. 1000 approx.
six characters long)

RE DIVISION 59 max. 9

\O

max.

NOTE

The limits above are increased with
additional core. For each additional
500 characters of available core, 100
data-names or 83 PROCEDURE DIVISION
procedure-names or 70 PICTUREs can be
used. Request for a larger core area
is made by utilizing the MCP CORE func-

tion.

Source input is in the form of card images and is limited to a maximum

of 30,000 per compilation.

Work files used by the compiler will make use of multiple disk elec-

Revised 9/28/70 8-9
by PCN 1033099-004

tronic units (EU'S), up to a total of nine, if available. This feature
results in an increased compilation speed for B 2500/5 3500 Systems

configurated with multiple EU's.

Occasionally, a compile-time address error will occur due to STACK
overflow. This happens, for example, when IF statements are nested
too deeply or there are too many levels in a data-description for the
compiler to handle with its normal STACK mechanism. When this happens,
the STACK size can be changed by inserting into the ?COMPILE ... MCP

Control Card, VALUE 10 = nnnnnn where nnnnnn is a 6-digit number larger

than 001200 when using the COBOLL Compiler or 000800 when using the
COBOL Compiler. An MCP CORE clause must also be included to increase

the compiler size by an equal number of digits.

o0
i

4
(&}

SECTION 9
READER SORTER AND LISTER I

GENERAL.

This section deals with the COBOL constructs of the PROCEDURE

DIVISION required to activate the READER SORTER and LISTER equipment l
as defined by the ASSIGN to hardware-name clause.

SPECIFIC VERB FORMATS.

The specific verb formats together with a detailed discussion of the
restrictions and limitations associated with each, appear on the

following pages in alphabetic sequence.

NOTES
The use of any of the following verbs requires
the presence of a version of the MICR or the

Combination MICR and Data Communications MCP.

See I-0-CONTROL, Section 3, for pertinent MICR

input and output file handling declarations.

Revised 9/28/70
by PCN 1033099-004 9-1

CONTROL 4

CONTROL 4.
! The function of this verb is to cause a specified READER SORTER
pocket light to become illuminated.

The construct of this clause is:

CONTROL 4 data-name ON file-name

Data-name must be declared as PICTURE 99 COMPUTATIONAL.

Data-name must contain the 2-digit pocket number which specifies the

pocket light desired to be turned *ON".

Flow must be stopped and all documents pocket selected before issuing
a CONTROL L statement.

Control is set to a NOT READY condition and must be cleared by
. depressing the START button on the READER SORTER,

CONTROL 6

CONTROL 6.

The function of the verb is to advance the batch counter in the

READER SORTER by omne.

The construct of this wverb is:

CONTROL 6 ON file-name

Flow must be stopped and all documents pocket selected before

issuing a CONTROL 6 statement.

Revised 9/28/70
by PCN 1033099-004 9-3

OPEN

OPEN.

The function of this verb is to initiate the input processing of

the READER SORTER.

The construct of this verb is:

file-name-1 [file-name-2 ...]

OPEN INPUT { DEMAND }

FLOW

At least one of the options must be specified before a file can be

read.

One statement may be used to OPEN multiple READER SORTERS in the same
mode (DEMAND OR FLOW).

OPEN INPUT FLOW is required if it is desired to OPEN a file in FLOW

mode.

OPEN INPUT DEMAND is assumed if DEMAND is omitted from the OPEN

statement.

A CLOSE statement is required if it becomes necessary to change the

mode of operation from either OPEN INPUT DEMAND or FLOW.

9-4

READ

READ.

The function of this verb is to make available the next logical

record from the READER SORTER in DEMAND or FLOW mode.

The construct of this verb is:

READ [FLOW] file-name procedure-name-l, procedure-name-2

The record description entry (0l level) must be declared as 200
characters. Reference RECORD DESCRIPTION in the Data Division.

The READ FLOW statement must be given after an OPEN INPUT
FLOW. This will start the flow of documents through the READER
SORTER.

If NO-FORMAT is specified in the I-0-CONTROL procedure, the data is
stored (in descending sequence) continuously. If formatting is
specified (NO FORMAT is omitted), the data is stored (in descending
sequence) continuously until the first transit symbol is received.
Blanks are then stored until the 40th character location is

reached at which point the transit symbol and remaining data is
stored. Blanks are stored following the last information character
read until a total of 100 characters is stored. When formatting
(NO—FORMAT is omitted) is specified, automatic validity checking

of the amount and transit fields is performed. Validity checking

of the amount field includes checking:

a. The 1lst and 12th characters stored for amount symbols.

b. The intervening 10 characters for decimal digits.
Validity checking of the transit field includes checking:
a. The 40th and 50th characters stored for transit symbols.

b. The intervening nine characters for the following: four

decimal digits, hyphen (-), and four decimal digits.

Revised 9/28/70
by PCN 1033098-004 9-5

READ

continued

Procedure-name-1 specifies the location to GO TO when the flow mode
is stopped. A1l documents which were in motion will be processed
and pocket selected before going to procedure-name~l. A READ FLOW
statement has to be executed to restart the READER SORTER in a flow

mode.

Procedure-name-2 specifies the location to GO TO if a batch ticket
(black band) was encountered during the last document pocket selec-
tion. The record description (01 level) area has been blanked. The
READER SORTER is in a stop flow mode and must be restarted with a

- READ FLOW statement.

It is the responsibility of the programmer to insure the presence
of procedure-name-~l and procedure-name-2, otherwise, an object time

error will result.

SELECT

SELECT.

The function of this verb is to pocket select the last document read

to the pocket specified on the SORTER-READER.

The construct of this wverb is:

SELECT data-name ON file-name INVALID procedure-name

The SELECT statement may only be executed within a USE SORTER pro-

cedure.

Data-name must be declared with a PICTURE 9(4) COMPUTATIONAL and its
format is NNRV, where: NN is the pocket to be selected, R is zero,
and V is either zero (if the current mode is to continue) or one (if

FLOW is to be stopped).

If the SELECT for the document was too-late-to-process, the program
will branch to the INVALID procedure-name. FLOW mode is stopped

and the document has been sent to the reject (R) pocket. The in-
formation read from the document which caused the too-~late-to-process
is stored in the record description area (Ol level). However, the
trailing documents will not have been placed in memory, but will be

routed to the reject (R) pocket.

Revised 9/28/70
by PCN 1033099-004 9-7

USE

USE.

The function of this verb is

-0 spectd

conditions and to process the document for pocket select when using
the READER SCORTER.

