
• LANGUAGE GRAM
M

AR • LIBRARY CROSS REFERENCE •
• ADVANCED TOPICS • ERROR M

ESSAGES •

a z c ... a=
0 m

B
O

R
L

A
N

D

Turbo C®++

Programme(s Guide

BORLAND INTERNATIONAL. INC. 1800 GREEN HILLS ROAD
P.O. BOX 660001. scans VALLEY. CA 95066-0001

This manual was produced with Sprint®: The Professional Word Processor

Rl

Copyright © 1990 by Borland International. All rights reseNed. All
Borland produC"ls are trademarks or registered trademarks of
Borland International. Inc. Other brand and product names are
trademarks or registered trademarks of their respective holders.

PRINTED IN THE USA.
10 9 8 7 6 5 4 3 2

c 0 N T

Introduction 1
Contents of this manual 1

Chapter 1 The Turbo C++ language
standard 3

Syntax and terminology 4
Lexical and phrase-structure grammars . . 4
Whitespace 5

Line splicing with \ 5
Comments 6

C comments . 6
Nested comments 6
C++ comments 7
Comment delimiters and whitespace . 7

Tokens 7
Keywords 8
Identifiers 9

Naming and length restrictions 9
Identifiers and case sensitivity 9
Uniqueness and scope 10

Constants . 10
Integer constants 11

Decimal constants 12
Octal constants 12
Hexadecimal constants 12
Long and unsigned suffixes 12

Character constants 13
Escape sequences 13
Turbo C++ special two-character
constants . 15
Signed and unsigned char 15
Wide character constants (Conly) . 15

Floating-point constants 16
Floating point constants-data
types 16
Enumeration constants 17

E N T s

String literals . 17
Constants and internal
representation 18
Constant expressions 19

Operator descriptions 20
Unary operators 21
Binary operators 22

Additive operators 22
Multiplicative operators 22
Shift operators 22
Bitwise operators 22
Logical operators 22
Assignment operators 22
Relational operators 22
Equality operators 23
Component selection operators 23
Class-member operators 23
Conditional operator 23
Comma operator 23

Punctuators 23
Brackets . 23
Parentheses 23
Braces 24
Comma 24
Semicolon . 24
Colon 25
Ellipsis . 25
Asterisk (pointer declaration) 25
Equal sign (initializer) 26
Pound sign (preprocessor directive) . 26

Declarations 26
Objects 27
Lvalues 28

Rvalues 28
Types and storage classes 28
Scope 29

Block scope . 29
Function scope 29
Function prototype scope 29
File scope . 29
Class scope (C ++) 29
Scope and name spaces 29

Visibility . 30
Duration . 31

Static duration 31
Local duration 31
Dynamic duration 32

Translation units 32
Linkage 32

Declaration syntax 33
Tentative definitions 34
Possible declarations 34
External declarations and definitions . 36
Type specifiers . 38
Type taxonomy . 38

Type void . 39
The fundamental types 39

Integral types 40
Floating-point types 41
Standard conversions 41
Special char, int, and enum
conversions . 42

Initialization . 42
Arrays, structures, and unions 43

Simple declarations 44
Storage class specifiers 45

Use of storage class specifier auto . . 45
Use of storage class specifier extern . 45
Use of storage class specifier
register . 45
Use of storage class specifier static . 45
Use of storage class specifier
typedef 46

Modifiers ·. 46
The const modifier 48
The interrupt function modifier 48
The volatile modifier 48
The cdecl and pascal modifiers 49

pascal 49
cdecl 50

ii

The pointer modifiers 51
Function type modifiers 51

Complex declarations and declarators . 52
Pointers . 53

Pointers to objects 54
Pointers to functions 54
Pointer declarations 55
Pointers and constants 56
Pointer arithmetic 57
Pointer conversions 58
C++ reference declarations 58

Arrays 58
Functions . 59

Declarations and definitions 59
Declarations and prototypes 60
Definitions . 62
Formal parameter declarations 62
Function calls and argument
conversions . 63

Structures . 64
Untagged structures and typedefs 65
Structure member declarations 65
Structures and functions 66
Structure member access 66
Structure word alignment 67
Structure name spaces 68
Incomplete declarations 68
Bit fields . 69

Unions 70
Union declarations 71

Enumerations 71
Expressions . 73

Expressions and C ++ 75
Evaluation order 76
Errors and overflows 77

Operator semantics 77
Postfix and prefix operators 77

Array subscript operator [] 77
Function call operators () 78
Structure/union member operator
. (dot) 78
Structure/union pointer operator
-> 78
Postfix increment operator++ 78

Postfix decrement operator - - 79
Increment and decrement operators .. 79

Prefix increment operator 79
Prefix decrement operator 79

Unary operators 79
Address operator & 80
Indirection operator* 80
Unary plus operator+ 81
Unary minus operator- 81
Bitwise complement operator - 81
Logical negation operator! 81

The sizeof operator 81
Multiplicative operators 82
Additive operators 83

The addition operator+ 83
The subtraction operator - 83

Bitwise shift operators 83
Bitwise left-shift operator<< 84
Bitwise right-shift operator>> 84

Relational operators 84
The less-than operator < 85
The greater-than operator > 85
The less-than or equal-to operator
<= 85
The greater-than or equal-to operator
>= 86

Equality operators 86
The equal-to operator== 86
The inequality operator!= 87

Bitwise AND operator & 87
Bitwise exclusive OR operator A • • • • • 87
Bitwise inclusive OR operator I 88
Logical AND operator && 88
Logical OR operator I I 88
Conditional operator?: 89
Assignment operators 90

The simple assignment operator= . . 90
The compound assignment
operators . 90

Comma operator, 91
Statements . 91

Blocks 92
Labeled statements 92
Expression statements 93

iii

Selection statements 93
if statements 93
switch statements 94

Iteration statements 95
while statements 95
do while statements 95
for statements 95

Jump statements 96
break statements 97
continue statements 97
goto statements 97
return statements 97

C++ 98
Referencing . 98

Simple references 99
Reference arguments 99

Scope access operator 100
The new and delete operators 101

The operator new with arrays 102
The ::operator new 102
Initializers with the new operator 102

Classes . 102
Class names . 103
Class types . 103
Class name scope 103
Class objects 104
Class member list 104
Member functions 105
The keyword this 105
Inline functions 105
Static members 106
Member scope 107

Member access control 108
Base and derived class access 110

Virtual base classes 112
Friends of classes 112
Constructors and destructors 114
Constructors . 115

The default constructor 115
The copy constructor 116
Overloading constructors 117
Order of calling constructors 117
Class initialization 119

Destructors . 121

When destructors are invoked 122
atexit, #pragma exit, and
destructors . 122
exit and destructors 122
abort and destructors 122
Virtual destructors 123

Overloaded operators 124
Operator functions 125
?ver~oaded operators and
mhentance . 125
Overloading new and delete 125
Overloading unary operators 127
Overloading binary operators 127
Overloading the assignment operator
- 127
Overloading the function call
operator () . 128
Overloading the subscripting operator [
] 128
Overloading the class member access
operator -> . 128

Virtualfunctions 128
Abstract classes 130
C++ scope . 131

Class scope 131
Hiding 132
C++ scoping rules summary 132

Turbo C++ preprocessor directives 133
Null directive# 135
The #define and #undef directives . . . 135

Simple #define macros 135
The #undef directive 136
The -D and -U options 137
Keywords and protected words . . . 137
Macros with parameters 137

File inclusion with #include 140
Header file search with
<header_name> 141
Header file search with
"header_name" 141

Conditional compilation 142
The #If, #ellf, #else, and #end If
conditional directives 142

The operator defined 143

lv

The #ifdef and #ifndef conditional
directives . 143

The #line line control directive 144
The #error directive 145
The #pragma directive 146

#pragma argsused 146
#pragma exit and #pragma startup . 146
#pragma inline 147
#pragma option 148
#pragma saveregs 149
#pragma warn 150

Predefined macros 150
__ CDECL __ 150
__ cplusplus . 151
__ DATE__ . 151
__ FILE__ . 151
__ LINE __ . 151
__ MSOOS __ 151
__ OVERLAY __ 152
__ PASCAL __ 152
__ STDC __ 152
__ TIME __ . 152
__ TURBOC_ _ 152

Chapter 2 Run-time library cross-
reference 153

Reasons to access the run-time library
source code 154
The Turbo C++ header files 155
Library routines by category 157

Classification routines 157
Conversion routines 158
Directory control routines 158
Diagnostic routines 158
Graphics routines 158
Input/output routines 159
Interface routines (DOS, 8086, BIOS) . 160
Manipulation routines 161
Math routines . 161
Memory routines 162
Miscellaneous routines 163
Process control routines 163
Standard routines 163
Text window display routines 163

Time and date routines 164
Variable argument list routines 164

Chapter 3 C++ streams 165
New streams for old 165
Using the 2.0 streams 165

What's a stream? 166
The iostream library 166

streambuf . 167
ios 167

The stream classes 167
The four standard streams 168
Output 168

Built-in types 169
The put and write functions 170
Output formatting 170
Conversion base 171
Width 171
Manipulators 172
Filling and padding 174
User-defined inserters 174

Input 175
Chaining extractors 175
Extractors for built-in types 176

Integral extractors 176
Floating-point extractors 176
Character extractors 176

Putback function 177
User-defined types for input 178

Initializing streams 178
Simple file 1/0 179
I/0 stream error states 181

Using the older streams 183
Guidelines for upgrading to 2.0
streams . 184

Chapter 4 Memory models, floating
point, and overlays

Memory models
The 8086 registers

General-purpose registers
Segment registers
Special-purpose registers
The flags register

187
187
187
188
189
189
189

v

Memory segmentation 190
Address calculation 191

Pointers . 192
Near pointers 192
Far pointers 192
Huge pointers_ 193

The six memory models 194
Mixed-model programming: Addressing
modifiers . 199

Declaring functions to be near or far . 200
Declaring pointers to be near, far, or
huge 201

Pointing to a given segment:offset
address . 202

Using library files 203
Linking mixed modules 203

Floating-point options 204
Emulating the 80x87 chip 205
Using 80x87 code 205
No floating-point code 205
Fast floating-point option 205
The 87 environment variable 206
Registers and the 80x87 207
Disabling floating-point exceptions . . 207

Using complex math 208
Using BCD math 209

Converting BCD numbers 210
Number of decimal digits 210

Turbo C++'s use of RAM 211
Overlays (VROOMM) 211

How overlays work 212
Getting the best out of Turbo C++
overlays . 213

Requirements 214
Using overlays 214

Overlay example 215
Overlaying in the IDE 215

Designing overlaid programs 216
The far call requirement 216
Buffer size . 216
What not to overlay 217
Debugging overlays 217
External routines in overlays 217

Swapping 218

Expanded memory 219
Extended memory 219

Chapter 5 Video functions 221
Some words about video modes 221
Some words about windows and
viewports . 222

What is a window? 222
What is a viewport? 223
Coordinates . 223

Programming in text mode 223
The console 1/0 functions 223

Text output and manipulation 224
Window and mode control 225
Attribute control 225
State query . 226
Cursor shape 227

Textwindows 227
An example . 227

The text_modes type 228
Text colors 229
High-performance output: The directvideo
variable . 230

Programming in graphics mode 230
The graphics library functions 231

Graphics system control 231
A more detailed discussion 233
Drawing and filling 234
Manipulating the screen and
viewport . 236
Text output in graphics mode 237
Color control 239
Pixels and palettes 239
Background and drawing color . . . 240
Color control on a CGA 240

CGA low resolution 240
CGA high resolution 242
CGA palette routines 242

Color control on the EGA and
VGA 242
Error handling in graphics mode . . 243
State query . 243

vi

Chapter 6 Interfacing with assembly
language 247

Mixed-language programming 247
Parameter-passing sequences 247

C parameter-passing sequence 248
Pascal parameter-passing
sequence . 249

Setting up to call .ASM from Turbo
C++

Simplified segment directives
Standard segment directives
Defining data constants and

251
251
251

variables . 253
Defining global and external
identifiers 253

Setting up to call Turbo C++ from
.ASM 255

Referencing functions 255
Referencing data 255

Defining assembly language routines . . 256
Passing parameters 256
Handling return values 257

Register conventions 261
Calling C functions from .ASM
routines . 262
~seudovariables, inline assembly, and
lllterruptfunctions 264

Pseudovariables 265
Inline assembly language 267

Opcodes . 270
String instructions 271
Prefixes 272
Jump instructions 272
Assembly directives 272

Inline assembly references to data and
functions . 272

Inline assembly and register
variables . 273
Inline assembly, offsets, and size
overrides 273

Using C structure members 273
Using jump instructions and labels . 274

Interrupt functions 275

Using low-level practices 276

Chapter 7 Error messages 279
Run-time error messages 280
Compiler error messages 283
Fatal errors 284
Errors 284

vii

Warnings . 318

Appendix A ANSI implementation-
specific standards 327

Index 341

T A B

1.1: All Turbo C ++ keywords 8
1.2: Turbo C++ extensions to ANSI C 8
1.3: Keywords specific to C++ 8
1.4: Turbo C++ register pseudovariables .. 9
1.5: Constants-formal definitions 11
1.6: Turbo C++ integer constants without L

orU 13
1.7: Turbo C++ escape sequences 15
1.8: Turbo C++ floating constant sizes and

ranges 16
1.9: Data types, sizes, and ranges 19
1.10: Turbo C++ declaration syntax 35
1.11: Turbo C++ declarator syntax 36
1.12: Turbo C++ class declarations (C++

only) 37
1.13: Declaring types 39
1.14: Integral types40
1.15: Methods used in standard arithmetic

conversions 42
1.16: Turbo C++ modifiers 47
1.17: Complex declarations 53
1.18: External function definitions 62

viii

L E s

1.19: Turbo C++ expressions .•.......... 74
1.20: Associativity and precedence of Turbo

C++ operators 75
1.21: Bitwise operators truth table 87
1.22: Turbo C++ statements 92
1.23: Turbo C++ preprocessing directives

syntax 134
3.1: Manipulators 173
3.2: ios error bits 182
3.3: Current stream state member

functions 182
4.1: Memory models 198
4.2: Pointer results 200
6.1: Assembly language file format 252
6.2: Identifier replacements and memory

models 252
6.3: Pseudovariables 266
6.4: Opcode mnemonics 271
6.5: String instructions 272
6.6: Jump instructions 272
A.1: Identifying diagnostics in Turbo

C++ 327

F G

1.1: Internal representations of data types .19
4.1: 8086 registers 188
4.2: Flags register of the 8086 189
4.3: Tiny model memory segmentation .. 195
4.4: Small model memory segmentation .196
4.5: Medium model memory

segmentation 196

u

Ix

R E s

4.6: Compact model memory
segmentation 197

4.7: Large model memory segmentation .197
4.8: Huge model memory segmentation .198
4.9: Memory maps for overlays 213
5.1: A window in 80x25 text mode 228

N T R

Getting started provides an
overview of the entire Turbo

C++ documentation set.
Read the Introduction and
Chapter 2 In that book for

information on how to most
effectively use the Turbo C++

manuals.

0 D u c T 0 N

This manual contains materials for the advanced programmer. If
you already know how to program well (whether in C or another
language), this manual is for you. It provides a language refer­
ence, a cross-reference to the run-time library, and programming
information on the C++ streams, memory models, floating point,
overlays, video functions, assembly language interfacing, and the
run-time and compiler error messages.

Read Getting Started if:

1. You have never programmed in any language.

2. You have programmed, but not in C, and you would like an
introduction to the C language.

3. You are looking for information on how to install Turbo C++.

Use the User's Guide for reference information on the Turbo C++
integrated environment (including the editor), the project
manager, the command-line compiler, utilities that come with
Turbo C++, and the Turbo Editor Macro Language.

The Library Reference contains an alphabetical listing of all of
Turbo C++'s functions and global variables.

Contents of this manual

Introduction

Chapter 1 : The Turbo C++ language standard describes the Turbo
C++ language. Any differences from the ANSI C standard are
noted here. This chapter includes a language reference and syntax
for C and C++.

Chapter 2: Run-time library cross-reference provides some
information on the source code for the run-time library, lists and
describes the header files, and provides a cross-reference to the

2

run-time library, organized by subject. For example, if you want
to find out which functions relate to graphics, you would look in
this chapter under the topic "Graphics."

Chapter 3: C++ streams tells you how to use the C++ streams
library.

Chapter 4: Memory models, floating point, and overlays covers
memory models, mixed-model programming, floating-point
concerns, and overlays.

Chapter 5: Video functions is devoted to handling text and
graphics in Turbo C++.

Chapter 6: Interfacing with assembly language tells how to write
assembly language programs so they work well when called from
Turbo C++ programs.

Chapter 7: Error messages lists and explains all run-time and
compiler-generated fatal errors, errors, and warnings, and
suggests possible solutions.

Appendix A: ANSI implementation-specific standards describes
those aspects of the ANSI C standard that have been loosely
defined or undefined by ANSI. These aspects will vary, then,
according to each implementation. This appendix tells how Turbo
C++ operates with respect to each of these aspects.

Turbo C++ Programmer's Gulde

c H A p T E R

l

The Turbo C++ language standard

This chapter provides a detailed programmer's reference guide to
the Turbo C++ language. It is not a language tutorial, but rather a
formal description of the C and C++ languages as implemented in
Turbo C++. The chapter provides both lexical and phrase
structure grammars, together with details of the preprocessor
directives available. We've used a modified Backus-Naur notation
to indicate syntax, supplemented where necessary by brief
explanations and program examples.

Turbo C++ implements the ANSI C standard developed by Tech­
nical Committee X3Jl 1 between June 1983 and December 1988,
with several extensions as indicated in the text. You can set
options in the compiler to warn you if any such extensions are
encountered. You can also set the compiler to treat the Turbo C++
extension keywords as normal identifiers (see Chapter 4, "The
command-line compiler," in the User's Guide).

There are also "conforming'' extensions provided via the #pragma
directives offered by ANSI C for handling nonstandard,
implementation-dependent features.

Turbo C++ is also a full implementation of AT&T's C++ version
2.0, the object-oriented superset of C developed by Bjame
Stroustrup of AT&T Bell Laboratories. In addition to offering
many new features and capabilities, C++ often veers from C by
small or large amounts. We've made note of these differences
throughout this chapter. All the Turbo C++ language features

Chapter 1, The Turbo C++ language standard 3

derived from C++ are discussed in greater detail starting on page
98.

Syntax and terminology

Syntactic definitions consist of the name of the nonterminal being
defined, followed by a colon (:). Alternatives usually follow on
separate lines, but a single line of alternatives can be used if pre­
fixed by the phrase "one of." For example,

external-definition:
function-definition
declaration

octal-digit: one of
01234567

Optional elements in a construct are printed within angle
brackets:

integer-suffix:
unsigned-suffix <long-suffix>

Throughout this chapter, the word "argument" is used to mean
the actual value passed in a call to a function. "Parameter'' is used
to mean the variable defined in the function header to hold the
value.

Lexical and phrase-structure grammars

Pages 5 through 58 cover
Turbo C++s /ex/cal grammar:

pages 58 through 98 cover
the elements of Turbo C++s

phrase structure grammar.

4

Lexical grammar is concerned with the different categories of
word-like units, known as tokens, recognized by a language.
Phrase structure grammar details the legal ways in which tokens
can be grouped together to form expressions, statements, and
other significant units.

The tokens in Turbo C++ are derived from a series of operations
performed on your programs by the compiler and its preproces­
sor.

A Turbo C++ program starts life as a sequence of ASCII
characters representing the source code, created by keystrokes
using a suitable text editor (such as the Turbo C++ editor). The
basic program unit in Turbo C++ is the file. This usually

Turbo C++ Programmer's Gulde

Whitespace

Line splicing
with\

corresponds to a named DOS file located in RAM or on disk and
having the extension .C or .CPP.

The preprocessor first scans the program text for special prepro­
cessor directives (see page 133). For example, the directive #include
<inc_file> adds (or includes) the contents of the file inc_file to the
program before the compilation phase. The preprocessor also
expands any macros found in the program and include files.

In the tokenizing phase of compilation, the source code file is
parsed (that is, broken down) into tokens and whitespace. White­
space is the collective name given to spaces (blanks), horizontal
and vertical tabs, newline characters, and comments. Whitespace
can serve to indicate where tokens start and end, but beyond this
function, any surplus whitespace is discarded. For example, the
two sequences

int i; float f;

and

int i ;
float f;

are lexically equivalent and parse identically to give the six
tokens:

int i ; float f ;

The ASCII characters representing whitespace can occur within
literal strings, in which case they are protected from the normal
parsing process; in other words, they remain as part of the string:

char name [] = "Borland International";

parses to seven tokens, including the single literal-string token
"Borland International".

A special case occurs if the final newline character encountered is
preceded by a backslash(\). The backslash and new line are both
discarded, allowing two physical lines of text to be treated as one
unit.

"Borland \

Chapter 7, The Turbo C++ language standard 5

6

Comments

International"

is parsed as "Borland International" (see page 17, "String literals,"
for more information).

Comments are pieces of text used to annotate a program. Com­
ments are for the programmer's use only; they are stripped from
the source text before parsing.

There are two ways to delineate comments: the traditional C
method and the C++ method. Both are supported by Turbo C++,
with an additional, optional extension permitting nested com­
ments. You can mix and match either kind of comment in both C
and C++ programs.

C comments A traditional C comment is any sequence of characters placed
after the symbol pair/*. The comment terminates at the first occur­
rence of the pair*/ following the initial/*. The entire sequence, in­
cluding the four comment delimiter symbols, is replaced by one
space after macro expansion. Note that some C nnplementations
remove comments without space replacements.

Turbo C++ does not support the non-portable token pasting
strategy using/**/. Token pasting in Turbo C++ is performed with
the ANSI-specified pair##, as follows:

#define VAR{i, j) {i/**/j)
#define VAR(i,j) (iUj)
#define VAR(i, j) (i U j)

In Turbo C++,

/* won't work */
/* OK in Turbo C++ */
/* Also OK */

int /* declaration */ i /* counter */;

parses as

int i

to give the three tokens: int i ;

Nested comments ANSI C doesn't allow nested comments. Attempting to comment
out the preceding line with

/* int /* declaration */ i /* counter */; */

fails, since the scope of the first/* ends at the first*/. This gives

i ; */

Turbo C++ Programmer's Gulde

C++ comments
You can also use 11 to create

comments in C code. This is
specific to Turbo C++.

Comment delimiters
and whitespace

Tokens

which would generate a syntax error.

By default, Turbo C++ won't allow nested comments, but you can
override this with compiler options. You can enable nested com­
ments with the -C option (the command-line compiler) or via the
OICISource Options menu in the integrated environment.

C++ allows a single-line comment using two adjacent slashes
(//).The comment can start in any position, and extends until the
next new line:

class X { //this is a comment
• . . } i

In rare cases, some whitespace before/* and//, and after*/,
although not syntactically mandatory, can avoid portability
problems. For example, this C++ code

inti= j//* divide by k*/k;
+m;

parses as int i = j +m; not as

int i = j/k;
+m;

as expected under the traditional C convention. The more legible

int i = j/ /* divide by k*/ k;
+m;

avoids this problem.

Turbo C++ recognizes six classes of tokens: keywords, identifiers,
constants, string-literals, aperators, and punctuators (also known as
separators). The formal definition of a token is as follows:

token:
keyword
identifier
constant
string-literal
operator
punctuator

Chapter 7, The Turbo C++ language standard 7

Keywords

Table l.l
All Turbo C++ keywords

Table l.2
Turbo C++ extensions to ANSI

c

Table 1.3
Keywords specific to C++

8

As the source code is parsed, tokens are extracted in such a way
that the longest possible token from the character sequence is
selected. For example, external would be parsed as a single
identifier, rather than as the keyword extern followed by the
identifier al.

Keywords are words reserved for special purposes and must not
be used as normal identifier names. The following two tables list
the Turbo C++ keywords. You can use command-line compiler
options (or options in the IDE) to select ANSI keywords only,
UNIX keywords, and so on. See chapters 1, "The IDE reference,"
and 4, "The command-line compiler," both in the User's Guide, for
information on these options.

asm _ds
auto else
break en um
case _es
catch _export
cdecl extern
char far
class float
con st for
continue friend
_cs goto
default huge
delete if
do inline
double int

cdecl _export
_cs far
_ds huge
_es interrupt

catch friend
class inline
delete new

interrupt
_loadds
long
near
new
operator
pascal
private
protected
public
register
_regparam
return
_saveregs
_seg

_loadds
near
pascal
_regparam

operator
private
protected

short
signed
sizeof
_ss
static
struct
switch
template
this
typedef
union
unsigned
virtual
void
volatile
while

_saveregs
_seg
_ss

public
template
this
virtual

Turbo C++ Programmer's Guide

Table 1.4
Turbo C++ register

pseudovariables

Identifiers

Naming and length
restrictions

Note that Identifiers in C++
programs are significant to

any length.

Identifiers and case
sensitivity

_AH _BL _CL
_AL _BP _ex
_AX _BX _DH
- BH _CH _DI

The formal definition of an identifier is as follows:

identifier:
nondigit
identifier nondigit
identifier digit

nondigit: one of

abed ef gh ij kl mn opqrs tu vw xyz_

DL - DX -
FLAGS

-SI
-SP
-

A BCDEFGHIJKLMNOPQRSTUVWXY Z

digit: one of

0 1 2 3 4 5 6 7 8 9

Identifiers are arbitrary names of any length given to classes, ob­
jects, functions, variables, user-defined data types, and so on.
Identifiers can contain the letters A to Zand a to z, the underscore
character U, and the digits 0 to 9. There are only two restrictions:

1. The first character must be a letter or an underscore.

2. By default, Turbo C++ recognizes only the first 32 characters
as significant. The number of significant characters can be
reduced by menu and command-line options, but not
increased. Use the -in TCC option or the integrated
environment's OICISlldentifier Length menu option, where 1
<= n <=32.

Turbo C++ identifiers are case sensitive, so that Sum, sum, and
suM are distinct identifiers.

Global identifiers imported from other modules follow the same
naming and significance rules as normal identifiers. However,
Turbo C++ offers the option of suspending case sensitivity to
allow compatibility when linking with case-insensitive languages.
By checking the Options I Linker I Case-Sensitive Link box in the
Linker dialog box, or using the /C command-line switch with

Chapter 1, The Turbo C++ language standard 9

TLINK, you can ensure that global identifiers are case insensitive.
Under this regime, the globals Sum and sum are considered
identical, resulting in a possible "Duplicate symbol" warning
during linking.

An exception to these rules is that identifiers of type pascal are
always converted to all uppercase for linking purposes.

Uniqueness and scope Although identifier names are arbitrary (within the rules stated),
errors result if the same name is used for more than one identifier
within the same scope and sharing the same name space. Duplicate
names are always l~gal for different name spaces regardless of
scope. The rules are covered in the discussion on scope starting on
page29.

Constants

10

Constants are tokens representing fixed numeric or character val­
ues. Turbo C++ supports four classes of constants: floating point,
integer, enumeration, and character.

The data type of a constant is deduced by the compiler using such
clues as numeric value and the format used in the source code.
The formal definition of a constant is shown in the following
table:

Turbo C++ Programmer's Guide

Table 1.5: Constants-formal definitions

constant:
floating-constant
integer-constant
enumeration-constant
character-constant

floating-constant:
fractional-constant <exponent-part> <floating­

suffiX>
digit-sequence exponent-part <fl.oating-suffix>

fractional-constant:
<digit-sequence> . digit-sequence
digit~sequence .

exponent-part:
e <Sign> digit-sequence
E <sign> digit-sequence

sign: one of
+-

digit-sequence:
digit
digit-sequence digit

floating-suffix: one of
f l F L

integer-constant:
decimal-constant <integer-suffix>
octal-constant <integer-suffiX>
hexadecimal-constant <integer-suffix>

decimal-constant:
nonzero-digit
decimal-constant digit

octal-constant:
0
octal-constant octal-digit

hexadecimal-constant:
0 x hexadecimal-digit

0 X hexadecimal-digit
hexadecimal-constant hexadecimal-digit

nonzero-digit: one of
1 2 3 4 5 6 7 8 9

octal-digit: one of
0 1 2 3 4 5 6 7

hexadecimal-digit: one of
0 1 2 3 4 5 6 7 8 9
abcdef
ABCDEF

integer-suffix:
unsigned-suffix <long-suffix>
long-suffix <unsigned-suffix>

unsigned-suffix: one of
uU

long-suffix: one of
l L

enumeration-constant:
identifier

character-constant:
c-char-sequence

c-char-sequence:
c-char
c-char-sequence c-char

c-char:
Any character in the source character set except
the single-quote('), backslash (\),or newline
character escape-sequence.

escape-sequence: one of

\"
\a
\o
\t

\'
\b
\oo
\v

\?
\f
\ooo
\Xh ...

\\
\n
\r
\xh ...

Integer constants Integer constants can be decimal (base 10), octal (base 8) or hexa­
decimal (base 16). In the absence of any overriding suffixes, the
data type of an integer constant is derived from its value, as
shown in Table 1.6. Note that the rules vary between decimal and
nondecimal constants. ·

Chapter 1, The Turbo C++ language standard 11

12

Decimal constants

Decimal constants from 0 to 4,294,967,295 are allowed. Constants
exceeding this limit will generate an error. Decimal constants
must not use an initial zero. An integer constant that has an initial
zero is interpreted as an octal constant. Thus,

int i = 10; /*decimal 10 */
int i = 010; /*decimal 8 */
int i = O; /*decimal 0 = octal O! */

Negative constants are simply unsigned constants with the unary
minus operator.

Octal constants

All constants with an initial zero are taken to be octal. If an octal
constant contains the illegal digits 8 or 9, an error is reported.
Octal constants exceeding 037777777777 will generate an error.

Hexadecimal constants

All constants starting with Ox (or OX) are taken to be hexadecimal.
Hexadecimal constants exceeding OxFFFFFFFF will generate an
error.

Long and unsigned suffixes

The suffix L (or l) attached to any constant forces it to be repre­
sented as a long. Similarly, the suffix U (or u) forces the constant
to be unsigned. It is unsigned long if the value of the number
itself is greater than decimal 65,535, regardless of which base is
used. You can use both L and U suffixes on the same constant in
any order or case: ul, lu, UL, and so on.

The data type of a constant in the absence of any suffix (U, u, L, or
l) is the first of the following types that can accommodate its
value:

decimal

octal

hexadecimal

int, long int, unsigned long int

int, unsigned int, long int, unsigned long int

int, unsigned int, long int, unsigned long int

If the constant has a U or u suffix, its data type will be the first of
unsigned int, unsigned long int that can accommodate its value.

Turbo C++ Programmer's Guide

Table 1.6
Turbo C++ integer constants

without L or U

If the constant has an Lor l suffix, its data type will be the first of
long int, unsigned long int that can accommodate its value.

If the constant has both u and l suffixes (ul, lu, W, lU, uL, Lu, LU,
or UL), its data type will be unsigned long int.

Table 1.6 summarizes the representations of integer constants in
all three bases. The data types indicated assume no overriding L
or U suffix has been used.

Decimal constants

Oto 32,767
32,768 to 2,147,483,647

2,147,483,648 to 4,294,967,295

> 4294967295

Octal constants

00 to 077777
0100000 to 0177777

02000000 to 017777777777
020000000000 to 037777777777

> 037777777777

Hexadecimal constants

OxOOOO to Ox7FFF
Ox8000 to OxFFFF

OxlOOOO to Ox7..,.,FF F""'"'.b'F F F
Ox80000000 to OxFFFFFFFF

> OxFFFFFFFF

int
long
unsigned long

Generates an error.

int
unsigned int
long
unsigned long

Generates an error.

int
unsigned int
long
unsigned long

Generates an error.

Character constants A character constant is one or more characters enclosed in single
quotes, such as 'A1 , '=', '\n'. In C, single character constants
have data type int; they are represented internally with 16 bits,
with the upper byte zero or sign-extended. In C++, a character
constant has type char. Multicharacter constants in both C and
C++ have data type int.

Escape sequences

The backslash character(\) is used to introduce an escape sequence,
allowing the visual representation of certain nongraphic charac­
ters. For example, the constant \n is used for the single newline
character.

A backslash is used with octal or hexadecimal numbers to repre­
sent the ASCII symbol or control code corresponding to that val-

Chapter 7, The Turbo C++ language standard 13

14

ue; for example, '\03' for Ctrl-C or '\x3F' for the question mark.
You can use any string of up to three octal or any number of
hexadecimal numbers in an escape sequence, provided that the
value is within legal range for data type char (0 to Oxff for Turbo
C++). Larger numbers generate the compiler error, ''Numeric con­
stant too large." For example, the octal number \777 is larger than
the maximum value allowed, \377, and will generate an error.
The first nonoctal or nonhexadecimal character encountered in an
octal or hexadecimal escape sequence marks the end of the
sequence.

Originally, Turbo C allowed only three digits in a hexadecimal
escape sequence. The new ANSI C rules adopted in Turbo C
version 2.0 and in Turbo C++ might cause problems with old code
that assumes only the first three characters are converted. For ex­
ample, using Turbo C 1.x to define a string with a bell (ASCII 7)
followed by numeric characters, a programmer might write:

printf ("\x0072. lA Simple Operating System");

This is intended to be interpreted as \x007 and "2.lA Simple
Operating System". However, Turbo C++ (and Turbo C version
2.0) compile it as the hexadecimal number \x0072 and the literal
string ".lA Simple Operating System".

To avoid such problems, rewrite your code like this:

printf("\x007" 11 2.lA Simple Operating System");

Ambiguities may also arise if an octal escape sequence is followed
by a nonoctal digit. For example, because 8 and 9 are not legal oc­
tal digits, the constant \258 would be interpreted as a two­
character constant made up of the characters \25 and 8.

The next table shows the available escape sequences.

Turbo C++ Programmer's Gulde

Table 1.7
Turbo C++ escape

sequences

The I I must be used to
represent a real ASCII

backslash, as used in DOS
paths.

Sequence Value Char What it does

\a Ox07 BEL Audible bell
\b Ox08 BS Backspace
\f OxOC FF Formfeed
\n OxOA LF Newline (linefeed)
\r OxOD CR Carriage return
\t Ox09 HT Tab (horizontal)
\v OxOB VT Vertical tab
\\ Ox5c \ Backslash
\' Ox27 Single quote (apostrophe)
\" Ox22 Double quote
\? Ox3F ? Question mark
\0 any 0 =a string of up to three octal

digits
\xH any H = a string of hex digits
\XH any H = a string of hex digits

Turbo C++ special two-character constants

Turbo C++ also supports two-character constants (for example,
'An', '\n \t', and '\007\0071). These constants are represented
as 16-bit int values, with the first character in the low-order byte
and the second character in the high-order byte. These constants
are not portable to other C compilers.

Signed and unsigned char

In C, one-character constants, such as 'A 1 , '\t', and' \0071 , are
also represented as 16-bit int values. In this case, the low-order
byte is sign extended into the high byte; that is, if the value is
greater than 127 (base 10), the upper byte is set to -1 (=OxFF). This
can be disabled by declaring that the default char type is un­
signed (use the-K TCC option or choose Unsigned Characters in
the Options I Compiler I Code Generation menu), which forces the
high byte to be zero regardless of the value of the low byte.

Wide character constants (C only)

A character constant preceded by an L is a wide-character con­
stant of data type wchar_t (an integral type defined in stddef.h).
For example,

x = L I AB';

Chapter 7, The Turbo C++ language standard 15

Floating-point
constants

Table 1.8
Turbo C++ floating constant

sizes and ranges

16

A floating constant consists of six parts:

• decimal integer
•decimal point
• decimal fraction
• e or E and a signed integer exponent (optional)
•type suffix: for For l or L (optional)

You can omit either the decimal integer or the decimal fraction
(but not both). You can omit either the decimal point or the letter e
(or E) and the signed integer exponent (but not both). These rules
allow for conventional and scientific (exponent) notations.

Negative floating constants are taken as positive constants with
the unary operator minus(-) prefixed.

Examples:

Constant

23.45e6
.0
0.
1.
-1.23
2e-5
3E+10
.09E34

Value

23.45x106

0
0
1.0 x 10° = 1.0
-1.23
2.0 x 10-s
3.0 x 1010

0.09x1034

Floating point constants-data types

In the absence of any suffixes, floating-point constants are of type
double. However, you can coerce a floating constant to be of type
float by adding an for F suffix to the constant. Similarly, the suffix
l or L forces the constant to be data type long double. The next
table shows the ranges available for float, double, and long
double.

Type Size (bits) Range

float 32 3.4 x 10-38 to 3.4 x 1038

double 64 1.7 x 10-308 to 1.7 x 10308

long double 80 3.4 x 10-4932 to 1.1 x 1Q4932

Turbo C++ Programmer's Guide

See page 71 for a detailed
look at enum declarations.

Enumeration constants

Enumeration constants are identifiers defined in enum type declar­
ations. The identifiers are usually chosen as mnemonics to assist
legibility. Enumeration constants are integer data types. They can
be used in any expression where integer constants are valid. The
identifiers used must be unique within the scope of the enum
declaration.

The values acquired by enumeration constants depend on the for­
mat of the enumeration declaration and the presence of optional
initializers. In this example,

enum team { giants, cubs, dodgers };

giants, cubs, and dodgers are enumeration constants of type team
that can be assigned to any variables of type team or to any other
variable of integer type. The values acquired by the enumeration
constants are

giants = O, cubs = 1, dodgers = 2

in the absence of explicit initializers. In the following example,

enum team { giants, cubs=3, dodgers =giants + 1);

the constants are set as follows:

giants = O, cubs = 3, dodgers = 1

The constant values need not be unique:

enum team { giants, cubs = 1, dodgers =cubs - 1 };

Negative initializers are allowed.

String literals String literals, also known as string constants, form a special cate­
gory of constants used to handle fixed sequences of characters. A
string literal is of data type array of char and storage class static,
written as a sequence of any number of characters surrounded by
double quotes:

"This is literally a string!"

The null (empty) string is written "".

The characters inside the double quotes can include escape
sequences (see page 13). This code, for example,

"\t\t\"Name\"\\\tAddress\n\n"

prints out like this:

Chapter 1, The Turbo C++ language standard 17

Constants and internal
representation

18

"Name"\ Address

"Name" is preceded by two tabs; Address is preceded by one tab.
The line is followed by two new lines. The \" provides interior
double quotes.

A literal string is stored internally as the given sequence of charac­
ters plus a final null character ('\0'). A null string is stored as a
single '\0 1 character.

Adjacent string literals separated only by whitespace are concate­
nated during the parsing phase. In the following example,

#include <stdio.h>

main{)
{

char *p;

p = "This is an example of how Turbo Ct+"
" will automatically\ndo the concatenation for"
" you on very long strings, \nresulting in nicer"
" looking programs.";

printf {p);

The output of the program is

This is an example of how Turbo Ct+ will automatically
do the concatenation for you on very long strings,
resulting in nicer looking programs.

You can also use the backslash(\) as a continuation character in
order to extend a string constant across line boundaries:

puts{"This is really\
a one-line string");

ANSI C acknowledges that the size and numeric range of the basic
data types (and their various permutations) are implementation
specific and usually derive from the architecture of the host com­
puter. For Turbo C++, the target platform is the IBM PC family
(and compatibles), so the architecture of the Intel 8088 and 80x86
microprocessors governs the choices of inner representations for
the various data types. The next table lists the sizes and resulting
ranges of the data types for Turbo C++. See page 39 for more
information on these data types. Figure 1.1 shows how these types
are represented internally.

Turbo C++ Programmer's Guide

Table 1.9: Data types. sizes. and ranges

Size
Type (bits) Range Sample applications

unsigned char 8 0 to 255 Small numbers and full PC character set

char 8 -128to127 Very small numbers and ASCII characters

en um 16 -32,768 to 32,767 Ordered sets of values

unsigned int 16 0 to 65,535 Larger numbers and loops

short int 16 -32,768 to 32,767 Counting, small numbers, loop control

int 16 -32,768 to 32,767 Counting, small numbers, loop control

unsigned long 32 0 to 4,294,967,295 Astronomical distances

long 32 -2,147,483,648 to 2,147,483,647 Large numbers, populations

float 32 3.4 x 10-38 to 3.4 x lQ38 Scientific (7-digit precision)

double 64 1.7x10-308 to 1.7x1Q308 Scientific (15-digit precision)

long double 80 3.4 x 10-4932to1.1x104932 Financial (19-digit precision)

near pointer 16 Not applicable Manipulating memory addresses

far pointer 32 Not applicable Manipulating addresses outside current
segment

Figure l.l
Internal representations of

data types

-- Increasing significance

int s magnitude (2's complement)

long int Isl magnitude I (2's complement)
.~,~~~~~~~~

float s e=::nt algnlflcand

.,

double Isl a=::m I slgnlflcand .. .,

slgnlflcand long double H ·*'~.",,, I 11
~!=-"-~~--,~~ .. !-:---~~~~~~~~~~~~~~-!

s = Sign bit (O = positive, 1 = negative)

Position of Implicit binary point

Integer bit of signlficand:

Stored in long double
Implicit (always 1) in float , double

Exponent bias (normalized values):

float : 127 (7FH)

i!.0n':ib1~~ub1e , 1 ~~:anm~H>

Chapter 7, The Turbo C++ language standard 19

----------- -- ----·--------··

Constant expressions A constant expression is an expression that always evaluates to a
constant (and it must evaluate to a constant that is in the range of
representable values for its type). Constant expressions are evaluated
just as regular expressions are. You can use a constant expression
anywhere that a constant is legal. The syntax for constant expres­
sions is

constant-expression:
Conditional-expression

Constant expressions cannot contain any of the following operators,
unless the operators are contained within the operand of a sizeof
operator:

• assignment
•decrement
• function call
•comma

Operator descriptions

20

Operators are tokens that trigger some computation when applied to
variables and other objects in an expression. Turbo C++ is especially
rich in operators, offering not only the common arithmetical and
logical operators, but also many for bit-level manipulations, struc­
ture and union component access, and pointer operations (refer­
encing and dereferencing).

~ C++ extensions offer additional operators for accessing class
members and their objects, together with a mechanism for
overloading operators. Overloading lets you redefine the action of any
standard operators when applied to the objects of a given class. In
this section, we confine our discussion to the standard operators of
Turbo C++. Overloading is covered starting on page 124.

After defining the standard operators, we discuss data types and
declarations, and explain how these affect the actions of each
operator. From there we can proceed with the syntax for building
expressions from operators, punctuators, and objects.

The operators in Turbo C++ are defined as follows:

operator: one of

Turbo C++ Programmer's Gulde

The operators # and## are
used only by the preproces-

sor (see page 733).

Unary operators

[] () -> ++
& * +
slzeof % << >> <
> <= >= -- !: "
I && II ?: = *=
I= %= += -= <<= >>=
&: "= I= # ##

And the following operators specific to C++:
.. * ->* ..

Except for [], (),and?:, which bracket expressions, the multicharac­
ter operators are considered as single tokens. The same operator
token can have more than one interpretation; depending on the
context. For example,

A * B
*ptr

A & B

&A
int &

label:
a ? x : y

void func(int n);
a= (b+c)*d;

a, b, c;
func(a, b, c);

a = -b;

Multiplication
Dereference (indirection)

Bitwise AND
Address operation
Reference modifier (C ++)

Statement label
Conditional statement

Function declaration
Parenthesized expression

Comma expression
Function call

-func () {delete a;}
Bitwise negation (one's complement)
Destructor (C++)

&
*
+

++

Address operator
Indirection operator
Unary plus
Unary minus
Bitwise complement (l's complement)
Logical negation
Prefix: preincrement; Postfix: postincrement
Prefix: predecrement; Postfix: postdecrement

Chapter 7, The Turbo C++ language standard 21

Binary operators

Additive operators + Binary plus (addition)
Binary minus (subtraction)

Multiplicative operators * Multiply
Divide

% Remainder

Shift operators << Shift left
>> Shift right

Bitwise operators & Bitwise AND

" Bitwise XOR (exclusive OR)
Bitwise inclusive OR

Logical operators && Logical AND
II Logical OR

Assignment operators = Assignment
*= Assign product
I= Assign quotient
O/o: Assign remainder (modulus)
+= Assign sum
-= Assign difference
<<= Assign left shift
>>= Assign right shift
&= Assign bitwise AND
"= Assign bitwise XOR
I= Assign bitwise OR

Relational operators < Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to

22 Turbo C++ Programmer's Guide

Equality operators

Component selection
operators

Class-member
operators

Conditional operator

!:

->

*
->*

a ?x: y

Equal to
Not equal to

Direct component selector
Indirect component selector

Scope access/resolution
Dereference pointer to class member
Dereference pointer to class member

"if a then x; else y"

Comma operator Evaluate; e.g., a, b, c; from left to right

Punctuators

The operator functions, as well as their syntax, precedences, and
associativities, are covered starting on page 73.

The punctuators (also known as separators) in Turbo C++ are
defined as follows:

punctuator: one of

{](){},;: ... *=#

Brackets [] (open and close brackets) indicate single and multidimensional
array subscripts:

char ch, str[) = "Stan";
int mat[3) [4); /* 3 x 4 matrix */
ch= str[3); /*4th element */

Parentheses () (open and close parentheses) group expressions, isolate condition­
al expressions, and indicate function calls and function parameters:

d = c * (a+ b);

if (d == z) ++x;

func ();
int (*fptr) ();
fptr = func;

Chapter 7. The Turbo C++ language standard

/* override normal precedence */

/* essential with conditional statement */

/* function call, no args */
/* function pointer declaration */
/* no () means func pointer */

23

24

void func2(int n); /* function declaration with args */

Parentheses are recommended in macro definitions to avoid poten­
tial precedence problems during expansion:

#define CUBE (X) ((x) * (X) * (x))

The use of parentheses to alter the normal operator precedence and
associativity rules is covered on page 76.

Braces { } (open and close braces) indicate the start and end of a compound
statement:

if (d == z)

(

++x;
func ();

The closing brace serves as a terminator for the compound statement,
so a ; (semicolon) is not required after the }, except in structure or
class declarations. Often, the semicolon is illegal, as in

if (statement)
(} ; /*illegal semicolon*/

else

Comma The comma(,) separates the elements of a function argument list:

void func(int n, float f, char ch);

The comma is also used as an operator in comma expressions. Mixing
the two uses of comma is legal, but you must use parentheses to
distinguish them:

func(i, j); /*call func with two args */
func ((expl, exp2), (exp3, exp4, exp5)); /* also calls func

with two args! */

Semicolon The semicolon (;)is a statement terminator. Any legal C expression
(including the empty expression) followed by ; is interpreted as a
statement, known as an expression statement. The expression is evalu­
ated and its value is discarded. If the expression statement has no
side effects, Turbo C++ may ignore it.

a + b;
++a;

/* maybe evaluate a + b, but discard value */
/* side effect on a, but discard value of ++a */
/* empty expression = null statement */

Turbo C++ Programmer's Guide

Semicolons are often used to create an empty statement:

for (i = 0; i < n; i++)
(

Colon Use the colon(:) to indicate a labeled statement:

start: x=O;

goto start;

switch (a) (
case 1: puts("One");

break;
case 2: puts("Two");

break;

default: puts("None of the above!");
break;

Labels are covered on page 92.

Ellipsis Ellipsis(. ..) are three successive periods with no whitespace inter­
vening. Ellipsis are used in the formal argument lists of function pro­
totypes to indicate a variable number of arguments, or arguments
with varying types:

void func(int n, char ch, ...);

This declaration indicates that func will be defined in such a way
that calls must have at least two arguments, an int and a char, but
can also have any number of additional arguments.

~ In C ++, you can omit the comma preceding the ellipsis.

Asterisk (pointer
declaration)

The* (asterisk) in a variable declaration denotes the creation of a
pointer to a type:

char *char_ptr; /* a pointer to char is declared */

Pointers with multiple levels of indirection can be declared by indi­
cating a pertinent number of asterisks:

int **int_ptr; /* a pointer to a pointer to an int */
double ***double_ptr; /* a pointer to a pointer to a pointer

to doubles */

Chapter 7, The Turbo C++ language standard 25

You can also use the asterisk as an operator to either dereference a
pointer or as the multiplication operator:

i = *int_ptr;

a = b * 3.14;

Equal Sign (initializer) The= (equal sign) separates variable declarations from initialization
lists:

Pound sign
(preprocessor

directive)

char array[S] = { 1, 2, 31 4, 5 };
int x = 5;

In a C function, no code can precede any variable declarations. In
C++, declarations of any type can appear (with some restrictions) at
any point within the code.

In a C++ function argument list, the equal sign indicates the default
value for a parameter:

int f(int i = 0) { ••• } /*parameter i has default value of
zero */

The equal sign is also used as the assignment operator in
expressions:

a = b + c;
ptr = farmalloc(sizeof(float}*lOO);

The# (pound sign) indicates a preprocessor directive when it occurs
as the first non whitespace character on a line. It signifies a compiler
action, not necessarily associated with code generation. See page 133
for more on the preprocessor directives.

and ## (double pound signs) are also used as operators to perform
token replacement and merging during the preprocessor scanning
phase.

Declarations

26

This section briefly reviews concepts related to declarations: objects,
types, storage classes, scope, visibility, duration, and linkage. A
general knowledge of these is essential before tackling the full
declaration syntax.

Scope, visibility, duration, and linkage determine those portions of a
program that can make legal references to an identifier in order to

Turbo C++ Programmer's Guide

Objects

access its object. Scope is discussed starting on page 29; visibility is
discussed starting on page 30; duration is discussed starting on page
31; and linkage is discussed on page 32.

An object is an identifiable region of memory that can hold a fixed or
variable value (or set of values). (This use of the word object is not to
be confused with the more general term used in object-oriented lan­
guages-see Chapter 5, /1 AC++ primer," in Getting Started.) Each
value has an associated name and type (also known as a data type).
The name is used to access the object. This name can be a simple
identifier, or it can be a complex expression that uniquely "points" to
the object. The type is used

•to determine the correct memory allocation required initially,

• to interpret the bit patterns found in the object during subsequent
accesses,

•and in many type-checking situations to ensure that illegal
assignments are trapped.

Turbo C++ supports many standard (predefined) and user-defined
data types, including signed and unsigned integers in various sizes,
floating point numbers in various precisions, structures, unions,
arrays, and classes. In addition, pointers to most of these objects can
be established and manipulated in various memory models.

The Turbo C++ standard libraries and your own program and
header files must provide unambiguous identifiers (or expressions
derived from them) and types so that Turbo C++ can consistently
access, interpret, and (possibly) change the bit patterns in memory
corresponding to each active object in your program.

Declarations establish the necessary mapping between identifiers
and objects. Each declaration associates an identifier with a data
type. Most declarations, known as defining declarations, also establish
the creation (where and when) of the object, that is, the allocation of
physical memory and its possible initialization. Other declarations,
known as referencing declarations, simply make their identifiers and
types known to the compiler. There can be many referencing declara­
tions for the same identifier, especially in a multifile program, but
only one defining declaration for that identifier is allowed.

Generally speaking, an identifier cannot be legally used in a program
before its declaration point in the source code. Legal exceptions to this

Chapter 7, The Turbo C++ language standard 27

28

Lvalues

rule, known as forward references, are labels, structures, union tags,
and calls to undeclared functions.

An lvalue is an object locator an expression that designates an object.
An example of an lvalue expression is *P, where Pis any expression
evaluating to a nonnull pointer. A modifiable lvalue is an identifier or
expression that relates to an object that can be accessed and legally
changed in memory. A const pointer to a constant, for example, is
not a modifiable lvalue. A pointer to a constant can be changed (but
its dereferenced value cannot).

Historically, the l stood for ''left," meaning that an lvalue could legal­
ly stand on the left (the receiving end) of an assignment statement.
Now only modifiable !values can legally stand to the left of an
assignment statement. For example, if a and b are nonconstant inte­
ger identifiers with properly allocated memory storage, they are both
modifiable lvalues, and assignments such as a= 1; and b =a+ bare
legal.

Rvalues The expression a + b is not an lvalue: a + b = a is illegal because the
expression on the left is not related to an object. Such expressions are
often called rvalues (short for right values).

Types and
storage Classes Associating identifiers with objects requires that each identifier has

at least two attributes: storage class and type (sometimes referred to as
data type). The Turbo C++ compiler deduces these attributes from
implicit or explicit declarations in the source code.

Storage class dictates the location (data segment, register, heap, or
stack) of the object and its duration or lifetime (the entire running
time of the program, or during execution of some blocks of code).
Storage class can be established by the syntax of the declaration, by
its placement in the source code, or by both of these factors.

The type, as explained earlier, determines how much memory is
allocated to an object and how the program will interpret the bit
patterns found in the object's storage allocation. A given data type
can be viewed as the set of values (often implementation-dependent)
that identifiers of that type can assume, together with the set of
operations allowed on those values. The special compile-time opera-

Turbo C++ Programmer's Gulde

Scope

Block scope

Function scope

Function prototype
scope

File scope

Class scope (C++)

Scope and name
spaces

tor, sizeof, lets you determine the size in bytes of any standard or
user-defined type; see page 81 for more on this operator.

The scope of an identifier is that part of the program in which the
identifier can be used to access its object. There are five categories of
scope: block (or local), function, function prototype, file, and class (C++
only). These depend on how and where identifiers are declared.

The scope of an identifier with block (or local) scope starts at the
declaration point and ends at the end of the block containing the
declaration (such a block is known as the enclosing block). Parameter
declarations with a function definition also have block scope, limited
to the scope of the block which defines the function.

The only identifiers having function scope are statement labels. Label
names can be used with goto statements anywhere in the function in
which the label is declared. Labels are declared implicitly by writing
label_name: followed by a statement. Label names must be unique
within a function.

Identifiers declared within the list of parameter declarations in a
function prototype (not part of a function definition) have function
prototype scope. This scope ends at the end of the function
prototype.

File scope identifiers, also known as globals, are declared outside of
all blocks and classes; their scope is from the point of declaration to
the end of the source file.

For now, think of a class as a named collection of members, including
data structures and functions that act on them. Class scope applies,
with some exceptions, to the names of the members of a particular
class. Classes and their objects have many special access and scoping
rules; see pages 102 to 113.

Name space is the scope within which an identifier must be unique.
There are four distinct classes of identifiers in C:

Chapter 7. The Turbo C++ language standard 29

30

structures, classes, and
enumerations are In the

same name space in C++.

Visibility

Visibility cannot exceed
scope, but scope can

exceed visibility.

1. goto label names. These must be unique within the function in
which they are declared.

2. Structure, union, and enumeration tags. These must be unique
within the block in which they are defined. Tags declared outside
of any function must be unique within all tags defined externally.

3. Structure and union member names. These must be unique
within the structure or union in which they are defined. There is
no restriction on the type or offset of members with the same
member name in different structures.

4. Variables, typedefs, and enumeration members. These must be
unique within the scope in which they are defined. Externally
declared identifiers must be unique among externally declared
variables.

The visibility of an identifier is that region of the program source
code from which legal access can be made to the identifier's associ­
ated object.

Scope and visibility usually coincide, though there are circumstances
under which an object becomes temporarily hidden by the appearance
of a duplicate identifier: The object still exists but the original identi­
fier cannot be used to access it until the scope of the duplicate
identifier is ended.

int i; char ch; II auto by default
i = 3;

double i;
i = 3.0e3;

ch = 'A';

i += l;

II inti and char ch in scope and visible

II double i in scope and visible
II int i=3 in scope but hidden
II char ch in scope and visible

II double i out of scope
II inti visible and= 4
II char ch still in scope & visible = 'A'

II int i and char ch out of scope

~Again, special rules apply to hidden class names and class member
names: Special C++ operators allow hidden identifiers to be accessed
under certain conditions (see page 103).

Turbo C++ Programmer's Gulde

Duration
Duration, closely related to storage class, defines the period during
which the declared identifiers have real, physical objects allocated in
memory. We also distinguish between compile-time and run-time
objects. Variables, for instance, unlike typedefs and types, have real
memory allocated during run time. There are three kinds of dura­
tion: static, local, and dynamic.

Static duration Objects with static duration are allocated memory as soon as execu­
tion is underway; this storage allocation lasts until the program
terminates. Static duration objects usually reside in fixed data
segments allocated according to the memory model in force. All
functions, wherever defined, are objects with static duration. All
variables with file scope have static duration. Other variables can be
given static duration by using the explicit static or extern storage
class specifiers.

Local duration

An object with local duration
also has local scope, since it

does not exist outside of its
enclosing block. The con­

verse is not true: A local
scope object can have

static duration.

Static duration objects are initialized to zero (or null) in the absence
of any explicit initializer or, in C++, constructor.

Static duration must not be confused with file or global scope. An
object can have static duration and local scope.

Local duration objects, also known as automatic objects, lead a more
precarious existence. They are created on the stack (or in a register)
when the enclosing block or function is entered. They are deallocated
when the program exits that block or function. Local duration objects
must be explicitly initialized; otherwise, their contents are unpredic­
table. Local duration objects always must have local or function
scope. The storage class specifier auto may be used when declaring
local duration variables, but is usually redundant, since auto is the
default for variables declared within a block.

When declaring variables (for example, int, char, float), the storage
class specifier register also implies auto; but a request (or hint) is
passed to the compiler that the object be allocated a register if possi­
ble. Turbo C++ can be set to allocate a register to a local integral or
pointer variable, if one is free. If no register is free, the variable is
allocated as an auto, local object with no warning or error.

Chapter 1, The Turbo C++ language standard 31

Dynamic duration

Translation units

Linkage

32

Dynamic duration objects are created and destroyed by specific
function calls during a program. They are allocated storage from a
special memory reserve known as the heap, using either standard
library functions such as malloc, or by using the C++ operator new.
The corresponding deallocations are made using free or delete.

The term translation unit refers to a source code file together with any
included files, but less any source lines omitted by conditional
preprocessor directives. Syntactically, a translation unit is defined as
a sequence of external declarations:

translation-unit:
external-declaration
translation-unit external-declaration

external-declaration
function-definition
declaration

The word external has several connotations in C; here it refers to
declarations made outside of any function, and which therefore have
file scope. (External linkage is a distinct property; see the following
section, "Linkage.") Any declaration that also reserves storage for an
object or function is called a definition (or defining declaration). For
more details, see "External declarations and definitions" on page 36.

An executable program is usually created by compiling several inde­
pendent translation units, then linking the resulting object files with
preexisting libraries. A problem arises when the same identifier is
declared in different scopes (for example, in different files), or de­
clared more than once in the same scope. Linkage is the process that
allows each instance of an identifier to be associated correctly with
one particular object or function. All identifiers have one of three
linkage attributes, closely related to their scope: external linkage,
internal linkage, or no linkage. These attributes are determined by
the placement and format of your declarations, together with the
explicit (or implicit by default) use of the storage class specifier static
or extern.

Turbo C++ Programmer's Gulde

Each instance of a particular identifier with external linkage represents
the same object or function throughout the entire set of files and
libraries making up the program. Each instance of a particular
identifier with internal linkage represents the same object or function
only within one file. Identifiers with no linkage represent unique
entities.

External and internal linkage rules are as follows:

1. Any object or file identifier having file scope will have internal
linkage if its declaration contains the storage class specifier static.

For C, if the same identifier appears with both internal and exter­
nal linkage within the same file, the identifier will have internal
linkage. In C++, it will have external linkage.

2. If the declaration of an object or function identifier contains the
storage class specifier extern, the identifier has the same linkage
as any visible declaration of the identifier with file scope. If there
is no such visible declaration, the identifier has external linkage.

3. If a function is declared without a storage class specifier, its link­
age is determined as if the storage class specifier extern had been
used.

4. If an object identifier with file scope is declared without a storage
class specifier, the identifier has external linkage.

The following identifiers have no linkage attribute:

1. any identifier declared to be other than an object or a function (for
example, a typedef identifier)

2. function parameters

3. block scope identifiers for objects declared without the storage
class specifier extern

Declaration syntax

All six interrelated attributes (storage class, type, scope, visibility,
duration, and linkage) are determined in diverse ways by
declarations.

Declarations can be defining declarations (also known simply as defini­
tions) or referencing declarations (sometimes known as nondefining
declarations). A defining declaration, as the name implies, performs
both the duties of declaring and defining; the nondefining

Chapter 7, The Turbo C++ language standard 33

34

Tentative

declarations require a definition to be added somewhere in the
program. A referencing declaration simply introduces one or more
identifier names into a program. A definition actually allocates
memory to an object and associates an identifier with that object.

definitions The ANSI C standard introduces a new concept: that of the tentative
definition. Any external data declaration that has no storage class
specifier and no initializer is considered a tentative definition. If the
identifier declared appears in a later definition, then the tentative
definition is treated as if the extern storage class specifier were
present. In other words, the tentative definition becomes a simple
referencing declaration.

Possible

If the end of the translation unit is reached and no definition has
appeared with an initializer for the identifier, then the tentative
definition becomes a full definition, and the object defined has
uninitialized (zero-filled) space reserved for it. For example,

int x;
int x;

int y;
int y = 4;

int z = 5;
int z = 6;

/*legal, one copy of x is reserved */

/* legal, y is initialized to 4 */

/* not legal, both are initialized definitions */

declarations The range of objects that can be declared includes

•variables
•functions
•classes and class members (C++)
•types
•structure, union, and enumeration tags
• structure members
• union members
• arrays of other types
•enumeration constants
•statement labels
• preprocessor macros

Turbo C++ Programmer's Gulde

The full syntax for declarations is shown in the following tables. The
recursive nature of the declarator syntax allows complex declarators.
We encourage the use of typedefs to improve legibility.

Table 1.10 declaration:
Turbo C++ declaration syntax <.decl-specifiers> <declarator-list>;

asm-declaration
function-declaration
linkage-specification

decl-specifier:
storage-class-specifier
type-specifier
Jct-specifier
friend (C++ specific)
typedef

decl-specifiers:
<.decl-specifiers> decl-specifier

storage-class-specifier:
auto
register
static
extern

Jct-specifier: (C++ specific)
in line
virtual

type-specifier:
simple-type-name
class-specifier
enum-specifier
elaborated-type-specifier
con st
volatile

simple-type-name:
class-name
typedef-name
char

short
int
long
signed
unsigned
float
double
void

elaborated-type-specifier:
class-key identifier
class-key class-name
enum enum-name

class-key: (C++ specific)
class
struct
union

en um-specifier:
enum <identifier> { <enum-list> }

en um-list:
enumerator
enumerator-list , enumerator

enumerator:
identifier
identifier = constant-expression

constant-expression:
conditional-expression

linkage-specification: (C++ specific)
extern string { <declaration-list> }
extern string declaration

declaration-list:
declaration
declaration-list ; declaration

For the following table, note that there are restrictions on the number
and order of modifiers and qualifiers. Also, the modifiers listed are
the only addition to the declarator syntax that are not ANSI C or
C++. These modifiers are each discussed in greater detail starting on
page46.

Chapter 1, The Turbo C++ language standard 35

Table 1.11: Turbo C++ declarator syntax

declarator-list:
init-declarator
declarator-list , init-dedar11tor

init-declar11tor:
declarator <initializer>

declarator:
dname

class-name (C++ specific)
~ class-name (C++ specific)
typedef-name

type-name:
type-Bpl!cifier <abstract-declarator>

abstract-dedarator:
ptr-operator <abstract-declarator>
<abstract-declar11tor> (argument-declar11tion-list) <r:u-qualifier-list>
<abstr11ct-declarator> [<constant-expression>]

modifier-list
ptr-operator declarlltor
declarator (parameter-declaration-list) <ctJ-qualifier-list>
(The <ctJ-qualifier-list> is for C++ only.)

(abstr11ct-dedarator)

argument-declaration-list;
<arg-declaration-list>
arg-declaration-list, --·
<arg-declaration-list> ... (C ++ specific)

declarator [<constant-expression>]
(declarator)

modifier-list:
modifier
modifier-list modifier

modifier:
cdecl
pescel
interrupt
near
far
huge

ptr-operator:
• <cv-qualifier-list>

arg-declarlltion-list:
argument-declaration
arg-declaration-list , argument-declaration

argument-declar11tion:
decl-specifiers declar11tor
decl-specifiers declarator= expression (C++ specific)
decl-specifiers <abstract-declarator>
decl-specifiers <abstract-declarator> =expression (C++ specific)

/ct-definition:
<decl-1lpecifiers> declarator <ctor-initializer> {ct-body

& <cv-qualifier-list> (C++ specific)
class-name:: • <ctJ-qualifier-list> (C++ specific)

fct-body:
compound-statement

cv-qualifier-list:
cv-qualifier <ctJ-qualifier-list>

cv-qualifier
con st
volatile

dname:
name

External
declarations and

definitions

36

initializer:
= expression
= I initializer-list l
(expression-list) (C++ specific)

initializer-list:
expression
initializer-list , expression
I initializer-list <,> l

The storage class specifiers auto and register cannot appear in an
external declaration (see "Translation units," page 32). For each
identifier in a translation unit declared with internal linkage, there
can be no more than one external definition.

An external definition is an external declaration that also defines an
object or function; that is, it also allocates storage. If an identifier
declared with external linkage is used in an expression (other than as
part of the operand of sizeof), there must be exactly one external
definition of that identifier somewhere in the entire program.

Turbo C ++ allows later re-declarations of external names, such as
arrays, structures, and unions, to add information to earlier
declarations. For example,

Turbo C++ Programmer's Gulde

int a[]; II no size
struct mystruct; JI tag only, no member declarators

int a[3] = {1, 2, 3}; // supply size and initialize
struct mystruct {

int i, j;
}; II add member declarators

The following table covers class declaration syntax. Page 98 covers
C++ reference types (closely related to pointer types) in detail.

Table 1.12: Turbo C++ class declarations (C++ only)

class-specifier:
class-head { <member-list>)

class-head:
class-key <identifier> <base-spee>
class-key class-name <base-spec>

member-list:
member-declaration <member-list>
access-specifier: <member-list>

member-declaration:
<decl-specifiers> <member-declarator-list> ;
function-definition <;>
qualified-name ;

member-declarator-list:
member-declarator
member-declarator-list, member-declarator

member-declarator:
declarator <pure-specifier>
<identifier> : constant-expression

pure-specifier:
=0

base-spec:
: base-list

base-list:
base-specifier
base-list , base-specifier

base-specifier:
class-name
virtual <access-specifier> class-name

Chapter 7, The Turbo C++ language standard

access-specifier <Virtual> class-name

access-specifier:
private
protected
public

conversion-function-name:
operator conversion-type-name

conversion-type-name:
type-specifiers <ptr-operator>

ctor-initializer:
: mem-initializer-list

mem-initializer-list:
mem-initializer
mem-initializer , mem-initializer-list

mem-initializer:
class name (<argument-list>)
identifier (<argument-list>)

operator-function-name:
operator operator

operator: one of
new delete sizeof

+ *
&
+= -= *=
&: I= <<
-- != <=
++
[] *

!
I=
>>
>=
->*

% "
= <>
O/o: "=
>>= <<=
&& II
-> ()

37

38

Type specifiers

Type taxonomy

The type specifier with one or more optional modifiers is used to
specify the type of the declared identifier:

inti; II declare i as a signed integer
unsigned char chl, ch2; //declare two unsigned chars

By long-standing tradition, if the type specifier is omitted, type
signed int (or equivalently, int) is the assumed default. However, in
C++ there are some situations where a missing type specifier leads to
syntactic ambiguity, so C++ practice uses the explicit entry of all int
type specifiers.

There are four basic type categories: void, scalar, function, and aggre­
gate. The scalar and aggregate types can be further divided as
follows:

•Scalar: arithmetic, enumeration, pointer, and, in C++, reference
types

•Aggregate: array, structure, union, and, in C++, class types

Types can also be divided into fundamental and derived types. The
fundamental types are void, char, int, float, and double, together
with short, long, signed, and unsigned variants of some of these.
The derived types include pointers and references to other types,
arrays of other types, function types, class types, structures, and
unions.

~ A class object, for example, can hold a number of objects of different
types together with functions for manipulating these objects, plus a
mechanism to control access and inheritance from other classes.

Given any nonvoid type type (with some provisos), you can declare
derived types as follows:

Turbo C++ Programmer's Gulde

Table 1.13
Declaring types

Type void

C++ handles tune() in a
special manner. See

·oeclarations and
prototypes· on page 60 and
code examples on page 6 7.

The fundamental
types

signed and unsigned are
modifiers that can be

applied to the integral types.

type t;

type array[lO];

type*ptr;

type &ref= t;

type func(void);

void func1 (type t);

struct st (type t1; type t2J;

An object of type type

Ten types: array[OJ - array[9]

ptr is a pointer to type

ref is a reference to type (C++)

func returns value of type type

func1 takes a type type parameter

structure st holds two types

And here's how you could declare derived types in a class:

class ct {

type *ptr;
public:

II class ct holds ptr to type plus a function
II taking a type parameter (Ct+)

void func{type*);

void is a special type specifier indicating the absence of any values. It
is used in the following situations:

•An empty parameter list in a function declaration:
int func(void); II func takes no arguments

• When the declared function does not return a value:
void func(int n); II return value

• As a generic pointer: A pointer to void is a generic pointer to
anything:

void *ptr; II ptr can later be set to point to any object

• In typecasting expressions:

extern int errfunc(); II returns an error code

(void) errfunc(); II discard return value

The fundamental type specifiers are built from the following
keywords:

char
double
float

int
long
short

signed
unsigned

From these keywords, you can build the integral and floating-point
types, which are together known as the arithmetic types. The include

Chapter 7, The Turbo C++ language standard 39

40

Integral types

Table 1.14
Integral types

file limits.h contains definitions of the value ranges for all the funda­
mental types.

char, short, Int, and long, together with their unsigned variants, are
all considered integral data types. The integral type specifiers are as
follows, with synonyms listed on the same line:

char, signed char Synonyms if default char set to signed
unsigned char
char, unsigned char Synonyms if default char set to unsigned
signed char
int, signed int
unsigned, unsigned int
short, short int, signed short int
unsigned short, unsigned short int
long, long int, signed long int
unsigned long, unsigned long int

At most, one of signed and unsigned can be used with char, short,
int, or long. If you use the keywords signed and unsigned on their
own, they mean signed int and unsigned int, respectively.

In the absence of unsigned, signed is usually assumed. An exception
arises with char. Turbo C++ lets you set the default for char to be
signed or unsigned. (The default, if you don't set it yourself, is
signed.) If the default is set to unsigned, then the declaration char ch
declares ch as unsigned. You would need to use signed char ch to
override the default. Similarly, with a signed default for char, you
would need an explicit unsigned char ch to declare an unsigned char.

At most, one of long and short can be used with int. The keywords
long and short used on their own mean long int and short Int.

ANSI C does not dictate the sizes or internal representations of these
types, except to insist that short, int, and long form a non-decreasing
sequence with "short<= int <= long." All three types can legally be
the same. This is important if you want to write portable code aimed
at other platforms.

