
;:fclel
•

1994

Are you an artist?

We think so.

Like an artist, you start with a blank canvas. And on that canvas you
craft a design that's unique, inspired and, hopefully, the most efficient
answer to a problem. That answer, in turn, translates into a product
that gives your company a competitive edge in the market.

We call that creative.

At Actel, we understand this process and what you must go through.
And we're committed to support your creativity and goals in every way
that we can. .

First, we support you with proven FPGAs that offer a full range of
choices in speed, capacity, pin outs, and packaging. So that you can
get the performance you need at a price you can afford.

That's performance/price value from Actel, without painful trade-offs.

Second, we have the advanced design and development tools you
need to achieve fast, flexible and predictable design, with guaranteed
gate utilization.

Our tools let you capture your vision in silicon, exactly the way you
want it.

Third, we provide you with knowledgeable and responsive technical
support. Real engineers to answer your questions and help you com­
plete your masterpiece on time, on budget and to your specifications.

You have the ideas and the vision.

We provide the brushes, the paint and the canvas.

Fast Flexible Design

''The Actel design tools are like Hardware Heaven: you draw a schematic, simulate the logic, and view any and all
internal nodes ... You can place and route the chip in about 30 minutes, then analyze the post-layout timing on the
same analyzer. And then, when you are satisfied with the design, you make a chip. All this can be done without
ever leaving your PC. This is the way the world should be. Make your boss buy you these tools."

David Erickson
Vice President of Hardware Engineering
Datacube Corporation

Quote from The Computer Applications Journal, issue #34, May 1993

"Our i860-based numerical accelerator board incorporated four Actel A1460A devices, each implementing one of
a wide variety of functions ranging from a DMA controller and four DRAM controllers to control registers and an
internal bus controller. The Actel A1460A FPGAs were the only programmable devices available that met the per­
formance, capacity and J/O requirements."

Ken Linton
Hardware Engineering Manager
SKY Computers

Quote from Actel ACT 3 Press Release, December 13, 1993

"All things considered, my opinion based on this project is that designing with an FPGA is actually easier than
designing with SSI and MSI logic. I no longer wonder what applications FPGAs are useful for, but rather what
applications still make sense for small- and medium-scale integration TfL and CMOS logic."

Doug Conner
Technical Editor
EDN Magazine

Quote from Hands-on FPGA Project, parts I and IT, EDN Magazine, April 9 and 23, 1992.
For further details, see complete article reprint in Section 6.

Integrating PALs and TTL

"It simply wasn't feasible to implement that many shift registers in PALs ... The choice was obvious, Actel was the
clear winner. Actel's products are easy to work with, offer the highest available logic density and performance and
can be relied upon to satisfy the most demanding design requirements."

Mike Casteloes
Senior Engineer
Interstate Electronics Corporation

For further details, see complete case history in Section to.

"I was well aware of Actel's technology from the beginning. The Actel devices worked out exceptionally well. I
was pleasantly surprised that we were able to integrate as much logic as we could into the parts."

David Kranzler
Engineering Project Leader
3COM Corporation

For further details, see complete case history in Section to.

computer Systems and Peripherals

RasterOps designed the Actel A 1240, a 4,OOO-gate FPGA, into its PaintBoard Turbo
family of graphics products for use with Apple Macintosh computers. The architectural
flexibility of the A 1240 made it suitable for implementing the varied functions required for
the complex Macintosh graphics operations.

Telecommunications

Chlpcom chose the Actel A 1020 FPGA for use in a 24-port twisted pair Ethernet
product. Actel believes that its device was selected over competitive SRAM-based
FPGAs primarily because of the combination of effective design tools and performance.
The Actel circuit architecture also proved more flexible than most PLD architectures in its
ability to implement the required logic.

Military and Aerospace

Westinghouse military system engineers replaced 10 standard logic chips with one of
ActeJ's FPGAs, which handled the entire error correction, registration and interface logic
for Westinghouse's high speed, high dynamic range analog-to-digital converters.

Industrial Control Equipment

Siemens Medical Electronics cut its production cycle by an estimated two months by
using Actel's FPGAs for both prototype development and production for a pulse oximetry
system. Siemens' engineers produced a working prototype only two weeks after delivery
of Actel's development system. All of the microprocessor interface logic was
implemented on one of Actel's FPGAs.

Actel FPGA Data Book and Design Guide

Actel FPGA Data Book
and Design Guide

1994

Contributors: Tara Anderson, Sam Beal, Larry Blessman, Sanjiv Desai, Tracy Fang, Gervais Fong, Steve Gurklys, Ken Hayes,
Yousef Khalilollahi, Kamal Koraitem, Warren Miller, Kirk Owyang, Hitesh Patel, Quat Tran, and Bruce Weyer.

Special thanks to many other contributors throughout Actel without whom this document could not have been completed.

Cover art was designed by Robert F. Tinney of Robert Tinney Graphics.

ACT, ACTmap, and Designer Advantage are trademarks of Actel Corporation. The Actellogo, Action Logic, Activator, Actionprobe,
and PUCE are registered trademarks.

This document includes trademarks and registered trademarks of companies other than Actel Corporation, including: 386, 486,
ABEL, ACT'x'press, Cadence, Composer, Concept, HP700, Logic Workbench, Mentor Graphics, NETED, OrCAD, PAL, Powerview,
PREP, PROcapture, Quicksim II, RapidSIM, Silicon Signature, Sun, Sun Workstation, Verilog, ViewDraw, Viewlogic, ViewSim,
Windows, and X Window.

Actel Corporation reserves the right to make changes to any products or services herein at any time without notice. Actel does not
assume any responsibility or liability arising out of the application or use of any product or service described as expressly agreed to
in writing by Acte/.

© 1993 Actel Corporation

ii

Actel FPGA Data Book
and Design Guide

Order
of

Contents

Introduction. vii

Section 1 : Component Data

Product Selector Guide 1-1

ACT 1 Field Programmable Gate Arrays . 1-3

ACT 2 Field Programmable Gate Arrays. 1-31

ACT 3 Field Programmable Gate Arrays . 1-79

ACT 1 and ACT 2 Military Field Programmable Gate Arrays. .. 1-139

Section 2: PREP Data

Introduction to PREp™ Benchmarks. 2-1

PREp™ Benchmarks Confirm Cost-Effectiveness of FPGAs. 2-3

Actel PREp™ Benchmark Results. 2-7

Estimating FPGAApplications Performance Using PREp™ Benchmarks. 2-17

Section 3: Packaging and Mechanical Drawings

Package Options: User lias per Package. 3-1

Package Thermal Characteristics. 3-3

Package Mechanical Drawings . 3-5

Socket Recommendation for Actel FPGA Packages . 3-23

PQFP Handling Instructions. 3-25

Section 4: Testing and Reliability

Testing and Programming Actel Field Programmable Gate Arrays (FPGAs) . 4-1

ACT Family Reliability Report. 4-9

Antifuse Field Programmable Gate Arrays. 4-29

OXide-Nitride-Oxide Antifuse Reliability. 4-45

Conductive Channel in aNa Formed by Controlled Dielectric Breakdown . 4-53

Metastability of ACT 1 Devices. 4-55

Section 5: Development Tools

System Product Selector Guide

Designer and Designer Advantage System Environment.

Designer and Designer Advantage System with Cadence ComposerNerilog Design Kit

Designer and Designer Advantage System with Cadence ConceptiRapidSIM Design Kit

Designer Advantage System with Mentor Graphics Design Kit

Designer and Designer Advantage System with OrCAD Design Kit

Designer and Designer Advantage System with Viewlogic Design Kit

Logic Synthesis Libraries .. .

Actel's Industry Alliance Program .. .

Activator® 2 and Activator 2S Programmers

© 1993 Actel Corporation

5-1

5-3

5-7

5-9

5-11

5-15

5-17

5-21

5-23

5-25

iii

ACT 1 Hard Macro Library Overview . 5-27

ACT 2 and ACT 3 Hard Macro Library Overview . 5-41

Section 6: EON-Special Report: Hands-on FPGA Project

Taking the First Steps. 6-1

Migrating to FPGAs: Any Designer Can Do It. 6-17

Section 7: Using Actel Tools

High-Level FPGA Design in the Synopsys Environment. 7-1

Actel's Cadence Interface. 7-3

Instantiating Actel's I/O Buffers in Verilog HDL. 7-7

ALS EDIF Reader and Writer. 7-9

Mentor Graphics V7 toV8.2 Design Conversion. 7-11

Actel Chip Edit . 7 -13

ACTmapTM Design Flow. 7-17

Selecting and Modifying I/O Assignments . 7-21

Critical Path Analysis Using the Timer . 7 -25

Multichip Post-Layout Simulation Using ALS and Viewsim 7-31

Board Level Post-Layout Simulation Using ALS and QuickSim" ... 7-33

Board-Level Simulation Using ALS/OrCAD .. 7-35

External Probe Pin Control for Actel FPGAs. 7-39

Using Actionprobe® Diagnostic Tools. 7-43

Using the Actel Debugger as a Functional Tester. 7-45

Moving Actel FPGA Designs from Prototype to Production . 7 -49

Production Programming for Actel FPGAs . 7-51

Section 8: Designing with Actel Devices

Introduction to FPGA System Design. 8-1

An FPGA Family Optimized for High Densities and Reduced Routing Delays. 8-5

Estimating Actel FPGA Device Capacity. 8-9

Estimating Capacity and Performance for ACT 2 FPGA Designs. 8-11

The Hidden Cost of Reprogrammability . 8-25

Actel Logic Modules. 8-27

Binning Circuit of Actel FPGAs . 8-31

Global Clock Networks. 8-35

Using Dedicated Clock and Clear for ACT 3 Registered I/O Macros . 8-39

Designing for Combinability with the ACT 2 and ACT 3 Architectures . 8-41

Fast On and Off Chip Delays with ACT 2 I/O Latches. 8-45

Three-Stating ACT Device I/O Pins for Board Level Testing. 8-49

Predicting the Power Dissipation of Actel FPGAs. 8-51

Board Level Considerations for Actel FPGAs. 8-57

A Power-On Reset (POR) Circuit for Actel Devices. 8-65

Simultaneously Switching Output Limits for Actel FPGAs . 8-67

iv

Order of Contents

Section 9: Application Examples and Design Techniques

Hints and Tips for Better Actel Designs I . 9-1

Hints and Tips for Better Actel Designs II. 9-3

A TTL Designer's Guide to FPGA Design. 9-5

JTAG Implementation in ACT 2 Devices. 9-11

Designing Adders and Accumulators with the ACT 2 Architecture. 9-29

Fast Adder Design Techniques. 9-35

Designing Counters with the ACT 2 Architecture. 9-37

Implementing Load Latency Fast Counters with ACT 2 FPGAs. 9-43

Bit-Per-State Decoded State Machine for FPGAs . 9-51

Implementing State Machines Using Shift Registers. 9-55

Designing with Pseudo-Random Number Generators. 9-59

Implementing Three-State and Bidirectional Buses with Multiplexers in Actel FPGAs. 9-61