The construct of this verb is:

-/

ON

st { por

} SORTER {ON } file-name

FOR

(S B W ROY T

A USE statement, when present, must immediately follow a section
header in the DECLARATIVE portion of the PROCEDURE DIVISION and
must be followed by a period followed by a space. The remainder of
the section must consist of one or more procedural paragraphs that

define the procedures to be used.

Intermediate work areas, if present, in USE ON SORTER procedures
will occupy different memory areas from those used by other USE
procedures, or those used by the main body of the program, thereby
preventing conflict during POCKET SELECT interrupts. Note that each
USE ON SORTER procedure that references an intermediate area will
create a new area. Maximum use of storage will be realized when all
SORTER USE procedures appear first in the DECLARATIVES. This method
allows non-sorter USE procedures to share intermediate areas with

the remainder of the PROCEDURE DIVISION.

Index registers are saved upon entering a USE ON SORTER procedure

and will be reinstated upon exit from the procedure.

The USE statement itself is never executed rather, it defines the

conditions calling for the execution of the USE procedure.

9-8

USE

confinued

The USE. . .SORTER 1. . . option is specified to handle memory ac-

cess, cannot read, unencoded, and double documents error procedures.

The USE. . .SORTER 2. . . option is specified to handle the Amount

field errors.

The USE. . .SORTER 3. . . option is specified to handle the Transit

field errors.

The USE. . . SORTER 4. . . option is specified for processing of a
SELECT statement.

The USE. . . SORTER 5. . . option is specified for handling depres-
sion of the END-OF-FILE button on the Reader Sorter.

It is permissible to reference a non-declarative procedure when
using the SELECT. . . .INVALID procedure-name statement within the
USE procedures of the DECLARATIVES portion of the PROCEDURE DIVI-
SION.

Revised 9/28/70
by PCN 1033099-004 9-9

CONTROL

CONTROL.

The function of this verb is to space, skip, and slew s

units and tape designations on the LISTER.

The construct of this verb is:

CONTROL 5 l file-name NOT-READY procedure-name

Mofof=

The CONTROL 1. . . . option is used to perform a space operation

specified by the unit and tape designations in ACTUAL KEY.

The CONTROL 2. . . . option is used to perform a skip (2 1/2 inches)
operation as specified by the unit and tape designations in ACTUAL
KEY.

The format of the various unit and tape designations for the

CONTROL 1. . . .and CONTROL 2. . . .options are as follows:

Digit Positions

1 2 3 4L
U T U T
where U equals Unit Number 1-3, U equals zero (Suppress Skip or

Space), and T equals Tape Number 1-6.

For the master/slave/slave combination, a skip or space operation is
performed on both the master tape of unit 1 and the tape designated
by the first and second digit positions (D1-D2) of the ACTUAL KEY.
If the first digit position (D1) of the ACTUAL KEY is zero, then
skipping or spacing on both the master tape on unit 1 and the tape
designated by the second digit position {D2) of the ACTUAL KEY

is suinnreacaad
<A . - N

CONTROL

continued

For the six tape/six tape combination, the second digit position
of the ACTUAL KEY must equal zero, then the skipping or spacing of
the master tape on the unit designated by the first digit positiom
(D1) of the ACTUAL KEY is performed. If the first digit position
(Dl) of the ACTUAL KEY is equal to zero, then skipping or spacing

of the master tape is suppressed.

An additional tape can be skipped or spaced as designated by the
third and fourth digit positions (D3—D4) of the ACTUAL KEY.

An invalid ACTUAL KEY is when the first and third digit positions
(D1 and D3) are equal to zero.

The CONTROL 3. . . .option is used to perform a slew (10 inches)
operation as specified by the unit and tape designations. The
AGTUAL KEY data-name clause with PICTURE 9(4) COMPUTATIONAL for

slew operations is as follows:

Digit Positions

1 2 3 L
U v U T
For the first and second digit positions the coding is as follows:

a. V = 0 - allow slew of master tape.

b. V = 1 - inhabit slew of master tape (refer to first

note that follows).
c. U =1 - slew all tapes, unit 1.
d. U =2 - slew all tapes, unit 2.
e. U =4 - slew all tapes, unit 3.

f. U =3 - slew all tapes, units 1 and 2 (refer to second

note that follows).

g. U =5 - slew all tapes, units 1 and 3.

9-11

CONTROL

continued

g

. U =06 - silew all tapes, units 2 and 3.

units 1, 2, and

i. U =7 - slew all tapes

(W]

H H
NOTES

V takes precedence over U.

For the six tape/six tape

combination, only D1 = 3

can be designated.
For the third and fourth digit positions, the coding is as follows:

a. U = unit number 1-3,

b. U = 0 - do not suppress slew.

@]
=3
1

tape number 1-6,

NOTE
D3-D4 are used only on the
"18 TAPE LISTER"; otherwise

D3-DL must be zero.

9-12

ENABLE

ENABLE.

The function of this verb is to suspend the program until the not

ready condition on the LISTER has been corrected.

The construct of this verb is:

ENABLE file-name

File-name must have been OPENed before an ENABLE can be executed.
Once the file-name has been ENABLEd, the program will be suspended I

until the LISTER not ready condition (not ready or end of paper)

has been corrected.

9-13

WRITE

WRITE.
The function of this verb is to release a logical record to be

printed on the LISTER.

The construct of this wverb is:

WRITE record-name NOT-READY procedure-name

The ACTUAL KEY clause is required to specify the unit and tape
designations. The format for the various unit and tape designa-

tions for the WRITE statements is as follows:

Digit Positions

1 2 3 4
u T U T

For the first and second digit positions, the coding is as follows:

a. U = 0 ~ suppress print.
b. U = unit number 1-3.
c. T = tape number 1-6.

The record-name must be defined in the DATA DIVISION by means of a
01 level entry under the FD entry for the file. The 01 level entry

3 1 1.). 1 s - - L4
must specify a record 44 characters in length.

For the master/slave/slave combinations, the first 22 characters of
the record-name are printed on both the master tape of unit 1 and
the tape designated by the first two digit positions (Dl-D2) of

the ACTUAL KEY. If the first digit position (D1) of the ACTUAL KEY
is zero, then printing on both the master tape on unit 1 and the
tape designated by the second digit position (D2) of the ACTUAL KEY

is suppressed.