In Turbo C++, the types Int and short are equivalent, both being 16
bits. long is a 32-bit object. The signed varieties are all stored in 2's
complement format using the MSB (most significant bit) as a sign bit:
0 for positive, 1 for negative (which explains the ranges shown in
Table 1.9 on page 19). In the unsigned versions, all bits are used to
give a range of 0 - (2" -1), where n is 8, 16, or 32.

Turbo C++ Programmer's Gulde

Floating-point types The representations and sets of values for the floating-point types are
implementation dependent; that is, each implementation of C is free
to define them. Turbo C++ uses the IEEE floating-point formats. (Ap­
pendix A, "ANSI implementation-specific standards," tells more
about implementation-specific items.)

float and double are 32- and 64-bit floating-point data types, respec­
tively. long can be used with double to declare an 80-bit precision
floating-point identifier: long double test_case, for example.

Table 1.9 on page 19 indicates the storage allocations for the floating­
point types.

Standard conversions When you use an arithmetic expression, such as a+ b, where a and b
are different arithmetic types, Turbo C++ performs certain internal
conversions before the expression is evaluated. These standard con­
versions include promotions of "lower'' types to "higher'' types in the
interests of accuracy and consistency.

Here are the steps Turbo C++ uses to convert the operands in an
arithmetic expression:

1. Any small integral types are converted as shown in Table 1.15.
After this, any two values associated with an operator are either
int (including the long and unsigned modifiers, double, float, or
long double).

2. If either operand is of type long double, the other operand is
converted to long double.

3. Otherwise, if either operand is of type double, the other operand is
converted to double.

4. Otherwise, if either operand is of type float, the other operand is
converted to float.

5. Otherwise, if either operand is of type unsigned long, the other
operand is converted to unsigned long.

6. Otherwise, if either operand is of type long, then the other oper­
and is converted to long.

7. Otherwise, if either operand is of type unsigned, then the other
operand is converted to unsigned.

8. Otherwise, both operands are of type int.

The result of the expression is the same type as that of the two
operands.

Chapter 7, The Turbo C++ language standard 41

Table 1.15
Methods used in standard

arithmetic conversions

Special char, int, and
enum conversions

1he conversions discussed In
this section are specific to

Turbo C++.

Initialization

Type

char

unsigned char
signed char
short
unsigned short
en um

Converts to

int

int
int
int
unsigned int
int

Method

Zero or sign-extended (depends on
default char type)
Zero-filled high byte (always)
Sign-extended (always)
Same value
Same value
Same value

Assigning a signed character object (such as a variable) to an integral
object results in automatic sign extension. Objects of type signed char
always use sign extension; objects of type unsigned char always set
the high byte to zero when converted to int.

Converting a longer integral type to a shorter type truncates the high­
er order bits and leaves low-order bits unchanged. Converting a
shorter integral type to a longer type either sign extends or zero fills
the extra bits of the new value, depending on whether the shorter type
is signed or unsigned, respectively.

Initializers set the initial value that is stored in an object (variables,
arrays, structures, and so on). If you don't initialize an object, and it
has static duration, it will be initialized by default in the following
manner:

If it has automatic storage • to zero if it is of an arithmetic type
duration, its value is

42

Indeterminate. •to null if it is a pointer type

The syntax for initializers is as follows:

initializer
= expression
={initializer-list)<,>)
(expression list)

initializer-list
expression
initializer-list, expression
(initializer-list) <,>)

Rules governing initializers are:

1. The number of initializers in the initializer list cannot be larger
than the number of objects to be initialized.

Turbo C++ Programmer's Guide

Arrays, structures, and
unions

2. The item to be initialized must be an object type or an array of
unknown size.

3. All expressions must be constants if they appear in one of these
places:

a. in an initializer for an object that has static duration (not
required for C++)

b. in an initializer list for an array, structure, or union (expres­
sions using sizeof are also allowed)

4. If a declaration for an identifier has block scope, and the identifier
has external or internal linkage, the declaration cannot have an
initializer for the identifier.

5. If there are fewer initializers in a brace-enclosed list than there are
members of a structure, the remainder of the structure is initial­
ized implicitly in the same way as objects with static storage
duration.

Scalar types are initialized with a single expression, which can option­
ally be enclosed in braces. The initial value of the object is that of the
expression; the same constraints for type and conversions apply as for
simple assignments.

For unions, a brace-enclosed initializer initializes the member that first
appears in the union's declaration list. For structures or unions with
automatic storage duration, the initializer must be one of the
following:

•an initializer list as described in the following section
•a single expression with compatible union or structure type. In this

case, the initial value of the object is that of the expression.

You initialize arrays and structures (at declaration time, if you like)
with a brace-enclosed list of initializers for the members or elements
of the object in question. The initializers are given in increasing array
subscript or member order. You initialize unions with a brace­
enclosed initializer for the first member of the union. For example,
you could declare an array days, intended to count how many times
each day of the week appears in a month (and assuming that each day
will appear at least once), as follows:

int days[7] = (1, 1, 1, 1, 1, 1, 1)

Use these rules to initialize character arrays and wide character
arrays:

Chapter 7, The Turbo C++ language standard 43

44

Simple

1. You can initialize arrays of character type with a literal string,
optionally enclosed in braces. Each character in the string, in­
cluding the null terminator, initializes successive elements in the
array. For example, you could declare

char name[] = { "Unknown");

which sets up an eight-element array, whose elements are 'U' (for
name[O]), 'n' (for name[1]), and so on (and including a null
terminator).

2. You can initialize a wide character array (one that is compatible
with wchar_t) by using a wide string literal, optionally enclosed in
braces. As with character arrays, the codes of the wide string literal
initialize successive elements of the array.

Here is an example of a structure initialization:

struct mystruct (
int i;
char str[21J;
double d;

) s = (20, "Borland", 3.141);

Complex members of a structure, such as arrays or structures, can be
initialized with suitable expressions inside nested braces. You can
eliminate the braces, but you must follow certain rules, and it isn't
recommended practice.

declarations Simple declarations of variable identifiers have the following pattern:

data-type var1 <=init1>, var2 <=init2>, ... ;

where var1, var2, ... are any sequence of distinct identifiers with op­
tional initializers. Each of the variables is declared to be of type data­
type. For example,

int x = 1, y = 2;

creates two integer variables called x and y (and initializes them to the
values 1 and 2, respectively).

These are all defining declarations; storage is allocated and any
optional initializers are applied.

The initializer for an automatic object can be any legal expression that
evaluates to an assignment-compatible value for the type of the
variable involved. Initializers for static objects must be constants or
constant expressions.

Turbo C++ Programmer's Guide

~ In C++, an initializer for a static object can be any expression involv­
ing constants and previously declared variables and functions.

Storage class
specifiers

Use of storage class
specifier auto

Use of storage class
specifier extern

Use of storage class
specifier register

Use of storage class
specifier static

A storage class specifier, or a type specifier, must be present in a
declaration. The storage class specifiers can be one of the following:

auto register typedef
extern static

The storage class specifier auto is used only with local scope variable
declarations. It conveys local (automatic) duration, but since this is the
default for all local scope variable declarations, its use is rare.

The storage class specifier extern can be used with function and
variable file scope and local scope declarations to indicate external
linkage. With file scope variables, the default storage class specifier is
extern. When used with variables, extern indicates that the variable
has static duration. (Remember that functions always have static
duration.)

The storage class specifier register is allowed only for local variable
and function parameter declarations. It is equivalent to auto, with the
added excitement that a request is made to the compiler that the vari­
able should be allocated to a register if possible. The allocation of a
register can significantly reduce the size and improve the performance
of programs in many situations. However, since Turbo C++ does a
good job of placing variables in registers, it is rarely necessary to use
the register keyword.

Turbo C++ lets you select register variable options from the Options I
Compiler I Optimizations dialog box. If you check Automatic, Turbo
C++ will try to allocate registers even if you have not used the
register storage class specifiers.

The storage class specifier static can be used with function and vari­
able file scope and local scope declarations to indicate internal
linkage. static also indicates that the variable has static duration. In
the absence of constructors or explicit initializers, static variables are
initialized with 0 or null.

Chapter 7, The Turbo C++ language standard 45

46

~ In C++, a static data member of a class has the same value for all
instances of a class. A static function member of a class can be invoked
independently of any class instance.

Use of storage class
specifier typedef

The keyword typedef indicates that you are defining a new data type
specifier rather than declaring an object. typedef is included as a stor­
age class specifier because of syntactical rather than functional
similarities.

static long int biggy;
typedef long int BIGGY;

The first declaration creates a 32-bit, long int, static-duration object
called biggy. The second declaration establishes the identifier BIGGY
as a new type specifier, but does not create any run-time object.
BIGGY can be used in any subsequent declaration where a type
specifier would be legal. For example,

extern BIGGY salary;

has the same effect as

extern long int salary;

Although this simple example can be achieved by #define BIGGY long
int, more complex typedef applications achieve more than is possible
with textual substitutions.

Important/ typedef does not create new data types; it merely creates useful mne­
monic synonyms or aliases for existing types. It is especially valuable
in simplifying complex declarations:

Modifiers

typedef double (*PFD) ();
PFD array_pfd[lO];
I* array_pfd is an array of 10 pointers to functions

returning double */

You can't use typedef identifiers with other data-type specifiers:

unsigned BIGGY pay; /* ILLEGAL */

In addition to the storage class specifier keywords, a declaration can
use certain modifiers to alter some aspect of the identifier /object map­
ping. The modifiers available with Turbo C++ are summarized in the
next table.

Turbo C++ Programmer's Gulde

Table l.16
Turbo C++ modifiers

C++ extends const and
volatile to Include classes

and member functions.

Modifier

const

volatile

Use with

Variables only

Variables only

Usage

Prevents changes to object.

Prevents register allocation and some
optimization. Warns compiler that object
may be subject to outside change during
evaluation.

Turbo C++ extensions

cdecl

cdecl

pascal

pascal

interrupt

near,
far,
huge

_cs,
_ds,
_es,
_seg,
_ss

near,
far,
huge

near,
far

_export

_loadds

_saveregs

Functions Forces C argument-passing convention.

Variables Forces global identifier case-sensitivity
and leading underscores.

Functions Forces Pascal argument-passing
convention.

Variables Forces global identifier case-insensitivity
with no leading underscores.

Functions Function compiles with the additional
register-housekeeping code needed when
writing interrupt handlers.

Pointer variables Overrides the default pointer
type specified by the current
memory model.

Pointer variables Segment pointers;
see page 199.

Functions

Variables

Functions

Functions

Functions

Overrides the default function
type specified by the current
memory model.

Directs the placement of
the object in memory.

OS/2 only. Ignored by Turbo C++.

Sets DS to point to the current
data segment.

Preserves all register values
(except for return values)
during execution of the function.

Chapter 7, The Turbo C++ language standard 47

48

The const modifier The const modifier prevents any assignments to the object or any
other side effects, such as increment or decrement. A const pointer
cannot be modified, though the object to which it points can be.
Consider the following examples:

The modifier const used
by Itself is equivalent to

constlnt.

con st float pi = 3.1415926;
const maxint = 32161;
char *const str ="Hello, world"; II A constant pointer
char con st *str2 ="Hello, world"; I* A pointer to a constant char

*I

Given these, the following statements are illegal:

pi = 3.0;
i = maxint++;
str = "Hi, there!";

I* Assigns a value to a const *I
I* Increments a const *I
I* Points str to something else *I

Note, however, that the function call strcpy(str, "Hi, there!") is legal,
since it does a character-by-character copy from the string literal "Hi,
there!" into the memory locations pointed to by str.

~ In C++, const also hides the const object and prevents external
linkage. You need to use extern const. A pointer to a const can't be
assigned to a pointer to a non-const (otherwise, the const value could
be assigned to using the non-const pointer}. For example,

The interrupt function
modifier

char *str3 = str2 I* disallowed *I

The Interrupt modifier is specific to Turbo C++. interrupt functions are
designed to be used with the 8086/8088 interrupt vectors. Turbo C++
will compile an interrupt function with extra function entry and exit
code so that registers AX, BX, CX, DX, SI, DI, ES, and DS are pre­
served. The other registers (BP, SP, SS, CS, and IP) are preserved as
part of the C-calling sequence or as part of the interrupt handling
itself. The function will use an iret instruction to return, so that the
function can be used to service hardware or software interrupts. Here
is an example of a typical interrupt definition:

void interrupt myhandler()
{

You should declare interrupt functions to be of type void. Interrupt
functions can be declared in any memory model. For all memory
models except huge, DS is set to the program data segment. For the
huge model, DS is set to the module's data segment.

Turbo C++ Programmer's Guide

The volatile modifier

In C++, volatile has a special
meaning for class member

functions. ff you've declared
a volatile object, you can

only use its volatile member
functions.

The cdecl and pascal
modifiers

The volatile modifier indicates that the object may be modified; not
only by you, but also by something outside of your program, such as
an interrupt routine or an I/0 port. Declaring an object to be volatile
warns the compiler not to make assumptions concerning the value of
the object while evaluating expressions containing it, since the value
could (in theory) change at any moment. It also prevents the compiler
from making the variable a register variable.

volatile int ticks;
interrupt timer()
(

ticks++;

wait(int interval)
(

ticks ~ O;
while (ticks< interval); II Do nothing

These routines (assuming timer has been properly associated with a
hardware clock interrupt) implement a timed wait of ticks specified
by the argument interval. A highly optimizing compiler might not
load the value of ticks inside the test of the while loop, since the loop
doesn't change the value of ticks.

Turbo C++ allows your programs to easily call routines written in
other languages, and vice versa. When you mix languages like this,
you have to deal with two important issues: identifiers and parameter
passing.

In Turbo C++, all global identifiers are saved in their original case
(lower, upper, or mixed) with an underscore U prepended to the
front of the identifier, unless you have selected the -u- option
(Generate Underbars ... Off in the Options I Compiler I Code Generation
dialog box).

Page 32 tells how to use extern, which allows C names to be
referenced from a C ++ program.

pascal

In Pascal, global identifiers are not saved in their original case, nor are
underscores prepended to them. Turbo C++ lets you declare any iden­
tifier to be of type pascal; the identifier is converted to uppercase, and

Chapter 7, The Turbo C++ language standard 49

The -p compiler option
(Cal/Ing Convention ... Pascal

in the Options I Compiler I
Code Generation dialog
box) causes all functions

(and pointers to those
functions) to be treated as if

they were of type pascal.

main must be declared as
cdecl: this is because the C
start-up code always tries to
call main with the C calling

convention.

50

no underscore is prepended. (If the identifier is a function, this also
affects the parameter-passing sequence used; see "Function type
modifiers," page 51, for more details.)

The pascal modifier is specific to Turbo C++; it is intended for func­
tions (and pointers to functions) that use the Pascal parameter­
passing sequence. Also, functions declared to be of type pascal can
still be called from C routines, so long as the C routine sees that the
function is of type pascal.

pascal putnums(int i, int j, int kl
I

printf("And the answers are: %d, %d, and %d\n",i,j,kl;

Functions of type pascal cannot take a variable number of arguments,
unlike functions such as printf. For this reason, you cannot use an
ellipsis(...) in a pascal function definition.

cdecl

Once you have compiled with the -p option, you may want to ensure
that certain identifiers have their case preserved and keep the under­
score on the front, especially if they're C identifiers from another file.
You can do so by declaring those identifiers to be cdecl. (This also has
an effect on parameter passing for functions).

Like pascal, the cdecl modifier is specific to Turbo C++. It is used
with functions and pointers to functions. It overrides the -p compiler
directive and allows a function to be called as a regular C function.
For example, if you were to compile the previous program with the -p
option set but wanted to use printf, you might do something like this:

extern cdecl printf();
putnums(int i, int j, int kl;

cdecl main()
I

putnums(l,4,9l;

putnums(int i, int j, int kl
I

printf("And the answers are: %d, %d, and %d\n",i,j,k);

If you compile a program with the -p option, all functions used from
the run-time library will need to have cdecl declarations. If you look

Turbo C++ Programmer's Guide

at the header files (such as stdio.h), you'll see that every function is
explicitly defined as cdecl in anticipation of this.

The pointer modifiers Turbo C++ has eight modifiers that affect the indirection operator(*);
that is, they modify pointers to data. These are near, far, huge, _cs,
_ds, _es, _seg, and _ss.

C lets you compile using one of several memory models. The model
you use determines (among other things) the internal format of
pointers. For example, if you use a small data model (tiny, small,
medium), all data pointers contain a 16-bit offset from the data seg­
ment (DS) register. If you use a large data model (compact, large,
huge), all pointers to data are 32 bits long and give both a segment
address and an offset.

Sometimes, when using one size of data model, you want to declare a
pointer to be of a different size or format than the current default. You
do so using the pointer modifiers.

See the discussion starting on page 192 in Chapter 4 for an indepth
explanation of near, far, and huge pointers, and page 193 for a
description of normalized pointers. Also see the discussion starting on
page 199 for more on _cs, _ds, _es, _seg, and _ss.

Function type modifiers The near, far, and huge modifiers can also be used as function type
modifiers; that is, they can modify functions and function pointers as
well as data pointers. In addition, you can use the _export, _loadds,
and _saveregs modifiers to modify functions. ·

The near, far, and huge function modifiers can be combined with
cdecl or pascal, but not with interrupt.

Functions of type huge are useful when interfacing with code in
assembly language that doesn't use the same memory allocation as
TurboC++.

A non-Interrupt function can be declared to be near, far, or huge in
order to override the default settings for the current memory model.

A near function uses near calls; a far or huge function uses far call
instructions.

In the tiny, small, and compact memory models, an unqualified func­
tion defaults to type near. In the medium and large models, an
unqualified function defaults to type far. In the huge memory model,
it defaults to type huge.

Chapter 1, The Turbo C++ language standard 51

Complex
declarations and

declarators

See Table 1.9 on page 35 for
the declarator syntax. The

definition covers both
identifier and function

declarators.

52

A huge function is the same as a far function, except that the DS
register is set to the data segment address of the source module when
a huge function is entered, but left unset for a far function.

The _export modifier is parsed, but ignored. It provides compatibility
with source code written for OS/2. The _export modifier has no
significance for DOS programs.

The _loadds modifier indicates that a function should set the DS
register, just as a huge function does, but does not imply near or far
calls. Thus, _loadds far is equivalent to huge.

The _saveregs modifier causes the function to preserve all register
values and restore them before returning (except for explicit return
values passed in registers such as AX or DX).

The _loadds and _saveregs modifiers are useful for writing low-level
interface routines, such as mouse support routines.

Simple declarations have a list of comma-delimited identifiers
following the optional storage class specifiers, type specifiers, and
other modifiers.

A complex declaration uses a comma-delimited list of declarators
following the various specifiers and modifiers. Within each declarator,
there exists just one identifier, namely the identifier being declared.
Each of the declarators in the list is associated with the leading storage
class and type specifier.

The format of the declarator indicates how the declared dname is to be
interpreted when used in an expression. If type is any type, and
storage class specifier is any storage class specifier, and if D1 and D2 are
any two declarators, then the declaration

storage class specifier type Dl, D2;

indicates that each occurrence of Dl or D2 in an expression will be
treated as an object of type type and storage class storage class specifier.
The type of the dname embedded in the declarator will be some phrase
containing type, such as "type," "pointer to type," "array of type,"
"function returning type," or "pointer to function returning type,"
and so on.

For example, in the declarations

int n, nao[], naf[3], *pn, *apn[], (*pan)[], &nr=n;

int f (void), *fnp (void), (*pfn) (void);

Turbo C++ Programmer's Guide

each of the declarators could be used as rvalues (or possibly lvalues in
some cases) in expressions where a single int object would be appro­
priate. The types of the embedded identifiers are derived from their
declarators as follows:

Table l .17: Complex declarations

Declarator
syntax

type name;

type name [J ;

type name[3];

type *name;

type *name[];

type *(name []);

type (*name)[];

type &name;

type name () ;

type *name();

type *(name());

type (*name)();

Pointers

See page 80 for a discussion
of referencing and de­

referencing.

Implied type of name Example

type int count;

(open) array of type int count[];

Fixed array of three elements, all of type int count[3];
(name[O], name[l], and name[2])

Pointer to type int *count;

(open) array of pointers to type int *count[];

Same as above int *(count[]);

Pointer to an (open) array of type int (*count) [l ;

Reference to type (C++ only) int &count;

Function returning type int count();

Function returning pointer to type int *count();

Same as above int *(count());

Pointer to function returning type int (*count) () i

Note the need for parentheses in (*name)[] and (*name)(), since the
precedence of both the array declarator []and the function declarator
()is higher than the pointer declarator*· The parentheses in *(name[J)
are optional.

Pointers fall into two main categories: pointers to objects and pointers
to functions. Both types of pointers are special objects for holding
memory addresses.

The two pointer classes have distinct properties, purposes, and rules
for manipulation, although they do share certain Turbo C++
operations. Generally speaking, pointers to functions are used to
access functions and to pass functions as arguments to other
functions; performing arithmetic on pointers to functions is not

Chapter 1, The Turbo C++ language standard 53

54

Pointers to
objects

Pointers to
functions

allowed. Pointers to objects, on the other hand, are regularly
incremented and decremented as you scan arrays or more complex
data structures in memory.

Although pointers contain numbers with most of the characteristics of
unsigned integers, they have their own rules and restrictions for
assignments, conversions, and arithmetic. The examples in the next
few sections illustrate these rules and restrictions.

A pointer of type "pointer to object of type'' holds the address of (that
is, points to) an object of type. Since pointers are objects, you can have
a pointer pointing to a pointer (and so on). Other objects commonly
pointed at include arrays, structures, unions, and classes.

The size of pointers to objects is dependent on the memory model and
the size and disposition of your data segments, possibly influenced by
the optional pointer modifiers (discussed starting on page 51).

A pointer to a function is best thought of as an address, usually in a
code segment, where that function's executable code is stored; that is,
the address to which control is transferred when that function is
called. The size and disposition of your code segments is determined
by the memory model in force, which in tum dictates the size of the
function pointers needed to call your functions.

A pointer to a function has a type called "pointer to function re­
turning type," where type is the function's return type.

~ Under C++, which has stronger type checking, a pointer to a function
has type "pointer to function taking argument types type and re­
turning type." In fact, under C, a function defined with argument
types will also have this narrower type. For example,

void (*func) ();

In C, this is a pointer to a function returning nothing. In C++, it's a
pointer to a function taking no arguments and returning nothing. In
this example,

void (*func) (int);

*func is a pointer to a function taking an int argument and returning
nothing.

Turbo C++ Programmer's Guide

Pointer
declarations

See page 39 for details on
void.

Warning! You need to
initialize pointers before using

them.

A pointer must be declared as pointing to some particular type, even
if that type is void (which really means a pointer to anything). Once
declared, though, a pointer can usually be reassigned to point to an
object of another type. Turbo C++ lets you reassign pointers like this
without typecasting, but the compiler will warn you unless the
pointer was originally declared to be of type pointer to void. And in
C, but not C++, you can assign a void* pointer to a non-void* pointer.

If type is any predefined or user-defined type, including void, the
declaration

type *ptr; /* Danger--uninitialized pointer */

declares ptr to be of type "pointer to type." All the scoping, duration,
and visibility rules apply to the ptr object just declared.

A null pointer value is an address that is guaranteed to be different
from any valid pointer in use in a program. Assigning the integer
constant 0 to a pointer assigns a null pointer value to it.

The mnemonic NULL (defined in the standard library header files,
such as stdio.h) can be used for legibility. All pointers can be
successfully tested for equality or inequality to NULL.

The pointer type "pointer to void" must not be confused with the null
pointer. The declaration

void *vptr;

declares that vptr is a generic pointer capable of being assigned to by
any "pointer to typti' value, including null, without complaint.
Assignments without proper casting between a "pointer to type1" and
a "pointer to type2," where type1 and type2 are different types, can
invoke a compiler warning or error. If type1 is a function and type2
isn't (or vice versa), pointer assignments are illegal. If type1 is a
pointer to void, no cast is needed. If type2is a pointer to void, under
C, no cast is needed.

Assignment restrictions also apply to pointers of different sizes (near,
far, and huge). You can assign a smaller pointer to a larger one
without error, but you can't assign a larger pointer to a smaller one
unless you are using an explicit cast. For example,

char near *ncp;
char far * fcp;
char huge *hep;

Chapter 7, The Turbo C++ language standard 55

56

Pointers and

fcp = ncp;
hep = fcp;
fcp = hep;
ncp = fcp;
ncp = (char near*)fcp;

II legal
II legal
II not legal
II not legal
II now legal

constants A pointer or the pointed-at object can be declared with the const
modifier. Anything declared as a const cannot be assigned to. It is also
illegal to create a pointer that might violate the nonassignability of a
constant object. Consider the following examples:

int i;

int * pi;

int * const cp = &i;

const int ci = 7;

const int * pci;

II i is an int

II pi is a pointer to int (uninitialized)

II cp is a constant pointer to int.

II ci is a constant int

II pci is a pointer to constant int

const int * const cpc = &ci; II cpc is a constant pointer to a
I I constant int

The following assignments are legal:

i = ci;

*cp = ci;

++pci;

pci = cpc;

II Assign const-int to int

II Assign const-int to
II object-pointed-at-by-a-const-pointer

II Increment a pointer-to-const

II Assign a const-pointer-to-a-const to a
II pointer-to-const

The following assignments are illegal:

ci = O;

ci--;

*pci = 3;

cp = &ci;

cpc++;

pi = pci;

II NO--cannot assign to a const-int

II NO--cannot change a const-int

II NO--cannot assign to an object
II pointed at by pointer-to-const

II NO--cannot assign to a const-pointer,
II even if value would be unchanged

II NO--cannot change const-pointer

II NO--if this assignment were allowed,
II you would be able to assign to *pci
II (a const value) bY assigning to *pi.

Turbo C++ Programmer's Guide

Pointer arithmetic
The internal arithmetic
performed on pointers

depends on the memory
model in force and the

presence of any overriding
pointer modifiers.

The difference oetween two
pointers only has meaning if
both pointers point into the

same array.

Similar rules apply to the volatile modifier. Note that const and
volatile can both appear as modifiers to the same identifier.

Pointer arithmetic is limited to addition, subtraction, and comparison.
Arithmetical operations on object pointers of type "pointer to type''
automatically take into account the size of type; that is, the number of
bytes needed to store a type object.

When performing arithmetic with pointers, it is assumed that the
pointer points to an array of objects. Thus, if a pointer is declared to
point to type, adding an integral value to the pointer advances the
pointer by that number of objects of type. If type has size 10 bytes,
then adding an integer 5 to a pointer to type advances the pointer 50
bytes in memory. The difference has as its value the number of array
elements separating the two pointer values. For example, if ptrl points
to the third element of an array, and ptr2 points to the tenth element,
then the result of ptr2 - ptrl would be 7.

When an integral value is added to or subtracted from a "pointer to
type," the result is also of type "pointer to type." If type is a nonarray
object, a pointer operand is treated as though it were a pointer to the
first element of an "array of type'' of length sizeof (type).

There is no such element as "pointer to one past the last element", of
course, but a pointer is allowed to assume such a value. If P points to
the last array element, P + 1 is legal, but P + 2 is undefined. If P points
to one past the last array element, P - 1 is legal, giving a pointer to the
last element. However, applying the indirection operator* to a
"pointer to one past the last element" leads to undefined behavior.

Informally, you can think of P + n as advancing the pointer by
(n * sizeof(type)) bytes, as long as the pointer remains within the legal
range (first element to one beyond the last element).

Subtracting two pointers to elements of the same array object gives an
integral value of type ptrdiff _t defined in stddef.h (signed long for
huge and far pointers; signed int for all others). This value represents
the difference between the subscripts of the two referenced elements,
provided it is in the range of ptrdiff_t. In the expression Pl - P2, where
Pl and P2 are of type pointer to type (or pointer to qualified type), Pl
and P2 must point to existing elements or to one past the last element.
If Pl points to the i-th element, and P2 points to the j-th element, Pl -
P2 has the value (i - j).

Chapter 7, The Turbo C++ language standard 57

Pointer
Conversions Pointer types can be converted to other pointer types using the

typecasting mechanism:

C++ reference

char *str;
int *ip;
str = (char *lip;

More generally, the cast (type*) will convert a pointer to type "pointer
to type."

declarations C++ reference types are closely related to pointer types. Reference types
create aliases for objects and let you pass arguments to functions by
reference. Traditional C passes arguments only by value. In C++ you
can pass arguments by value or by reference. See page 98,
"Referencing," for complete details.

Arrays

This section starts the phrase- The declaration
structure grammar part of

this chapter: see page 4 for type declarator I <constant-expression>]
a description of the

58

difference between lexical declares an array composed of elements of type. An array in C
and phrase-structure consists of a contiguous region of storage exactly large enough to hold

grammars. all of its elements.

If an expression is given in an array declarator, it must evaluate to a
positive constant integer. The value is the number of elements in the
array. Each of the elements of an array is numbered from 0 through
the number of elements minus one. ·

Multidimensional arrays are constructed by declaring arrays of array
type. Thus, a two-dimensional array of five rows and seven columns
called alpha is declared as

type alpha [5] [7];

In certain contexts, the first array declarator of a series may have no
expression inside the brackets. Such an array is of indeterminate size.
The contexts where this is legitimate are ones in which the size of the
array is not needed to reserve space. For example, an extern declara-

Turbo C++ Programmer's Guide

Functions

Declarations and

tion of an array object does not need the exact dimension of the array,
nor does an array function parameter. As a special extension to ANSI
C, Turbo C++ also allows an array of indeterminate size as the final
member of a structure. Such an array does not increase the size of the
structure, except that padding can be added to ensure that the array is
properly aligned. These structures are normally used in dynamic
allocation, and the size of the actual array needed must be explicitly
added to the size of the structure in order to properly reserve space.

Except when it is the operand of a sizeof or & operator, an array type
expression is converted to a constant pointer to the first element of the
array.

Functions are central to Turbo C++ programming. Languages such as
Pascal distinguish between procedure and function. Turbo C++ func­
tions play both roles.

definitions Each program must have a single external function named main
marking the entry point of the program. Functions are usually de­
clared as prototypes in standard or user-supplied header files, or
within program files. Functions are external by default and are nor­
mally accessible from any file in the program. They can be restricted
by using the static storage class specifier (see page 32).

In C++ you must always use
function prototypes. 1'\e

recommend that you also
always use them in C.

Functions are defined in your source files or made available by
linking precompiled libraries.

A given function can be declared several times in a program, pro­
vided the declarations are compatible. Nondefining function
declarations using the function prototype format provide Turbo C++
with detailed parameter information, allowing better control over
argument number and type checking, and type conversions.

Excluding C++ function overloading, only one definition of any given
function is allowed. The declarations, if any, must also match this
definition. (The essential difference between a definition and a
declaration is that the definition has a function body.)

Chapter 1. The Turbo C++ language standard 59

Declarations and

60

prototypes In the original Kernighan and Ritchie style of declaration, a function
could be implicitly declared by its appearance in a function call, or
explicitly declared as follows:

In C++, this declaration <type> func()
means <type> tunc(vold)

You can enable a wam/ng
within the /DE or with the
command-1/ne compiler:

"Function called without a
prototype.·

where type is the optional return type defaulting to Int. A function can
be declared to return any type except an array or function type. This
approach does not allow the compiler to check that the type or
number of arguments used in a function call match the declaration.

This problem was eased by the introduction of function prototypes
with the following declaration syntax:

<type> func(parameter-declarator-list);

Declarators specify the type of each function parameter. The compiler
uses this information to check function calls for validity. The compiler
is also able to coerce arguments to the proper type. Suppose you have
the following code fragment:

long lmax(long vl, long v2); /*prototype*/

main()
{

int limit = 32;
char ch= 'A';

long mval;

mval = lmax(limit,ch); /*function call*/

Since it has the function prototype for lmax, this program converts
limit and ch to long, using the standard rules of assignment, before it
places them on the stack for the call to lmax. Without the function
prototype, limit and ch would have been placed on the stack as an
integer and a character, respectively; in that case, the stack passed to
lmax would not match in size or content what lmax was expecting,
leading to problems. The classic declaration style does not allow any
checking of parameter type or number, so using function prototypes
aids greatly in tracking down programming errors.

Function prototypes also aid in documenting code. For example, the
function strcpy takes two parameters: a source string and a destina­
tion string. The question is, which is which? The function prototype

Turbo C++ Programmer's Guide

char *strcpy(char *dest, char *source);

makes it clear. If a header file contains function prototypes, then you
can print that file to get most of the information you need for writing
programs that call those functions. If you include an identifier in a
prototype parameter, it is only used for any later error messages
involving that parameter; it has no other effect.

A function declarator with parentheses containing the single word
void indicates a function that takes no arguments at all:

func(void);

~In C++, func() also declares a function taking no arguments.

stdarg.h contains r:iacros A function prototype normally declares a function as accepting a fixed
that you can us~ tn us~r- number of parameters. For C functions that accept a variable number

defined functions with . . .
variable numbers of of parameters (such as prmtf), a function prototype can end with an

parameters. ellipsis(...), like this:

f (int *count, long total, ...)

With this form of prototype, the fixed parameters are checked at
compile time, and the variable parameters are passed with no type
checking.

Here are some more examples of function declarators and prototypes:

int f() ;

int f() ;

int f (void);

int p(int,long);

/* In C, a function returning an int with no
information about parameters. This is the K&R
"classic style." */

/* In Ct+, a function taking no arguments */

/* A function returning an int that takes no
parameters. */

/* A function returning an int that accepts two
parameters: the first, an int; the second, a long.
*/

int pascal q(void); /*A pascal function returning an int that takes no
parameters at all. */

char far *s(char *source, int kind); /*A function returning a far
pointer to a char and accepting two parameters: the
first, a pointer to a char; the second, an int. */

int printf(char *format, ...); /*A function returning an int and
accepting a pointer to a char fixed parameter and any
number of additional parameters of unknown type. */

int (*fp) (int);

Chapter 7, The Turbo C++ language standard

/* A pointer to a function returning an int and
accepting a single int parameter. */

61

Definitions

Table 1.18
External function definitions

You can intermix elements
from 7 and2.

Formal parameter
declarations

62

The general syntax for external function definitions is given in the
following table:

file
external-definition
file external-definition

external-definition:
function-definition
declaration
asm-statement

function-definition:
<declaration-specifiers> declarator <declaration-list> compound-statement

In general, a function definition consists of the following sections (the
grammar allows for more complicated cases):

1. Optional storage class specifiers: extern or static. The default is
extern.

2. A return type, possibly void. The default is int.

3. Optional modifiers: pascal, cdecl, interrupt, near, far, huge. The
defaults depend on the memory model and compiler option
settings.

4. The name of the function.

5; A parameter declaration list, possibly empty, enclosed in paren­
theses. In C, the preferred way of showing an empty list is
func(void). The old style of func() is legal in C but antiquated and
possibly unsafe. In C++, you'll get a warning.

6. A function body representing the code to be executed when the
function is called.

The formal parameter declaration list follows a similar syntax to that
of the declarators found in normal identifier declarations. Here are a
few examples:

int func (void) II no args

int func (Tl tl, T2 t2, T3 t3=1) { 11 three simple parameters, one
II with default argument

int func(Tl* ptrl, T2& tref) { II a pointer and a reference arg

Turbo C++ Programmer's Guide

int func(register int i) {

int func(char *str, ...) {

II request register for arg

I* one string arg with a variable
number of other args, or with a fixed number of args with
varying types */

~In C++, you can give default arguments as shown. Parameters with
default values must be the last arguments in the parameter list. The
arguments' types can be scalars, structures, unions, enumerations;
pointers or references to structures and unions; or pointers to
functions or classes.

Function calls
and argument

conversions

The ellipsis(...) indicates that the function will be called with dif­
ferent sets of arguments on different occasions. The ellipsis can follow
a sublist of known argument declarations. This form of prototype
reduces the amount of checking the compiler can make.

The parameters declared all enjoy automatic scope and duration for
the duration of the function. The only legal storage class specifier is
register.

The const and volatile modifiers can be used with formal argument
declarators.

A function is called with actual arguments placed in the same se­
quence as their matching formal arguments. The actual arguments are
converted as if by initialization to the declared types of the formal
arguments.

Here is a summary of the rules governing how Turbo C++ deals with
language modifiers and formal parameters in function calls, both with
and without prototypes:

1. The language modifiers for a function definition must match the
modifiers used in the declaration of the function at all calls to the
function.

2. A function may modify the values of its formal parameters, but
this has no effect on the actual arguments in the calling routine,
except for reference arguments in C++.

When a function prototype has not been previously declared, Turbo
C++ converts integral arguments to a function call according to the
integral widening (expansion) rules described in the section "Stan­
dard conversions," starting on page 41. When a function prototype is

Chapter 7, The Turbo C++ language standard 63

in scope, Turbo C ++ converts the given argument to the type of the
declared parameter as if by assignment.

When a function prototype includes an ellipsis(...), Turbo C++
converts all given function arguments as in any other prototype (up to
the ellipsis). The compiler widens any arguments given beyond the
fixed parameters, according to the normal rules for function
arguments without prototypes.

If a prototype is present, the number of arguments must match (un­
less an ellipsis is present in the prototype). The types need only be
compatible to the extent that an assignment can legally convert them.
You can always use an explicit cast to convert an argument to a type
that is acceptable to a function prototype.

Important/ If your function prototype does not match the actual function defini­
tion, Turbo C++ will detect this if and only if that definition is in the
same compilation unit as the prototype. If you create a library of
routines with a corresponding header file of prototypes, consider in­
cluding that header file when you compile the library, so that any dis­
crepancies between the prototypes and the actual definitions will be
caught. C++ provides type-safe linkage, so differences between
expected and actual parameters will be caught by the linker.

Structures

64

Structure Initialization is
discussed on page 42.

A structure is a derived type usually representing a user-defined
collection of named members (or components). The members can be
of any type, either fundamental or derived (with some restrictions to
be noted later), in any sequence. In addition, a structure member can
be a bit field type not allowed elsewhere. The Turbo C++ structure
type lets you handle complex data structures almost as easily as single
variables.

~In C++, a structure type is treated as a class type (with certain differ­
ences: Default access is public, and the default for the base class is also
public). This allows more sophisticated control over access to struc­
ture members by using the C++ access specifiers: public (the default),
private, and protected. Apart from these optional access mechanisms,
and from exceptions as noted, the following discussion on structure
syntax and usage applies equally to C and C++ structures.

Structures are declared using the keyword struct. For example,

struct rnystruct { ...); II rnystruct is the structure tag

Turbo C++ Programmer's Guide

Untagged
structures and

typedefs
Untagged structure and

union members are Ignored
during inltiallzation.

Structure member

struct mystruct s, *ps, arrs[lO];
/* s is type struct mystruct; ps is type pointer to struct mystruct;

arrs is array of struct mystruct. */

If you omit the structure tag, you can get an untagged structure. You
can use untagged structures to declare the identifiers in the comma­
delimited struct-id-list to be of the given structure type (or derived
from it), but you cannot declare additional objects of this type
elsewhere:

struct { •••) s, *ps, arrs[lO]; //untagged structure

It is possible to create a typedef while declaring a structure, with or
without a tag:

typedef struct mystruct { ...) MYSTRUCT;
MYSTRUCT s, *ps, arrs[lO]; //same as struct mystruct s, etc.
typedef struct { •••) YRSTRUCT; //no tag
YRSTRUCT y, *yp, arry[20];

You don't usually need both a tag and a typedef: Either can be used in
structure declarations.

declarations The member-decl-list within the braces declares the types and names of
the structure members using the declarator syntax shown in Table 1.11
onpage36.

You can omit the struct
keyword in C++.

A structure member can be of any type, with two exceptions:

1. The member type cannot be same as the struct type being
currently declared:

struct mystruct { mystruct s) sl, s2; // illegal

A member can be a pointer to the structure being declared, as in
the following example:

struct mystruct { mystruct *ps) sl, s2; //OK

Also, a structure can contain previously defined structure types
when declaring an instance of a declared structure.

2. Except in C++, a member cannot have the type "function
returning ... ," but the type "pointer to function returning ... " is
allowed. In C++, a struct can have member functions.

Chapter 1, The Turbo C++ language standard 65

Structures and
functions A function can return a structure type or a pointer to a structure type:

mystruct funcl(void); II funcl() returns a structure
mystruct *func2(void); II func2() returns pointer to structure

A structure can be passed as an argument to a function in the
following ways:

void funcl(mystruct s);
void func2(mystruct *sptr);
void func3(mystruct &sref);

II directly
I I via a pointer
II as a reference (Ct+ only)

Structure member

66

access Structure and union members are accessed using the selection
operators . and....:>. Suppose that the objects is of struct type S, and
sptr is a pointer to S. Then if m is a member identifier of type M
declared in S, the expressions s.m and sptr->m are of type M, and both
represent the member object min s. The expression s->sptr is a
convenient synonym for (*sptr) .m.

The operator . is called the direct member selector; the operator -> is
called the indirect (or pointer) member selector; for example,

struct mystruct (
int i;
char str [21];
double d;

s, *sptr=&s;

s.i = 3;
sptr->d = 1.23;

II assign to the i member of mystruct s
II assign to the d member of mystruct s

The expressions.mis an lvalue, provided thats is not an lvalue and m
is not an array type. The expression sptr->m is an lvalue unless m is an
array type.

If structure B contains a field whose type is structure A, the members
of A can be accessed by two applications of the member selectors:

struct A (
int j;
double x;

) ;

struct B 1
int i;

Turbo C++ Programmer's Guide

Structure word

struct A a;
double d;

s, *sptr;

s.i = 3;
s.a.j = 2;
sptr->d = 1.23;
(sptr->a) .x = 3.14

II assign to the i member of B
II assign to the j member of A
II assign to the d member of B
II assign to x member of A

Each structure declaration introduces a unique structure type, so that
in

struct A (
int i,j;
double d;

} a, al;

struct B (
int i,j;
double d;

) b;

the objects a and al are both of type struct A, but the objects a and b
are of different structure types. Structures can be assigned only if the
source and destination have the same type:

a= al; II OK: same type, so member by member assignment
a= b; II ILLEGAL: different types
a.i = b.i; a.j = b.j; a.d = b.d I* but you can assign

member-by-member *I

alignment Memory is allocated to a structure member-by-member from left to
right, from low to high memory address. In this example,

struct mystruct {
int i;
char str [21);

double d;
s;

the objects occupies sufficient memory to hold a 2-byte integer, a 21-
byte string, and an 8-byte double. The format of this object in memory
is determined by the Turbo C++ word alignment option. With this
option off (the default), swill be allocated 31 contiguous bytes.
If you turn on word alignment with the -a compiler option (or with
the Options I Compiler I Code Generation dialog box), Turbo C++ pads
the structure with bytes to ensure the structure is aligned as follows:

Chapter 1. The Turbo C++ language standard 67

68

Structure name

1. The structure will start on a word boundary (even address).
2. Any non-char member will have an even byte offset from the start

of the structure.
3. A final byte is added (if necessary) at the end to ensure that the

whole structure contains an even number of bytes.

With word alignment on, the structure would therefore have a byte
added before the double, making a 32-byte object.

spaces Structure tag names share the same name space with union tags and
enumeration tags (but enums within a structure are in a different
name space in C++). This means that such tags must be uniquely
named within the same scope. However, tag names need not differ
from identifiers in the other three name spaces: the label name space,
the member name space(s), and the single name space (which consists
of variables, functions, typedef names, and enumerators).

Incomplete
declarations

Member names within a given structure or union must be unique, but
they can share the names of members in other structures or unions.
For example,

goto s;

s:
struct s

int s;
float s;

s;

union s
int s;
float f;

f;

struct t (
int s;

s;

II OK: tag and label name spaces different
II OK: label, tag and member name spaces different
II ILLEGAL: member name duplicated
II OK: var name space different. In C++, this can only be
II done ifs does not have a constructor.

II ILLEGAL: tag space duplicate
II OK: new member space

II OK: var name space

II OK: different member space

II ILLEGAL: var name duplicate

A pointer to a structure type A can legally appear in the declaration of
another structure B before the structure A has been declared:

Turbo C++ Programmer's Guide

Bit fields
A structure can contain anv
mixture of bit field and non­

btt field types.

struct A; // incomplete
struct B { struct A *pa };
struct A { struct B *pb };

The first appearance of A is called incomplete because there is no
definition for it at that point. Incomplete declarations are allowed in
this situation, since the definition of B does not need the size of A.

You can declare signed or unsigned integer members as bit fields
from 1to16 bits wide. You specify the bit field width and optional
identifier as follows:

type-specifier <bitfield-id> : width;

where type-specifier is char, unsigned char, int, or unsigned int. Bit
fields are allocated from low-order to high-order bits within a word.
The expression width must be present and must evaluate to a constant
integer in the range 0 to 16.

If the bit field identifier is omitted, the number of bits specified in
width is allocated, but the field is not accessible. This lets you match
bit patterns in, say, hardware registers where some bits are unused.
For example,

struct mystruct {
int 2;
unsigned 5;
int 4;
int k l;
unsigned m : 4;

a, b, c;

produces the following layout:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

x x x x x x x x x x x x x x x x

..._ _.. _.. .-::::······························::::•, ...__ - ,,,... -... - ... - ...
m k (unused) j i

Integer fields are stored in 2's-complement form, with the leftmost bit
being the MSB (most significant bit). With int (for example, signed) bit
fields, the MSB is interpreted as a sign bit. A bit field of width 2
holding binary 11, therefore, would be interpreted as 3 if unsigned,
but as -1 if int. In the previous example, the legal assignment a. i ~ 6

Chapter 7, The Turbo C++ language standard 69

would leave binary 10 = -2 in a.i with no warning. The signed int field
k of width 1 can hold only the values -1and0, since the bit pattern 1
is interpreted as-1.

Note Bit fields can be declared only in structures, unions, and classes. They
are accessed with the same member selectors (. and ->) used for non­
bit field members. Also, bit fields pose several problems when writing
portable code, since the organization of bits-within-bytes and bytes­
within-words is machine dependent.

The expression &mystruct.x is illegal if xis a bit field identifier, since
there is no guarantee that mystruct.x lies at a byte address.

Unions

70

Unions correspond to the
variant record types of
Pascal and Modu/a-2.

Union types are derived types sharing many of the syntactical and
functional features of structure types. The key difference is that a
union allows only one of its members to be "active" at any one time.
The size of a union is the size of its largest member. The value of only
one of its members can be stored at any time. In the following simple
case,

union myunion
int i;
double d;
char ch;

I* union tag = myunion *I

} mu, *muptr=μ

the identifier mu, of type union myunion, can be used to hold a 2-byte
int, an 8-byte double, or a single-byte char, but only one of these at the
same time.

sizeof(union myunion) and sizeof(mu) both return 8, but 6 bytes are
unused (padded) when mu holds an int object, and 7 bytes are unused
when mu holds a char. You access union members with the structure
member selectors (. and ->), but care is needed:

mu.d = 4.016;
printf("mu.d = %f\n",mu.d);
printf("mu.i = %d\n",mu.i);
mu.ch= 'A';
printf("mu.ch = %c\n",mu.ch);
printf("mu.d = %f\n",mu.d);
muptr->i = 3;
printf("mu.i = %d\n",mu.i);

II OK; displays mu.d = 4.016
II peculiar result

II OK: displays mu.ch= A
II peculiar result

II OK: displays mu.i = 3

Turbo C++ Programmer's Guide

Union

The second printf is legal, since mu.i is an integer type. However, the
bit pattern in mu.i corresponds to parts of the double previously
assigned, and will not usually provide a useful integer interpretation.

When properly converted, a pointer to a union points to each of its
members, and vice versa.

declarations The general declaration syntax for unions is pretty much the same as
that for structures. Differences are

1. Unions can contain bit fields, but only one can be active. They all
start at the beginning of the union.

~ 2. Unlike C++ structures, C++ union types cannot use the class access
specifiers: public, private, and protected. All fields of a union are
public.

3. Unions can be initialized only through their first declared member:

union local87 (
int i;
double d;

a=(20);

~ 4. A union can't participate in a class hierarchy. It can't be derived
from any class, nor can it be a base class. A union can have a
constructor.

~ 5. Anonymous unions can't have member functions.

Enumerations

An enumeration data type is used to provide mnemonic identifiers for
a set of integer values. For example, the following declaration,

enum days (sun, mon, tues, wed, thur, fri, sat) anyday;

establishes a unique integral type, enum days, a variable anyday of this
type, and a set of enumerators (sun, mon, .. .) with constant integer
values.

Turbo C++ is free to store enumerators in a single byte when the -b
flag is off (default is on, meaning enums are always ints) if the range
of values permits, but the value is always promoted to an int when
used in expressions. The identifiers used in an enumerator list are im­
plicitly of type unsigned char or int, depending on the values of the

Chapter 7, The Turbo C++ language standard 71

72

enumerators. If all values can be represented in an unsigned char,
that is the type of each enumerator.

~ In C, a variable of an enumerated type can be assigned any value of
type int-no type checking beyond that is enforced. In C++, a variable
of an enumerated type can be assigned only one of its enumerators.
That is,

anyday = mon;
anyday = 1;

II OK
II illegal, even though mon == 1

The identifier days is the optional enumeration tag that can be used in
subsequent declarations of enumeration variables of type enum days:

enum days payday, holiday; II declare two variables

~ In C++, you can omit the enum keyword if days is not the name of
anything else in the same scope.

See page 17 for more on
enumeration constants.

As with struct and union declarations, you can omit the tag if no
further variables of this enum type are required:

enum { sun, mon, tues, wed, thur, fri, sat } anyday;
I* anonymous enum type *I

The enumerators listed inside the braces are also known as enumera­
tion constants. Each is assigned a fixed integral value. In the absence of
explicit initializers, the first enumerator (sun) is set to zero, and each
succeeding enumerator is set to one more than its predecessor (mon =
1, tues = 2, and so on).

With explicit integral initializers, you can set one or more enumera­
tors to specific values. Any subsequent names without initializers will
then increase by one. For example, in the following declaration,

I* initializer expression can include previously declared
enumerators *I

enum coins { penny = 1, tuppence, nickel = penny + 4, dime = 10,
quarter = nickel * nickel } smallchange;

tuppence would acquire the value 2, nickel the value 5, and quarter the
value25.

The initializer can be any expression yielding a positive or negative
integer value (after possible integer promotions). These values are
usually unique, but duplicates are legal.

enum types can appear wherever int types are permitted.

enum days { sun, mon, tues, wed, thur, fri, sat } anyday;
enum days payday;

Turbo C++ Programmer's Guide

typedef enum days DAYS;
DAYS *daysptr;
int i = tues;
anyday = mon; II OK
*daysptr = anyday; II OK
mon = tues; II ILLEGAL: mon is a constant

Enumeration tags share the same name space as structure and union
tags. Enumerators share the same name space as ordinary variable
identifiers:

int mon = 11;
{

enum days { sun, mon, tues, wed, thur, fri, sat I anyday;
I* enumerator mon hides outer declaration of int mon *I
struct days { inti, j;}; II ILLEGAL: days duplicate tag
double sat; II ILLEGAL: redefinition of sat

mon = 12; II back in int mon scope

~ In C++, enumerators declared within a class are in the scope of that
class.

Expressions

Table 1.19 shows how
Identifiers and operators are

combined to form
grammatically legal

"phrases.·

An expression is a sequence of operators, operands, and punctuators
that specifies a computation. The formal syntax, listed in Table 1.19,
indicates that expressions are defined recursively: Subexpressions can
be nested without formal limit. (However, the compiler will report an
out-of-memory error if it can't compile an expression that is too
complex.)

Chapter 1, The Turbo C++ language standard 73

Table 1.19: Turbo C++ expressions

primary-expression:
literal
pseudo-variable
(expression)
this (C++ specific)
:: identifier (C++ specific)
:: operator-function-name (C++ specific)
name

literal:
integer-constant
character-constant
floating-constant
string

name:
identifier
operator-function-name (C++ specific)
conversion-function-name (C++ specific)
qWllijied-name (C++ specific)

qWllijied-name: (C++ specific)
class-name:: identifier
class-name :: operator-function-name
class-name :: conversion-function-name
class-name :: class-name
cl.a.ss~name :: - class-'1Utme

postfix-expression:
primary-expression
postfix-expression [expression I
postfix-expression (<eXpression-list>)
simple-type-name (<expression-list>) (C++ specific)
postfix-expression • name
postfix-expression -> name
postfix-expression ++
postfix-expression - -

expression-list:
assignment-expression
expression-list , assignment-expression

unary-expression:
postfix-expression
++ unary-expression
- - unary-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-name)
allocation-expression (C++ specific)
deallocation-expression (C++ specific)

unary-operator: one of
& • +

allocation-expression: (C++ specific)
<::> new <placement> restricted-type-name <initializer>
<::> new <placement> (type-name) <initializer>

placement: (C++ specific)
(expression-list)

restricted-type-name: (C++ specific)
type-specifiers <restricted-declarator>

restricted-declarator: (C++ specific)
ptr-operator <restricted-declarator>
restricted-declarator [<expression> I

deallocation-expression: (C++ specific)
<::> delete cast-expression
<::> delete [expression] cast-expression

74

cast-expression:
unary-expression
(type-name) cast-expression

pm-expression:
cast-expression
pm-expression . •cast-expression (C++ specific)
pm-expression->* cast-expression (C++ specific)

multiplicative-expression:
pm-expression
multiplicative-expression • pm-expression
multiplicative-expression I pm-expression
multiplicative-expression % pm-expression

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

shift-expression:
additive-expression
shift-expression « additive-expression
shift-expression >> additive-expression

relational-expression:
shift-expression
relational-expression c shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

eqWllity-expression:
relational-expression
eqWllity expression == relational-expression
eqWllity expression I: relational-expression

AND-expression:
eqWllity-expression
AND-expression & eqWllity-expression

exclusive-OR-expression:
AND-expression
exclusive-OR-expression • AND-expression

inclusive-OR-expression:
exclusive-OR-expression
inclusive-OR-expression I exclusive-OR-expression

logical-AND-expression:
inclusive-OR-expression
logical-AND-expression && inclusive-OR-expression

logical-OR-expression:
logical-AND-expression
logical-OR-expression II logical-AND-expression

conditional-expression:
logical-OR-expression
logical-OR-expression ? expression : conditional-expression

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

•= I: "= +=
<<= >>= •= A: I=

expression:
assignment-expression
expression, assignment-expression

constant-expression:
conditional-expression

Turbo C++ Programmer's Gulde

The standard conversions are
detailed In Table 1.15 on

page42.

The grammar in Table 1.79
on page 74 completely

defines the precedence and
associativity of the operators.

Table l.20
Associativity and

precedence of Turbo C++
operators

There are sixteen
precedence categories. The

first category (the first line)
has the highest precedence.
Operators in the same cate­

gory have equal prece­
dence. Where there are

duplicates of operators in the
table, the first occurrence is

unary, the second binary.

Expressions and
C++

Expressions are evaluated according to certain conversion,
grouping, associativity, and precedence rules which depend on
the operators used, the presence of parentheses, and the data
types of the operands. The way operands and subexpressions are
grouped does not necessarily specify the actual order in which
they are evaluated by Turbo C++ (see "Evaluation order" on page
76). Expressions can produce an lvalue, an rvalue, or no value.
Expressions may cause side effects whether they produce a value
or not.

We've summarized the precedence and associativity rules in Table
1.20. Each category has an associativity rule: left to right, or right
to left. In the absence of parentheses, these rules resolve the
grouping of expressions with operators of equal precedence.

Operators

() [1 -> ::
! - + - ++ - - & * (typecast) sizeof new delete
.* ->*
* I %
+ -
<< >>
< <= > >=
-- !:
&
/\

I
&&
II
?: (conditional expression)
= *= I= %= += -= &: "= I= <<= >>=

Associativity

Left to right
Right to left
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Left to right
Right to left
Right to left
Left to right

C++ allows the overloading of certain standard C operators, as ex­
plained starting on page 125. An overloaded operator is defined
to behave in a special way when applied to expressions of class
type. For instance, the relational operator== might be defined in
the class complex to test the equality of two complex numbers
without changing its normal usage with non-class data types.
Overloaded operators are implemented as functions; the function
determines the operand type, lvalue, and evaluation order to be
applied when the overloaded operator is used. However,

Chapter 7, The Turbo C++ language standard 75

Evaluation order

76

overloading cannot change the precedence of an operator. Similarly,
C++ allows user-defined conversions between class objects and funda­
mental types. Keep in mind, then, that some of the rules for operators
and conversions discussed in this section may not apply to
expressions in C++.

The order in which Turbo C++ evaluates the operands of an
expression is not specified, except where an operator specifically
states otherwise. The compiler will try to rearrange the expression in
order to improve the quality of the generated code. Care is therefore
needed with expressions in which a value is modified more than once.
In general, avoid writing expressions that both modify and use the
value of the same object. Consider the expression

i = v[i++]; II i is undefined

The value of i depends on whether i is incremented before or after the
assignment. Similarly,

int total = O;
sum= (total= 3) + (++total); II sum= 4 or sum= 7 ??

is ambiguous for sum and total. The solution is to revamp the
expression, using a temporary variable:

int temp, total = O;
temp = ++total;
sum = (total = 3) + temp;

Where the syntax does enforce an evaluation sequence, it is safe to
have multiple evaluations:

sum= (i = 3, i++, i++); II OK: sum= 4, i = 5

Each subexpression of the comma expression is evaluatea from left to
right, and the whole expression evaluates to the rightmost value.

Turbo C++ regroups expressions, rearranging associative and com­
mutative operators regardless of parentheses, in order to create an
efficiently compiled expression; in no case will the rearrangement
affect the value of the expression.

You can use parentheses to force the order of evaluation in expres­
sions. For example, if you have the variables a, b, c, and/, then the
expression f =a + (b + c) forces (b + c) to be evaluated before adding
the result to a.

Turbo C++ Programmer's Guide

Errors and
overflows During the evaluation of an expression, Turbo C++ can encounter

many problematic situations, such as division by zero or out-of-range
floating-point values. Integer overflow is ignored (C uses modulo 2n
arithmetic on n-bit registers), but errors detected by math library
functions can be handled by standard or user-defined routines. See
matherr and signal in the Library Reference.

Operator semantics

The Turbo C++ operators
described here are the

standard ANSI C operators.

Postfix and prefix
operators

Array subscript
operator []

Unless the operators are overloaded, the following information is true
in both C and C++. In C++ you can overload all of these operators
with the exception of. (member operator) and ?: (conditional
operator) (and you also can't overload the C++ operators :: and .*).

If an operator is overloaded, the discussion may not be true for it
anymore. Table 1.19 on page 74 gives the syntax for all operators and
operator expressions.

The six postfix operators [] () . -> ++and- - are used to build
postfix expressions as shown in the expressions syntax table (Table
1.19). The increment and decrement operators(++ and - -) are also
prefix and unary operators; they are discussed starting on page 79.

In the expression

postfix-expression [expression]

In C, but not necessarily in C++, the expression exp1[exp21 is defined
as

* ((expl) + (exp2))

where either exp1 is a pointer and exp2 is an integer, or exp1 is an
integer and exp2 is a pointer. (The punctuators [], *,and+ can be
individually overloaded in C++.)

Chapter 7, The Turbo C++ language standard 77

Function call
operators ()

Structure/union
member operator

. (dot)

/values are defined on page
28.

Structure/union pointer
operator->

78

Postfix increment
operator++

The expression

postfix-expression(<arg-expression-list>)

is a call to the function given by the postfix expression. The arg­
expression-list is a comma-delimited list of expressions of any type
representing the actual (or real) function arguments. The value of the
function call expression, if any, is determined by the return statement
in the function definition. See "Function calls and argument conver­
sions," page 63, for more on function calls.

In the expression

postfix-expression • identifier

the postfix expression must be of type structure or union; the
identifier must be the name of a member of that structure or union
type. The expression designates a member of a structure or union
object. The value of the expression is the value of the selected mem­
ber; it will be an lvalue if and only if the postfix expression is an
lvalue. Detailed examples of the use of . and -> for structures are
given on page 66.

In the expression

postfix-expression -> identifier

the postfix expression must be of type pointer to structure or pointer
to union; the identifier must be the name of a member of that struc­
ture or union type. The expression designates a member of a structure
or union object. The value of the expression is the value of the selected
member; it will be an lvalue if and only if the postfix expression is an
lvalue.

In the expression

postfix-expression++

the postfix expression is the operand; it must be of scalar type
(arithmetic or pointer types) and must be a modifiable lvalue (see
page 28 for more on modifiable lvalues). The postfix ++ is also known
as the postincrement operator. The value of the whole expression is the
value of the postfix expression before the increment is applied. After
the postfix expression is evaluated, the operand is incremented by 1.

Turbo C++ Programmer's Guide

Postfix decrement
operator--

Increment and
decrement

operators

Prefix increment
operator

Prefix decrement
operator

Unary operators

The increment value is appropriate to the type of the operand. Pointer
types are subject to the rules for pointer arithmetic.

The postfix decrement, also known as the postdecrement, operator
follows the same rules as the postfix increment, except that 1 is
subtracted from the operand after the evaluation.

The first two unary operators are ++ and - -. These are also postfix
and prefix operators, so they are discussed here. The remaining six
unary operators are covered following this discussion.

In the expression

++ unary-expression

the unary expression is the operand; it must be of scalar type and
must be a modifiable lvalue. The prefix increment operator is also
known as the preincrement operator. The operand is incremented by 1
before the expression is evaluated; the value of the whole expression is
the incremented value of the operand. The 1 used to increment is the
appropriate value for the type of the operand. Pointer types follow the
rules of pointer arithmetic.

The prefix decrement, also known as the predecrement, operator has
the following syntax:

- - unary-expression

It follows the same rules as the prefix increment operator, except that
the operand is decremented by 1 before the whole expression is
evaluated.

The six unary operators (aside from++ and--) are & * + - - and!.
The syntax is

unary-operator cast-expression

cast-expression:
unary-expression
(type-name) cast-expression

Chapter 7, The Turbo C++ language standard 79

80

Address operator &
The symbol & Is also used In

C++ to specify reference
types: see page 98.

The & operator and * operator (the *operator is described in the next
section) work together as the referencing and dereferencing operators. In
the expression

& cast-expression

the cast-expression operand must be either a function designator or an
lvalue designating an object that is not a bit field and is not declared
with the register storage class specifier. If the operand is of type type,
the result is of type pointer to type.

Note that some non-lvalue identifiers, such as function names and
array names, are automatically converted into "pointer to X" types
when appearing in certain contexts. The & operator can be used with
such objects, but its use is redundant and therefore discouraged.

Consider the following extract:

type tl = 1, t2 = 2;
type *ptr = &tl; // initialized pointer
*ptr = t2; // same effect as tl = t2

Note that type *ptr = &tl is treated as

T *ptr;
ptr = &ti;

so it is ptr, not *ptr, that gets assigned. Once ptr has been initialized
with the address &t1, it can be safely dereferenced to give the lvalue
*ptr.

Indirection operator* In the expression

*cast-expression

the cast-expression operand must have type "pointer to type," where
type is any type. The result of the indirection is of type type. If the
operand is of type "pointer to function," the result is a function
designator; if the operand is a pointer to an object, the result is an
lvalue designating that object. In the following situations, the result of
indirection is undefined:

1. The cast-expression is a null pointer.

2. The cast-expression is the address of an automatic variable and
execution of its block has terminated.

Turbo C++ Programmer's Guide

Unary plus operator + In the expression

+ cast-expression

the cast-expression operand must be of arithmetic type. The result is
the value of the operand after any required integral promotions.

Unary minus operator - In the expression

Bitwise complement
operator-

Logical negation
operator!

The sizeof

- cast-expression

the cast-expression operand must be of arithmetic type. The result is
the negative of the value of the operand after any required integral
promotions.

In the expression

- cast-expression

the cast-expression operand must be of integral type. The result is the
bitwise complement of the operand after any required integral
promotions. Each 0 bit in the operand is set to 1, and each 1 bit in the
operand is set to 0.

In the expression

! cast-expression

the cast-expression operand must be of scalar type. The result is of type
int and is the logical negation of the operand: 0 if the operand is non­
zero; 1 if the operand is zero. The expression !Eis equivalent to
(0 == E).

operator There are two distinct uses of the sizeof operator:

sizeof unary-expression

How much space is set aside
for each type depends on

the machine.

sizeof (type-name)

The result in both cases is an integer constant that gives the size in
bytes of how much memory space is used by the operand (determined
by its type, with some exceptions). In the first use, the type of the op­
erand expression is determined without evaluating the expression
(and therefore without side effects). When the operand is of type char
(signed or unsigned), sizeof gives the result 1. When the operand is a

Chapter 1, The Turbo C++ language standard 81

82

non-parameter of array type, the result is the total number of bytes in
the array (in other words, an array name is not converted to a pointer
type). The number of elements in an array equals slzeof array/sizeof
array[O].

If the operand is a parameter declared as array type or function type,
sizeof gives the size of the pointer. When applied to structures and
unions, sizeof gives the total number of bytes, including any padding.

sizeof cannot be used with expressions of function type, incomplete
types, parenthesized names of such types, or with an lvalue that
designates a bit field object.

The integer type of the result of sizeof is size_t, defined as unsigned
int in stddef.h.

You can use sizeof in preprocessor directives; this is specific to Turbo
C++.

~ In C++, sizeof(classtype), where classtype is derived from some base
class, returns the base class size.

Multiplicative
operators There are three multiplicative operators: * I and %. The syntax is

Rounding is always toward
zero.

multiplicative-expression:
cast-expression
multiplicative-expression * cast-expression
multiplicative-expression I cast-expression
multiplicative-expression% cast-expression

The operands for * (multiplication) and I (division) must be of
arithmetical type. The operands for % (modulus, or remainder) must
be of integral type. The usual arithmetic conversions are made on the
operands (see page 41).

The result of (opl * op2) is the product of the two operands. The
results of (opl I op2) and (opl % op2) are the quotient and remainder,
respectively, when opl is divided by op2, provided that op2 is nonzero.
Use of I or% with a zero second operand results in an error.

When opl and op2 are integers and the quotient is not an integer, the
results are as follows:

1. If opl and op2 have the same sign, opl I op2 is the largest integer
less than the true quotient, and opl % op2 has the sign of opl.

2. If opl and op2 have opposite signs, opl I op2 is the smallest integer
greater than the true quotient, and opl % op2 has the sign of opl.

Turbo C++ Programmer's Guide

Additive
operators There are two additive operators: + and-. The syntax is

additive-expression:
multiplicative-expression
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression

The addition The legal operand types for op1 + op2 are
operator+

1. Both op1 and op2 are of arithmetic type.

2. op1 is of integral type, and op2 is of pointer to object type.
3. op2 is of integral type, and op1 is of pointer to object type.

In case 1, the operands are subjected to the standard arithmetical
conversions, and the result is the arithmetical sum of the operands. In
cases 2 and 3, the rules of pointer arithmetic apply. (Pointer arithmetic
is covered on page 57.)

The subtraction The legal operand types for op1 - op2 are
operator-

Bitwise shift

1. Both op1 and op2 are of arithmetic type.

2. Both op1 and op2 are pointers to compatible object types. (Note:
The unqualified type type is considered to be compatible with the
qualified types const type, volatile type, and const volatile type.)

3. op1 is of pointer to object type, and op2 is integral type.

In case 1, the operands are subjected to the standard arithmetic
conversions, and the result is the arithmetic difference of the
operands. In cases 2 and 3, the rules of pointer arithmetic apply.

operators There are two bitwise shift operators: «and». The syntax is

shift-expression:
additive-expression
shift-expression «additive-expression
shift-expression » additive-expression

Chapter 7, The Turbo C++ language standard 83

Bitwise left-shift
operator<<

The constants ULONG_MAX
and UINT_MAX are defined in

limits.h.

Bitwise right-shift
operator>>

Relational

In the expression El « E2, the operands El and E2 must be of integral
type. The normal integral promotions are performed on El and E2,
and the type of the result is the type of the promoted El. If E2 is
negative or is greater than or equal to the width in bits of El, the
operation is undefined.

The result of El « E2 is the value of El left-shifted by E2 bit posi­
tions, zero-filled from the right if necessary. Left shifts of an unsigned
long El are equivalent to multiplying El by 2E2, reduced modulo
ULONG_MAX + 1; left shifts of unsigned ints are equivalent to
multiplying by 2E2 reduced modulo WNT _MAX+ 1. If El is a signed
integer, the result must be interpreted with care, since the sign bit may
change.

In the expression E1 » E2, the operands E1 and E2 must be of integral
type. The normal integral promotions are performed on El and E2,
and the type of the result is the type of the promoted E1. If E2 is
negative or is greater than or equal to the width in bits of El, the
operation is undefined.

The result of E1 » E2 is the value of E1 right-shifted by E2 bit posi­
tions. If E1 is of unsigned type, zero-fill occurs from the left if
necessary. If E1 is of signed type, the fill from the left uses the sign bit
(0 for positive, 1 for negative E1). This sign-bit extension ensures that
the sign of E1 » E2 is the same as the sign of E1. Except for signed
types, the value of E1 » E2 is the integral part of the quotient E1 f2E2.

operators There are four relational operators: < > <= and >=. The syntax for
these operators is:

relational-expression:
shift-expression
relational-expression < shift-expression
relational-expression > shift-expression
relational-expression <= shift-expression
relational-expression >= shift-expression

84 Turbo C++ Programmer's Guide

The less-than
operator<

Qualified names are defined
onpage 108.

The greater-than
operator>

The less-than or equal­
to operator<=

In the expression El < E2, the operands must conform to one of the
following sets of conditions:

1. Both El and E2 are of arithmetic type.

2. Both El and E2 are pointers to qualified or unqualified versions of
compatible object types.

3. Both El and E2 are pointers to qualified or unqualified versions of
compatible incomplete types.

In case 1, the usual arithmetic conversions are performed. The result
of El < E2 is of type int. If the value of El is less than the value of E2,
the result is 1 (true); otherwise, the result is zero (false).

In cases 2 and 3, where El and E2 are pointers to compatible types, the
result of El < E2 depends on the relative locations (addresses) of the
two objects being pointed at. When comparing structure members
within the same structure, the "higher" pointer indicates a later
declaration. Within arrays, the ''higher" pointer indicates a larger
subscript value. All pointers to members of the same union object
compare as equal.

Normally, the comparison of pointers to different structure, array, or
union objects, or the comparison of pointers outside the range of an
array object give undefined results; however, an exception is made for
the "pointer beyond the last element" situation as discussed under
"Pointer arithmetic" on page 57. If P points to an element of an array
object, and Q points to the last element, the expression P < Q + 1 is
allowed, evaluating to 1 (true), even though Q + 1 does not point to an
element of the array object.

The expression El > E2 gives 1 (true) if the value of El is greater than
the value of E2; otherwise, the result is 0 (false), using the same inter­
pretations for arithmetic and pointer comparisons, as defined for the
less-than operator. The same operand rules and restrictions also
apply.