Oscillators for Actel FPGAs . 9-65

Page Mode DRAM Controller. 9-67

Designing a DRAM Controller Using Language-Based Synthesis. 9-69

Four-Channel DMA Controller . 9-81

A High-Performance Networking Interface Using Actel FPGAs . 9-85

A High-Performance Synchronous Memory Interface Using Actel FPGAs. 9-91

Synchronous Dividers in Actel FPGAs . 9-97

A Stepper Motor Controller in an Actel FPGA. .. 9-101

A Pulse Stretching Circuit for Actel FPGAs .. 9-105

Using FPGAs for Digital PLL Applications .. 9-107

Section 10: Customer Case Histories

3COM Corporation - Lan Controller. 10-1

Beckworth Enterprises, Inc. - SBUS-to-Printer Channel Controller. 10-3

Interstate Electronics - Parallel Processing Demodulation 10-5

Delphi Systems - DSP Speech Compression. 10-7

GE Medical Systems - Medical Imaging 10-9

Chipcom Co. - State Machine. 10-13

Section 11 : Technical Support Services

Technical Support Services. 11-1

v

vi

Introduction

Actel Company Background

Actel Corporation is a leading supplier of high perfonnance field
programmable gate arrays (FPGAs) and currently provides the
dominant antifuse-based architecture in the FPGA market. As a
Sunnyvale-based start-up in 1988, Actel Corporation was the first
company to successfully develop and manufacture an antifuse­
based FPGA, enabling its products to surpass the perfonnance,
density, and cost-per-gate of existing memory-based FPGAs.
Actel's lead continues to escalate, and today Actel's advanced
product lines are endorsed by electronics industry leaders it has
partnered with. Actel's partners include Hewlett-Packard
Company, Texas Instruments, and Matsushita Electronics
Corporation (Panasonic).

The FPGA Market

In the past five years, the FPGA market has experienced
tremendous growth and currently is the fastest growing segment
of the $5.7 billion ASIC market. Researchers, such as In-Stat Inc.,
predict that the FPGA market will reach $887 million by 1997,
representing a compound annual growth rate of 30 percent (see
Figure 1).

Why is the FPGA market growing so fast?

Because a top priority for every engineer today is how to shorten
the design cycle, FPGAs have become an important factor in new

Dollars in Millions

$900

$800

$700

$600

$500

$400

$300

$200

$100

$0
1991 1992 1993

product development. Offering the design flexibility and capacity
of gate arrays, plus the convenience and speed of desktop
programming, FPGAs deliver a quicker time-to-market solution
than any other method of logic integration.

At the same time, engineers are still facing the traditional
demands to make new products cheaper and smaller. FPGAs
provide an important solution to this problem, too. By integrating
thousands of gates of random logic onto one chip, designers can
reduce board space, component count, and power requirements at
the same time.

FPGAs versus Conventional Logic

While discrete logic and programmable logic devices (PLDs)
have long been a viable solution for high speed and high drive
capability, conventional logic has relinquished part of the market
to more integrated solutions such as FPGAs. Compared to
conventional logic, FPGAs can:

• reduce system size (fewer devices)

• reduce system costs

• improve system perfonnance

• improve system reliability (fewer devices on the board)

FPGAs versus Masked Gate Arrays

FPGAs also offer clear advantages over masked gate arrays,
which are traditionally considered the high end of the logic

1994 1995 1996 1997
Source: In-Stat, 1993

Figure 1. The FPGA Market

© 1993 Actel Corporation
vii

market. Since 1991, the category that includes FPGAs has
realized more annual designs than masked gate arrays, according
to Dataquest. Compared to masked gate arrays, FPGAs offer:

• reduced time-to-market

• increased flexibility

• lower cost for small and medium-size volumes

• low-risk design options (no NRE costs)

Actel FPGA Families

Actel currently offers the ACTTM I, ACT 2, and ACT 3 families of
FPGAs that span 1,200 to 10,000 gates in density (see Figure 2).
These families of devices are based on proprietary architecture
and interconnect technologies and offer users reliable, risk-free
logic integration. The company's strong emphasis on architecture,
routing, and programming technologies has enabled Actel to
emerge as the technology leader in the FPGA market. The
foundation of Actel 's technology is the unique synergy created b~
the company's novel programming element, the PUCE R

(Programmable Low-Impedance Circuit Element) antifuse and
Actel's multiple-patented FPGA architecture. The advanced
performance, capacity, low cost, and ease-of-use characteristics
of the ACT families are highly dependent on this synergy. Indeed,
Actel's antifuse and architecture must be used together to attain
the benefits that Actel devices offer.

Actel's Patented PLICE Antifuse

The PUCE antifuse is a nonvolatile, two-terminal element that
exhibits low "on" resistance when programmed and provides the
same wire-to-wire interconnect functions as "vias" provide in
mask-programmable gate arrays and that transistor-based
EPROM and RAM cells and metal fuses provide in conventional
programmable logic devices.

PUCE
DIELECTRIC

Figure 3. The PLICE Antifuse Element

The PUCE antifuse offers key advantages in both size and
electrical properties (see Figure 3). The antifuse is small enough
that it fits within the width of the channeled routing track. This
means that there is basically no die size overhead created by the
antifuse itself. The combination of small size and low delay
characteristics of the PUCE antifuse has allowed Actel to make
two key architectural breakthroughs:

• to offer abundant routing resources while offering very small
die sizes

• to offer a highly flexible, highly granular architecture (small
logic blocks)

Actel's Patented Segmented, Channeled Routing Architecture

Actel's segmented, channeled routing structure consists of
various lengths of routing segments separated by antifuses. Some
tracks consist of many short routing segments, while other tracks
offer direct interconnect across the chip. Due to the abundant
number of routing tracks per channel, a wide variety of segment
lengths is offered. These routing tracks can be accessed by
programming vertical antifuses located within the metal 1 to

75 ~--__________________________ ___

50
System

Performance
(MHz)

25

ACT 1

0
(1988)

viii

2000

69

ACT 2
(1991)

8000

140

Figure 2. The FPGA Families

10,000

228

Gate Array Gates

User 1/0

metal 2 vias. See Figure 4 for an example of a typical ACT 1
routing structure.

Figure 4. ACT 1 Routing Example

Actel's segmented routing architecture minimizes the number of
antifuses in any path by offering various lengths of interconnect
segments. For closely placed modules, short tracks are accessed.
For more distant modules, long tracks are accessed. This flexible
routing and interconnect architecture ensures that no more than
four antifuses are used in any path, with 90 percent of all
interconnects requiring only two antifuses.

Highest, Most Predictable Performance

Actel's ACT 3 family offers the highest performance in the FPGA
industry: on-chip performance of up to 150 MHz; chip-to-chip
speeds over 80 MHz; and 9 ns Clock-to-Out speeds. Figure 5
shows performance of the A1425A-l per the Programmable
Electronics Performance Corporation (PREp™) Benchmarks*,
while using 100% automatic placement and routing tools.

Accumulators (16-bit) l 47 MHz

Loadable Counters (16-bit) l 82 MHz

Prescaled Loadable Counters (16-bit) 1150 MHz
r---------------------~--~--~

Figure 5. A1425A-1 Performance (Worst-Case Commercial)

The antifuse-based architectures have also demonstrated very
tight distributions in performance. The tighter the distribution, the
easier it is to design with. Figure 6 shows the average
performance variability of antifuse-based and SRAM-based
devices as derived from the PREP benchmarks* while using
100% automatic placement and routing software. The LOWER

* All PREP numbers refer to Suite #1, Version 1.2, dated 3 -28-93;
any analysis is not endorsed by PREP.

Introduction

the variability, the HIGHER the predictability of your design.
Clearly, antifuse-based FPGAs are much more highly predictable
than SRAM-based FPGAs.

)12%
~--------------------~

Antifuse-based FPGAs

SRAM-based FPGAs 1 29%
r-----------------------------------~

Figure 6. Performance Variability (LOWER variability
means HIGHER predictability and ease-of-design)

This highly predictable performance is directly related to Actel's
proprietary PLICE anti fuse and segmented, channeled routing
architecture. Total capacitance and resistance of each interconnect
path has been minimized by:

• minimizing impedance of the antifuse

• minimizing the number of antifuses per interconnect path (no
more than four, 90% of interconnects requiring only two
antifuses)

• minimizing the length of the metal tracks used for interconnect

For more details on performance and performance predictability,
see Section 2, which covers the PREP benchmark results.