For the six tape/six tape combination, the second digit position

(D2) of the ACTUAL KEY must be zero, then the first 22 characters

9-14

WRITE

continued

are printed on the master tape of the unit designated by the first
digit position (D1) of the ACTUAL KEY. If the first digit position
(D1) of the ACTUAL KEY is zero, printing of the master tape is supp-

ressed.

The second 22 characters of the record-name are printed on the tape
designated by the third and fourth digit positions (D3-D4) of the
ACTUAL KEY. The printing of the tape designated by the third and
fourth digit positions (D3-Dh) of the ACTUAL KEY, is only possible
with the "18 TAPE LISTER".

If the LISTER is in a not ready condition, the WRITE. . .NOT READY
procedure-name statement will be executed. If an invalid unit or

tape number is specified, this can cause the LISTER to appear con-
stantly busy. Depression of the LISTER STOP button causes the not

ready condition and releases the LISTER from a busy condition.

9-15

SECTION 10
COBOL FILTER PROGRAM

GENERAL.

This section describes the usage of the Burroughs Filter Program
for conversion of B 200/B 300/B 500, or B 5500, COBOL source pro-
grams to the B 2500/B 3500 USASI COBOL language.

The Filter Program is provided in two versions:

a. To be operated on a B 5500 (supplied upon

request).

b. To be operated on a B 3500 (supplied on the

regular ASR systems tape distribution).

Resultant SOLT tapes created by either version are acceptable as
input to the B 2500/B 3500 COBOL or COBOLL (27KB version of COBOL)

compilers.

A syntactically correct COBOL source program is required in order
to produce correct object time results, otherwise undefined results

will occur.

The Filter Program was specifically designed for B 200/B 300/B 500
and B 5500 DOD COBOL source language conversion. It will accept
other than those systems specified above and has given acceptable
results in several test cases, however, no guarantee of compatibi-

lity is implied or intended.

B 2500/B 3500 USASI COBOL source programs can be filtered as a pre-

compiler symbolic language-check if so desired.

CONFIGURATION FOR EXECUTION OF FILTER.

The source program to be filtered can be read from either punched

cards or magnetic tape. The input image, the output image, and

any codes, error messages and/or advisory messages will appear

upon the line printer. Source output data can be recorded either
in punched cards or on magnetic tape. An additional magnetic tape
Revised 9/28/70

by PCN 1033099-004 10-1

is required if the program being filtered contains SELECT file-name

rai ~ =] ATAA 5T A
RENAMING file-name statements in the ENVIRONMENT DIVISION.

The peripheral configuration required is:

B 2500/B 3500 or B 5500

Card-Reader or Magnetic Tape Unit

Card-Punch or Magnetic Tape Unit

Printer

Magnetic Tape Unit if SELECT...RENAMING...statement is

present

EXECUTION CARDS.
A filter control card - FILCON - must be present following the

EXECUTE and label (DATA FILTER) cards. The information can be

entered in free-field format but must be in the following format

order:
i CARD ‘) ’ “
CARD TAPE NOSEQ COBOL
FILCON { TAPE } SOLT SEQ 1nteger] [COBOLL] [CODE]
CARDEB

CARD/TAPE (code(:)) signifies the choice of input medium. CARD/
TAPE/SOLT/CARDEB (code(j)) signifies the choice of an output medium
for the filtered images to be recorded on. SOLT indicates that a
separate Symbolic Output Language Tape is to be created for each
input source program. CARDEB indicates that the output deck will
be punched in EBCDIC. CARD indicates that the output deck will be
punched in BCL.

NOSEQ/SEQ integer (code()) is a sequencing option and is coded as
follows:

a. NOSEQ - output images retain the input sequence number

(eY(}nT‘\‘*‘ when ctatem

EE— i - w222 a0

Mt ~nmenTladAdAn+dAan Anntrvea vrhaaa 4Tha
T oCconeCc 1Tl =S WS

en
last number is used).

10-2

b. SEQ - an integer from 1 through 4 digits is required
to follow the entry to indicate the required sequencing
interval. An interval of from 1 through 9999 is accept-
able. An additional increment of 100 also occurs upon
encountering an ASSIGN TO DISK phrase in the ENVIRONMENT
DIVISION.

NOTE
When neither of the above are used, output
images will be sequenced by 10. An additional
100 increment occurs upon encountering an ASSIGN
TO DISK phrase in the ENVIRONMENT DIVISION.

COBOL or COBOLL (code()) provides the facility to ZIP (FILTER and
compile) to the appropriate compiler. The source language program
being filtered must contain a PROGRAM-ID entry if the ZIP feature
is to be used. The absence of the compiler-name in the FILCON
control card and/or the absence of the PROGRAM-ID entry in the
source language input will disable the ZIP feature. The presence
of the compiler entry indicates tape input (SOLT) and will cause

an output printer listing to be created.

Code(:) signifies that the normal FILTER code conversion may be
altered by user specifications reflecting the characters required
for conversion. The CODE specification card must follow the FILCON
Control Card and must contain the character pairs to be converted.
The characters to be converted from, must be followed with the word
BY which is followed by the characters into which the first char-

acter will be converted. For example,

FILCON CARD CARD NOSEQ CODE
CODE # BY =% BY ([BY) @ BY " : BY " ' By =

A maximum of nine single-character replacement pairs can be speci-

fied on one card.
The IBM single quotation mark (card code 5-8) will be converted to
the Burroughs BCL double quotation mark (card code 0-7-8) if the

Revised 8/28/69
by PCN 1033099-001 10-3

conversion is specified in the CODE card.

SPECIFICATION |

The order of execution can be represented as follows:

? EXECUTE FILTER®
? DATA FILTER
FILCON CARD CARD

s 0o 0

program cards (may be more than one program)

? END

The above specification represents source input card images and
source output images being placed to cards. Without specifying it,
a printer listing will be created for input and output images, along
with informational codes, messages, and error messages. A re-
sequencing with an interval of 10 is indicated by the absence of

the sequencing option.
*

When the TAPE option is specified for source input, a magnetic tape
labeled SOLT is required. This SOLT tape must be blocked with 5
images per block (the normal output from a B 5500 or B 3500 COBOL
compilation). The FILTER program will accept only the compiler

created SOLT tapes, as source input, from the system it is being

executed on.

The output tape will be labeled SOLT and consists of blocked (5
records per block) recorded in non-standard (BCL) mode which is

suitable for input to the B 3500 COBOL Compiler.

ERROR AND ADVISORY MESSAGES.
FILCON CONTROL MISSING appearing on the console printer indicates

that the FILTER control card, described above is missing. The

program will automatically terminate after declaring this condition.