Similarly, the expression El <= E2 gives 1 (true) if the value of El is
less than or equal to the value of E2. Otherwise, the result is 0 (false),
using the same interpretations for arithmetic and pointer compari­
sons, as defined for the less-than operator. The same operand rules
and restrictions also apply.

Chapter 1, The Turbo C++ language standard 85

The greater-than or
equal-to operator>=

Equality operators

86

The equal-to
operator==

Finally, the expression E1 >= E2 gives 1 (true) if the value of E1 is
greater than or equal to the value of E2. Otherwise, the result is 0
(false), using the same interpretations for arithmetic and pointer
comparisons, as defined for the less-than operator. The same operand
rules and restrictions also apply.

There are two equality operators: == and !:. They test for equality and
inequality between arithmetic values or between pointer values,
following rules very similar to those for the relational operators. Note,
however, that == and != have a lower precedence than the relational
operators<>, <=,and>=. Also,== and!= can compare certain
pointer types for equality and inequality where the relational opera­
tors would not be allowed.

The syntax is

equality-expression:
relational-expression
equality-expression == relational-expression
equality-expression I= relational-expression

In the expression E1 == E2, the operands must conform to one of the
following sets of conditions:

1. Both E1 and E2 are of arithmetic type.

2. Both E1 and E2 are pointers to qualified or unqualified versions of
compatible types.

3. One of E1 and E2 is a pointer to an object or incomplete type, and
the other is a pointer to a qualified or unqualified version of void.

4. One of E1 or E2 is a pointer and the other is a null pointer
constant.

If E1 and E2 have types that are valid operand types for a relational
operator, the same comparison rules just detailed for E1 < E2, E1 <=
E2, and so on, apply.

In case 1, for example, the usual arithmetic conversions are per­
formed, and the result of E1 == E2 is of type int. If the value of E1 is
equal to the value of E2, the result is 1 (true); otherwise, the result is
zero (false).

Turbo C++ Programmer's Guide

The inequality operator
!=

Bitwise AND

In case 2, El == E2 gives 1 (true) if El and E2 point to the same object,
or both point "one past the last element" of the same array object, or
both are null pointers.

If El and E2 are pointers to function types, El == E2 gives 1 (true) if
they are both null or if they both point to the same function.
Conversely, if El == E2 gives 1 (true), then either El and E2 point to
the same function, or they are both null.

In case 4, the pointer to an object or incomplete type is converted to
the type of the other operand (pointer to a qualified or unqualified
version of void).

The expression El != E2 follows the same rules as those for El == E2,
except that the result is 1 (true) if the operands are unequal, and 0
(false) if the operands are equal.

Operator & The syntax is

AND-expression:
equality-expression

Table 1.21
Bitwise operators truth table

Bitwise exclusive

AND-expression & equality-expression

In the expression El & E2, both operands must be of integral type. The
usual arithmetical conversions are performed on El and E2, and the
result is the bitwise AND of El and E2. Each bit in the result is
determined as shown in Table 1.21.

Bit value Bit value
in E1 in E2

0 0
1 0
0 1
1 1

E1 & E2

0
0
0
1

E1 "E2

0
1
1
0

E1 I E2

0
1
1
1

OR operator A The syntax is

exclusive-0 R-expression:
AND-expression
exclusive-OR-expression "AND-expression

Chapter 1, The Turbo C++ language standard 87

88

Bitwise inclusive

In the expression E1 " E2, both operands must be of integral type. The
usual arithmetic conversions are performed on E1 and E2, and the
result is the bitwise exclusive OR of E1 and E2. Each bit in the result is
determined as shown in Table 1.21.

OR operator I The syntax is

Logical AND

inclusive-0 R-expression:
exclusive-0 R-expression
inclusive-OR-expression I exclusive-OR-expression

In the expression E1 I E2, both operands must be of integral type. The
usual arithmetic conversions are performed on E1 and E2, and the
result is the bitwise inclusive OR of E1 and E2. Each bit in the result is
determined as shown in Table 1.21.

operator && The syntax is

logical-AND-expression:
inclusive-0 R-expression

Logical OR

logical-AND-expression && inclusive-OR-expression

In the expression E1 && E2, both operands must be of scalar type. The
result is of type int, the result is 1 (true) if the values of E1 and E2 are
both nonzero; otherwise, the result is 0 (false).

Unlike the bitwise & operator, && guarantees left-to-right evaluation.
E1 is evaluated first; if E1 is zero, E1 && E2 gives 0 (false), and E2 is
not evaluated.

operator I I The syntax is

logical-OR-expression:
logical-AND-expression
logical-OR-expression II logical-AND-expression

In the expression E1 11 E2, both operands must be of scalar type. The
result is of type int, and the result is 1 (true) if either of the values of
El and E2 are nonzero. Otherwise, the result is 0 (false).

Turbo C++ Programmer's Guide

Conditional

Unlike the bitwise I operator, II guarantees left-to-right evaluation. E1
is evaluated first; if E1 is nonzero, E1 II E2 gives 1 (true), and E2 is not
evaluated.

Operator ? : The syntax is

conditional-expression
logical-OR-expression
logical-OR-expression? expression : conditional-expression

In the expression E1 ? E2 : E3, the operand E1 must be of scalar type.
The operands E2 and E3 must obey one of the following sets of rules:

l. Both of arithmetic type
2. Both of compatible structure or union types
3. Both of void type
4. Both of type pointer to qualified or unqualified versions of

compatible types
5. One operand of pointer type, the other a null pointer constant
6. One operand of type pointer to an object or incomplete type, the

other of type pointer to a qualified or unqualified version of void

First, E1 is evaluated; if its value is nonzero (true), then E2 is evalua­
ted and E3 is ignored. If E1 evaluates to zero (false), then E3 is
evaluated and E2 is ignored. The result of E1 ? E2 : E3 will be the
value of whichever of E2 and E3 is evaluated.

In case 1, both E2 and E3 are subject to the usual arithmetic conver­
sions, and the type of the result is the common type resulting from
these conversions.

In case 2, the type of the result is the structure or union type of E2 and
E3.

In case 3, the result is of type void.

In cases 4 and 5, the type of the result is pointer to a type qualified
with all the type qualifiers of the types pointed to by both operands.

In case 6, the type of the result is that of the nonpointer-to-void
operand.

Chapter 7, The Turbo C++ language standard 89

Assignment
operators There are eleven assignment operators. The = operator is the simple

assignment operator; the other ten are known as compound
assignment operators.

The simple assignment
operator=

The compound
assignment operators

90

The syntax is

assignment-expression:
conditional-expression
unary-expression assignment-operator assignment-expression

assignment-operator: one of

*= I= %= +=
<<= >>= &= A_ I=

In the expression El = E2, El must be a modifiable lvalue. The value
of E2, after conversion to the type of El, is stored in the object
designated by El (replacing El's previous value). The value of the
assignment expression is the value of El after the assignment. The
assignment expression is not itself an lvalue.

The operands El and E2 must obey one of the following sets of rules:

1. El is of qualified or unqualified arithmetic type and E2 is of
arithmetic type.

2. El has a qualified or unqualified version of a structure or union
type compatible with the type of E2.

3. El and E2 are pointers to qualified or unqualified versions of com­
patible types, and the type pointed to by the left has all the
qualifiers of the type pointed to by the right.

4. One of El or E2 is a pointer to an object or incomplete type and the
other is a pointer to a qualified or unqualified version of void. The
type pointed to by the left has all the qualifiers of the type pointed
to by the right.

5. El is a pointer and E2 is a null pointer constant.

The compound assignments op=, where op can be any one of the ten
operator symbols* I % + - « >> & " I, are interpreted as follows:

El op= E2

has the same effect as

Turbo C++ Programmer's Guide

Comma

El= El op E2

except that the lvalue El is evaluated only once. For example, El +=
E2 is the same as El = El + E2.

The rules for compound assignment are therefore covered in the
previous section (on the simple assignment operator :).

operator The syntax is

Statements

expression:
assignment-expression
expression , assignment-expression

In the comma expression

E1,E2

the left operand El is evaluated as a void expression, then E2 is
evaluated to give the result and type of the comma expression. By
recursion, the expression

El, E2, ... ,En

results in the left-to-right evaluation of each Ei, with the value and
type of En giving the result of the whole expression. To avoid
ambiguity with the commas used in function argument and initializer
lists, parentheses must be used. For example,

func (i, (j = 1, j + 4), k);

calls func with three arguments, not four. The arguments are i, 5, and
k.

Statements specify the flow of control as a program executes. In the
absence of specific jump and selection statements, statements are
executed sequentially in the order of appearance in the source code.
The following table lays out the syntax for statements:

Chapter 7, The Turbo C++ language standard 91

Table 1.22: Turbo C++ statements

statement:
labeled-statement
compound-statement
expression-statement
selection-statement
iteration-statement
jump-statement
asm-statement
declaration (C++ specific)

asm-statement:
asm tokens newline
asm tokens;
asm {tokens; <tokens;>=

<tokens;>
}

labeled-statement:
identifier : statement

declaration-list declaration

statement-list:
statement
statement-list statement

expression-statement:
<expression> ;

selection-statement:
if (expression) statement
if (expression) statement else statement
switch (expression) statement

iteration-statement:
whlle (expression) statement
do statement while (expression) ;
for (for-init-statement <expression> ; <expression>) statement

for-init-statement

case constant-expression : statement
default : statement

expression-statement
declaration (C++ specific)

compound-statement: jump-statement:

{ <declaration-list> <Statement-list> }
goto identifier;
continue ;
break ; declaration-list:

declaration

Blocks

Labeled

return <expression> ;

A compound statement, or block, is a list (possibly empty) of state­
ments enclosed in matching braces ({ }). Syntactically, a block can be
considered to be a single statement, but it also plays a role in the
scoping of identifiers. An identifier declared within a block has a
scope starting at the point of declaration and ending at the closing
brace. Blocks can be nested to any depth.

statements A statement can be labeled in the following ways:

92

1. label-identifier : statement
The label identifier serves as a target for the unconditional goto
statement. Label identifiers have their own name space and enjoy
function scope. Note that in C++ you can label both declaration
and non-declaration statements.

2. case constant-expression : statement
default : statement
Case and default labeled statements are used only in conjunction
with switch statements.

Turbo C++ Programmer's Guide

Expression
statements Any expression followed by a semicolon forms an expression statement:

Selection
statements

if statements

lhe parentheses around
cond-expresslon are

essential.

<expression>;

Turbo C++ executes an expression statement by evaluating the ex­
pression. All side effects from this evaluation are completed before the
next statement is executed. Most expression statements are
assignment statements or function calls.

A special case is the null statement, consisting of a single semicolon (;).
The null statement does nothing. It is nevertheless useful in situations
where the Turbo C++ syntax expects a statement but your program
does not need one.

Selection or flow-control statements select from alternative courses of
action by testing certain values. There are two types of selection
statements: the if ... else and the switch.

The basic if statement has the following pattern:

if (cond-expression) t-st <else f-st>

The cond-expression must be of scalar type. The expression is evalua­
ted. If the value is zero (or null for pointer types), we say that the
cond-expression is false; otherwise, it is true.

If there is no else clause and cond-expression is true, t-st is executed;
otherwise, t-st is ignored.

If the optional else f-st is present and cond-expression is true, t-st is
executed; otherwise, t-st is ignored and f-st is executed.

Note Unlike, say, Pascal, Turbo C++ does not have a specific Boolean data
type. Any expression of integer or pointer type can serve a Boolean
role in conditional tests. The relational expression (a> b) (if legal)
evaluates to int 1 (true) if (a> b), and to int 0 (false) if (a<= b). Pointer
conversions are such that a pointer can always be correctly compared
to a constant expression evaluating to 0. That is, the test for null
pointers can be written if (!ptr) ... or if (ptr == 0) ••••

The f-st and t-st statements can themselves be if statements, allowing
for a series of conditional tests nested to any depth. Care is needed
with nested if ... else constructs to ensure that the correct statements

Chapter 7, The Turbo C++ language standard 93

are selected. There is no endif statement: Any "else" ambiguity is
resolved by matching an else with the last encountered if-without­
an-else at the same block level. For example,

if (x == 1)

if (y == 1) puts ("x=l and y=l");
else puts("x != 1");

draws the wrong conclusion! The else matches with the second if, de­
spite the indentation. The correct conclusion is that x = 1 and y != 1.
Note the effect of braces:

if (x == 1)
(

if (y == 1) puts("x = 1andy=1");

else puts("x != 1"); II correct conclusion

switch statements The switch statement uses the following basic format:

It is illegal to have duplicate
case constants in the same

switch statement.

94

switch (sw-expression) case-st

A switch statement lets you transfer control to one of several case­
labeled statements, depending on the value of sw-expression. The latter
must be of integral type (in C++, it can be of class type, provided that
there is an unambiguous conversion to integral type available). Any
statement in case-st (including empty statements) can be labeled with
one or more case labels:

case const-exp-i : case-st-i

where each case constant, const-exp-i, is a constant expression with a
unique integer value (converted to the type of the controlling expres­
sion) within its enclosing switch statement.

There can also be at most one default label:

default : default-st

After evaluating sw-expression, a match is sought with one of the
const-exp-i. If a match is found, control passes to the statement case-st-i
with the matching case label.

If no match is found and there is a default label, control passes to
default-st. If no match is found and there is no default label, none of
the statements in case-st is executed. Program execution is not affected
when case and default labels are encountered. Control simply passes
through the labels to the following statement or switch. To stop

Turbo C++ Programmer's Guide

Iteration

execution at the end of a group of statements for a particular case, use
break.

statements Iteration statements let you loop a set of statements. There are
three forms of iteration in Turbo C++: while, do, and for loops.

while statements The general format for this statement is

The parentheses are while (cond-exp) t-st
essential.

The loop statement, t-st, will be executed repeatedly until the
conditional expression, cond-exp, compares equal to zero (false).

The cond-exp is evaluated and tested first (as described on page 93). If
this value is nonzero (true), t-st is executed; if no jump statements that
exit from the loop are encountered, cond-exp is evaluated again. This
cycle repeats until cond-exp is zero.

As with if statements, pointer type expressions can be compared with
the null pointer, so that while (ptr) ... is equivalent to

while (ptr !=NULL) ...

The while loop offers a concise method for scanning strings and other
null-terminated data structures:

char str[lO]="Borland";
char *ptr=&str[O];
int count=O;
// ...
while (*ptr++) // loop until end of string

count++;

In the absence of jump statements, t-st must affect the value of cond­
exp in some way, or cond-exp itself must change during evaluation in
order to prevent unwanted endless loops.

do while statements The general format is

do do-st while (cond-exp);

The do-st statement is executed repeatedly until cond-exp compares
equal to zero (false). The key difference from the while statement is
that cond-exp is tested after, rather than before, each execution of the
loop statement. At least one execution of do-st is assured. The same
restrictions apply to the type of cond-exp (scalar).

Chapter 1, The Turbo C++ language standard 95

for statements The for statement format in C is

For C++, </nit-exp> can be for (<init-exp>; <test-exp>; <increment-exp>) statement
an expression or a

declaration. The sequence of events is as follows:

1. The initializing expression init-exp, if any, is executed. As the name
implies, this usually initializes one or more loop counters, but the
syntax allows an expression of any degree of complexity (in­
cluding declarations in C++). Hence the claim that any C program
can be written as a single for loop. (But don't try this at home.
Such stunts are performed by trained professionals.)

2. The expression test-exp is evaluated following the rules of the while
loop. If test-exp is nonzero (true), the loop statement is executed.
An empty expression here is taken as while (1), that is, always true.
If the value of test-exp is zero (false), the for loop terminates.

3. increment-exp advances one or more counters.

4. The expression statement (possibly empty) is evaluated and control
returns to step 2.

If any of the optional elements are empty, appropriate semicolons are
required:

for (;;) (//same as for (; 1;)
II loop forever

~ The C rules for for statements apply in C++. However, the init-exp in
C++ can also be a declaration. The scope of a declared identifier ex­
tends to the end of the controlled statement, not beyond. For example,

for (int i = 1; i < j; +ti)
{

if (i ...)

if (i ...)

II ok to refer to i here

II illegal; i is now out of scope

Jump statements

96

A jump statement, when executed, transfers control unconditionally.
There are four such statements: break, continue, goto, and return.

Turbo C++ Programmer's Guide

break statements The syntax is

break;

A break statement can be used only inside an iteration (while, do, and
for loops) or a switch statement. It terminates the iteration or switch
statement. Since iteration and switch statements can be intermixed
and nested to any depth, take care to ensure that your break exits
from the correct loop or switch. The rule is that a break terminates the
nearest enclosing iteration or switch statement.

continue statements The syntax is

continue;

A continue statement can be used only inside an iteration statement; it
transfers control to the test condition for while and do loops, and to
the increment expression in a for loop.

With nested iteration loops, a continue statement is taken as
belonging to the nearest enclosing iteration.

goto statements The syntax is

goto label;

The goto statement transfers control to the statement labeled label (see
"Labeled statements,"page 92), which must be in the same function.

~ In C++, it is illegal to bypass a declaration having an explicit or impli­
cit initializer unless that declaration is within an inner block that is
also bypassed.

return statements Unless the function return type is void, a function body must contain
at least one return statement with the following format:

return return-expression;

where return-expression must be of type type or of a type that is
convertible to type by assignment. The value of the return-expression is
the value returned by the function. An expression that calls the
function, such as func (actual-arg-list), is an rvalue of type type, not
an !value:

t = func (arg);
func(arg) = t;

Chapter 7. The Turbo C++ language standard

II OK
I* illegal in C; legal in Ct+ if return type of

func is a reference *I

97

C++

Referencing
Pointer referencing and

dereferencing is discussed on
page BO.

98

(func(arg))++; /* illegal in C; legal in Ct+ if return type of
func is a reference */

The execution of a function call terminates if a return statement is
encountered; if no return is met, execution "falls through," ending at
the final closing brace of the function body.

If the return type is void, the return statement can be written as

return;

with no return expression; alternatively, the return statement can be
omitted.

C++ is basically a superset of C. This means that, generally speaking,
you can compile C programs under C++, but you can't compile a C++
program under C if the program uses any constructs peculiar to C++.
Some situations need special care. The same function func declared
twice in C with different argument types will invoke a duplicated
name error. Under C++, however, func will be interpreted as an
overloaded function-whether this is legal or not will depend on
other circumstances. For a general discussion of programming in C++,
see Chapter 5, "AC++ primer," in Getting Started. Chapter 6, "Hands­
on C++," also in Getting Started, gives you a quick feeling for how C++
constructs work.

Although C++ introduces new keywords and operators to handle
classes, some of the capabilities of C++ have applications outside of
any class context. We first review these aspects of C++ that can be
used independently of classes, then get into the specifics of classes
and class mechanisms.

C++ reference types are closely related to pointer types. C++ reference
types create aliases for objects and let you pass arguments to functions
by reference. Traditional C passes arguments only by value. In C++
you can pass arguments by value or by reference.

Turbo C++ Programmer's Gulde

Simple references The reference declarator can be used to declare references outside
functions:

int i = O;
int &ir = i; II iris an alias for i
ir = 2; II same effect as i = 2

This creates the lvalue ir as an alias for i, provided that the initializer
is the same type as the reference. Any operations on ir have precisely
the same effect as operations on i. For example, ir = 2 assigns 2 to i,
and &ir returns the address of i.

Reference arguments The reference declarator can also be used to declare reference type
parameters within a function:

Implementation 1

void funcl (inti);
void func2 (int &ir);

int sum=3;
funcl (sum);
func2 (sum) ;

11 ir is type "reference to int"

II sum passed by value
II sum passed by reference

The sum argument passed by reference can be changed directly by
func2. func1, on the other hand, gets a copy of the sum argument
(passed by value), so sum itself cannot be altered by func1.

When an actual argument xis passed by value, the matching formal
argument in the function receives a copy of x. Any changes to this
copy within the function body are not reflected in the value of x itself.
Of course, the function can return a value that could be used later to
change x, but the function cannot directly alter a parameter passed by
value.

The traditional C method for changing x uses the actual argument &x,
the address of x, rather than x itself. Although &xis passed by value,
the function can access x through the copy of &x it receives. Even if
the function does not need to change x, it is still useful (though subject
to possibly dangerous side effects) to pass &x, especially if xis a large
data structure. Passing x directly by value involves the wasteful
copying of the data structure.

Compare the three implementations of the function treble:

int treble_ 1 (n)
(

return 3*n;

Chapter 1, The Turbo C++ language standard 99

100

Implementation 2

Implementation 3

Scope access
operator

int x, i = 4;
x = treble_l(i);

void treble_2(int* np)
{

*np = (*np)*3;

treble_2(int &i);

void treble_3{int& n)
{

n = 3*n;

treble_3(i);

II x now= 12, i = 4

II i now= 12

II n is a reference type

II i now= 36

The formal argument declaration type& t (or equivalently, type &t)
establishes t as type "reference to type." So, when treble_3 is called
with the real argument i, i is used to initialize the formal reference
argument n. n therefore acts as an alias for i, so that n = 3 *n also
assigns 3 * i to i.

If the initializer is a constant or an object of a different type than the
reference type, Turbo C++ creates a temporary object for which the
reference acts as an alias:

int& ir = 6;

float f;

I* temporary int object created, aliased by ir, gets value
6 *I

int& ir2 = f; I* creates temporary int object aliased by ir2; f converted
before assignment *I

ir2 = 2.0 II ir2 now= 2, but f is unchanged

The automatic creation of temporary objects permits the conversion of
reference types when formal and actual arguments have different (but
assignment-compatible) types. When passing by value, of course,
there are fewer conversion problems, since the copy of the actual
argument can be physically changed before assignment to the formal
argument.

The scope access (or resolution) operator:: (two semicolons) lets you
access a global (or file duration) name even if it is hidden by a local
redeclaration of that name (see page 29):

Turbo C++ Programmer's Guide

This code also works if the
"global" I ls a file-level static.

The new and
delete operators

new, being a keyword,
doesn't need a prototype.

int i;

void func(void);
{

int i=O;
i = 3;
: : i = 4;
printf ("%d", i);

II global i

II local i hides global i
II this i is the local i
II this i is the global i
11 prints out 3

The:: operator has other uses with class types, as discussed through­
out this chapter.

The new and delete operators offer dynamic storage allocation and
deallocation, similar but superior to the standard library functions in
the malloc and free families (see the Library Reference).

A simplified syntax is

pointer-to-name= new name <name-initializer>;
delete pointer-to-name;

name can be of any type except "function returning ... " (however,
pointers to functions are allowed).

new tries to create an object of type name by allocating (if possible)
sizeof(name) bytes in free store (also called the heap). The storage
duration of the new object is from the point of creation until the
operator delete kills it by deallocating its memory, or until the end of
the program.

If successful, new returns a pointer to the new object. A null pointer
indicates a failure (such as insufficient or fragmented heap memory).
As with malloc, you need to test for null before trying to access the
new object. However, unlike malloc, new calculates the size of name
without the need for an explicit sizeof operator. Further, the pointer
returned is of the correct type, "pointer to name," without the need for
explicit casting.

name *nameptr; II name is any non-function type

if (! (nameptr =new name)) {
errmsg ("Insufficient memory for name");
exit (1);

II use *nameptr to initialize new name object

Chapter 7, The Turbo C++ language standard 101

The operator new with
arrays

The ::operator new

Initializers with the new
operator

Classes

102

delete nameptr; II destroy name and deallocate sizeof(name) bytes

If name is an array, the pointer returned by new points to the first
element of the array. When creating multidimensional arrays with
new, all array sizes must be supplied:

mat_ptr = new int[3] [10] [12];
mat_ptr =new int[3] fl [12];
mat_ptr =new int[J[10][12];

I/ OK
// illegal
I/ illegal

When used with non-class objects, new works by calling a standard
library routine, the global ::operator new. With class objects of type
name, a specific operator called name::operator new can be defined.
new applied to class name objects invokes the appropriate
name::operator new if present; otherwise, the standard ::operator new
is used.

The optional initializer is another advantage new has over malloc
(although calloc does clear its allocations to zero). In the absence of
explicit initializers, the object created by new contains unpredictable
data (garbage). The objects allocated by new, other than arrays, can be
initialized with a suitable expression between parentheses:

int_ptr =new int(3);

Arrays of classes with constructors are initialized with the default
constructor (see page 115). The user-defined new operator with
customized initialization plays a key role in C++ constructors for
class-type objects.

C ++ classes offer extensions to the predefined type system. Each class
type represents a unique set of objects and the operations (methods)
and conversions available to create, manipulate, and destroy such
objects. Derived classes can be declared that inherit the members of
one or more base (or parent) classes.

In C++, structures and unions are considered as classes with certain
access defaults.

A simplified, "first-look" syntax for class declarations is

class-key class-name <: base-list> (<member-list> }

class-key is one of class, struct, or union.

Turbo C++ Programmer's Guide

The optional base-list lists the base class or classes from which the class
class-name will derive (or inherit) objects and methods. If any base
classes are specified, the class class-name is called a derived class (see
page 110, "Base and derived class access"). The base-list has default
and optional overriding access specifiers that can modify the access
rights of the derived class to members of the base classes (see page
108, "Member access control").

The optional member-list declares the class members (data and
functions) of class-name with default and optional overriding access
specifiers that may affect which functions can access which members.

Class names class-name is any identifier unique within its scope. With structures,
classes, and unions, class-name can be omitted (see "Untagged struc­
tures and typedefs," page 65.)

Class types The declaration creates a unique type, class type class-name. This lets
you declare further class objects (or instances) of this type, and objects
derived from this type (such as pointers to, references to, arrays of
class-name, and so on):

class X { ...) ;
Xx, &xr, *xptr, xarray{lO];
I* four objects: type X, reference to X, pointer to X and array of X*I
struct Y { . . .) ;
Y y, &yr, *yptr, yarray[lOJ;
II C would have
II struct Y y, &yr, *yptr, yarray[lOJ;

union Z { ...) ;
Z z, &zr, *zptr, zarray[lOJ;
II C would have
II union Z z, &zr, *zptr, zarray[lOJ;

Note the difference between C and C++ structure and union declara­
tions: The keywords struct and union are essential in C, but in C ++
they are needed only when the class names, Y and Z, are hidden (see
the following section).

Class name scope The scope of a class name is local, with some tricks peculiar to classes.
Class name scope starts at the point of declaration and ends with the
enclosing block. A class name hides any class, object, enumerator, or
function with the same name in the enclosing scope. If a class name is
declared in a scope containing the declaration of an object, function,
or enumerator of the same name, the class can only be referred to

Chapter 7, The Turbo C++ language standard 103

using the elaborated type specifier. This means that the class key, class,
struct, or union must be used with the class name. For example,

struct S { • . . } ;

int S(struct S *Sptr};

void func(void)
{

s t;

struct S s;
S (& s) ;

II ILLEGAL declaration: no class key
II and function Sin scope
II OK: elaborated with class key
II OK: this is a function call

C++ also allows an incomplete class declaration:

class X; II no members, yet!
struct Y;
union Z;

Incomplete declarations permit certain references to the class names
X, Y, or Z (usually references to pointers to class objects) before the
classes have been fully defined (see "Structure member declarations,"
page 65). Of course, you must make a complete class declaration with
members before you can declare and use class objects.

Class objects Class objects can be assigned (unless copying has been restricted),
passed as arguments to functions, returned by functions (with some
exceptions), and so on. Other operations on class objects and members
can be user-defined in many ways, including member and friend
functions, and the redefinition of standard functions and operators
when used with objects of a certain class. Redefined functions and
operators are said to be overloaded. Operators and functions that are
restricted to objects of a certain class (or related group of classes) are
called member functions for that class. C++ offers a mechanism
whereby the same function or operator name can be called to perform
different tasks, depending on the type or number of arguments or
operands.

Class member list The optional member-list is a sequence of data declarations (of any
type, including enumerations, bit fields and other classes) and
function declarations and definitions, all with optional storage class
specifiers and access modifiers. The objects thus defined are called
class members. The storage class specifiers auto, extern, and register
are not allowed. Members can be declared with the static storage class
specifiers.

104 Turbo C++ Programmer's Gulde

Member functions A function declared without the friend specifier is known as a member
function of the class. Functions declared with the friend modifier are
called friend functions.

The same name can be used to denote more than one function,
provided that they differ in argument type or number of arguments.

The keyword this Nonstatic member functions operate on the class type object with
which they are called. For example, if xis an object of class X and f is a
member function of X, the function call x. f () operates on x. Similarly,
if xptr is a pointer to an X object, the function call xptr->f () operates
on *xptr. But how does f know which x it is operating on? C++
provides f with a pointer to x called this. this is passed as a hidden
argument in all calls to non-static member functions.

The keyword this is a local variable available in the body of any
nonstatic member function. this does not need to be declared and is
rarely referred to explicitly in a function definition. However, it is
used implicitly within the function for member references. If x.f(y} is
called, for example, where y is a member of X, this is set to &x and y is
set to this->y, which is equivalent to x.y.

lnline functions You can declare a member function within its class and define it else­
where. Alternatively, you can both declare and define a member
function within its class, in which case it is called an inline function.
(Chapter 5, "AC++ primer," in Getting Started gives some examples of
inline functions.)

Turbo C++ can sometimes reduce the normal function call overhead
by substituting the function call directly with the compiled code of the
function body. This process, called an inline expansion of the function
body, does not affect the scope of the function name or its arguments.
Inline expansion is not always possible or feasible. The inline specifier
is a request (or hint) to the compiler that you would welcome an in­
line expansion. As with the register storage class specifier, the com­
piler may or may not take the hint!

Explicit and implicit inline requests are best reserved for small, fre­
quently used functions, such as the operator functions that implement
overloaded operators. For example, the following class declaration:

int i;

class X {
public:

Chapter 7, The Turbo C++ language standard

II global int

105

106

char* func(void) (return i; } II inline by default
char* i;

} ;

is equivalent to:

inline char* X::func(void) { return i; }

func is defined "outside" the class with an explicit inline specifier. The
i returned by func is the char* i of class X-see the section on member
scope starting on page 107.

Static members The storage class specifier static can be used in class declarations of
data and function members. Such members are called static members
and have distinct properties from nonstatic members. With nonstatic
members, a distinct copy "exists" for each object in its class; with
static members, only one copy exists, and it can be accessed without
reference to any particular object in its class. If xis a static member of
class X, it can be referenced as X::x (even if objects of class X haven't
been created yet). It is still possible to access x using the normal
member access operators. For example, y.x and yptr->x, where y is an
object of class X and yptr is a pointer to an object of class X, although
the expressions y and yptr are not evaluated. In particular, a static
member function can be called with or without the special member
function syntax:

class X {
int member_int;

public:
static void func(int i, X* ptr);

};

void g (void);
{

X obj;
func (1, &obj); II error unless there is a global func(}

II defined elsewhere

X::func(l, &obj); II calls the static func(} in X
II OK for static functions only

obj.func(l, &obj); II so does this (OK for static and
II nonstatic functions}

Since a static member function can be called with no particular object
in mind, it has no this pointer. A consequence of this is that a static
member function cannot access nonstatic members without explicitly
specifying an object with . or->. For example, with the declarations of
the previous example, func might be defined as follows:

Turbo C++ Programmer's Guide

void X::func(int i, X* ptr)
{

member_ int = i;

ptr->member_int = i;

II which object does member_int
II refer to? Error
II OK: now we know!

Apart from inline functions, static member functions of global classes
have external linkage. Static member functions cannot be virtual func­
tions. It is illegal to have a static and nonstatic member function with
the same name and argument types.

The declaration of a static data member in its class declaration is not a
definition, so a definition must be provided elsewhere to allocate stor­
age and provide initialization. The definition of a static data member
can be omitted if "default initialization to all zeros" is in operation.

Static members of a class declared local to some function have no link­
age and cannot be initialized. Static members of a global class can be
initialized like ordinary global objects, but only in file scope. Static
members obey the usual class member access rules, except they can be
initialized.

class X {

static int x;

};

int X::x = 1;

The main use for static members is to keep track of data common to
all objects of a class, such as the number of objects created, or the last­
used resource from a pool shared by all such objects. Static members
are also used to

•reduce the number of visible global names

•make obvious which static objects logically belong to which class

• permit access control to their names

Member scope The expression X::func() in the example on page 106 uses the class
name X with the scope access modifier to signify that func, although
defined "outside" the class, is indeed a member function of X, and it
exists within the scope of X. The influence of X:: extends into the body
of the definition. This explains why the i returned by func refers to
X::i, the char* i of X, rather than the global inti. Without the X:: modi-

Chapter 1, The Turbo C++ language standard 107

108

fier, the function tune would represent an ordinary non-class function,
returning the global inti.

All member functions, then, are in the scope of their class, even if
defined outside the class.

Data members of class X can be referenced using the selection opera­
tors . and-> (as with C structures). Member functions can also be
called using the selection operators (see also "The keyword this,"
page 105). For example,

class X {

public:
int i;
char name[20];
x *ptrl;
X *ptr2;
void Xfunc(char*data, X* left, X* right); // define elsewhere

);

void f(void);
{

X xl, x2, *xptr=&xl;
xl.i = O;
x2.i = xl.i;
xptr->i = 1;
xl.Xfunc("stan", &x2, xptr);

If m is a member or base member of class X, the expression x: : m is
called a qualified name; it has the same type as m, and it is an lvalue
only if m is an lvalue. A key point is that even if the class name X is
hidden by a non-type name, the qualified name X::m will access the
correct class member, m.

Class members cannot be added to a class by another section of your
program. The class X cannot contain objects of class X, but can contain
pointers or references to objects of class X (note the similarity with C's
structure and union types).

Member access control

Members of a class acquire access attributes either by default (depend­
ing on class key and declaration placement) or by the use of one of the
three access specifiers: public, private, and protected. The significance
of these attributes is as follows:

public The member can be used by any function.

Turbo C++ Programmer's Gulde

Friend function declarations private
are not affected by access

The member can be used only by member functions and
friends of the class in which it is declared.

specifiers (see "Friends of
classes.· page 112). protected Same as for private, but additionally, the member can be

used by member functions and friends of classes derived
from the declared class, but only in objects of the derived
type. (Derived classes are explained in the next section.)

Members of a class are private by default, so you need explicit public
or protected access specifiers to override the default.

Members of a struct are public by default, but you can override this
with the private or protected access specifier.

Members of a union are public by default; this cannot be changed. All
three access specifiers are illegal with union members.

A default or overriding access modifier remains effective for all subse­
quent member declarations until a different access modifier is en­
countered. For example,

class X {
int i;
char ch;

public:
int j;
int k;

protected:
int l;

};

struct Y (
int i;

private:
int j;

public:
int k;

};

union Z {

II X::i is private by default
I I so is x: : ch

II next two are public

II X::l is protected

II Y::i is public by default

II Y::j is private

II Y::k is public

int i; II public by default; no other choice
double d;

l i

The access specifiers can be listed and grouped in any convenient
sequence. You can save a little typing effort by declaring al! the
private members together, and so on.

Chapter 1. The Turbo C++ language standard 109

Base and derived class When you declare a derived class D, you list the base classes 81, 82,
access ... in a comma-delimited base-list:

Since a base class can itself
be a derived class. the

access attribute question is
recursive: You backtrack until

you reach the basest of the
base classes, those that do

not Inherit.

protected cannot be used In
a base list. Unions cannot

have base classes. and
unions cannot be used as

base classes.

110

class-key 0: base-list { <member-list> }

D inherits all the members of these base classes. (Redefined base class
members are inherited and can be accessed using scope overrides, if
needed.) D can use only the public and protected members of its base
classes. But, what will be the access attributes of the inherited mem­
bers as viewed by D? D may want to use a public member from a base
class, but make it private as far as outside functions are concerned.
The solution is to use access specifiers in the base-list.

When declaring D, you can use the access specifier public or private in
front of the classes in the base-list:

class D : public Bl, private B2, •.. (

These modifiers do not alter the access attributes of base members as
viewed by the base class, though they can alter the access attributes of
base members as viewed by the derived class.

The default is private if D is a class declaration, and public if D is a
struct declaration.

The derived class inherits access attributes from a base class as
follows:

public base class: public members of the base class are public
members of the derived class. Protected mem­
bers of the base class are protected members of
the derived class. Private members of the base
class remain private to the base class.

private base class: Both public and protected members of the base
class are private members of the derived class.
Private members of the base class remain private
to the base class.

In both cases, note carefully that private members of a base class are,
and remain, inaccessible to member functions of the derived class
unless friend declarations are explicitly declared in the base class
granting access. For example,

class X : A (II default for class is private A

Turbo C++ Programmer's Gulde

I* class X is derived from class A *I
class Y : B, public C (II override default for C

I* class Y is derived (multiple inheritance) from B and C
B defaults to private B *I

struct S : D { II default for struct is public D
I* struct s is derived from D */

struct T private D, E { II override default for D
II Eis public by default

I* struct T is derived (multiple inheritance) from D and E
E defaults to public E *I

The effect of access specifiers in the base list can be adjusted by using
a qualified-name in the public or protected declarations in the derived
class. For example,

class B (
int a;

public:
int b, c;
int Bfunc(void);

};

class X : private B
int d;

public:

} ;

B: :c;
int e;
int Xfunc(void);

int Efunc(X& x);

II private by default

II a, b, c, Bfunc are now private in X
II private by default, NOTE: a is not
II accessible in X

II c was private, now is public

II external to Band X

The function Efunc can use only the public names c, e, and Xfunc.

The function Xfunc is in X, which is derived from private 8, so it has
access to

•The "adjusted-to-public" c
•The "private-to-X" members from 8: band 8func

• X's own private and public members: d, e, and Xfunc

However, Xfunc cannot access the "private-to-8" member, a.

Chapter 7, The Turbo C++ language standard 111

Virtual base
classes With multiple inheritance, a base class can't be specified more than

once in a derived class:

Friends of classes

class B { ... } ;
class D : B, B { •.. }; II Illegal

However, a base class can be indirectly passed to the derived class
more than once:

class X: public B { .•. }
class Y: public B { ...)

class Z : public X, public Y { ..• J II OK

In this case, each object of class Z will have two sub-objects of class 8.
If this causes problems, the keyword virtual can be added to a base
class specifier. For example,

class X : virtual public B { ... J
class Y : virtual public B { ... }
class Z : public X, public Y { .. .

B is now a virtual base class, and class Z has only one sub-object of
class B.

A friend F of a class X is a function or class that, although not a mem­
ber function of X, has full access rights to the private and protected
members of X. In all other respects, F is a normal function with respect
to scope, declarations, and definitions.

Since Fis not a member of X, it is not in the scope of X and it cannot be
called with the x.F and xptr->F selector operators (where xis an X
object, and xptr is a pointer to an X object).

If the specifier friend is used with a function declaration or definition
within the class X, it becomes a friend of X.

Friend functions defined within a class obey the same inline rules as
member functions (see "Inline functions," page 105). Friend functions
are not affected by their position within the class or by any access
specifiers. For example,

class X {
int i; II private to X
friend void friend_func(X*, int);

112 Turbo C++ Programmer's Guide

I* friend func is not private, even though it's declared in the private
section *I

public:
void member func(int);

} ;

I* definitions; note both functions access private int i *I
void friend_func (X* xptr, int a) (xptr->i = a;)
void X: :member_func(int a) (i = a; }

X xobj;

I* note difference in function calls *I
friend _func (&xobj, 6);
xobj.member_func(6);

You can make all the functions of class Y into friends of class X with a
single declaration:

class Y;
class X {

friend Y;
int i;
void member funcX();

} ;

class Y; {

) ;

void friend_Xl(X&);
void friend_X2(X*);

II incomplete declaration

II complete the declaration

The functions declared in Y are friends of X, although they have no
friend specifiers. They can access the private members of X, such as i
and member_funcX.

It is also possible for an individual member function of class X to be a
friend of class Y:

class X {

void member funcX();

class Y {
int i;
friend void X::mernber_funcX();

) ;

Class friendship is not transitive: X friend of Y and Y friend of Z does
not imply X friend of Z. However, friendship is inherited.

Chapter 7, The Turbo C++ language standard 113

Constructors and
destructors

114

There are several special member functions that determine how the
objects of a class are created, initialized, copied, and destroyed. Con­
structors and destructors are the most important of these. They have
many of the characteristics of normal member functions-you declare
and define them within the class, or declare them within the class and
define them outside-but they have some unique features.

1. They do not have return value declarations (not even void).

2. They cannot be inherited, though a derived class can call the base
class' constructors and destructors.

3. Constructors, like most C++ functions, can have default arguments
or use member initialization lists.

4. Destructors can be virtual, but constructors cannot.
5. You can't take their addresses.

main()
{

void *ptr = base::base; II illegal

6. Constructors and destructors can be generated by Turbo C++ if
they haven't been explicitly defined; they are also invoked on
many occasions without explicit calls in your program. Any
constructor or destructor generated by the compiler will be public.

7. You cannot call constructors the way you call a normal function.

8.
Destructors can be called if you use their fully qualified name.

x *p;

p->X:: ·X ();
X: :X();

II legal call of destructor
II illegal call of constructor

9. The compiler automatically calls constructors and destructors
when defining and destroying objects.

10. Constructors and destructors can make implicit calls to operator
new and operator delete if allocation is required for an object.

Turbo C++ Programmer's Guide

Constructors

11. An object with a constructor or destructor cannot be used as a
member of a union.

If a class X has one or more constructors, one of them is invoked each
time you define an object x of class X. The constructor creates x and
initializes it. Destructors reverse the process by destroying the class
objects created by constructors.

Constructors are also invoked when local or temporary objects of a
class are created; destructors are invoked when these cbjects go out of
scope.

Constructors are distinguished from all other member functions by
having the same name as the class they belong to. When an object of
that class is created or is being copied, the appropriate constructor is
called implicitly.

Constructors for global variables are called before function main is
called. When the pragma startup directive is used to install a function
prior to main, global variable constructors are called prior to the
startup functions.

Local objects are created as the scope of the variable becomes active. A
constructor is also invoked when a temporary object of the class is
created.

class X

public:
X(); II class X constructor

) ;

A class X constructor cannot take X as an argument:

class X

public:
X (X); I I illegal

The parameters to the constructor can be of any type except that of the
class of which it is a member. The constructor can accept a reference to
its own class as a parameter; when it does so, it is called the copy
constructor. A constructor which accepts no parameters is called the
default constructor. We discuss the default constructor next; the de­
scription of the copy constructor starts on page 116.

Chapter 7, The Turbo C++ language standard 115

The default constructor The default constructor for class Xis one that takes no arguments:
x: : x () . If no user-defined constructors exist for a class, Turbo C ++
generates a default constructor. On a declaration such as x x, the
default constructor creates the object x.

Important! Like all functions, constructors can have default arguments. For
example, the constructor

X::X(int, int= 0)

can take one or two arguments. When presented with one argument,
the missing second argument is assumed to be a zero int. Similarly,
the constructor

X::X(int = 5, int= 6)

could take two, one, or no arguments, with appropriate defaults.
However, the default constructor x: : x () takes no arguments and must
not be confused with, say, x: : x (int = O), which takes one or no
arguments.

Take care to avoid ambiguity in calling constructors. In the following
case, the default constructor and the constructor accepting an integer
could become ambiguous:

class X

public:
x ();
X(int i = 0);

};

main()
{

X one(lO); II OK; uses X::X(int)
X two; II illegal; ambiguous whether to call X::X() or

11 X: :X(int = 0)

return 0;

The copy constructor A copy constructor for class X is one that can be called with a single
argument of type x: x: : x (const X&) or x: : x (const X&, int = 0). Default
arguments are also allowed in a copy constructor. Copy constructors
are invoked when copying a class object, typically when you declare
with initialization by another class object: x x = y. Turbo C++

116 Turbo C++ Programmer's Guide

Overloading
constructors

Order of calling
constructors

generates a copy constructor for class X if one is needed and none is
defined in class X.

Constructors can be overloaded, allowing objects to be created,
depending on the values being used for initialization.

class X

int integer_part;
double double_part;

public:
X(int i) integer_part = i; }
X(double d) double_part = d; }

} ;

main()
{

X one(lO); II invokes X::X{int) and sets integer_part to 10
X one{3.14); II invokes X::X{double) setting double_part

return O;

In the case where a class has one or more base classes, the base class
constructors are invoked before the derived class constructor. The
base class constructors are called in the order they are declared.

For example, in this setup,

class Y { ... }
class X: public Y (... }
X one;

the constructors are called in this order:

Y(); II base class constructor
X(); II derived class constructor

For the case of multiple base classes:

class X : public Y, public Z
X one;

the constructors are called in the order of declaration:

Y(); II base class constructors come first
z () ;
x ();

Chapter 7, The Turbo C++ language standard 117

118

Constructors for virtual base classes are invoked before any non­
virtual base classes. If the hierarchy contains multiple virtual base
classes, the virtual base class constructors are invoked in the order in
which they were declared. Any non-virtual bases are then constructed
before the derived class constructor is called.

If a virtual class is derived from a non-virtual base, that non-virtual
base will be first so that the virtual base class may be properly con­
structed. The code

class X : public Y, virtual public Z
X one;

produces this order:

Z(); II virtual base class initialization
Y(); II non-virtual base class
X(); II derived class

Or for a more complicated example:

class base;
class base2;
class levell : public base2, virtual public base;
class level2 : public base2 1 virtual public base;
class toplevel : public levell, virtual public level2;
toplevel view;

The construction order of view would be as follows:

base();

base2 ();

level2();
base2();
levell ();
toplevel () ;

II virtual base class highest in hierarchy
II base is only constructed once
II non-virtual base of virtual base level2
II must be called to construct level2
II virtual base class
II non-virtual base of levell
II other non-virtual base

In the event that a class hierarchy contains multiple instances of a
virtual base class, that base class is only constructed once. If, however,
there exist both virtual and non-virtual instances of the base class, the
class constructor is invoked a single time for all virtual instances and
then once for each non-virtual occurrence of the base class.

Constructors for elements of an array are called in increasing order of
the subscript.

Turbo C++ Programmer's Guide

Class initialization An object of a class with only public members and no constructors or
base classes (typically a structure) can be initialized with an initializer
list. If a class has a constructor, its objects must be either initialized or
have a default constructor. The latter is used for objects not explicitly
initialized.

Objects of classes with constructors can be initialized with an expres­
sion list in parentheses. This list is used as an argument list to the
constructor. An alternative is to use an equal sign followed by a single
value. The single value can be of the type of the first argument
accepted by a constructor of that class, in which case either there are
no additional arguments, or the remaining arguments have default
values. It could also be an object of that class type. In the former case,
the matching constructor is called to create the object. In the latter
case, the copy constructor is called to initialize the object.

class X

int i;
public:

x () ;
X(int x);
X(const X&);

} ;

main()
(

X one;
Xtwo(l);
X three = 1;
X four = one;
X five (two) ;

II function bodies omitted for clarity

II default constructor invoked
II constructor X::X(int) is used
II calls X::X(int)
II invokes X::X(const X&) for copy
II calls X::X(const X&)

The constructor can assign values to its members in two ways. It can
accept the values as parameters and make assignments to the member
variables within the function body of the constructor:

class X

int a, b;
public:

X(int i, int j) { a= i; b = j)
} ;

Or it can use an initializer list prior to the function body:

class X

Chapter 7, The Turbo C++ language standard 119

Base class constructors must
be declared as either public

or protected to be called
from a derived class.

120

int a, b;
public:

X(int i, int j) : a(i), b(j) ()
);

In both cases, an initialization of x x (1, 2) assigns a value of 1 to x::a
and 2 to x::b. The second method, the initializer list, provides a mecha­
nism for passing values along to base class constructors.

class basel

int x;
public:

basel(int i) x = i;
) ;

class base2
(

int x;
public:

base2 (int i) : x (i) {}

) ;

class top : public basel, public base2
(

int a, b;
public:

top(int i, int j) : basel (i*5), base2 (j+i), a (i) (b = j;}
) ;

With this class hierarchy, a declaration of top one (1, 2) would result
in the initialization of base1 with the value 5 and base2 with the
value 3. The methods of initialization can be intermixed.

As described previously, the base classes are initialized in declaration
order. Then the members are initialized, also in declaration order,
independent of the initialization list.

class X
{

int a, b;
public:

X(int i, j) : a(i), b(a+j) ()
};

With this class, a declaration of x x (1, 1) results in an assignment of 1
to x::a and 2 to x::b.

Turbo C++ Programmer's Guide

Destructors

Base class constructors are called prior to the construction of any of
the derived classes members. The values of the derived class can't be
changed and then have an affect on the base class's creation.

class base

int x;
public:

base(int i) : x(i) {}
);

class derived : base

int a;
public:

derived(int i) : a(i*lO), base(a) { } II Watch out! Base will be
II passed an uninitialized a.

};

With this class setup, a call of derived d(l) will not result in a value of
10 for the base class member x. The value passed to the base class
constructor will be undefined.

When you want an initializer list in a non-inline constructor, don't
place the list in the class definition. Instead, put it at the point at
which the function is defined.

derived: :derived(int i) : a(i}
(

The destructor for a class is called to free members of an object before
the object is itself destroyed. The destructor is a member function
whose name is that of the class preceded by a tilde(-). A destructor
cannot accept any parameters, nor will it have a return type or value
declared.

class X

public:
-X(); II destructor for class X

} ;

If a destructor is not explicitly defined for a class, the compiler will
generate one.

Chapter 1, The Turbo C++ language standard 121

When destructors are
invoked

A destructor is called implicitly when a variable goes out of its
declared scope. Destructors for local variables are called when the
block they are declared in is no longer active. In the case of global
variables, destructors are called as part of the exit procedure after
main.

atexit. #pragma exit.
and destructors

When pointers to objects go out of scope, a destructor is not implicitly
called. This means that the delete operator must be called to destroy
such an object.

Destructors are called in the exact opposite order from which their
corresponding constructors were called (see page 117).

All global objects are active until the code in all exit procedures has
executed. Local variables, including those declared in main, are de­
stroyed as they go out of scope. The order of execution at the end of a
Turbo C++ program in these regards is as follows:

• atexit functions are executed in the order they were inserted.

• #pragma exit functions are executed in the order of their priority
codes.

• Destructors for global variables are called.

exit and destructors When you call exit from within a program, destructors are not called
for any local variables in the current scope. Global variables are de­
stroyed in their normal order.

abort and destructors If you call abort anywhere in a program, no destructors are called, not
even for variables with a global scope.

122

A destructor can also be invoked explicitly in one of two ways:
indirectly through a call to delete, or directly by using the destructor's
fully qualified name. You can use delete to destroy objects that have
been allocated using new. Explicit calls to the destructor are only
necessary for objects allocated a specific address through calls to new.

class X {

-X();

};

void* operator new(size_t size, void *ptr}
{

Turbo C++ Programmer's Guide

return ptr;

char buffer[sizeof(X)];

main()
{

X* pointer = new X;
X* exact_pointer;

exact_pointer = new(&buffer) X; II pointer initialized at
II address of buffer

delete pointer;
exact_pointer->X::·X();

II delete used to destroy pointer
II direct call used to deallocate

Virtual destructors A destructor can be declared as virtual. This allows a pointer to a base
class object to call the correct destructor in the event that the pointer
actually refers to a derived class object. The destructor of a class
derived from a class with a virtual destructor is itself virtual.

class color

public:
virtual ·color(); II virtual destructor for color

} ;

class red : public color
{

public:
·red() ;

};
II destructor for red is also virtual

class brightred: public red
(

public:
·brightred () ;

};
II brightred's destructor also virtual

The previously listed classes and the following declarations

color *palette[3];

palette[O] =new red;
palette[l] =new brightred;
palette[2] =new color;

will produce these results

delete palette[O];

Chapter 1, The Turbo C++ language standard 123

Overloaded

II The destructor for red is called followed by the
II destructor for color.

delete palette[l];
II The destructor for brightred is called, followed by -red
II and -color.

delete palette[2];
II The destructor for color is invoked.

However, in the event that no destructors were declared as virtual,
delete palette[O], delete palette[l], and delete palette[2] would all call
only the destructor for class color. This would incorrectly destruct the
first two elements, which were actually of type red and brightred.

operators C ++lets you redefine the action of most operators, so that they per­
form specified functions when used with objects of a particular class.
As with overloaded C++ functions in general, the compiler distin­
guishes the different functions by noting the context of the call: the
number and types of the arguments or operands.

All the operators on page 20 can be overloaded except for

. ·* :: ?:

The preprocessing symbols # and ## also cannot be overloaded.

The keyword operator followed by the operator symbol is called the
operator function name; it is used like a normal function name when de­
fining the new (overloaded) action of the operator.

A function operator called with arguments behaves like an operator
working on its operands in an expression. The operator function can't
alter the number of arguments or the precedence and associativity
rules (Table 1.20 on page 75) applying to normal operator use. Con­
sider the class complex:

This class was invented for
illustrative purposes only. It
Jsn 't the same as the class

class complex {
double real, imag;

public:
II private by default

124

complex in the run-time
library.

complex{) { real = imag = O;)
complex(double r, double i = 0)

real = r; imag = i;

II inline constructor
II another one

Turbo C++ Programmer's Guide

Operator
functions

Overloaded operators
and inheritance

Overloading new and
delete

The type size_t is defined in
stdlib.h.

We could easily devise a function for adding complex numbers, say,

complex AddComplex(complex cl, complex c2);

but it would be more natural to be able to write:

complex cl(O,l), c2(1,0), c3
c3 = cl + c2;

than

c3 = AddComplex(cl, c2);

The operator+ is easily overloaded by including the following
declaration in the class complex:

friend complex operator +(complex cl, complex c2);

and defining it (possibly inline) as:

complex operator +(complex cl, complex c2)
{

return complext,cl.real + c2.real, cl.imag + c2.imag);

Operator functions can be called directly, although they are usually
invoked indirectly by the use of the overload operator:

c3 =cl.operator+ (c2); II same as c3 =cl+ c2

Apart from new and delete, which have their own rules (see the next
sections), an operator function must either be a nonstatic member
function or have at least one argument of class type. The operator
functions=, (), []and-> must be nonstatic member functions.

With the exception of the assignment function operator =() (see
"Overloading the assignment operator=" on page 127), all overloaded
operator functions for class X are inherited by classes derived from X,
with the standard resolution rules for overloaded functions. If Xis a
base class for Y, an overloaded operator function for X may possibly
be further overloaded for Y.

The operators new and delete can be overloaded to provide alterna­
tive free storage (heap) memory-management routines. A user­
defined operator new must return a void* and must have a size_t as
its first argument. A user-defined operator delete must have a void

Chapter 7, The Turbo C++ language standard 125

126

return type and void* as its first argument; a second argument of type
size_t is optional. For example,

finclude <stdlib.h>

class X

public:
void* operator new(size_t size) (return newalloc(size);}
void operator delete(void* pl (newfree(p); }
X () (I* initialize here *I }
X(char ch) (I* and here *I }

~x () (I* clean up here *I }

} ;

The size argument gives the size of the object being created, and
newalloc and newfree are user-supplied memory allocation and deal­
location functions. Constructor and destructor calls for objects of class
X (or objects of classes derived from X that do not have their own
overloaded operators new and delete) will invoke the matching user­
defined X::operator new() and X::operator delete(), respectively.

The X::operator new and X::operator delete operator functions are
static members of X whether explicitly declared as static or not, so
they cannot be virtual functions.

The standard, predefined (global) new and delete operators can still
be used within the scope of X, either explicitly with the global scope
operator (::operator new and ::operator delete), or implicitly when
creating and destroying non-X or non-X-derived class objects. For
example, you could use the standard new and delete when defining
the overloaded versions:

void* X::operator new(size_t s}
(

void* ptr ~new char[s]; II standard new called

return ptr;

void X::operator delete(void* ptr)
(

delete (void*} ptr; II standard delete called

Turbo C++ Programmer's Gulde

Overloading unary
operators

Overloading binary
operators

Overloading the
assignment operator =

The reason for the size argument is that classes derived from X inherit
the X::operator new. The size of a derived class object may well differ
from that of the base class.

You can overload a prefix or postfix unary operator by declaring a
nonstatic member function taking no arguments, or by declaring a
non-member function taking one argument. If @ represents a unary
operator, @x and x@ can both be interpreted as either x.operator@()
or operator@(x), depending on the declarations made. If both forms
have been declared, standard argument matching is applied to resolve
any ambiguity.

Care is needed when overloading++ and - -, since postfix and prefix
usage cannot be distinguished from within the overloading function.
For example,

class X {

X operator++() { I* increment X routine here *I }

x x, y;
y = ++x; II same as y = x++ !

You can overload a binary operator by declaring a nonstatic member
function taking one argument, or by declaring a non-member function
(usually friend) taking two arguments. If@ represents a binary
operator, x@y can be interpreted as either x.operator@(y) or
operator@(x,y), depending on the declarations made. If both forms
have been declared, standard argument matching is applied to resolve
any ambiguity.

The assignment operator= can only be overloaded by declaring a
nonstatic member function. For example,

class String (

String& operator= {String& str);

String (String&};
~string();

This code, with suitable definitions of String::operator =(),allows
string assignments str1 = str2, just like other languages. Unlike the
other operator functions, the assignment operator function cannot be

Chapter 7, The Turbo C++ language standard 127

Overloading the
function call

operator()

Overloading the
subscripting operator [

l

Overloading the class
member access

operator->

Virtual functions

128

inherited by derived classes. If, for any class X, there is no user­
defined operator =,the operator = is defined by default as a member­
by-member assignment of the members of class X:

X& X::operator = (const X& source)
(

II memberwise assignment

The function call

primary-expression (<expression-list>)

is considered a binary operator with operands primary-expression and
expression-list (possibly empty). The corresponding operator function
is operatorQ. This function can be user-defined for a class X (and any
derived classes) only by means of a nonstatic member function. A call
x(arg1, arg2), where xis an object of class X, is interpreted as
x.operatorQ(arg 1,arg2).

Similarly, the subscripting operation

primary-expression [expression l
is considered a binary operator with operands primary-expression and
expression. The corresponding operator function is operatorD; this can
be user-defined for a class X (and any derived classes) only by means
of a nonstatic member function. The expression x[yl, where xis an
object of class X, is interpreted as x.operatorD (y).

Class member access using

primary-expression -> expression

is considered a unary operator. The function operator-> must be a
nonstatic member function. The expression x->m, where xis a class X
object, is interpreted as (x.operator->())->m, so that the function
operator->O must either return a pointer to a class object or return an
object of a class for which operator-> is defined.

Virtual functions allow derived classes to provide different versions
of a base class function. You can declare a virtual function in a base
class, then redefine it in any derived class, even if the number and
type of arguments are the same. You can also declare the functions int

Turbo C++ Programmer's Gulde

Base: :Fun (int) and int Derived: :Fun (int) even when they are not
virtual. The base class version is available to derived class objects via
scope override. If they are virtual, only the function associated with
the actual type of the object is available.

With virtual functions, you cannot change just the function type. It is
illegal, therefore, to redefine a virtual function so that it differs only in
the return type. If two functions with the same name have different
arguments, C++ considers them different, and the virtual function
mechanism is ignored.

The redefined function is said to override the base class function. The
virtual specifier is used to declare a virtual function. The virtual
specifier implies membership, so a virtual function cannot be a global
(nonmember) function.

If a base class B contains a virtual function vf, and class D, derived
from B, contains a function vf of the same type, then if vf is called for
an object d or D, the call made is D: : vf, even if the access is via a
pointer or reference to B. For example,

struct B (

);

virtual void vfl();
virtual void vf2();
virtual void vf3();
void f ();

class D : public B
virtual void vfl();
void vf2 (int);

II virtual specifier is legal but redundant
II not virtual, since it's using a different
11 arg list

);

char vf3 ();
void f ();

void extf ()
(

D d;

B* bp = &d;
bp->vfl ();
bp->vf2 ();
bp->f ();

II Illegal: return-type-only change!

II declare a D object
II standard conversion from D* to B*
11 calls D: :vfl
II call B::vf2 since D's vf2 has different args
II calls B::f (not virtual)

The overriding function vf1 in D is automatically virtual. The virtual
specifier can be used with an overriding function declaration in the
derived class, but its use is redundant.

Chapter 1, The Turbo C++ language standard 129

The interpretation of a virtual function call depends on the type of the
object for which it is called; with non-virtual function calls, the
interpretation depends only on the type of the pointer or reference
denoting the object for which it is called.

Note Virtual functions must be members of some class, but they cannot be
static members. A virtual function can be a friend of another class.

Abstract classes
Chapter 5, "A C++ primer.· in

Getting started gives an
example of an abstract class

inaction.

130

A virtual function in a base class, like all member functions of a base
class, must be defined or, if not defined, declared pure:

class B {
virtual void vf(int) = 0; II= 0 means 'pure'

In a class derived from such a base class, each pure function must be
defined or redeclared as pure (see the next section, "Abstract classes").

If a virtual function is defined in the base it need not necessarily be
redefined in the derived class. Calls will simply call the base function.

Virtual functions exact a price for their versatility: Each object in the
derived class needs to carry a pointer to a table of functions in order
to select the correct one at run time (late binding). See Chapter 5, "A
C++ primer," in Getting Started.

An abstract class is a class with at least one pure virtual function. A
virtual function is specified as pure by using the pure-specifier.

An abstract class can be used only as a base class for other classes. No
objects of an abstract class can be created. An abstract class cannot be
used as an argument type or as a function return type. However, you
can declare pointers to an abstract class. References to an abstract class
are allowed, provided that a temporary object is not needed in the
initialization. For example:

class shape {
point center;

II abstract class

public:
where() { return center;
move{point pl {center= p; draw();
virtual void rotate(int) = O; II pure virtual function
virtual void draw() = O; II pure virtual function
virtual void hilite() = 0; II pure virtual function

Turbo C++ Programmer's Gulde

C++scope

shape x;

shape* sptr;
shape f();

int g(shape s);

shape& h(shape&);

II ERROR: attempted creation of an object of
II an abstract class
II pointer to abstract class is OK
II ERROR: abstract class cannot be a return
II type
II ERROR: abstract class cannot be a
//function argument type
II reference to abstract class as return
II value or function argument is OK

Suppose that Dis a derived class with the abstract class Bas its
immediate base class. Then for each pure virtual function pvf in B, D
must either provide a definition for pvf, or D must declare pvf as pure.

For example, using the class shape outlined above,

class circle : public shape { //circle derived from

int radius;

public:
void rotate{int) {)

void draw() ;

void hilite{) = O;

II abstract class
11 private

II virtual function defined:
II no action to rotate a
11 circle
II circle::draw must be
II defined somewhere
II redeclare as pure

Member functions can be called from a constructor of an abstract
class, but calling a pure virtual function directly or indirectly from
such a constructor provokes a run-time error.

The lexical scoping rules for C++, apart from class scope, follow the
general rules for C, with the proviso that C++, unlike C, permits both
data and function declarations to appear wherever a statement may
appear. The latter flexibility means that care is needed when interpre­
ting such phrases as "enclosing scope" and "point of declaration."

Class scope The name M of a member of a class X has class scope "local to X;" it
can only be used in the following situations:

• In member functions of X

•In expressions such as xM, where xis an object of X

•In expressions such as xptr->M, where xptr is a pointer to an object
ofX

Chapter 1, The Turbo C++ language standard 131

132

Hiding

C++ scoping rules
summary

•In expressions such as X::M or D::M, where Dis a derived class of X

•In forward references within the class of which it is a member.

Classes, enumerations, or typedef names declared within a class X, or
names of functions declared as friends of X, are not members of X;
their names simply have enclosing scope.

A name can be hidden by an explicit declaration of the same name in
an enclosed block or in a class. A hidden class member is still accessi­
ble using the scope modifier with a class name: X::M. A hidden file
scope (global) name can be referenced with the unary operator::; for
example, ::g. A class name X can be hidden by the name of an object,
function, or enumerator declared within the scope of X, regardless of
the order in which the names are declared. However, the hidden class
name X can still be accessed by prefixing X with the appropriate
keyword: class, struct, or union.

The point of declaration for a name xis immediately after its complete
declaration but before its initializer, if one exists.

The following rules apply to all names, including typedef names and
class names, provided that C++ allows such names in the particular
context discussed:

1. The name itself is tested for ambiguity. If no ambiguities are de­
tected within its scope, the access sequence is initiated.

2. If no access control errors occur, the type of the object, function,
class, typedef, and so on, is tested.

3. If the name is used outside any function and class, or is prefixed
by the unary scope access operator::, and if the name is not quali­
fied by the binary:: operator or the member selection operators.
and->, then the name must be a global object, function, or
enumerator.

4. If the name n appears in any of the forms X::n, x.n (where xis an
object of X or a reference to X), or ptr->n (where ptr is a pointer to
X), then n is the name of a member of X or the member of a class
from which Xis derived.

5. Any name not covered so far that is used in a static member
function must be declared in the block in which it occurs or in an
enclosing block, or be a global name. The declaration of a local
name n hides declarations of n in enclosing blocks and global dec­
larations of n. Names in different scopes are not overloaded.

Turbo C++ Programmer's Guide

6. Any name not covered so far that is used in a nonstatic member
function of class X must be declared in the block in which it occurs
or in an enclosing block, be a member of class X or a base class of
X, or be a global name. The declaration of a local name n hides
declarations of n in enclosing blocks, members of the function's
class, and global declarations of n. The declaration of a member
name hides declarations of the same name in base classes.

7. The name of a function argument in a function definition is in the
scope of the outermost block of the function. The name of a func­
tion argument in a non-defining function declaration has no scope
at all. The scope of a default argument is determined by the point
of declaration of its argument, but it can't access local variables or
nonstatic class members. Default arguments are evaluated at each
point of call.

8. A constructor initializer (see ctor-initializer in the class declarator
syntax, Table 1.12 on page 37) is evaluated in the scope of the
outermost block of its constructor, so it can refer to the
constructor's argument names.

Turbo C++ preprocessor directives

Although Turbo C++ uses an integrated single-pass compiler for both
its IDE and command-line-compiler versions, it is useful to retain the
terminology associated with earlier multi pass compilers. In the latter,
a first pass of the source text would pull in any include files, test for
any conditional-compilation directives, expand any macros, and
produce an intermediate file for further compiler passes. Since both
the IDE and command-line-compiler versions of Turbo C++ perform
this first pass with no intermediate output, Turbo C++ provides an

CPP Is documented onllne. independent preprocessor, CPP.EXE, that does produce such an
output file. CPP is useful as a debugging aid, letting you see the net
result of include directives, conditional compilation directives, and
complex macro expansions.

The preprocessor detects
preprocessor directives (also

known as control lines) and
parses the tokens

embedded In them.

The following discussion on preprocessor directives, their syntax and
semantics, therefore, applies both to the CPP preprocessor and to the
preprocessor functionality built into the Turbo C++ compilers.

The Turbo C++ preprocessor includes a sophisticated macro processor
that scans your source code before the compiler itself gets to work.
The preprocessor gives you great power and flexibility in the fol­
lowing areas:

Chapter 7, The Turbo C++ language standard 133

Preprocessor directives are
usually placed at the

beginning of your source
code, but they can legally

appear at any point in a
program.

• Defining macros that reduce programming effort and improve your
source code legibility. Some macros can also eliminate the overhead
of function calls.

•Including text from other files, such as header files containing
standard library and user-supplied function prototypes and
manifest constants.

•Setting up conditional compilations for improved portability and
for debugging sessions.

Any line with a leading# is taken as a preprocessing directive, unless
the# is within a string literal, in a character constant, or embedded in
a comment. The initial# can be preceded or followed by whitespace
(excluding new lines).

The full syntax for Turbo C ++'s preprocessor directives is given in the
next table.

Table 1.23: Turbo C++ preprocessing directives syntax

preprocessing-file:
group

group:
group-part
group group-part

group-part:
<pp-tokens> newline
if-section
control-line

if-section:
if-group <elif-groups> <else-group> endif-line

if-group:
#if constant-expression newline <group>
#ifdef identifier newline <group>
#ifndef identifier newline <group>

el if-groups:
el ii-group
elil-groups elif-group

elif-group:
#elif constant-expression newline <group>

else-group:
#else newline <group>

endif-line:
#endif newline

control-line:
#include pp-tokens newline
#define identif!.er replacement-list nwline
#define identifier lparen <identifier-list>) replacement-list newline
#undef identifier newline
#line pp-tokens newline
#error <pp-tokens> newline
#pragma <pp-tokens> newline
#pragma warn action abbreviation newline
#pragma inline newline

134

newline

action: one of
+ -

abbreviation:
abbreviation:

amb amp apt aus big cln cpt
def dup eff mod par pia pro
rch ret mg rpt rvl sig str
stu stv SUS ucp use voi zst

lparen:
the left parenthesis character without preceding whitespace

replacement-list:
<pp-tokens>

pp-tokens:
preprocessing-token
pp-tokens preprocessing-token

preprocessing-token:
header-name (only within an #include directive)
identifier (no keyword distinction)
constant
string-literal
operator
punctuator
each non-whitespace character that cannot be one of the preceding

header-name:
<h-char-sequence>

h-char-sequence:
h-char
h-char-sequence h-char

h-char:
any character in the source character set except the newline (\n) or
greater than (>) character

newline:
the newline character

Turbo C++ Programmer's Guide

Null directive #

The #define and
#undef directives

Simple #define macros

The null directive consists of a line containing the single character#.
This directive is always ignored.

The #define directive defines a macro. Macros provide a mechanism
for token replacement with or without a set of formal, function-like
parameters.

In the simple case with no parameters, the syntax is as follows:

#define macro_identifier <token_sequence>

Each occurrence of macro_identifier in your source code following this
control line will be replaced in situ with the possibly empty
token_sequence (there are some exceptions, which are noted later). Such
replacements are known as macro expansions. The token sequence is
sometimes called the body of the macro.

Any occurrences of the macro identifier found within literal strings,
character constants, or comments in the source code are not
expanded.

An empty token sequence results in the effective removal of each
affected macro identifier from the source code:

#define HI "Have a nice day!"
tldefine empty
#define NIL 1111

puts(HI); /*expands to puts("Have a nice day!"); */
puts (NIL); /* expands to puts (1111); *I
puts ("empty"); /* NO expansion of empty! *I
I* NOR any expansion of the empty within comments! */

After each individual macro expansion, a further scan is made of the
newly expanded text. This allows for the possibility of nested macros:
The expanded text may contain macro identifiers that are subject to
replacement. However, if the macro expands into what looks like a
preprocessing directive, such a directive will not be recognized by the
preprocessor:

tldefine GETSTD #include <stdio.h>

GETSTD /* compiler error */

Chapter 1, The Turbo C++ language standard 135

136

GETSTD will expand to #include <stdio .h>. However, the preproces­
sor itself will not obey this apparently legal directive, but will pass it
verbatim to the compiler. The compiler will reject #include <stdio. h>
as illegal input. A macro won't be expanded during its own
expansion. So #define A A won't expand indefinitely.