Actel's Low-Cost Solution

Strong emphasis in process and architectural technologies, along
with tight strategic partnerships, allows Actel to offer the most
cost-competitive solutions in the programmable logic industry.
Actel's technology leadership produces the industry's smallest
die sizes for comparable density devices. Actel's strategic
partnerships ensure continuous product availability, as well as
new product innovation, at industry leading costs. Actel's overall
price leadership can be attributed to:

• very small die sizes due to the PLICE antifuse technology

• competitive, multiple foundry fabrication

• second sourced products

• leadership in process technology and architectural design

Higher Performance for Lower Cost

Actel introduced the industry's first antifuse-based programmable
architecture in 1988. The small size of the PLICE antifuse has
allowed Actel to introduce devices 20% to 50% smaller in die size
than comparable competitive devices. Actel's learning curve has
been very steep, having manufactured and sold over 3 million
FPGAs containing over 750 billion antifuses over the past five
years. These economies of scale, paired with technological
breakthroughs, have allowed Actel to reduce initial pricing by a
magnitude, and to continue to offer higher performance solutions
at lower prices (see Figure 7).

ix

Actel's price leadership has been demonstrated in conjunction
with industry standard PREP benchmarks. Actel ACT 2 devices
are the best value in the mid-range and high-density classes. In
fact, Actel antifuse-based FPGAs represent five of the seven best

value programmable devices based on certified PREP results (see
Figure 8).

For more information regarding Actel's value proposition, see the
PREP Benchmarks in Section 2.

Cents
Per

Gate

Average Performance

80 MHz

60 MHz

40 MHz

20 MHz

x

6.0

5.5

5.0

4.5

4.0

3.5

3.0 ACT 3

2.5

2.0

1.5

1.0 ~
0.5

0.0

1988 1989 1990 1991 1992 1993 1994 1995

Figure 7. Actel Families: Cost Per Gate

./
• A 1425-2PQB4C*

o EPM7128LC84-1 /
Better Value

A1425-1PQ160C* • /0 EPM7192QC160-1

• A1460A-1PQ208C*
./

• A 1425-PQ160C
• A1460A-PQ20BC*

QL 12x16-2PLB4C 0

/'
A1225A-2PL84C* • • A1240A-2,.B4C • XC3190-3PC84C

• A1225-1PLB4C • A12BO-2PQ160C* 0 EPM7256MC20B-2

• A1240-PLB4C ~PFB1188GC232-2
• A 12BO-1 PQ160C

• XC3090-125PC84C

• XC4010-5MQ20s.g

S
... "',,., "'0,.. Presentations use or include the most recent certified and/or
~ uncertified PREP PLD Benchmark data which was
~~; measured according to Benchmark Suite #1, Version 1.2,
"o+~"., .oo.l' dated 3/28/93. Any analysis is not endorsed by PREP.

Worse Value

$10 $20 $30

Price Per Average Instance

Figure 8. Price Per Average Instance

Actel's High-Density, High-Performance Solution

In 1991, Actel introduced the largest FPGA in the industry, the
8000-gate A1280. In 1993, Actel is introducing the industry's first
high-performance, high-density programmable solutions, the
A1460A and A14l00A. These devices offer up to 10,000 gate
array gates and up to 228 user lIOs while delivering on-chip
performance to 100 MHz and clock-to-out speeds of 12
nanoseconds (see Table 1).

Table 1. Specifications for A1460A and A14100A

High Density High Performance

Gate User 1/0 On-Chip Clock-
Density Out

A14100A 10,000 228 100 MHz 12.0 ns

A1460A 6,000 168 100 MHz 11.6 ns

The introduction of the ACT 3 family punctuates the advantages
of the antifuse technology. The low impedance of the antifuse
supports high-performance designs even at high gate densities.
No other programmable technology can offer this combination of
high speed and high density (see Figure 9). This combination
opens new design possibilities in computers, graphics, high-speed
telecommunications and other high-speed and high-I/O
applications.

In comparison, EPROM-based architectures offer high
performance at low gate densities, but the architecture's
performance dwindles and costs rise dramatically as gate capacity
increases. The SRAM-based FPGA architectures have been
shown to support high-density designs, but are lacking in
performance and are quite expensive. Both the lack of
performance and the high costs can be attributed to the large size

MHz

High-Speed

Antifuse

EPROM

Mid-Range

Antifuse

SRAM

EPROM

Introduction

and electrical characteristics of the SRAM interconnect elements.
The small size and low impedance of Actel's antifuse-based
architecture offers high speed at high densities, at the fraction of
the cost of SRAM devices.

Actel Leads in Reliability

Actel builds the most reliable field programmable gate arrays
(FPGAs) in the industry, with overall reliability ratings of 6 Failures­
in-time (FITs at 70DC ambient, 0.9 EV), corresponding to a useful
life of more than 40 years. Actel FPGAs have been production
proven, 4 million devices shipped to date and over 700 billion
antifuses manufactured. The architecture of the devices permits a
highly testable structure for routing, logic resources, I/O pads, and
programming circuits. As a result, all devices are fully tested prior to
shipment, with an outgoing defect level of only 122 ppm. For more
details on device reliability and testing, see Section 4.

Actel Offers Fast Flexible Design

The Actel design flow has been tuned to minimize the effort of
bringing designs to market (see Figure 10). A windows-based
interface allows users to complete ACT 1, ACT 2, and ACT 3
designs, from concept to silicon, within hours. Compatibility to
industry standard design entry tools allows designers to leverage
their existing expertise.

The fine granularity of the Actel architecture allows designers to
implement simple to complex, random to highly structured
designs while using 100% automatic placement and routing tools
guaranteeing 80% to 95% gate utilization. Timing analysis
software and backannotation simulation allow the designer to
quickly verify performance and timing requirements. On-site
programming and diagnostic tools provide quick-tum design
implementation.

High-Speed HIgh Density

Antlfuse Only
Actel:sA 1490A;A 14tOOA

Density

High-Density

Antifuse

SRAM

Figure 9. Speed and Density Classifications by Technology

xi

Actel's Designer and Designer Advantage™ systems support
schematic capture, Boolean high-level equation entry, state
machine entry, design synthesis input as well as EDIF netlists.
The systems offer schematic entry and simulation support for
Cadence™, Mentor Graphics@, OrCAD™, and Viewlogic@.
Additional CAE interfaces are supported through Actel's Industry

EDA ENVIRONMENT

DESIGN ENTRY

I SCHEMATICS I I VHDU I PAU
VERILOG HDL EQUATION

J~

L....-..-
,Ir

ACT 1 , ACT 2, ACT 3 ACTmap FPGA
LIBRARIES FITTER

,Ir

~
CAE2ADL

NETLIST TRANSLATION

I
1

ALS DESIGN ENVIRONMENT •
I

VALIDATOR
DESIGN CHECK ,

~ - INTERACTIVE - I I AUTOMATIC

L _ ~L~C=-M-=N.2: _ -.J I PLACE and ROUTE ,
I

ACTIVATOR®

~O~T~~Lj PROGRAMMING

Alliance Program, including Data I/O, Intergraph, and MINe.
The systems are supported on the following platforms:
PC 386/486 and Sun@ and HP workstations.

For further information regarding Actel's fast, flexible design
systems, please see Section 5.

SIMULATION

I UNIT DELAY

I
POST-ROUTE

FUNCTIONAL TIMING

I
I --.J TIMER

I I - l STATIC TIMING

I I -ACTIONPROBE® I

I L _ ~A~N.9~I~S _ ~

Figure 10. Typical Design Flow for an Actel FPGA

xii

~c/@I! Component Data
•

Component Data I'

© 1993 Actel Corporation

Product Selector Guide. 1-1

ACT 1 Field Programmable Gate Arrays. 1-3

ACT 2 Field Programmable Gate Arrays. 1-31

ACT 3 Field Programmable Gate Arrays. 1-79

ACT 1 and ACT 2 Military Field Programmable Gate Arrays. .. 1-139

Product Selector Guide

User
Flip-Flops Equiv. Pkgs.

Device Pkg1 # Pins Speed Option2 Temp.3 1/0 Gates 20-Pin Dedicated Max. TTLs PALs

A1010B PL 44 Std, -1,-2 C, I 34 1,200 0 147 30 12
PL 68 Std, -1,-2 C, I 57 1,200 0 147 30 12
VO 80 Std, -1,-2 C 57 1,200 0 147 30 12
PO 100 Std, -1,-2 C, I 57 1,200 0 147 30 12
PG 84 Std, -1 C,M,B 57 1,200 0 147 30 12

A1020B PL 44 Std, -1,-2 C, I 34 2,000 0 273 50 20
PL 68 Std, -1,-2 C, I 57 2,000 0 273 50 20

II PL 84 Std, -1,-2 C, I 69 2,000 0 273 50 20
-VO 80 Std, -1,-2 C 69 2,000 0 273 50 20

PO 100 Std, -1,-2 C, I 69 2,000 0 273 50 20
PG 84 Std, -1 C,M,B 69 2,000 0 273 50 20
CO 84 Std, -1** C,M,B,E 69 2,000 0 273 50 20

A1225A PL 84 Std, -1,-2 C, I 72 2,500 231 382 63 25
PO 100 Std, -1,-2 C, I 83 2,500 231 382 63 25
PG 100 Std, -1,-2 C 83 2,500 231 382 63 25

A1240A PL 84 Std, -1,-2 C, I 72 4,000 348 568 100 40
PO 144 Std, -1,-2 C, I 104 4,000 348 568 100 40
PG 132 Std, -1, -2*** C,M,B 104 4,000 348 568 100 40

A1280A PO 160 Std, -1,-2 C, I 125 8,000 624 998 200 80
PG 176 Std, -1,-2 C 140 8,000 624 998 200 80
CO 172 Std, -1**, -2*** C,M,B,E 140 8,000 624 998 200 80