*The program name 1s FILUIBR Ior the B 3500. ror tne B 5500, Lle

first card must read ? EXECUTE FILTER/COBOL.

10-4

FILCON INPUT CHOICE MISSING appearing on the console printer indi-
cates that the FILTER input option could not be recognized. The

program will automatically terminate after declaring this condition.

FILCON OUTPUT CHOICE MISSING appearing on the console printer indi-
cates that the FILTER output option could not be recognized. The

program will automatically terminate after declaring this condition.

FILCON CODE CHANGE CARD MISSING-RESTART or FILTER CODE CARD FORMAT
ERROR-RESTART appearing on the console printer indicates that the
CODE specification card contains an error. The program will auto-

matically terminate after declaring this condition.

CONTROL ERROR - INSELECT - FILTER appearing on the console printer
indicates that the filter is not reading input from the proper
input unit. The program will automatically terminate after de-

claring this condition.

INPUT TAPE VERIFICATION FATILED - FILTER appearing on the console
printer (SPO), and

INPUT TAPE VERIFICATION FAILED - FILTER appearing on the 1line
printer, indicates that the tape input has failed verification as

a blocked (5) tape and also has failed verification as an unblocked
tape. The program will automatically terminate after declaring this

condition.

ILLEGAL WORD SIZE appearing on the line printer indicates that a
word size of greater than 30 characters, or that a PICTURE char-
acter-string greater than 160 characters has been introduced by the
FILTER scanner. The program will continue after declaring this

condition.

SOURCE PROGRAM COPY STATEMENT appearing on the line printer indi-
cates an action that the FILTER program will not accomplish. The

program will continue after declaring this condition.

PROGRAM LIBRARY REFERENCE appearing on the line printer indicates

that a library reference has been made. Verification that the

Revised 8/28/69 10-5
by PCN 1033099-001

proper library information is available for the B 3500 system
should be made. The program will continue after declaring this

condition.

SELECT RENAMING LIMIT EXCEEDED appearing on the line printer in-
dicates that more than 20 files have been selected with the RE-
NAMING option. The additional file~names are not entered into the
table and their descriptions are not added to the filtered program.

The FILTER program will continue after declaring this condition.

CHANNEL ERROR appearing on the line printer indicates that the
SPECIAL NAMES association specifies a line printer channel greater

than 11. The program will continue after declaring this condition.

SIZE STATEMENT TO INTEGER OUT OF 6-DIGIT RANGE or

SIZE STATEMENT INTEGER OUT OF 6-DIGIT RANGE appearing on the line
printer indicates that the source program size statement appears
to the FILTER program to be greater than six digits. The program

will continue after declaring this condition.

TLLEGAL GROUP NAME appearing on the line printer indicates that
FILLER has been used as a group-name in the source image just pre-
ceding this message. The program will continue after declaring

this condition.

PICTURE UNPACKER LIMIT EXCEEDED appearing on the line printer in-
dicates that the PICTURE shown in the source image contains a re-
presentation 0f more than 150 characters in the PICTURE character-

string. The program will continue after declaring this condition.

PICTURE PACKER LIMIT EXCEEDED appearing on the line printer indi-
cates that the consolidation of PICTURE characters has created a
PICTURE character-string larger than 150 characters. The program

will continue after declaring this condition.

INCOMPLETE SPECIFICATION ERROR appearing on the line printer indi-

catezs that the preceding cource image did not contain sufficient

o
FEROY

information for an elementary item. This can also be occasioned

10-6

by the use of a source program COPY statement. The program will

continue after declaring this condition.

OUTPUT MESSAGES AND IMAGE CODES.
The FILTER program uses identifying codes, appearing to the left

of the output image on the line printer, to cause advisory messages
to appear to the right of the output image on the line printer.

These messages and their meaning follows:

a. A header message appears on the line printer output
at the beginning of a FILTER run and consists of two
lines. The first line is a copy of the FILCON control

card, the second is an identification line of the type:

FILTERED current-date USING system filter-date
FILTER/COBOL PROGRAM

Current-date appears in the form mm/dd/yy; system is
either B 3500 or B 5500; and filter-date identifies
the version of the FILTER program being used.

b. No message.

Sequence number change only.

c. NEED MANUAL CHANGE.
A portion of the input image is not acceptable to the
B 3500 COBOL Compiler and the FILTER program is unable
to accomplish a suitable correction. The programmer

must review and modify this image.

d. FILTER,.
A portion of the input image has contained a construct
that is not acceptable to the B 3500 COBOL Compiler,
but the meaning is clear and the FILTER program has made
an adjustment to the contents so that the output image

is acceptable.

e. FILTER CHANGE.
A more extensive change to the contents of the input

Revised 8/28/69 -
by PCN 1033099-001 10-7

source image has been made. Usually, this code indi-

cates that the entire source image has been replaced

by a blank image.

f. VERIFY ENTRY/CHANGE.
The FILTER program has changed the source image in an
established and usually acceptable manner; however, the
programmer should verify that the modification is accept-

able at this point in the program.

g. SCAN CHKFLG ERROR.
This console printer message indicates that a program
switch in the scanner portion of the program is not

being set properly (by the FILTER program).

h. FILTER OUTPUT SELECT ERROR.
This indicates that the output control switch has not
been properly set by the FILTER program. The program

will terminate after declaring this condition.

i. NEED ACCESS MODE/KEY CLAUSE.
This indicates that a file has been assigned to DISK.
The control clauses appearing as part of an MD entry
needs to be added in this ENVIRONMENT DIVISION entry.
A sequence number increment of 100 occurs, and the

program continues.

j. LEVEL ENTRY ERROR.
This indicates thaet a DATA DIVISION level number larger

than two digits has been encountered.

k. NOTE LIMIT EXCEEDED.
This indicates that a NOTE of greater than 320 characters
has appeared as part of a DATA DIVISION record description.
The NOTE is truncated to 320 characters, and the program

continues.

10-8

1. NOTE PARAGRAPH INDICATED.
This indicates that the NOTE sentence is the first sen-
tence of the PROCEDURE DIVISION bparagraph, and thus the
entire paragraph is a NOTE. This message will appear
only when filtering a B 200/B 300/B 500 program to advise
of the difference in the COBOL rules between the B 200/
B 300/B 500 and the B 3500.

REPETITIVE OPERATIONS,

More than one source program can be filtered during one execution
of the FILTER program. The sensing of the IDENTIFICATION DIVISION
entry of each successive program causes the FILTER pProgram to reset
itself and to begin a new conversion. If SOLT has been shown in
the FILCON parameter card, separate magnetic tapes are created for

each program being filtered.