The #undef directive You can undefine a macro using the #undef directive:

#undef macro_identifier

This line detaches any previous token sequence from the macro
identifier; the macro definition has been forgotten, and the macro
identifier is undefined.

No macro expansion occurs within #undef lines.

The state of being defined or undefined turns out to be an important
property of an identifier, regardless of the actual definition. The #lfdef
and #ifndef conditional directives, used to test whether any identifier
is currently defined or not, offer a flexible mechanism for controlling
many aspects of a compilation.

After a macro identifier has been undefined, it can be redefined with
#define, using the same or a different token sequence.

#define BLOCK SIZE 512

buff = BLOCK_SIZE*blks; /* expands as 512*blks *

#undef BLOCK SIZE
/* use of BLOCK_SIZE now would be illegal "unknown" identifier */

#define BLOCK SIZE 128 /* redefinition */

buf = BLOCK_SIZE*blks; /* expands as 128*blks */

Attempting to redefine an already defined macro identifier will result
in a warning unless the new definition is exactly the same, token-by­
token definition as the existing one. The preferred strategy where
definitions may exist in other header files is as follows:

#ifndef BLOCK SIZE
fdef ine BLOCK SIZE 512

fondif

The middle line is bypassed if BLOCK_SIZE is currently defined; if
BLOCK_SIZE is not currently defined, the middle line is invoked to
define it.

Turbo C++ Programmer's Guide

Note that no semicolon(;) is needed to terminate a preprocessor direc­
tive. Any character found in the token sequence, including semi­
colons, will appear in the macro expansion. The token sequence ter­
minates at the first non-backslashed new line encountered. Any
sequence of whitespace, including comments in the token sequence, is
replaced with a single space character.

Assembly language programmers must resist the temptation to write:

#define BLOCK_SIZE = 512 /* ?? token sequence includes the = */

The-D and-U options Identifiers can be defined and undefined using the command-line
compiler options -D and -U (see Chapter 4, "The command-line
compiler," in the User's Guide). Identifiers can be defined, but not ex­
plicitly undefined, from the IDE Options I Compiler I Defines menu
(see Chapter 1, "The IDE reference," also in the User's Guide).

Keywords and
protected words

Note the double
underscores, leading and

trailing.

Macros with
parameters

The command line

tee -Ddebug=l; paradox=O; X -Umysym myprog.c

is equivalent to placing

tdefine debug 1
idef ine paradox 0
#define X
#undef mysym

in the program.

It is legal but ill-advised to use Turbo C++ keywords as macro
identifiers:

fdefine int long
#define INT long

/* legal but probably catastrophic */
/* legal and possibly useful */

The following predefined global identifiers may not appear
immediately following a #define or #undef directive:

__ STDC__ __DATE __
__ FILE__ __TIME __
__ LINE __

The following syntax is used to define a macro with parameters:

Chapter 1, The Turbo C++ language standard 137

Any comma within
parentheses In an argument

list is treated as part of the
argument, not as an
argument delimiter.

138

#define macro _identifier(<arg_list>) token_sequence

Note that there can be no whitespace between the macro identifier
and the (. The optional arg_list is a sequence of identifiers separated
by commas, not unlike the argument list of a C function. Each
comma-delimited identifier plays the role of a formal argument or place
holder.

Such macros are called by writing

macro _identifier<whitespace>(<actual _arg_list>)

in the subsequent source code. The syntax is identical to that of a
function call; indeed, many standard library C "functions" are
implemented as macros. However, there are some important semantic
differences and potential pitfalls (see page 140).

The optional actual_arg_list must contain the same number of comma­
delimited token sequences, known as actual arguments, as found in
the formal arg_list of the #define line: There must be an actual
argument for each formal argument. An error will be reported if the
number of arguments in the two lists is different.

A macro call results in two sets of replacements. First, the macro
identifier and the parenthesis-enclosed arguments are replaced by the
token sequence. Next, any formal arguments occurring in the token
sequence are replaced by the corresponding real arguments appearing
in the actual_arg_list. For example,

#define CUBE (x) ((x) * (x) * (x))

int n,y;
n = CUBE(y);

results in the following replacement:

n = ((y) * (y) * (y));

Similarly, the last line of

#define SUM ((a) + (b))

int i,j,sum;
sum= SUM(i, j);

expands to sum = ((i) + (j)). The reason for the apparent glut of
parentheses will be clear if you consider the call

n = CUBE(y+l);

Turbo C++ Programmer's Gulde

Without the inner parentheses in the definition, this would expand as
n = y+ 1*y+1 *y+ 1, which is parsed as

n = y + (l*y) + (l*y) + 1; // != (y+l) cubed unless y=O or y = -3!

As with simple macro definitions, rescanning occurs to detect any
embedded macro identifiers eligible for expansion.

Note the following points when using macros with argument lists:

1. Nested parentheses and commas: The actual_arg_list may contain
nested parentheses provided that they are balanced; also, commas
appearing within quotes or parentheses are not treated like
argument delimiters:

#define ERRMSG (x, str) showerr ("Error", x, str)
#define SUM(x, y) ((x) + (y))

ERRMSG(2, "Press Enter, then Esc");
/*expands to showerr("Error",2,"Press Enter, then Esc");
return SUM(f (i, j), g (k, 1));
/*expands to return ((f(i,j)) + (g(k,l))); */

2. Token pasting with##: You can paste (or merge) two tokens
together by separating them with## (plus optional whitespace on
either side). The preprocessor removes the whitespace and the##,
combining the separate tokens into one new token. You can use
this to construct identifiers; for example, given the definition

#define VAR(i, j) (i##j)

then the call V"AR (x, 6) would expand to (x6). This replaces the older
(nonportable) method of using (i/**/j).

3. Converting to strings with#: The# symbol can be placed in front
of a formal macro argument in order to convert the actual
argument to a string after replacement. So, given the following
macro definition:

#define TRACE(flag) printf(#flag "=%d\n",flag)

the code fragment

int highval = 1024;
TRACE(highval);

becomes

int highval = 1024;
printf ("highval" "= %d\n", highval);

which, in turn, is treated as

int highval = 1024;

printf("highval=%d\n", highval);

Chapter 1, The Turbo C++ language standard 139

Final value of b depends on
what your compiler does to

the expanded expression.

File inclusion with
#include

The angle brackets are real
tokens, not metasymbo/s that

imply that header_name is
optional.

140

4. The backslash for line continuation: A long token sequence can
straddle a line by using a backslash (\). The backslash and the
following newline are both stripped to provide the actual token
sequence used in expansions:

#define WARN "This is really a single-\
line warning"

puts (WARN) ;
/* screen will show: This is really a single-line warning */

5. Side effects and other dangers: The similarities between function
and macro calls often obscure their differences. A macro call has
no built-in type checking, so a mismatch between formal and
actual argument data types can produce bizarre, hard-to-debug
results with no immediate warning. Macro calls can also give rise
to unwanted side effects, especially when an actual argument is
evaluated more than once. Compare CUBE and cube in the fol­
lowing example:

int cube (int x) (
return x*x*x;

#define CUBE (x) ((x) * (x) * (x))

int b = O, a = 3;
b = cube(a++);
/* cube() is passed actual arg = 3; sob= 27; a now= 4 */
a = 3;
b = CUBE(a++);

/*expands as ((a++)*(a++)*(a++)); a now= 6 */

The #include directive pulls in other named files, known as include
files, header files, or headers, into the source code. The syntax has three
forms:

#include <header _name>
#include "header _name"
#include macro_identifier

The third variant assumes that neither< nor" appears as the first
non-whitespace character following #include; further, it assumes that
a macro definition exists that will expand the macro identifier into a
valid delimited header name with either of the <header _name> or
"header _name'' formats.

Turbo C++ Programmer's Guide

Header file search with
<header_name>

Header file search with
"header_name N

The first and second variant imply that no macro expansion will be
attempted; in other words, header _name is never scanned for macro
identifiers. header _name must be a valid DOS file name with an ex­
tension (traditionally .h for header) and optional path name and path
delimiters.

The preprocessor removes the #include line and conceptually replaces
it with the entire text of the header file at that point in the source code.
The source code itself is not changed, but the compiler "sees" the en­
larged text. The placement of the #include may therefore influence the
scope and duration of any identifiers in the included file.

If you place an explicit path in the header _name, only that directory
will be searched.

The difference between the <header _name> and "header _name" formats
lies in the searching algorithm employed in trying to locate the in­
clude file; these algorithms are described in the following two
sections.

The <header _name> variant specifies a standard include file; the search
is made successively in each of the include directories in the order
they are defined. If the file is not located in any of the default
directories, an error message is issued.

The "header _name" variant specifies a user-supplied include file; the
file is sought first in the current directory (usually the directory
holding the source file being compiled). If the file is not found there,
the search continues in the include directories as in the <header _name>
situation.

The following example clarifies these differences:

#include <stdio.h>
/* header in standard include directory */

#define myinclude "c:\tc\include\mystuff.h"
/* Note: Single backslashes OK here; within a C statement you would

need "c:\\tc\\include\\mystuff.h" */

#include myinclude
/* macro expansion */

#include "myinclude.h"
/* no macro expansion */

After expansion, the second #include statement causes the preproces­
sor to look in C:\ TC\INCLUDE\mstuff.h and nowhere else. The

Chapter 7, The Turbo C++ language standard 141

Conditional
compilation

The #if, #elif. #else. and
#endif conditional

directives

142

third #include causes it to look for myinclude.h in the current
directory, then in the default directories.

Turbo C++ supports conditional compilation by replacing the appro­
priate source-code lines with a blank line. The lines thus ignored are
those beginning with# (except the #if, #ifdef, #ifndef, #else, #elif, and
#endif directives), as well as any lines that are not to be compiled as a
result of the directives. All conditional compilation directives must be
completed in the source or include file in which they are begun.

The conditional directives #if, #elif, #else, and #endif work like the
normal C conditional operators. They are used as follows:

#if constant-expression-1
<section-1>
<#elif constant-expression-2 newline section-2>

<#elif constant-expression-n newline section-n>

<#else final-section>
#end if

If the constant-expression-1 (subject to macro expansion) evaluates to
nonzero (true), the lines of code (possibly empty) represented by
section-1, whether preprocessor command lines or normal source lines,
are preprocessed and, as appropriate, passed to the Turbo C++
compiler. Otherwise, if constant-expression-1 evaluates to zero (false),
section-1 is ignored (no macro expansion and no compilation).

In the true case, after section-1 has been preprocessed, control passes to
the matching #endif (which ends this conditional interlude) and con­
tinues with next-section. In the false case, control passes to the next #ellf
line (if any) where constant-expression-2 is evaluated. If true, section-2 is
processed, after which control moves on to the matching #endif.
Otherwise, if constant-expression-2 is false, control passes to the next
#elif, and so on, until either #else or #endif is reached. The optional
#else is used as an alternative condition for which all previous tests
have proved false. The #endif ends the conditional sequence.

The processed section can contain further conditional clauses, nested
to any depth; each #if must be carefully balanced with a closing
#endif.

Turbo C++ Programmer's Guide

The #ifdef and #ifndef
conditional directives

The net result of the above scenario is that only one section (possibly
empty) is passed on for further processing. The bypassed sections are
relevant only for keeping track of any nested conditionals, so that
each #if can be matched with its correct #endif.

The constant expressions to be tested must evaluate to a constant
integral value.

The operator defined

The defined operator offers an alternative, more flexible way of
testing whether combinations of identifiers are defined or not. It is
valid only in #if and #elif expressions.

The expression defined(identifier) or defined identifier (parentheses are
optional) evaluates to 1 (true) if the symbol has been previously
defined (using #define) and has not been subsequently undefined
(using #undef); otherwise, it evaluates to 0 (false). So the directive

#if defined(mysym)

is the same as

#ifdef mysym

The advantage is that you can use defined repeatedly in a complex
expression following the #if directive, such as

#if defined(mysym) && !defined(yoursym)

The #ifdef and #ifndef conditional directives let you test whether an
identifier is currently defined or not, that is, whether a previous
#define command has been processed for that identifier and is still in
force. The line

#ifdef identifier

has exactly the same effect as

#if 1

if identifier is currently defined, and the same effect as

#if 0

if identifier is currently undefined.

#ifndef tests true for the "not-defined" condition, so the line

#ifndef identifier

has exactly the same effect as

Chapter 1, The Turbo C++ language standard 143

The #line line

Hf o

if identifier is currently defined, and the same effect as

Hf 1

if identifier is currently undefined.

The syntax thereafter follows that of the #if, #elif, #else, and #endif
given in the previous section.

An identifier defined as NULL is considered to be defined.

control directive You can use the #line command to supply line numbers to a program
for cross-reference and error reporting. If your program consists of
sections derived from some other program file, it is often useful to
mark such sections with the line numbers of the original source rather
than the normal sequential line numbers derived from the composite
program. The syn tax is

7he inclusion of stdio.h
means that the preprocessor

output will be somewhat
large.

144

#line integer _constant <"filename">

indicating that the following source line originally came from line
number integer _constant of filename. Once the filename has been reg­
istered, subsequent #line commands relating to that file can omit the
explicit filename argument. For example,

/* TEMP.C; An example of the fline directive */

#include <stdio.h>

#line 4 "junk.c"
void main()
{

printf{" in line %d of %s", LINE __ , _ _FILE) ;
Hine 12 "temp.c"

printf("\n");
printf (" in line %d of %s", LINE __ , _ _FILE) ;

Hine 8
printf{"\n");
printf{" in line %d of %s", LINE __ , _ _FILE) ;

If you run TEMP.C through CPP (cpp temp), you'll get an output file
TEMP.I; it should look like this:

temp.c 1:
c:\borland\tc\cpp\include\stdio.h 1:
c:\borland\tc\cpp\include\stdio.h 2:

Turbo C++ Programmer's Guide

We Ve e//mlnated most of the
stdio.h portion.

The #error

c:\borland\tc\cpp\include\stdio.h 3:

c:\borland\tc\cpp\include\stdio.h 212:
c:\borland\tc\cpp\include\stdio.h 213:
ternp.c 2:
temp.c 3:
junk.c 4: void main()
junk.c 5: (
junk.c 6: printf(" in line %d of %s",6,"junk.c");
junk.c 7:
ternp.c 12: printf("\n");
ternp.c 13: printf(" in line %d of %s",13,"ternp.c");
ternp.c 14:
temp.c 8: printf("\n");
temp.c 9: printf(" in line %d of %s",9,"ternp.c");
temp.c 10: }
temp.c 11:

If you then compile TEMP.C, you'll get the output shown here:

in line 6 of junk.c
in line 13 of ternp.c
in line 9 of ternp.c

Macros are expanded in #line arguments as they are in the #include
directive.

The #line directive is primarily used by utilities that produce C code
as output, and not in human-written code.

directive The #error directive has the following syntax:

#error errmsg

This generates the message:

Error: filename line# : Error directive: errmsg

This directive is usually embedded in a preprocessor conditional that
catches some undesired compile-time condition. In the normal case,
that condition will be false. If the condition is true, you want the
compiler to print an error message and stop the compile. You do this
by putting an #error directive within a conditional that is true for the
undesired case.

For example, suppose you #define MYVAL, which must be either 0 or
1. You could then include the following conditional in your source
code to test for an incorrect value of MYVAL:

Chapter 7, The Turbo C++ language standard 145

146

The#pragma
directive

#if (MYVAL != 0 && MYVAL != 1)
#error MYVAL must be defined to either 0 or 1
#endif

The #pragma directive permits implementation-specific directives of
the form:

#pragma directive-name

With #pragma, Turbo C++ can define whatever directives it desires
without interfering with other compilers that support #pragma. If the
compiler doesn't recognize directive-name, it ignores the #pragma
directive without any error or warning message.

Turbo C++ supports the following #pragma directives:

• #pragma argsused
• #pragma exit

• #pragma inline

• #pragma option
• #pragma saveregs

• #pragma startup

• #pragma warn

#pragma argsused The argsused pragma is only allowed between function definitions,
and it affects only the next function. It disables the warning message:

#pragma exit and
#pragma startup

"Parameter name is never used in function tune-name"

These two pragmas allow the program to specify function(s) that
should be called either upon program startup (before main is called),
or program exit (just before the program terminates through _exit).

The syntax is as follows:

#pragma exit function-name <priority>
#pragma startup function-name <priority>

The specified function-name must be a previously declared function
taking no arguments and returning void; in other words, it should be
declared as

void func(void);

Turbo C++ Programmer's Guide

The optional priority parameter should be an integer in the range 64 to
255. The highest priority is 0. (Priorities from 0 to 63 are used by the C
libraries, and should not be used by the user.) Functions with higher
priorities are called first at startup and last at exit. If you don't specify
a priority, it defaults to 100. For example,

#include <stdio.h>

void startFunc(void)
(

printf("Startup function.\n");

#pragma startup startFunc 64
/* priority 64 --> called first at startup */

void exitFunc(void)
(

printf("Wrapping up execution.\n");

#pragma exit exitFunc
/* default priority is 100 */

void main(void)
(

printf("This is main.\n");

Note that the function name used in pragma startup or exit must be
defined (or declared) before the pragma line is reached.

#pragma in line This directive is equivalent to the -B command-line compiler option
or the integrated environment option. It tells the compiler that there is
inline assembly language code in your program (see Chapter 6,
"Interfacing with assembly language"). The syntax is

#pragma inline

This is best placed at the top of the file, since the compiler restarts
itself with the -B option when it encounters #pragma inline. Actually,
you can leave off both the -B option and the #pragma lnllne directive,
and the compiler will restart itself anyway as soon as it encounters
asm statements. The purpose of the option and the directive is to save
some compilation time.

Chapter 7, The Turbo C++ language standard 147

148

#pragma option Use #pragma option to include command-line options within your
program code. The syntax is

#pragma option [options ...]

options can be any command-line option (except those listed in the
following paragraph). Any number of options can appear in one
directive.

Options that cannot appear in a pragma option include:

• -8 (compile using assembly)
• -c (compile, but don't link)

• -dxxx (define a macro)
• -Dxxx = ccc (define a macro with text)

• -efff (name .EXE file fff>
• -lfff (name include directory)

• -Lfff (name library directory)
• -lxset (linker option x)

•-M (create a .MAP file in link)

• -o overlays
•-OEMS
• -S (create .ASM output and stop)
• -Uxxx (undefine a macro)
•-V (virtual)

•-Y (overlays)

The compile proceeds in two states. You can include more options in a
#pragma option during the first state than during the second state.
The first state is called parsing-only; the second is the coding state.

Using any macro name that begins with two underscores (and is
therefore a possible built-in macro) in an #if, #ifdef, #ifndef or #elif
directive changes the compiler to coding state.

The occurrence of the first real token (the first C declaration) also
changes the state to coding.

In other words, you can use #pragmas, #includes, #define, and some
#ifs during the parsing-only state. During this phase, you can use
#pragma option to change the command-line options.

Turbo C++ Programmer's Gulde

Options which can appear in #pragma options only during the
parsing-only state include:

• -Efff (assembler name string)
• -f* (any floating-point option except -ff)

• -i# (significant identifier chars)
• -m *(any memory model option)
• -nddd (output directory)
• -offf (output file name fff>
• -u (use underbars on cdecl names)
• -z* (any segment name option)

Other options can be changed anywhere. The following options will
only affect the compiler if they get changed between functions or
object declarations:

-1 Instruction set control.
-2 Instruction set control.
-a Alignment control. (Note that alignment of structure

members is determined at the point of the structure
definition, not when later objects use the structure.)

-ff Fast floating-point control.
-G Generate code for speed.
-k Standard stack frame control.
-N Stack checking control.
-0 Optimization control.
-p Pascal calling convention default.
-r and -rd Register variable control.
-v Verbose debugging control.
-y Line information control.

The following options can be changed at any time and take effect
immediately:

-A Keyword control.
-C Nested comment control.
-d Merge duplicate strings.
-gn Stop after n warnings.
-in Stop after n errors.
-K char type is unsigned.
wxxx Warning (same as #pragma warn).

Any of the toggle options (such as -a or -K) can be turned on and off
as on the command line. They can additionally appear followed by a
dot(.) to reset the option to its command-line state.

Chapter 1, The Turbo C++ language standard 149

150

#pragma saveregs The saveregs pragma guarantees that a huge function will not change
the value of any of the registers when it is entered. This directive is
sometimes needed for interfacing with assembly language code. The
directive should be placed immediately before the function definition.
It applies to that function alone.

#pragma warn The warn directive lets you override specific -wxxx command-line
options (or check Display Warnings in the Options I Compiler I
Messages dialog box).

Predefined

For example, if your source code contains the directives

#pragma warn +xxx
#pragma warn -yyy
fpragma warn .zzz

the xxx warning will be turned on (even if on the Options I Compiler I
Messages menu it was toggled to Oft>, the yyy warning will be turned
off, and the zzz warning will be restored to the value it had when
compilation of the file began.

A complete list of the three-letter abbreviations and the warnings to
which they apply is given in Chapter 4, "The command-line
compiler," in the User's Guide.

macros Turbo C++ predefines the following global identifiers. Except for
__ cplusplus, each of these starts and ends with two underscore
characters L_). These macros are also known as manifest constants.

__ CDECL_ _ This macro is specific to Turbo C++. It signals that the -p flag was not
used (Calling Convention ... C): Set to the integer constant 1 if -p was
not used; otherwise, undefined.

The following six symbols are defined based on the memory model
chosen at compile time.

__ COMPACT __
__ HUGE __
__ LARGE __

__MEDIUM __
__SMALL __
__TINY __

Only one is defined for any given compilation; the others, by defini­
tion, are undefined. For example, if you compile with the small

Turbo C++ Programmer's Gulde

model, the __ SMALL __ macro is defined and the rest are not, so that
the directive

#if defined(SMALL

will be true, while

#if defined(HUGE

(or any of the others) will be false. The actual value for any of these
defined macros is 1.

__ cplusplus This macro is specific to Turbo C++. This allows you to write a
module that will be compiled sometimes as C and sometimes as C++.
Using conditional compilation, you can control which C and C++
parts are included.

__ DATE__ This macro provides the date the preprocessor began processing the
current source file (as a string literal).

Each inclusion of __ DATE __ in a given file contains the same value,
regardless of how long the processing takes. The date appears in the
format mmm dd yyyy, where mmm equals the month (Jan, Feb, and so
forth), dd equals the day (1to31, with the first character of dd a blank
if the value is less than 10), and yyyy equals the year (1990, 1991, and
so forth).

__ FILE__ This macro provides the name of the current source file being pro­
cessed (as a string literal). This macro changes whenever the compiler
processes an #include directive or a #line directive, or when the
include file is complete.

__ LINE__ This macro provides the number of the current source-file line being
processed (as a decimal constant). Normally, the first line of a source
file is defined to be 1, through the #line directive can affect this. See
page 144 for information on the #line directive.

MSDOS_ _ This macro is specific to Turbo C++. It provides the integer constant 1
for all compilations.

Chapter 7, The Turbo C++ language standard 151

152

__ OVERLAY__ This macro is specific to Turbo C++. It is predefined to be 1 if you
compile a module with the-Y option (enable overlay support). If you
don't enable overlay support, this macro is undefined.

__ PASCAL__ This macro is specific to Turbo C++. It signals that the -p flag has been
used. The macro is set to the integer constant 1 if the -p flag is used;
otherwise, it remains undefined.

__ STDC_ _ This macro is defined as the constant 1 if you compile with the ANSI
compatibility flag (-A or ANSI Keywords Only ... On); otherwise, the
macro is undefined.

__ TIME__ This macro keeps track of the time the preprocessor began processing
the current source file (as a string literal).

As with __ DATE _ _, each inclusion of __ TIME __ contains the same
value, regardless of how long the processing takes. It takes the format
hh:mm:ss, where hh equals the hour (00 to 23), mm equals minutes (00
to 59), and ss equals seconds (00 to 59).

__ TURBOC_ _ This macro is specific to Turbo C++. It gives the current Turbo C++
version number, a hexadecimal constant. For example, version 1.0 is
Ox0100.

Turbo C++ Programmer's Guide

c H A p T E R

2

Run-time library cross-reference

In C++. you must always use
prototypes.See page 60 for

more information on function
prototypes.

This chapter is an overview of the Turbo C++ library routines and
include files.

In this chapter, we

•explain why you might want to obtain the source code for the
Turbo C ++ run-time library

• list and describe the header files

• summarize the different categories of tasks performed by the
library routines

Turbo C++ comes equipped with over 450 functions and macros
that you call from within your C programs to perform a wide
variety of tasks, including low- and high-level 1/0, string and file
manipulation, memory allocation, process control, data conver­
sion, mathematical calculations, and much more. These functions
and macros, called library routines, are individually documented
in the Library Reference.

Turbo C++'s routines are contained in the library files (Cx.LIB,
CPx.LIB, MATHx.LIB, and GRAPHICS.LIB). Because Turbo C++
supports six distinct memory models, each model except the tiny
model has its own library file and math file, containing versions of
the routines written for that particular model. (The tiny model
shares the small model's library and math files.)

Turbo C++ implements the latest ANSI C standard which, among
other things, allows (and strongly recommends) function
prototypes to be given for the routines in your C programs. All of

Chapter 2. Run-time library cross-reference 153

Turbo C++'s library routines are declared with prototypes in one
or more header files.

Reasons to access the run-time library source code

154

The Turbo C++ run-time library contains over 450 functions, cov­
ering a broad range of areas: low-level control of your IBM PC,
interfacing with DOS, input/output, process management, string
and memory manipulations, math, sorting and searching, and so
on. There are several good reasons why you may wish to obtain
the source code for these functions:

•You may find that a particular Turbo C++ function you want to
write is similar to, but not the same as, a function in the library.
With access to the run-time library source code, you can tailor
the library function to your own needs, and avoid having to
write a separate function of your own.

•Sometimes, when you are debugging code, you may wish to
know more about the internals of a library function. Having the
source code to the run-time library would be of great help in
this situation.

•When you can't figure out what a library function is really sup­
posed to do, it's useful to be able to take a quick look at that
function's source code.

• You may want to eliminate leading underscores on C symbols.
Access to the run-time library source code will let you eliminate
them.

•You can learn a lot from studying tight, professionally written
library source code.

For all these reasons, and more, you will want to have access to
the Turbo C++ run-time library source code. Because Borland be­
lieves strongly in the concept of "open architecture," we have
made the Turbo C++ run-time library source code available for li­
censing. All you have to do is fill out the order form distributed
with your Turbo C ++ package, include your payment, and we'll
ship you the Turbo C++ run-time library source code.

Turbo C++ Programmer's Guide

The Turbo C++ header files

Header flies defined by ANSI
Care marked as such with a
comment in the margin. C++
header flies are also marked

In the margin.

Header files, also called include files, provide function prototype
declarations for library functions. Data types and symbolic con­
stants used with the library functions are also defined in them,
along with global variables defined by Turbo C++ and by the
library functions. The Turbo C++ library follows the ANSI C
standard on names of header files and their contents.

alloc.h

ANSI C assert.h

~bcd.h

bios.h

~complex.h

conio.h

ANSI c ctype.h

dir.h

dos.h

ANSI c errno.h

fcntl.h

ANSI c float.h

~fstream.h

~generic.h

graphics.h

io.h

Chapter 2, Run-time library cross-reference

Declares memory management functions (alloca­
tion, deallocation, etc.).

Defines the assert debugging macro.

Declares the C ++ class bed and the overloaded
operators for bed and bed math functions.

Declares various functions used in calling IBM­
PC ROM BIOS routines.

Declares the C++ complex math functions.

Declares various functions used in calling the
DOS console I/0 routines.

Contains information used by the character
classification and character conversion macros
(such as isalpha and toaseii).

Contains structures, macros, and functions for
working with directories and path names.

Defines various constants and gives declarations
needed for DOS and 8086-specific calls.

Defines constant mnemonics for the error codes.

Defines symbolic constants used in connection
with the library routine open.

Contains parameters for floating-point routines.

Declares the C++ stream classes that support file
input and output.

Contains macros for generic class declarations.

Declares prototypes for the graphics functions.

Contains structures and declarations for low-level
input/output routines.

155

~iomanip.h

~ iostream.h

ANSI C limits.h

ANSI c locale.h

ANS/C math.h

mem.h

process.h

ANSJC setjmp.h

share.h

ANSIC signal.h

ANSJC stdarg.h

ANSJC stddef.h

ANSJC stdio.h

~ stdiostr.h

156

Declares the C++ streams I/0 manipulators and
contains macros for creating parameterized
manipulators.

Declares the basic C++ (version 2.0) streams (I/0)
routines.

Contains environmental parameters, information
about compile-time limitations, and ranges of
integral quantities.

Declares functions that provide country- and
language-specific information.

Declares prototypes for the math functions; also
defines the macro HUGE_ VAL, and declares the
exception structure used by the matherr routine.

Declares the memory-manipulation functions.
(Many of these are also defined in string.h.)

Contains structures and declarations for the
spawn ... and exec ... functions.

Defines a type jmp _buf used by the longjmp and
setjmp functions and declares the routines
longjmp and setjmp.

Defines parameters used in functions that make
use of file-sharing.

Defines constants and declarations for use by the
signal and raise functions.

Defines macros used for reading the argument list
in functions declared to accept a variable number
of arguments (such as vprintf, vscanf, etc.).

Defines several common data types and macros.

Defines types and macros needed for the
Standard I/0 Package defined in Kernighan and
Ritchie and extended under UNIX System V.
Defines the standard I/0 predefined streams
stdin, stdout, stdprn, and stderr, and declares
stream-level I/0 routines.

Declares the C++ stream classes for use with stdio
FILE.structures.

Turbo C++ Programmer's Gulde

ANSI C stdlib.h Declares several commonly used routines:
conversion routines, search/sort routines, and
other miscellany.

~stream.h Declares the C++ (version 1.2) streams (I/0)
routines.

ANSI C string.h Declares several string-manipulation and
memory-manipulation routines.

~ strstrea.h Declares the C ++ stream classes for use with byte
arrays in memory.

sys\stat.h

sys\ timeb.h

Defines symbolic constants used for opening and
creating files.

Declares the function ftime and the structure
timeb that ftime returns.

sys\ types.h

ANSI C time.h

Declares the type time_t used with time functions.

Defines a structure filled in by the time­
conversion routines asctime, localtime, and
gmtime, and a type used by the routines ctime,
difftime, gmtime, localtime, and stime; also
provides prototypes for these routines.

values.h Defines important constants, including machine
dependencies; provided for UNIX System V
compatibility.

Library routines by category

Classification

The Turbo C++ library routines perform a variety of tasks. In this
section, we list the routines, along with the include files in which
they are declared, under several general categories of task per­
formed. For complete information about any of the functions
below, see the function entry in Chapter 1, "The run-time library,"
in the Library Reference.

routines These routines classify ASCII characters as letters, control
characters, punctuation, uppercase, etc.

isalnum
isalpha

(ctype.h)
(ctype.h)

Chapter 2, Run-time library cross-reference

isascii
iscntrl

(ctype.h)
(ctype.h)

isdigit
isgraph

(ctype.h)
(ctype.h)

157

Conversion

islower
isprint

(ctype.h)
(ctype.h)

ispunct (ctype.h)
isspace (ctype.h)

isupper
isxdigit

(ctype.h)
(ctype.h)

routines These routines convert characters and strings from alpha to
different numeric representations (floating-point, integers, longs)
and vice versa, and from uppercase to lowercase and vice versa.

atof (stdlib.h) itoa (stdlib.h) _tolower (ctype.h)
atoi (stdlib.h) ltoa (stdlib.h) tolower (ctype.h)
atol (stdlib.h) strtod (stdlib.h) _toupper (ctype.h)
ecvt (stdlib.h) strtol (stdlib.h) toupper (ctype.h)
fcvt (stdlib.h) strtoul (stdlib.h) ultoa (stdlib.h)
gcvt (stdlib.h) toascii (ctype.h)

Directory control
routines These routines manipulate directories and path names.

chdir (dir.h) fnsplit (dir.h) mkdir (dir.h)
findfirst (dir.h) getcurdir (dir.h) mktemp (dir.h)
findnext (dir.h) getcwd (dir.h) rmdir (dir.h)
fnmerge (dir.h) getdisk (dir.h) searchpath (dir.h)

setdisk (dir.h)

Diagnostic
routines These routines provide built-in troubleshooting capability.

assert (assert.h)
matherr (math.h)
perror (errno.h)

Graphics routines

158

These routines let you create onscreen graphics with text.
arc
bar
bar3d
circle
cleardevice
clearviewport
closegraph
detectgraph
drawpoly
ellipse

(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)

fillellipse
fill poly
floodfill
getarccoords
getaspectratio
getbkcolor
getcolor
getdefaultpalette
getdrivername
getfillpattern

(gra phics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)
(graphics.h)

Turbo C++ Programmer's Guide

getfillsettings (graphics.h) outtext (graphics.h)
getgraphmode (graphics.h) outtextxy (graphics.h)
getimage (graphics.h) pieslice (graphics.h)
getlinesettings (graphics.h) putimage (graphics.h)
getmaxcolor (graphics.h) putpixel (graphics.h)
getmaxmode (graphics.h) rectangle (graphics.h)
getmaxx (graphics.h) registerbgidriver (graphics.h)
getmaxy (graphics.h) registerbgifont (graphics.h)
getmodename (graphics.h) restorecrtmode (graphics.h)
getmoderange (graphics.h) sector (graphics.h)
getpalette (graphics.h) setactivepage (graphics.h)
getpalettesize (graphics.h) setallpalette (graphics.h)
getpixel (graphics.h) setaspectratio (graphics.h)
gettextsettings (graphics.h) setbkcolor (graphics.h)
getviewsettings (graphics.h) setcolor (graphics.h)
getx (graphics.h) setcursortype (conio.h)
gety (graphics.h) setfillpattern (graphics.h)
graphdefaults (graphics.h) setfillstyle (graphics.h)
grapherrormsg (graphics.h) setgraphbufsize (graphics.h)
_graphfreemem (graphics.h) setgraphmode (graphics.h)
_graphgetmem (graphics.h) setlinestyle (graphics.h)
graphresult (graphics.h) setpalette (graphics.h)
imagesize (graphics.h) setrgbpalette (graphics.h)
initgraph (graphics.h) settextjustify (graphics.h)
installuserdriver (graphics.h) settextstyle (graphics.h)
installuserfont (graphics.h) setusercharsize (graphics.h)
line (graphics.h) setviewport (graphics.h)
linerel (graphics.h) setvisualpage (graphics.h)
lineto (graphics.h) setwritemode (graphics.h)
moverel (graphics.h) textheight (graphics.h)
moveto (graphics.h) textwidth (graphics.h)

Input /output
routines These routines provide stream-level and DOS-level 1/0

capability.

access (io.h) creatnew (io.h)
cgets (conio.h) creattemp (io.h)
_chmod (io.h) cscanf (conio.h)
ch mod (io.h) dup (io.h)
ch size (io.h) dup2 (io.h)
clearerr (stdio.h) eof (io.h)
_close (io.h) fclose (stdio.h)
close (io.h) fcloseall (stdio.h)
cprintf (conio.h) fdopen (stdio.h)
cputs (conio.h) feof (stdio.h)
_creat (io.h) ferror (stdio.h)
er eat (io.h) fflush (stdio.h)

Chapter 2. Run-time library cross-reference 159

fgetc (stdio.h) printf (stdio.h)
fgetchar (stdio.h) putc (stdio.h)
fgetpos (stdio.h) putch (conio.h)
fgets (stdio.h) putchar (stdio.h)
fllelength (io.h) puts (stdio.h)
fileno (stdio.h) putw (stdio.h)
flush all (stdio.h) _read (io.h)
fopen (stdio.h) read (io.h)
fprintf (stdio.h) remove (stdio.h)
fputc (stdio.h) rename (stdio.h)
fputchar (stdio.h) rewind (stdio.h)
fputs (stdio.h) scanf (stdio.h)
fread (stdio.h) setbuf (stdio.h)
freopen (stdio.h) setcursortype (conio.h)
fscanf (stdio.h) setftime (io.h)
fseek (stdio.h) setmode (io.h)
fsetpos (stdio.h) setvbuf (stdio.h)
fstat (sys\stat.h) so pen (io.h)
ftell (stdio.h) sprintf (stdio.h)
fwrite (stdio.h) sscanf (stdio.h)
getc (stdio.h) stat (sys \stat.h)
getch (conio.h) _strerror (string.h, stdio.h)
getchar (stdio.h) strerror (stdio.h)
getche (conio.h) tell (io.h)
getftime (io.h) tmpfile (stdio.h)
getpass (conio.h) tmpnam (stdio.h)
gets (stdio.h) ungetc (stdio.h)
getw (stdio.h) ungetch (conio.h)
ioctl (io.h) unlock (io.h)
isatty (io.h) vfprintf (stdio.h)
kbhit (conio.h) vfscanf (stdio.h)
lock (io.h) vprintf (stdio.h)
I seek (io.h) vscanf (stdio.h)
_open (io.h) vsprintf (stdio.h)
open (io.h) vsscanf (io.h)
perror (stdio.h) _write (io.h)

Interface routines
(DOS, 8086, BIOS) These routines provide DOS, BIOS and machine-specific

capabilities.

absread (dos.h) bioskey (bios.h) dosexterr (dos.h)
abswrite (dos.h) biosmemory (bios.h) enable (dos.h)
bdos (dos.h) biosprint (bios.h) FP_OFF (dos.h)
bdosptr (dos.h) biostime (bios.h) FP_SEG (dos.h)
bioscom (bios.h) country (dos.h) freemem (dos.h)
biosdisk (bios.h) ctrlbrk (dos.h) geninterrupt (dos.h)
biosequip (bios.h) disable (dos.h) getcbrk (dos.h)

160 Turbo C++ Programmer's Gulde

getdfree (dos.h) int86 (dos.h) poke (dos.h)
getdta (dos.h) int86x (dos.h) pokeb (dos.h)
getfat (dos.h) intdos (dos.h) randbrd (dos.h)
getfatd (dos.h) intdosx (dos.h) randbwr (dos.h)
getpsp (dos.h) intr (dos.h) segread (dos.h)
getvect (dos.h) keep (dos.h) setcbrk (dos.h)
getverify (dos.h) MK_FP (dos.h) setdta (dos.h)
harderr (dos.h) outport (dos.h) setvect (dos.h)
hard resume (dos.h) outportb (dos.h) setverify (dos.h)
hardretn (dos.h) parsfnm (dos.h) sleep (dos.h)
in port (dos.h) peek (dos.h) unlink (dos.h)
inportb (dos.h) peekb (dos.h)

Manipulation
routines These routines handle strings and blocks of memory: copying,

comparing, converting, and searching.
memccpy (mem.h, string.h) stricmp (string.h)
memchr (mem.h, string.h) stricmpi (string.h)
memcmp (mem.h, string.h) strlen (string.h)
memcpy (mem.h, string.h) strlwr (string.h)
memicmp (mem.h, string.h) strncat (string.h)
memmove (mem.h, string.h) strncmp (string.h)
memset (mem.h, string.h) strncmpi (string.h)
movedata (mem.h, string.h) strncpy (string.h)
movmem (mem.h, string.h) strnicmp (string.h)
setmem (mem.h) strnset (string.h)
stpcpy (string.h) strpbrk (string.h)
strcat (string.h) strrchr (string.h)
strchr (string.h) strrev (string.h)
strcmp (string.h) strset (string.h)
strcoll (string.h) strspn (string.h)
strcpy (string.h) strstr (string.h)
strcspn (string.h) strtok (string.h)
strdup (string.h) strupr (string.h)
strerror (string.h) strxfrm (string.h)

Math routines
These routines perform mathematical calculations and
conversions.

abs (complex.h, stdlib.h) at of (stdlib.h, math.h)
a cos (complex.h, math.h) atoi (stdlib.h)
arg (complex.h) atol (stdlib.h)
asin (complex.h, math.h) bed (bcd.h)
a tan (complex.h, math.h) cabs (math.h)
atan2 (complex.h, math.h) ceil (math.h)

Chapter 2, Run-time library cross-reference 161

Memory routines

162

_clear87 (float.h) Ito a (stdlib.h)
complex (complex.h) _matherr (math.h)
conj (complex.h) math err (math.h)
_control87 (float.h) modf (math.h)
cos (complex.h, math.h) norm (complex.h)
co sh (complex.h, math.h) polar (complex.h)
div (math.h) poly (math.h)
ecvt (stdlib.h) pow (complex.h, math.h)
exp (math.h) pow10 (math.h)
fabs (math.h) rand (stdlib.h)
fcvt (stdlib.h) random (stdlib.h)
floor (math.h) randomize (stdlib.h)
fmod (math.h) real (complex.h)
_fpreset (float.h) - rotl (stdlib.h)
frexp (math.h) _rotr (stdlib.h)
gcvt (stdlib.h) sin (complex.h, math.h)
hypot (math.h) sinh (complex.h, math.h)
imag (complex.h) sqrt (complex.h, math.h)
itoa (stdlib.h) srand (stdlib.h)
labs (stdlib.h) _status87 (float.h)
Id exp (math.h) strtod (stdlib.h)
I div (math) strtol (stdlib.h)
log (complex.h, math.h) strtoul (stdlib.h)
log10 (complex.h, math.h) tan (complex.h, math.h)
lrotl - (stdlib.h) tanh (complex.h, math.h)

_lrotr (stdlib.h) ultoa (stdlib.h)

These routines provide dynamic memory allocation in the small­
data and large-data models.
allocmem (dos.h)
brk (alloc.h)
calloc (alloc.h)
coreleft (alloc.h,

farcalloc
farcoreleft
farfree
farheapcheck
farheapcheckfree
farheapchecknode
farheapfillfree
farheapwalk
farmalloc

stdlib.h)
(alloc.h)
(alloc.h)
(alloc.h)
(alloc.h)
(alloc.h)
(alloc.h)
(alloc.h)
(alloc.h)
(alloc.h)

farrealloc
free

heapcheck
heapcheckfree
heapchecknode
heapwalk
malice

realloc

sbrk
setblock

(alloc.h)
(alloc.h,
stdlib.h)

(alloc.h)
(alloc.h)
(alloc.h)
(alloc.h)
(alloc.h,
stdlib.h)

(alloc.h,
stdlib.h)

(alloc.h)
(dos.h)

Turbo C++ Programmer's Guide

Miscellaneous
routines These routines provide nonlocal goto capabilities, sound effects,

and locale.

Process control

delay
localeconv
longjmp
nosound

(dos.h)
(locale.h)
(setjmp.h)
(dos.h)

setjmp
setlocale
sound

(setjmp.h)
(locale.h)
(dos.h)

routines These routines invoke and terminate new processes from within
another.

abort (process.h) execvp (process.h) spawn I (process.h)
exec I (process.h) execvpe (process.h) spawn le (process.h)
execle (process.h) _exit (process.h) spawn Ip (process.h)
execlp (process.h) exit (process.h) spawnlpe (process.h)
execlpe (process.h) getpid (process.h) spawnv (process.h)
execv (process.h) raise (signal.h) spawnve (process.h)
execve (process.h) signal (signal.h) spawnvp (process.h)

spawnvpe (process.h)

Standard routines
These are standard routines.

abort (stdlib.h) exit (stdlib.h) malloc (stdlib.h)
abs (stdlib.h) fcvt (stdlib.h) putenv (stdlib.h)
atexit (stdlib.h) free (stdlib.h) qsort (stdlib.h)
at of (stdlib.h) gcvt (stdlib.h) rand (stdlib.h)
atoi (stdlib.h) getenv (stdlib.h) realloc (stdlib.h)
atol (stdlib.h) itoa (stdlib.h) srand (stdlib.h)
bsearch (stdlib.h) labs (stdlib.h) strtod (stdlib.h)
calloc (stdlib.h) lfind (stdlib.h) strtol (stdlib.h)
ecvt (stdlib.h) I search (stdlib.h) swab (stdlib.h)
_exit (stdlib.h) Ito a (stdlib.h) system (stdlib.h)

Text window
display routines These routines output text to the screen.

clreol (conio.h) gotoxy (conio.h)
clrscr (conio.h) highvideo (conio.h)
delline (conio.h) insline (conio.h)
gettext (conio.h) lowvideo (conio.h)
gettextinfo (conio.h) movetext (conio.h)

Chapter 2, Run-time library cross-reference 163

164

normvideo (conio.h) textcolor (conio.h)
puttext (conio.h) textmode (conio.h)
setcursortype (conio.h) wherex (conio.h)
textattr (conio.h) wherey (conio.h)
textbackground (conio.h) window (conio.h)

Time and date
routines These are time conversion and time manipulation routines.

Variable
argument list

routines

asctime (time.h) mktime (time.h)
ctime (time.h) setdate (dos.h)
difftime (time.h) settime (dos.h)
dostounix (dos.h) stime (time.h)
ftime (sys\ timeb.h) strftime (time.h)
getdate (dos.h) time (time.h)
gettime (dos.h) tzset (time.h)
gmtime (time.h) unixtodos (dos.h)
localtime (time.h)

These routines are for use when accessing variable argument lists
(such as with vprintf, etc).

va_arg (stdarg.h)
va_end (stdarg.h)
va_start (stdarg.h)

Turbo C++ Programmer's Gulde

c H A p T E R

3

C++ streams
This chapter gives you a brief overview of C++ stream 1/0.
Stream 1/0 in C++ is used to convert typed objects into readable
text, and vice versa. It allows you to define input/output func­
tions which are then used automatically for corresponding user­
defined types. Further examples can be found in Chapter 5, "A
C++ primer," in Getting Started; the bibliography in that book
offers some titles for more advanced study.

New streams for old

Turbo C++ supports both the original C++ stream library and the
new enhanced iostream library of C++ release 2.0. Having both
versions will help you if you have programs written under the old
conventions and need to use Turbo C++ while you make the tran­
sition to the more efficient release 2.0 iostreams. We strongly
recommend that all new code should be written using the release
2.0 iostream library. While providing some material on making
the transition to 2.0 streams (starting on page 184), this chapter is
primarily devoted to the release 2.0 iostream classes and methods.

Using the 2.0 streams

Chapter 3, C++ streams

The release 2.0 iostream enhancements, while for the most part
upwardly compatible with the older C++ version, offer new

165

What's a stream?

The iostream

opportunities through the use of multiple inheritance and other
C++ release 2.0 features.

For a discussion of the differences between old streams and new
iostreams, and for guidelines for converting from the old streams
to the new, see "Using the older streams" and "Guidelines for
upgrading to 2.0 streams" at the end of this chapter.

The C++ stream concept is aimed at solving several problems
with the standard C 1/0 library functions such as printf and
scant. The latter, of course, are still available to C++ program­
mers, but the improved flexibility and elegance of C ++ streams
makes the stdio.h library functions less attractive. The classes
associated with C++ streams offer you extensible libraries, so that
you can perform type-secure formatted 1/0 on both predefined
and user-defined data types using overloaded operators and other
object-oriented techniques.

To access stream I/0, your program must include iostream.h.
Other header files may be needed for some stream functions. For
example, strstream.h is needed for in-memory formatting using
the classes istrstream and ostrstream. The header file strstream.h
also includes iostream.h. If you want fstreams, include fstream.h,
which also includes iostream.h. Conceivably, you could include
both fstream.h and strstream.h.

A stream is an abstraction referring to any flow of data from a
source (or producer) to a sink (or consumer). We also use the syno­
nyms extracting, getting, and fetching when speaking of inputting
characters from a source; and inserting, putting, or storing when
speaking of outputting characters to a sink.

Despite its name, a stream class can be used to format data in situ­
ations where input and output is not involved. You will see that
in-memory formatting is possible with arrays of characters and
other structures.

library The iostream library has two parallel classes: streambuf, and ios.
Both are low-level classes, each doing a different set of jobs.

166 Turbo C++ Programmer's Guide

streambuf The streambuf class provides general methods for buffering and
handling streams when little or no formatting is required.
streambuf is a useful base class employed by other parts of the
iostream library, though it is also available to derive classes for
your own functions and libraries. Most of streambuf's member
functions (methods) are inline for maximum efficiency. The
classes strstreambuf and filebuf are derived from streambuf.

ios The class ios (and hence any of its derived classes) contains a
pointer to streambuf.

Chapter 3, C++ streams

ios has two derived classes: istream (for input) and ostream (for
output). Another class, iostream, is derived from both istream
and ostream by multiple inheritance:

class ios;
class istream : virtual public ios;
class ostream : virtual public ios;
class iostream : public istream, public ostream;

In addition, there are three withassign classes derived from
istream, ostream, and iostream:

class istream_withassign : public istream;
class ostream_withassign : public ostream;
class iostream_withassign : public iostream;

The stream classes

• The class ios contains state variables for handling the interface
with streambuf, and for error handling.

•The class istream supports both formatted and unformatted
conversions of character streams fetched from streambufs.

•The ostream class supports both formatted and unformatted
conversions of character streams stored into streambufs.

• The iostream class combines istream and ostream for bidirec­
tional operations where a single stream acts as source and sink.

• The withassign derived classes provide four predefined
"standard" streams: cln, cout, cerr, and clog, as explained in
the next section. The withassign classes add assignment
operators to their respective base classes as follows:

class istream_withassign : public istream {
istream_withassign();

167

};

istream& operator=(istream&);
!stream& operator=(streambuf*);

and similarly for ostream_wlthasslgn and
lostream_withassign.

A stream class is any class derived from istream or ostream.

The four standard

168

streams C++ programs start with four predefined open streams, declared
as objects of wlthasslgn classes in iostream.h as follows:

Corresponds to stdln.

Corresponds to stdout.

Corresponds to stderr.

Output

extern istream_withassign cin;
extern ostream_withassign cout;
extern ostream_withassign cerr;
extern ostream_withassign clog;

Their constructors are called each time iostream.h is included, but
the actual initialization is performed just once.

The four standard streams are as follows:

cin The standard input (file descriptor 0).

cout The standard output (file descriptor 1).

cerr The standard error output (file descriptor 2). cerr is
unit buffered, flushed after each insertion.

clog This stream is a fully buffered version of cerr.

As in C, you can reassign these standard names to other files or
character buffers after program startup.

Stream output is accomplished with the insertion or put to opera­
tor, «.The standard left shift operator, «, is overloaded for out­
put operations. Its left operand is an object of type class ostream.
Its right operand is any type for which stream output has been
defined (more about this later). Stream output is predefined for
built-in types. The « operator overloaded for type type is called
the type inserter. For example,

cout « "Hello!\n";

writes the string "Hello!" to cout (the standard output stream,
normally your screen) followed by a newline. The « here is the
string or char* inserter.

Turbo C++ Programmer's Gulde

The<< operator is left associative and returns a reference to the
ostream object for which it is invoked. This allows several in­
sertions to be cascaded as follows:

void function_display(int i, double d)
(

cout << "i=" << i << ", d=" << d << 11 \n";

This will write something like

i = 8, d = 2. 34

to your standard output.

Note that overloading does not change the normal precedence of
<<, so you can write

cout « "sum = " << xty « "\n";

without parentheses. However, in

cout « (x&y) « "\n";

the parentheses are needed.

Built-in types The inserter types directly supported are: char (signed and un­
signed), short (signed and unsigned), int (signed and unsigned),
long (signed and unsigned), char* (treated as a string), float,
double, long double, and void*. Integral types are converted
according to the default rules for printf (unless you've changed
these rules by setting various ios flags). For example, given the
declarations int i; long l;, the two statements

Chapter 3, C++ streams

cout « i « " 11 « l;
printf("%d %ld", i, 1);

give the same result.

Similarly, floating-point types are converted according to the
printf default rules for the %g conversion. So, given the
declaration double d;, the statements

cout « d;
printf("%g", d);

produce identical results.

A pointer (void*) inserter is also predefined:

int i = 1;
cout « &i; II display pointer in hex

169

170

The put and write
functions

The char inserter works as follows:

char ch = 'A';
cout « ch; II displays A

To output binary data or a single character, you can use the
member function put declared in ostream as follows:

ostrearn& ostrearn::put(char ch);

With the declaration int ch=' x' ; , the following two lines are
equivalent:

cout.put (ch);
cout << (char)ch;

The write member functions let you output larger objects:

ostrearn& ostrearn::write(const signed char* ptr, int n);
ostrearn& ostrearn::write(const unsigned char* ptr, int n);

The write functions output n characters (including any embedded
nulls) in binary format. Unlike the string inserter, write does not
terminate when meeting a null. For example,

cout.write((char *)&x, sizeof(x))

will send the raw binary representation of x to the standard
output.

... There is a subtle difference between the formatted operator «
and the unformatted put and write functions. The formatted
operator can cause flushing of tied streams, and can have a field
width associated with it. The unformatted operators do not. So
cout « 'a' and cout put ('a') can produce different results. All
formatting flags apply to«, but none apply to put or write.

Output formatting Formatting for both input and output is determined by various
format state flags enumerated in the class ios. The states are
determined by bits in a long int as follows:

public:
enum (

skipws
left
right

internal
dee
oct

= OxOOOl, II skip whitespace on input
= Ox0002, II left-adjust output
= Ox0004, II right-adjust output

= Ox0008 1 II pad after sign or base indicator
= OxOOlO, II decimal conversion
= Ox0020, II octal conversion

Turbo C++ Programmer's Guide

hex = Ox0040 1 II hexadecimal conversion
showbase = OxOOBO, II show base indicator on output
showpoint = OxOlOO, II show decimal point (fp output)
uppercase = Ox0200, II uppercase hex output
showpos = Ox0400, II show'+' with positive integers
scientific = Ox0800, II use 1.2345E2 fp notation and E output
fixed = Ox1000 1 II use 123.45 fp notation
unitbuf = Ox2000, II flush all streams after insertion
stdio = Ox4000, II flush stdout, stderr after insertion

);

These flags, of course, are inherited by the derived classes
ostream and istream. In the absence of specific user action, the
format flags are set to give the default formatting shown in the
previous examples. Functions are available to set, test, and clear
the format flags, either individually or in related groups. Some
flags are automatically cleared after each output or input.

Conversion base By default, integers are inserted in decimal notation. This can be
varied by setting the flag bits ios::dec, ios::oct, and ios::hex (see
"Manipulators" on page 172). If all are zero (the default), insertion
takes place in decimal.

Width The default for inserters is to output the minimum number of
characters needed to represent the right-hand operand. To vary
this default, you can use the convenient width functions:

Chapter 3. C++ streams

int ios::width(int w); II set width field tow
II and return previous width

int ios::width(); II return current width -- no change

The default value for width is zero, which outputs without
padding. A nonzero width means that inserters will output at
least that many characters, padding if necessary to make up the
total width needed. Note that no truncation takes place: If the
width is less than the number of characters needed, it is ignored
(just as if width were set to zero). For example,

int i = 123;
int old_w = cout.width(6);
cout << i; II output bbbl23 where b=blank.

II width is then set to 0
cout.width(old_w); II restore previous width field

Notice that the width is cleared to zero after each formatted
insertion, so that in

171

int i, j;

cout.width(4);
cout « i « 11 11 « j;

the i would display at least four characters, but the space and the j
would display just the minimum needed.

Manipulators A simpler way of changing the width state and other format vari­
ables is to use a special function-like operator called a manipulator.
Manipulators take a stream reference as argument and return a
reference to the same stream-so manipulators can be embedded
in a chain of insertions (or extractions) in order to alter stream
states as a side effect without actually performing any insertions
(or extractions). For example,

cout << setw(4) << i << setw(6) << j;

is equivalent to the more verbose

cout. width (4);
cout « i;
cout. width (6);
cout « j;

setw is a parameterized manipulator declared in iomanip.h. Other
parameterized manipulators, setbase, setfill, setprecision,
setiosflags and resetlosflags, work in the same way (see Table
3.1). To make use of these, your program must include iomanip.h.
You can write your own manipulators without parameters:

Manipulators with a
parameter are more

complicated. and require
lomanlp.h.

ostream& dingy(ostream& os)
{

return os « 11 \a\a 11 ;

cout << i << dingy << j;

172 Turbo C++ Programmer's Gulde

Table 3.1: Manipulators

Manipulator

dee

hex

oct

ws

end I

ends

flush

setbase(int)

resetiosflags(long)

setiosflags(long)

setlill(int)

setprecision(int)

setw(int)

syntax

outs<< dee
ins>> dee

outs<< hex
ins>> hex

outs<< oct
ins>> oct

ins>> ws

outs <..::: endl

outs<< ends

outs<< flush

outs << setbase(n)

ins >> resetiosflags(I)
outs << resetiosflags(l)

ins >> setiosflags(l)
outs << setiosflags(l)

ins >> setlill(n)
outs<< setlill(n)

ins >> setprecision(n)
outs << setprecision(n)

ins >> setw(n)
outs << setw(n)

Action

Set decimal conversion base format flag

Set hexadecimal conversion base format flag

Set octal conversion base format flag

Extract whitespace characters

Insert newline and flush stream

Insert terminal null in string

Flush an ostream

Set conversion base format to base n (0, 8, 10, or 16). 0
means the default: decimal on output, C rules for
literal integers on input.

Clear the format bits in ins or outs specified by
argument l.

Set the format bits in ins or outs specified by
argument l.

Set the fill character to n.

Set the floating-point precision to n digits

Set field width ton

The non-parameterized manipulators dee, hex, and oct (declared
in ios.h) take no arguments and simply change the conversion
base (and leave it changed):

int i = 36;
cout « dee « i « " "

<< hex << i << "
<< oct << i << endl;

II displays 36 24 44

The manipulator endl inserts a newline character and flushes the
stream. You can also the flush an ostream at any time with

ostream << flush;

Chapter 3, C++ streams 173

Filling and padding The fill character and the direction of the padding depend on the
setting of the fill character and the left, right, and internal flags.

The default fill character is a space. You can vary this by using the
function fill:

int i = 123;
cout. fill (' *');
cout. width (6);
cout « i; II display ***123

The default direction of padding gives right justification (pad on
the left). You can vary these defaults (and other format flags) with
the functions setf and unsetf:

int i = 56;

cout. width (6);
cout.fill('#');
cout.setf(ios::left,ios::adjustfield);
cout << i; //display 56####

The second argument, ios::adjustfield, tells setf which bits to set.
The first argument, ios::left, tells setf what to set those bits to.
Alternatively, you can use the manipulators setfill, setiosflags,
and resetiosflags to modify the fill character and padding mode
(see Table 3.1).

User-defined inserters You can write inserters to output your own data types by
overloading the« operator. Suppose you have a type

174

struct info {
char *name;
double val;
char *units;

) ;

You can overload<< as follows:

ostream& operator << (ostream& s, info& m)
{

s « m.name « 11 11 << m.val << 11 11 << m.units;

The statements

info x;

Turbo C++ Programmer's Guide

Input

II initialize x here

cout « x;

would produce output like "capacity 1.25 liters".

Stream input is similar to output but uses the overloaded right
shift operator,>>, known as the extraction (get from) operator, or
extractor. The>> operator provides a more compact and readable
alternative to the scanf family of functions in stdio (it's also less
error-prone). The left operand of » is an object of type class
istream. As with output, the right operand can be of any type for
which stream input has been defined.

All the built-in types listed earlier for output also have predefined
extraction operators. You are also free to overload>> for stream
input to your own data types. The >> operator overloaded for
type type is called the type extractor. For example,

cin » x;

inputs a value from cin (the standard input stream, usually your
keyboard) to x. The conversion and formatting functions will
depend on the type of x, how its extractor is defined, and on the
settings of the format state flags.

By default,» skips whitespace (as defined by the isspace fun­
ction in ctype.h), then reads in characters appropriate to the type
of the input object. Whitespace skipping is controlled by the
ios::skipws flag in the format state's enumeration (see "Output
formatting" on page 170). The skipws flag is normally set to give
whitespace skipping. Clearing this flag (with setf, for example)
turns off whitespace skipping. Note also the special "sink"
manipulator, ws, that lets you discard whitespace (see Table 3.1).

Chaining extractors As with«, the» operator is left associative and returns its left
operand. The left operand is a reference to the istream object for
which it is invoked. This allows several input operations to be
combined in one statement. Consider the following example:

Chapter 3, C++ streams

int i;
double d;
cin » i » d;

175

176

Extractors for built-in
types

The last line causes whitespace to be skipped; digits read from the
standard input (by default, your keyboard) are then converted to
internal binary form and saved in variable i; more whitespace is
skipped, and finally a floating-point number is read, converted,
and saved in variable d.

Extractors for the built-in types fall into three categories: integral,
floating point, and strings. Each is described in the following
sections. For all numeric types, if the first non-whitespace charac­
ter is not a digit or a sign (or a decimal point for floating-point
conversions), the stream enters the fail state (as described on page
177) and no further input will be done until the error condition is
cleared.

Integral extractors

For types short, int, and long (signed and unsigned), the default
action of>> is to skip whitespace and convert an integral value,
reading input characters until one is found which cannot be part
of the legal representation of the type. The format of integral val­
ues recognized is the same as that.of integer constants in C++,
excluding integer suffixes. (See page 11.)

Warning If you specify hex, dee, or act conversion, that is what you'll get.
OxlO becomes 0 in decimal or octal; 010 becomes 10 in decimal, 16
in hexadecimal.

Floating-point extractors

For types float and double, the effect of the » operator is to skip
whitespace and convert a floating-point value, reading input
characters until one is found that cannot be part of a floating­
point representation. The format of floating-point values recog­
nized is the same as that of floating-point constants in C++,
excluding floating suffixes. (See page 16.)

Character extractors

For type char (signed or unsigned), the effect of the» operator is
to skip whitespace and store the next (non-whitespace) character.
If you need to read the next character, whether it is whitespace or
not, you can use one of the get member functions:

char ch;

Turbo C++ Programmer's Guide

cin.get(ch); II ch is set to next char in istream
II even if it's a whitespace character

The get functions for input correspond to the put functions for
output. The following get variant offers control over the number
of characters extracted, where they are placed, and the termina­
ting character:

istream& istream::get(char *buf, int max, int term='\n');

This function reads characters from the input stream into the
character array buf until it has read max - 1 characters, or until it
encounters the terminating character given by term, whichever
comes first. A final null is appended automatically. The default
terminator (which need not be specified) is the newline character
('\n'). The terminator itself is not read into the buf array, nor is it
removed from the istream. The buf array must be at least max
chars.

Corresponding to the ostream write member function (see page
170), you can read "raw" binary data as follows:

cin.read { (char*)&x, sizeof(x));

For type char* (treated as a string), the effect of the» operator is
to skip whitespace and store the next (non-whitespace) characters
until another whitespace character is found. A final null (0) char­
acter is then appended. Care is needed to avoid "overflowing" a
string. The default width of zero (meaning no limit) can be altered
using setw as follows:

char array[SIZE];

II initialize array

cin.width{sizeof{array));
cin >>array; //avoids overflow

For all input with built-in types, if the end of input occurs before
any non-whitespace character is encountered, nothing is stored in
the target buf, and the istream state is set to "fail." So, if the target
was uninitialized, it will still be uninitialized.

Putback function The member function

Chapter 3, C++ streams

istream& istream::putback{char c);

pushes back just the character c into the istream; if the character
can't be put back, the state of the stream is set to "fail." The fol-

177

User-defined types for
input

Initializing streams

178

lowing simple routine reads a C++ identifier from the standard
input:

void getident (char *s I* where to put ident *ll
{

char c = O; II guard against EOF
cin >> c; II skip whitespace
if (isalpha (c) 11 c == '_')

do (
*stt = c;
c = O; II guard against EOF
cin.get (c);

while (isalnum(c) 11 c == '_');

*s = O; II terminate the string
if (cl

cin.putback(c); II we always get one too many

You can create extractors for your own defined types in the same
way as for inserters. Taking the structure information defined on
page 174, the operator>> can be overloaded as follows:

istream& operator>> (istream& s, info& m);
(

s >> m.name >> m.val >> m.units;
return s;

(In a real application, of course, you would add code to check for
input errors.) To read an input line such as "capacity 1.25 liters"
you would use a line such as

cin » m;

The streams cin, cout, cerr, and clog are initialized and opened at
program start, and then connected to their standard files. Initial­
izing (constructing) a stream means associating it with a stream
buffer. The ostream class has the constructor

ostream::ostream(streambuf*);

which initializes the ios state variables and associates a stream
buffer with an ostream object. The istream constructor works in
the same way. In most cases, you need not be concerned with the
mechanics of buffering.

Turbo C++ Programmer's Guide

Simple file 1/0

The not operator (!) is
overloaded: see page 7 83.

stream errors are discussed in
detail on page 181.

Chapter 3, C++ streams

The iostream library offers a variety of classes derived from
streambuf, ostream, and istream, allowing a wide choice of
methods for creating streams with different sources and sinks and
different buffering strategies.

Classes derived from streambuf are as follows:

filebuf filebuf supports 1/0 through file descriptors.
Member functions support the functions of
opening, closing, and seeking.

stdiobuf stdiobuf supports 1/0 via stdio FILE structures,
and is provided solely to allow compatibility
when mixing C++ code with existing C
programs.

strstreambuf strstreambuf lets you input and output charac­
ters from byte arrays in memory. Two
additional classes, istrstream and ostrstream,
provide formatted in-memory 1/0.

Specialized classes for file 1/0 are derived as follows:

ifstream is derived from lstream
ofstream is derived from ostream
fstream is derived from iostream

These three classes support formatted file 1/0 using filebufs.

The class ofstream inherits the insertion operations from ostream,
while ifstream inherits the extraction operations from istream.
They also provide constructors and member functions for creating
files and handling file 1/0. You must include fstream.h in all pro­
grams using these classes. Consider the following example that
copies the file FILE_FROM to the file FILE_ TO:

#include fstream.h

char ch;
ifstream fl("file_from");
if (!fl) errmsg ("Cannot open 'file_ from' for input");
ofstream f2 ("file_to");
if (!f2) errmsg("Cannot open 'file_to' for output");
while (f2 && fl.get(ch)) f2.put(ch);

Note that if the ifstream or ofstream constructors are unable to
open the specified files, the appropriate stream error state is set.

179

180

The constructors allow you to declare a file stream without speci­
fying a named file. Later, you can associate the file stream with a
particular file:

ofstream ofile; II creates output file stream

ofile.open("payroll"); II ofile stream associates with
II file "payroll"

II do some payrolling
ofile.close(); II "payroll" closes
ofile.open("employee"); II ofile can be reused

By default, files are opened in text mode. This means that on in­
put, carriage return/linefeed sequences are converted to the '\n'
character. On output, the '\n' character is converted to a carriage­
return/linefeed sequence. These translations are not done in
binary mode.

The member function ofstream::open is declared as follows:

void open(char *name, int=ios::out, int prot=filebuf::openprot);

Similarly, ifstream::open is declared thus:

void open(char *name, int=ios::in, int prot=filebuf::openprot);

The second argument, known as the open mode, defaults as shown.
The open mode argument (possibly OR'd with several mode bits)
can be given explicitly as follows:

Mode bit

ios::app
ios::ate
ios::in
ios::out
ios::trunc

ios::nocreate
ios::noreplace

Action

Append data-always write at end of file.
Seek to end of file upon original open.
Open for input (implied for ifstreams).
Open for output (implied for ofstreams).
Discard contents if file exists (implied if ios::out is
specified and neither ios::ate nor ios::app is specified).
If file does not exist, open fails.
If file exists, open for output fails unless ate or app is
set.

The mode mnemonics come from the enumeration open_mode in
ios:

class ios
public:

enum open_mode in, out, app, ate, nocreate, noreplace };
) ;

The statement

Turbo C++ Programmer's Guide

1/0 stream error
states

Note that goodbit is not a
real bit, but a zero value

indicating that no error bits
have been set.

Chapter 3, C++ streams

ofstream ofile("data", ios::applios::nocreate);

will try to open the file DATA for appended output; it will fail if
the file does not exist. Failure will be signaled in the error state of
ofile. If successful, the stream ofile will be attached to the file
DATA. The class fstream (derived from both ifstream and
ofstream) can be used to create files for simultaneous input and
output:

fstrearn inout ("data", ios:: in I ios:: out) ;
inout « i;

inout » j;

You can use the functions tellg and tellp to determine the current
"get" position and the current "put" position of the file; that is,
the places in the stream where the next output or input operation
will operate:

streampos cgp = inout. tellg (); 11 cgp is current "get" position

where streampos is typedef'd in fstream.h. The member functions
seekg and seekp can reset the current get and put positions:

inout.seekp(cp); 11 set current "put" position to cp

Variants of seekp and seekg let you set the current position via
relative offsets:

inout.seekg(5,ios::beg); II move cp 5 bytes from beginning
inout.seekg(5,ios::cur); II move cp 5 bytes forward
inout.seekp(-5,ios::end); II move cp 5 bytes before end

You might want to print out and study the commented header
files to see how the various stream classes are related, and how
their member functions are declared.

Each stream has an associated error state, a set of error bits de­
clared as an io_state enumeration in class ios:

class ios
public:

II stream status bits
en um io _state {

goodbit = OxOO,
eofbit = OxOl,
failbit = Ox02,
badbit = Ox04,

181

182

Table 3.2
ios error bits

Table 3.3
Current stream state

member functions

hardfail = Ox80
} ;

} i

Errors occurring during stream I/O set the appropriate bit(s) as
indicated in Table 3.2.

Status bit

goodbit

eofbit

failbit

badbit

hard fail

Meaning

No bit set, so all is well.

"End of file": set if istream has no more characters
available for extraction. Subsequent extraction attempts
are ignored.

Set if last 1/0 operation (extraction or conversion) has
failed. Stream is still usable once error bit cleared.

Set if last attempted 1/0 operation was invalid. Stream
may be usable after clearing error condition.

Set if stream is in an irrecoverable error state.

Once a stream is placed in an error state, all attempts to insert into
or extract from that stream will be ignored until the error
condition is corrected and the error bit(s) cleared (using, for
example, the member function los::clear(l)}.The los::clear(I)
member function actually sets the error bits according to the
integer argument i, so that los::clear(O) clears all error bits, except
hard/ail, which cannot be cleared.

Note that inserters and extractors cannot change the state of a
stream once an error has occurred. It is therefore sound practice to
test for stream errors at appropriate points in your program.
Table 3.3 lists the member functions available for testing and
setting the error bits.

Member function

int rd state();

void clear(int i = 0);

int good();

int eof();

Action

Returns current error state.

Sets error bits to i. For example, this code:

str.clear(ios::failbitlstr.rdstate());

sets failbit of stream str without disturbing
the other bits.

Returns nonzero if no error bits set;
otherwise, returns zero.

Returns nonzero if istream eofbit is set;
otherwise, returns zero.

Turbo C++ Programmer's Guide

Table 3.3: Current stream state member functions (continued)

int fail();

int bad();

Returns nonzero if failbit, badbit, or hardfail
is set; otherwise, returns zero.

Returns nonzero if badbit or hardfail is set;
otherwise, returns zero.