A1415A* PL 84 Std C, I 70 1,500 264 312 38 15
PO 100 Std C, I 80 1,500 264 312 38 15
PG 100 Std C 80 1,500 264 312 38 15

A1425A* PL 84 Std, -1 C, I 70 2,500 360 435 63 25
PO 100 Std, -1 C, I 80 2,500 360 435 63 25
PO 160 Std, -1 C, I 100 2,500 360 435 63 25
PG 133 Std, -1*** C,M,B 100 2,500 360 435 63 25

A1440A* PO 160 Std C, I 130 4,000 568 706 100 40
PG 175 Std C 140 4,000 568 706 100 40

A1460A* PO 208 Std C, I 167 6,000 768 976 150 60
PG 207 Std C,M,B 168 6,000 768 976 150 60

A14100A* , PG 257 Std C, M, B 228 10,000 1,153 1,493 250 100

See below for table notes .
• Consult Actel for availability

•• Extended Flow (E) not offered in -1 Speed
•• * Offered for Commercial (C) devices only
Notes:
1 . Package types: CQ - Ceramic Quad Flat Packs

PG Ceramic Pin Grid Arrays
PL Plastic J-Leaded Chip Carriers
PQ - Plastic Quad Flat Packs
VQ - Very thin (1.0 mm) Quad Flatpacks

2. Speed Options: Std - Standard Speed
-1 approximately 15% faster than Standard
-2 approximately 25% faster than Standard

3.Temperature Range: C Commercial Temperature (0 to +75 C)
I Industrial (-40 to +85 C)
M Military (-55 to + 125 C)
B MIL-STD-883C
E Extended Flow

© 1993 Actel Corporation
1-1

1-2

ACTTM 1
Field Programmable
Gate Arrays

Features

Up to 2000 Gate Array Gates
(6000 PLD equivalent gates)

Replaces up to 53 TTL Packages

Replaces up to seventeen 20-Pin PAL ® Packages

Design Library with over 250 Macro Functions

Gate Array Architecture Allows Completely Automatic
Place and Route

Up to 547 Programmable Logic Modules

Up to 273 Flip-Flops

Flip-Flop Toggle Rates to 100 MHz

Two In-Circuit Diagnostic Probe Pins Support Speed
Analysis to 25 MHz

Built-In High Speed Clock Distribution Network

I/O Drive to lOrnA

Nonvolatile, User Programmable

Logic Fully Tested Prior to Shipment

Description

The ACTTM 1 family of field programmable gate arrays (FPGAs)
offers a variety of package, speed, and application combinations.
Devices are implemented in silicon gate, I-micron two-level
metal CMOS, and they employ Actel's PLICE® antifuse
technology. The unique architecture offers gate array flexibility,
high performance, and instant turnaround through user
programming. Device utilization is typically 95 percent of
available logic modules.

ACT 1 devices also provide system designers with unique on-chip
diagnostic probe capabilities, allowing convenient testing and
debugging. Additional features include an on-chip clock driver
with a hardwired distribution network. The network provides
efficient clock distribution with minimum skew.

The user-definable l/Os are capable of driving at both TTL and
CMOS drive levels. Available packages include plastic and
ceramic J-Ieaded chip carriers, ceramic and plastic quad flatpacks,
and ceramic pin grid array.

A security fuse may be programmed to disable all further
programming and to protect the design from being copied or
reverse engineered.

© 1993 Acter Corporation

Product Family Profile

Device

Capacity
Gate Array Equivalent Gates
PLD Equivalent Gates
TTL Equivalent Packages
20-Pin PAL Equivalent Packages

Logic Modules

Flip-Flops (maximum)

Routing Resources
Horizontal Tracks/Channel
Vertical Tracks/Column
PLiCE Antifuse Elements

User I/Os (maximum)

Packages:

Performance
Flip-Flop Toggle Rate (maximum)
System Speed (maximum)

CMOS Process

Note:

A1010B

1,200
3,000

30
12

295

147

22
13

112,000

57

44 PLCC
68 PLCC

100 PQFP
80 VQFP
84 CPGA

100 MHz
40 MHz

1.0 11m

1. See Product Plan on page 1-6 for package availability.

A1020B

2,000
6,000

50
20

547

273

22
13

186,000

69

44 PLCC
68 PLCC
84 PLCC

100 PQFP
80 VQFP
84 CQFP
84 CPGA

100 MHz
40 MHz

1.0 11m

The Designer and Designer Advantage Systems

The ACT 1 device family is supported by Actel's Designer and
Designer Advantage Systems, allowing logic design
implementation with minimum effort. The systems interface with
the resident CAE system to provide a complete gate array design
environment: schematic capture, simulation, fully automatic
place and route, timing verification, and device programming.
The systems are available for 386/486™ PC and for HPTM and
Sun TM workstations and for running Viewlogic®, Mentor
Graphics®, Cadence TM, and OrCAD TM.

1-3

II

Figure 1. Partial View of an ACT 1 Device

ACT 1 Device Structure

A partial view of an ACT 1 device (Figure 1) depicts four logic
modules and distributed horizontal and vertical interconnect
tracks. PLICE antifuses, located at intersections of the horizontal
and vertical tracks, connect logic module inputs and outputs.
During programming, these antifuses are addressed and
programmed to make the connections required by the circuit
application.

The ACT 1 Logic Module

The ACT 1 logic module is an 8-input, one-output logic circuit
chosen for the wide range of functions it implements and for its
efficient use of interconnect routing resources (Figure 2).

The logic module can implement the four basic logic functions
(NAND, AND, OR, and NOR) in gates of two, three, or four
inputs. Each function may have many versions, with different
combinations of active-low inputs. The logic module can also
implement a variety of D-Iatches, exclusivity functions, AND­
ORs, and OR-ANDs. No dedicated hardwired latches or flip-flops
are required in the array, since latches and flip-flops may be
constructed from logic modules wherever needed in the
application.

1-4

Figure 2. ACT 1 Logic Module

I/O Buffers

Each I/O pin is available as an input, output, three-state, or
bidirectional buffer. Input and output levels are compatible with
standard TTL and CMOS specifications. Outputs sink or source
10 rnA at TTL levels. See Electrical Specifications for
additionalI/O buffer specifications.

Device Organization

ACT 1 devices consist of a matrix of logic modules arranged in
rows separated by wiring channels. This array is surrounded by a
ring of peripheral circuits including I/O buffers, testability
circuits, and diagnostic probe circuits providing real-time
diagnostic capability. Between rows of logic modules are routing
channels containing sets of segmented metal tracks with PUCE
antifuses. Each channel has 22 signal tracks. Vertical routing is
permitted via 13 vertical tracks per logic module column. The
resulting network allows arbitrary and flexible interconnections
between logic modules and I/O modules.

Probe Pin

ACT 1 devices have two independent diagnostic probe pins.
These pins allow the user to observe any two internal signals by
entering the appropriate net name in the diagnostic software.
Signals may be viewed on a logic analyzer using Actel's
Actionprobe ® diagnostic tools. The probe pins can also be used
as user-defined I/Os when debugging is finished.

Ordering Information

A1010 B 2 PL 84

ACT 1 Array Performance

Temperature and Voltage Effects

ACT 1 FPGAs

Worst-case delays for ACT 1 arrays are calculated in the same
manner as for masked array products. A typical delay parameter
is multiplied by a derating factor to account for temperature,
voltage, and processing effects. However, in an ACT 1 array,
temperature and voltage effects are less dramatic than with
masked devices. The electrical characteristics of module
interconnections on ACT 1 devices remain constant over voltage
and temperature fluctuations.

As a result, the total derating factor from typical to worst-case for
a standard speed ACT 1 array is only 1.19 to 1, compared to 2 to 1
for a masked gate array.

Logic Module Size

Logic module size also affects perfonnance. A mask programmed I
gate array cell with four transistors usually implements only one
logic level. In the more complex logic module (similar to the
complexity of a gate array macro) of an ACT 1 array,
implementation of multiple logic levels within a single module is
possible. This eliminates interlevel wiring and associated RC
delays. The effect is termed "net compression."

c

I Application (Temperature Range)
C = Commercial (0 to +70°C)
I = Industrial (-40 to +85°C)
M = Military (-55 to + 125°C)
B = MIL-STD-883
E = Extended Flow

Package Lead Count

Package Type

Speed Grade

PL = Plastic J-Leaded Chip Carriers
PQ = Plastic Quad Flatpacks
CQ = Ceramic Quad Flatpack
PG = Ceramic Pin Grid Array
VQ = Very Thin Quad Flatpack

Std = Standard Speed
-1 = Approximately 15% faster than Standard
-2 = Approximately 25% faster than Standard

Die Revision
B = 1.01lm CMOS Process

Part Number
A1010 = 1200 Gates
A 1 020 = 2000 Gates

1-5

Product Plan

Speed Grade* Application

Std -1 -2 C M B E

A1010B Device

44-pin Plastic Leaded Chip Carrier (PL) II t/ II t/ t/
68-pin Plastic Leaded Chip Carrier (PL) II t/ II II II
100-pin Plastic Quad Flatpack (PQ) II II II II II
80-pin Very Thin (1.0 mm) Quad Flatpack (VQ) P P P P
84-pin Ceramic Pin Grid Array (PG) II II II t/ t/

A 1 020B Device

44-pin Plastic Leaded Chip Carrier (PL) II t/ II t/ t/
68-pin Plastic Leaded Chip Carrier (PL) II t/ II t/ t/
84-pin Plastic Leaded Chip Carrier (PL) II II II t/ II
100-pin Plastic Quad Flatpack (PQ) II II II II II
80-pin Very Thin (1.0 mm) Quad Flatpack (VQ) P P P P
84-pin Ceramic Pin Grid Array (PG) II II II II t/
84-pin Ceramic Quad Flatpack (CQ) II II II t/ t/ II

Applications: C = Commercial Availability: t/ = Available * Speed Grade: -1 = Approx. 15% faster than Standard
I = Industrial P = Planned -2 = Approx. 25% faster than Standard
M = Military - = Not Planned
B = MIL-STD-883
E = Extended Flow

Device Resources

User II0s

Device Logic Modules Gates 44-pin 68-pin 80-pin 84-pin 100-pin

A1010B 295 1200 34 57 57 57 57

A1020B 547 2000 34 57 69 69 69

1-6

Pin Description

ClK Clock (Input)

TTL Clock input for global clock distribution network. The Clock
input is buffered prior to clocking the logic modules. This pin can
also be used as an I/O.