A count of the number of times each output image code appears is
provided, along with the count of the number of images receiving

a code. These messages appear upon the printer as follows:
CODE 1 COUNT = nnnnn CODE 2 COUNT = nnnnn CODE 3 COUNT = nnnnn etc.

TOTAL IMAGES FLAGGED = NNNNN TOTAL IMAGES FILTERED = nnnnn

Revised 8/28/69
by PCN 1033099001 10-9 I

APPENDIX A

COBOL RESERVED WORDS™**

*ABOUT BEGINNING CONTROL 3
ACCEPT BLANK CONTROL 4
ACCESS BLOCK CONTROL 6
ACTUAL BREAK *CONTROLS
ADD BY CONVERSION
*ADDRESS BZ COPY
ADVANCING CORR
AFTER *CANCEL CORRESPONDING
ALL *CF CURRENCY
ALPHABETIC *CH
ALTER CHANNEL DATA
ALTERNATE CHARACTERS DATE (SPECIAL REGISTER)
ALTERNATTNG CLOSE DATE-COMPILED
AND CMP DATE-WRITTEN
APPLY CMP-1 DCT-2000
ARE *CMP-3 *DE
AREA COBOL DECIMAL-POINT
AREAS *CODE DECLARATIVES
ASCENDING *COLUMN DEMAND
ASSTGN COMMA DEPENDING
AT COMP DESCENDING
ATT-8A1 *COMP-1 ¥*DETAIL
AUTHOR *COMP-3 DIAL
AUXILIARY COMPUTATIONAL DISABLE

COMPUTATIONAL-1 DISC
B-500 COMPUTATIONAL-3 DISCONNECT
B-2500 COMPUTE DISK
B-3500 CONFIGURATION DISPLAY
B-9350 CONTAINS DISPLAY-UNIT
B-9352 CONTROL DIVIDE
BACKUP CONTROL 1 DIVISION
BEFORE CONTROL 2 DOWN
* These reserved words may appear in a future compiler.
¥¥ See special instructions, page 1-10,

Revised 9/28/70

by PCN 1033099-004

APPENDIX A (cont)

ELSE

END

ENDING
END-OF-J0OB
END-TEXT
END-TRANSIT
ENTER
ENVIRONMENT
EQUAL
EQUALS
ERROR
EVERY
EXAMINE
EXTIT

FD
FILE

FILE-CONTROL

FILE-LIMIT

FILE-LIMITS

FILL

FILLER
*FINAL

FIRST

FLOW
*FOOTING

FOR

FORM

FROM

*GENERATE
GIVING
GO

GREATER

*GROUP

HIGH-VALUE
HIGH~VALUES
*HOLD

IBM-1030
IBM-1050
ID
IDENTIFICATION
IF
IGNORE
I-0
I-0-CONTROL
IN
INDEX
INDEXED
*INDICATE
*INITIATE
INPUT
INPUT-OUTPUT
INSTALLATION
INTERROGATE
INTO
INVALID
IS

Js
JUST
JUSTIFIED

KEY

LABEL

*LAST

LEADING
LEFT
LESS
LIBRARY
LIMIT
LIMITS
*LINE
*LINE~COUNTER
LINES
LISTER
LOCK
LOW-VALUE
LOW-VALUES

MEMORY
MICR
MICR-OCR
MOD

MODE
MODULES
MONITOR
MOVE
MULTIPLE
MULTIPLY

NEGATIVE
NEXT

NO

NO-DATA
NO-ERRORS
NO-FORMAT
NO-TIME-OUT
NON-STANDARD
NOT
NOT~-READY

*These reserved words may appear in a future compiler.

A-2

NOTE
*NUMBER
NUMERIC

OBJECT-COMPUTER
oC

OCCURS

OCR

OF

OFF

0-T
O-L-BANKING
OMITTED

ON

OPEN
OPTIONAL

OR
OTHERWISE
OUTPUT
OVERFLOW

PAGE
*PAGE-COUNTER
PC
PERFORM
*PF
*PH
PIC
PICTURE
*PLUS
POLL
POSITION
POSITIVE
PRINTER
PRIORITY

PROCEDURE
PROCEED
*PROCESS

PROCESSING
PROCESSOR
PROGRAM-ID

PT-PUNCH
PT-READER
PUNCH
PURGE

QUOTE
QUOTES

RANDOM
*RD
READ
READER
RECORD
RECORDING
RECORDS
REDEFINES
REEL
RELEASE
REMAINDER
REMARKS
RENAMES
REPLACING
*REPORT
*REPORTING
*REPORTS
RERUN
*RESET
RESERVE
RETURN

APPENDIX A (cont)

REVERSED
REWIND
*REF

*RH
RIGHT
ROUNDED
RUN

SAME

SAVE

SAVE-FACTOR

SD

SEARCH

SECTION

SECURITY

SEEK

SEGMENT-LIMIT

SELECT

SENTENCE

SENTINEL

SEQUENTIAL

SET

SIGN

SIGNED

SIZE

SORT

SORTER
*SOURCE

SOURCE-COMPUTER

SPACE

SPACES

SPECIAL-NAMES

SPO

STANDARD

START-TEXT

¥These. reserved words may appear in a future compiler.

Revised 9/28/70
by PCN 1033099-004 A-73

APPENDIX A (cont)

*STATUS
STOP
STREAM
SUBTRACT

*SUM
SUPERVISOR
SW1
SwW2
SW3
Swh
SW5
SWé
SW7
SW8
SY
SYMBOLIC
SYNC
SYNCHRONIZED

TALLY
TALLYING
TAPE
TAPE-7
TAPE-9

TC-500
*TERMINATE
THAN

THEN
THROUGH
THRU

TIME

TIMES

TO
TODAYS-DATE (SPECIAL REGISTER)
TONE
TOUCH-TONE
TRACE
TRANSLATT.ON
TT-28

TWX

*TYPE

*UNIT
UNTIL
UP
UPON
USAGE
USAST

VA
VALUE
VARYING
VOICE

WORKING-STORAGE
WRITE
WRITE~-READ
WRITE-READ-TRANS
WRITE-TRANS-READ

ZERO
ZEROS
ZEROES
ZIP

*These reserved words may appear in a future compiler.

A=l

APPENDIX B
COBOL SYNTAX

PRE-IDENTIFICATION DIVISION.