You can also check for errors by testing a stream as though it were
a Boolean expression:

if (cin >> x) return; I I input ok
II error recovery here

if (!cout) errrnsg("Output Error!");

These examples reveal the elegance of C++. The class los has the
following operator function declarations:

int operator! () ;

operator void* ();

The void*() operator is defined to "convert" a stream to a pointer
which will be 0 (false) if failbit, badbit, or hardfail are set, but non­
null (true) otherwise. (Note: The returned pointer is to be used
only for Boolean testing; it has no other practical significance.)
The overloaded not operator (!) is defined to return nonzero (true)
if the stream's failbit, badbit, or hardfail are set; otherwise, it returns
zero (false).

Using the older streams

Chapter 3, C++ streams

Although the C++ release 1.x stream and release 2.0 iostream
libraries share many class and function names and offer many
similar facilities, their structures differ in some crucial areas.
Turbo C++ therefore implements the two streams with separate
libraries and header files. To work entirely with old streams code,
you must include stream.h, avoid including iostream.h, and link
with the old stream library. Consult the file OLDS1R.DOC for
more information on the release 1.x streams. We also encourage
you to study the declarations and comments in stream.h.

Depending on which classes and features your old streams
programs use, it is possible that they might compile and run
satisfactorily with the new iostream library.

183

Guidelines for upgrading to 2.0 streams

184

A key difference between the old and new streams classes is that
most of the old streambuf class public members are now declared
as protected in the new streambuf class. If your old stream code
makes direct reference to such members, or if you have derived
classes from streambuf that rely on such members, you will need
to revamp your programs before they can run with the iostream
library. Another difference that may affect upward compatibility
is that the old streambuf directly supported the use of character
arrays for in-memory formatting. Under iostreams, this support is
assumed by the derived class strstreambuf declared in
strstream.h.

Old stream constructors invoking filebufs such as

istream instream(file_descriptor);

must be replaced by

ifstream instream(file_descriptor);

in iostreams programs.

The old and new stream classes interact differently with stdio. For
example, stream.h includes stdio.h and the old istream and
ostream support pointers to the stdio FILE structure. With
iostream, stdio is supported via the specialized stdiostream class
declared in stdiostream.h.

In the old stream library, the predefined streams cin, cout, and
cerr are connected directly to stdio's FILEs stdin, stdout, and
stderr. With iostream, they are connected to file descriptors and
use different buffering strategies. To avoid buffering problems
when mixing stdout and cout code, you can use

ios::sync_with_stdio();

which connects the predefined streams with the stdio files in
unbuffered mode. Note, though, that this slows cin, cout, and
cerr considerably.

The old stream library allowed a stream to be directly assigned to
another stream; for example,

ostream outs; outs = cout; II old streams only

With iostream, this is only possible if the left-hand stream is
assignable; in other words, of type istream_withassign or

Turbo C++ Programmer's Guide

Chapter 3, C++ streams

ostream_withassign. If your program contains such assignments,
you can either rewrite them using pointers or references, or you
can change the declarations:

ostream_withassign outs = cout;
outs « i;

II new iostreams only

185

186 Turbo C++ Programmer's Guide

c H A p T E R

4

Memory models, floating point, and
overlays

Memory models

See page 194 for a summary
of each memory model.

The 8086 registers

This chapter covers three major topics:

• Memory models, from tiny to huge. We tell you what they are,
how to choose one, and why you would (or would not) want to
use a particular memory model.

• Floatlng-polnt options. How and when to use them.

• overlays. How they work, how to use them.

Turbo C++ gives you six memory models, each suited for
different program and code sizes. Each memory model uses
memory differently. What do you need to know to use memory
models? To answer that question, we have to take a look at the
computer system you're working on. Its central processing unit
(CPU) is a microprocessor belonging to the Intel iAPx86 family;
probably an 8088 or 80286, though possibly an 8086, 80186, 80386,
or an 80486. For now, we'll just refer to it as an 8086.

These are the registers found in the 8086 processor. There is one
more register-IP (instruction pointer)-but Turbo C++ can't
access it directly, so it isn't shown here.

Chapter 4. Memory models. floating point. and overlays 187

188

Flgure4.l
8086 registers

General-purpose
registers

AX

BX
ex
DX

cs
DS

SS

ES

SP

BP
SI

DI

General-purpose registers

AH AL

BH BL
CH CL
DH DL

Segment address registers

i--~~~~~~~~~~~

i--~~~~~~~~~~~

i--~~~~~~~~~~~

'--~~~~~~~~~~~

Special-purpose registers

t--~~~~~~~~~~~

t--~~~~~~~~~~~

t--~~~~~~~~~~~

accumulator (math operations)

base (indexing)

count (indexing)

data (holding data)

code segment pointer
data segment pointer

stack segment pointer

extra segment pointer

stack pointer

base pointer

source index

destination index

The general-purpose registers are the ones used most often to
hold and manipulate data. Each has some special functions that
only it can do. For example,

•Some math operations can only be done using AX.

• BX can be used as an index register.
• CX is used by LOOP and some string instructions.
•DX is implicitly used for some math operations.

But there are many operations that all these registers can do; in
many cases, you can freely exchange one for another.

Turbo C++ Programmer's Gulde

Segment registers

Special-purpose
registers

The segment registers hold the starting address of each of the four
segments. As described in the next section, the 16-bit value in a
segment register is shifted left 4 bits (multiplied by 16) to get the
true 20-bit address of that segment.

The 8086 also has some special-purpose registers:

• The SI and DI registers can do many of the things the general­
purpose registers can, plus they are used as index registers.
They're also used by Turbo C++ for register variables.

•The SP register points to the current top-of-stack and is an
offset into the stack segment.

• The BP register is a secondary stack pointer, usually used to
index into the stack in order to retrieve arguments or automatic
variables.

C functions use the base pointer (BP) register as a base address for
arguments and automatic variables. Parameters have positive
offsets from BP, which vary depending on the memory model. BP
always points to the saved previous BP value. Functions that have
no arguments will not use or save BP if the Standard Stack Frame
option is Off.
Automatic variables are given negative offsets from BP. The
offsets depend on how much space has already been assigned to
variables.

The flags register The 16-bit flags register contains all pertinent information about
the state of the 8086 and the results of recent instructions.

Flgure4.2
Flags register of the 8086

I
80386 only

Chapter 4, Memory models, floating point. and overlays

"1r1Ual 8086 Mode
ResLma

Nested Task
VO Protection Laval

OVerllow
Direction

~·Enable
Trap

Sign
Zero

Auxiliary Carry
Parity

All 80x86 I p!OCOSSOl'I

Carry

I

189

190

Memory
segmentation

For example, if you wanted to know whether a subtraction pro­
duced a zero result, you would check the zero flag (the Z bit in the
flags register) immediately after the instruction; if it were set, you
would know the result was zero. Other flags, such as the carry and
overflow flags, similarly report the results of arithmetic and logical
operations.

Other flags control modes of operation of the 8086. The direction
flag controls the direction in which the string instructions move,
and the interrupt flag controls whether external hardware, such as
a keyboard or modem, is allowed to halt the current code tempo­
rarily so that urgent needs can be serviced. The trap flag is used
only by software that debugs other software.

The flags register isn't usually modified or read directly. Instead,
the flags register is generally controlled through special assembler
instructions (such as CLO, STI, and CMC) and through arithmetic
and logical instructions that modify certain flags. Likewise, the
contents of certain bits of the flags register affect the operation of
instructions such as JZ, RCR, and MOVSB. The flags register is not
really used as a storage location, but rather holds the status and
control data for the 8086.

The Intel 8086 microprocessor has a segmented memory architecture.
It has a total address space of 1 Mb, but it is designed to directly
address only 64K of memory at a time. A 64K chunk of memory is
known as a segment; hence the phrase, "segmented memory
architecture."

• The 8086 keeps track of four different segments: code, data, stack,
and extra. The code segment is where the machine instructions
are; the data segment, where information is; the stack is, of
course, the stack; and the extra segment is also used for extra
data.

•The 8086 has four 16-bit segment registers (one for each seg­
ment) named CS, DS, SS, and ES; these point to the code, data,
stack, and extra segments, respectively.

• A segment can be located anywhere in memory-at least,
almost anywhere. For reasons that will become clear as you
read on, a segment must start on an address that's evenly
divisible by 16 (in base 10).

Turbo C++ Programmer's Guide

Address calculation A complete address on the 8086 is composed of two 16-bit values:
the segment address and the offset. Suppose the data segment
address-the value in the DS register-is 2F84(base16), and you
want to calculate the actual address of some data that has an
offset of 0532 (base 16) from the start of the data segment; how is
that done?

A chunk of 16 bytes Is known
as a paragraph, so you

could say that a segment
always starts on a paragraph

boundary.

Address calculation is done as follows: Shift the value of the seg­
ment register 4 bits to the left (equivalent to one hex digit), then
add in the offset.

The resulting 20-bit value is the actual address of the data, as
illustrated here:

DS register (shifted) : 0010 1111 1000 0100 0000 2F840
Offset: 0000 0101 0011 0010 00532

Address: 0010 1111 1101 0111 0010 2FD72

The starting address of a segment is always a 20-bit number, but a
segment register only holds 16 bits-so the bottom 4 bits are al­
ways assumed to be all zeros. This means-as we said-that seg­
ments can only start every 16 bytes through memory, at an
address where the last 4 bits (or last hex digit) are zero. So, if the
DS register is holding a value of 2F84, then the data segment
actually starts at address 2F840.

The standard notation for an address takes the form segment:offset;
for example, the previous address would be written as 2F84:0532.
Note that since offsets can overlap, a given segment:offset pair is
not unique; the following addresses all refer to the same memory
location:

0000:0123
0002:0103
0008:00A3
0010:0023
0012:0003

Segments can (but do not have to) overlap. For example, all four
segments could start at the same address, which means that your
entire program would take up no more than 64K-but that's all
the space you would have for your code, your data, and your
stack.

Chapter 4, Memory models, floating point. and overlays 191

192

Pointers
What do pointers have to do with memory models and Turbo
C++? A lot. The type of memory model you choose will
determine the default type of pointers used for code and data
(though you can explicitly declare a pointer or a function to be of
a specific type regardless of the model being used). Pointers come
in four flavors: near (16 bits), far (32 bits), huge (also 32 bits), and
segment (16 bits).

Near pointers A 16-bit (near) pointer relies on one of the segment registers to
finish calculating its address; for example, a pointer to a function
would add its 16-bit value to the left-shifted contents of the code
segment (CS) register. In a similar fashion, a near data pointer
contains an offset to the data segment (OS) register. Near pointers
are easy to manipulate, since any arithmetic (such as addition) can
be done without worrying about the segment.

Far pointers A far (32-bit) pointer contains not only the offset within the seg­
ment, but also (as another 16-bit value) the segment address,
which is then left-shifted and added to the offset. By using far
pointers, you can have multiple code segments; that, in turn,
allows you to have programs larger than 64K. You can also
address more than 64K of data.

When you use far pointers for data, you need to be aware of some
potential problems in pointer manipulation. As explained in the
section on address calculation, you can have many different
segment:offset pairs refer to the same address. For example, the
far pointers 0000:0120, 0010:0020, and 0012:0000 all resolve to the
same 20-bit address. However, if you had three different far
pointer variables-a, b, and c-containing those three values
respectively, then all the following expressions would be false:

if (a == b) • • •
if (b == c) • • •
if (a == c) • • •

A related problem occurs when you want to compare far pointers
using the >, >=,<,and <=operators. In those cases, only the offset
(as an unsigned) is used for comparison purposes; given that a, b,
and c still have the values previously listed, the following expres­
sions would all be true:

Turbo C++ Programmer's Gulde

if (a > bl
if (b > c)

if (a > c)

The equals (==) and not-equal(!:) operators use the 32-bit value
as an unsigned long (not as the full memory address). The com­
parison operators (<=, >=, <, and >) use just the offset.

The== and!: operators need all 32 bits, so the computer can com­
pare to the NULL pointer (0000:0000). If you used only the offset
value for equality checking, any pointer with 0000 offset would be
equal to the NULL pointer, which is not what you want.

Important/ If you add values to a far pointer, only the offset is changed. If
you add enough to cause the offset to exceed FFFF (its maximum
possible value), the pointer just wraps around back to the begin­
ning of the segment. For example, if you add 1 to 5031:FFFF, the
result would be 5031:0000 (not 6031:0000). Likewise, if you sub­
tract 1 from 5031:0000, you would get 5031:FFFF (not 5030:000F).

If you want to do pointer comparisons, it's safest to use either near
pointers-which all use the same segment address-or huge
pointers, described next.

Huge pointers Huge pointers are also 32 bits long. Like far pointers, they contain
both a segment address and an offset. Unlike far pointers, how­
ever, they are normalized to avoid the problems associated with far
pointers.

What is a normalized pointer? It is a 32-bit pointer which has as
much of its value in the segment address as possible. Since a seg­
ment can start every 16 bytes (10 in base 16), this means that the
offset will only have a value from 0 to 15 (0 to Fin base 16).

To normalize a pointer, convert it to its 20-bit address, then use
the right 4 bits for your offset and the left 16 bits for your segment
address. For example, given the pointer 2F84:0532, you would
convert that to the absolute address 2FD72, which you would
then normalize to 2FD7:0002. Here are a few more pointers with
their normalized equivalents:

0000:0123 0012:0003
0040:0056 0045:0006
500D:9407 594D:0007
7418:D03F 811B:OOOF

There are three reasons why it is important to always keep huge
pointers normalized.

Chapter 4, Memory models, floating point, and overlays 193

. The six memory
models

Use this model when memory
is at an absolute premium.

This Is a good size for
average applications.

Best for large programs that
don't keep much data In

memory.

194

1. Because, doing it that way, for any given memory address
there is only one possible huge address-segment:offset pair­
for it. That means that the == and I= operators return correct
answers for any huge pointers.

2. In addition, the >, >=, <, and <= operators are all used on the
full 32-bit value for huge pointers. Normalization guarantees
that the results there will be correct also.

3. Finally, because of normalization, the offset in a huge pointer
automatically wraps around every 16 values, but-unlike far
pointers-the segment is adjusted as well. For example, if you
were to increment 81 lB:OOOF, the result would be 81 lC:OOOO;
likewise, if you decrement 81 lC:OOOO, you get 81 lB:OOOF. It is
this aspect of huge pointers that allows you to manipulate data
structures greater than 64K in size. This ensures that, for
example, if you have a huge array of structs that's larger than
64K, indexing into the array and selecting a struct field will
always work with structs of any size.

There is a price for using huge pointers: additional overhead.
Huge pointer arithmetic is done with calls to special subroutines.
Because of this, huge pointer arithmetic is significantly slower
than that of far or near pointers .

Turbo C++ gives you six memory models: tiny, small, medium,
compact, large, and huge. Your program requirements determine
which one you pick. Here's a brief summary of each:

Tiny As you might guess, this is the smallest of the
memory models. All four segment registers (CS,
DS, SS, ES) are set to the same address, so you
have a total of 64K for all of your code, data, and
stack. Near pointers are always used. Tiny model
programs can be converted to .COM format by
linking with the /t option.

Small

Medium

The code and data segments are different and
don't overlap, so you have 64K of code and 64K
of data and stack. Near pointers are always used.

Far pointers are used for code, but not for data.
As a result, data plus stack are limited to 64K, but
code can occupy up to 1 Mb.

Turbo C++ Programmer's Gulde

Best if your code is small but
you need to address a lot of

data.

Large and huge are needed
only for very large

applications.

Figure 4.3
Tiny model memory

segmentation

Compact The inverse of medium: Far pointers are used for
data, but not for code. Code is then limited to
64K, while data has a 1-Mb range.

Large

Huge

Far pointers are used for both code and data,
giving both a 1-Mb range.

Far pointers are used for both code and data.
Turbo C++ normally limits the size of all static
data to 64K; the huge memory model sets aside
that limit, allowing data to occupy more than
64K.

In order to select these memory models, you can either use menu
selections from the integrated environment, or you can type
options invoking the command-line compiler version of Turbo
C++.

The following illustrations (Figures 4.3 through 4.8) show how
memory in the 8086 is apportioned for the six Turbo C++ memory
models.

Segment Registers: Segment Size:

ii' Ill CS,DS,SS

.st _1EXT class 'CODE' ..., code
~

_DATA class 'DATA'
initialized data

DGROUP
_BSS class 'BSS' upto64K uninitialized data

Free
"' Space "' SP(TOS) " .c :g

if< Starting SP

Chapter 4, Memory models, floating point, and overlays 195

Figure 4.4
Small model memory

segmentation

Figure4.5
Medium model memory

segmentation

CS points to only one stile at
a time

196

Segment Registers:
cs _____.~-------------~

_TEXT class 'CODE'
code

DS, SS ---Ill!: i-----------------1·-

DGROUP

SP(fOS)

Segment Registers:

SP(fOS)

_DATA class DATA'
initialized data

BSS class 'BSS'
Uninitialized data

_DATA class DATA'
initialized data

_BSS class 'BSS'
uninitialized data

Segment Size:

up to 64K

Free
Space

Free
Space

Segment Size:

each stile
up to 64K

Free
Space

Free
Space

Turbo C++ Programmer's Guide

Figure4.6
Compact model memory

segmentation

Figure4.7
Large model memory

segmentation

CS points to only one sfi/e at
a time

Segment Registers: Segment Size:

SS

cs ..
TEXT class 'CODE'

- code 3S _DATA class 'DXI'A'
initialized data

p ._.____

Segment Registers:

upto64K

Free
Space

Free
Space

Segment Size:

each stile
up to64K

..._ ______ n_xr_A_c_las_•_'D_A_TA_'-----1} up to 64K ~ initialized data

BSS class 'BSS'
-uninitialized data

Free
Space

Free
Space

Chapter 4, Memory models, floating point, and overlays 197

Figure 4.8
Huge model memory

segmentation

CS and DS point to only one
sf/le at a time

Table4.l
Memory models

The models tiny, small, and
compact are small code

models because, by default,
code pointers are near:

likewise, compact, large,
and huge are large data

models because, by default,
data pointers are far.

Segment Registers:

TEXT class 'CODE'
code

Segment Size:

each sfile
up to 64K

each sfile
up to 64K

Free
Space

Free
Space

Table 4.1 summarizes the different models and how they compare
to one another. The models are often grouped according to
whether their code or data models are small (64K) or large (1 Mb);
these groups correspond to the rows and columns in Table 4.1.

Data size

64K

lMb

Code size

64K

Tiny (data, code overlap;
total size = 641<)

Small (no overlap;
total size = 128K)

Compact (large data,
small code)

1 Mb

Medium (small data,
large code)

Large (large data, code)

Huge (same as large but
static data > 64K)

lmportantt When you compile a module (a given source file with some
number ofroutines in it), the resulting code for that module
cannot be greater than 64K, since it must all fit inside of one code
segment. This is true even if you're using one of the larger code
models (medium, large, or huge). If your module is too big to fit

198 Turbo C++ Programmer's Guide

into one (64K) code segment, you must break it up into different
source code files, compile each file separately, then link them
together. Similarly, even though the huge model permits static
data to total more than 64K, it still must be less than 64K in each
module.

Mixed-model programming: Addressing modifiers

Turbo C++ introduces eight new keywords not found in standard
ANSI C (near, far, huge, _cs, _ds, _es, _ss, and _seg) that can be
used as modifiers to pointers (and in some cases, to functions),
with certain limitations and warnings.

In Turbo C++, you can modify the declarations of functions and
pointers with the keywords near, far, or huge. We explained near,
far, and huge data pointers earlier in this chapter. near functions
are invoked with near calls and exit with near returns. Similarly,
far functions are called far and do far returns. huge functions are
like far functions, except that huge functions set DS to a new
value, while far functions do not.

There are also four special near data pointers: _cs, _ds, _es, and
_ss. These are 16-bit pointers that are specifically associated with
the corresponding segment register. For example, if you were to
declare a pointer to be

char _ss *p;

then p would contain a 16-bit offset into the stack segment.

Segment pointers are restricted in terms of what can be done with
them.

•You can't increment or decrement segment pointers. When you
add or subtract an integer to a segment pointer, it is implicitly
converted to a far pointer, and the arithmetic is performed as if
the integer were added to or subtracted from the far pointer.

• When a segment pointer is used in an indirection expression, it
is also implicitly converted to a far pointer.

•As an extension to the binary + operator, if a segment pointer is
added to a near pointer, the result is a far pointer that is formed
by using the segment from the segment pointer and the offset
from the near pointer. This operation is only allowed if the two
pointers point to the same type, or else if one of the pointers
points to a void type.

Chapter 4, Memory models, floating point, and overlays 199

200

Table 4.2
Pointer results

Declaring
functions to be

near or far

•Segment pointers can be compared. They are compared as if
their values were unsigned integers.

Functions and pointers within a given program default to near or
far, depending on the memory model you select. If the function or
pointer is near, it is automatically associated with either the CS or
DS register.

The next table shows just how this works. Note that the size of the
pointer corresponds to whether it is working within a 64K mem­
ory limit (near, within a segment) or inside the general 1 Mb
memory space (far, has its own segment address).

Memory model

Tiny
Small
Medium
Compact
Large
Huge

Function pointers

near, _cs
near, _cs
far
near, _cs
far
far

Data pointers

near, _ds
near, _ds
near, _ds
far
far
far

Pointers to data can also be declared using the _seg modifier.
These are 16-bit segment pointers.

On occasion, you'll want (or need) to override the default func­
tion type of your memory model shown in Table 4.1 (page 198).

For example, suppose you're using the large memory model, but
you have a recursive (self-calling) function in your program, like
this:

double power(double x,int exp)
(

if (exp <= 0)
return(l);

else
return(x * power(x, exp-1));

Every time power calls itself, it has to do a far call, which uses
more stack space and clock cycles. By declaring power as near,
you eliminate some of the overhead by forcing all calls to that
function to be near:

double near power(double x,int exp)

Turbo C++ Programmer's Guide

Declaring
pointers to be

near, far, or huge

This guarantees that power is callable only within the code seg­
ment in which it was compiled, and that all calls to it are near
calls.

This means that if you are using a large code model (medium,
large, or huge), you can only call power from within the module
where it is defined. Other modules have their own code segment
and thus cannot call near functions in different modules. Further­
more, a near function must be either defined or declared before
the first time it is used, or the compiler won't know it needs to
generate a near call.

Conversely, declaring a function to be far means that a far return
is generated. In the small code models, the far function must be
declared or defined before its first use to ensure it is invoked with
a far call.

Look back at the power example. It is wise to also declare power
as static, since it should only be called from within the current
module. That way, being a static, its name will not be available to
any functions outside the module.

You've seen why you might want to declare functions to be of a
different model than the rest of the program. Why might you
want to do the same thing for pointers? For the same reasons
given in the preceding section: either to avoid unnecessary over­
head (declaring near when the default would be far) or to refer­
ence something outside of the default segment (declaring far or
huge when the default would be near).

There are, of course, potential pitfalls in declaring functions and
pointers to be of nondefault types. For example, say you have the
following small model program:

void rnyputs (s)
char *s;

int i;
for (i = O; s[i] != O; i++) putc(s[i]);

main{)
{

char near *rnystr;

rnystr = "Hello, world\n";

Chapter 4, Memory models, floating point, and overlays 201

ff you're going to explicitly
declare pointers to be of

type far or near, be sure to
use function prototypes for

any functions that might use
them.

Pointing to a given
segment:offset address

202

myputs(mystr);

This program works fine, and, in fact, the near declaration on
mystr is redundant, since all pointers, both code and data, will be
near.

But what if you recompile this program using the compact (or
large or huge) memory model? The pointer mystr in main is still
near (it's still a 16-bit pointer). However, the pointers in myputs is
now far, since that's the default. This means that myputs will pull
two words out of the stack in an effort to create a far pointer, and
the address it ends up with will certainly not be that of mystr.

How do you avoid this problem? The solution is to define myputs
in modem C style, like this:

void myputs(char *s)
{

/* body of myputs */

Now when Turbo C++ compiles your program, it knows that
myputs expects a pointer to char; and since you're compiling
under the large model, it knows that the pointer must be far.
Because of that, Turbo C++ will push the data segment (DS)
register onto the stack along with the 16-bit value of mystr,
forming a far pointer.

How about the reverse case: Arguments to myputs declared as far
and compiling with a small data model? Again, without the func­
tion prototype, you will have problems, since main will push both
the offset and the segment address onto the stack, but myputs will
only expect the offset. With the prototype-style function
definitions, though, main will only push the offset onto the stack.

How do you make a far pointer point to a given memory location
(a specific segment:offset address)? You can use the built-in
library routine MK_FP, which takes a segment and an offset and
returns a far pointer. For example,

MK_FP{segment_value, offset_value)

Given a far pointer, fp, you can get the segment component with
FP _SEG(fp) and the offset component with FP _OFF(fp). For more
information about these three Turbo C++ library routines, refer to
the Library Reference.

Turbo C++ Programmer's Gulde

Using library files

Linking mixed
modules

Turbo C++ offers a version of the standard library routines for
each of the six memory models. Turbo C++ is smart enough to
link in the appropriate libraries in the proper order, depending on
which model you've selected. However, if you're using the Turbo
C++ linker, TLINK, directly (as a standalone linker), you need to
specify which libraries to use. Read the section on TLINK in
Chapter 5, "Utilities", in the User's Guide for details on how to do
so.

What if you compiled one module using the small memory
model, and another module using the large model, then wanted
to link them together? What would happen?

The files would link together fine, but the problems you would
encounter would be similar to those described in the earlier sec­
tion, ''Declaring functions to be near or far." If a function in the
small module called a function in the large module, it would do
so with a near call, which would probably be disastrous. Further­
more, you could face the same problems with pointers as de­
scribed in the earlier section, ''Declaring pointers to be near, far, or
huge," since a function in the small module would expect to pass
and receive near pointers, while a function in the large module
would expect far pointers.

The solution, again, is to use function prototypes. Suppose that
you put myputs into its own module and compile it with the large
memory model. Then create a header file called myputs.h (or
some other name with a .h extension), which would have the
following function prototype in it:

void far myputs(char far *s);

Now, if you put main into its own module (called MYMAIN.C),
set things up like this:

#include <stdio.h>
Jlinclude "myputs. h"

main()
{

char near *mystr;

mystr = "Hello, world\n";

Chapter 4. Memory models. floating point. and overlays 203

myputs(mystr);

When you compile this program, Turbo C++ reads in the function
prototype from MYPUTS.H and sees that it is a far function that
expects a far pointer. Because of that, it will generate the proper
calling code, even if it's compiled using the small memory model.

What if, on top of all this, you need to link in library routines?
Your best bet is to use one of the large model libraries and declare
everything to be far. To do this, make a copy of each header file
you would normally include (such as stdio.h), and rename the
copy to something appropriate (such as fstdio.h).

Then edit each function prototype in the copy so that it is explicit­
ly far, like this:

int far cdecl printf(char far* format, .••);

That way, not only will far calls be made to the routines, but the
pointers passed will be far pointers as well. Modify your program
so that it includes the new header file:

#include <fstdio.h>

main()
(

char near *mystr;
mystr = "Hello, world\n";
printf (mystr);

Compile your program with TCC, then link it with TLINK,
specifying a large model library, such as CL.LIB. Mixing models is
tricky, but it can be done; just be prepared for some difficult bugs
if you do things wrong.

Floating-point options

204

There are two types of numbers you work with in C: integer (int,
short, long, and so on) and floating point (float, double, and long
double). Your computer's processor is set up to easily handle inte­
ger values, but it takes more time and effort to handle floating­
point values.

However, the iAPx86 family of processors has a corresponding
family of math coprocessors, the 8087, the 80287, and the 80387.

Turbo C++ Programmer's Guide

If you have an 80486
processor, the numeric

coprocessor is already built
Jn.

Emulating the
80x87 chip

Using 80x87 code

No floating-point
code

Fast floating-point
option

We refer to this entire family of math coprocessors as the 80x87, or
"the coprocessor."

The 80x87 is a special hardware numeric processor that can be
installed in your PC. It executes floating-point instructions very
quickly. If you use floating point a lot, you'll probably want a
coprocessor. The CPU in your computer interfaces to the 80x87 via
special hardware lines.

The default Turbo C++ code generation option is emulation (the -f
command-line compiler option). This option is for programs that
may or may not have floating point, and for machines that may or
may not have an 80x87 math coprocessor.

With the emulation option, the compiler will generate code as if
the 80x87 were present, but will also link in the emulation library
(EMU.LIB). When the program runs, it will use the 80x87 if it is
present; if no coprocessor is present at run time, the program uses
special software that emulates the 80x87.

If your program is only going to run on machines with an 80x87
math coprocessor, you can save about lOK bytes in your .EXE file
by omitting the 80x87 autodetection and emulation logic. Simply
choose the 80x87 floating-point code generation option (the -f87
command-line compiler option). Turbo C++ will then link your
programs with FP87.LIB instead of EMU.LIB.

If there is no floating-point code in your program, you can save a
small amount of link time by choosing None for the floating-point
code generation option (the -f- command-line compiler option).
Then Turbo C++ will not link with EMU.LIB, FP87.LIB, or
MATHx.LIB.

Turbo C++ has a fast floating-point option (the -ff command-line
compiler option). It can be turned off with -ff- on the command
line. Its purpose is to allow certain optimizations that are technic­
ally contrary to correct C semantics. For example,

Chapter 4, Memory models, floating point, and overlays 205

206

The 87 environ-

double x;
x ={float) {3.S*x);

To execute this correctly, x is multiplied by 3.5 to give a double
that is truncated to float precision, then stored as a double in x.
Under the fast floating-point option, the long double product is
converted directly to a double. Since very few programs depend
on the loss of precision in passing to a narrower floating-point
type, fast floating point is the default.

ment variable If you build your program with 80x87 emulation, which is the
default, your program will automatically check to see if an 80x87
is available, and will use it if it is.

There are some situations in which you might want to override
this default autodetection behavior. For example, your own run­
time system might have an 80x87, but you need to verify that
your program will work as intended on systems without a copro­
cessor. Or your program may need to run on a PC-compatible sys­
tem, but that particular system returns incorrect information to
the autodetection logic (saying that a nonexistent 80x87 is avail­
able, or vice versa).

Turbo C++ provides an option for overriding the start-up code's
default autodetection logic; this option is the 87 environment
variable.

You set the 87 environment variable at the DOS prompt with the
SET command, like this:

C> SET 87=N

or like this:

C> SET 87=Y

Don't include spaces to either side of the=. Setting the 87 environ­
ment variable to N (for No) tells the start-up code that you do not
want to use the 80x87, even though it might be present in the
system.

Setting the 87 environment variable to Y (for Yes) means that the
coprocessor is there, and you want the program to use it. Let the
programmer beware!! If you set 87 = Y when, in fact, there is no
80x87 available on that system, your system will hang.

Turbo C++ Programmer's Gulde

Registers and the
80x87

Disabling
floating-point

exceptions

If the 87 environment variable has been defined (to any value) but
you want to undefine it, enter the following at the DOS prompt:

C> SET 87=

Press Enter immediately after typing the equal sign.

There are a couple of points concerning registers that you should
be aware of when using floating point.

1. In 80x87 emulation mode, register wraparound and certain
other 80x87 peculiarities are not supported.

2. If you are mixing floating point with inline assembly, you may
need to take special care when using registers. This is because
the 80x87 register set is emptied before Turbo C ++ calls a func­
tion. You might need to pop and save the 80x87 registers be­
fore calling functions that use the coprocessor, unless you are
sure that enough free registers exist.

By default, Turbo C++ programs abort if a floating-point overflow
or divide by zero error occurs. You can mask these floating-point
exceptions by a call to _control87 in main, before any floating­
point operations are performed. For example,

#include <float.h>
main() {

_control87(MCW_EM,MCW_EM);

You can determine whether a floating-point exception occurred
after the fact by calling _status87 or _clear87. See the entries for
these functions in Chapter 1 of the Library Reference for details.

Certain math errors can also occur in library functions; for in­
stance, if you try to take the square root of a negative number. The
default behavior is to print an error message to the screen, and to
return a NAN (an IEEE not-a-number). Use of the NAN will likely
cause a floating-point exception later, which will abort the
program if unmasked. If you don't want the message to be
printed, insert the following version of matherr into your
program.

Chapter 4, Memory models, floating point, and overlays 207

#include <math.h>
int cdecl matherr(struct exception *e)
{

return 1; /* error has been handled */

Any other use of matherr to intercept math errors is not encour­
aged, as it is considered obsolete and may not be supported in
future versions of Turbo C++.

Using complex math

See the description of class
complex in the Library

Reference for more
information.

208

Complex numbers are numbers of the form x + yi, where x and y
are real numbers, and i is the square root of-1. Turbo C++ has
always had a type

struct complex
{

double x, y;
} ;

defined in math.h. This type is convenient for holding complex
numbers, as they can be considered a pair of real numbers. How­
ever, the limitations of C make arithmetic with complex numbers
rather cumbersome. With the addition of C++, complex math is
much simpler.

To use complex numbers in C++, all you have to do is to include
complex.h. In complex.h, all the following have been overloaded
to handle complex numbers:

• all of the usual arithmetic operators
•the stream operators, >> and <<

•the usual math functions, such as sqrt and log

The complex library is invoked only if the argument is of type
complex. Thus, to get the complex square root of-1, use

sqrt(complex(-1))

and not

sqrt(-1)

As an example of the use of complex numbers, the following
function computes a complex Fourier transform.

#include <complex.h>

Turbo C++ Programmer's Guide

Using BCD math

II calculate the discrete Fourier transform of a[O], ... , a[n-1].
void Fourier(int n, complex a[], complex b[])
(

int j, k;
complex i(O,l);
for (j = 0; j < n; ++ j)
(

b[j] = O;
for (k = O; k < n; ++k)

II square root of -1

b[j] += a[k] * exp(2*M_PI*j*k*iln);
b[j] I= sqrt(n);

Turbo C++, along with almost every other computer and
compiler, does arithmetic on binary numbers (that is, base 2). This
is sometimes confusing to people who are used to decimal (base
10) representations. Many numbers that are exactly representable
in base 10, such as O.ol, can only be approximated in base 2.

Binary numbers are preferable for most applications, but in some
situations the roundoff error involved in converting between base
2 and 10 is undesirable. The most common case is a financial or
accounting application, where the pennies are supposed to add
up. Consider the following program to add up 100 pennies and
subtract a dollar:

#include <stdio.h>
int i;
float x = 0.0;
for (i = O; i < 100; +ti)

x += 0.01;
x -= 1.0;
printf("l00*.01 - 1 = %g\n",x);

The correct answer is 0.0, but the computed answer is a small
number close to 0.0. The computation magnifies the tiny roundoff
error that occurs when converting 0.01 to base 2. Changing the
type of x to double or long double reduces the error, but does not
eliminate it.

To solve this problem, Turbo C++ offers the C++ type bed, which
is declared in bcd.h. With bed, the number 0.01 is represented
exactly, and the bed variable x will give an exact penny count.

#include <bcd.h>

Chapter 4, Memory models, floating point, and overlays 209

210

Converting BCD
numbers

Important!

Number of decimal
digits

int i;
bed x = 0.0;
for (i = O; i < 100; +ti)

x += 0.01;
x -= 1.0;
eout << "100*.0l - 1 = " << x << "\n";

Here are some facts to keep in mind about bed.

• bed does not eliminate all roundoff error: A computation like
1.0/3.0 will still have roundoff error.

•The usual math functions, such as sqrt and log, have been
overloaded for bed arguments.

•BCD numbers have about 17 decimal digits precision, and a
range of about 1 x 10-125 to 1 x 1012s.

bed is a defined type distinct from float, double, or long double;
decimal arithmetic is only performed when at least one operand is
of the type bed.

The bed member function real is available for converting a bed
number back to one the usual base 2 formats (float, double, or
long double), though the conversion is not done automatically.
real does the necessary conversion to long double, which can then
be converted to other types using the usual C conversions. For
example,

bed a= 12.1;

can be printed using any of the following four lines of code:

double x = a; printf("a = %g", x);

printf("a =%Lg", real(a));

printf("a = %g", (double)real(a));

eout << "a = " << a;

Note that since printf does not do argument checking, the format
specifier must have the L if the long double value real(a) is
passed.

You can specify how many decimal digits after the decimal point
are to be carried in a conversion from a binary type to a bed. The
number of places is an optional second argument to the construc­
tor bed. For example, to convert $1000.00/7 to a bed variable
rounded to the nearest penny, use

Turbo C++ Programmer's Guide

This method of rounding is
specified by IEEE.

bed a~ bcd(l000.00/7, 2)

where 2 indicates two digits following the decimal point. Thus,

1000. 00/7 ::= 142.85714 ...
bed (1000. 00/7 I 2) 142.860
bcd(l000.00/7, 1) 142.900
bcd(l000.00/7, 0) 143.000
bcd(l000.00/7, -1) 140.000
bcd(l000.00/7, -2) 100.000

The number is rounded using banker's rounding, which means
round to the nearest whole number, with ties being rounded to an
even digit. For example,

bcd(12.335, 2)
bcd(12.345, 2)
bcd(12.355, 2)

::=

12.34
12.34
12.36

Turbo C++'s use of RAM

Turbo C++ does not generate any intermediate data structures to
disk when it is compiling (Turbo C++ writes only .OBJ files to
disk); instead it uses RAM for intermediate data structures
between passes. Because of this, you might encounter the message
"Out of memory ... " if there is not enough memory available for
the compiler.

The solution to this problem is to make your functions smaller, or
to split up the file that has large functions. You might also delete
any RAM-resident programs you have installed to free up more
memory for Turbo C++ to use.

Overlays (VROOMM)

Overlays are parts of a program's code that share a common
memory area. Only the parts of the program that are required for
a given function reside in memory at the same time.

Overlays can significantly reduce a program's total run-time
memory requirements. With overlays, you can execute programs
that are much larger than the total available memory, since only
parts of the program reside in memory at any given time.

Chapter 4, Memory models, floating point, and overlays 211

212

How overlays
work Turbo C++'s overlay manager (called VROOMM for Virtual Run­

time Object-Oriented Memory Manager) is highly sophisticated; it
does much of the work for you. In a conventional overlay system,
modules are grouped together into a base and a set of overlay
units. Routines in a given overlay unit may call other routines in
the same unit and routines in the base, but not routines in other
units. The overlay units are overlaid against each other; that is,
only one overlay unit may be in memory at a time, and they each
occupy the same physical memory. The total amount of memory
needed to run the program is the size of the base plus the size of
the largest overlay.

This conventional scheme is quite inflexible. It requires complete
understanding of the possible calling dependencies in the pro­
gram, and requires you to have the overlays grouped accordingly.
It may be impossible to break your program into overlays if you
can't split it into separable calling dependencies.

VROOMM's scheme is quite different. It provides dynamic segment
swapping. The basic swapping unit is the segment. A segment can
be one or more modules. More importantly, any segment can call
any other segment.

Memory is divided into an area for the base plus a swap area.
Whenever a function is called in a segment that is neither in the
base nor in the swap area, the segment containing the called func­
tion is brought into the swap area, possibly displacing other
segments. This is a powerful approach-it is like software virtual
memory. You no longer have to break your code into static,
distinct, overlay units. You just let it run!

What happens when a segment needs to be brought into the swap
area? If there is room for the segment, execution just continues. If
there is not, then one or more segments in the swap area must be
thrown out to make room. How to decide which segment to
throw out? The actual algorithm is quite sophisticated. A simpli­
fied version: If there is an inactive segment, choose it for removal.
Inactive segments are those without executing functions. Other­
wise, pick an active segment and toss it out. Keep tossing out
segments until there is enough room available. This technique is
called dynamic swapping.

Turbo C++ Programmer's Guide

The more memory you provide for the swap area, the better the
program performs. The swap area acts like a cache; the bigger the
cache, the faster the program runs. The best setting for the size of
the swap area is the size of the program's working set.

Once an overlay is loaded into memory, it is placed in the overlay
buffer, which resides in memory between the stack segment and
the far heap. By default, the size of the overlay buffer is estimated
and set at startup, but you can change it using the global variable
_avrbuffer. If enough memory isn't available, an error message will
be displayed by DOS ("Program too big to fit in memory") or by
the C startup code (''Not enough memory to run program").

One very important option of the overlay manager is the ability to
swap the modules to expanded or extended memory when they
are discarded from the overlay buffer. Next time the module is
needed, the overlay manager can copy it from where the module
was swapped to instead of reading from the file. This makes it
much faster.

When using overlays, memory is used as shown in the next
figure.

Figure 4.9: Memory maps for overlays

MEDIUM MODEL LARGE MODEL HUGE MODEL
c,,..,.. v. .. -~

class CODE
Resident class CODE Resident

class CODE code code

{
Overl~ Overl~

class OVRINFO control ata class OVRINFO control ata class OVRINFO
These segments One stub One stub

are generated class STUBSEG se~ment for class STUBSEG se~ent for class STUBSEG
automatically by eac overlay eac overlay

the linker
segment segment

~ -... -......................................
Near heap and DATA DATA Multiple

stack share class-DATA class-DATA data segments
data segment

NEAR HEAP
Separate Separate

stack segment stack segment

STACK STACK STACK
.. ..

.............. --.--.-.-.................................... """" '""'
FAR HEAP FAR HEAP FAR HEAP

Chapter 4, Memory models, floating point, and overlays 213

Getting the best out of To get the best out of Turbo C++ overlays,
Turbo C++ overlays

Requirements

Using overlays

214

•Minimize resident code (resident run-time library, interrupt
handlers, and device drivers is a good starting point).

• Set overlay pool size to be a comfortable working set (start with
128K and adjust up and down to see the speed/size tradeoff).

•Think versatility and variety: Take advantage of the overlay
system to provide support for special cases, interactive help,
and other end-user benefits you could not consider before.

In order to create overlays, you'll need to remember a few simple
rules,

•The smallest part of a program that can be made into an overlay
is a segment.

•Overlaid applications must use the medium, large, or huge pro­
gramming models; the tiny, small, and compact models are not
supported.

•Normal segment merging rules govern overlaid segments. That
is, several .OBJ modules can contribute to the same overlaid
segment.

The link-time generation of overlays is completely separated from
the run-time overlay management; the linker does not automatic­
ally include code to manage the overlays. In fact, from the linker's
point of view, the overlay manager is just another piece of code
that gets linked in. The only assumption the linker makes is that
the overlay manager takes over an interrupt vector (typically INT
3FH) through which all dynamic loading is controlled. This level
of transparency makes it very easy to implement custom-built
overlay managers that suit the particular needs of each
application.

To overlay a program, all of its modules must be compiled with
the-Y compiler option enabled. To make a particular module into
an overlay, it needs to be compiled with the -Yo option. (-Yo
automatically enables -Y.)

Turbo C++ Programmer's Gulde

The -Yo option applies to all modules and libraries that follow it
on the TCC command line; you can disable it with -Yo-. These
are the only command line options that are allowed to follow file
names. For example, to overlay the module OVL.C but not the
library GRAPHICS.LIB, either of the following command lines
could be used:

TCC -ml -Yo ovl.c -Yo- graphics.lib

or

TCC -ml graphics.lib -Yo ovl.c

If TLINK is invoked explicitly to link the .EXE file, the lo linker
option must be specified on the linker command line or response
file. Read the section on TLINK in Chapter 5, "Utilities" (in the
User's Guide) for how to use the lo option.

Overlay example Suppose that you want to overlay a program consisting of three
modules: MAIN.C, 01.C, and 02.C. Only the modules 01.C and
02.C should be made into overlays. (MAIN.C contains time­
critical routines and interrupt handlers, so it should stay resident.)
Let's assume that the program uses the large memory model.

The following command accomplishes the task:

TCC -ml -Y main.c -Yo ol.c o2.c

The result will be an executable file MAIN.EXE, containing two
overlays.

Overlaying in the IDE In order to overlay modules in the IDE, the following steps must
betaken:

1. Go into Options I Compiler I Code generation dialog and set
checkbox Overlays On.

2. Go into Options I Linker and set Overlay checkbox On.

3. In the project manager, use project item Options to specify
each module that needs to go into an overlay.

The first step is the integrated environment's equivalent of the
command-line compiler's -Y option. If this check box is not on, the
two other options cannot be used. The second step controls
whether the overlay information is being used in the IDE link pro­
cess. By turning this option off, you can globally turn overlays off
without needing to recompile or change any individual module
settings in the project manager. The third checkbox controls which

Chapter 4, Memory models, floating point, and overlays 215

216

Designing
overlaid

programs

The far call
requirement

modules go into overlays and which remain fixed. This checkbox
closely resembles the command-line compiler's-Yo switch.

If you are building an .EXE file containing overlays, compile all
modules with the Code Generation I Overlays switch On (be sure
you've selected Options I Full Menus On first).

No module going into an overlay should ever change the default
Code Class name. The IDE lets you change the set of modules
residing in overlays without having to worry about recompiling.
This can only be accomplished (with current .OBJ information) if
overlays keep default code class names.

This section provides some important information on designing
programs with overlays. Look it over carefully, since a number of
the issues discussed are vital to well-behaved overlaid
applications.

Use a large code model (medium, large, or huge) when you want
to compile an overlay module. At any call to an overlaid function
in another module, you must guarantee that all currently active
functions are far.

You must compile all overlaid modules with the-Y option, which
causes the compiler to ensure that the generated code can be over­
laid.

lmpottantl Failing to observe the far call requirement in an overlaid program
will cause unpredictable and possibly catastrophic results when
the program is executed.

Buffer size The default overlay buffer size is twice the size of the largest over­
lay. This is adequate for some applications. But imagine a situa­
tion where a particular function of a program is implemented
through many modules, each of which is overlaid. If the total size
of those modules is larger than the overlay buffer, a substantial
amount of swapping will occur if the modules make frequent calls
to each other.

Obviously, the solution is to increase the size of the overlay buffer
so that enough memory is available at any given time to contain
all overlays that make frequent calls to each other. You can do this
by setting the _ovrbuffer global variable to the required size in

Turbo C++ Programmer's Gulde

paragraphs. For example, to set the overlay buffer to 128K, in­
clude the following statement in your code:

unsigned _ovrbuffer = Ox2000;

There is no general formula for determining the ideal overlay
buffer size. Borland's Turbo Profiler can help provide a suitable
value. If you don't have Turbo Profiler, a good knowledge of the
application and a bit of experimenting will provide a suitable
value.

What not to overlay Don't overlay modules that contain interrupt handlers, or small
and time-critical routines. Due to the non-reentrant nature of the
DOS operating system, modules that may be called by interrupt
functions should not be overlaid.

Debugging overlays

External routines in
overlays

Turbo C++'s overlay manager fully supports passing overlaid
functions as arguments, assigning and initializing function
pointer variables with addresses of overlaid functions, and calling
overlaid routines via function pointers.

Most debuggers have very limited overlay debugging capabilities,
if any at all. Not so with Turbo C++'s integrated debugger and
Turbo Debugger, the standalone debugger. Both debuggers fully
support single-stepping and breakpoints in overlays in a manner
completely transparent to you. By using overlays, you can easily
engineer and debug huge applications-all from inside the IDE or
by using Turbo Debugger.

Like normal C functions, external assembly language routines
must observe certain programming rules to work correctly with
the overlay manager.

If an assembly language routine makes calls to any overlaid func­
tions, the assembly language routine must be declared FAR, and it
must set up a stack frame using the BP register. For example,
assuming that OtherFunc is an overlaid function in another mod­
ule, and that the assembly language routine ExternFunc calls it,
then ExternFunc must be FAR and set up a stack frame, as the
following demonstrates:

ExternFunc PROC FAR

push bp
mov bp, sp
sub sp,LocalSize

; Save BP
;Set up stack frame
;Allocate local variables

Chapter 4, Memory models, floating point, and overlays 217

Swapping

218

call OtherFunc ;Call another overlaid module

mov sp,bp ;Dispose local variables
pop bp ; Restore BP
RET ; Return

ExternFunc ENDP

where LocalSize is the size of the local variables. If LocalSize is zero,
you can omit the two lines to allocate and dispose local variables,
but you must not omit setting up the BP stack frame even if you
have no arguments or variables on the stack.

These requirements are the same if ExternFunc makes indirect
references to overlaid functions. For example, if Other Fune makes
calls to overlaid functions, but is not itself overlaid, ExternFunc
must be FAR and still has to set up a stack frame.

In the case where an assembly language routine doesn't make any
direct or indirect references to overlaid functions, there are no
special requirements; the assembly language routine can be de­
clared NEAR. It does not have to set up a stack frame.

Overlaid assembly language routines should not create variables
in the code segment, since any modifications made to an overlaid
code segment are lost when the overlay is disposed. Likewise,
pointers to objects based in an overlaid code segment cannot be
expected to remain valid across calls to other overlays, since the
overlay manager freely moves around and disposes overlaid code
segments.

If you have expanded or extended memory available, you can tell
the overlay manager to use it for swapping. If you do so, when
the overlay manager has to discard a module from the overlay
buffer (because it should load a new module and the buffer is
full), it can store the discarded module in this memory. Any later
loading of this module is reduced to in-memory transfer, which is
significantly faster than reading from a disk file.

In both cases there are two possibilities: The overlay manager can
either detect the presence of expanded or extended memory and
can take it over by itself, or it can use an already detected and
allocated portion of the expanded/extended memory. In the case
of extended memory, the detection of the memory usage is not

Turbo C++ Programmer's Guide

always successful because of the multitude of different cache and
RAM disk programs that can take over extended memory without
any mark. To avoid this problem, you can tell the overlay mana­
ger the starting address of the extended memory and how much
of it is safe to use.

Expanded memory The _OvrlnitEms function initializes expanded memory
swapping. Here's its prototype:

_OvrlnifEms and _OvrlnitExf extern int far OvrinitEms
are defined in dos.h.

I ;

unsigned emsHandle,
unsigned emsFirst,
unsigned emsPages

If the emsHandle parameter is zero, the overlay manager checks for
the presence of expanded memory and allocates the amount (if it
can) that can contain all of the overlays minus the size of the
overlay buffer. Otherwise, emsHandle should be a legal EMS
handle, emsFirst is the first usable EMS page, and emsPages is the
number of pages usable by the overlay manager. This function
returns 0 if expanded memory is available.

Extended memory The _OvrlnitExt function initializes extended memory swapping.
Here's its prototype:

extern int far OvrinitExt

I ;

unsigned long extStart,
unsigned long extLength

If the extStart parameter is zero, the overlay manager checks for
extended memory. If it can, the overlay manager uses the amount
of free memory that can contain all of the overlays minus the size
of the overlay buffer. Otherwise, extStart is the start of the usable
extended memory, with extLength bytes usable by the overlay
manager. If extlength is zero, the overlay manager will use all
available extended memory above extStart. This function returns 0
if extended memory is available. _OvrlnitExt is defined in dos.h.

Important! The use of extended memory is not standardized. Though the
overlay manager tries every known method to find out the
amount of extended memory which is already used, use this func­
tion carefully. For example, if you have a 2 Mb hard disk cache

Chapter 4, Memory models, floating point, and overlays 219

220

program installed (that uses extended memory), you could use
the following call to let the overlay manager use the remaining
extended memory:

if (_OvrinitExt (10241 * (2048 + 1024), 01))
puts ("No extended memory available for overlay swapping");

Turbo C++ Programmer's Guide

c H A p T E R

5

Video functions

Turbo C++ comes with a complete library of graphics functions,
so you can produce onscreen charts and diagrams. This chapter
first briefly discusses video modes and windows. Then it explains
how to program in text mode and in graphics mode.

Turbo C++'s video functions are similar to corresponding routines
in Turbo Pascal. If you are not already familiar with controlling
your PC's screen modes or creating and managing windows and
viewports, take a few minutes to read the following words on
those topics.

Some words about video modes

Chapter 5, Video functions

Your PC has some kind of video adapter. This can be a Mono­
chrome Display Adapter (MDA) for your basic text-only display,
or it can be capable of displaying graphics, such as a Color I
Graphics Adapter (CGA), an Enhanced Graphics Adapter (EGA),
or a Hercules Monochrome Graphics Adapter. Each adapter can
operate in a variety of modes; the mode specifies whether the
screen displays 80 or 40 columns (text mode only), the display
resolution (graphics mode only), and the display type (color or
black and white).

The screen's operating mode is defined when your program calls
one of the mode-defining functions (textmode, lnitgraph, or
setgraphmode).

221

•In text mode, your PC's screen is divided into cells (80- or 40-
columns wide by 25, 43, or 50 lines high). Each cell consists of
an attribute and a character. The character is the displayed
ASCII character, while the attribute specifies how the character
is displayed (its color, intensity, and so on). Turbo C ++ provides
a full range of routines for manipulating the text screen, for
writing text directly to the screen, and for controlling the cell at­
tributes.

•In graphics mode, your PC's screen is divided into pixels; each
pixel displays a single dot onscreen. The number of pixels (the
resolution) depends on the type of video adapter connected to
your system and the mode that adapter is in. You can use func­
tions from Turbo C++'s graphics library to create graphic dis­
plays onscreen: You can draw lines and shapes, fill enclosed
areas with patterns, and control the color of each pixel.

In text modes, the upper left corner of the screen is position (1,1),
with x-coordinates increasing from left to right, and y-coordinates
increasing from screen-top to screen-bottom. In graphics modes,
the upper left corner is position (0,0), with the x- and y-coordinate
values increasing in the same manner.

Some words about windows and viewports

222

What is a

Turbo C++ provides functions for creating and managing
windows on your screen in text mode (and viewports in graphics
mode). If you are not familiar with windows and viewports, you
should read this brief overview. Turbo C++'s window- and
viewport-management functions are explained in "Programming
in text mode" and "Programming in graphics mode" later in this
chapter.

window? A window is a rectangular area defined on your PC's video screen
when it's in a text mode. When your program writes to the screen,
its output is restricted to the active window. The rest of the screen
(outside the window) remains untouched.

The default window is a full-screen text window. Your program
can change this default full-screen text window to a text window
smaller than the full screen (with a call to the window function).

Turbo C++ Programmer's Guide

What is a

This function specifies the window's position in terms of screen
coordinates.

viewport? In graphics mode, you can also define a rectangular area on your
PC's video screen; this is a viewport. When your graphics pro­
gram outputs drawings and so on, the viewport acts as the virtual
screen. The rest of the screen (outside the viewport) remains un­
touched. You define a viewport in terms of screen coordinates
with a call to the setviewport function.

Coordinates
Except for these window- and viewport-defining functions, all
coordinates for text-mode and graphics-mode functions are given
in window- or viewport-relative terms, not in absolute screen co­
ordinates. The upper left corner of the text-mode window is the
coordinate origin, referred to as (1,1); in graphics modes, the
viewport coordinate origin is position (0,0).

Programming in text mode

The console 1/0

In this section, we give a brief summary of the functions you use
in text mode. For more detailed information about these func­
tions, refer to Chapter 1, "The run-time library," of the Library
Reference.

In Turbo C++, the direct console I/0 package (cprintf, cputs, and
so on) provides high-performance text output, window manage­
ment, cursor positioning, and attribute control functions. These
functions are all part of the standard Turbo C++ libraries; they are
prototyped in the header file conio.h.

functions Turbo C++'s text-mode functions work in any of the six possible
video text modes. The modes available on your system depend on
the type of video adapter and monitor you have. You specify the
current text mode with a call to textmode. We explain how to use
this function later in this chapter and under the textmode entry in
Chapter 1 in the Library Reference.

Chapter 5, Video functions 223

224

Text output and
manipulation

These text mode functions are divided into four separate groups:

•text output and manipulation
• window and mode control
• attribute control
• state query

We cover these four text mode function groups in the following
sections.

Here's a quick summary of the text output and manipulation
functions:

Writing and reading text:

cprintf
cputs
getche
put ch

Sends formatted output to the screen.
Sends a string to the screen.
Reads a character and echoes it to the screen.
Sends a single character to the screen.

Manipulating text (and the cursor) onscreen:

clreol Clears from the cursor to the end of the line.
clrscr
delline
gotoxy
insline

Clears the text window.
Deletes the line where the cursor rests.
Positions the cursor.
Inserts a blank line below the line where the
cursor rests.

movetext Copies text from one area onscreen to another.

Moving blocks of text into and out of memory:

gettext Copies text from an area onscreen to memory.
puttext Copies text from memory to an area onscreen.

Your screen-output programs will come up in a full-screen text
window by default, so you can immediately write, read, and ma­
nipulate text without any preliminary mode-setting. You write
text to the screen with the direct console output functions cprintf,
cputs, and putch, and echo input with the function getche. Text
wrapping is controlled by the global variable _wscroll. If _wscroll is
1, text wraps onto the next line, scrolling as necessary. If _wscroll
is 0, text wraps onto the same line, and there is no scrolling.
_wscroll is 1 by default.

Once your text is on the screen, you can erase the active window
with clrscr, erase part of a line with clreol, delete a whole line
with delline, and insert a blank line with insline. The latter three

Turbo C++ Programmer's Guide

Window and mode
control

functions operate relative to the cursor position; you move the
cursor to a specified location with gotoxy. You can also copy a
whole block of text from one rectangular location in the window
to another with movetext.

You can capture a rectangle of onscreen text to memory with
gettext, and put that text back on the screen (anywhere you want)
with puttext.

There are two window- and mode-control functions:

textmode
window

Sets the screen to a text mode.
Defines a text-mode window.

You can set your screen to any of several video text modes with
textmode (limited only by your system's type of monitor and
adapter). This initializes the screen as a full-screen text window, in
the particular mode specified, and clears any residual images or
text.

When your screen is in a text mode, you can output to the full
screen, or you can set aside a portion of the screen-a window-to
which your program's output is confined. To create a text win­
dow, you call window, specifying what area on the screen it will
occupy.

Attribute control Here's a quick summary of the text-mode attribute control func­
tions:

Chapter 5, Video functions

Setting foreground and background:

textattr

textbackground
textcolor

Modifying intensity:

highvideo
lowvideo
norm video

Sets the foreground and background
colors (attributes) at the same time.
Sets the background color (attribute).
Sets the foreground color (attribute).

Sets text to high intensity.
Sets text to low intensity.
Sets text to original intensity.

The attribute control functions set the current attribute, which is
represented by an 8-bit value: The four lowest bits represent the
foreground color, the next three bits give the background color,
and the high bit is the "blink enable" bit.

225

226

Subsequent text is displayed in the current attribute. With the at­
tribute control functions, you can set the background and fore­
ground (character) colors separately (with textbackground and
textcolor) or combine the color specifications in a single call to
textattr. You can also specify that the character (the foreground)
will blink. Most color monitors in color modes will display the
true colors. Non-color monitors may convert some or all of the at­
tributes to various monochromatic shades or other visual effects,
such as bold, underscore, reverse video, and so on.

You can direct your system to map the high-intensity foreground
colors to low-intensity colors with lowvideo (which turns off the
high-intensity bit for the characters). Or you can map the low­
intensity colors to high intensity with highvideo (which turns on
the character high-intensity bit). When you're through playing
around with the character intensities, you can restore the settings
to their original values with normvideo.

State query Here's a quick summary of the state-query functions:

gettextinfo Fills in a text_info structure with information
about the current text window.

wherex Gives the x-coordinate of the cell containing the
cursor.

wherey Gives they-coordinate of the cell containing the
cursor.

Turbo C++'s console I/0 functions include some designed for
state queries. With these functions, you can retrieve information
about your text-mode window and the current cursor position
within the window.

The gettextinfo function fills a text_info structure (defined in
conio.h) with several details about the text window, including:

•the current video mode

• the window's position in absolute screen coordinates

• the window's dimensions

• the current foreground and background colors

• the cursor's current position

Sometimes you might need only a few of these details. Rather
than retrieving all the text window information, you can find out
just the cursor's (window-relative) position with wherex and
wherey.

Turbo C++ Programmer's Guide

Cursor shape You can use the new function _setcursortype to change the
appearance of your cursor. The values are _NOCURSOR, which
turns off the cursor; _SOLIDCURSOR, which gives you a solid
block (large) cursor; and _NORMALCURSOR, which gives you
the normal underscore cursor.

Text windows
The default text window is full screen; you can change this to a
less-than-full-screen text window with a call to the window func­
tion. Text windows can contain up to 50 lines and up to 40 or 80
columns.

The coordinate origin (point where the numbers start) of a Turbo
C++ text window is the upper left comer of the window. The
coordinates of the window's upper left corner are (1,1); the
coordinates of the bottom right corner of a full-screen 80-column,
25-line text window are (80,25).

An example Suppose your 100% PC-compatible system is in 80-column text
mode, and you want to create a window. The upper left corner of
the window will be at screen coordinates (10, 8), and the lower
right corner of the window will be at screen coordinates (50, 21).
To do this, you call the window function, like this:

Chapter 5, Video functions

window(lO, 8, 50, 21);

Now that you've created the text-mode window, you want to
move the cursor to the window position (5, 8) and write some text
in it, so you decide to use gotoxy and cputs.

gotoxy (5, 8);
cputs("Happy Birthday, Frank Borland");

The next figure illustrates these ideas.

227

Figure 5.1

Screen
Colwnnl

A window in 80x25 text mode screen _-iilfffillftt]ffi'.flffi!][fmtJm1ffilffi!]mJtJmffilj1ffil:mJmJfifimJm!rfflmB
Linet

228

The text_modes
type

Window
Columnl

Window
Column41

Screen
Column SO

You can put your monitor into one of seven PC text modes with a
call to the textmode function. The enumeration type text_modes,
defined in conio.h, enables you to use symbolic names for the
mode argument to the textmode function, instead of "raw" mode
numbers. However, if you use the symbolic constants, you must
put

#include <conio.h>

in your source code.

The numeric and symbolic values defined by text_modes are as
follows:

Symbolic
constant

LASTMODE
BW40
C40
BW80
CBO
MONO
C4350

Numeric
value

-1
0
1
2
3
7

64

Video text mode

Previous text mode enabled
Black and white, 40 columns
16-color, 40 columns
Black and white, 80 columns
16-color, 80 columns
Monochrome, 80 columns
EGA, 80x43; VGA, 80x50 lines

For example, the following calls to textmode put your color
monitor in the indicated operating mode:

Turbo C++ Programmer's Guide

Text colors

Chapter 5, Video functions

textmode(O)
textmode(BW80)
textmode(C40)
textmode(3)
textmode(7)
textmode(C4350)

Black and white, 40 column
Black and white, 80 column
16-color, 40 column
16-color, 80 column
Monochrome, 80 columns
EGA, 80x43; VGA, 80x50 lines

Use settextinfo to determine the number of rows in the screen
after calling textmode in the mode C4350.

For a detailed description of how cell attributes are laid out, refer
to the textattr entry in Chapter 1 of the Library Reference.

When a character occupies a cell, the color of the character is the
foreground; the color of the cell's remaining area is the background.
Color monitors with color video adapters can display up to 16 dif­
ferent colors; monochrome monitors substitute different visual at­
tributes (highlighted, underscored, reverse video, and so on) for
the colors.

The include file conio.h defines symbolic names for the different
colors. If you use the symbolic constants, you must include
conio.h in your source code.

The following table lists these symbolic constants and their corre­
sponding numeric values. Note that only the first eight colors are
available for the foreground and background; the last eight
(colors 8 through 15) are available for the foreground (the charac­
ters themselves) only.

229

High­
performance

output: The
directvideo

variable

Symbolic Numeric Foreground or
constant value background?

BLACK 0 Both
BLUE 1 Both
GREEN 2 Both
CYAN 3 Both
RED 4 Both
MAGENTA 5 Both
BROWN 6 Both
LIGHTGRAY 7 Both
DARK GRAY 8 Foreground only
LIGHTBLUE 9 Foreground only
LIGHTGREEN 10 Foreground only
LIGHTCYAN 11 Foreground only
LIGHTRED 12 Foreground only
LIGHTMAGENTA 13 Foreground only
YELLOW 14 Foreground only
WHITE 15 Foreground only
BLINK 128 Foreground only

You can add the symbolic constant BLINK (numeric value 128) to
a foreground argument if you want the character to blink.

Turbo C++'s console I/0 package includes a variable called direct­
video. This variable controls whether your program's console out­
put goes directly to the video RAM (directvideo = 1) or goes via
BIOS calls (directvideo = 0).

The default value is directvideo = 1 (console output goes directly to
the video RAM). In general, going directly to video RAM gives
very high performance (spelled f-a-s-t-e-r o-u-t-p-u-t), but doing
so requires your computer to be 100% IBM PC-compatible: Your
video hardware must be identical to IBM display adapters. Setting
directvideo = 0 will work on any machine that is IBM BIOS­
compatible, but the console output will be slower.

Programming in graphics mode

230

In this section, we give a brief summary of the functions you use
in graphics mode. For more detailed information about these
functions, refer to Chapter 1 of the Library Reference.

Turbo C++ Programmer's Guide

Turbo C++ provides a separate library of over 70 graphics func­
tions, ranging from high-level calls (like setviewport, bar3d, and
drawpoly) to bit-oriented functions (like getimage and putimage).
The graphics library supports numerous fill and line styles, and
provides several text fonts that you can size, justify, and orient
horizontally or vertically.

These functions are in the library file GRAPI-IlCS.LIB, and they
are prototyped in the header file graphics.h. In addition to these
two files, the graphics package includes graphics device drivers
(*.BGI files) and stroked character fonts (*.CHR files); we discuss
these additional files in following sections.

In order to use the graphics functions:

•If you're using the integrated environment, toggle Full Menus
to On, then check Options I Linker I Graphics Library. When you
make your program, the linker automatically links in the Turbo
C++ graphics library.

•If you're using TCC.EXE, you have to list GRAPHICS.LIB on
the command line. For example, if your program, MYPROC.C,
uses graphics, the TCC command line would be

tee myprog graphics.lib

Important! Because graphics functions use far pointers, graphics are not
supported in the tiny memory model.

The graphics

There is only one graphics library, not separate versions for each
memory model (in contrast to the standard libraries CS.LIB,
CC.LIB, CM.LIB, etc., which are memory-model specific). Each
function in GRAPHICS.LIB is a far function, and those graphics
functions that take pointers take far pointers. For these functions
to work correctly, it is important that you #include graphics.h in
every module that uses graphics.

library functions Turbo C++'s graphics functions fall into seven categories:

•graphics system control

Chapter 5, Video functions

• drawing and filling
•manipulating screens and viewports
•text output
• color control
• error handling
•state query

231

232

Graphics system
control

Here's a quick summary of the graphics system control:

closegraph
detectgraph

graphdefaults

_graphfreemem

_graphgetmem

getgraphmode
getmoderange

initgraph

installuserdriver

installuserfont

registerbgidriver

restorecrtmode

setgraphbufsize

setgraphmode

Shuts down the graphics system.
Checks the hard ware and determines
which graphics driver to use; recom-
mends a mode.
Resets all graphics system variables to
their default settings.
Deallocates graphics memory; hook for
defining your own routine.
Allocates graphics memory; hook for
defining your own routine.
Returns the current graphics mode.
Returns lowest and highest valid modes
for specified driver.
Initializes the graphics system and puts
the hardware into graphics mode.
Installs a vendor-added device driver to
the BGI device driver table.
Loads a vendor-added stroked font file to
the BGI character file table.
Registers a linked-in or user-loaded
driver file for inclusion at link time.
Restores the original (pre-initgraph)
screen mode.
Specifies size of the internal graphics
buffer.
Selects the specified graphics mode,
clears the screen, and restores all defaults.

Turbo C++'s graphics package provides graphics drivers for the
following graphics adapters (and true compatibles):

•Color/Graphics Adapter (CGA)
•Multi-Color Graphics Array (MCGA)
•Enhanced Graphics Adapter (EGA)
•Video Graphics Array (VGA)
• Hercules Graphics Adapter
•AT&T 400-line Graphics Adapter
• 3270 PC Graphics Adapter
•IBM 8514 Graphics Adapter

Turbo C++ Programmer's Guide

A more detailed
discussion

Chapter 5, Video functions

To start the graphics system, you first call the initgraph function.
initgraph loads the graphics driver and puts the system into
graphics mode.

You can tell initgraph to use a particular graphics driver and
mode, or to autodetect the attached video adapter at run time and
pick the corresponding driver. If you tell initgraph to autodetect, it
calls detectgraph to select a graphics driver and mode. If you tell
initgraph to use a particular graphics driver and mode, you must
be sure that the hardware is present. If you force initgraph to use
hardware that is not present, the results will be unpredictable.

Once a graphics driver has been loaded, you can find out the
name of the driver by using the getdrivername function and how
many modes a driver supports with getmaxmode. getgraphmode
will tell you which graphics mode you are currently in. Once you
have a mode number, you can find out the name of the mode with
getmodename. You can change graphics modes with setgraph­
mode and return the video mode to its original state (before
graphics was initialized) with restorecrtmode. restorecrtmode
returns the screen to text mode, but it does not close the graphics
system (the fonts and drivers are still in memory).

graphdefaults resets the graphics state's settings (viewport size,
draw color, fill color and pattern, etc.) to their default values.

installuserdriver and installuserfont let you add new device dri­
vers and fonts to your BGI.

Finally, when you're through using graphics, call closegraph to
shut down the graphics system. closegraph unloads the driver
from memory and restores the original video mode (via
restorecrtmode).

The previous discussion provided an overview of how initgraph
operates. In the following paragraphs, we describe the behavior of
initgraph, _graphgetmem, and _graphfreemem in some detail.

Normally, the initgraph routine loads a graphics driver by allocat­
ing memory for the driver, then loading the appropriate .BGI file
from disk. As an alternative to this dynamic loading scheme, you
can link a graphics driver file (or several of them) directly into
your executable program file. You do this by first converting the
.BGI file to an .OBJ file (using the BGIOBJ utility-see UTIL.DOC,
included with your distribution disks), then placing calls to
registerbgidriver in your source code (before the call to initgraph)

233

to register the graphics driver(s). When you build your program,
you need to link the .OBJ files for the registered drivers.

After determining which graphics driver to use (via detectgraph),
initgraph checks to see if the desired driver has been registered. If
so, initgraph uses the registered driver directly from memory.
Otherwise, initgraph allocates memory for the driver and loads
the .BGI file from disk.

Note Using registerbgidriver is an advanced programming technique,
not recommended for novice programmers. This function is
described in more detail in Chapter 1 in the Library Reference.

If you provide your own
_graphgetmem or

_graphfreemem, you may
get a "duplicate symbols·

warning message. Just
ignore the warning.

Drawing and filling

234

During run time, the graphics system might need to allocate
memory for drivers, fonts, and internal buffers. If this is neces­
sary, it calls _graphgetmem to allocate memory, and calls
_graphfreemem to free it. By default, these routines simply call
malloc and free, respectively.

You can override this default behavior by defining your own
_graphgetmem and _graphfreemem functions. By doing this, you
can control graphics memory allocation yourself. You must, how­
ever, use the same names for your own versions of these
memory-allocation routines: They will override the default func-
tions with the same names that are in the standard C libraries.