DClK Diagnostic Clock (Input)

TTL Clock input for diagnostic probe and device programming.
DCLK is active when the MODE pin is HIGH. This pin functions
as an I/O when the MODE pin is LOW.

GND Ground

Input LOW supply voltage.

I/O Input/Output (Input, Output)

I/O pin functions as an input, output, three-state, or bidirectional
buffer. Input and output levels are compatible with standard TTL
and CMOS specifications. Unused I/O pins are automatically
driven LOW by the ALS software.

MODE Mode (Input)

The MODE pin controls the use of multifunction pins (DCLK,
PRA, PRB, SDI). When the MODE pin is HIGH, the special
functions are active. When the MODE pin is LOW, the pins
function as I/O.

NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

The Probe A pin is used to output data from any user-defined
design node within the device. This independent diagnostic pin is

ACT 1 FPGAs

used in conjunction with the Probe B pin to allow real-time
diagnostic output of any signal path within the device. The Probe
A pin can be used as a user-defined I/O when debugging has
been completed. The pin's probe capabilities can be permanently
disabled to protect the programmed design's confidentiality.
PRA is active when the MODE pin is HIGH. This pin functions
as an I/O when the MODE pin is LOW.

PRB Probe B (Output)

The Probe B pin is used to output data from any user-defined
design node within the device. This independent diagnostic pin
is used in conjunction with the Probe A pin to allow real-time
diagnostic output of any signal path within the device. The Probe
B pin can be used as a user-defined I/O when debugging has
been completed. The pin's probe capabilities can be permanently
disabled to protect the programmed design's confidentiality. PRB
is active when the MODE pin is HIGH. This pin functions as an
I/O when the MODE pin is LOW.

SOl Serial Data Input (Input)

Serial data input for diagnostic probe and device programming.
SDI is active when the MODE pin is HIGH. This pin functions as
an I/O when the MODE pin is LOW.

Vee Supply Voltage

Input HIGH supply voltage.

Vpp Programming Voltage

Input supply voltage used for device programming. This pin must
be connected to Vee during normal operation.

1-7

I

Absolute Maximum Ratings 1 Recommended Operating Conditions
Free air temperature range

Parameter Commercial Industrial Military Units
Symbol Parameter Limits Units

Temperature o to +70 -40 to +85 -55 to +125 DC
Vee DC Supply Voltage2 -0.5 to +7.0 Volts Range1

VI Input Voltage -0.5 to Vee +0.5 Volts Power Supply
±5 ±10 ±10 %Vee Tolerance

Vo Output Voltage -0.5 to Vee +0.5 Volts
Note:

110 I/O Sink/Source ±20 mA 1. Ambient temperature (T A) used for commercial and industrial; case
Current3 temperature (T d used for military.

TSTG Storage Temperature -65 to +150 °C

Note:
1. Stresses beyond those listed under" Absolute Maximum Ratings" may

cause permanent damage to the device. Exposure to absolute
maximum rated conditions for extended periods may affect device
reliability. Device should not be operated outside the Recommended
Operating Conditions.

2. V pp = Vee, except during device programming.
3. Device inputs are normally high impedance and draw extremely low

current. However, when input voltage is greater than Vee + 0.5 V or
less than GND - 0.5 V, the internal protection diode will be forward
biased and can draw excessive current.

Electrical SpeCifications

Commercial Industrial
Symbol Parameter

Min. Max. Min. Max.

(IOH = -10 mAf 2.4

VOH
1 (IOH =-6 mA) 3.84

(lOH =-4 mA) 3.7

1
(IOL = 10 mA)2 0.5

VOL
(lOL = 6 mA) 0.33 0.40

VIL -0.3 0.8 -0.3 0.8

VIH 2.0 Vee + 0.3 2.0 Vee + 0.3

Input Transition Time tR, tF2 500 500

Cia I/O Capacitance2, 3 10 10

Standby Current, lee 4 3 10

Leakage CurrentS -10 10 -10 10

los Output Short (Va = Vee) 140 140

Circuit Current6
(Va = GND) -100 -100

Notes:
1. Only one output tested at a time. Vee = min.
2. Not tested, for information only.
3. fuc1udes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f = 1 MHz.
4. Typical standby current = 1 rnA. All outputs unloaded. All inputs = Vee or GND.
5. Yo, VIN = Vee orGND.
6. Only one output tested at a time. Min. at Vee = 4.5 V; Max. at Vee = 5.5 V.

1-8

Min.

3.7

-0.3

2.0

-10

Military
Units

Max.

V

V

V

V

0.40 V

0.8 V

Vee + 0.3 V

500 ns

10 pF

20 mA

10 !lA
140 mA

-100 mA

Package Thermal Characteristics

The device junction to case thermal characteristics is 8jc, and the
junction to ambient air characteristics is 8ja. The thermal
characteristics for 8ja are shown with two different air flow rates.

ACT 1 FPGAs

Maximum junction temperature is 150°C.

A sample calculation of the maximum power dissipation for an
84-pin plastic leaded chip carrier at commercial temperature is as
follows:

Max junction temp. (0C) - Max commercial temp. (0C)

8ja (OC/W)

150°C -70°C

44°C/W
1.82 W

Package Type Pin Count

Plastic J-Leaded Chip Carrier 44
68
84

Plastic Quad Flatpack 100

Very Thin (1.0 mm) Quad Flatpack 80

Ceramic Pin Grid Array 84

Ceramic Quad Flatpack 84

Power Dissipation

The following formula is used to calculate total device
dissipation.

Total Device Power (mW) = (0.20 x N x F1) + (0.085 x M x F2) +
(0.80 x P x F3)

Where:

Fl = Average logic module switching rate in MHz

F2 = CLKBUF macro switching rate in MHz

F3 = Average I/O module switching rate in MHz

M = Number of logic modules connected to the CLKBUF
macro

N = Total number of logic modules used in the design
(including M)

P = Number of outputs loaded with 50 pF

Average switching rate of logic modules and of I/O modules is
some fraction of the device operating frequency (usually
CLKBUF). Logic modules and I/O modules switch states (from
low-to-high or from high-to-Iow) only if the input data changes
when the module is enabled. A conservative estimate for average

Sjc

15
13
12

13

12

8

5

Sja Sja Units Still Air 300 ftlmin

52 40 °C/W
45 35 °C/W
44 33 °C/W

55 47 °C/W

68 55 °C/W

33 20 °C/W

40 30 °C/W

logic module and I/O module switching rates (variables F1 and
F3, respectively) is 10% of device clock driver frequency.

If the CLKBUF macro is not used in the design, eliminate the
second term (including F2 and M variables) from the formula.

Sample A1020 Device Power Calculation

To illustrate the power calculation, consider a large design
operating at high frequency. This sample design utilizes 85% of
available logic modules on the A1020-series device (.85 x 547 =
465 logic modules used). The design contains 104 flip-flops (208
logic modules). Operating frequency of the design is 16 MHz. In
this design, the CLKBUF macro drives the clock network. Logic
modules and I/O modules are switching states at approximately
10% of the clock frequency rate (.10 x 16 MHz = 1.6 MHz).
Sixteen outputs are loaded with 50 pF.

To summarize the design described above: N = 465; M = 208;
F2 = 16; F1 = 4; F3 = 4; P = 16. Total device power can be
calculated by substituting these values for variables in the device
dissipation formula.

Total device power for this example =
(0.20 x 465 x 1.6) + (0.085 x 208 x 16) + (0.80 x 16 x 1.6) = 452 mW

1-9

•

Functional Timing Tests

AC timing for logic module internal delays is determined after
place and route. The ALS Timer utility displays actual timing
parameters for circuit delays. ACT 1 devices are AC tested to a
"binning" circuit specification.

The circuit consists of one input buffer + n logic modules + one
output buffer (n = 16 for A 10 lOB; n = 28 for A1020B). The logic

Output Buffer Performance Derating

12

10

6

4
0.2

Sink

/
If'

/
If

/
V/
./

'/

0.3 0.4 0.5

VOL (Volts)

0.6

modules are distributed along two sides of the device, as inverting
or non-inverting buffers. The modules are connected through
programmed antifuses with typical capacitive loading.

Propagation delay [tPD = (tpLH + tpHd/2] is tested to the
following AC test specifications.

<' .s
J:

...9

-4

-6

-8

-10

-12
4.0

Source

"" ~
" "

3.6

'" '" "' "'j'.

3.2 2.8

VOH (Volts)

~

"
2.4 2.0

- - - - Military, worst-case values at 125°C, 4.5 V.

Commercial, worst-case values at 70°c, 4.75 V.

Note:
The above curves are based on characterizations of sample devices and
are not completely tested on all devices.

1-10

ACT 1 FPGAs

ACT 1 Timing Model*

Input Delay Internal Delays Predicted Output Delay
Routing

r:-:-:: - - ~

Ilia Module I Logic Module

Delays
nJO Module- I

~t-----t---------1C> : ,
I I: T C> 1 ~

tOLH = 8.7 ns

tlNYL = 3.5 ns I tlR02 = 1.7 ns I

L- ---.l tlR01 = 1.1 ns L--
tp

-
o
-=-3-.4-n-

s
---l

tlR04 = 3.6 ns

1- ~
tR01 = 1.1 ns
tR02 = 1.7 ns tENHZ = 11.6 ns

tlR08 = 7.7 ns tco = 3.4 ns tR04 = 3.6 ns

ARRAY
CLOCK

tCKH = 6.4 ns

FMAX = 60 MHz

tR08 = 7.7 ns

Fa = 128

*Values shown for ACT 1 '-2' speed devices at worst-case commercial conditions.