[:MONITOR [DEPENDING] file-name (l[data-name] coe :

(%o]).]

IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.

[PROGRAM-ID, Any COBOL word,]

[AUTHOR, Any entry,]

[INSTALLATION, Any entry,]

Revised 10/8/69
by PCN 1033099-002

B-1

APPENDIX B (cont'd)

IDENTIFICATION DIVISION (cont'd)

[DATE-WRITTEN. Any entrv.]
L

[DATE-COMPILED. Any entry - replaced by the current date
and time as maintained by the MCP.]

[SECURITY. Any entry.]

[REMARKS. Any entry. Continuation lines must be coded

in Area B of the coding form.]

ENVIRONMENT DIVISION.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

APPENDIX B (cont'd)

ENVIRONMENT DIVISION (cont'd)

S B-2500
[SOURCE—COMPUTER. 1 B-3500 .]
any entry

B-2500
OBJECT COMPUTER. [{.3-2500 [WITH SUPERVISOR CONTROL]

WORDS

MEMORY SIZE integer CHARACTERS [TIME 60]
MODULES

[SEGMENT-LIMIT IS priority number] . I

[SPECIAL-NAMES. [CURRENCY SIGN IS literal]
[implementor-name IS mnemonic-name ...

[DECIMAL-POINT IS COMMA].]

[INPUT-OUTPUT SECTION,]

Revised 9/28/70
by PCN 1033099-004 B-13

APPENDIX B (cont'd)

ENVIRONMENT DIVISION (cont'd)

FILE-CONTROL,

SELECT [OPTIONAL] file-name-1 ASSIGN TO hardware-name-1

No

-) ALTERNATE
integer-1

{ } {

[SAVE] [RESERVE

H |

- J

K

[ACCESS MODE IS {

oA

RANDOM
SEQUENTTAL

|

data-name-m THROUGH | data-name-n

[PROCESSING MODE IS SEQUENTIAL]

KEY IS

KEYS ARE } data-name-4 [data-name-5]

[SYMBOLIC {

FILE-LIMIT IS literal-1 THRU %%% 12
FILE-LIMITS ARE data-name-1 THROUGH eral-
—— \ data-name-2
literal-m THRU literal-n

r (FILE | 7] [¢ work g
AREA { PROCESSOR } [FOR MULTIPLE REEL]
HE R

[NO TRANSLATION NO BACKUP FORM

L TRANSLATION NON-STANDARD BACKUP —

AREA
AREAS

']
.

-
} J [ACTUAL KEY IS data-name-3]

ENVIRONMENT DIVISION (cont'd)

Option 2:

[FILE-CONTROL.

SELECT sort-file-name ASSIGN TO DISK.]

APPENDIX B (cont'd)

I-0-CONTROL.

[RERUN EVERY integer-1 RECORDS OF file-name-l]

[{IRECORDj}} AREA FOR file-name-2 file-name-3 [file-name-4] ... }

SORT

{ MULTIPLE FILE TAPE "multi-file-~id" CONTAINS file-name-1list

[POSITION integer-2...]... }

MICR-OCR

MICR
‘ AREA
[Ammy OCR }] [ALTERNATING {Amms}}

WITH [NO-FORMAT] [NO- ERRORS]]

[END-TRANSIT] ON file-name [...] .

[SAME

Revised 9/28/70
by PCN 1033099-004 B-5

APPENDIX B (cont'd)

DATA DIVISION,

[FILE SECTION,]

Option 1:

FD file-name COPY "library-name".

Option 2:

NON-STANDARD

FD file-name-1 [RECORDING MODE IS {-§$ﬁ§9§3§ }]

FILE CONTAINS integer-1l [BY integer-2] RECORDS
i . RECORDS
_BLOCK CONTAINS [integer-3 TO] integer-4 { CHARAGTERS }]

RECORD CONTAINS [integer-5 TO] integer-6 CHARACTERS]

i (RECORD IS S)
LABEL {‘____,_ } ' STANDARD
| RECORDS ARE USAST

NON-STANDARD

[vaA OF ID IS "literal-1"
VALUE IDENTIFICATION data-name-1

[SAVE-FACTOR IS literal-2]]

RECORD IS
[DATA ‘{ﬁiﬁﬁﬁﬁs ARE } data-name-2 [data-name—B...]]

B-6

APPENDIX B (cont'd)

DATA DIVISION (cont'd)

Option 3:

SD sort-file-name COPY "library-name".

Option U4:

SD sort-file-name

FILE CONTAINS integer-1 [BY integer-2] RECORDS

RECORD CONTAINS [integer-3 TO integer-4 CHARACTERS]]

B)) RECORDS
BLOCK CONTAINS [integer-5 TO] integer-6 { CHARACTERS }]

A RECORD IS | . - - 7
DATA {ZRECORDS ARE ; data-name-1 |data-name-2] ... J
Option 1:

0l data-name-1 COPY "library-name".

Revised 9/28/70
by PCN 1033099-004 B-7

APPENDIX B (cont'd)

DATA DIVISION (cont'd)

01 FILLER
{Egvel—number} {'E§¥§:Hame—l } [MQEJ [BEQEEEEE§ data-name-z]

[{Bz oG
BLANK WHEN ZERO OCCURS

integer-1 TIMES
integer-2 TO integer-3 TIMES

[DEPENDING ON data-name-3]]

ASCENDING
{IDESCENDING } KEY IS data-name-4 [data-name-5] ...] s
_
INDEXED BY index-name-1 [index-name-2] ...]
| DISPLAY \
CMP
CMP-1 g)
FUS_A_CE IS _l ___._._.C OMP I- TT LA DT ATYTM
| COMPUTATIONAL l_) EggTIFIED f RIGHT |
COMPUTATIONAL-1 N

COMPUTATIONAL-3
INDEX

VA : THRU ‘
{VALUE } IS literal-1l [‘{THROUGH } literal-2 }

[literal-j } [}{ggggUGH } literal-4] .o

U)tU)

(‘ ‘
.I.JL/J._I.
,i SYNCHRONIZED ; RIGHT l

APPENDIX B (cont'd)

DATA DIVISION (cont'd)

Option 3:

- THRU
66 data-name-1l RENAMES data-name-2 [‘{Tﬁﬁ6UGH } data-name—B‘].

Option U4:

c, . VA .)
88 condition-name {'VALUE~} IS literal-1

. THRU -
[literal-2...] [{ THROUGH } literal-n...] .