Here's a quick summary of the drawing and filling functions:

Drawing:

arc
circle
drawpoly
ellipse
getarccoords

getaspectratio

getlinesettings

line
liner el

lineto

moveto

Draws a circular arc.
Draws a circle.
Draws the outline of a polygon.
Draws an elliptical arc.
Returns the coordinates of the last call to
arc or ellipse.
Returns the aspect ratio of the current
graphics mode.
Returns the current line style, line pattern,
and line thickness.
Draws a line from (xO,yO) to (x1,y1).
Draws a line to a point some relative
distance from the current position (CP).
Draws a line from the current position
(CP) to (x,y).
Moves the current position (CP) to (x,y).

Turbo C++ Programmer's Guide

Chapter 5, Video functions

moverel

rectangle
setaspectratio

setlinestyle

Filling:

bar
bar3d
fill ellipse
fill poly
floodfill
getf ill pattern
getfillsettings

pieslice
sector
setfillpattern
sett ill style

Moves the current position (CP) a relative
distance.
Draws a rectangle.
Changes the default aspect ratio-correction
factor.
Sets the current line width and style.

Draws and fills a bar.
Draws and fills a 3-D bar.
Draws and fills an ellipse.
Draws and fills a polygon.
Flood-fills a bounded region.
Returns the user-defined fill pattern.
Returns information about the current fill
pattern and color.
Draws and fills a pie slice.
Draws and fills an elliptical pie slice.
Selects a user-defined fill pattern.
Sets the fill pattern and fill color.

With Turbo C++'s drawing and painting functions, you can draw
colored lines, arcs, circles, ellipses, rectangles, pie slices, two- and
three-dimensional bars, polygons, and regular or irregular shapes
based on combinations of these. You can fill any bounded shape
(or any region surrounding such a shape) with one of 11 prede­
fined patterns, or your own user-defined pattern. You can also
control the thickness and style of the drawing line, and the loca­
tion of the current position (CP).

You draw lines and unfilled shapes with the functions arc, circle,
drawpoly, ellipse, line, linerel, lineto, and rectangle. You can fill
these shapes with floodfill, or combine drawing/ filling into one
step with bar, bar3d, fillellipse, fillpoly, pieslice, and sector. You
use setlinestyle to specify whether the drawing line (and border
line for filled shapes) is thick or thin, and whether its style is solid,
dotted, and so forth, or some other line pattern you've defined.
You can select a predefined fill pattern with setfillstyle, and de­
fine your own fill pattern with setfillpattern. You move the CP to
a specified location with moveto, and move it a specified
displacement with moverel.

To find out the current line style and thickness, you call getline­
settings. For information about the current fill pattern and fill

235

Manipulating the
screen and viewport

236

color, you call getfillsettings; you can get the user-defined fill
pattern with getfillpattern.

You can get the aspect ratio (the scaling factor used by the graph­
ics system to make sure circles come out round) with getaspect­
ratio, and get coordinates of the last drawn arc or ellipse by
calling getarccoords. If your circles are not perfectly round, use
setaspectratio to correct them.

Here's a quick summary of the screen-, viewport-, image-, and
pixel-manipulation functions:

Screen manipulation:

cleardevice Clears the screen (active page).
setactivepage Sets the active page for graphics output.
setvisualpage Sets the visual graphics page number.

Viewport manipulation:

clearviewport
getviewsettings

setviewport

Image manipulation:

Clears the current viewport.
Returns information about the current
viewport.
Sets the current output viewport for
graphics output.

getimage Saves a bit image of the specified region to
memory.

imagesize Returns the number of bytes required to
store a rectangular region of the screen.

putimage Puts a previously saved bit image onto the
screen.

Pixel manipulation:

getpixel
put pixel

Gets the pixel color at (x,y).
Plots a pixel at (x,y).

Besides drawing and painting, the graphics library offers several
functions for manipulating the screen, viewports, images, and
pixels. You can clear the whole screen in one fell swoop with a
call to cleardevice; this routine erases the entire screen and homes
the CP in the viewport, but leaves all other graphics system set­
tings intact (the line, fill, and text styles; the palette; the viewport
settings; and so on).

Turbo C++ Programmer's Guide

Text output in graphics
mode

Chapter 5, Video functions

Depending on your graphics adapter, your system has between
one and four screen-page buffers, which are areas in memory
where individual whole-screen images are stored dot-by-dot. You
can specify which screen page is the active one (where graphics
functions place their output) and which is the visual page (the one
displayed onscreen) with setactivepage and setvisualpage,
respectively.

Once your screen's in a graphics mode, you can define a viewport
(a rectangular "virtual screen") on your screen with a call to set­
viewport. You define the viewport's position in terms of absolute
screen coordinates and specify whether clipping is on (active) or
off. You clear the viewport with clearviewport. To find out the
current viewport's absolute screen coordinates and clipping
status, call getviewsettings.

You can capture a portion of the onscreen image with getimage,
call imagesize to calculate the number of bytes required to store
that captured image in memory, then put the stored image back
on the screen (anywhere you want) with putimage.

The coordinates for all output functions (drawing, filling, text,
and so on) are viewport-relative.

You can also manipulate the color of individual pixels with the
functions getpixel (which returns the color of a given pixel) and
putpixel (which plots a specified pixel in a given color).

Here's a quick summary of the graphics-mode text output
functions:

gettextsettings

outtext

outtextxy

registerbgifont
settextjustify

settextstyle

setusercharsize

textheight
textwidth

Returns the current text font, direction,
size, and justification.
Sends a string to the screen at the current
position (CP).
Sends a string to the screen at the specified
position.
Registers a linked-in or user-loaded font.
Sets text justification values used by
outtext and outtextxy.
Sets the current text font, style, and charac­
ter magnification factor.
Sets width and height ratios for stroked
fonts.
Returns the height of a string in pixels.
Returns the width of a string in pixels.

237

238

The graphics library includes an 8x8 bit-mapped font and several
stroked fonts for text output while in graphics mode.

•In a bit-mapped font, each character is defined by a matrix of
pixels.

• In a stroked font, each character is defined by a series of vectors
that tell the graphics system how to draw that character.

The advantage of using a stroked font is apparent when you start
to draw large characters. Since a stroked font is defined by vec­
tors, it will still retain good resolution and quality when the font
is enlarged. On the other hand, when you enlarge a bit-mapped
font, the matrix is multiplied by a scaling factor; as the scaling
factor becomes larger, the characters' resolution becomes coarser.
For small characters, the bit-mapped font should be sufficient, but
for larger text you should select a stroked font.

You output graphics text by calling either outtext or outtextxy,
and control the justification of the output text (with respect to the
CP) with settextjustify. You choose the character font, direction
(horizontal or vertical), and size (scale) with settextstyle. You can
find out the current text settings by calling gettextsettings, which
returns the current text font, justification, magnification, and di­
rection in a textsettings structure. setusercharsize allows you to
modify the character width and height of stroked fonts.

If clipping is on, all text strings output by outtext and outtextxy
will be clipped at the viewport borders. If clipping is off, these
functions will throw away bit-mapped font output if any part of
the text string would go off the screen edge; stroked font output is
truncated at the screen edges.

To determine the onscreen size of a given text string, call text­
height (which measures the string's height in pixels) and textwldth
(which measures its width in pixels).

The default 8x8 bit-mapped font is built into the graphics pack­
age, so it is always available at run time. The stroked fonts are
each kept in a separate .CHR file; they can be loaded at run time
or converted to .OBJ files (with the BGIOBJ utility) and linked into
your .EXE file.

Normally, the settextstyle routine loads a font file by allocating
memory for the font, then loading the appropriate .CHR file from
disk. As an alternative to this dynamic loading scheme, you can
link a character font file (or several of them) directly into your
executable program file. You do this by first converting the .CHR

Turbo C++ Programmer's Guide

file to an .OBJ file (using the BGIOBJ utility-read about it in
UTIL.DOC, the online documentation included with your
distribution disks), then placing calls to registerbgifont in your
source code (before the call to settextstyle) to register the character
font(s). When you build your program, you need to link in the
.OBJ files for the stroked fonts you register.

Note Using registerbgifont is an advanced programming technique,
not recommended for novice programmers. This function is
described in more detail in UTIL.DOC, included with your
distribution disks.

Color control Here's a quick summary of the color control functions:

Get color information:

getbkcolor
getcolor
getdefaultpalette
getmaxcolor

getpalette
getpalettesize

Set one or more colors:

setallpalette
setbkcolor
setcolor
setpalette

Returns the current background color.
Returns the current drawing color.
Returns the palette definition structure.
Returns the maximum color value
available in the current graphics mode.
Returns the current palette and its size.
Returns the size of the palette look-up
table.

Changes all palette colors as specified.
Sets the current background color.
Sets the current drawing color.
Changes one palette color as specified by
its arguments.

Before summarizing how these color control functions work, we
first present a basic description of how colors are actually pro­
duced on your graphics screen.

Pixels and palettes The graphics screen consists of an array of pixels; each pixel pro­
duces a single (colored) dot onscreen. The pixel's value does not
specify the precise color directly; it is an index into a color table
called a palette. The palette entry corresponding to a given pixel
value contains the exact color information for that pixel.

This indirection scheme has a number of implications. Though the
hardware might be capable of displaying many colors, only a sub­
set of those colors can be displayed at any given time. The num-

Chapter 5, Video functions 239

240

Background and
drawing color

Color control on a
CGA

ber of colors that can be displayed at any one time is equal to the
number of entries in the palette (the palette's size). For example,
on an EGA, the hardware can display 64 different colors, but only
16 of them at a time; the EGA palette's size is 16.

The size of the palette determines the range of values a pixel can
assume, from 0 to (size-1). The getmaxcolor function returns the
highest valid pixel value (size-1) for the current graphics driver
and mode.

When we discuss the Turbo C++ graphics functions, we often use
the term color, such as the current drawing color, fill color and
pixel color. In fact, this color is a pixel's value: it's an index into the
palette. Only the palette determines the true color on the screen.
By manipulating the palette, you can change the actual color dis­
played on the screen even though the pixel values (drawing color,
fill color, and so on) have not changed.

The background color always corresponds to pixel value 0. When
an area is cleared to the background color, that area's pixels are
simply set to 0.

The drawing color is the value to which pixels are set when lines
are drawn. You choose a drawing color with setcolor (n}, where n
is a valid pixel value for the current palette.

Due to graphics hardware differences, how you actually control
color differs quite a bit between the CGA and the EGA, so we'll
present them separately. Color control on the AT&T driver, and
the lower resolutions of the MCGA driver is similar to CGA color
control.

On the CGA, you can choose to display your graphics in low reso­
lution (320x200), which allows you to use four colors, or high res­
olution (640x200), in which you can use two colors.

CGA low resolution

In the low resolution modes, you can choose from four predefined
four-color palettes. In any of these palettes, you can only set the
first palette entry; entries 1, 2, and 3 are fixed. The first palette
entry (color 0) is the background color. This background color can
be any one of the 16 available colors (see table of CGA back­
ground colors below).

Turbo C++ Programmer's Guide

The CGA :S foreground colors
are the same as those listed

in this table.

Chapter 5. Video functions

You choose which palette you want by the mode you select
(CGACO, CGACl, CGAC2, CGAC3); these modes use color pal­
ette 0 through color palette 3, as detailed in the following table.
The CGA drawing colors and the equivalent constants are defined
in graphics.h.

Palette
number

Constant assigned to color number (pixel value)

1 2 3

0 CGA LIGHTGREEN CGA LIGHTRED CGA YELLOW
1 CGA=LIGHTCYAN CGA=LIGHTMAGENTA CGA=WHITE
2 CGA GREEN CGA RED CGA BROWN
3 CGA=CYAN CGA=MAGENTA CGA=LIGHTGRAY

To assign one of these colors as the CGA drawing color, call set­
color with either the color number or the corresponding constant
name as an argument; for example, if you are using palette 3 and
you want to use cyan as the drawing color:

setcolor(l);

or

setcolor(CGA_CYAN);

The available CGA background colors, defined in graphics.h, are
listed in the following table:

Numeric Symbolic Numeric Symbolic
value name value name

0 BLACK 8 DARKGRAY
1 BLUE 9 LIGHTBLUE
2 GREEN 10 LIGHTGREEN
3 CYAN 11 LIGHTCYAN
4 RED 12 LIGHTRED
5 MAGENTA 13 LIGHTMAGENTA
6 BROWN 14 YELLOW
7 LIGHTGRAY 15 WHITE

To assign one of these colors to the CGA background color, use
setbkcolor(color), where color is one of the entries in the preceding
table. Note that for CGA, this color is not a pixel value (palette in­
dex); it directly specifies the actual color to be put in the first pal­
ette entry.

241

242

CGA high resolution

In high resolution mode (640x200), the CGA displays two colors: a
black background and a colored foreground. Pixels can take on
values of either 0 or 1. Because of a quirk in the CGA itself, the
foreground color is actually what the hardware thinks of as its
background color; you set it with the setbkcolor routine. (Strange
but true.)

The colors available for the colored foreground are those listed in
the preceding table. The CGA uses this color to display all pixels
whose value equals 1.

The modes that behave in this way are CGAHI, MCGAMED,
MCGAHI, ATT400MED, and ATT400HI.

CGA palette routines

Because the CGA palette is predetermined, you should not use
the setallpalette routine on a CGA. Also, you should not use
setpalette(index, actual_color), except for index= 0. (This is an
alternate way to set the CGA background color to actual_color.)

Color control on the On the EGA, the palette contains 16 entries from a total of 64 pos-
EGA and VGA sible colors, and each entry is user-settable. You can retrieve the

current palette with getpalette, which fills in a structure with the
palette's size (16) and an array of the actual palette entries (the
"hardware color numbers" stored in the palette). You can change
the palette entries individually with setpalette, or all at once with
setallpalette.

The default EGA palette corresponds to the 16 CGA colors, as
given in the previous color table: black is in entry 0, blue in entry
1, ... , white in entry 15. There are constants defined in graphics.h
that contain the corresponding hardware color values: these are
EGA_BLACK, EGA_ WHITE, and so on. You can also get these
values with getpalette.

The setbkcolor(color) routine behaves differently on an EGA than
on a CGA. On an EGA, setbkcolor copies the actual color value
that's stored in entry #color into entry #0.

As far as colors are concerned, the VGA driver behaves like the
EGA driver; it just has higher resolution (and smaller pixels).

Turbo C++ Programmer's Guide

Error handling in
graphics mode

Chapter 5, Video tunctlons

Here's a quick summary of the graphics-mode error-handling
functions:

grapherrormsg Returns an error message string for the
specified error code.

graphresult Returns an error code for the last graphics
operation that encountered a problem.

If an error occurs when a graphics library function is called (such
as a font requested with settextstyle not being found), an internal
error code is set. You retrieve the error code for the last graphics
operation that reported an error by calling graphresult. The fol­
lowing error return codes are defined:

Error graphics_ errors Corresponding
code constant error message string

0 grOk No error
-1 grNoinitGraph (BG!) graphics not installed (use

initgraph)
-2 grNotDetected Graphics hardware not detected
-3 grFileNotFound Device driver file not found
-4 grinvalidDriver Invalid device driver file
-5 grNoLoadMem Not enough memory to load driver
-6 grNoScanMem Out of memory in scan fill
-7 grNoFloodMem Out of memory in flood fill
-8 grFontNotFound Font file not found
-9 grNoFontMem Not enough memory to load font
-10 grlnvalidMode Invalid graphics mode for selected

driver
-11 gr Error Graphics error
-12 grIOerror Graphics I/0 error
-13 grlnvalidFont Invalid font file
-14 grinvalidFontNum Invalid font number
-15 grlnvalidDeviceNum Invalid device number
-18 gr Invalid Version Invalid version of file

A call to grapherrormsg(graphresult()) returns the error strings
listed in the previous table.

The error return code accumulates, changing only when a graph­
ics function reports an error. The error return code is reset to 0
only when lnitgraph executes successfully, or when you call
graphresult. Therefore, if you want to know which graphics func­
tion returned which error, you should store the value of
graphresult into a temporary variable and then test it.

243

244

State query Here's a quick summary of the graphics mode state query
functions:

getarccoords

getaspectratio

getbkcolor
getcolor
getdrivername
getfillpattern
getfillsettlngs

getgraphmode
getlinesettings

getmaxcolor

getmaxmode

getmaxx
getmaxy
getmodename
getmoderange
getpalette
getpixel
gettextsetti ng s

getviewsettings

getx

gety

Returns information about the coordinates
of the last call to arc or ellipse.
Returns the aspect ratio of the graphics
screen.
Returns the current background color.
Returns the current drawing color.
Returns name of current graphics driver.
Returns the user-defined fill pattern.
Returns information about the current fill
pattern and color.
Returns the current graphics mode.
Returns the current line style, line pattern,
and line thickness.
Returns the current highest valid pixel
value.
Returns maximum mode number for
current driver.
Returns the current x resolution.
Returns the current y resolution.
Returns name of a given driver mode.
Returns the mode range for a given driver.
Returns the current palette and its size.
Returns the color of the pixel at x,y.
Returns the current text font, direction, size,
and justification.
Returns information about the current
viewport.
Returns the x coordinate of the current
position (CP).
Returns they coordinate of the current
position (CP).

In each of Turbo C++'s graphics functions categories there is at
least one state query function. These functions are mentioned
under their respective categories and also covered here. Each of
the Turbo C++ graphics state query functions is named
getsomething (except in the error-handling category). Some of
them take no argument and return a single value representing the
requested information; others take a pointer to a structure defined

Turbo C++ Programmer's Guide

Chapter 5, Video functions

in graphics.h, fill that structure with the appropriate information,
and return no value.

The state query functions for the graphics system control category
are getgraphmode, getmaxmode, and getmoderange: The first
returns an integer representing the current graphics driver and
mode, the second returns the maximum mode number for a given
driver, and the third returns the range of modes supported by a
given graphics driver. getmaxx and getmaxy return the maximum
x and y screen coordinates for the current graphics mode.

The drawing and filling state query functions are getarccoords,
getaspectratio, getfillpattern, getfillsettings, and getlinesettings.
getarccoords fills a structure with coordinates from the last call to
arc or ellipse; getaspectratio tells the current mode's aspect ratio,
which the graphics system uses to make circles come out round.
getfillpattern returns the current user-defined fill pattern. getfill·
settings fills a structure with the current fill pattern and fill color.
getlinesettings fills a structure with the current line style (solid,
dashed, and so on), line width (normal or thick), and line pattern.

In the screen- and viewport-manipulation category, the state
query functions are getviewsettings, getx, gety, and getpixel.
When you have defined a viewport, you can find out its absolute
screen coordinates and whether clipping is active by calling get­
viewsettings, which fills a structure with the information. getx
and gety return the (viewport-relative) x- and y-coordinates of the
CP. getpixel returns the color of a specified pixel.

The graphics mode text-output function category contains one
all-inclusive state query function: gettextsettings. This function
fills a structure with information about the current character font,
the direction in which text will be displayed (horizontal or
bottom-to-top vertical), the character magnification factor, and the
text-string justification (both horizontal and vertical).

Turbo C++'s color-control function category includes three state
query functions. getbkcolor returns the current background color,
and getcolor returns the current drawing color. getpalette fills a
structure with the size of the current drawing palette and the
palette's contents. getmaxcolor returns the highest valid pixel
value for the current graphics driver and mode (palette size-1).

Finally, getmodename and getdrivername return the name of a
given driver mode and the name of the current graphics driver,
respectively.

245

246 Turbo C++ Programmer's Gulde

c H A p T E R

6

Interfacing with assembly language

This chapter tells you how to write your assembler code so that it
works well with Turbo C++. We assume that you know how to
write 8086 assembly language routines and how to define
segments, data constants, and so on. If you are unfamiliar with
these concepts, read the Turbo Assembler manuals for more infor­
mation, especially "Interfacing Turbo Assembler with Turbo C" in
the Turbo Assembler User's Guide. Turbo Assembler 2.0 includes
several features which make interfacing with Turbo C++ easy and
transparent.

Mixed-language programming

Parameter­
passing

Turbo C++ eases the way for your C programs to call routines
written in assembler and, in return, for programs written in
assembler to call your C routines. In this section, we make it clear
how easy interfacing Turbo C++ to assembly language can be; we
also provide support information for such interfacing.

sequences Turbo C++ supports two methods of passing parameters to a
function. One is the standard C method, which we will explain
first; the other is the Pascal method.

Chapter 6, Interfacing with assembly language 247

C parameter-passing
sequence

On the 8086, the stack grows
from high memory to low

memory, soi is currently at
the top of the stack.

248

Suppose you have declared the following function prototype:

void funca(int pl, int p2, long p3);

By default, Turbo C++ uses the C parameter-passing sequence,
also called the C calling convention. When this function (funca) is
called, the parameters are pushed on the stack in right-to-left or­
der (p3, p2, pl), following which the return address is pushed on
the stack. So, if you make the call

main()
(

int i,j;
long k;

i = 5; j = 7; k = Oxl407AA;
funca(i,j,k);

the stack will look like this (just before the return address is
pushed):

sp + 06: 0014
sp + 04: 07AA k = p3
sp + 02: 0007 j = p2
sp: 0005 i = pl

The routine being called doesn't need to know exactly how many
parameters have been pushed onto the stack. All it assumes is that
the parameters it expects are there.

Also-and this is very important-the routine being called should
not pop parameters off the stack. Why? Because the calling rou­
tine will. For example, the assembly language that the compiler
produces from the C source code for this main function looks
something like this:

mov WORD PTR [bp-8],5 ; Set i = 5
mov WORD PTR [bp-6],7 ; Set j = 7
mov WORD PTR [bp-2] I 0014h ;Set k = Ox1407AA
mov WORD PTR [bp-4],07AAh
push WORD PTR [bp-2] ;Push high word of k
push WORD PTR [bp-4] ;Push low word of k
push WORD PTR [bp-6] ;Push j
push WORD PTR [bp-8] ;Push i
call NEAR PTR funca ;Call funca (push addr)
add sp,8 ;Adjust stack

Turbo C++ Programmer's Guide

Pascal parameter­
passing sequence

Note the last instruction carefully: add sp, 8. The compiler knows
at that point exactly how many parameters have been pushed on­
to the stack; it also knows that the return address was pushed by
the call to funca and was already popped off by the ret instruction
at the end offunca.

The other approach is the standard Pascal method for passing pa­
rameters (also known as the Pascal calling convention). This does
not mean you can call Turbo Pascal functions from Turbo C ++:
You can't. If fun ca is declared as

void pascal funca(int pl, int p2, long p3);

then, when this function is called, the parameters are pushed on
the stack in left-to-right order (pl, p2, p3), following which the re­
turn address is pushed on the stack. So, if you make the call

main()
{

int i,j;
long k;

i = 5; j = 7; k = Ox1407M;
funca (i, j, kl;

the stack will look like this (just before the return address is
pushed):

sp + 06: 0005 i = pl
sp + 04: 0007 j = p2
sp + 02: 0014
sp: 07M k = p3

So, what's the big difference? Well, besides switching the order in
which the parameters are pushed, the Pascal parameter-passing
sequence assumes that the routine being called (funca) knows
how many parameters are being passed to it and adjusts the stack
accordingly. In other words, the assembly language for the call to
funca now looks like this:

push WORD PTR [bp-8)
push WORD PTR [bp-6)
push WORD PTR [bp-2)
push WORD PTR [bp-4]
call NEAR PTR funca

;Push i
;Push j
;Push high word of k
;Push low word of k
;Call funca (push addr)

Chapter 6, Interfacing with assembly language 249

Some problems might arise
from using the Pascal calling

convention.

250

Note that there is no add sp, 8 instruction after the call. Instead,
funca uses the instruction ret 8 at termination to clean up the
stack before returning to main.

By default, all functions you write in Turbo C++ use the C
method of parameter passing. The only exception is when you use
the -p compiler option (Pascal button on the Code Generation
dialog); in which case, all functions use the Pascal method. In that
situation, you can force a given function to use the C method of
parameter passing by using the modifier cdecl, as in

void cdecl funca(int pl, int p2, int p3);

That overrides the -p compiler directive.

Now, why would you want to use the Pascal calling convention at
all? There are two major reasons.

•You may be calling existing assembly language routines that
use that calling convention.

•The calling code produced is slightly smaller, since it doesn't
have to clean up the stack afterwards.

First, it's not as robust as the C calling convention. You cannot
pass a variable number of parameters (as you can with the C con­
vention), since the routine being called has to know how many
parameters are being passed and clean up the stack accordingly.
Passing either too few or too many parameters will almost cer­
tainly lead to serious problems, whereas doing so to a C­
convention routine usually has no ill effects (beyond, possibly,
wrong answers).

Second, if you use the -p compiler option, then you must be sure
to include any header files for standard C functions that you call.
Why? Because if you don't, Turbo C ++ will use the Pascal calling
(and naming) convention for each of those functions-and your
program will not link.

The header files declare each of those functions as cdecl, so if you
include them, the compiler will see that and use the C calling con­
vention instead.

The upshot is this: If you're going to use the Pascal calling con­
vention in a Turbo C++ program, be sure to use function proto­
types as much as possible, with each function explicitly declared
as cdecl or pascal. It's useful in this case to enable the "Function
call with no prototype" warning to ensure that every function
called has a prototype.

Turbo C++ Programmer's Guide

Setting up to call .ASM from Turbo C++

Simplified
segment

directives

Standard
segment

directives

When writing your assembly language routines, there are certain
conventions that you must follow to (1) ensure that the linker can
get the necessary information, and (2) ensure that the file format
jibes with the memory model used for your C program.

Ordinarily, your assembly language modules will consist of three
sections: code, initialized data, and uninitialized data. Each type
of information is organized into its own segment using certain
names which are dependent on the memory model used for your
C program.

Turbo Assembler (TASM) provides three simplified segment
directives (.CODE, .DATA, and .DATA?) for you to use when
defining these segments. They tell the assembler to use the default
segment names for the memory model which you specify using
the .MODEL directive. For example, if your C program uses the
small memory model, you could organize each assembly module
with simplified segment directives as shown in the following
table .

. MODEL SMALL

.CODE

... code segment ...

. DATA

.. .initialized data segment.. .

. DATA?

... uninitialized data segment ...

In some cases, you may want to use segment names other than
the defaults for your memory model. To do so, you must use the
standard segment directives as illustrated in Table 6.1.

Chapter 6, Interfacing with assembly language 251

Table6.l
Assembly language file

format

Table 6.2
Identifier replacements and

memory models

252

code

code

dseg
data

SEGMENT BYTE PUBLIC 'CODE'
ASSUME CS: code, DS: dseg
............... code segment
ENDS

GROUP
SEGMENT

_DATA,_BSS
WORD PUBLIC 'DAT A'

.......... .initialized data segment
data ENDS

_BSS SEGMENT WORD PUBLIC 'BSS'
......... uninitialized data segment

_BSS ENDS

END

The identifiers code, data, and dseg in this layout have specific re­
placements, depending on the memory model being used;
Table 6.2 shows what you should use for each model. filename in
Table 6.2 is the name of the module; use it consistently in the
NAME directive and in the identifier replacements.

Note that with the huge memory model, there is no _BSS seg­
ment, and the GROUP definition is dropped completely. In
general, _BSS is optional; you only define it if you will be using it.

The best way to create an assembly language template is to com­
pile an empty program to .ASM (using the TCC option -S) and
look at the generated assembly code.

Model Identifier replacements Code and data pointers

Tiny, Small code=_TEXT Code: DW _TEXT:xxx
data= DATA Data: DW DGROUP:xxx
dseg = DGROUP

Compact code=_TEXT Code:DW _TEXT:xxx
data= DATA Data: DD DGROUP:xxx
dseg = DGROUP

Medium code =filename_ TEXT Code:DDxxx
data= DATA Data: DW DGROUP:xxx
dseg = DGROUP

Large code =filename_ TEXT Code:DDxxx
data= DATA Data: DD DGROUP:xxx
dseg = DGROUP

Huge code =filename_ TEXT Code:DDxxx
data= filename_DATA Data:DDxxx

Turbo C++ Programmer's Gulde

Defining data
constants and

variables

Defining global
and external

identifiers

Memory models also affect how you define any data constants
that are pointers to code, data, or both. Table 6.2 shows what
those pointers should look like, where xxx is the address being
pointed to.

Some definitions use DW (Define Word), while others use DD
(Define Doubleword), indicating the size of the resulting pointer.
Numeric and text constants are defined normally.

Variables are, of course, defined just the same as constants. If you
want variables that are not initialized to specific values, you can
declare them in the _BSS segment, entering a question mark (?)
where you would normally put a value.

Once you have created a module, your Turbo C++ program needs
to know which functions it can call and which variables it can ref­
erence. Likewise, you may want to be able to call your Turbo C++
functions from within your assembly language routines, or you
may want to be able to reference variables declared within your
Turbo C ++ program.

When making these calls, you need to understand something
about the Turbo C++ compiler and linker. When you declare an
external identifier, the compiler automatically adds an underscore
(_) to the front before saving that identifier in the object module.
This means that you should put an underscore on the front of any
identifiers in your assembly language module that you want to
reference from your C program. Pascal identifiers are treated
differently than C identifiers-they are uppercased and are not
prefixed with an underscore character.

Underscores for C identifiers are optional, but on by default. They
can be turned off with the -u- command-line option. However, if
you are using the standard Turbo C++ libraries, you will
encounter problems unless you rebuild the libraries. (To do this,
you will need another Turbo C ++ product-the source code to the
run-time libraries; contact Borland for more information.)

If any asm code in your source file references any C identifiers
(data or functions), those identifiers must begin with underscore

Chapter 6, Interfacing with assembly language 253

characters (unless you are using one of the language specifiers
described above).

Turbo Assembler (TASM) is not case-sensitive; in other words,
when you assemble a program, all identifiers are saved as upper­
case only. TASM's /mx option makes it case sensitive for publics
and externals. The Turbo C++ linker also saves extern identifiers
as uppercase, so things should match up fine. In our examples, we
put keywords and directives in uppercase, and all other identifi­
ers and opcodes in lowercase; this matches the style found in the
TASM reference manual. You are free to use all uppercase (or all
lowercase), or any mixture thereof, as you please.

To make identifiers visible outside of your assembly language
module, you need to declare them as being PUBLIC.

So, for example, if you were to write a module that had the inte­
ger functions max and min, and the integer variables MAXINT,
lastmax and lastmin, you would put the statement

PUBLIC _max, _min

in your code segment, and the statements

PUBLIC _MAXINT, _lastmax, _lastmin
MAXINT DW 32767
lastmin DW O
lastmax DW 0

in your data segment.

TASM 2.0 Turbo Assembler 2.0 extends the syntax of many directives to al­
low an optional language specifier. For instance, if you specify C
in your module's .MODEL directive, all identifier names will be
saved in the object module with leading underscores. This feature
can also be specified on a directive-by-directive basis. Using
Turbo Assembler 2.0's C language specifier, the above declarations
could also be written as

PUBLIC C max, min
PUBLIC C MAXINT, lastmax, lastmin
MAXINT DW 32767
lastmin DW 0
lastmax DW 0

254 Turbo C++ Programmer's Guide

Setting up to call Turbo C++ from .ASM

Referencing
functions

Use the EXTRN statement to let your assembly language module
reference functions and variables that are declared in your Turbo
C++ program.

To be able to call a C function from an assembly language routine,
you must declare it in your assembly language module with the
statement

EXTRN fname : fdist

where fname is the name of the function, and /dist is either near or
far, depending on whether the C function is near or far. So you
could have the following in your code segment:

EXTRN _myCfuncl:near, _myCfunc2:far

allowing you to call myCfunc1 and myCfunc2 from within your
assembly language routines.

TASM 2.0 Using Turbo Assembler 2.0's C language specifier, the statement
above could also be written as

Referencing data

EXTRN C myCfuncl:near, myCfunc2:far

To reference variables, place the appropriate EXTRN statement(s)
inside of your data segment, using the format

EXTRN vname : size

where vname is the name of the variable, and size indicates the size
of the variable.

The possible values for size are as follows:

BYTE (1 byte) QWORD (8 bytes)

WORD (2 bytes)

DWORD (4 bytes)

TBYTE (10 bytes)

So, if your C program had the following global variables:

int i,jarray[lO];
char ch;
long result;

Chapter 6, Interfacing with assembly language 255

you could make them visible within your module with the fol­
lowing statement:

EXTRN _i:WORD,_jarray:WORD,_ch:BYTE,_result:DWORD

TASM 2.0 or using Turbo Assembler 2.0's C language specifier:

EXTRN C i:WORD,jarray:WORD,ch:BYTE,result:DWORD

Important! If you're using the huge memory model, the EXTRN statements
must appear outside of any segments. This applies to both func­
tions and variables.

Defining assembly language routines

256

Passing

Now that you know how to set everything up, take a look at how
to actually write a function in assembly language. There are some
important things to consider: passing parameters, returning val­
ues, and using the correct register conventions.

Suppose you want to write the function min, which you can as­
sume has the following function prototype in C:

extern int min(int vl, int v2);

You want min to return the minimum of the two values passed to
it. The overall format of min is going to be

PUBLIC min
min PROC NEAR

min ENDP

This assumes, of course, that min is going to be a near function; if
it were a far function, you would substitute FAR for NEAR. Note
that we've added the underscore to the start of min, so that the
Turbo C++ linker can correctly resolve the references. If we had
used Turbo Assembler 2.0's C language specifier in the PUBLIC
statement, the assembler would have taken care of this task for us.

parameters Your first decision is which parameter-passing convention to use;
barring an adequate reason to use it, avoid the Pascal convention;
use the C method instead. This means that when min gets called,
the stack is going to look like this:

sp + 04: v2

Turbo C++ Programmer's Guide

sp + 02: vl
sp: return addr

You want to get to the parameters without popping anything off
the stack, so you'll save the base pointer (BP), move the stack
pointer (SP) into the base pointer, then use that to index directly
into the stack to get your values. Note that when you push BP
onto the stack, the relative offsets of the parameters will increase
by two, since there will now be two more bytes on the stack.

TASM 2.0 Turbo Assembler 2.0 provides an easy way to reference your func­
tion's parameters and deal with the stack. Keep reading though;
it's important to understand how stack addressing works.

Handling return
values Your function returns an integer value; where do you put that?

For 16-bit (2-byte) values (char, short, int, enum, and near
pointers), you use the AX register; for 32-bit (4-byte) values
(including far and huge pointers), you use the DX register as well,
with the high-order word (segment address for pointers) in DX
and the low-order word in AX.

float, double, and long double values are returned in the 80x87
top-of-stack (TOS) register, ST(O); if the 80x87 emulator is being
used, then the value is returned in the emulator TOS register. The
calling function must then copy that value to wherever it's
needed.

Structures that are 1 byte long are returned in AL. Structures that
are 2 bytes long are returned in AX. Structures 4 bytes long are
returned in AX:DX. Structure values of size 3 or greater than 5
bytes are returned by placing the value in a static data location,
then returning a pointer to that location (AX in the small data
models, DX:AX in the large data models). The called routine has to
copy the return value to the location this pointer points to.

For the min example, all you're dealing with is a 16-bit value, so
you can just place the answer in AX.

Here's what your code looks like now:

PUBLIC min
min PROC NEAR

push bp ;Save bp on stack
mov bp,sp ;Copy sp into bp
mov ax, [bp+4] ;Move vl into ax
cmp ax, [bp+6] ;Compare with v2

Chapter 6, Interfacing with assembly language 257

258

jle exit ;If vl > v2
mov ax, [bp+6] ;Then load ax with v2

exit: pop bp ;Restore bp
ret ;And return to C

min ENDP

What if you declare min as a far function-how will that change
things? The major difference is that the stack on entry will now
look like this:

sp + 06: v2
sp + 04: vl
sp + 02: return segment
sp: return offset

This means that the offsets into the stack have increased by two,
since 2 extra bytes (for the return segment) had to be pushed onto
the stack. Your far version of min would look like this:

PUBLIC min
min PROC FAR

push bp ;Save bp on stack
mov bp,sp ;Copy sp into bp
mov ax, [bp+6] ;Move vl into ax
cmp ax, [bp+B] ;Compare with v2
jle exit ;If vl > v2
mov ax, [bp+6] ;Then load ax with v2

exit: pop bp ;Restore bp
ret ;And return to C

min ENDP

Note that all the offsets for v1 and v2 increased by two, to reflect
the additional bytes on the stack.

Now, what if you decide to use the Pascal parameter-passing
sequence?

Your stack on entry will now look like this (assuming min is back
to being a NEAR function):

SP + 04: vl
SP + 02: v2
SP: return addr

In addition, you will need to follow Pascal conventions for the
identifier min: uppercase and no underscore.

Besides having swapped the locations of v1 and v2, this conven­
tion also requires min to clean up the stack when it leaves, by
specifying in the RET instruction how many bytes to pop off the

Turbo C++ Programmer's Guide

stack. In this case, you have to pop off four additional bytes for v1
and v2 (the return address is popped off automatically by RET).

Here's what the modified routine looks like:

PUBLIC MIN
MIN PROC NEAR ;Pascal version

push bp ;Save bp on stack
mov bp,sp ;Copy sp into bp
mov ax, [bp+6] ;Move vl into ax
crop ax, [bp+4] ;Compare with v2
jle exit ;If vl > v2
mov ax, [bp+4] ;Then load ax with v2

exit: pop bp ;Restore bp
ret 4 ;Clear stack and return

MIN ENDP

Here's one last example to show you why you might want to use
the C parameter-passing sequence. Suppose you redefined min as
follows:

int min(int count, ...);

min can now accept any number of integers and will return the
minimum value of them all. However, since min has no way of
automatically knowing how many values are being passed, make
the first parameter a count value, indicating how many values fol­
low it.

For example, you might use it as follows:

i = min(S, j, limit, indx, lcount, 0);

assuming i, j, limit, indx, and lcount are all of type int (or a compat­
ible type). The stack upon entry will look like this:

sp + 08: (etc.)
sp + 06: v2
sp + 04: vl
sp + 02: count
sp: return addr

The modified version of min now looks like this:

PUBLIC min
min PROC NEAR

push bp ;Save bp on stack
mov bp,sp ;Copy sp into bp
mov ex, [bp+4] ;Move count into ex
crop cx,O ;Compare with 0
jle exit ;If <= O, then exit

Chapter 6, Interfacing with assembly language 259

Ii
,,

I*

260

lea bx, [bp+6] ;Make bx point to first value
mov ax, [bx] ;Move first value into ax
jmp ltest ;And test loop

compare: cmp ax, [bx] ;Compare with next value
jle ltest ;If next value is lower
mov ax, [bx] ;Then load ax with next value

ltest: add bx,2 ;Move to new value
loop compare ;Then loop back

exit: pop bp ;Restore bp
ret ;And return to C

min ENDP

This version correctly handles all possible values of count.

•If count <= 0, min returns 0.
• If count = 1, min returns the first value in the list.

• If count >= 2, min makes successive comparisons to find the
lowest value in the parameter list.

Now that you understand how to manipulate the stack when
writing your own functions, you might appreciate some of the
new extensions to Turbo Assembler version 2.0. Some of these ex­
tensions let you automatically create variable names, set up and
clean up the stack inside your PROC, and access parameters
easily, all using the conventions of the language that you specify.

Our first version of min (page 257) can be written using the new
extensions as

PUBLIC C MIN
min PROC C NEAR vl: WORD, v2: WORD

mov ax,vl
cmp ax,v2
jle exit
mov ax,v2

exit: ret
min ENDP

The Pascal-style version (page 259) can be written as

PUBLIC PASCAL MIN
min PROC PASCAL NEAR vl: WORD, v2: WORD

mov ax,vl
cmp ax,v2
jle exit
mov ax,v2

exit: ret
min ENDP

Turbo C++ Programmer's Gulde

Notice that the code you write is identical, except for the substitu­
tion of the keyword PASCAL for C. The code that is actually gen­
erated by the assembler, however, corresponds to our original
examples. See the Turbo Assembler manuals for a complete de­
scription of these new language-independent features.

Like normal C procedures and functions, external assembly lan­
guage routines must observe certain programming rules to work
correctly with the overlay manager.

If an assembly language routine makes calls to any overlaid proce­
dures or functions, the assembly language routine must be far,
and it must set up a stack frame using the BP register. See page
217 for more details.

Register conventions

You used several registers (BP, SP, AX, BX, CX) in min; were you
able to do so safely? What about any registers that your Turbo
C++ program might be using?

As it turns out, you wrote this function correctly. Of those you
used, the only register that you had to worry about was BP, and
you saved that on the stack on entry, then restored it from the
stack on exit.

The other two registers that you have to worry about are SI and
DI; these are the registers Turbo C++ uses for any register
variables. If you use them at all within an assembly language
routine, then you should save them (probably on the stack) on
entering the routine, and restore them on leaving. However, if
you compile your Turbo C++ program with the -r- option
(Register Variables should be unchecked on the Code Generation
dialog), then you don't have to worry about saving SI and DI.

Note You must use caution if you use the -r- option. Refer to Chapter
4, "The command-line compiler," in the User's Guide for details
about this register variables option.

The registers CS, DS, SS, and ES have specific values, depending
on the memory model being used. Here are the relationships:

Tiny CS = DS = SS
ES= scratch

Small, Medium CS != DS, DS = SS
ES =scratch

Chapter 6, Interfacing with assembly language 261

ll
i~
11
I'''

1:
i.

I I~
11
~ ' ;

Compact, Large

Huge

CS!= DS !=SS
ES= scratch
(one CS per module)

CS!= DS!=SS
ES= scratch
(one CS and one DS per module)

You can set DS to be not equal to SS for the tiny, small, and medi­
um models by setting these command-line compiler options: -mt!,
-ms!, and -mm!. See Chapter 4, "The command-line compiler," in
the User's Guide for more information on these options.

TASM 2.0 Turbo Assembler 2.0 also lets you specify this (DS!=SS) when you
are using the simplified segment directives through the use of the
model modifier in the .MODEL directive.

Calling C functions from .ASM routines

262

Yes, you can go the other way: You can call your C routines from
within your assembly language modules. First, though, you have
to make the C function visible to your assembly language module.
We've already discussed briefly how to do this: Declare it as
EXTRN, with either a near or a far modifier. For example, say
you've written the following C function:

long docalc(int *factl, int fact2, int fact3);

For simplicity, assume docalc is a C function (as opposed to
Pascal). Assuming you're using the tiny, small, or compact mem­
ory model, you'd declare it as this in your assembly module:

EXTRN docalc:near

Likewise, if you were using the medium, large, or huge memory
models, you'd declare it as _docalc:far.

TASM 2.0 Using Turbo Assembler 2.0's C language specifier, these declara­
tions could be written as

EXTRN C docalc:near

and

EXTRN C docalc:far

docalc is to be called with three parameters:

Turbo C++ Programmer's Guide

• the address of a location named xval
• the value stored in a location named imax
•a third constant value of 421 (base 10)

You should also assume that you want to save the result in a 32-
bit location named ans. The equivalent call in C would then be

ans= docalc(&xval,imax,421);

You'll need to push 421 on the stack first, then imax, then the ad­
dress of xval, and then call docalc. When it returns, you'll need to
clean up the stack, which will have six extra bytes on it, and then
move the answer into ans and ans+2.

Here's what your code will look like:

mov ax,421
push ax
push imax
lea ax,xval
push ax
call docalc -
add sp,6
mov ans,ax
mov ans+2,dx

;Get 421, push onto stack

;Get imax, push onto stack
;Get &xval, push onto stack

; Call docalc
; Clean up stack
;Move 32-bit result into ans
;Including high-order word

TASM 2.0 Turbo Assembler version 2.0 includes several extensions to make
the C-assembly interface process even easier. Some of these exten­
sions let you automatically create C-style variable names, push
parameters on the stack in the correct order for C, and clean up
the stack after calling a C function. For example, the docalc rou­
tine can be written as

EXT RN C docalc:near

mov bx,421
lea ax,xval
call docalc C ax,imax,bx
mov ans,ax
mov ans+2,dx

See the Turbo Assembler manuals for a complete description of
these new features.

What if docalc used the Pascal parameter-passing sequence in­
stead? Then you would have to reverse the order of the param­
eters, and you wouldn't have to worry about cleaning up the
stack upon return, since the routine would have done that for

Chapter 6, Interfacing with assembly language 263

you. Also, you would need to spell docalc in the assembly source
using Pascal conventions (uppercase and no underscore).

The EXTRN statement is then

EXTRN DOCALC:near

and the code to call docalc is

lea ax,xval
push ax
push imax
mov ax,421
push ax
call DOCALC
mov ans,ax
mov ans+2,dx

;Get &xval, push onto stack

;Get imax, push onto stack
;Get 421, push onto stack

; Call docalc
;Move 32-bit result into ans
;Including high-order word

Turbo Assembler version 2.0 also includes extensions to simplify
the Pascal-style assembly interface, letting you automatically cre­
ate Pascal-style variable names and push parameters on the stack
in the correct order for Pascal. For example, the Pascal-style
docalc routine can be written as

EXTRN PASCAL docalc:near

lea ax,xval
mov bx,421
call docalc PASCAL ax,imax,bx
mov ans,ax
mov ans+2,dx

That's all you need to know to get started interfacing assembly
language with Turbo C++.

Pseudovariables, inline assembly, and interrupt
functions

264

What if you want to do some low-level work, but don't want to go
to all the trouble of setting up a separate assembly language mo­
dule? Turbo C++ still has the answer for you-three answers, in
fact: pseudovariables, inline assembly, and interrupt functions.
The rest of this chapter shows how each of these can help you get
the job done.

Turbo C++ Programmer's Guide

Pseudovariables
The CPU in your system (the 8088 or 80x86 processor) has a num­
ber of registers, or special storage areas, that it uses to manipulate
values. Each register is 16 bits (2 bytes) long; most of them have
some special purpose, though several can be used for general pur­
poses as well. See "Memory models" on page 187 of Chapter 4 for
specific details on these CPU registers.

Sometimes in low-level programming, you might want to directly
access these registers from your C program.

•You might want to load values into them before calling a
system routine.

•You might want to see what values they currently hold.

For example, you can call certain routines in your computer's
ROM by executing the INT (interrupt) instruction, but first you
have to put the necessary information into certain registers, like
this:

void readchar(unsigned char page, unsigned char *ch,
unsigned char *attr);

_AH = 8;
_BH = page;
geninterrupt(OxlO)
*ch =_AL;
*attr = _AH;

/* Service code: read char, attribute */
/* Specify which display page */
/* Call INT lOh services */
/* Get ASCII code of character read */
/* Get attribute of character read */

As you can see, the service code and the display page number are
both being passed to the INT lOh routine; the values returned are
copied over into ch and attr.

Turbo C++ makes it very easy for you to access these registers
through pseudovariables. A pseudovariable is simply an identifier
that corresponds to a given register: You can use it as if it were a
variable of type unsigned int or unsigned char.

Here are some guidelines for using pseudovariables safely:

• Assigning simple variables to pseudovariables and vice versa
doesn't trash any other registers if no type conversion is
involved.

Chapter 6, Interfacing with assembly language 265

Table 6.3
Pseudovarlables

266

•Assigning constants to pseudovariables will also not destroy
the data in other registers, except for assignments to segment
registers (_CS, _DS, _SS, _ES), which use the AX register.

• Simple indirections via a pointer variable will generally destroy
the data in one of these: _BX, _SI or _DI, and possibly _ES.

•If you have to set up a number of registers (for example, for
doing a ROM call), it is safest to set up _AX last, because it is
most likely to be inadvertently modified by other statements.

The next table shows a complete list of the pseudovariables you
can use, their types, the registers they correspond to, and what
those registers are usually used for.

Pseudo-
variable Type Register Purpose

_AX unsigned int AX General/ accumulator
_AL unsigned char AL Lower byte of AX
_AH unsigned char AH Upper byte of AX

_BX unsigned int BX General/ indexing
BL unsigned char BL Lower byte of BX

=BH unsigned char BH Upper byte of BX

_ex unsigned int ex General/ counting and loops
_CL unsigned char CL Lower byte of CX
_CH unsigned char CH Upper byte of ex
_DX unsigned int DX General/holding data
DL unsigned char DL Lower byte of DX

=DH unsigned char DH Upper byte of DX

cs unsigned int cs Code segment address
=DS unsigned int DS Data segment address
_SS unsigned int SS Stack segment address
_ES unsigned int ES Extra segment address

_SP unsigned int SP Stack pointer (offset to SS)
BP unsigned int BP Base pointer (offset to SS)

-DI unsigned int DI Used for register variables
-SI unsigned int SI Used for register variables
=FLAGS unsigned int flag Processor status

The pseudovariables can be treated just as if they were regular
global variables of the appropriate type (unsigned Int, unsigned
char). However, since they refer to the CPU's registers, rather than
some arbitrary location in memory, there are some restrictions
and concerns you must be aware of.

Turbo C++ Programmer's Gulde

lnline assembly
language

•You cannot use the address-of operator(&) with a pseudovari­
able, since a pseudovariable has no address.

•Since the compiler is constantly generating code that uses the
registers (after all, that's what most of the 8086's instructions
do), you have absolutely no guarantee that values you place in
pseudovariables will be preserved for any length of time.
This means you must assign values right before using them and
read values right after obtaining them, as in readchar (previous
example). This is especially true of the general-purpose regis­
ters (AX, AH, AL, and so on), since the compiler freely uses
these for temporary storage. On top of that, the CPU changes
them in ways you might not expect; for example, using CX
when it sets up a loop or does a shift operation, or using DX to
hold the upper word of a 16-bit multiply.

•You can't rely on values of pseudovariables remaining the same
across a function call. As an example of this, take the following
code fragment:

_ex= 1s;
myFunc();
i =_ex;

Not all registers are saved during a function call, so you have
no guarantee that i will get assigned a value of 18. The only
registers that you can count on having the same values before
and after a function call are _DS, _BP, _SI, and _DI.

•You need to be very careful modifying certain registers, since
this could have unexpected and untoward effects. For example,
directly storing values to _CS, _DS, _SS, _SP, or _BP can (and
almost certainly will) cause your program to behave erratically,
since the machine code produced by the Turbo C++ compiler
uses those registers in various ways.

You've seen how to write separate assembly language routines
and link them into your Turbo C++ program. Turbo C++ also lets
you write assembly language code right inside your C program.
This is known as inline assembly.

Chapter 6, Interfacing with assembly language 267

By default, -B invokes TASM.
You can override it with

-Exxx, where xxx Is another
assembler. See Chapter 4,

"The command-fine
compiler.· in the Users Guide

for details.

268

To use inline assembly in your C program, you can use the -B
compiler option. If you don't, and the compiler encounters inline
assembly, it issues a warning and restarts itself with the -B op­
tion. You can avoid this with the #pragma inline statement in your
source, which in effect enables the -B option for you when the
compiler encounters it.

You must have a copy of Turbo Assembler (TASM). The compiler
first generates an assembly file, then invokes T ASM on that file to
produce the .OBJ file.

Of course, you also need to be familiar with the 8086 instruction
set and architecture. While you're not writing complete assembly
language routines, you still need to know how the instructions
you're using work, how to use them, and how not to use them.

Having done all that, you need only use the keyword asm to in­
troduce an inline assembly language instruction. The format is

asm opcode operands ; or newline

where

•opcode is a valid 8086 instruction (Table 6.4 lists all allowable
opcodes).

•operands contains the operand(s) acceptable to the opcode, and
can reference C constants, variables, and labels.

•;or newline is a semicolon or a new line, either of which signals
the end of the asm statement.

A new asm statement can be placed on the same line, following a
semicolon, but no asm statement can continue to the next line.

If you want to include a number of asm statements, surround
them with braces:

asm {
pop ax; pop ds
iret

Semicolons are not used to start comments (as they are in T ASM).
When commenting asm statements, use C-style comments, like
this:

asm mov ax,ds;
asm !pop ax; pop ds; iret;)
asm push ds

/* This comment is OK */
/* This is legal too */
;THIS COMMENT IS INVALID!!

Turbo C++ Programmer's Gulde

The assembly language portion of the statement is copied straight
to the output, embedded in the assembly language that Turbo
C++ is generating from your C instructions. Any C symbols are
replaced with appropriate assembly language equivalents.

The inline assembly facility is not a complete assembler, so many
errors will not be immediately detected. TASM will catch what­
ever errors there might be. However, T ASM might not identify
the location of errors, particularly since the original C source line
number is lost.

Each asm statement counts as a C statement. For example,

myfunc ()
{

int i;
int x;

if (i > 0)

asm mov x, 4
else

i = 7;

This construct is a valid C if statement. Note that no semicolon
was needed after the mov x, 4 instruction. asm statements are the
only statements in C that depend on the occurrence of a new line.
This is not in keeping with the rest of the C language, but this is
the convention adopted by several UNIX-based compilers.

An assembly statement can be used as an executable statement in­
side a function, or as an external declaration outside of a function.
Assembly statements located outside any function are placed in
the DATA segment, and assembly statements located inside func­
tions are placed in the CODE segment.

Here is an inline assembly version of the function min (introduced
in "Handling return values" on page 257).

Chapter 6, Interfacing with assembly language 269

i ,:

11

11
11
I·
i

int min (int Vl, int V2)
(

asm (
mov ax,Vl
cmp ax,V2
jle minexit
mov ax,V2

minexit:
return (_AX);

Notice how similar this code is to the code on page 260, which
takes advantage of Turbo Assembler 2.0's language-specific
extensions.

You can include any of the 8086 instruction opcodes as inline as­
sembly statements. There are four classes of instructions allowed
by the Turbo C++ compiler:

• normal instructions-the regular 8086 opcode set

•string instructions-special string-handling codes

•jump instructions-various jump opcodes
•assembly directives-data allocation and definition

Note that all operands are allowed by the compiler, even if they
are erroneous or disallowed by the assembler. The exact format of
the o~erands is not enforced by the compiler.

Opcodes The following is a summary list of the opcode mnemonics that
can be used in inline assembler:

270 Turbo C++ Programmer's Gulde

Table 6.4
Opcode mnemonics

If you are using inline
assembly in routines that use
floating-point emulation (the
TCC option -f), the opcodes

marked with •• are not
supported.

aaa fdivrp fpatan lsl
aad feni fprem mov
aam ffree** fptan mul
aas fiadd frndint neg
adc ficom frstor nop
add ficomp fsave. not
and fidiv fscale or
bound fidivr fsqrt out
call fild fst pop
cbw fimul fstcw pop a
ck fincstp** fstenv po pf
cld fin it fstp push
di fist fstsw pus ha
cmc fistp fsub pus hf
cmp fisub fsubp rel
cwd fisubr fsubr rcr
daa fld fsubrp ret
das fldl ftst rol
dee fldcw fwait ror
div fldenv fxam sahf
enter fldl2e fxch sal
f2xml fldl2t fxtract sar
fabs fldlg2 fyl2x sbb
fadd fldln2 fyl2xpl shl
faddp fldpi hlt shr
fbld fl dz id iv smsw
fbstp fmul imul stc
fchs fmulp in std
fclex fnclex inc sti
fcom fndisi int sub
fcomp fneni into test
fcompp fninit iret verr
fdecstp** fnop la hf verw
fdisi fnsave Ids wait
fdiv fnstcw lea xchg
fdivp fnstenv leave xlat
fdivr fnstsw les xor

When using 80186 instruction mnemonics in your inline assembly
statements, you must include the -1 command-line option. This
forces appropriate statements into the assembly language com­
piler output so that Turbo Assembler will expect the mnemonics.
If you are using an older assembler, these mnemonics may not be
supported.

String instructions

In addition to the listed opcodes, string instructions given in the
following table may be used alone or with repeat prefixes.

Chapter 6, Interfacing with assembly language 271

Table 6.5
string Instructions

Table 6.6
Jump instructions

lnline assembly
references to data and

functions

272

crops insw movsb outsw stos
cmpsb lods movsw seas stosb
cmpsw lodsb outs scasb stosw
ins lodsw outsb scasw
insb mo vs

Prefixes

The following prefixes may be used:

lock rep repe repne repnz repz

Jump instructions

Jump instructions are treated specially. Since a label cannot be in­
cluded on the instruction itself, jumps must go to C labels (dis­
cussed in ''Using jump instructions and labels" on page 274). The
allowed jump instructions are given in the next table.

ja jge jnc jnp js
jae jl jne jns jz
jb jle jng jnz loop
jbe jmp jnge jo loope
jc jna jnl jp loopne
jcxz jnae jnle jpe loopnz
je jnb jno jpo loopz
jg jnbe

Assembly directives

The following assembly directives are allowed in Turbo C++
inline assembly statements:

db dd dw extrn

You can use C symbols in your asm statements; Turbo C++ auto­
matically converts them to appropriate assembly language
operands and tacks underscores onto identifier names. You can
use any symbol, including automatic (local) variables, register
variables, and function parameters.

In general, you can use a C symbol in any position where an ad­
dress operand would be legal. Of course, you can use a register
variable wherever a register would be a legal operand.

Turbo C++ Programmer's Guide

Using C structure
members

If the assembler encounters an identifier while parsing the oper­
ands of an inline assembly instruction, it searches for the identi­
fier in the C symbol table. The names of the 8086 registers are
excluded from this search. Either uppercase or lowercase forms of
the register names may be used.

lnline assembly and register variables

Inline assembly code can freely use SI or DI as scratch registers. If
you use SI or DI in inline assembly code, the compiler won't use
these registers for register variables.

lnline assembly, offsets, and size overrides

When programming, you don't need to be concerned with the
exact offsets of local variables. Simply using the name will include
the correct offsets.

However, it may be necessary to include appropriate WORD PTR,
BYTE PTR, or other size overrides on assembly instruction. A
DWORD PTR override is needed on LES or indirect far call
instructions.

You can reference structure members in an inline assembly state­
ment in the usual fashion (that is, variable.member). In such a case,
you are dealing with a variable, and you can store or retrieve val­
ues. However, you can also directly reference the member name
(without the variable name) as a form of numeric constant. In this
situation, the constant equals the offset (in bytes) from the start of
the structure containing that member. Consider the following
program fragment:

struct myStruct
int a _a;
int a_b;

int a_ c;
l myA ;

myfunc (}
{

asm {mov ax, myA.a_b
mov bx, [di] .a_b

Chapter 6. Interfacing with assembly language 273

Using jump instructions
and labels

274

We've declared a structure type named myStruct with three mem­
bers, a_a, a_b, and a_c; we've also declared a variable myA of type
myStruct. The first inline assembly statement moves the value
contained in myA.a_b into the register AX. The second moves the
value at the address [di]+ offset(a_c) into the register BX (it takes
the address stored in DI and adds to it the offset of a_c from the
start of myStruct). In this sequence, these assembler statements
produce the following code:

mov ax, DGROUP : myA+2
mov bx, [di+4]

Why would you even want to do this? If you load a register (such
as DI) with the address of a structure of type myStruct, you can
use the member names to directly reference the members. The
member name actually may be used in any position where a nu­
meric constant is allowed in an assembly statement operand.

The structure member must be preceded by a dot (.) to signal that
a member name, rather than a normal C symbol, is being used.
Member names are replaced in the assembly output by the nu­
meric offset of the structure member (the numeric offset of a_c is
4), but no type information is retained. Thus members may be
used as compile-time constants in assembly statements.

However, there is one restriction. If two structures that you are
using in inline assembly have the same member name, you must
distinguish between them. Insert the structure type (in parenthe­
ses) between the dot and the member name, as if it were a cast.
For example,

asm mov bx, [di]. (struct tm) tm _hour

You can use any of the conditional and unconditional jump in­
structions, plus the loop instructions, in inline assembly. They are
only valid inside a function. Since no labels can be defined in the
asm statements, jump instructions must use C goto labels as the
object of the jump. Direct far jumps cannot be generated.

In the following code, the jump goes to the C goto label a.

int x ()

a: /* This is the goto label "a" *I

Turbo C++ Programmer's Guide

Interrupt functions

asm jmp a /* Goes to label "a" */

Indirect jumps are also allowed. To use an indirect jump, you can
use a register name as the operand of the jump instruction.

The 8086 reserves the first 1024 bytes of memory for a set of 256
far pointers-known as interrupt vectors-to special system rou­
tines known as interrupt handlers. These routines are called by exe­
cuting the 8086 instruction

int int#

where int# goes from Oh to FFh. When this happens, the computer
saves the code segment (CS), instruction pointer (IP), and status
flags, disables the interrupts, then does a far jump to the location
pointed to by the corresponding interrupt vector. For example,
one interrupt call you're likely to see is

int 21h

which calls most DOS routines. But many of the interrupt vectors
are unused, which means, of course, that you can write your own
interrupt handler and put a far pointer to it into one of the unused
interrupt vectors.

To write an interrupt handler in Turbo C++, you must define the
function to be of type interrupt; more specifically, it should look
like this:

void interrupt myhandler{bp, di, si, ds, es, dx,
ex, bx, ax, ip, cs, flags, •••) ;

As you can see, all the registers are passed as parameters, so you
can use and modify them in your code without using the pseudo­
variables discussed earlier in this chapter. You can also pass addi­
tional parameters (flags, ...) to the handler; those should be
defined appropriately.

A function of type Interrupt will automatically save (in addition to
SI, DI, and BP) the registers AX through DX, ES, and DS. These
same registers are restored on exit from the interrupt handler.

Interrupt handlers may use floating-point arithmetic in all mem­
ory models. Any interrupt handler code that uses an 80x87 must

Chapter 6, Interfacing with assembly language 275

276

Using low-level
practices

save the state of the chip on entry and restore it on exit from the
handler.

An interrupt function can modify its parameters. Changing the
declared parameters will modify the corresponding register when
the interrupt handler returns. This may be useful when you are
using an interrupt handler to act as a user service, much like the
DOS INT 21 services. Also, note that an interrupt function exits
with an IRET (return from interrupt) instruction.

So, why would you want to write your own interrupt handler?
For one thing, that's how most memory-resident routines work.
They install themselves as interrupt handlers. That way, when­
ever some special or periodic action takes place (clock tick, key­
board press, and so on), these routines can intercept the call to the
routine handling the interrupt and see what action needs to take
place. Having done that, they can then pass control on to the
routine that was there.

You've already seen a few examples of how to use these different
low-level practices in your code; now it's time to look at a few
more. Let's start with an interrupt handler that does something
harmless but tangible (or, in this case, audible): It beeps whenever
it's called.

First, write the function itself. Here's what it might look like:

Jlinclude <dos.h>

void interrupt mybeep(unsigned bp, unsigned di, unsigned si,
unsigned ds, unsigned es, unsigned dx,
unsigned ex, unsigned bx, unsigned ax)

int i, j;
char originalbits, bits;
unsigned char bcount = ax >> 8;

/* Get the current control port setting */
bits= originalbits = inportb(Ox61);

for (i = O; i <= bcount; it+) {

/* Turn off the speaker for awhile */
outportb(Ox61, bits & Oxfc);
for (j = O; j <= 100; j++l

/* empty statement */

/* Now turn it on for some more time */

Turbo C++ Programmer's Gulde

outportb(Ox61, bits I 2);
for (j = O; j <= 100; j++)

/* another empty statement */

/* Restore the control port setting */
outportb(Ox61, originalbits);

Next, write a function to install your interrupt handler. Pass it the
address of the function and its interrupt number (0 to 255 or OxOO
to O:xFF).

void install (void interrupt (* faddr) () , int in um)
{

setvect(inum, faddr);

Finally, call your beep routine to test it out. Here's a function to do
just that:

void testbeep(unsigned char bcount, int inum)
{

_AH = bcount;
geninterrupt(inum);

Your main function might look like this:

main()
(

char ch;

install(mybeep,10);
testbeep(3,10);
ch = getch () ;

You might also want to preserve the original interrupt vector and
restore it when your main program is finished. Use the getvect
and setvect functions to do this.

Chapter 6, Interfacing with assembly language 277

278 Turbo C++ Programmer's Guide

c H

Chapter 7, Error messages

A p T E R

7

Error messages
Turbo C++ has two categories of errors: run time and compile
time. Run-time error messages immediately follow. Compile-time
error messages fall into three classes: fatal errors, nonfatal errors,
and warnings. These are explained and discussed in more detail
starting on page 283.

The following generic names and values are some of those that
appear in the error messages listed in this chapter (most are self­
explanatory). When you get an error message, the appropriate
name or value is substituted.

What you'll see
in the manual

argument
class
field
filename
group
identifier
language
member
message
module
number
option
parameter

What you'll see
on your screen

A command-line or other argument
A class name
A field reference
A file name (with or without extension)
A group name
An identifier (variable name or other)
The name of a programming language
The name of a data member or member function
A message string
A module name
An actual number
A command-line or other option
A parameter name

279

What you'll see
in the manual

segment
specifier
symbol
:XXXXh

What you'll see
on your screen

A segment name
A type specifier
A symbol name
A 4-digit hexadecimal number, followed by h

The error messages are listed in ASCII alphabetic order; messages
beginning with symbols (equal signs, commas, braces, and so on)
normally come first. Since messages that begin with one of the
variables just listed cannot be alphabetized by what you will
actually see when you receive such a message, all such messages
have been placed at the beginning of each error message list.

For example, if you have a C ++ function goforlt, you might
receive the following actual message:

goforit must be declared with no arguments

In order to look this error message up, you would need to find

function must be declared with no arguments

near the beginning of the list of error messages.

If the variable occurs later in the text of the error message (for ex­
ample, "Incorrect command-line argument: argument"), you can
find the message in correct alphabetical order; in this case, under
I.

Run-time error messages

Turbo C++ has a small number of run-time error messages. These
errors occur after the program has successfully compiled and
while it is running. These errors are listed alphabetically and
explained in this section.

These effors can happen Abnormal program termination
through memory overwrites. This message can be generated if there is not enough memory

to execute the program within. This message is covered in
more detail at the end of the floating-point errors section.
Calling abort activates the message.

280

Divide byO
This message is generated by an integer divide by zero, such
as

Turbo C++ Programmer's Guide

Chapter 7, Effor messages

int n = O;
n = 2 I n;

It can be trapped with the signal function. Otherwise, abort is
called and your program terminates.

Floating point error: Divide by 0.
Floating point error: Domain.
Floating point error: Overflow.

These fatal errors result from a floating-point operation for
which the result is not finite.

• "Divide by O" means the result is +INF or -INF exactly, such
as 1.0/0.0.

• "Domain" means the result is NAN (not a number), like
0.0 /0.0.

• "Overflow" means the result is +INF (infinity) or -INF with
complete loss of precision, such as assigning le200*1e200 to
a double.

Floating point error: Partial loss of precision.
Floating point error: Underflow.

These exceptions are masked by default, and the error mes­
sages do not occur. Underflows are converted to zero and
losses of precision are ignored. They can be unmasked by
calling _control87.

Floating point error: Stack fault.
This message indicates that the floating-point stack has been
overrun. This error does not normally occur and may be due
to assembly code using too many registers or due to a rnisdec­
laration of a floating-point function.

These floating-point errors can be avoided by masking the
exception so that it doesn't occur, or by catching the exception
with signal. See the functions _control87 and signal (in the
Library Reference) for details.

In each of the above cases, the program prints the error
message and then calls abort, which prints

Abnormal program termination

and calls_ exit (3). See abort and _exit for more details.

Null pointer assignment
When a small or medium memory model program exits, a
check is made to determine if the contents of the first few bytes

281

282

within the program's data segment have changed. These bytes
would never be altered by a working program. If they have
been changed, the message ''Null pointer assignment" is
displayed to inform you that (most likely) a value was stored
to an uninitialized pointer. The program may appear to work
properly in all other respects; however, this is a serious bug
which should be attended to immediately. Failure to correct an
uninitialized pointer can lead to unpredictable behavior
(including "locking" the computer up in the large, compact,
and huge memory models). You can use the integrated
debugger to track down null pointers.

Stack overflow
The default stack size for Turbo C++ programs is 4,096 bytes.
This should be enough for most programs, but those which
execute recursive functions or store a great deal of local data
can overflow the stack. You will only get this message if you
have stack checking enabled. If you do get this message, you
can try switching to a larger memory model, increasing the
stack size, or decreasing your program's dependence on the
stack. See Chapter 2, "Global variables," in the Library
Reference for information on changing the stack size by altering
the global variable _stklen. To decrease the amount of local
data used by a function, look at the example below. The
variable buffer has been declared static and does not consume
stack space like list does.

void anyfunction(void)
(

static int buffer[2000]; /*resides in the data segment*/
int list[2000]; /*resides on the stack*/
)

There are two disadvantages to declaring local variables as
static.

1. It now takes permanent space away from global variables
and the heap. (You have to rob Peter to pay Paul.) This is
usually only a minor disadvantage.

2. The function may no longer be reentrant. What this means
is that if the function is called recursively or
asynchronously and it is important that each call to the
function have its own unique copy of the variable, you
cannot make it static. This is because every time the
function is called, it will use the same exact memory space

Turbo C++ Programmer's Gulde

for the variable, rather than allocating new space for it on
each call. You could have a sharing problem if the function
is trying to execute from within itself (recursively) or at the
same time as itself (asynchronously). For most DOS
programs this is not a problem. If you aren't writing
recursive functions or trying to multitask, don't worry. If
you are, the preceding explanation will make sense to you.

Compiler error messages

Chapter 7, Error messages

The Turbo C++ compiler diagnostic messages fall into three
classes: fatal errors, errors, and warnings.

Fatal errors are rare. Some of them indicate an internal compiler
error. When a fatal error occurs, compilation stops immediately.
You must take appropriate action and then restart compilation.

Errors indicate program syntax errors, disk or memory access
errors, and command line errors. The compiler will complete the
current phase of the compilation and then stop. The compiler
attempts to find as many real errors in the source program as
possible during each phase (preprocessing, parsing, optimizing
and code-generating).

Warnings do not prevent the compilation from finishing. They
indicate conditions which are suspicious, but which are legitimate
as part of the language. The compiler also produces warnings if
you use machine-dependent constructs in your source files.

The compiler prints messages with the message class first, then
the source file name and line number where the compiler detected
the condition, and finally the text of the message itself.

In the following lists, messages are presented alphabetically
within message class. With each message, a probable cause and
remedy are provided.

You should be aware of one detail about line numbers in error
messages: the compiler only generates messages as they are
detected. Because C does not force any restrictions on placing
statements on a line of text, the true cause of the error may be one
or more lines before the line number mentioned. In the following
message list, we have indicated those messages which often
appear (to the compiler) to be on lines after the real cause.

283

Fatal errors

Errors

284

Bad call of inline function
You have used an inline function taken from a macro defini­
tion, but have called it incorrectly. An inline function in C is
one that begins and ends with a double underscore (__).

Irreducible expression tree
This is a sign of some form of compiler error. Some expression
on the indicated line of the source file has caused the code gen­
erator to be unable to generate code. Whatever the offending
expression is, it should be avoided. Notify Borland if the com­
piler ever encounters this error.

Out of memory
The total working storage is exhausted. Compile the file on a
machine with more memory. If you already have 640K, you
may have to simplify the source file.