Predictable Performance: Tight Delay
Distributions

Propagation delay between logic modules depends on the
resistive and capacitive loading of the routing tracks, the
interconnect elements, and the module inputs being driven.
Propagation delay increases as the length of routing tracks, the
number of interconnect elements, or the number of inputs
increases.

From a design perspective, the propagation delay can be
statistically correlated or modeled by the fanout (number of
loads) driven by a module. Higher fanout usually requires some
paths to have longer routing tracks.

The ACT 1 family delivers a very tight fanout delay distribution.
This tight distribution is achieved in two ways: by decreasing the
delay of the interconnect elements and by decreasing the number
of interconnect elements per path.

Actel's patented PLICE antifuse offers a very low resistive/
capacitive interconnect. The ACT 1 family's antifuses, fabricated
in 1.0 J.Ull lithography, offer nominal levels of 500 ohms
resistance and 7.5 femtofarad (fF) capacitance per antifuse.

The ACT 1 fanout distribution is also tight due to the low number
of antifuses required for each interconnect path. The ACT 1
family's proprietary architecture limits the number of antifuses
per path to a maximum of four, with 90% of interconnects using
two antifuses.

Logic Module + Routing Delay, by Fanout (ns)
(Worst-Case Commercial Conditions)

Family FO=1 FO=2 FO=3 FO=4 FO=8

'STD' 5.9 6.7 7.8 9.3 14.7

'-1' speed 5.0 5.7 . 6.6 7.9 12.5

'-2' speed 4.5 5.1 5.9 7.0 11.1

Timing Characteristics

Timing characteristics for ACT 1 devices fall into three
categories: family dependent, device dependent, and design
dependent. The input and output buffer characteristics are
common to all ACT 1 family members. Internal routing delays are
device dependent. Design dependency means actual delays are
not determined until after placement and routing of the user
design is complete. Delay values may then be determined by
using the ALS Timer utility or perfonning simulation with post­
layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are
used for initial design performance evaluation. Critical net delays
can then be applied to the most time-critical paths. Critical nets
are determined by net property assignment prior to placement and
routing. Up to 6% of the nets in a design may be designated as
critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special
routing resources that span multiple rows, columns, or modules.
Long tracks employ three and sometimes four antifuse

1-11

I

connections. This increases capacitance and resistance, resulting
in longer net delays for macros connected to long tracks.
Typically, up to 6% of nets in a fully utilized device require long
tracks. Long tracks contribute approximately 5 ns to IOns delay.
This additional delay is represented statistically in higher fanout
(FO=8) routing delays in the datasheet specifications section.

appropriate voltage and temperature derating factors for a given
application.

Timing Derating

A best case timing derating factor of 0.45 is used to reflect best
case processing. Note that this factor is relative to the "standard
speed" timing parameters, and must be multiplied by the

Timing Derating Factor (Temperature and Voltage)

(Commercial Minimum/Maximum Specification) x

Min.

0.69

Industrial Military

Max. Min.

1.11 0.67

Timing Derating Factor for Designs at Typical Temperature (T J = 25°C) and Voltage (5.0 V)

(Commercial Maximum Specification) x 0.85

Max.

1.23

Temperature and Voltage Derating Factors (normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

-55

4.50 0.75

4.75 0.71

5.00 0.69

5.25 0.68

5.50 0.67

1.3

1.2

0 1.1
ti
III
U. 1.0 C)
s:

~
0.9 CI)

c

0.8

0.7

0.6
4.50

Note:

-40 0 25 70 85

0.79 0.86 0.92 1.06 1.11

0.75 0.82 0.87 1.00 1.05

0.72 0.80 0.85 0.97 1.02

0.69 0.77 0.82 0.95 0.98

0.69 0.76 0.81 0.93 0.97

Junction Temperature and Voltage Derating Curves
(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

85°C
-------. 70°C

4.75 5.00

Voltage (V)

5.25 5.50

This derating factor applies to all routing and propagation delays.

1-12

125

1.23

1.16

1.13

1.09

1.08

Parameter Measurement

Output Buffer Delays

D

Vee

50% GND

PAD PAD
VOL

tOLH tOHL tENZL

AC Test Loads

Load 1
(Used to measure propagation delay)

To the output under test

)>-------,
1=50PF

Input Buffer Delays

GND

ACT 1 FPGAs

VOL

To AC test loads (shown below)

Vee
GND 50% GND

PAD
GND

tENLZ tENZH tENHZ

Load 2
(Used to measure rising/falling edges)

Vee

•
GND

•

To the output under test)---_e

R to Vee for tpLZ/tpZL
R to GND for tpHZ/tpZH
R = 1 kQ

T
50PF

Module Delays

Vee

Out ./ 50% "1'-5_0o
_Yo ___ _

GND

Out Vee

500/:-i'... GND / 50%

tpHL tpLH

1-13

II

Sequential Timing Characteristics

Flip-Flops and latches

Note:

D~Q
CL~~
(Positive edge triggered)

-j tHO\--
D1 ____ ~><~ ___ _J)(~------------------------------------

I-- tSUO----J tWCLKA I~----III I~---- tA ---.Jill

CLK ____________ ~I --~~ ____ ~ ~I ____ ~I ~ ____ ~r__
-jtSUENA\--

E ___________ 1

I-- tco--I

Q_------------------------------~><~----~><~----------
i--tRS--j

PRE,CLR ~--------_____ ~I ~I ________ __
l-tWASYN"1

1. D represents all data functions involving A, B, and S for multiplexed flip-flops.

1-14

ACT 1 FPGAs

ACT 1 Timing Characteristics
(Worst-Case Commercial Conditions, Vee = 4.75 V, TJ = 70°C)

Logic Module Propagation Delays 'Std'Speed '-1' Speed '-2' Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

tpD1 Single Module 4.5 3.8 3.4 ns

tpD2 Dual Module Macros 10.4 8.8 7.8 ns

tco Sequential Clk to Q 4.5 3.8 3.4 ns

tGO Latch G to Q 4.5 3.8 3.4 ns

tRS Flip-Flop (Latch) Reset to Q 4.5 3.8 3.4 ns

Predicted Routing Delays 1

tRD1 FO=1 Routing Delay 1.4 1.2 1.1 ns

tRD2 FO=2 Routing Delay 2.2 1.9 1.7 ns II tRD3 FO=3 Routing Delay 3.3 2.8 2.5 ns

tRD4 FO=4 Routing Delay 4.8 4.1 3.6 ns

tRDB FO=8 Routing Delay 10.2 8.7 7.7 ns

Sequential Timing Characteristics2

tSUD Flip-Flop (Latch) Data Input
Setup 8.5 7.2 6.4 ns

tHD Flip-Flop (Latch) Data Input
Hold 0.0 0.0 0.0 ns

tSUENA Flip-Flop (Latch) Enable Setup 8.5 7.2 6.4 ns

tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 ns

tWCLKA Flip-Flop (Latch) Clock Active
Pulse Width 10.5 9.0 8.0 ns

tWASYN Flip-Flop (Latch) Asynchro-
nous Pulse Width 10.5 9.0 8.0 ns

tA Flip-Flop Clock Input Period 22.3 18.9 16.7 ns

fMAX Flip-Flop (Latch) Clock
Frequency (FO = 128) 45 53 60 MHz

Notes:
l. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance.

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay
measurements performed on the device prior to shipment.

2. Setup times assume fanout of 3. Further testing information can be obtained from the ALS Timer utility.

1-15

ACT 1 Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Input Module Propagation Delays 'Std'Speed '-1' Speed '-2' Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

tlNYH Pad to Y High 4.7 4.0 3.5 ns

tlNYL Pad to Y Low 4.7 4.0 3.5 ns

Input Module Predicted Routing Delays 1

tlRDl FO=1 Routing Delay 1.4 1.2 1.1 ns

tlRD2 FO=2 Routing Delay 2.2 1.9 1.7 ns

tlRD3 FO=3 Routing Delay 3.3 2.8 2.5 ns

tlRD4 FO=4 Routing Delay 4.8 4.1 3.6 ns

t lRD8 FO=8 Routing Delay 10.2 8.7 7.7 ns

Global Clock Network

tCKH Input Low to High FO = 16 7.5 6.4 5.6 ns
FO = 128 8.6 7.3 6.4

tCKL Input High to Low FO = 16 9.9 8.4 7.4 ns
FO = 128 10.8 9.2 8.1

tPWH Minimum Pulse Width High FO = 16 10.0 8.5 7.5 ns
FO = 128 10.5 9.0 8.0

tPWL Minimum Pulse Width Low FO = 16 10.0 8.5 7.5 ns
FO = 128 10.5 9.0 8.0

tCK8W Maximum Skew FO = 16 1.8 1.5 1.3 ns
FO = 128 2.8 2.4 2.1

tp Minimum Period FO = 16 20.9 17.6 15.4 ns
FO = 128 22.3 18.9 16.7

fMAX Maximum Frequency FO = 16 48 57 65 MHz
FO = 128 45 53 60

Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays

are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

1-16

ACT 1 FPGAs

ACT 1Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Output Module Timing 'Std'Speed '-1' Speed '-2' Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

TTL Output Module Timing 1

tOLH Data to Pad High 11.6 9.9 8.7 ns

tOHL Data to Pad Low 13.3 11.3 10.0 ns

tENZH Enable Pad Z to High 11.5 9.8 8.6 ns

tENZL Enable Pad Z to Low 14.0 11.9 10.5 ns

tENHZ Enable Pad High to Z 15.4 13.1 11.6 ns

tENLZ Enable Pad Low to Z 13.9 11.8 10.4 ns

I dTLH Delta Low to High 0.09 0.08 0.07 ns/pF

dTHL Delta High to Low 0.12 0.10 0.09 ns/pF

CMOS Output Module Timing 1

tOLH Data to Pad High 14.5 12.3 10.9 ns

tOHL Data to Pad Low 11.1 9.4 8.3 ns

tENZH Enable Pad Z to High 11.5 9.8 8.6 ns

tENZL Enable Pad Z to Low 14.0 11.9 10.5 ns

tENHZ Enable Pad High to Z 15.4 13.1 11.6 ns

tENLZ Enable Pad Low to Z 13.9 11.8 10.4 ns

dTLH Delta Low to High 0.15 0.13 0.11 ns/pF

dTHL Delta High to Low 0.09 0.08 0.07 ns/pF

Note:
1. Delays based on 50 pF loading.