[WORKING-STORAGE SECTION,]

Same level number syntax as shown in the FILE SECTION except
that 77 level numbers can be used to reflect non=-contiguous
data areas and if used, must precede all other level number

entries,

B-9

APPENDIX B (cont'd)

PROCEDURE DIVISION,

SPO

ACCEPT data-name [FROM { .
—_— — mnemonic-name

]

Option 1:

ADD literal-1

literzl-2
data-name-1

data-name-2

{ j

data-name-n [ROUNDED]

K

K

ON SIZE ERROR

p o]

any statement

OTHERWISE
ELSE

} statement] J

Option 2:

ADD literal-1

{

literal-2 |
data-name-2 f

b

data-name-1

]

r -]
TO0 data-name-3 [EQUNDED] | data-name-n [ROUNDEDJ < J
[ON S1Z¥ ERROR any statement; FJ QTH%RWiSE 1 statementj 1
[| | BILSE f _l J

PROCEDURE DIVISION (cont'd)

Option 3:

APPENDIX B (cont'd)

ADD { literal-1

data-name-1

GIVING data-name-n

literal-2
data-name-2

bl

[ROUNDED |

literal-3

data—name-Bf

|

[ON SIZE ERROR any

} statement]]

OTHERWISE

statement ELSE

[

Option 4:
CORR
ADD { CORRESPONDING data-name-1 TO data-name-2 [ROUNDED]

{ OTHERWISE \
\ ELSE f

[ON SIZE ERROR any statement [

statement] J

ALTER procedure-name-1 TO [PROCEED gg] procedure-name-2

[procedure—name—B [29 PROCEED TO] procedure-name-4 .., }

LOCK
PURGE
RELEASE
NO REWIND

CLOSE file-name-1 [REEL] WITH

[file—name—2...]

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

5 data-name-2 l
COMPUTE data-name-1 [ROUNDED] = numeric-literal
1 arithmetic expression ’

[ON SIZE ERROR any statement [{%%%%Bﬂl§£ } statement]]

Option 1:

COPY ‘"library-name".

Option 2:

COPY "library-name®

. . word-1 word-2
[AELELA&EEQ { data-name-1 } BY { data-name-2 }
L . .
word-3 word-4
dat z BY data-name-U :
L\ data-name-3 | data-name-4 | |]
. literal-1 literal-2
DISTLAY '{data—name-l } [{data—name—z } "’]

[0 { e

mnemonic-name

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

Option 1:

DIVIDE [MOD]

{1iteral—l }

data-namen 1 INTO data-name-2 [ROUNDED]

[ON SIZE ERROR any statement [{:%%g%gﬂlgb } statement]]

Option 2:

; literal-1 BY literal-2
DIVIDE [MOD] {.data—name—lf { INTO } {data-name—2 }

GIVING data-name-3 [ROUNDED]
[REMAINDER data-name-4 [ROUNDED]]

r -
[ON SIZE ERROR any statement [{ %%%%Bﬂlgg } statement]J

END-OF-JOB.
. SYMBOLIC | |
ENTER { COBOI, }

Revised 9/28/70
by PCN 1033099-004 B-13.

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

EXAMINE data-name

ALL literal-1
TALLYING { LEADING { ot l}[REPLACING
UNTIL FIRST ata-name

ALL
LEADING

} { literal-3
[UNTIL] FIRST

data-name-3 BY

REPLACING {

}

{

literal-2 }
data-name-2

o

—

literal-4
data-name-%4

}

EXIT.

Option 1:

non-numeric literal-1

FILL data-name-1l INTO { data-name~2

[PROCEED TO paragraph-name]

}

J

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

Option 2:

- ic 1i- 1-2
FILL data-name-3 FROM {:non numeric litera }

data-name-4

[PROCEED TO paragraph-name]

Option 1:

GO TO [procedure-name] .

Option 2:

GO TO procedure-name-1 procedure-name-2 [procedure—name-B...]

DEPENDING ON data-name.

Option 1:

IF condition-1 statement-~1

Revised 9/28/70
by PCN 1033099-004 B-15

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

Option Z2:

IF condition NEXT SENTENCE ELSE NEXT SENTENCE

{ statement-1 } [{ OTHERWISE } { statement-2 }}

Option 3:

5 literal-1 Z
IF \ldata-name—l IS [EQE] EQUAL TO
arithmetic expression-1 LESS THAN
GREATER THAN
EQUALS
literal-2
data-name-2
arithmetic expression-2
Option 4:
. - ZERO ’l
F ‘{da.i;naﬁg . } Is [NOT] 2 POSITIVE
arithmetic expression ! NEGATIVE 5

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

Option 5:

. “ NUMERTC
1f data-name 1S [NOT] {ALPHABETIC}

Option 6:
IF [ggg} condition-name
Option 1:
MOVE { éii:fii;i—l } TO data-name-2 [data-name-3...]

Option 2:
MOVE \ %%%%FSPONDING } data-name-1 TO data-name-2

B17

APPENDIX B (cont'd)

1PROCEDURE DIVISION (cont'd)

MULTIPLY

{llteral-l l BY data-name-2

literal-2
data-name-1 | -

[GIVING data-name-3] [ROUNDED] [ON SIZE ERROR any

OTHERWISE
statement [{IELSE } statement]]

label. NOTE any comment.

Option 2 - Paragraph NOTE:

NOTE. any comment.

Option 3 - Sentence NOTE:

NOTE any comment.

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

OPEN

WITH LOCK [ACCESS]
INPUT file-name-1 REVERSED [file-name-2...]

WITH NO REWIND

OUTPUT file-name-3 [WITH NO REWIND] [file—name—h —]

I-0
[file—name—G...]]