Register allocation failure
This is a sign of some form of compiler error. Some expression
on the indicated line of the source file was so complicated that
the code generator could not generate code for it. Simplify the
offending expression. If this fails to solve the problem, avoid
the expression. Notify Borland if the compiler encounters this
error.

constructorcannot return a value
AC++ constructor can't have an expression in a return
statement.

constructor is not a base class of class
AC++ class constructor class is trying to call a base class
constructor constructor, or you are trying to change the access
rights of class::constructor. constructor is not a base class of class.
Check your declarations.

function1 cannot be distinguished from function2
The parameter type lists in the declarations of these two
functions do not differ enough to tell them apart. Try changing
the order of parameters or the type of a parameter in one
declaration.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

function is ambiguous
In this call of function function, more than one overloaded
function matches the list of arguments (using default argument
conversions). Use an explicit cast with one or more of the
arguments to resolve the ambiguity.

function must be declared with no arguments
This C++ operator function was incorrectly declared with
arguments.

function must be declared with one argument
This C++ operator function was incorrectly declared with more
than one argument.

function must be declared with two arguments
This C++ operator function was incorrectly declared with other
than two arguments.

function was previously declared without static
This function has been declared static here, but was declared
extern (or global) earlier. ANSI C does not allow the mixing of
these declarations.

function was previously declared with the language language
Only one language modifier (cdecl, pascal, or interrupt) can be
given for a function. This function has been declared with
different language modifiers in two locations.

identifier cannot be declared in an anonymous union
The compiler found a declaration for a member function or
static member in an anonymous union. Such unions can only
contain data members.

identifier cannot be used in a static member function
A static member function can only use a static member of its
class, though it has full access rights. This error is the result of
trying to use a member which requires a this pointer.

identifier is inaccessible because also in class
It is not legal to use a class as both a direct and indirect base
class, since the fields are automatically ambiguous. Try making
the base class virtual in both locations.

identifier is not a data member and can't be initialized here
Only data members can be initialized in the initializers of a
constructor. This message means that the list includes a static
member or function member.

285

286

identifier is not a member of struct
You are trying to reference identifier as a member of struct, but
it is not a member. Check your declarations.

identifier is not a parameter
In the parameter declaration section of an old-style function
definition, identifier is declared but is not listed as a parameter.
Either remove the declaration or add identifier as a parameter.

Identifier is not legal here
Type specifier identifier is not legal because it conflicts with or
duplicates another type specifier in this declaration, or because
identifier is being used as a typedef name when it is not a
typedef name in this scope.

identifier is virtual and cannot be explicitly initialized
AC++ class constructor is trying to call a base class constructor
identifier, but identifier is a virtual base class. Virtual base classes
cannot be explicitly initialized. The compiler implicitly calls the
base class default constructor base: :base () for you.

identifier must be a member function
Most C++ operator functions may be members of classes or
ordinary nonmember functions, but certain ones are required
to be members of classes. These are operator =,operator ->,
operator (), and type conversions. This operator function is not
a member function but should be.

identifier must be a member function or have an argument of
class type

Most C++ operator functions must have an implicit or explicit
argument of class type. This operator function was declared
outside a class and does not have an explicit argument of class
type.

identifier must be a previously defined class or struct
You are attempting to declare identifier to be a base class, but
either it is not a class or it has not yet been fully defined. Cor­
rect the name or rearrange the declarations.

identifier must be a previously defined enumeration tag
This declaration is attempting to reference identifier as the tag of
an enum type, but it has not been so declared. Correct the
name, or rearrange the declarations.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

identifier must be a previously defined structure tag
This declaration is attempting to reference identifier as the tag of
a struct type, but it has not been so declared. Correct the name,
or rearrange the declarations.

identifier specifies multiple or duplicate access
A base class may be declared public or private, but not both.
This access specifier may appear no more than once for a base
class.

member is not accessible
You are trying to reference C++ class member member, but it is
private or protected and cannot be referenced from this func­
tion. This sometimes happens when attempting to call one
accessible overloaded member function (or constructor), but
the arguments match an inaccessible function. The check for
overload resolution is always made before checking for
accessibility. If this is the problem, try an explicit cast of one or
more parameters to select the desired accessible function.

specifier has already been included
This type specifier occurs more than once in this declaration.
Delete or change one of the occurrences.

=expected
An assignment operator was expected for initializing a
variable.

, expected
A comma was expected in a list of declarations, initializations,
or parameters.

{expected
A left brace was expected at the start of a block or initialization.

(expected
A left parenthesis was expected before a parameter list.

} expected
A right brace was expected at the end of a block or
initialization.

) expected
A right parenthesis was expected at the end of a parameter list.

: expected after private/protected/public
When used to begin a private/protected/public section of a
C++ class, these reserved words must be followed by a colon.

287

288

:: requires a preceding Identifier In this context
AC++ double colon was encountered in a declaration without
a preceding qualifying class name. The unqualified double
colon can be used only in expressions to indicate global scope,
not in declarations .

. * operands do not match
You have not declared the right side of a C++ dot-star(.*)
operator as a pointer to a member of the class specified by the
left side of the operator.

#operator not followed by macro argument name
In a macro definition, the# may be used to indicate turning a
macro argument into a string. The# must be followed by a
macro argument name.

Access can only be changed to public or protected
AC++ derived class may modify the access rights of a base
class member, but only to public or protected. A base class
member cannot be made private.

Access declarations cannot grant or reduce access
AC++ derived class can modify the access rights of a base class
member, but only by restoring it to the rights in the base class.
It cannot add or reduce access rights.

Access specifier specifierfound in a union
The C++ access specifiers (public, private, or protected) cannot
be used in unions.

Ambiguity between function1 and function2
Both of the named overloaded functions could be used with the
supplied parameters. This ambiguity is not allowed.

Ambiguous conversion functions: type1 and type2
The compiler found more than one way to convert the
provided type to the desired type. This ambiguity is not
allowed.

Array bounds missing)
Your source file declared an array in which the array bounds
were not terminated by a right bracket.

Array must have at least one element
ANSI C and C++ require that an array be defined to have at
least one element (objects of zero size are not allowed). An old
programming trick declares an array element of a structure to
have zero size, then allocates the space actually needed with

Turbo C++ Programmer's Guide

Chapter 7, Error messages

malloc. You can still use this trick, but you must declare the
array element to have (at least) one element. Declarations (as
opposed to definitions) of arrays of unknown size are still
allowed, of course.

For example,

char ray[];
char ray[O];
extern char ray[];

/* definition of unknown size -- illegal */
/* definition of 0 size -- illegal */
/* declaration of unknown size -- ok */

Array of references is not allowed
It is illegal to have an array of references, since pointers to
references are not allowed and array names are coerced into
pointers.

Array size too large
The declared array is larger than 64K.

Assembler statement too long
Inline assembly statements may not be longer than 480 bytes.

Attempting to return a reference to local name Identifier
This C ++ function returns a reference type, and you are trying
to return a reference to a local (auto) variable. This is illegal,
since the variable referred to disappears when the function
exits. You may return a reference to any static or global
variable, or you may change the function to return a value
instead.

Bad file name format in include directive
Include file names must be surrounded by quotes ("filename.h")
or angle brackets (<filename.h>). The file name was missing the
opening quote or angle bracket. If a macro was used, the result­
ing expansion text is incorrect; that is, not surrounded by quote
marks.

Bad ifdef directive syntax
An #ifdef directive must contain a single identifier (and no­
thing else) as the body of the directive.

Bad ifndef directive syntax
An #ifndef directive must contain a single identifier (and no­
thing else) as the body of the directive.

Bad return type for a type conversion operator
This C++ type conversion member function specifies a return
type different from the type itself. A declaration for conversion
function operator T may not specify any return type.

289

290

Bad syntax for pure function definition
Pure virtual functions are specified by appending"= O" to the
declaration. You wrote something similar, but not quite the
same.

Bad undef directive syntax
An #undef directive must contain a single identifier (and
nothing else) as the body of the directive.

Base class class is Included more than once
AC++ class may be derived from any number of base classes,
but may be directly derived from a given class only once.

Base class class is initialized more than once
In a C++ class constructor, the list of initializations following
the constructor header includes base class class more than once.

Base class cannot be declared protected
AC++ base class may be public or private, but not protected.

Bit field cannot be static
Only ordinary C++ class data members can be declared static,
not bit fields.

Bit fields must be signed or unsigned int
A bit field must be declared to be a signed or unsigned integral
type. In ANSI C, bit fields may only be signed or unsigned Int
(not char or long, for example).

Bit fields must contain at least one bit
You cannot declare a named bit field to have 0 (or less than 0)
bits. You can declare an unnamed bit field to have 0 bits, a
convention used to force alignment of the following bit field to
a byte boundary (or word boundary, if the -a alignment option
is selected).

Bit field too large
This error occurs when you supply a bit field with more than
16 bits.

Body already defined for this function
A function with this name and type was previously supplied a
function body. A function body can only be supplied once.

Call of non-function
The name being called is not declared as a function. This is
commonly caused by incorrectly declaring the function or mis­
spelling the function name.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

Cannot assign identifier1 to identifier2
Both sides of an assignment (=) operator (or compound
assignment operator such as+=) must be compatible and must
not be arrays. The right side of this assignment has type
identifier1, and cannot be assigned to the object on the left,
which is type identifier2.

Cannot call 'main' from within the program
C++ does not allow recursive calls of main.

Cannot cast from identifier1 to identifier2
A cast from type identifier1 to type identifier2 is not allowed. In
C, a pointer may be cast to an integral type or to another
pointer. An integral type may be cast to any integral, floating,
or pointer type. A floating type may be cast to an integral or
floating type. Structures and arrays may not be cast to or from.
You usually cannot cast from a void type.

In C++, user-defined conversions and constructors are checked
for, and if one cannot be found, then the preceding rules apply
(except for pointers to class members). Among integral types,
only a constant zero may be cast to a member pointer. A mem­
ber pointer may be cast to an integral type or to a similar
member pointer. A similar member pointer points to a data
member if the original does, or to a function member if the
original does; the qualifying class of the type being cast to must
be the same as or a base class of the original.

Cannot create a variable for abstract class class
Abstract classes-those with pure virtual functions-cannot be
used directly, only derived from.

Cannot define a pointer or reference to a reference
It is illegal to have a pointer to a reference or a reference to a
reference.

Cannot find class::class (class&) to copy a vector
When a C++ class class1 contains a vector (array) of class class2,
and you want to construct an object of type class1 from another
object of type class1, there must be a constructor
class2::class2(class2&) so that the elements of the vector can
be constructed. This constructor takes just one parameter
(which is a reference to its class) and is called a reference
constructor.

Usually the compiler supplies a reference constructor automati­
cally. However, if you have defined a constructor for class

291

292

class2 that has a parameter of type class2& and has additional
parameters with default values, the reference constructor
cannot exist and cannot be created by the compiler. (This is
because class2: : class2 (class2&) and class2: : class2 (class2&,
int = 1) cannot be distinguished.) You must redefine this
constructor so that not all parameters have default values. You
can then define a reference constructor or let the compiler
create one.

Cannot find ldent/fier.:ldentlfier() to Initialize a vector
When a C++ class class1 contains a vector (array) of class class2,
and you want to construct an object of type class1 but not from
another object of type class1, there must be a constructor
class2::class2() so that the elements of the vector can be
constructed. This constructor without parameters is called the
default constructor. The compiler will supply a default
constructor automatically unless you have defined any
constructor for class class2; in that case, the compiler will not
supply the default constructor automatically-you must
supply one.

Cannot find c/ass::c/ass() to Initialize base class
Whenever a C++ derived class class2 is constructed, each base
class class1 must first be constructed. If the constructor for
class2 does not specify a constructor for class1 (as part of class2's
header), there must be a constructor class1: :class1 O for the
base class. This constructor without parameters is called the
default constructor. The compiler will supply a default
constructor automatically unless you have defined any
constructor for class class1; in that case, the compiler will not
supply the default constructor automatically-you must
supply one.

Cannot find c/ass::class() to initialize field identifier
When a C++ class class1 contains a member of class class2, and
you wish to construct an object of type class1 but not from
another object of type class1, there must be a constructor
class2::class2() so that the member can be constructed. This
constructor without parameters is called the default
constructor. The compiler will supply a default constructor
automatically unless you have defined any constructor for class
class2; in that case, the compiler will not supply the default
constructor automatically-you must supply one.

Turbo C++ Programmer's Gulde

Chapter 7, Error messages

Cannot find c/ass::operator=(c/ass&) to copy a vector
When a C++ class class1 contains a vector (array) of class class2,
and you wish to copy a class of type class1, there must be an
assignment operator class2::operator:{class2&) so that the
elements of the vector can be copied. Usually the compiler
supplies such an operator automatically. However, if you have
defined an operator= for class class2, but not one that takes a
parameter of type class2&, the compiler will not supply it
automatically-you must supply one.

Cannot have a near member in a far class
All members of a C++ far class must be far. This member is a
class that was declared (or defaults to) near.

Cannot initialize a field
Individual fields of structs, unions, and C++ classes may not
have initializers. A struct or union may be initialized as a
whole using initializers inside braces. AC++ class may only be
initialized by the use of a constructor.

Cannot initialize type1 with type2
You are attempting to initialize an object of type type1 with a
value of type type2, which is not allowed. The rules for
initialization are essentially the same as for assignment.

Cannot modify a const object
This indicates an illegal operation on an object declared to be
const, such as an assignment to the object.

Cannot overload 'main'
main is the only function which cannot be overloaded.

Cannot specify base classes except when defining the class
When specifying a C++ class, the base classes from which this
class is derived may be specified only at the point of the class
definition. When you only declare the class tag, as in class c;,
you cannot specify the base classes.

Case outside of switch
The compiler encountered a case statement outside a switch
statement. This is often caused by mismatched braces.

Case statement missing :
A case statement must have a constant expression followed by
a colon. The expression in the case statement either was
missing a colon or had an extra symbol before the colon.

293

294

Character constant too long
Character constants may only be one or two characters long.

Class class has a constructor and cannot be hidden
C has separate name spaces for structure tags and ordinary
names, and C++ usually allows the same sort of confusion. It
draws the line at classes with constructors, since constructor
declarations look like function declarations, and the confusion
could become terminal.

Classes cannot be initialized with {}
Ordinary C structures can be initialized with a set of values
inside braces. C++ classes can only be initialized with construc­
tors if the class has constructors, private members, functions or
base classes which are virtual.

Class member member declared outside its class
C++ class member functions can be declared only inside the
class declaration. Unlike nonmember functions, they cannot be
declared multiple times or at other locations.

Compound statement missing }
The compiler reached the end of the source file and found no
closing brace. This is most commonly caused by mismatched
braces.

Conflicting type modifiers
This occurs when a declaration is given that includes, for
example, both near and far keywords on the same pointer.
Only one addressing modifier may be given for a single
pointer, and only one language modifier (cdecl, pascal, or
interrupt) may be given for a function.

Constant expression required
Arrays must be declared with constant size. This error is
commonly caused by misspelling a #define constant.

Constructor cannot have a return type specification
C++ constructors have an implicit return type used by the
compiler, but you cannot declare a return type or return a
value.

Conversion of near pointer not allowed
A near pointer cannot be converted to a far pointer in the ex­
pression evaluation box when a program is not currently
running. This is because the conversion needs the current value
of DS in the user program, which doesn't exist.

Turbo C++ Programmer's Guide

Chapter 7. Error messages

Could not find a match for argument(s)
No C++ function could be found with parameters matching the
supplied arguments.

Could not find file filename
The compiler is unable to find the file supplied on the
command line.

Declaration does not specify a tag or an identifier
This declaration doesn't declare anything. This may be a struct
or union without a tag or a variable in the declaration. C++
requires that something be declared.

Declaration is not allowed here
Declarations cannot be used as the control statement for while,
for, do, if, or switch statements.

Declaration missing ;
Your source file contained a struct or union field declaration
that was not followed by a semicolon.

Declaration syntax error
Your source file contained a declaration that was missing some
symbol or had some extra symbol added to it.

Declaration terminated incorrectly
A declaration has an extra or incorrect termination symbol,
such as a semicolon placed after a function body. A C ++ mem­
ber function declared in a class with a semicolon between the
header and the opening left brace also generates this error.

Declaration was expected
A declaration was expected here but not found. This is usually
caused by a missing delimiter such as a comma, semicolon,
right parenthesis, or right brace.

Declare operator delete (void*) or (void*, size_t)
Declare the operator delete with a single void* parameter, or
with a second parameter of type slze_t. If you use the second
version, it will be used in preference to the first version. The
global operator delete is already declared with two parameters,
so be careful if you plan to override this declaration.

Default outside of switch
The compiler encountered a default statement outside a switch
statement. This is most commonly caused by mismatched
braces.

295

296

Default value missing
When a C++ function declares a parameter with a default
value, all of the following parameters must also have default
values. In this declaration, a parameter with a default value
was followed by a parameter without a default value.

Define directive needs an identifier
The first non-whitespace character after a #define must be an
identifier. The compiler found some other character.

Destructor cannot have a return type specification
C++ destructors never return a value, and you cannot declare a
return type or return a value.

Destructor for class is not accessible
The destructor for this C++ class is protected or private, and
cannot be accessed here to destroy the class. If a class destruc­
tor is private, the class cannot be destroyed, and thus can never
be used. This is probably an error. A protected destructor can
be accessed only from derived classes. This is a useful way to
ensure that no instance of a base class is ever created, but only
classes derived from it.

Destructor name must match the class name
In a C++ class, the tilde(-) introduces a declaration for the
class destructor. The name of the destructor must be same as
the class name. In your source file, the - preceded some other
name.

Division by zero
Your source file contained a divide or remainder in a constant
expression with a zero divisor.

do statement must have while
Your source file contained a do statement that was missing the
closing while keyword.

do-while statement missing (
In a do statement, the compiler found no left parenthesis after
the while keyword.

do-while statement missing)
In a do statement, the compiler found no right parenthesis after
the test expression.

do-while statement missing ;
In a do statement test expression, the compiler found no semi­
colon after the right parenthesis.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

Duplicate case
Each case of a switch statement must have a unique constant
expression value.

Enum syntax error
An enum declaration did not contain a properly formed list of
identifiers.

Error directive: message
This message is issued when an #error directive is processed in
the source file. The text of this directive is displayed in this
message.

Error writing output file
A DOS error that prevents Turbo C++ from writing an .OBJ,
.EXE, or temporary file. Check the -n or Options I Directories I
Output directory and make sure that this is a valid directory.
Also check that there is enough free disk space.

Expression expected
An expression was expected here, but the current symbol can­
not begin an expression. This message may occur where the
controlling expression of an if or while clause is expected or
where a variable is being initialized. It is often due to an acci­
dentally inserted or deleted symbol in the source code.

Expression is too complicated
The compiler can handle very complex expressions, but some
expressions with hundreds of terms might prove too compli­
cated. Split the expression into two or more statements.

Expression of arithmetic type expected
The unary plus(+) and minus(-) operators require an expres­
sion of arithmetic type-only types char, short, int, long, enum,
float, double, and long double are allowed.

Expression of integral type expected
The complement(~) operator requires an expression of integral
type-only types char, short, Int, long, or enum are allowed.

Expression of scalar type expected
The not(!), increment(++), and decrement(-) operators re­
quire an expression of scalar type-only types char, short, int,
long, enum, float, double, long double, and pointer types are
allowed.

297

298

Expression syntax
This is a catchall error message when the compiler parses an
expression and encounters some serious error. This is most
commonly caused by two consecutive operators, mismatched
or missing parentheses, or a missing semicolon on the previous
statement.

Expression type does not match the return type
The type of the return expression cannot be converted to the
return type of the function.

extern variable cannot be Initialized
The storage class extern applied to a variable means that the
variable is being declared but not defined here-no storage is
being allocated for it. Therefore, you can't initialize the variable
as part of the declaration.

Extra parameter in call
A call to a function, via a pointer defined with a prototype, had
too many arguments given.

Extra parameter In call to function
A call to the named function (which was defined with a proto­
type) had too many arguments given in the call.

Field field cannot be used without an object
This means that the user has written class::field where field is an
ordinary (non-static) member, and there is no class to associate
with that field. For example, it is legal to write obj.class::field,
but not to write class::field.

Field field is ambiguous in class
You must qualify the field reference with the appropriate base
class name. In C++ class class, field field can be found in more
than one base class, and was not qualified to indicate which
was meant. This applies only in multiple inheritance, where the
field name in each base class is not hidden by the same field
name in a derived class on the same path. The C++ language
rules require that this test for ambiguity be made before
checking for access rights (private, protected, public). It is
therefore possible to get this message even though only one (or
none) of the fields can be accessed.

Field identifier expected
The name of a structure or C ++ class field was expected here,
but not found. The right side of a dot (.) or arrow (->) operator

Turbo C++ Programmer's Gulde

Chapter 7, Error messages

must be the name of a field in the structure or class on the left
of the operator.

File must contain at least one external declaration
This compilation unit was logically empty, containing no decla­
rations. ANSI C and C++ require that something be declared in
the compilation unit.

File name too long
The file name given in an #include directive was too long for
the compiler to process. File names in DOS must be no more
than 79 characters long.

For statement missing (
In a for statement, the compiler found no left parenthesis after
the for keyword.

For statement missing)
In a for statement, the compiler found no right parenthesis
after the control expressions.

For statement missing ;
In a for statement, the compiler found no semicolon after one
of the expressions.

Found : instead of ::
You used a colon instead of a double colon(::) to separate a
C++ class qualifier from its field in declarations and
expressions.

Friend declarations need a function signature
If you declare a friend function, you must provide the param­
eter types as well so the proper function can be found among
the overload cohort.

Friends must be functions or classes, not fields
A friend of a C++ class must be a function or another class; a
field cannot be a friend.

Function call missing)
The function call argument list had some sort of syntax error,
such as a missing or mismatched right parenthesis.

Function calls not supported
In integrated debugger expression evaluation, calls to functions
(including implicit conversion functions, constructors, destruc­
tors, overloaded operators, and inline functions) are not
supported.

299

300

Function defined inline after use as extern
Functions cannot become inline after they have already been
used. Either move the inline definition forward in the file or
delete it entirely.

Function definition cannot be a typedef'ed declaration
Declarations of pointers to functions are made more readable
by using typedefs. But in C++, such typedefs cannot be used to
define functions.

For example, here type F is a function with no parameters
returning an int:

typedef int F(void);

Here it's illegal to define g as such a function:

F g { /* ... */ }

And here it's OK to have gas a function returning a pointer to
typeF.

F *g (... l { /* ... *I }

Function function cannot be static
Only ordinary member functions and the operators new and
delete can be declared static. Constructors, destructors and
other operators must not be static.

Functions cannot return arrays or functions
This function was declared to return a function or array rather
than a pointer to a function or a pointer to an array element.

Function should return a value
This function was declared (maybe implicitly) to return a val­
ue. A return statement was found without a return value or the
end of the function was reached without a return statement
being found. Either return a value or change the function
declaration to return void.

Functions may not be part of a struct or union
This C struct or union field was declared to be of type function
rather than pointer to function. Functions as fields are allowed
onlyinC++.

Global anonymous union not static
In C++, a global anonymous union at the file level must be
static.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

Goto statement missing label
The goto keyword must be followed by an identifier.

Group overflowed maximum size: name
The total size of the segments in a group (for example,
DGROUP) exceeded 64K.

Identifier identlfiercannot have a type qualifier
AC++ qualifier class::identifier may not be applied here. A
qualifier is not allowed on typedef names, on function declara­
tions (except definitions at the file level), on local variables or
parameters of functions, or on a class member except to use its
own class as a qualifier (redundant but legal).

Identifier expected
An identifier was expected here, but not found. In C, this is in a
list of parameters in an old-style function header, after the re­
served words struct or union when the braces are not present,
and as the name of a field in a structure or union (except for bit
fields of width 0). In C++, an identifier is also expected in a list
of base classes from which another class is derived, following a
double colon(::) and after the reserved word operator when no
operator symbol is present.

If statement missing (
In an if statement, the compiler found no left parenthesis after
the if keyword.

If statement missing)
In an if statement, the compiler found no right parenthesis after
the test expression.

Illegal character character (Ox value)
The compiler encountered some invalid character in the input
file. The hexadecimal value of the offending character is
printed. This can also be caused by extra parameters passed to
a function macro.

Illegal initialization
Initializations must be either constant expressions, or else the
address of a global extern or static variable plus or minus a
constant.

Illegal octal digit
The compiler found an octal constant containing a non-octal
digit (8 or 9).

301

302

Illegal parameter to __ emit __
There are some restrictions on inserting literal values directly
into your code. For example you cannot give a local variable as
a parameter to __ emit __ . Refer to the __ emit __ function for
further explanation.

Illegal pointer subtraction
This is caused by attempting to subtract a pointer from a non­
pointer.

Illegal structure operation
Structures may only be used with dot(.), address-of(&) or
assignment (=) operators, or be passed to or from a function as
parameters. The compiler encountered a structure being used
with some other operator.

Illegal to take address of bit field
It is not legal to take the address of a bit field, although you can
take the address of other kinds of fields.

Illegal use of floating point
Floating-point operands are not allowed in shift, bitwise Bool­
ean, conditional(? :), indirection(*}, or certain other operators.
The compiler found a floating-point operand with one of these
prohibited operators.

Illegal use of pointer
Pointers can only be used with addition, subtraction, assign­
ment, comparison, indirection(*) or arrow(->). Your source file
used a pointer with some other operator.

Improper use of typedef Identifier
Your source file used a typedef symbol where a variable should
appear in an expression. Check for the declaration of the sym­
bol and possible misspellings.

Improper use of a typedef symbol
Your source file used a typedef symbol where a variable should
appear in an expression. Check for the declaration of the
symbol and possible misspellings.

Incompatible type conversion
The cast requested can't be done.

Incorrect command-line option: option
The compiler did not recognize the command-line parameter as
legal.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

Incorrect configuration file option: option
The compiler did not recognize the configuration file param­
eter as legal; check for a preceding hyphen(-}.

Incorrect number format
The compiler encountered a decimal point in a hexadecimal
number.

Incorrect use of default
The compiler found no colon after the default keyword.

lnline assembly not allowed in an lnline function
The compiler cannot handle inline assembly statements in a
C++ inline function. You could make this a macro, remove the
lnllne storage class, or eliminate the inline assembly code.

Invalid indirection
The indirection operator(*) requires a non-void pointer as the
operand.

Invalid macro argument separator
In a macro definition, arguments must be separated by
commas. The compiler encountered some other character after
an argument name.

Invalid pointer addition
Your source file attempted to add two pointers together.

Invalid use of dot
An identifier must immediately follow a period operator(.}.

Items of type type need constructors and can't be passed with ...
It is illegal to pass an object of a type which needs a constructor
to a variable argument list (specified with ...).

Left side must be a structure
The left side of a dot(.) operator (or C++ dot-star operator)
must evaluate to a structure type. In this case it did not.

Linkage specification not allowed
Linkage specifications such as extern "C" are only allowed at
the file level. Move this function declaration out to the file
level.

Lvalue required
The left hand side of an assignment operator must be an
addressable expression. These include numeric or pointer
variables, structure field references or indirection through a
pointer, or a subscripted array element.

303

304

Macro argument syntax error
An argument in a macro definition must be an identifier. The
compiler encountered some non-identifier character where an
argument was expected.

Macro expansion too long
A macro cannot expand to more than 4,096 characters.

main must have a return type of int
Function main has special requirements, one of which is that it
cannot be declared with any return type other than int.

May compile only one file when an output file name is given
You have supplied an-o command-line option, which allows
only one output file name. The first file is compiled but the
other files are ignored.

Member member is initialized more than once
In a C ++class constructor, the list of initializations following
the constructor header includes the same field more than once.

Member functions can only have static storage class
The only storage class allowed for a member function is static.

Misplaced break
The compiler encountered a break statement outside a switch
or looping construct.

Misplaced continue
The compiler encountered a continue statement outside a
looping construct.

Misplaced decimal point
The compiler encountered a decimal point in a floating-point
constant as part of the exponent.

Misplaced elif directive
The compiler encountered an #elif directive without any
matching #if, #ifdef, or #ifndef directive.

Misplaced else
The compiler encountered an else statement without a
matching If statement. An extra else statement could cause this
message, but it could also be caused by an extra semicolon,
missing braces, or some syntax error in a previous if statement.

Misplaced else directive
The compiler encountered an #else directive without any
matching #if, #ifdef, or #ifndef directive.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

Misplaced endif directive
The compiler encountered an #endif directive without any
matching #if, #ifdef, or #ifndef directive.

Multiple base classes require explicit class names
In a C++ class constructor, each base class constructor call in
the constructor header must include the base class name when
there is more than one immediate base class.

Multiple declaration for identifier
This identifier was improperly declared more than once. This
might be caused by conflicting declarations such as int a;
double a;, a function declared two different ways, or a label
repeated in the same function, or some declaration repeated
other than an extern function or a simple variable.

Multiple scope qualifiers
This C++ identifier was qualified with more than one class
name; at most one class can qualify an identifier.

Must take address of a memory location
Your source file used the address-of operator(&) with an
expression which cannot be used that way; for example, a
register variable.

Need an identifier to declare
In this context, an identifier was expected to complete the
declaration. This might be a typedef with no name, or an extra
semicolon at file level. In C++, it might be a class name
improperly used as another kind of identifier.

'new' and 'delete' not supported
In integrated debugger expression evaluation, the new and
delete operators are not supported.

No : following the ?
The question mark(?) and colon (:)operators do not match in
this expression. The colon may have been omitted, or paren­
theses may be improperly nested or missing.

No base class to initialize
This C++ class constructor is trying to implicitly call a base
class constructor, but this class was declared with no base
classes. Check your declarations.

No body defined for this inline function
This C++ function is declared inline, but no function body for it
is visible. The inline function body normally is put in the same

305

306

header file as the function declaration, whether a member func­
tion or an ordinary inline function.

No constructor parameters allowed for array of class
When you declare an array of C++ classes, no parameters can
be passed to the class constructor. The constructor that takes no
parameters (the default constructor) must be used to construct
each element of the array.

No file name ending
The file name in an #include statement was missing the correct
closing quote or angle bracket.

No file names given
The command line of the Turbo C++ command-line compiler
(TCC) contained no file names. You have to specify a source file
name.

No matching)
A left parenthesis has no matching right parenthesis. Check
this expression for balanced parentheses.

Nonportable pointer conversion
An implicit conversion between a pointer and an integral type
is required, but the types are not the same size. This cannot be
done without an explicit cast. This conversion may not make
any sense, so be sure this is what you want to

Non-virtual function function declared pure
Only virtual functions can be declared pure, since derived
classes must be able to override them.

Not an allowed type
Your source file declared some sort of forbidden type; for
example, a function returning a function or array.

Not a valid expression format type
Invalid format specifier following expression in the evaluate or
watch window. A valid format specifier is an optional repeat
value followed by a format character (c, d, f[n], h, x, m, p, r, or
s).

No type Information
Debugger has no type information for this variable. Module
may have been compiled without debug switch turned on, or
by another compiler or assembler.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

Numeric constant too large
String and character escape sequences larger than hexadecimal
\xFF or octal \377 cannot be generated. Two-byte character
constants may be specified by using a second backslash. For
example, \xOD\xOA represents a two-byte constant. A numeric
literal following an escape sequence should be broken up like
this:

printf("\xOD" "12345");

This prints a carriage return followed by 12345.

Object must be initialized
This C++ object is declared const, but is not initialized. Since
no value may be assigned to it, it must be initialized at the
point of declaration.

Only one of a set of overloaded functions can be function
C ++ functions are by default overloaded, and the compiler
assigns a new name to each function. If you wish to override
the compiler's assigning a new name by declaring the function
function, you can do this for only one of a set of functions with
the same name. (Otherwise the linker would find more than
one global function with the same name.)

Operand expected
In evaluating the current expression, the compiler ran out of
operands before using up all the operators. Look for extra oper­
ator symbols(+,*, I, and so forth) or missing variable names.

Operands are of differing or incompatible type
The left and right side of a binary operator(+, I,==, and so
forth), cannot be combined this way.

Operator (] missing]
The C++ operator[] was declared as operator [.You must add
the missing] or otherwise fix the declaration.

operator -> must return a pointer or a class
The C ++ operator-> function must be declared to either return
a a class or a pointer to a class (or struct or union). In either
case, it must be something to which the-> operator can be
applied.

Operator cannot be applied to these operand types
The left or right side of a binary operator(+,-,==, and so forth)
is not a valid type for the operator; for example, you may be
trying to add two arrays.

307

308

operator delete must have a single parameter of type void *
This C++ overloaded operator delete was declared in some
other way.

operator delete must return void
This C ++ overloaded operator delete was declared in some
other way.

operator new must have an initial parameter of type size_t
Operator new can be declared with an arbitrary number of
parameters, but it must always have at least one, which is the
amount of space to allocate.

operator new must have a single parameter of type size_t
This C++ overloaded operator new was declared in some other
way.

operator new must return an object of type void *
This C++ overloaded operator new was declared in some other
way.

Other objects cannot be declared In a function definition
A function body cannot be followed by a comma to add other
declarations to a list.

For example,

int f(), j; /* f declared, comma OK, j declared int*/
int f() (return O;), j; /* f defined here, comma illegal*/

Overlays only supported In medium, large, and huge memory
models

As explained in Chapter 4, only programs using the medium,
large, or huge memory models may be overlaid.

Overloadable operator expected
Almost all C++ operators can be overloaded. The only ones
that can't be overloaded are the field-selection dot(.), dot-star
(.*),double colon(::), and conditional expression(?:). The
preprocessor operators(# and##) are not C or C++ language
operators and thus cannot be overloaded. Other nonoperator
punctuation, such as semicolon (;), of course, cannot be
overloaded.

Overloaded function is not allowed here
When you change the access protection of a member of a C ++
base class in a derived class, that member cannot be an
overloaded function.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

Overloaded function resolution not supported
In integrated debugger expression evaluation, resolution of
overloaded functions or operators is not supported, not even to
take an address.

Parameter parameter missing name
In a function definition header, this parameter consisted only of
a type specifier with no parameter name. This is not legal in C.
(It is allowed in C++, but there's no way to refer to the
parameter in the function.)

Parameter names are used only with a function body
When declaring a function (not defining it with a function
body), you must use either empty parentheses or a function
prototype. A list of parameter names only is not allowed.

Example declarations include:

int func(); /*declaration without prototype--OK */
int func(int, int); /*declaration with prototype--OK */'
int func(int i, int j);/* parameter names in prototype--OK */
int func(i, j); /*parameter names only--illegal */

Pointer required on left side of ->
Nothing but a pointer is allowed on the left side of the arrow
(->).

Pointer to a static member cannot be created
C++ class member pointers may be created only for ordinary
data and function members. You may not create a member
pointer to a static member.

Previously specified default argument value cannot be changed
When a parameter of a C++ function is declared to have a
default value, this value cannot be changed or omitted in any
other declaration for the same function.

Pure function function not overridden In class
A pure virtual function must be either overridden (given a new
declaration) or re-declared pure in a derived class.

Reference member member is not initialized
References must always be initialized. A class member of refer­
ence type must have an initializer provided in all constructors
for that class. This means that you cannot depend on the
compiler to generate constructors for such a class, since it has
no way of knowing how to initialize the references.

309

310

Reference member member needs a temporary for initialization
The user provided an initial value for a reference type which
was not an lvalue of the referenced type. This requires the com­
piler to create a temporary for the initialization. Since there is
no obvious place to store this temporary, the initialization is
illegal.

register is the only storage class allowed
The only storage class allowed for function parameters is
register.

Repeat count needs an lvalue
The expression before the comma(,) in the Watch or Evaluate
window must be a manipulable region of storage. For example,
expressions like this one are not valid:

i++,lOd
x = y, lOm

Right side of.* is not a member pointer
The right side of a C++ dot-star(.*) operator must be declared
as a pointer to a member of the class specified by the left side of
the operator. In this case, the right side is not a member pointer.

Side effects are not allowed
Side effects such as assignments, ++, or - - are not allowed in
the Watch window. A common error is to use x = y (not al­
lowed) instead of x == y to test the equality of x and y.

Size of identifier ls unknown or zero
This identifier was used in a context where its size was needed.
A struct tag may only be declared (the struct not defined yet),
or an extern array may be declared without a size. It's illegal
then to have some references to such an item (like sizeof) or to
dereference a pointer to this type. Rearrange your declaration
so that the size of identifier is available.

slzeof may not be applied to a bit field
slzeof returns the size of a data object in bytes, which does not
apply to a bit field.

slzeof may not be applied to a function
slzeof may be applied only to data objects, not functions. You
may request the size of a pointer to a function.

Size of the type Is unknown or zero
This type was used in a context where its size was needed. For
example, a struct tag may only be declared (the struct not de-

Turbo C++ Programmer's Gulde

Chapter 7, Error messages

fined yet). It's illegal then to have some references to such an
item (like sizeof) or to dereference a pointer to this type. Rear­
range your declarations so that the size of this type is available.

Size of this expression is unknown or zero
This expression involved a type or variable whose size is not
known, and is used in a context where the size is needed. A
struct tag may only be declared (the struct not defined yet) or
an extern array may be declared without a size. It's illegal then
to have some references to such an item (like sizeof) or to
dereference a pointer to this type. Rearrange your declarations
so that the needed size is available.

Statement is required here
Some parts of C and C++ programs require a statement (even
just a semicolon); it's placed between a label and the end of the
block it occurs in, and after an if, do, while, or for clause.

Statement missing;
The compiler encountered an expression statement without a
semicolon following it.

Static and union members cannot require initialization
AC++ class that has a constructor or any virtual functions, or
is derived from a class that does, must be initialized. A static
data member of a class cannot be initialized, and so may not be
of a type that requires initialization.

Storage class storage class not allowed for a field
In C, no storage class is allowed in a field declaration. In C++, a
field may be a typedef, a data field may be static, and a
function field may be inline. Nothing else is allowed.

Storage class storage class not allowed for a function
In C and C++ a function may be extern or static. In C++, a
function may be inline. Nothing else is allowed, and only one
storage class may be present.

Storage class storage class is not allowed here
The given storage class is not allowed here. Probably two
storage classes were specified, and only one may be given.

Structure size too large
Your source file declared a structure larger than 64K.

311

312

Subscripting missing]
The compiler encountered a subscripting expression which was
missing its closing bracket. This could be caused by a missing
or extra operator, or mismatched parentheses.

Switch selection expression must be of integral type
The selection expression in parentheses in a switch statement
must evaluate to an integral type (char, short, int, long, enum).
You may be able to use an explicit cast to satisfy this
requirement.

Switch statement missing (
In a switch statement, the compiler found no left parenthesis
after the switch keyword.

Switch statement missing)
In a switch statement, the compiler found no right parenthesis
after the test expression.

'this' can only be used within a member function
In C++, this is a reserved word that can be used only within
class member functions.

Too few parameters in call
A call to a function with a prototype (via a function pointer)
had too few arguments. Prototypes require that all parameters
be given.

Too few parameters in call to function
A call to the named function (declared using a prototype) had
too few arguments.

Too many decimal points
The compiler encountered a floating-point constant with more
than one decimal point.

Too many default cases
The compiler encountered more than one default statement in a
single switch.

Too many error or warning messages
A maximum of 255 errors and warnings can be set before the
compiler stops.

Too many exponents
The compiler encountered more than one exponent in a
floating-point constant.

Turbo C++ Programmer's Guide

Chapter 7, E«or messages

Too many lnltlallzers
The compiler encountered more initializers than were allowed
by the declaration being initialized.

Too many storage classes in declaration
A declaration may never have more than one storage class.

Too many types In declaration
A declaration may never have more than one of the basic types:
char, Int, float, double, struct, union, enum, or typedef-name.

Too much global data defined in file
The sum of the global data declarations exceeds 64K bytes.
Check the declarations for any array that may be too large.
Also consider reorganizing the program or using far variables
if all the declarations are needed.

Trying to derive a far class from a near base
If a class is declared (or defaults to) near, all derived classes
must also be near.

Trying to derive a near class from a far base
If a class is declared (or defaults to) far, all derived classes must
also be far.

Two consecutive dots
Because an ellipsis contains three dots(...), and a decimal point
or member selection operator uses one dot(.), there is no way
two consecutive dots can legally occur in a C program.

Two operands must evaluate to the same type
The types of the expressions on both sides of the colon in the
conditional expression operator(?:) must be the same, except
for the usual conversions like char to int or float to double, or
void* to a particular pointer. In this expression, the two sides
evaluate to different types that are not automatically
converted. This may be an error or you may merely need to
cast one side to the type of the other.

Type mismatch in parameter number
The function called, via a function pointer, was declared with a
prototype; the given parameter number (counting left to right
from 1) could not be converted to the declared parameter type.

Type mismatch in parameter number in call to function
Your source file declared the named function with a prototype,
and the given parameter number (counting left to right from 1)
could not be converted to the declared parameter type.

313

314

Type mismatch in parameter parameter
Your source file declared the function called via a function
pointer with a prototype, and the named parameter could not
be converted to the declared parameter type.

Type mismatch In parameter parameter In call to function
Your source file declared the named function with a prototype,
and the named parameter could not be converted to the de­
clared parameter type.

Type mismatch in redeclaration of Identifier
Your source file redeclared a variable with a different type than
was originally declared for the variable. This can occur if a
function is called and subsequently declared to return
something other than an integer. If this has happened, you
must declare the function before the first call to it.

Type name expected
One of these errors has occurred:

•In declaring a file-level variable or a struct field, neither a
type name nor a storage class was given.

• In declaring a typedef, no type for the name was supplied.
•In declaring a destructor for a C++ class, the destructor name

was not a type name (it must be the same name as its class).

• In supplying a C ++base class name, the name was not the
name of a class.

Type qualifier Identifier must be a struct or class name
The C++ qualifier in the construction qual::identifier is not the
name of a struct or class.

Unable to create output file filename
This error occurs if the work disk is full or write protected. If
the disk is full, try deleting unneeded files and restarting the
compilation. If the disk is write-protected, move the source files
to a writable disk and restart the compilation. This error also
occurs if the output directory does not exist.

Unable to create turboc.$1n
The compiler cannot create the temporary file TURBOC.$LN
because it cannot access the disk or the disk is full.

Unable to execute command command
TLINI< or TASM cannot be found, or possibly the disk is bad.

Turbo C++ Programmer's Gulde

Chapter 7, Error messages

Unable to open include file filename
The compiler could not find the named file. This could also be
caused if an #include file included itself, or if you do not have
FILES set in CONFIG.SYS on your root directory (try FILES=20).

Check whether the named file exists.

Unable to open input file filename
This error occurs if the source file cannot be found. Check the
spelling of the name and whether the file is on the proper disk
or directory.

Undefined label identifier
The named label has a goto in the function, but no label
definition.

Undefined structure structure
Your source file used the named structure on some line before
where the error is indicated (probably on a pointer to a struc­
ture) but had no definition for the structure. This is probably
caused by a misspelled structure name or a missing
declaration.

Undefined symbol identifier
The named identifier has no declaration. This could be caused
by a misspelling either at this point or at the declaration. This
could also be caused if there was an error in the declaration of
the identifier.

Unexpected }
An extra right brace was encountered where none was ex­
pected. Check for a missing{.

Unexpected)-check for matching parenthesis
An extra right parenthesis was encountered where none was
expected. Check for a missing (.

Unexpected : found
An extra colon was encountered where none was expected.
Check for a missing or misplaced ? .

Unexpected end of file In comment started on line number
The source file ended in the middle of a comment. This is nor­
mally caused by a missing close of comment (* /).

Unexpected end of file in conditional started on line number
The source file ended before the compiler encountered #endlf.
The #endif either was missing or misspelled.

315

316

union cannot have a base type
In general, a C++ class may be of union type, but such a class
cannot be derived from any other class.

Union members cannot require Initialization
Since the lifetime of a union member is indeterminate, it is not
legal to declare one which requires initialization of some sort.

Unknown language, must be C or C++
In the C++ construction

extern name type func(/* •.. */);

The given name in quotes must be C or C++; other language
names are not recognized. You can declare an external Pascal
function without the compiler's renaming like this:

extern "C" int pascal func (/* ••. *I) ;

AC++ (possibly overloaded) function may be declared Pascal
and allow the usual compiler renaming (to allow overloading)
like this:

extern int pascal func(/* ... */);

Unknown preprocessor directive: identifier
The compiler encountered a# character at the beginning of a
line, and the directive name following was not one of these:
define, undef, line, if, ifdef, ifndef, include, else, or endif.

Unterminated string or character constant
The compiler found no terminating quote after the beginning
of a string or character constant.

Use . or -> to call function
You attempted to call a member function without providing an
object.

Use:: to take the address of a member function
If f is a member function of class c, you take its address with the
syntax &c::f. Note the use of the class type name, not the name
of an object, and the:: separating the class name from the func­
tion name. (Member function pointers are not true pointer
types, and do not refer to any particular instance of a class.)

Use ; to terminate declarations
This declaration has not been terminated with a comma or a
semicolon.

Turbo C++ Programmer's Gulde

Chapter 7, Error messages

User break
You typed a Ctrl-Breakwhile compiling or linking in the integra­
ted environment. (This is not an error, just a confirmation.)

Value of type void is not allowed
A value of type void is really not a value at all, and thus may
not appear in any context where an actual value is required.
Such contexts include the right side of an assignment, an argu­
ment of a function, and the controlling expression of an If, for,
or while statement.

Variable Identifier is Initialized twice
This variable has more than one initialization. It is legal to
declare a file level variable more than once, but it may have
only one initialization (even if two are the same).

Variable name expected
When using the address-of operator (&}, or when in C++
returning a reference to an object, an actual object must be
supplied. This is typically the name of a variable. In this case,
the compiler is being asked to take the address of something
inappropriate.

Vectors of classes must use the default constructor
When initializing a vector (array) of classes, you must use the
constructor that has no arguments. This is called the default
constructor, which means that you may not supply constructor
arguments when initializing such a vector.

Virtual function functlon1 conflicts with function2
A virtual function has the same argument types as one in a
base class, but a different return type. This is illegal.

virtual specified more than once
The C++ reserved word virtual may appear only once in one
member function declaration.

void & Is not a valid type
An explicit message for an obvious restriction. This was always
caught before when you tried to initialize or use the reference
type. This is clearer.

While statement missing (
In a while statement, the compiler found no left parenthesis
after the while keyword.

317

Warnings

318

While statement missing)
In a while statement, the compiler found no right parenthesis
after the test expression.

Wrong number of arguments In call of macro
Your source file called the named macro with an incorrect
number of arguments.

function1 hides virtual function function2
A virtual function in a base class is usually overridden by a
declaration in a derived class. In this case, a declaration with
the same name but different argument types makes the virtual
functions inaccessible to further derived classes.

identifier Is declared as both external and static
This identifier appeared in a declaration that implicitly or
explicitly marked it as global or external, and also in a static
declaration. The identifier is taken as static. You should review
all declarations for this identifier.

identifier declared but never used
Your source file declared the named variable as part of the
block just ending, but the variable was never used. The
warning is indicated when the compiler encounters the closing
brace of the compound statement or function. The declaration
of the variable occurs at the beginning of the compound
statement or function.

identifier is assigned a value that is never used
The variable appears in an assignment~ but is never used
anywhere else in the function just ending. The warning is
indicated only when the compiler encounters the closing brace.

identifier is both a structure tag and a name, now obsolete
In C, it is perfectly valid to use an identifier as both the tag of a
structure and as a variable or typedef name, as in

struct s { int i, j;) s;

or

typedef struct s { int i, j; l s;

This is not appropriate in C++.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

Ambiguous operators need parentheses
This warning is displayed whenever two shift, relational or
bitwise-Boolean operators are used together without paren­
theses. Also, an addition or subtraction operator that appears
unparenthesized with a shift operator will produce this
warning. Programmers frequently confuse the precedence of
these operators, since the precedence assigned to them is
somewhat counter-intuitive.

Assigning type to enumeration
Assigning an integer value to an enum type. This is an error,
but is reduced to a warning to give existing programs a chance
to work.

Assignment to this Is obsolete, use X::operator new instead
In early versions of C++, the only way to control allocation of
class of objects was by assigning to the this parameter inside a
constructor. This practice is now discouraged, since a better,
safer, and more general technique is to define a member
function operator new instead.

Base initialization without a class name is now obsolete
Early versions of C++ provided for initialization of a base class
by following the constructor header with just the base class
constructor parameter list. It is now recommended to include
the base class name.

This makes the code much clearer, and is required when there
are multiple base classes.

Old way:

derived::derived(int i) (i, 10) { ...)

New way:

derived: :derived (int i) : base (i, 10) { ...)

Bit fields must be signed or unsigned int
A bit field must be declared to be a signed or unsigned integral
type. In ANSI C, bit fields may only be signed or unsigned int
(not char or long, for example).

Both return and return with a value used
The current function has return statements with and without
values. This is legal C, but almost always an error. Possibly a
return statement was omitted from the end of the function.

319

320

Call to function with no prototype
This message is given if the "Prototypes required" warning is
enabled and you call a function without first giving a prototype
for that function.

Call to function function with no prototype
This message is given if the "Prototypes required" warning is
enabled and you call function function without first giving a
prototype for that function.

Code has no effect
This warning is issued when the compiler encounters a
statement with some operators which have no effect. For
example the statement

a + b;

has no effect on either variable. The operation is unnecessary
and probably indicates a bug.

Constant is long
The compiler encountered either a decimal constant greater
than 32767 or an octal (or hexadecimal) constant greater than
65535 without a letter l or L following it. The constant is treated
asa long.

Constant member member ls not initialized
This C++ class contains a constant member member, which does
not have an initialization. Note that constant members may be
initialized only, not assigned to.

Constant out of range In comparison
Your source file includes a comparison involving a constant
sub-expression that was outside the range allowed by the other
sub-expression's type. For example, comparing an unsigned
quantity to-1 makes no sense. To get an unsigned constant
greater than 32767 (in decimal), you should either cast the
constant to unsigned [for example, (unsigned)65535] or append
a letter u or U to the constant (for example, 65535u).

Whenever this message is issued, the compiler will still
generate code to do the comparison. If this code ends up
always giving the same result, such as comparing a char
expression to 4000, the code will still perform the test.

Conversion may lose significant digits
For an assignment operator or some other circumstance, your
source file requires a conversion from long or unsigned long to

Turbo C++ Programmer's Guide

Chapter 7, Error messages

int or unsigned int type. Since int type and long type variables
don't have the same size, this kind of conversion may alter the
behavior of a program.

Declaration does not specify a tag or an Identifier
This declaration doesn't declare anything. This is usually a
struct or a union without a tag or a variable in the declaration.

Some early C compilers allowed a declaration like this:

struct (int a; int b; };

and further allowed a and b to be used as generic fields for any
variable: An expression like x.b was allowed even if x was not a
structure type. This practice is now discouraged, and this
warning can help you find such abuses.

Declare function prior to use in prototype
When a function prototype refers to a structure type which has
not previously been declared, the declaration inside the proto­
type is not the same as a declaration outside the prototype. For
example:

int func(struct s *ps);
struct s (/* •.. */ };

Since there is no struct sin scope at the prototype for func, the
type of parameter ps is pointer to undefined struct s, and is not
the same as the struct s which is later declared. This will result
in later warning and error messages about incompatible types,
which would be very mysterious without this warning mes­
sage. To fix the problem, you can move the declaration for
struct s ahead of any prototype which references it, or add the
incomplete type declaration struct s; ahead of any prototype
which references struct s. If the function parameter is a struct,
rather than a pointer to struct, the incomplete declaration is not
sufficient; you must then place the struct declaration ahead of
the prototype.

Division by zero
A divide or remainder expression had a literal zero as a divisor.

Functions containing reserved word are not expanded in line
Functions containing any of the reserved words do, for, while,
goto, switch, break, continue, and case cannot be expanded
inline, even when specified as lnllne. The function is still per­
fectly legal, but will be treated as an ordinary static (not global)

321

322

function. A copy of the function will appear in each
compilation unit where it is called.

Function should return a value
Your source file declared the current function to return some
type other than Int or void, but the compiler encountered a
return with no value. This is usually some sort of error. int
functions are exempt, since in old versions of C there was no
void type to indicate functions which return nothing.

Hexadecimal value contains more than 3 digits
Under older versions of C, a hexadecimal escape sequence
could contain no more than three digits. The new ANSI
standard allows any number of digits to appear as long as the
value fits in a byte. This warning results when you have a long
hexadecimal escape sequence with many leading zero digits
(such as "\x00045"). Older versions of C would interpret such
a string differently.

Ill-formed pragma
A pragma does not match one of the pragmas expected by the
Turbo C++ compiler.

Initialization Is only partially bracketed
When structures are initialized, braces can be used to mark the
initialization of each member of the structure. If a member
itself is an array or structure, nested pairs of braces may be
used. This ensures that your idea and the compiler's idea of
what value goes with which member are the same. When some
of the optional braces are omitted, the compiler issues this
warning.

Initialization with inappropriate type
A variable of type enum is being initialized with a value of a
different type. For example,

enum count (zero, one, two) x = 2;

will result in this warning, because 2 is of type Int, not type
enum count. It is better programming practice to use an enum
identifier instead of a literal integer when assigning to or
initializing enum types.

Initializing identifierwith type
You're trying to initialize an enum variable to a different type.
This is an error, but is reduced to a warning to give existing
programs a chance to work.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

Mixing pointers to signed and unsigned char
You converted a char pointer to an unsigned char pointer, or
vice versa, without using an explicit cast. (Strictly speaking,
this is incorrect, but on the 8086, it is often harmless.)

No declaration for function function
This message is given if you call a function without first de­
claring that function. In C, you can declare a function without
presenting a prototype, as in "int func();". In C++, every
function declaration is also a prototype; this example is
equivalent to "int func(void);". The declaration can be either
classic or modern (prototype) style.

Non-const function function called for const ob)ect
A non-const member function was called for a const object.
This is an error, but was reduced to a warning to give existing
programs a chance to work.

Nonportable pointer comparison
Your source file compared a pointer to a non-pointer other than
the constant zero. You should use a cast to suppress this
warning if the comparison is proper.

Nonportable pointer conversion
A nonzero integral value is used in a context where a pointer is
needed or where an integral value is needed; the sizes of the
integral type and pointer are the same. Use an explicit cast if
this is what you really meant to do.

Obsolete syntax; use:: Instead
Early versions of C++ used a dot(.) or a colon(:) to separate a
member name from its class name in a declaration or defini­
tion. This is now obsolete; the double colon (::) must be used.

Old way:

void myclass.func(int i) { /* ••• */ }

New way:

void myclass:: func (int i) { /* ... *I }

overload is now unnecessary and obsolete
Early versions of C ++ required the reserved word overload to
mark overloaded function names. C++ now uses a "type-safe
linkage" scheme, whereby all functions are assumed over­
loaded unless marked otherwise. The use of overload should
be discontinued.

323

324

Parameter parameter Is never used
The named parameter, declared in the function, was never used
in the body of the function. This may or may not be an error
and is often caused by misspelling the parameter. This warning
can also occur if the identifier is redeclared as an automatic
(local) variable in the body of the function. The parameter is
masked by the automatic variable and remains unused.

Possible use of Identifier before definition
Your source file used the named variable in an expression be­
fore it was assigned a value. The compiler uses a simple scan of
the program to determine this condition. If the use of a variable
occurs physically before any assignment, this warning will be
generated. Of course, the actual flow of the program may
assign the value before the program uses it.

Possibly incorrect assignment
This warning is generated when the compiler encounters an
assignment operator as the main operator of a conditional ex­
pression (that is, part of an if, while or do-while statement).
More often than not, this is a typographical error for the equal­
ity operator. If you wish to suppress this warning, enclose the
assignment in parentheses and compare the whole thing to
zero explicitly. Thus,

if (a =bl ...

should be rewritten as

if ((a=b) !=0) ...

Program flow can skip this initialization; try using { }
This variable's initialization is controlled by an if statement,
and thus might be skipped. You probably need a pair of braces
around a block to control the scope of this variable.

Redefinition of macro is not identical
Your source file redefined the named macro using text that was
not exactly the same as the first definition of the macro. The
new text replaces the old.

Restarting compile using assembly
The compiler encountered an asm with no accompanying -B

command line option or #pragma inline statement. The compile
restarts using assembly language capabilities.

Turbo C++ Programmer's Guide

Chapter 7, Error messages

Structure passed by value
If "Structure passed by value" warning is enabled, this
warning is generated anytime a structure is passed by value as
an argument. It is a frequent programming mistake to leave an
address-of operator (&) off a structure when passing it as an
argument. Because structures can be passed by value, this
omission is acceptable. This warning provides a way for the
compiler to warn you of this mistake.

Style of function definition is now obsolete
In C++, this old C style of function definition is illegal:

int func (pl, p2) int pl, p2; { /* ... *I)

This practice may not be allowed by other C++ compilers.

Superfluous & with function
An address-of operator(&) is not needed with function name;
any such operators are discarded.

Suspicious pointer conversion
The compiler encountered some conversion of a pointer which
caused the pointer to point to a different type. You should use
a cast to suppress this warning if the conversion is proper.

Temporary used to initialize identifier
Temporary used for parameter number in call to Identifier
Temporary used for parameter parameter in call to Identifier
Temporary used for parameter number
Temporary used for parameter parameter

In C++, a variable or parameter of reference type must be
assigned a reference to an object of the same type. If the types
do not match, the actual value is assigned to a temporary of the
correct type, and the address of the temporary is assigned to
the reference variable or parameter. The warning means that
the reference variable or parameter does not refer to what you
expect, but to a temporary variable, otherwise unused.

For example, here function f requires a reference to an int, and c
is a char:

f{int&);
char c;
f (c);

Instead of calling f with the address of c, the compiler generates
code equivalent to the C++ source code:

int X = c, f (X) ;

325

326

Undefined structure Identifier
The named structure was used in the source file, probably on a
pointer to a structure, but had no definition in the source file.
This is probably caused by a misspelled structure riame or a
missing declaration.

Unknown assembler instruction
The compiler encountered an inline assembly statement with a
disallowed opcode. Check the spelling of the opcode (in
Chapter 6, "Interfacing with assembly language," page 271).
This warning is off by default.

Unreachable code
A break, continue, goto or return statement was not followed
by a label or the end of a loop or function. The compiler checks
while, do and for loops with a constant test condition, and
attempts to recognize loops which cannot fall through.

Untyped bit field assumed signed int
This bit field had no type specification, and is taken to be
signed int . Some compilers default to unsigned int . You
should supply a declaration of either int or unsigned int .

Void functions may not return a value
Your source file declared the current function as returning
void, but the compiler encountered a return statement with a
value. The value of the return statement will be ignored.

Turbo C++ Programmer's Gulde

A p p E N D x

A

ANSI implementation-specific
standards

2.1.1.3 How to identify a
diagnostic.

Table Al
Identifying diagnostics In

Turbo C++

Certain aspects of the ANSI C standard are not defined exactly by
ANSI. Instead, each implementor of a C compiler is free to define
these aspects individually. This chapter tells how Borland has
chosen to define these implementation-specific standards. The
section numbers refer to the ANSI Standard December 1988 draft,
which is the most recent working draft. Remember that there are
differences between C and C++; this appendix addresses C only.

When run with the correct combination of options, any message
issued by the compiler beginning with the words Fatal, Error, or
Warning are diagnostics in the sense that ANSI specifies. The
options needed to insure this interpretation are as follows:

Option

-A
-C-
-p-
-i32
-w-
-wbei
-wdcl

-wept
-wdup

-wsus
-wrpt

Action

Enable only ANSI keywords.
No nested comments allowed.
Use C calling conventions.
At least 32 significant characters in identifiers.
Turn off all warnings except the following.
Turn on warning about inappropriate initializers.
Turn on warning about declarations without type or
storage class.
Turn on warning about non-portable pointer comparisons.
Turn on warning about duplicate non-identical macro
definitions.
Turn on warning about suspicious pointer conversion.
Turn on warning about non-portable pointer conversion.

Appendix A ANSI implementation-specific standards 327

Table A.l: Identifying diagnostics In Turbo C++ (continued)

-wvrt
-wbig
-wucp

-wstu
-wext

-wfdt

Turn on warning about void functions returning a value.
Turn on warning about constants being too large.
Turn on warning about mixing pointers to signed and
unsigned char.
Turn on warning about undefined structures.
Turn on warning about variables declared both as external
and as static.
Turn on warning about function definitions using a
typedef.

None of the following options can be used:

-ms!
-mm!
-mt!
-zGxx
-zSxx

SS must be the same as DS for small data models.
SS must be the same as DS for small data models.
SS must be the same as DS for small data models.
The BSS group name may not be changed.
The data group name may not be changed.

Other options not specifically mentioned here can be set to
whatever you desire.

2.1.2.2 The semantics of The value of argv[O] is a pointer to a null byte when the program
the arguments to main. is run on DOS versions prior to version 3.0. For DOS version 3.0

or later, argv[O] points to the program name.

The remaining argv strings point to each component of the DOS
command-line arguments. Whitespace separating arguments is
removed, and each sequence of contiguous nonwhitespace
characters is treated as a single argument. Quoted strings are
handled correctly (that is, as one string containing spaces).

2.1.2.3 What constitutes Any device that looks like the console.
an interactive device.

328

2.2.1 Members of the
source and execution

character sets.

The source and execution character sets are the extended ASCII
set supported by the IBM PC. Any character other than AZ
(Control-Z) can appear in string literals, character constants, or
comments.

2.2.1.2 Shift states for No multibyte characters are supported in Turbo C++.
multibyte characters.

Turbo C++ Programmer's Gulde

2.2.2 The direction of Printing is from left-to-right, the normal direction for the PC.
printing.

2.2.4.2 The number of There are 8 bits per character in the execution character set.
bits in a character in the
execution character set.

3.1.2 The number of The first 32 characters are significant, although you can use a
significant initial command-line option (-1) to change that number. Both internal

characters in identifiers. and external identifiers use the same number of significant digits.
(The number of significant characters in C++ identifiers is
unlimited.)

3.1.2 Whether case The compiler will normally force the linker to distinguish
distinctions are between uppercase and lowercase. You can use a command-line

significant in external option (-1-c) to suppress the distinction.
Identifiers.

3.1.2.5The
representations and sets

of values of the various
types of integers.

Type

signed char
unsigned char
signed short
unsigned short
signed int
unsigned int
signed long
unsigned long

Minimum value

-128
0

-32,768
0

-32,768
0

-2,147,483,648
0

All char types use one 8-bit byte for storage.

All short and int types use 2 bytes.

All long types use 4 bytes.

Maximum value

127
255

32,767
65,535
32,767
65,535

2,147,483,647
4,294,967,295

If alignment is requested (-a), all nonchar integer type objects will
be aligned to even byte boundaries. Character types are never
aligned.

Appendix A ANSI implementation-specific standards 329

3.1.2.5 The The IEEE floating-point formats as used by the Intel 8087 are used
representations and sets for all Turbo C++ floating-point types. The float type uses 32-bit

of values of the various IEEE real format. The double type uses 64-bit IEEE real format.
types of floating-point The long double type uses 80-bit IEEE extended real format.

numbers.

3.1.3.4 The mapping Any characters in string literals or character constants will remain
between source and unchanged in the executing program. The source and execution

execution character sets. character sets are the same.

3.1.3.4 The value of an Wide characters are not supported. They are treated as normal
Integer character con- characters. All legal escape sequences map onto one or another

stant that contains a character. If a hex or octal escape sequence is used that exceeds
character or escape the range of a character, the compiler issues a message.
sequence not repre-
sented in the basic

execution character set
or the extended char­

acter set for a wide
character constant.

3.1.3.4 The value of an Character constants can contain one or two characters. If two
integer constant that characters are included, the first character occupies the low-order

contains more than one byte of the constant, and the second character occupies the high­
character, or a wide order byte.

character constant that
contains more than one

multibyte character.

3.1.3.4 The current locale Wide character constants are recognized, but treated in all ways
used to convert multi- like normal character constants. In that sense, the locale is the "C"

byte characters into locale.
corresponding wide

characters for a wide
character constant.

330 Turbo C++ Programmer's Gulde

3.2.1.2 The result of
converting an integer to
a shorter signed integer,
or the result of convert­
ing an unsigned integer

to a signed integer of
equal length, if the value

cannot be represented.

3.2.1.3 The direction of
truncation when an inte­

gral number is converted
to a floating-point

number that cannot
exactly represent the

original value.

3.2.1.4 The direction of
truncation or rounding

when a floating-point
number is converted to a

narrower floating-point
number.

3.3 The results of bitwise
operations on signed

integers.

3.3.2.3 What happens
when a member of a

union object is accessed
using a member of a

different type.

These conversions are performed by simply truncating the high­
order bits. Signed integers are stored as 2's-complement values, so
the resulting number is interpreted as such a value. If the high­
order bit of the smaller integer is nonzero, the value is interpreted
as a negative value; otherwise, it is positive.

The integer value is rounded to the nearest representable value.
Thus, for example, the long value (231-1) is converted to the float
value 231 • Ties are broken according to the rules of IEEE standard
arithmetic.

The value is rounded to the nearest representable value. Ties are
broken according to the rules of IEEE standard arithmetic.

The bitwise operators apply to signed integers as if they were
their corresponding unsigned types. The sign bit is treated as a
normal data bit. The result is then interpreted as a normal 2's
complement signed integer.

The access is allowed and will simply access the bits stored there.
You'll need a detailed understanding of the bit encodings of
floating-point values in order to understand how to access a
floating-type member using a different member. If the member
stored is shorter than the member used to access the value, the
excess bits have the value they had before the short member was
stored.

3.3.3.4 The type of For a normal array, the type is unsigned int, and for huge arrays
integer required to hold the type is signed long.
the maximum size of an

array.

Appendix A ANSI implementation-specific standards 331

3.3.4 The result of
casting a pointer to an

Integer or vice versa.

3.3.5 The sign of the
remainder on integer

division.

3.3.6 The type of integer
required to hold the

difference between two
pointers to elements of

the same array, ptrdiff_t.

When converting between integers and pointers of the same size,
no bits are changed. When converting from a longer type to a
shorter, the high-order bits are truncated. When converting from a
shorter integer type to a longer pointer type, the integer is first
widened to an integer type that is the same size as the pointer
type. Thus signed integers will sign-extend to fill the new bytes.
Similarly, smaller pointer types being converted to larger integer
types will first be widened to a pointer type that is as wide as the
integer type.

The sign of the remainder is negative when only one of the
operands is negative. If neither or both operands are negative, the
remainder is positive.

The type is signed int when the pointers are near, or signed long
when the pointers are far or huge. The type of ptrdiff _t depends on
the memory model in use. In small data models, the type is int. In
large data models, the type is long.

3.3.7 The result of a right A negative signed value is sign-extended when right shifted.
shift of a negative signed

integral type.

3.5.1 The extent to which
objects can actually be

placed in registers by
using the register

storage-class specifier.

3.5.2.1 The padding and
alignment of members of

structures.

3.5.2.1 Whether a plain
int bit-field is treated as a

signed int or as an un­
signed int bit field.

332

Objects declared with any two-byte integer or pointer types can
be placed in registers. The compiler will place any small auto
objects into registers, but objects explicitly declared as register will
take precedence. At least two and as many as six registers are
available. The number of registers actually used depends on what
registers are needed for temporary values in the function.

By default, no padding is used in structures. If you use the
alignment option (-a), structures are padded to even size, and any
members that do not have character or character array type will
be aligned to an even offset.

Plain int bit fields are treated as signed int bit fields.

Turbo C++ Programmer's Gulde

3.5.2.1 The order of Bit fields are allocated from the low-order bit position to the
allocation of bit fields high-order.

within an int.

3.5.2.1 Whether a bit-field
can straddle a storage­

unit boundary.

3.5.2.2 The integer type
chosen to represent the

values of an enumer­
ation type.

3.5.4 The maximum
number of declarators

that can modify an arith­
metic, structure, or union

type.

3.5.5.3 What constitutes
an access to an object

that has volatile-qualified
type.

3.6.4.2 The maximum
number of case values in

a switch statement.

When alignment (-a) is not requested, bit fields can straddle word
boundaries, but will never be stored in more than two adjacent
bytes.

If all enumerators can fit in an unsigned char, that is the type
chosen. Otherwise, the type is signed int.

There is no specific limit on the number of declarators. The num­
ber of declarators allowed is fairly large, but when nested deeply
within a set of blocks in a function, the number of declarators will
be reduced. The number allowed at file level is at least 50.

Any reference to a volatile object will access the object. Whether
accessing adjacent memory locations will also access an object
depends on how the memory is constructed in the hardware. For
special device memory, like video display memory, it depends on
how the device is constructed. For normal PC memory, volatile
objects are only used for memory that might be accessed by
asynchronous interrupts, so accessing adjacent objects has no
effect.

There is no specific limit on the number of cases in a switch. As
long as there is enough memory to hold the case information, the
compiler will accept them.

Appendix A ANSI implementation-specific standards 333

3.8.1 Whether the value All character constants, even constants in conditional directives
of a single-character use the same character set (execution). Single-character character

character constant in a constants will be negative if the character type is signed (default
constant expression that and-Knot requested).

controls conditional in-
clusion matches the

value of the same char-
acter constant in the

execution character set.
Whether such a char­

acter constant can have
a negative value.

3.8.2 The method for For include file names given with angle brackets, if include
locating includable directories are given in the command line, then the file is searched

source files. for in each of the include directories. Include directories are
searched in this order: First, using directories specified on the
command line, then using directories specified in TURBOC.CFG.
If no include directories are specified, then only the current
directory is searched.

3.8.2 The support for For quoted file names, the file is first searched for in the current
quoted names for directory. If not found, Turbo C++ searches for the file as if it

includable source files. were in angle brackets.

3.8.2 The mapping of
source file name

character sequences.

3.8.8 The definitions for
__ DATE __ and

__ TIME __ when they
are unavailable.

Backslashes in include file names are treated as distinct
characters, not as escape characters. Case differences are ignored
for letters.

The date and time are always available, and will use the DOS date
and time.

4.1.1 The type of the The type size_t is unsigned Int.
sizeof operator, size_t.

4.1.1 The decimal point It is a period (.).
character.

334 Turbo C++ Programmer's Guide

4.1.5 The null pointer An integer or a long 0, depending upon the memory model.
constant to which the

macro NULL expands.

4.2 The diagnostic The diagnostic message printed is "Assertion failed: expression,
printed by and the file filename, line nn", where expression is the asserted expression

termination behavior or which failed, filename is the source file name, and nn is the line
the assert function. number where the assertion took place.

abort is called immediately after the assertion message is
displayed.

4.3 The implementation- None, other than what is mentioned in 4.3.1.
defined aspects of

character testing and
case mapping functions.

4.3.1 The sets of First 128 ASCII characters.
characters tested for by

the isalnum, isalpha,
iscntrl, islower, lsprlnt
and isupper functions.

4.5.1 The values returned An IEEE NAN (not a number).
by the mathematics

functions on domain
errors.