1-17

Macro Library
Hard Macros-Combinatorial

Function

Adder

AND

AND-OR

AND-XOR

Buffer

Clock Net

1-18

Macro

FA1A

FA1B

FA2A

HA1

HA1A

HA1B

HA1C

AND2

AND2A

AND2B

AND3

AND3A

AND3B

AND3C

AND4

AND4A

AND4B

AND4C

AND4D

A01

A01A

A01B

A01C

A02

A02A

A03

A04A

A05A

AOl1

AOl1A

AOl1B

AOl2A

AOl2B

AOl3A

AOl4

AX1

AX1A

AX1B

BUF

BUFA

GAND2

GMX4

GNAND2

GNOR2

GOR2

GXOR2

Description

1-bit adder, carry in and carry out active low, A-input active low

1-bit adder, carry in and carry out active low

2-bit adder, carry in and carry out active low, AD and A 1 inputs active low

Half-Adder

Half-Adder with active low A-input

Half-Adder with active low carry out and sum

Half-Adder with active low carry out

2-input AND

2-input AND with active low A-input

2-input AND with active low inputs

3-inputAND

3-input AND with active low A-input

3-input AND with active low A- and B-inputs

3-input AND with active low inputs

4-input AND

4-input AND with active low A-input

4-input AND with active low A- and B-inputs

4-input AND with active low A-, B-, and C-inputs

4-input AND with active low inputs

3-input AND-OR

3-input AND-OR with active low A-input

3-input AND-OR with active low C-input

3-input AND-OR with active low A- and C-inputs

4-input AND-OR

4-input AND-OR with active low A-input

4-input AND-OR

4-input AND-OR

4-input AND-OR

3-input AND-OR-INVERT

3-input AND-OR-INVERT with active low A-input

3-input AND-OR-INVERT with active low C-input

4-input AND-OR-INVERT with active low A-input

4-input AND-OR-INVERT with active low A- and C-inputs

4-input AND-OR-INVERT with active low inputs

2-wide 4-input AND-OR-INVERT

3-input AND-XOR with active low A-input

3-input AND-XOR-INVERT with active low A-input

3-input AND-XOR with active low A- and B-inputs

Buffer with active high input and output

Buffer with active low input and output

2-input AND Clock Net

4-to-1 Multiplexor Clock Net

2-input NAND Clock Net

2-input NOR Clock Net

2-input OR Clock Net

2-input Exclusive OR Clock Net

Modules

C

2

2

2

2

2

2

2

1

2

2

1

1

2

2

1

2

ACT 1 FPGAs

Hard Macros-Combinatorial (Continued)

Modules

Function Macro Description C

Combinatorial CM8A Combinational Module

Inverter INV Inverter with active low output

INVA Inverter with active low input

Majority MAJ3 3-input complex AND-OR

MUX MX2 2-to-1 Multiplexor

MX2A 2-to-1 Multiplexor with active low A-input

MX2B 2-to-1 Multiplexor with active low B-input

MUX MX2C 2-to-1 Multiplexor with active low output

MX4 4-to-1 Multiplexor

MXC1 Boolean

MXT Boolean I NAND NAND2 2-input NAND

NAND2A 2-input NAND with active low A-input

NAND2B 2-input NAND with active low inputs

NAND3 3-input NAND

NAND3A 3-input NAND with active low A-input

NAND3B 3-input NAND with active low A- and B-inputs

NAND3C 3-input NAND with active low inputs 1

NAND4 4-input NAN D 2

NAND4A 4-input NAND with active low A-input

NAND4B 4-input NAND with active low A- and B-inputs

NAND4C 4-input NAND with active low A-, B-, and C-inputs

NAND4D 4-input NAND with active low inputs

NOR NOR2 2-input NOR

NOR2A 2-input NOR with active low A-input

NOR2B 2-input NOR with active low inputs

NOR3 3-input NOR

NOR3A 3-input NOR with active low A-input

NOR3B 3-input NOR with active low A- and B-inputs

NOR3C 3-input NOR with active low inputs 1

NOR4 4-input NOR 2

NOR4A 4-input NOR with active low A-input

NOR4B 4-input NOR with active low A- and B-inputs 1

NOR4C 4-input NOR with active low A-, B-, and C-inputs 2

NOR4D 4-input NOR with active low inputs 2

OR OR2 2-input OR

OR2A 2-input OR with active low A-input

OR2B 2-input OR with active low inputs

OR3 3-input OR

OR3A 3-input OR with active low A-input

OR3B 3-input OR with active low A- and B-inputs

OR3C 3-input OR with active low inputs 2

OR4 4-input OR

OR4A 4-input OR with active low A-input

OR4B 4-input OR with active low A- and B-input 2

OR4C 4-input OR with active low A-, B-, and C-inputs 2

OR4D 4-input OR with active low inputs 2

1-19

Hard Macros-Combinatorial (Continued)

Modules

Function Macro Description C

OR-AND OA1 3-input OR-AND

OA1A 3-input OR-AND with active low A-input

OA18 3-input OR-AND with active low C-input

OA1C 3-input OR-AND with active low A- and C-inputs

OA2 2-wide 4-input OR-AND

OA2A 2 wide 4-input OR-AND with active low A-input

OA3 4-input OR-AND

OA3A 4-input OR-AND with active low C-input

OA38 4-input OR-AND with active low A- and C-inputs

OA4A 4-input OR-AND with active low C-input

OA5 4-input complex OR-AND

OAI1 3-input OR-AND-INVERT

OAI2A 4-input OR-AND-INVERT with active low D-input

OAI3 4-input OR-AND-INVERT 2

OAI3A 4-input OR-AND-INVERT with active low C- and D-inputs

XNOR XNOR 2-input XNOR

XNOR-AND XA1A 3-input XNOR-AND

XNOR-OR X01A 3-input XNOR-OR

XOR XOR 2-input XOR

XOR-AND XA1 3-input XOR-AND

XOR-OR X01 3-input XOR-OR

1-20

ACT 1 FPGAs

Hard Macros-Sequential

Modules

Function Macro Description C

D-Type DF1 D-Type Flip-Flop 2

DF1A D-Type Flip-Flop with active low output 2

DF1B D-Type Flip-Flop with active low clock 2

DF1C D-Type Flip-Flop with active low clock and output 2

DFC1 D-Type Flip-Flop with active high Clear 2

DFC1A D-Type Flip-Flop with active high Clear and active low clock 2

DFC1B D-Type Flip-Flop with active low Clear 2

DFC1C D-Type Flip-Flop with Clear, Sequential 2

DFC1D D-Type Flip-Flop with active low Clear and clock 2

DFC1E D-Type Flip-Flop with Clear, Sequential 2

DFC1F D-Type Flip-Flop with Clear, Sequential 2 II DCF1G D-Type Flip-Flop with Clear, Sequential 2

DFE D-Type Flip-Flop with active high Enable 2

DFE1B D-Type Flip-Flop with active low Enable 2

DFE1C D-Type Flip-Flop with active low Enable and clock 2

DFE2D D-Type Flip-Flop with Enable, Sequential 2

DFE3A D-Type Flip-Flop with Enable and active low Clear 2

DFE3B D-Type Flip-Flop with Enable and active low Clear and clock 2

DFE3C D-Type Flip-Flop with active low Enable and Clear 2

DFE3D D-Type Flip-Flop with active low Enable, Clear, and clock 2

DFE4 D-Type Flip-Flop with Enable, Sequential 2

DFE4A D-Type Flip-Flop with Enable, Sequential 2

DFE4B D-Type Flip-Flop with Enable, Sequential 2

DFE4C D-Type Flip-Flop with Enable, Sequential 2

DFEA D-Type Flip-Flop with Enable and active low clock 2

DFEB D-Type Flip-Flop with Enable, Sequential 2

DFEC D-Type Flip-Flop with Enable, Sequential 2

DFED D-Type Flip-Flop with Enable, Sequential 2

DFM 2-input D-Type Flip-Flop with Multiplexed Data 2

DFM1B 2-input D-Type Flip-Flop with Multiplexed Data and active low output 2

DFM1C 2-input D-Type Flip-Flop with Multiplexed Data and active low clock and 2
output

DFM3 2-input D-Type Flip-Flop with Multiplexed Data and Clear 2

DFM3B 2-input D-Type Flip-Flop with Multiplexed Data and active low Clear and 2
clock

DFM3E 2-input D-Type Flip-Flop with Multiplexed Data, Clear, and active low clock 2

DFM3F D-Type Flip-Flop with Multiplexed Data, Enable and Sequential 2

DFM3G D-Type Flip-Flop with Multiplexed Data, Enable and Sequential 2

DFM4 D-Type Flip-Flop with Multiplexed Data, Enable and Sequential 2

DFM4A D-Type Flip-Flop with Multiplexed Data, Enable and Sequential 2

DFM4B D-Type Flip-Flop with Multiplexed Data, Enable and Sequential 2

DFM4C 2-input D-Type Flip-Flop with Multiplexed Data and active low Preset and 2
output