[0-1I file-name-7 [file—name—S ...] }

Option 1:

THRU
PERFORM procedure—name—l_[{THROUGH } procedure-name-2]

Option 2:

THRU
THROUGH

PERFORM procedure—name—l[{ } procedure-name-~2]

integer-1 1 N
{data—name—l f TIMES

Revised 8/28/69
by PCN 1033099-001 B-19

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

Option 13:

THRU

THROUGH } procedure-name-2]

PERFORM procedure-name-1 [{

UNTIL condition-1

Option 4:

THRU
PERFORM procedure—name—l,[{ THROUGH } procedure-name-2]

index-name-1 index-name-2
VARYING FROM data-name-2 BY
———————— data_name_l e A . _—
(numeric-literal-1

numeric-literal-=2 data-name-4

{data-name'3 } UNTIL condition-1 [AFTER {
(index-name-4 l
FROM % data-name-5 ‘ BY

{’data-name-6 }
. humeric-literal-3 |

numeric-literal-4

index-name-5 } FROM

UNTIL condition-2 AFTER
—_— —_— data-name-"7

data-name-8 numeric-literal-6

index-name-6 N
{ } BY { data-name-9 }
numeric-literal-5

UNTIL condition-3 J

index-name-3

|

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

. WITH LOCK AT END
BEAD Tile-name RECORD {{INTO data—name}][ﬁ{ INVALID KEY }

any imperative statement [{ %%%%EE;§E ‘} any statement]]

RELEASE record-name [FROM data-name]

RETURN file-name RECORD [INTO data-name]

[AT END any statement |

Option 1:

SEARCH data-name-1 | VARYING [index-name-1
[data-name-2

[AT END imperative statement-1]

A imperative statement-2
WHEN condition-1 { NEXT SENTENCE }

P imperative statement-3
[WHEN condition-2 { NEXT SENTENCE } e]

Revised 9/28/70
by PCN 1033099-004 B-21

APPENDIX B (cont'd)

bs]
N
N

PROCEDURE DIVISION (cont'd)

SEARCH ALL data-name-3 [AT END imperative statement-h]

i i tat t-
WHEN condition-3 { imperative statement-5 }

NEXT SENTENCE

SEEK file-name RECORD [WITH KEY CONVERSION]

Option 1:

SET index-name-1 index-name-2
= data-name-1 data-name-2 T

5 index-name-3 l
data-name-3
(1iteral-1

Option 2:

SET index-name-4 [index-name-5 ...]

gld

UP BY data-name-4
OWN BY } literal-2

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

SORT file-name-1

PURGE
RUN ON ERROR

END

ON { DESCENDING

ASCENDING } KEY data-name-1 [data-name-2...]

ON DESCENDING
ASCENDING

} KEY data-name-3 [data-name-4...] :l

THRU
THROUGH

INPUT PROCEDURE IS section-name-1 [{

PURGE
USING file-name-2 LLOCK

RELEASE

} section-name-2 }

OUTPUT PROCEDURE IS section-name-3 { %@ﬁ . } section—name—l#-l
‘[THROUGH
. L.OCK
GIVING flle-name-B[{RELEASE}] S
RUN
SToP {literal }

Revised 9/28/70
by PCN 1033099-004 B-23

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

Option 1:

literal-1 literal-2 :
SUBIRACT {data-name—l } [{data—name—2 } "'] EROM

data-name-m [ROUNDED] [data-name~n [ROUNDED] ...]

OTHERWISE
[ON SIZE ERROR any statement [{ ELSE } statement:]}

Option 2:

) literal-1 literal-2 |
SUBTRACT '{data—name—l } [{ data-name-2 f "'] FRoM

GIVING data-name-n [ROUNDED]

literal-m
data~-name-m

I

ELSE

——r

[ON SIZE ERROR any statement [{ OTHERWISE f statement}]

statement]

J

Option 3:
, CORR
w CORRESPONDING data-name-1 M data-name-2
[ROUNDED] {:ON SIZE ERROR any statement [{ JTHERWISE }
J

R-2L

PROCEDURE DIVISION (cont'd)

Q

iR
TRACE P 2 >

3§

20
UNLOCK record-name
Option 1:

APPENDIX B (cont'd)

USE AFTER STANDARD ERROR PROCEDURE ON

file-name., .
INPUT
OUTPUT
INPUT-OUTPUT
1-0

0~-T

Option 2:
AFTER ENDING
USE { BEFORE } STANDARD {'BEGINNING.}
LABEL PROCEDURE ON INPUT

REEL
FILE

']

{ file-name.

v

OUTPUT

Revised 9/28/70
by PCN 1033099-004 B-25

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

Option J3:

. AT BEND OF PAGE . L ,
USE {iFOR_KEY CONVERSTON } ON file-name-1 [11le—name—2...].
Option 4:

USE ON STALEMATE ON file-name-3.

WATT literal
_— data-name

Option 1:

WRITE record-name [FROM data—name—l]

g integer-1 1 :) 1
. , LINES
{.AFTER } ADVANCING) {datd—name-Z {

BEFORE [TO CHANNEL integer-z]\ J

0 ERROR
— AUXTILIARY

APPENDIX B (cont'd)

PROCEDURE DIVISION (cont'd)

Option 2:

WITH LOCK
FROM data-name

WRITE record-name [{

[INVALID KEY any statement [{ %%g%ﬂﬂl§@ } statement]]

ZIP data-name

Revised 9/28/70
by PCN 1033099-004 B-26A

APPENDIX B (cont'd)

DATA COMMUNICATIONS

PROCEDURE DIVISION (cont'd)

ACCEPT data-name FROM

literal
data~-name-1

CLOSE data—comm—file-nameB

WITH RELEASE
NO DISCONNECT

1

DISABLE file-name [Qﬂ 5

!

BREAK
NO-DATA
DISCONNECT

i

f literal-1 1

DISPLAY | data-name-1 {
literal-3 |
UPON { data-name-3 f

literal-2 1
data~-name-~2 f

K -

ENABLE file-name [PROCEED

TO paragraph-name |

Revised 9/28/70
by PCN 1033099-004 B-27

APPENDIX B (cont'd)

DATA COMMUNICATIONS
PROCEDURE DIVISION (cont'd)

FILL file-name [NO-TIME-OUT] [START-TEXT] [DIAL] [END-TEXT]

WRITE

READ
WRITE-READ
WRITE-TRANS~READ
WRITE-READ-TRANS

[PoLL] [vOICE] [TONE] [STREAM]| WITH

[PROCEED TO paragraph-name |

INTERROGATE [END-TEXT] file-name INTO data-name

READ file-name [INTO record-name] [NO-TIME-OUT| [START-TEXT]

[STREAM] [DIAL] [AT END any statement]

-

OTHERWISE any statement '
ELSE 4 J

Option 1:

WAIT

APPENDIX B (cont'd)
DATA COMMUNICATIONS

PROCEDURE DIVISION (cont'd)

Option 2:

WATIT UNTIL
data-name

literal }

WRITE record-name-1 [FROM record-name-2] [END-TEXT]

[START-TEXT] [STREAM] [DIAL] [VOICE] [TONE] [AT END

any statement| [{-%%%%EEL§@ } any statement }

WRITE-READ record-name-1 [FROM record—name-Z] [NO-TIME-OUT]

[END-TEXT] [START-TEXT] [VOICE] [DIAL] [TONE] [<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>