4.5.1 Whether the No, only for the other errors-domain, singularity, overflow, and
mathematics functions total loss of precision.
set the integer expres-

sion errno to the value of
the macro ERANGE on

underflow range errors.

Appendix A ANSI implementation-specific standards 335

4.5.6.4 Whether a domain No. fmod(x, 0) returns 0.
error occurs or zero Is

returned when the fmod
function has a second

argument of zero.

4.7.1.1 The set of signals SIGABRT, SIGFPE, SIGILL, SIGINT, SIGSEGV, SIGTERM.
for the signal function.

4.7.1.1 The semantics for See the description of signal in the Library Reference.
each signal recognized
by the signal function.

4.7.1.1 The default See the description of signal in the Library Reference.
handling and the

handling at program
startup for each signal

recognized by the signal
function.

4.7.1.1 If the equivalent of The equivalent of signal (sig, SIG_DFL) is always executed.
signal(slg, SIG_DFL); Is

not executed prior to the
call of a signal handler,

the blocking of the signal
that Is performed.

4.7.1.1 Whether the No.
default handling is reset

if the SIGILL signal is
received by a handler
specified to the signal

function.

4.9.2 Whether the last No, none is required.
line of a text stream

requires a terminating
newline character.

336 Turbo C++ Programmer's Gulde

4.9.2 Whether space Yes, they do.
characters that are
written out to a text
stream Immediately

before a newline char­
acter appear when read

In.

4.9.2 The number of null None.
characters that may be

appended to data written
to a binary stream.

4.9.3 Whether the file The file position indicator of an append-mode stream is initially
position indicator of an placed at the beginning of the file. It is reset to the end of the file
append mode stream is before each write.

initially positioned at the
beginning or end of the

file.

4.9.3 Whether a write on A write of 0 bytes may or may not truncate the file, depending
a text stream causes the upon how the file is buffered. It is safest to classify a zero-length

associated file to be write as having indeterminate behavior.
truncated beyond that

point.

4.9.3 The characteristics Files can be fully buffered, line buffered, or unbuffered. If a file is
of file buffering. buffered, a default buffer of 512 bytes is created upon opening the

file.

4.9.3 Whether a zero- Yes, it does.
length file actually

exists.

4.9.3 Whether the same Yes, it can.
file can be open multiple

times.

4.9.4.1 The effect of the No special checking for an already open file is performed; the
remove function on an responsibility is left up to the programmer.

open file.

Appendix A. ANSI implementation-specific standards 337

4.9.4.2 The effect if a file rename will return a -1 and errno will be set to EEXIST.
with the new name exists
prior to a call to rename.

4.9.6.1 The output for %p
conversion in fprintt.

4.9.6.2 The input for %p
conversion in fscanf.

4.9.6.2 The interpretation
of an - (hyphen) char­

acter that is neither the
first nor the last char­

acter in the scanlist for a
%[conversion in fscanf.

In near data models, four hex digits (XXXX). In far data models,
four hex digits, colon, four hex digits (XXXX:XXXX).

See 4.9.6.1.

See the description of scanf in the Library Reference.

4.9.9.1 The value to EBADF Bad file number.
which the macro errno is
set by the fgetpos or ftell

function on failure.

4.9.10.4 The messages
generated by perror.

338

Error 0
Invalid function number
No such file or directory

Path not found
Too many open files
Permission denied
Bad file number
Memory arena trashed
Not enough memory
Invalid memory block address
Invalid environment
Invalid format
Invalid access code

Invalid data
No such device
Attempted to remove current
directory
Not same device
No more files
Invalid argument
Arg list too big
Exec format error
Cross-device link
Math argument
Result too large
File already exists

See perror in the Library Reference for details.

Turbo C++ Programmer's Guide

4.10.3 The behavior of calloc and malloc will ignore the request. realloc will free the
calloc, malloc, or realloc block.

If the size requested Is
zero.

4.10.4.1 The behavior of The file buffers are not flushed and the files are not closed.
the abort function with

regard to open and
temporary files.

4.10.4.3 The status Nothing special. The status is returned exactly as it is passed. The
returned by exit if the status is a represented as a signed char.

value of the argument is
other than zero,

EXIT_SUCCESS, or
EXIT_FAILURE.

4.10.4.4 The set of The environment strings are those defined in DOS with the SET
environment names and command. putenv can be used to change the strings for the

the method for altering duration of the current program, but the DOS SET command
the environment list must be used to change an environment string permanently.

used by getenv.

4.10.4.5 The contents The string is interpreted as a DOS command. COMMAND.COM
and mode of execution is executed and the argument string is passed as a command to

of the string by the execute: Any DOS built-in command, as well as batch files and
system function. executable programs, can be executed.

4.11.4.4 The collation The collation sequence for the execution character set uses the
sequence of the execu- signed value of the character in ASCII.

tlon character set.

4.11.6.2 The contents of See 4.9 .10.4.
the error message

strings returned by
strerror.

4.12.1 The local time Defined as local PC time and date.
zone and Daylight

Saving Time.

Appendix A. ANSI implementation-specific standards 339

4.12.2.1 The era for clock. Represented as clock ticks, with the origin being the beginning of
the program execution.

4.12.3.5 The formats for Turbo C ++ implements ANSI formats.
date and time.

340 Turbo C++ Programmer's Guide

N

null statement 24, 93
statement terminator 24, 93

/**I (comments) 6
/**I (token pasting) 6
I I (comments) 7
--operator

decrement 21, 79
? : operator

conditional expression 23, 89
:: (scope resolution operator) 23, 100
.*and->* (dereference pointers) 23
-1 command-line compiler option 271
87 environment variable 206
\ \ escape sequence (display backslash

character) 15
\"escape sequence (display double quote) 15
\?escape sequence (display question mark) 15
\'escape sequence (display single quote) 15
: (labeled statement) 25
!=operator

huge pointer comparison and 193
not equal to 23, 87

&& operator
logical AND 22, 88

++operator
increment 21, 78, 79

<<operator
put to See overloaded operators, >> (put to)
shift bits left 22, 84

<=operator
less than or equal to 22, 85

==operator
equal to 86
huge pointer comparison and 193

>=operator
greater than or equal to 22, 86

>>operator
character conversions and 176

Index

D E x

floating-point conversion and 176
get from See overloaded operators, << (get
from)
integer conversion and 176
shift bits right 22, 84

I I operator
logical OR 22, 88

-> operator (selection) 23
overloading 128
structure member access 66, 78
union member access 78

*(pointer declarator) 25
\ (string continuation character) 18
##symbol

overloading and 124
preprocessor directives 21
token pasting 6, 139

! operator
logical negation 21, 81

% operator
modulus 22, 82
remainder 22, 82

& operator
address 21, 80

pseudovariables and 266
bitwise AND 22, 87

truth table 87
*operator

indirection 21, 80
pointers and 57

multiplication 22, 82
+operator

addition 22, 83
unary plus 21, 81

, operator
evaluation 23, 91
function argument lists and 24

-operator
subtraction 22, 83

341

unary minus 21, 81
I operator

division 22, 82
rounding 82

<operator
less than 22, 85

=operator
assignment 22, 90

compound 90
overloading 127

equal to 23
initializer 26

>operator
greater than 22, 85

I\ operator
bitwise XOR 22, 87

truth table 87
I operator

bitwise inclusive OR 22, 88
truth table 87

- operator
bitwise complement 21, 81

! operator (not)
overloaded 183

. operator (selection) 23
structure member access 66, 78

l's complement(-) 21, 81
#symbol

conditional compilation and 142
converting strings and 139
null directive 135
overloading and 124
preprocessor directives 21, 26, 134

80x87 coprocessors See numeric coprocessors
80x86 processors

address segment:offset notation 191
functions (list) 160
inline assembly language and 271
registers 188-190, 265

A
\a escape sequence (audible bell) 15
-A TCC option (ANSI keywords) 152
-a TCC option (word alignment) 67, 332, 333
abort (function)

destructors and 122

342

open and temporary files and 339
abstract classes 166, See classes, abstract
access

classes 110-111
base 110
default 110
derived 110
qualified names and 111

data members and member functions 1 OB
friend classes 110
friend functions 109
overriding 109
structure members 66, 78, 109
unions

members 78, 109
objects 331

volatile objects 333
accounting applications 209
active page

defined 236
setting 236

adapters, video See video adapters
addition operator(+) 22, 83
address operator(&) 21, 80

pseudovariables and 266
addresses, memory See memory addresses
aggregate data types See data types
_AH pseudovariable 266
AH register

assembly language and 266
_AL pseudovariable 266
AL register

assembly language and 266
alert (\a) 15
algorithms

#include directive 141
aliases See referencing and dereferencing
alignment

bit fields and 333
structure members 332
word 67, 332, 333

alloc.h (header file) 155
allocation, memory See memory, allocation
ancestors See classes, base
AND operator(&) 22, 87

truth table 87
AND operator(&&) 22, 88

Turbo C++ Programmer's Guide

anonymous unions
member functions and 71

ANSI
C standard

Turbo C++ and 3
date and time formats 340
diagnostics 327
extended character sets 328
implementation-specific items 327-340
integer values 329
keywords 8

predefined macro 152
main function

semantics of arguments to 328
multibyte characters 328

argsused pragma 146
arguments See also parameters

actual
calling sequence 63

command line See command-line compiler
conversions 63
converting to strings 139
default

constructors and 114, 116
to #define directive 138
fmod function and 336
function calls and 63
functions taking none 61
matching number of 64
parameters vs. 4
passing

C-language style 47
type checking 60
variable number of 25

functions (list) 164
Pascal and 50

arithmetic, pointers See pointers, arithmetic
arithmetic types 40
arrays 58

of classes
initializing 102

constructors for
order of calling 118

elements
com paring 85

in-memory formatting and 166
indeterminate 58

Index

structures and 59
initialization 43
integer types for 331

pointers to 332
multidimensional 58
new operator and 102
sizeof and 82
subscripts 23, 77

overloading 128
ASCII codes

extended character sets 328
functions

list 157
asm (keyword) 268

how to use 92
.ASM files See assembly language
asm statement

inline pragma and -B TCC option and 147
aspect ratio

determining current 245
setting 236

assembly language See also opcodes
DD and DW statements 253
files

command-line compiler option (-S) 252
huge functions and 51, 149
identifiers

C253
defining 253
making visible 254
Pascal 253

inline 267
80186 instructions 271
advantages of 270
C structure members and 273

restrictions 274
calling functions 272
commenting 268
directives 272
floating point in 207
goto in 274
inline pragma and 147
jump instructions 272, 274
option (-B) 147, 267
referencing data in 272
register variables in 273
semicolons and 269

343

size overrides in 273
syntax 268
variable offsets in 273

interfacing with 247-264
interrupt functions 275-277
layout of source files 252
memory models and 252
Pascal parameter-passing sequences and 258
registers and 266
routines

calling C functions from 255, 262
constants and variables in 253
example of 256
huge memory model and 252
linking into C programs 251
overlays and 217
passing parameters to 256
referencing C data from 255
referencing C functions from 255
register conventions in 261
return values in 257

examples 257
segment directives

simple 251, 262
statement syntax 92
template 252
viewing C code compiled as 252

assert (function)
message and behavior 335

assert.h (header file) 155
assignment operator

overloading 127
assignment operator(=) 22, 90

compound 90
associativity 76, See also precedence

expressions 75
asterisk (*) 25
atexit (function)

destructors and 122
attributes

cell
blink230
colors 229

control functions 225
screen cells 221, 229

auto (keyword) 45
class members and 104

344

external declarations and 36
register keyword and 31

automatic objects 31
auxiliary carry flag 189
_AX pseudovariable 266
AX register 188

assembly language and 257, 266

B
\b escape sequence (backspace) 15
-b TCC option (enumerations) 71
-B TCC option (inline assembler code) 267

inline pragma and 147
background color See graphics, colors,

background
backslash character

hexadecimal and octal numbers and 13
line continuation 140

backslash character(\\) 15
backspace character (\b) 15
bad (member function) 183
badbit (C ++ error bit) 182
banker's rounding 211
base address register 189
base classes See classes
BCD209

converting 21 O
number of decimal digits 21 O
range 210
rounding errors and 21 O

bcd.h (header file) 155
bell (\a) 15
BGIOBJ (graphics converter)

initgraph function and 234
_BH pseudovariable 266
BH register

assembly language and 266
binary coded decimal See BCD
binary operators See operators
binary streams

null characters and 337
BIOS

functions (list) 160
video output and 230

bios.h (header file) 155
bit fields

alignment and 333

Turbo C++ Programmer's Guide

hardware registers and 69
how treated 332
integer 69
order of allocation 333
portable code and 70
structures and 69
unions and 71

bit images
functions for 236

bit-mapped fonts See fonts
bits

blink enable 225
C++ error 182
color 225
shifting 22, 83

bitwise
AND operator (&) 22, 87

truth table 87
complement operator(-) 21, 81
operators

signed integers and 331
OR operator (I) 22, 88

truth table 87
XOR operator (A) 22, 87

truth table 87
_BL pseudovariable 266
BL register

assembly language and 266
blink enable bit 225
block

scope 29
statements 92

Boolean data type 93
_BP pseudovariable 266
BP register 189, 261

assembly language and 257, 266
overlays and 217

braces 24
brackets 23, 77

overloading 128
break statements 97

loops and 97
buffered files 337
buffers

C++ streams and 184
overlays

default size 216

Index

_BX pseudovariable 266
BX register 188

assembly language and 266
BYI'E (assembler) 255

c
C++ 98-133

binary numbers 170
Ccodeand 151, 179
character extractors 176
classes See classes
comments 7
complex numbers See complex numbers
constants See constants
constructors See constructors

ifstream 179
ofstream 179
stream classes 178

conversions See conversions, C++
data members See data members
declarations See declarations
destructors See destructors
enumerations See enumerations
file operations See files
fill characters 173
floating-point precision 173
for loops See loops, for, C++
formatting See formatting, C++
Fourier transforms example 208
functions

friend 105
access 109

inline See functions, inline
pointers to 54
taking no arguments 61
virtual 128

pure keyword and 130
inheritance See inheritance
initializers 44
input 175-178
keywords 8
member functions See member functions
members See data members; member

functions
name spaces 68

345

operators See overloaded operators
output See output, C++
parameters See parameters
referencing and dereferencing See

referencing and dereferencing
scope See scope
streams See streams, C++
structures See structures
this

nonstatic member functions and 105
static member functions and 106

unions See unions
visibility See visibility

Clanguage
argument passing 47
C++ code and 151, 179
calling conventions 150, 152, 250
Pascal calling conventions vs. 250

CALL statement (assembler)
extension in T ASM 2.0 262-264

calling conventions See also parameters,
passing; Pascal
Pascal

Cvs.250
command-line compiler option (-p) 250
reasons for using 250

calloc (function)
zero-size memory allocation and 338

calls
far, functions using 51
near, functions using 51

carriage return character 15
carry flag 189
case

preserving 50
sensitivity

external identifiers and 254, 329
forcing 47
global variables and 47
identifiers and 9
linking with no 250
pascal identifiers and 10
Turbo Assembler option 254

statements See switch statements
cast expressions

syntax 79
__ CDECL __ macro 150

346

cded (keyword) 47, 49, 250
function modifiers and 51

cells, screen See screens, cells
cerr (stream) 168

C++ streams and 184
_CH pseudovariable 266
CH register

assembly language and 266
characters

blinking 230
colors 229, 230
constants See constants, character
data type char See data types, char
decimal point 334
extractors for (C++) 176
fill

setting 173
functions (list) 157
in screen cells 221
input and output

in memory 179
intensity

setting 225
manipulating

header file 155
multibyte 328
newline

inserting 173
text streams and 336, 337

null
binary stream and 337

sets
execution 328

collation sequence 339
number of bits in 329
source and 330

extended 328
for character constants 333
testing for 335

unsigned char data type
range 19

whitespace
extracting 173

wide330
child processes

functions (list) 163
header file 156

Turbo C++ Programmer's Guide

.CHR files See fonts, files
cin (stream) 168

C++ streams and 184
circles

roundness of 236
_CL pseudovariable 266
CL register

assembly language and 266
classes 102-113, See also C++; individual class

names, See also inheritance
abstract 130, 166
access 110-111

default 110
qualified names and 111

arrays of
initialization 102

auto keyword and 104
base

calling constructor from derived class 120
constructors 120
pointers to

destructors and 123
private

friend keyword and 110
protected keyword and 110
unions and 110
virtual 112

constructors and 117
class names and 103
data types and 38
declarations

incomplete 104
derived

base class access and 110
calling base class constructor from 120
constructors 120

extern keyword and 104
file I/0 179
friends 112-113

access 110
initialization See initialization, classes
member functions See member functions
members, defined 104
naming See identifiers
objects 103, 104

Index

initialization See initialization, classes,
objects

register keyword and 104
scope See scope, classes
sizeof operator and 82
streambuf 167
streams 166, 167
syntax 102
unions and 71
withassign 167, 184

_clear87 (function)
floating point exceptions and 207

clear (member function) 182
clipping, defined 238
clock (function)

era 340
clog (stream) 168
.CODE segment directive 251
Code Generation dialog box 67
code models See memory models
code segment 190
colons 25
color See graphics, colors
Color /Graphics Adapter (CGA) See also

graphics; graphics drivers; video adapters
background and foreground colors 241
color palettes 240, 241
resolution 240

high242
colors See graphics, colors
.COM files

memory models and 194
comma

operator 23, 91
separator 24

command-line compiler
nested comments 7
options

-1 (80186 instructions) 271
-b (enumerations) 71
alignment (-a) 67

bit fields and 333
ANSI diagnostics and 327
ANSI keywords (-A) 152
assembly language and 267
assembly language output file (-S) 252
-B (inline assembler code) 267

347

inline pragma and 147
define identifiers (-D) 137
enumerations (-b) 71
floating point

code generation (-f87) 205
default 206
emulation (-f) 205
fast (-ff) 205

inline assembler code (-B) 267
inline pragma and 147

overlays (-Y) 152, 216
overlays (-Yo) 214
Pascal

conventions (-p) 150, 152
Pascal calling conventions (-p) 50, 250
pragmas for 148
-S (produce .ASM output file) 252
undefine (-U) 137
underscores for C identifiers (-u) 253
word alignment (-a) 67
-Y (overlays) 152, 216

commas
nested

macros and 139
comments 6

II 7
I* *I 6
as whitespace 5
inline assembly language code 268
nested 6
token pasting and 6
whitespace and 7

__ COMPACT __ macro 150
compact memory model See memory models,

compact
compatibility

streams 165
compile-time limitations

header file 156
compiler

diagnostic messages 283-326
compiling

conditional
#symbol and 142

complement
bitwise 21, 81

complex declarations See declarations

348

complex.h (header file) 155
complex numbers and 208

complex numbers
<<and >>operators and 208
C++ operator overloading and 208
example 208
functions (list) 161
header file 155, 208
using 208

component selection See operators, selection
(.and->)

compound assignment operators 90
concatenating strings See strings, concatenating
conditional compilation

symbol and 142
__ cplusplus macro and 151

conditional directives See directives,
conditional

conditional operator (? :) 89
conforming extensions 3
conio.h (header file) 155

console control and 223
console

header file 155
110

functions 223
const (keyword) 47, 48

C++and 48
formal parameters and 63
pointers and 48, 56

constant expressions 19
constants 10, 47, 48, See also numbers

assembly language routines and 253
C++48
case statement

duplicate 94
character 11, 13

character set 333
extending 15
integer and 42
two-character 15
values 330
wide 15, 330

data types 12
decimal 11, 12

data types 12
suffixes 12

Turbo C++ Programmer's Guide

DOS
header file 155

enumerations See enumerations
expressions See constant expressions
floating point 11, 16

data types 16
negative 16
ranges 16

fractional 11
hexadecimal 11, 12
integer 11

negative 12
internal representations of 18
manifest 150
negative 12
null pointer

NULL macro and 335
octal 11, 12
open function

header file 155
pointers and 56
string See strings, literal
suffixes and 12
symbolic

header file 157
syntax 11
TurboC++ 15
ULONG_MAX and UINT_MAX 84
UNIX compatible

header file 157
constructors 114-118, See also initialization

arrays
order of calling 118

base class
calling

from derived class 120
order 120

calling 114
class initialization and 119
classes

virtual base 117
copy 116

class object initialization and 119
default 115
default arguments and 114, 116
default parameters 116
delete operator and 114

Index

derived class
order of calling 120

inheritance and 114
invoking 114
new operator and 114
non-inline

placement of 121
order of calling 117
overloaded 117
unions and 114
virtual 114

continue statements 97
loops and 97

continuing lines 5, 18, 140
_control87 (function)

floating point exceptions and 207
control lines See directives
conversions 41

arguments to strings 139
arrays 59
BCD210
C++ 173

classes for 167
setting base for 173
streams and 169

character
C++ 176
integers and 42

date and time
header file 157

decimal 173
floating point

C++ 176
to smaller floating point 331

functions (list) 158
header file 156
hexadecimal 173
integers

C++ 176
character and 42
to floating point 331
to pointers 332

octal 173
pointers 58

to integers 332
sign extension and 42
special 42

349

standard 42
when value can't be represented 331

coordinates
origin223
returning 226
starting positions 222, 227

coprocessors See numeric coprocessors
copy constructors See constructors, copy
cout (stream) 168

C++ streams and 184
__ cplusplus macro 151
CPP.EXE (preprocessor) 133
CPU (central processing unit) See 80x86

processors
_cs (keyword) 47, 199
_CS pseudovariable 266
CS register 190, 192

assembly language and 266
ctype.h (header file) 155
current position, files See files, position within
cursor

changing 227
control

header file 223
manipulating onscreen 224
position

setting 224
_ex pseudovariable 266
ex register 188

assembly language and 266

D
\D escape sequence (display a string of octal

digits) 15
-D TCC option (define identifier) 137
data, binary, reading 177
.DATA? segment directive 251
.DATA segment directive 251
data members See also member functions

access 108
dereference pointers 23
private 108
protected 109
public 108
scope 107-109
static 106

declaration 107

350

definition 107
uses 107

data models See memory models
data segments 190
data structures See structures
data types 27, See also constants; floating point;

integers; numbers
aggregate 38
arithmetic 40
BCD See BCD
Boolean 93
C++ streams and 169
char 40

range 19
signed and unsigned 15, 40

classes and 38
conversions See conversions
declarations 39
declaring 38
default 38
defining

header file 156
derived 38
enumerations See enumerations

range 19
function return types 60
fundamental 38, 39

creating 40
identifiers and 27, 28
integers See integers
integral 40
internal representations 40
memory use 81
new, defining 46
ranges 19
scalar 38

initializing 43
size_t 82, 125, 126
sizeof operator 334
table of 19
taxonomy38
text_modes 228
time_t

header file 157
types of 38
unsigned char

range 19

Turbo C++ Programmer's Guide

void 39
wchar_t 15

date
formats 340
functions (list) 164
local

how defined 339
macro 151

__ DATE macro 151
availability 334
#define and #undef directives and 137

DD statement (assembler) 253
deallocation, memory See memory, allocation
debugging

macros
header file 155

overlays 217
dee (manipulator) 173
decimal constants See constants, decimal
decimal point

how displayed 334
declarations 26

arrays 58
C++38

incomplete 104
complex52

examples 52, 53
data types 38

default 38
defining 27, 32, 33, 44

extern keyword and 45
examples 39
external 32, 36

storage class specifiers and 36
function See functions, declaring
incomplete class 104
with initializers

bypassing 97
mixed languages 49
modifiers and 46
objects 34
Pascal 49
pointers 55
referencing 27, 33

extern keyword and 45
simple 44
static data members 107

Index

structures See structures, declaring
syntax 33, 34
tentative definitions and 34
unions 71

declarators
number of 333
pointers (*) 25
syntax 53

decrement operator (- -) 21, 79
default (label)

switch statements and 94
default constructors See constructors, default
#define directive 135

argument lists 138
global identifiers and 137
keywords and 137
redefining macros with 136
with no parameters 135
with parameters 137

defined operator 143
defining declarations See declarations, defining
definitions See declarations, defining

function See functions, definitions
tentative 34

delete (operator) 101
constructors and destructors and 114
destructors and 122
dynamic duration objects and 32
overloading 125
pointers and 122

dereferencing See referencing and
dereferencing

derived classes See classes
derived data types See data types
descendants See classes, derived
destructors 114, 121-124, See also initialization

abort function and 122
atexit function and 122
base class pointers and 123
calling 114
class initialization and 119
delete operator and 114, 122
exit function and 122
global variables and 122
inheritance and 114
invoking 114, 122

explicitly 122

351

new operator and 114, 122
pointers and 122
#pragrna exit and 122
unions and 114
virtual 114, 123

_DH pseudovariable 266
DH register

assembly language and 266
_DI pseudovariable 266
DI register 189

assembly language and 261, 266
diagnostic messages

ANSI327
compiler 283-326

digits
hexadecimal 11
nonzero 11
octal 11

dir.h (header file) 155
direct member selector See operators, selection

(.and->)
direct video output 230
direction flag 189
directives 133-152, See also individual directive

names; macros
##symbol

overloading and 124
symbol26

overloading and 124
conditional 142

nesting 142
conditional compilation and 142
error messages 145
keywords and 137
line control 144
pragmas See pragrnas
segment 251, 262
sizeof and 82
syntax 134
usefulness of 133

directories
functions (list) 158
header file 155
include files

how searched 334
division operator (/) 22, 82

rounding 82

352

_DL pseudovariable 266
DL register

assembly language and 266
do while loops See loops, do while
domain errors

mathematics functions and 335
DOS

environment
87 variable 206
strings

changing permanently 339
functions (list) 160
header file 155

dos.h (header file) 155
dot operator (selection) See operators, selection

(.and ->)
double quote character

displaying 15
drawing color See graphics, colors
drawing functions 234
_ds (keyword) 47, 199
_DS pseudovariable 266
DS register 190, 192

assembly language and 266
duplicate case constants 94
duration 31

dynamic 32
memory allocation and 32

local 31
local scope and 31

pointers 55
static 31

DW statement (assembler) 253
DWORD (assembler) 255
_DX pseudovariable 266
DX register 188

assembly language and 257, 266
dynamic duration 32

memory allocation and 32
dynamic memory allocation See memory,

allocation

E
elaborated type specifier 104
#elif directive 142
ellipsis(...) 25

prototypes and 61, 64

Turbo C++ Programmer's Guide

#else directive 142
empty statements 93
EMU.LIB205
emulating the 80x87 math coprocessor See

floating point, emulating
enclosing block 29
#endif directive 142
endl (manipulator) 173
ends (manipulator) 173
Enhanced Graphics Adapter (EGA) See also

graphics drivers; video adapters
color control on 242

enum (keyword) See enumerations
enumerations 71

C++ 72
class names and 103
command-line option (-b) 71
constants 11, 17, 72

default values 17
conversions 42
default type 71
name space 30
open_mode(C++) 180
range 19
scope, C++ 73
structures and

name space in C++ 68
tags 72

name spaces 73
values 333

environment
DOS

87 variable 206
header file 156

eof (member function) 182
eofbit (C++ error bit) 182
equal to operator(=) 23
equal-to operator(==) 86
equality operators See operators, equality
era, clock function and 340
errno.h (header file) 155
#error directive 145
errors

C++ streams 181
member functions for testing 182

command line
defined 283

Index

compiler 283-318
fatal 284

defined 283
disk access 283
domain

mathematics functions and 335
expressions 77
fatal 283
floating point

disabling 207
graphics, functions for handling 243
math, masking 207
memory access

defined 283
messages

assert function 335
graphics 243
list 283-318
perror function 338
strerror function 339

mnemonics for codes 155
preprocessor directive for 145
run time 280
syntax

defined 283
underflow range

mathematics functions and 335
_es (keyword) 47, 199
_ES pseudovariable 266
ES register 190

assembly language and 266
escape sequences 11, 13

length 14
number of digits in 14
octal

non-octal digits and 14
source files and 334
table of 15

evaluation order See precedence
exclusive OR operator (A) 22, 87

truth table 87
execution character sets See characters, sets,

execution
exit (functions) 339

destructors and 122
exit pragma 146

353

expanded and extended memory
overlays and 218

exponents 11
_export (keyword) 47, 51, 52
expressions

associativity 75
cast, syntax 79
constant 19
conversions and 41
decrementing 79
empty (null statement) 24, 93
errors and overflows 77
floating point

precedence 76
function

sizeof and 82
grouping 23
incrementing 79
precedence 75, 76
statements 24, 93
syntax 74
table 74

extent See duration
extern (keyword) 45, See also identifiers,

external
arrays and 58
class members and 104
const keyword and 48
linkage and 32

external
declarations 32
identifiers See identifiers, external
linkage See linkage

ExternFunc 217
extra segment 190
extraction operator(<<) See overloaded

operators,<< (get from)
extractors See input, C++
EXTRN statement (assembler) 255, 262, 264

extension in TASM 2.0 262-264
huge memory model and 256
variable size and 255

F
-f87 TCC option (generate floating-point code)

205
\f escape sequence (formfeed) 15

354

-f TCC option (emulate floating point) 205
fail (member function) 182
failbit (C++ error bit) 182
far

calls
memory model and 216
requirement 216

functions See functions, far
pointers See pointers, far

far (keyword) 47, 192, 199, 204
fcntl.h (header file) 155
-ff TCC option (fast floating point) 205
fgetpos (function)

errno value on failure of 338
field width See formatting, width (C++)
__ FlLE __ macro 151

#define and #undef directives and 137
file-position indicator

initial position 337
file scope See scope
filebuf (class)

base class of 167, 179
files See also individual file-name extensions

appending
file-position indicator and 337

.ASM See assembly language
buffering 337
closing

C++ 179
current

macro 151
font See fonts
graphics driver, linking 233
header See header files
include See include files
including 140
input and output

C++ 179
names

searching for 334
open

abort function and 339
remove function and 337

opening
C++ 179, 180
default mode 180
multiple times 337

Turbo C++ Programmer's Gulde

position within
C++ 181

position within, C++ 181
project

graphics library listed in 231
reading

header file 155
renaming

preexisting file name and 338
scope See scope
searching

C++ 179
sharing

header file 156
source

escape sequences and 334
streams

declaring 179
temporary

abort function and 339
truncation while writing to 337
writing

header file 155
zero-length 337

fill characters
C++ 173, 174

filling functions 234
financial applications 209
flags

format state See formatting, format state
flags (C++)
ios (class)

setting 173
register 187, 189

float.h (header file) 155
floating point See also data types; integers;

numbers
arithmetic

interrupt functions and 275
constants See constants
conversions See conversions
decimal point character 334
double

range 19
emulating 205
exceptions

disabling 207

Index

expressions
precedence 76

extractors for (C++) 176
fast 205
formats 329
functions (list) 161
header file 155
libraries 204
long double

range 19
precision

setting 173
ranges 19
registers and 20 7
using 204

flow-control statements See if statements;
switch statements

flush (manipulator) 173
ftnod (function)

second argument of zero 336
fonts

bit-mapped
stroked vs. 238
when to use 238

clipping 238
files

loading and registering 238
height and width 238
information on current settings 245
registering 239
setting size 238
stroked

advantages of 238
for loops See loops, for
foreground color See graphics, colors,

foreground
formal parameters See parameters, formal
format state flags See formatting, C++, format

state flags
formatting

C++
fill character 173, 17 4
format state flags 170
1/0 173, See also manipulators
output 170
padding 174
width functions 171, See also manipulators

355

setting 173, 177
in memory 166
streams and 166

clearing 173
formfeed character 15
forward references 27
Fourier transforms

complex number example 208
FP_OFF202
FP_SEG202
fprintf (function)

%p conversion output 338
free (function)

delete operator and 101
dynamic duration objects and 32

free union variant record See unions
friend (keyword) 105, 112-113

base class access and 110
functions and See C++, functions, friend

fscanf (function)
%p conversion input 338

fstream.h (header file) 155
ftell (function)

errno value on failure of 338
function call operator See parentheses
function operators See overloaded operators
functions 59-64

8086 160
arguments

no 61
assembly language and

return values 257
attribute control 225
bed

header file 155
BIOS 160

header file 155
calling 63, See also parentheses

from assembly language routines 262
in inline assembly code 272
operators () 78
overloading operator for 128
rules 63

cdecl and 50
child processes 163

header file 156
class names and 103

356

classification 157
color control 239
comparing 87
complex numbers 161

header file 155
console

header file 155
1/0223

conversion 158
date and time 164

header file 157
declaring 59, 60

as near or far 200
default types for memory models 51
definitions 59, 62
diagnostic 158
directories 158

header file 155
DOS 160
drawing234
duration 31
error-handling, graphics 243
exit 146
external 45

declarations 32
far51

declaring 201
memory model size and 200

file sharing
header file 156

filling 234
floating point

header file 155
friend See C++, functions, friend
fstream

header file 155
generic

header file 155
goto 163

header file 156
graphics 158, See also graphics

drawing operations 234
fill operations 235
header file 155
using 231-245

graphics system control 231
huge51

Turbo C++ Programmer's Gulde

assembly language and 51
_loadds and 52
saving registers 149

image manipulation 236
inline

assembly language See assembly language,
inline
C++ 105

linkage 107
integer 161
internal linkage 45
international

header file 156
information 163

interrupt See interrupts, functions
1/0 159

header file 155
iomanip

header file 155
iostream

header file 156
listed by topic 157-164
locale 163
main 59
mathematical 161

domain errors 335
header file 156
underflow range errors 335

member See member functions
memory 161

allocating and checking 162
header file 156
models and 47

mode control 225
near51

declaring 201
memory models and 200

no arguments 39
not returning values 39
operators See overloaded operators
overloaded See overloaded functions
Pascal

calling 49
pixel manipulation 236
pointers 54

calling overlaid routines 217
object pointers vs. 53

Index

pointers to
void 54

process control 163
prototypes See prototypes
recursive

memory models and 200
return statements and 97
return types 60
scope See scope
screen manipulation 236
signals

header file 156
sizeof and 82
sound 163
standard routines 163
startup 146
state queries 226, 243
static 32
stdarg.h header file and 61
stdiostr

header file 156
storage class specifiers and 33
strings 161
strstrea

header file 157
structures and 66
text

manipulation 224
output

graphics mode 237
TurboC++

licensing 154
type

modifying 51
variable argument lists 164
viewport manipulation 236
width (C++) 171
windows 163, 225

fundamental data types See data types

G
generate underbars option 250
generic.h (header file) 155
generic pointers 39, 55
get (function)

C++ input and 177

357

get from operator(>>) See overloaded
operators, >> (get from)

getenv (function)
environment names and methods 339

global identifiers See identifiers, global
global variables 29, See also variables

case sensitivity and 47
destructors and 122
_ovrbuffer 213, 217
underscores and 47
_ wscroll 224

good (member function) 182
goodbit (C++ error bit) 182
goto statement 97
goto statements

assembly language and 274
functions (list) 163
header file 156
labels

name space 29
grammar

lexical 4
parsings
phrase structure 4
tokens See tokens

graphics See also graphics drivers
buffers 236
circles

aspect ratio 236
colors See also graphics, palettes

358

background 225
CGA241
defined 229, 240
list 230
setting 225

CGA240,241
drawing240
EGA/VGA242
foreground 225

CGA241
defined 229
list 230
setting 225

functions 239
information on current settings 245

coordinates See coordinates
default settings

restoring 233
displaying 240
drawing functions 234
errors

functions to handle 243
fill

operations 235
patterns 235

using 245
functions

list 158
using 231-245

header file 155, 231
library 231
line style 235
memory for 234
page

active
defined 236
setting 236

visual
defined 236
setting 236

palettes See also graphics, colors
defined 239
functions 239
information on current 245

pixels See also screens, resolution
colors

current 245
functions for 236
setting color of 239

setting
clearing screen and 236

state queries 243
system

control functions 231
shutting down 233
state queries 245

text and 237
viewports

defined 223
functions 236
information on current 245

Turbo C++ Programmer's Guide

graphics drivers See also Color I Graphics
Adapter (CGA); Enhanced Graphics Adapter
(EGA); graphics; video adapters; Video
Graphics Array Adapter (VGA)
current 233, 245

returning information on 245
linking 233
loading and selecting 232, 233
new

adding233
registering 234
returning information on 245
supported by Turbo C++ 232

graphics.h (header file) 155, 231
greater-than operator (>) 22, 85
greater-than or equal-to operator (>=) 22, 86

H
hardfail (C++ error bit) 182
header files 155-157, See also include files

C++ streams 166
complex numbers 208
described 155
floating point 155
function prototypes and 61
graphics 231
#include directive and 140
prototypes and 59, 153
reading and writing 155
sharing 156
variable parameters 61

heap32
Hercules card See graphics drivers; video

adapters
hex (manipulator) 173
hexadecimal

constants See constants, hexadecimal
digit 11

hidden objects 30
hiding See scope, C++
horizontal tab 15
huge

functions
saving registers and 149

memory model See memory models
pointers See pointers, huge

__ HUGE __ macro 150

Index

huge (keyword) 47, 192, 199
assembly language and 51

identifiers 9
assembly language

making visible 254
C++

reading from standard input 178
case 50

sensitivity and 9
classes 103
data types and 27, 28
declarations and 27
declaring 44
defined operator and 143
defining 137
defining in assembly language routines 253
duplicate 30
duration 31
enumeration constants 17
external 253, See also extern (keyword)

case sensitivity and 254, 329
global 150

#define and #undef directives and 137
length 329
linkage 32, 33

attributes 32
mixed languages 49
name spaces See name spaces
no linkage attributes 33
Pascal 49

assembly language and 253
pascal (keyword)

case sensitivity and 10
rules for creating 9
scope See scope
significant characters in 329
storage class and 28
testing for definition 143
Turbo C++ keywords as 3
undefining 137
underscores and 253

command-line compiler option 253
unique33

IEEE
floating-point formats 41, 329

359

rounding 211, 331
#if directive 142
if statements 93

nested 93
#ifdef directive 143
#ifndef directive 143
ifstream (class)

constructor 179
insertion operations 179

implementation-specific ANSI items 327-340
include files See also header files

#include directive and 140
search algorithm for 141
searching for 334

#include directive 140
search algorithm 141

inclusive OR operator (I) 22, 88
truth table 87

incomplete declarations
classes 104
structures 68

increment operator(++) 21, 78, 79
indeterminate arrays 58

structures and 59
indirect member selector See operators,

selection
indirection operator(*) 21, 80

pointers and 57
inequality operator(!=) 23, 87
inheritance See also classes

constructors and destructors 114
multiple

base classes and 112
overloaded assignment operator and 127
overloaded operators and 125

initialization 42, See also constructors;
destructors
arrays 43
classes 119

objects 119
copy constructor and 119

operator26
pointers 55
static member definitions and 107
structures 43
unions 43, 71
variables 44

360

initializers
automatic objects 44
C++44
new operator and 102

inline
assembly language code See assembly
language, inline
expansion 105
functions See functions, inline
pragma 147

inline (keyword) 105
inline pragma 268
input

C++
binary numbers 170
characters and 176
floating point and 176
integers and 176
user-defined types 178

chaining operations 175
inserters See output, C++
insertion operator See overloaded operators,<<

(put to)
instances See classes, objects
INT instruction 275
integers 40, See also data types; floating point;

numbers
arrays and 331
C++

default number base 171
C++ streams and 169
casting to pointer 332
constants See constants
conversions See conversions
division

sign of remainder 332
enumerations and 333
expressions

precedence 76
extractors for (C++) 176
functions (list) 161
long 40

range 19
memory use 40
pointers and 332
range 19

Turbo C++ Programmer's Gulde

ranges
header file 156

right shifted 332
short 40
signed

bitwise operators and 331
sizes 40
suffix 11
unsigned

range 19
values 329

integral data types See characters; integers
integrated environment

nested comments command 7
intensity

setting 225
interfacing with assembly code 247-264
internal linkage See linkage
internal representations of data types 40
international information

functions (list) 163
header file 156

interrupt (keyword) 47, 48, 275
interrupts

beep
example276

flag 189
functions

assembly language and 275-277
example of 276
floating-point arithmetic in 275
memory models and 48
void 48

handlers 47
assembly language and 275-277
calling 277
installing 277
modules and 217
programming 275

registers and 48
io.h (header file) 155
I/0

C++
errors 181
formatting 173
memory and 179
precision 173

Index

functions (list) 159
low level

header file 155
iomanip.h (header file) 155
ios (class)

contents 167
derived classes of 167
error bits 182
flags

format state 170
setting 173

open_mode enumeration 180
iostream (class)

base class of 167
bidirectional operations and 167

iostream.h (header file) 156, 166
iostream library 166
IP (instruction pointer) register 187
isalnum (function) 335
isalpha (function) 335
iscntrl (function) 335
islower (function) 335
isprint (function) 335
istream (class)

base class of 167
constructors 178
contents of 167
derived classes of 179
old vs. new streams 184
overflowing 177

isupper (function) 335
iteration statements See loops

J
jump instructions, inline assembly language

table 272
using 274

jump statements See break statements; continue
statements; goto statements; return
statements

K
keywords 8, See also individual keyword names

ANSI
predefined macro 152

C++8

361

l

combining 40
macros and 137
TurboC++

using as identifiers 3

labeled statements 92
labels

creating 25
default 94
function scope and 29
goto statement and 97
in inline assembly code 274

language extensions
conforming 3

__ LARGE __ macro 150
large code

data
and memory models See memory models

less-than operator (<) 22, 85
less-than or equal-to operator(<=) 22, 85
lexical grammar See grammar
libraries

files (list) 153
floating point

using 204
graphics 231
iostream 166
prototypes and 64
stream 165
underscores on identifiers 253

limits.h (header file) 156
__ LINE __ macro 151

#define and #undef directives and 137
#line directive 144
lines

continuing 5, 18, 140
numbers 144

macro 151
linkage 32

external 32, 33
C++ constants and 48

internal 32, 33
no 32, 33
rules 33
static member functions 107
storage class specifiers and 32

362

linker
mixed modules and 203
using directly 203

literal strings See strings, literal
_loadds (keyword) 47, 51, 52

huge functions and 52
local duration 31
locale

functions (list) 163
locale.h (header file) 156
logical AND operator (&&) 22, 88
logical negation operator(!) 21, 81
logical OR operator (I I) 22, 88
long integers See integers, long
longjmp (function)

header file 156
loops 95

break statement and 97
continue statement and 97
do while 95
for 95

C++96
while 95

string scanning and 95
low-level programming 264-277

setting registers and 265
lvalues 28, See also rvalues

examples 52
modifiable 28

M
macros See also directives

argument lists 138
header file 156

assert 155
calling 138
character conversion

header file 155
commas and

nested 139
debugging

assert
header file 155

defining 135
conflicts 136
global identifiers and 137
header file 156

Turbo C++ Programmer's Guide

directory manipulation
header file 155

expansion 135
far pointer creation 202
keywords and 137
MK_FP202
NULL

expansion 335
parameters and 137

none 135
parentheses and

nested 139
precedence in

controlling 24
predefined 150, See al.so individual macro

names
ANSI keywords 152
C calling conventions 150
conditional compilation 151
current file 151
current line number 151
date 151
DOS 151
memory models 150
overlays 152
Pascal calling conventions 152
time 152
Turbo C++ version number 152

redefining 136
side effects and 140
undefining 136

global identifiers and 137
main (function) 59

pascal keyword and 50
semantics of arguments to 328

malloc (function)
dynamic duration objects and 32
new operator and 101
zero-size memory allocation and 338

manifest constants 150
manipulators 172, See also C++, formatting,

width; individual manipulator names
parameterized 172
syntax 173

Index

math
BCD SeeBCD
coprocessors See numeric coprocessors
errors

masking207
functions

domain errors and 335
list 161
underflow range errors and 335

math.h (header file) 156
matherr (function)

proper use of 207
__ MEDIUM __ macro 150
medium memory model See memory models
mem.h (header file) 156
member functions 105, See al.so data members

access 108
constructors See constructors
defined 104
destructors See destructors
error testing 182
friend 105
inline See functions, inline, C++
nonstatic 105
private 108
protected 109
public 108
pushing characters 177
scope 107-109
static 106

linkage 107
this keyword and 106

structures and 65
this keyword and 105, 106
unions and 71

members, classes See data members; member
functions

members, structures See structures, members
memory See also memory addresses

allocation 32
assembly language code and huge
functions and 51
functions (list) 162
graphics system 234
new and delete operators and 101
structures 67

C++ streams and 179

363

checking 162
data type$ 81
expanded and extended See expanded and

extended memory
formatting in 166
functions (list) 161
header file 155, 156
heap 32
memory models and 195
overlays and 213
paragraphs 191

boundary 191
segments in 190
Turbo C++'s usage of 211
word alignment and

structures 67
memory addresses See also memory

calculating 189, 191
constructors and destructors 114
far pointers and 192
near pointers and 192
pointing to 202
pseudovariables and 266
segment:offset notation 191
standard notation for 191

memory models 198, 187-204
assembly language code and 252
changing 202
compact 194

default function type 51
comparison 198
default

overriding 51
defined 194
function pointers and 54
functions

default type
overriding 47

list 162
graphics library 231
huge 195

assembly language routines and 252
default function type 51
EXTRN statement and (assembler) 256

illustrations 195-198
interrupt functions and 48
large 195

364

default function type 51
libraries 153
macros and 150
math files for 153
medium 194

default function type 51
memory apportionment and 195
mixing203

function prototypes and 203
overlays and 214, 216
pointers

modifiers and 51
pointers and 192, 200
predefined macros and 150
segment directives and 251
small 194

default function type 51
tiny 194

default function type 51
memory-resident routines 276
methods See member functions
mixed-language programming 247
mixed modules

linking 203
MK_FP (run-time library macro) 202
mnemonics, error code 155
.MODEL segment directive 251
modifiable !values See lvalues
modifiable objects See objects
modifiers 46

function type 51
pointers 51, 200
table 47

Modula-2
variant record types 70

modules
linking mixed 203
size limit 198

modulus operator(%) 22, 82
Monochrome Display Adapter See graphics

drivers; video adapters
__ MSDOS __ macro 151
multibyte characters 328
multidimensional arrays See arrays
multiple inheritance See inheritance
multiplication operator (*) 22, 82
/mx Turbo Assembler option 254

Turbo C++ Programmer's Gulde

N
\n (newline character) 15
name spaces

scope and 29
structures 68

C++ 68
names See identifiers

qualified 108
near(keyword) 47, 192, 199
near functions See functions, near
near pointers See pointers, near
negation

logical(!) 21, 81
negative offsets 189
nested

comments 6, 7
conditional directives 142
declarators 333

new (operator) 101
arrays and 102
constructors and destructors and 114
destructors and 122
dynamic duration objects and 32
initializers and 102
overloading 102, 125
prototypes and 101

new lines, creating in output 15
newline characters

inserting 173
no linkage See linkage
nondefining declarations See declarations,

referencing
nonzero digit 11
normalized pointers See pointers, normalized
not equal to operator(!==) 23, 87
not operator(!) 21, 81

overloaded 183
NULL

macro 335
using 55

null
characters

binary stream and 337
directive(#) 135
inserting in string 173
pointer constant 335
pointers 55

Index

statement 24, 93
number of arguments 25
numbers See also constants; data types; floating

point; integers
base

setting for conversion 173
BCD See BCD
binary

C++and 170
reading (C++) 177

converting See conversions
decimal

conversions 173
functions (list) 161
hexadecimal 11

backslash and 13
conversions 173
displaying 15

lines See lines, numbers
octal 11

backslash and 13
conversions 173
displaying 15
escape sequence 14

numeric coprocessors See also 80x86 processors
autodetecting 206
built in 205
floating-point emulation 205
floating-point format 329
registers and 207

0
.OBJ files

converting .BGI files to 234
objects 27, See also classes

aliases 98
automatic 31

initializers 44
class names and 103
duration 31
hidden 30
initializers 44
list of declarable 34
modifiable 48
pointers 54

function pointers vs. 53

365

static
initializers 44

temporary 100
volatile 48

accessing 333
oct (manipulator} 173
octal constants See constants, octal
octal digit 11
offsets 192

component of a pointer 202
ofstream (class)

base class 179
constructor 179
insertion operations 179

opcodes See also assembly language
defined 268
mnemonics

command-line compiler option (-1) 271
table270

repeat prefixes 272
open (function)

header file 155
open mode See files, opening, C++
open_mode (enumeration} 180
operands (assembly language) 268
operating mode of screen See screens, modes
operator (keyword}

overloading and 124
operator functions See overloaded operators
operators 20-23, 77

l's complement(-} 21, 81
addition(+) 22, 83
address

pseudovariables and 266
address(&) 21, 80
AND (&} 22, 87

truth table 87
AND (&&) 22, 88
assignment(=} 22, 90

compound 90
overloading 127

binary22
overloading 127

bitwise

366

AND(&} 22, 87
truth table 87

complement H 21, 81

inclusive OR (I} 22, 88
truth table 87

signed integers and 331
truth table 87
XOR("} 22, 87

truth table 87
C++21

delete 101, See delete (operator)
dereference pointers 23
new See new (operator}
scope (::} 23, 100

conditional (? :} 23, 89
context and meaning 21
decrement (- -} 21, 79
defined operafor 143
division (/} 22, 82

rounding82
equality 23, 86
evaluation (comma) 23, 91
exclusive OR(") 22, 87

truth table 87
function call () 78
inclusive OR (I } 22, 88

truth table 87
increment(++) 21, 78, 79
indirection(*) 21, 80

pointers and 57
inequality(!=) 23, 87
list 20
logical

AND (&&} 22, 88
negation (!) 21, 81
OR (I I } 22, 88

manipulators See. manipulators
modulus (%) 22, 82
multiplication (*} 22, 82
not(!) 183
OR(") 22, 87

truth table 87
OR(I} 22, 88

truth table 87
OR (I I } 22, 88
overloading See overloaded operators
postfix 77
prefix 77
relational 22, 84
remainder (%} 22, 82

Turbo C++ Programmer's Gulde

selection (. and->) 23, 78
overloading 128
structure member access and 66, 78

shift bits(<< and>>) 22, 83
sizeof 81

data type 334
subtraction(-) 22, 83
unary

overloading 127
unary minus(-) 21, 81
unary plus(+) 21, 81

option pragma 148
OR operator

bitwise inclusive (I) 22, 88
truth table 87

logical (I I) 22, 88
OS/2

compatibility 52
ostream (class)

base class of 167
constructors 178
contents of 167
derived classes of 179
old vs. new streams 184

output
C++ 168-175

binary numbers 170
user-defined types 17 4

directing 230
functions 224

overflows
expressions and 77
flag 189

__ OVERLAY __ macro 152
overlays 211-220

assembly language routines and 217
BP register and 217
buffers

default size 216
cautions 217
command-line options (-Yo) 214
debugging 217
designing programs for 216
expanded and extended memory and 218
how they work 212
large programs 211
memory map 213

Index

memory models and 214, 216
predefined macro 152
routines, calling via function pointers 217

overloaded constructors See constructors,
overloaded

overloaded functions
defined 104

overloaded operators 20, 75, 124-128
» (get from) 175

complex numbers and 208
put and write functions and 170

«(put to) 168, 174
complex numbers and 208
put and write functions and 170

assignment(=) 127
binary 127
brackets 128
complex numbers and 208
creating 105
defined 104
delete 125
functions and 75
inheritance and 125
new 102, 125
operator functions and 124, 125
operator keyword and 124
parentheses 128
precedence and 75, 169
selection(->) 128
unary 127

_ovrbuffer (global variable) 213, 217

p
-p TCC option (Pascal calling convention) 50,

150, 152, 250
cdecland 50

pages
active

defined 236
setting 236

buffers 236
visual

defined 236
setting 236

painting See graphics, fill, operations
palettes See graphics, palettes
paragraphs See memory, paragraphs

367

parameterized manipulators See manipulators
parameters See also arguments

arguments vs. 4
default

constructors 116
ellipsis and 25
empty lists 39
fixed 61
formal 62

C++63
scope 63

function calls and 63
order on stack 248
passing

c 47, 49, 248
Pascal vs. 247-250

Pascal 47, 49, 249, 258, 263
variable 61

parentheses 23
as function call operators 78
macros and 24
nested

macros and 139
overloading 128

parity flag 189
parsing 5
Pascal

calling conventions
C calling convention vs. 250
command-line compiler option (-p) 50,
250
prototypes and 250
reasons for using 250

functions 49
identifiers 49

assembly language and 253
case sensitivity and 10

parameter-passing sequence 47, 249, 258,
263
assembly language and 263

variant record types 70
__ PASCAL __ macro 152
pascal (keyword) 47, 49

function modifiers and 51
preserving case while using 50

368

pass-by-address, pass-by-value, and pass-by-var
See parameters; referencing and
dereferencing

period as an operator See operators, selection
(.and->)

perror (function)
messages generated by 338

phrase structure grammar See grammar
pointers 53, See also referencing and

dereferencing
advancing 57
arithmetic 57, 193
assignments 55
base class

destructors and 123
C++98

inserter 169
reference declarations 58

casting to integer 332
changing memory models and 202
to class members 23
comparing 85, 87, 93, 193

while loops 95
const 48
constants and 56
conversions See conversions
declarations 55
declarator (*) 25
default data 198
delete operator and 122
dereference 23
far 47

adding values to 193
comparing 192
declaring 201-202
function prototypes and 202
memory model size and 201
registers and 192

far memory model and 192
function 54

C++54
modifying 51
object pointers vs. 53
void 54

generic 39, 55
huge 47, 193

Turbo C++ Programmer's Gulde

comparing
!= operator 193
== operator 193

declaring 201-202
overhead of 194

huge memory model and 192
initializing 55
integer type for 332
keywords for 47
manipulating 192
memory models and 192, 200
to memory addresses 202
modifiers 51, 199, 200
modifying 51
near 47, See also segments, pointers

declaring 201-202
function prototypes and 202
memory model size and 201
registers and 192

near memory model and 192
normalized 193
null 55

NULL macro and 335
operator(->)

overloading 128
structure and union access 23, 66, 78

overlays and 217
pointers to 54
range 19
reassigning 55
referencing and dereferencing 80
segment 47, 199
stack 189
structure members as 65
typecasting 58
void 55

portable code
bit fields and 70

positive offsets 189
postdecrement operator (- -) 21, 79
postfix operators 77
postincrement operator(++) 21, 78
#pragma exit

destructors and 122
#pragma directives 146

argsused 146
exit 146

Index

inline 147, 268
option pragma 148
saveregs 149
startup 146
warn 150

precedence 76, See also associativity
controlling 23
expressions 75

floating point 76
integer 76

overloading and 169
operators 75

predecrement operator (- -) 21, 79
predefined macros See macros, predefined
prefix opcodes, repeat 272
prefix operators 77
preincrement operator(++) 21, 79
preprocessor directives See directives
printers

printing direction 329
printf (function)

C++ streams and 166, 169
private (keyword)

data members and member functions 108
derived classes and 110
unions and 71

PROC statement (assembler)
extension in TASM 2.0 261

procedures See functions
process control

functions (list) 163
process.h (header file) 156
profilers 217
programs

creating 4
mixed C and C++ 179
performance

improving 45
size

reducing 45
terminate and stay resident

interrupt handlers and 276
very large

overlaying 211
projects

files
graphics library listed in 231

369

promotions See conversions
protected (keyword)

base classes and 110
data members and member functions 109
derived classes and 110
unions and 71

prototypes 60-61
arguments and

matching number of 64
C++59
ellipsis and 61, 64
examples 60, 61
far and near pointers and 202
function calls and 63
function definitions and

not matching 64
graphics functions

header file 155
header files and 61, 153
libraries and 64
mixing modules and 203
new operator and 101
Pascal calling convention and 250
scope See scope

pseudovariables
accumulator 266
addresses 266
base pointer 266
counting and loops 266
defined 265
holding data 266
indexing 266
memory addresses and 266
register 9
registers and 265
stack pointer 266

public (keyword)
data members and member functions 1 DB
derived classes and 110
unions and 71

PUBLIC statement (assembler)
extension in TASM 2.0 261

punctuators 23, 23-26
pure (keyword)

virtual functions and 130
pure specifier 37

370

put (function)
<<and >>overloaded operators and 170
C++ output and 170

put to operator (<<) See overloaded operators,
»(put to)

putback (member function) 177
putenv (function)

environment names and methods 339

Q
qualified names 1 DB
question mark, displaying 15
question mark colon conditional operator 23, 89
quotes, displaying 15
QWORD (assembler) 255

R
\r (carriage return character) 15
-r TCC option (register variables) 261
raise (function)

header file 156
RAM

Turbo C++'s use of 211
ranges

floating-point constants 16
rdstate (member function) 182
read (function)

C++ input and 177
realloc (function)

zero-size memory allocation and 338
records See structures
recursive functions

memory models and 200
reference declarations 58
references

forward 27
referencing and dereferencing 80, See also

pointers
asterisk and 25
C++98

functions 99
simple 99

pointers 23
referencing data in inline assembly code 272
referencing declarations See declarations
register (keyword) 45

Turbo C++ Programmer's Guide

class members and 104
external declarations and 36
formal parameters and 63
local duration and 31

registers
8086 188-190
80x87 top-of-stack 257
AH266
AL266
assembly language and 266
AX 188

assembly language and 257, 266
base point 189
BH266
BL266
BP 189

assembly language and 257, 266
overlays and 217

BX 188
assembly language and 266

CH266
CL266
conventions 261
cs 190, 192

assembly language and 266
ex 188

assembly language and 266
defined 265
DH266
DI 189

assembly language and 261, 266, 273
DL266
DS 190, 192

assembly language and 266
_loadds and 52

DX 188
assembly language and 257, 266

ES 190
assembly language and 266

flags 187, 189
hardware

bit fields and 69
index 188, 189
interrupts and 48
IP (instruction pointer) 187
LOOP and string instruction 188
math operations 188

Index

numeric coprocessors and 207
objects and 332
pseudovariables 9, 265
return values and 257
saving with huge functions 149
segment 189, 190
setting for low-level programming 265
SI 189

assembly language and 261, 266, 273
SP 189

assembly language and 257, 266
special-purpose 189
SS 190

assembly language and 266
values

preserving 52
variable declarations and 45
variables 45

in inline assembly code 273
relational operators See operators, relational
remainder operator(%) 22, 82
remove (function)

open files and 337
rename (function)

preexisting file name and 338
repeat prefix opcodes 272
resetiosflags (manipulator) 173
resolution See screens, resolution
return

statements
functions and 97

types 60
values

assembly language and 257
rounding

banker's 211
direction

division 82
errors 209
rules 331

routines, assembly language See assembly
language, routines

run-time library
functions by category 157
source code, licensing 154

rvalues 28, See also !values

371

s
-S TCC option (produce .ASM output file) 252
saveregs pragma 149
_saveregs (keyword) 47, 51, 52
scalar data types See data types
scaling factor

graphics 236
scanf (function)

>> operator and 175
C++ streams and 166

scope 29-30, See also visibility
block 29
block statements and 92
C++ 30, 131-133

hiding 132
operator(::) 23, 100
rules 132

classes 29
names 103

enumerations 30
C++ 73

file 29
static storage class specifier and 33

formal parameters 63
function29

prototype 29
global29
goto and 29
identifiers and 1 O
local

local duration and 31
members 107-109
name spaces and 29
pointers 55
storage class specifiers and 45-46
structures 30
unions30
variables 30
visibility and 30

screens See also graphics; text; windows
aspect ratio 236
attributes, controlling 225
cells

372

attributes 229
blinking 230

characters in 221
colors229

clearing 236
colors 229, 239
coordinates 223

starting positions 222
cursor

changing 227
manipulating 224

modes
controlling 225
defining 221
graphics 222, 230, 232, 233
selecting 233
text 221, 228, 233

n:solution 222, See also graphics, pixels
viewports See graphics

searches
header file 156
#include directive algorithm 141

seekg (member function)
current "get" position 181

seekp (member function)
current "put" position 181

_seg (keyword) 47, 1j9, 200
segme~t:offset a~d~ess notation 191

making far pomte~s from 202
segmented memory architecture 190
segments 191, 194

component of a pointer 202
directives 251, 262
memory 190
pointers 47, 199
registers 189, 190

selection
operators See operators, selection
statements See if statements; switch
statements

semicolons 24, 93
setbase (manipulator) 173
setbkcolor (function)

CGA vs. EGA 242
setf (function) 17 4
setfill (manipulator) 173
setiosflags (manipulator) 173
setjmp (function)

header file 156
setjmp.h (header file) 156
setprecision (manipulator) 173

Turbo C++ Programmer's Gulde

setw (manipulator) 173
field width and 177

shapes See graphics
share.h (header file) 156
shift bits operators(<< and>>) 22, 83
short integers See integers, short
_SI pseudovariable 266
SI register 189

assembly language and 261, 266
side effects

macro calls and 140
sign 11

extending 15
conversions and 42

flag 189
integer constants and 12

signal (function) 336
header file 156
signal set 336
signals 336

signal.h (header file) 156
signed (keyword) 40
simplified segment directives 251, 262
single quote character

displaying 15
size overrides in inline assembly code 273
size_t (data type) 82, 125, 126
sizeof (operator) 81

arrays and 82
classes and 82
data type 334
example29
function-type expressions and 82
functions and 82
preprocessor directives and 82
unions and 70

__ SMALL __ macro 150
small code

data
and memory models See memory models

software interrupt instruction 275
sounds

beep276
functions (list) 163

source code 4
run-time library

licensing 154

Index

_SP pseudovariable 266
SP register 189

assembly language and 257, 266
special-purpose registers (8086) 189
specifiers See type specifiers
splicing lines 5, 18
_SS pseudovariable 266
SS register 190

assembly language and 266
_ss (keyword) 47, 199
stack

pointers 189
segment 190
top of

register 257
standard conversions See conversions
startup pragma 146
state queries 243-245
statements 91-98, See also individual statement

names
assembly language 92
block 92

marking start and end 24
default 94
do while See loops, do while
expression 24, 93
for See loops, for
if See if statements
iteration See loops
jump See break statements; continue

statements; goto statements; return
statements

labeled 92
null 93
syntax 92
while See loops, while

static
duration 31
functions 32
members See data members, static; member
functions, static
objects See objects, static
variables See variables, static

static (keyword) 45
linkage and 32

_status87 (function)
floating point exceptions and 207

373

stdarg.h (header file)
user-defined functions and 61

stdargs.h (header file) 156
__ STDC __ macro 152

#define and #undef directives and 137
stddef.h (header file) 156
stderr (header file) 156
stdin (header file) 156
stdio.h (header file) 156
stdiobuf (class)

base class of 179
stdiostr.h (header file) 156
stdlib.h (header file) 156
stdout (header file) 156
stdprn (header file) 156
storage class

identifiers and 28
specifiers 45

functions and 33
linkage and 32
register

objects and 332
static

file scope and 33
stream.h (header file) 157
streambuf (class) 167

derived classes of 167, 179
old vs. new streams 184

streams
bidirectional operations 167
binary

null characters and 337
C++

374

accessing 166
assigning to streams 184
constructors 178
data types 169
differences between versions 184
errors 179, 181

member functions for testing 182
flushing 173
header file 157
initializing 178
input

chaining operations 175
manipulators and See manipulators
old vs. new 184

standard 168
stdio.h and 184
upgrading from 1.x 184
using 165-183

Cvs.C++ 184
classes 166

streambuf 167
clearing 173
compatibility 165
defined 166
header file 156
libraries 165
memory and 179
text

newline character and 336, 337
strerror (function)

messages generated by 339
string.h (header file) 157
strings

clipping 238
concatenating 18
continuing across line boundaries 18
converting arguments to 139
functions (list) 161
header file 157
inserting terminal null into 173
instructions

registers 188
literal 5, 17
scanning

while loops and 95
stroked fonts See fonts
strstrea.h (header file) 157
strstream (class)

base class of 179
strstreambuf (class)

base class of 167
struct (keyword) 64, See also structures

C++ and 65, 103
structures 64-70

access
C++ 110

bit fields See bit fields
C++ 102

Cvs. 103
complex208
declaring 64

Turbo C++ Programmer's Guide

functions and 66
incomplete declarations of 68
indeterminate arrays and 59
initializing 43
member functions and 65
members

access 66, 78, 109
as pointers 65
C++65
comparing 85
declaring 65
in inline assembly code 273

restrictions 274
names 68
padding and alignment 332

memory allocation 67
name spaces 30, 68
tags 64, 65

typedefs and 65
typedefs and 65
unions vs. 70
untagged 65

typedefs and 65
within structures 65
word alignment

memory and 67
subscripting operator See brackets
subscripts for arrays 23, 77

overloading 128
subtraction operator(-) 22, 83
switch statements 94

case statement and
duplicate case constants 94

case values
number of allowed 333

default label and 94
symbolic constants See constants, symbolic
syntax

assembly language statements 92
classes 102
declarations 33, 34
declarator 53
directives 134
expressions 7 4
manipulators 173
notation 4
statements 92

Index

sys\stat.h (header file) 157
sys\types.h (header file) 157
system (function) 339
system control, graphics 231

T
\t (horizontal tab character) 15
tags

enumerations 72
name spaces 73

structure See structures, tags
T ASM See Turbo Assembler
taxonomy

types 38
TBYTE (assembler) 255
tellg (function)

current "get" position 181
tellp (function)

current "put" position 181
template, assembly language 252
temporary objects 100
tentative

definitions 34
ter_minate and stay resident programs

interrupt handlers and 276
text

blocks
moving in and out of memory 224

capturing to memory 225
colors 229
in graphics mode 237
information on current settings 245
justifying 238
manipulation

functions 224
onscreen 224
output and 224

mode types 228
output

header file 223
reading and writing 224
scrolling 224
streams

writing
truncation and 337

strings
clipping 238

375

size238
writing to screen 225

this (keyword)
nonstatic member functions and 105
static member functions and 106

time
formats 340
functions (list) 164
local

how defined 339
macro 152

__ TIME __ macro 152
availability 334
#define and #undef directives and 137

time.h (header file) 157
__ TINY __ macro 150
tiny memory model See memory models
TLINK (linker)

using directly 203
tokens 4

continuing long lines of 140
kinds of 7
parsing 5
pasting 6, 139
replacement 135
replacing and merging 26

top of stack (TOS) register
assembly language and 257

translation units 32
trap flag 189
truth table

bitwise operators 87
Turbo Assembler 268

language specifier and
example262

language specifiers and 254, 255
example256

/mx option (case sensitivity) 254
PUBLIC statement extension 261
referencing function parameters and 257
simplified segment directives 251, 262

Turbo C++
ANSI implementation-specific items 327-340
functions

licensing 154
keywords

using as identifiers 3

376

version number 152
Turbo Profiler 217
__ TURBOC __ macro 152
type specifiers

elaborated 104
pure37

type taxonomy 38
typecasting

pointers 58
typed constants See constants
typedef (keyword) 46

name space 30
structure tags and 65
structures and 65

typedefs
untagged structures and 65

types See data types

u
-UTCC option (undefine) 137
-u TCC option (underscores) 253
UINT _MAX (constant) 84
ULONG_MAX (constant) 84
unary operators 21

minus(-) 21, 81
plus(+) 21, 81
syntax 79

#undef directive 136
global identifiers and 137

underbars See underscores
underflow range errors

mathematics functions and 335
underscores

generating 47
ignoring 47
leading, in assembly language routines 253

union (keyword)
C++ 103

unions 70
accessing 331
anonymous

member functions and 71
base classes and 110
bit fields and See bit fields
C++ 71, 102

c vs. 103
classes and 71

Turbo C++ Programmer's Guide

constructors and destrµctors and 114
declarations 71
initialization 43, 71
members

access 78, 109
name space 30
sizeof and 70
structures vs. 70

units, translation See translation units
UNIX

constants
header file 157

unsetf (function) 17 4
unsigned (keyword) 40
untagged structures See structures, untagged
UTIL.DOC 239

v
\v (vertical tab character) 15
value, passing by See parameters
values

comparing 84
values.h (header file) 157
var, passing by See parameters
variable number of arguments 25
variables

automatic See auto (keyword)
declaring 44
defining in assembly code routines 253
external 45
global See global variables
initializing 44
internal linkage 45
name space 30
offsets in inline assembly code 273
pseudo See pseudovariables
register See registers, variables
volatile 49

variant record types See unions
vectors, interrupt See interrupts
version number

Turbo C++ 152
vertical tab 15
video

adapters
graphics, compatible with Turbo C++ 232

Index

video, adapters
graphics, compatible with Turbo C++ 232

video adapters See also Color /Graphics
Adapter (CGA); Enhanced Graphics Adapter
(EGA); graphics drivers; Video Graphics
Array Adapter (VGA)
modes221
output

directing 230
using 221-245

Video Graphics Array Adapter (VGA) See al.so
graphics drivers; video adapters
color control 242

viewports See graphics
virtual

base classes See classes, base, virtual
destructors See destructors, virtual
functions See C++, functions, virtual

virtual (keyword)
constructors and destructors and 114
functions and 129

visibility 30, See also scope
C++30
pointers 55
scope and 30

visual page
defined 236
setting 236

void (keyword) 39
function pointers and 54
functions and 61
interrupt functions and 48
pointers 55
typecasting expressions and 39

volatile (keyword) 47, 48
formal parameters and 63

VROOMM212

w
warn pragma 150
warnings

defined 283
disabling 146
list 318-326
overriding 150
pragma warn and 150

wchar_t (wide character constants) 15, 330

377

arrays and 44
while loops See loops, while
whitespace 5

comments and 7
comments as 5
extracting 173

wide character constants (wchar_t) 15, 330
width functions (C++) 171
window (function)

default window and 222
example 227

windows
active

erasing 224
controlling 225
creating 225
default type 222
defined 222
functions (list) 163
managing

header file 223
output in 225
scrolling 224
text

creating 227
default size 227

withassign classes 167, 184
WORD (assembler) 255

378

word alignment 67, 332, 333
memory and

structures 67
write (function)

<<and >>overloaded operators and 170
write (functions)

C++ output and 170
ws (manipulator) 173
_ wscroll (global variable) 224
-wxxx options (warnings)

warn pragma and 150

x
\xH (display a string of hexadecimal digits) 15
XOR operator (A) 22, 87

truth table 87

y
-Y TCC option (compiler generated code for

overlays) 216
-YTCC option (overlays) 152
-Yo option (overlays) 214

z
zero flag 189
zero-length files 337

Turbo C++ Programmer's Guide

B 0 R L A N D
1

1800 GREEN HILLS ROAD, P.O. BOX 660001 , scans VALLEY, CA 95067-0001 , 1408) 43B-5300 • PART# 14MN-CPP04-10 • BOR 1509
UNIT 8 PAVILIONS, RUSCOMBE BUSINESS PARK, TWYFORD, BERKSHIRE RG 10 9NN, ENGLAND
43 AVENUE DE L'EUROPE- BP 6, 7B141 VEUZY VILLACOUBLAY CEDEX FRANCE