DFM4D 2-input D-Type Flip-Flop with Multiplexed Data and active low Preset, clock, 2
and output

DFM4E D-Type Flip-Flop with Multiplexed Data, Enable and Sequential 2

DFM5A D-Type Flip-Flop with Multiplexed Data, Enable and Sequential 2

1-21

Hard Macros-Sequential (Continued)

Function

D-Type

J-K Type

Latch

1-22

Macro

DFM5B

DFMA

DFMB

DFME1A

DFP1

DFP1A

DFP1B

DFP1C

DFP1D

DFP1E

DFP1F

DFP1G
DFPC

DFPCA

JKF

JKF1B

JKFPC

JKF2A

JKF2B

JKF2C

JKF2D

JKF3A

JKF3B

JKF3C

JKF3D

JKF4B

DL1

DL1A

DL1B

DL1C

DL2A

DL2B

DL2C

DL2D

DLC

DLC1

DLC1A

DLC1F

DLC1G

DLCA

DLE

DLE1D

DLE2A

DLE2B

DLE2C

Description

D-Type Flip-Flop with Multiplexed Data, Enable and Sequential

2-input D-Type Flip-Flop with Multiplexed Data and active low Clock

2-input D-Type Flip-Flop with Multiplexed Data and active low Clear

2-input D-Type Flip-Flop with Multiplexed Data and active low Enable

D-Type Flip-Flop with active high Preset

D-Type Flip-Flop with active high Preset and active low clock

D-Type Flip-Flop with active low Preset

D-Type Flip-Flop with active high Preset and active low output

D-Type Flip-Flop with active low Preset and clock

D-Type Flip-Flop with active low Preset and output

D-Type Flip-Flop with active high Preset and active low clock and output

D-Type Flip-Flop with active low Preset, clock, and output
D-Type Flip-Flop with active high Preset, active low Clear, and active high
clock
D-Type Flip-Flop with active high Preset and active low Clear and clock

JK Flip-Flop with active low K-input

JK Flip-Flop with active low clock and K-input

JK Flip-Flop, Sequential

JK Flip-Flop with active low Clear and K-input

JK Flip-Flop with active low Clear, clock, and K-input

JK Flip-Flop with active high Clear and active low K-input

JK Flip-Flop with active high Clear and active low clock and K-input

JK Flip-Flop, Sequential

JK Flip-Flop, Sequential

JK Flip-Flop, Sequential

JK Flip-Flop, Sequential

JK Flip-Flop, Sequential

Data Latch

Data Latch with active low output

Data Latch with active low clock

Data Latch with active low clock and output

Sequential, Data Latch

Sequential, Data Latch

Sequential, Data Latch

Sequential, Data Latch

Data Latch with active low Clear

Data Latch with active high Clear

Data Latch with active high Clear and active low clock

Data Latch with active high Clear and active low output

Data Latch with active high Clear and active low clock and output

Data Latch with active low Clock and Clear

Data Latch with active high Enable

Data Latch with active high Enable and clock and active low input and output

Sequential, Data Latch with Enable

Data Latch with active low Enable, Clear, and clock

Data Latch with active low Enable and clock and active high clear

Modules

C

2
2
2
2
2
2
2

2
2
2
2

2

2

2
2

2

2

2
2
2

2
2
2

2
2

2

Hard Macros-Sequential (Continued)

Function

Latch

Input/Output Macros

Function

Buffer

Bidirectional

Input

Output

Macro

bLE3A

DLE3B

DLE3C

OLEA

DLEB

DLEC
DLM

DLM2A

DLMA
DLME1A
DLP1
DLP1A
DLP1B
DLP1C
DLP1D
DLP1E

Macro

INBUF

OUTBUF

BIBUF

CLKBUF

TRIBUFF

Description

Sequential, Data Latch with Enable

Data Latch with active low Enable and clock and active low Preset

Data Latch with active low Enable Preset and clock

Data Latch with active low Enable and active high clock

Data Latch with active high Enable and active high clock

Data Latch with active low Enable and clock

2-input Data Latch with Multiplexed Data

Sequential, Data Latch with Multiplexed Data

2-input Data Latch with Multiplexed Data and active low clock
2-input Data Latch with Multiplexed Data and Enable and active low clock
Data Latch with active high Preset and clock
Data Latch with active high Preset and active low clock
Data Latch with active low Preset and active high clock
Data Latch with active low Preset and clock
Data Latch with active low Preset and output and active high clock
Data Latch with active low Preset, clock, and output

Description

Input Buffer

Output buffer, High Slew

Bidirectional Buffer, High Slew (with hidden buffer at Y pin)

Input for Dedicated Routed Clock Network

Tristate output, High Slew

ACT 1 FPGAs

Modules

C

I/O
Modules

1·23

I

Package Pin Assignments
(Top View)

GND

Vee

Vpp

Notes:

Co)
Co)

>
o
z
(!)

6543214443424140

44-Pin
PLCC

18 19 20 21 22 23 24 25 26 27 28

o z
(!)

Co)
Co)

>

NC

GND
GND

Vee
vee

PRBor I/O
PRAor I/O
DClK or I/O
SDlorl/O
Vee
MODE

33 ClK or I/O
32 GND
31
30
29

GND
GND

Vee

Vpp

Co)
Co)

>

68-Pin
PLCC

0
z
(!)

60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44

27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Co)
Co)

>
o
z
(!)

~
o
a:l
a:
0...

111098 7 6 5 4 3 2 1 84838281807978777675

A1020B
84-Pin
PLCC

54

~~~~~~~~~~~«~~Q~GW~~~ 

CL 
CL 
> 

o 
z 
(!) 

Co) 
Co) 

> 

o 
z 
(!) 

PRAorl/O 
DClKor I/O 
SDI or I/O 

Vee 
Vee 
MODE 

ClKor 110 

GND 
GND 

Co) 
Co) 

> 

PRBor I/O 
PRAor I/O 
DClKor I/O 
SDlorllO 
Vee 
MODE 

ClK or I/O 

GND 

1. V pp must be tenninated to Vee, except during device programming. 3. Unused I/O pins are designated as outputs by ALS and are driven low. 
2. MODE must be tenninated to circuit ground, except during device 

programming or debugging. 

1-24 

4. All unassigned pins are available for use as I/Os. 



Package Pin Assignments (continued) 

(Top View) 

Notes: 

N/C 
N/C 

GNO 

VCC 

N/C 
N/C 
N/C 

Vpp 

() 
() 
> 

o 
z 
CJ 

~ 
o 
III 
a: 
CL 

OON~nM~~~nnmw~~oo~~@~~ 
1 W 
2 0 59 
3 ~ 
4 ~ 
5 ~ 
6 ~ 
7 ~ 
8 ~ 
9 ~ 
10 A1010B 51 
11 80-Pin 50 

~~ VQFP !~ 
14 47 
15 46 
16 45 
17 44 
18 43 
19 42 
~ M 

o 
z 
CJ 

() 
() 
> 

N/C 
PRA or 1/0 
OClKorl/O 
SOl or 1/0 
N/C 
N/C 
N/C 

~S<t,E 
ClK or 1/0 

GNO 

N/C 
N/C 
N/C 

ACT 1 FPGAs 

1. V pp must be terminated to Vee, except during device programming. 3. Unused I/O pins are designated as outputs by ALS and are driven low. 
2. MODE must be terminated to circuit ground, except during device 

programming or debugging. 
4. All unassigned pins are available for use as I/Os. 

1-25 

I 



Package Pin Assignments (continued) 

(Top View) 

OON~n~~~nnnMoo~~~~~ro~~ 
N/C 1 60 

2 0 59 PRAor I/O 
3 58 DCLKor I/O 
4 57 SDlorl/O 
5 56 
6 55 

GND 7 54 
8 53 ~<6<6E 9 52 
10 A1020B 51 
11 SO-Pin 50 CLK or 110 
12 VQFP 49 

VCC 13 48 
14 47 GND 
15 46 
16 45 
17 44 
18 43 
19 42 
20 41 Vpp 
~~~~~~~~~~~~~~~~~~~~ 

Notes:
1. V pp must be terminated to Vee, except during device programming.
2. MODE must be terminated to circuit ground, except during device

programming or debugging.

1-26

3. Unused I/O pins are designated as outputs by ALS and are driven low.
4. All unassigned pins are available for use as 1/0s.

Package Pin Assignments (continued)

(Top View)

0000 zzzz
o o

>
Cl
Z
~

&0 0 0 0 0 >zzzzz

oom~n~~~nnnmoo~~~ffiMro~~W~~~~~M~~~
NC ~ 50

Notes:

NC

GND
GND

ClK or 1/0

MODE
Vee
Vee
NC
NC
NC

SDlorllO
DClK or 1/0

PRAor 1/0

GND
GND

ClKor 1/0

MODE
Vee
Vee

SDlori/O
DClK or 1/0

PRAorl/O

82 0 83
84
85
86
87
88
89
90 A1010B
91 100-Pin
92 PQFP
93
94
95
96
97

0 98

;~oO
1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930

000000 zzzzz:::,

000 zzz

(;
co
a:
c..

000000 zzzzz:::,
(;
co
a:

o
o
>

Cl
Z
~

Cl
Z
(!)

Cl
Z
~

o
o

>

o
o
>

0000 zzzz

&00000 >zzzzz

0000 zzzz

49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31

NC
NC
NC

Vee
Vee

GND
GND

NC
NC
NC

Vee
Vee

GND
GND

ACT 1 FPGAs

1. V pp must be tenninated to Vee, except during device programming. 3. Unused I/O pins are designated as outputs by ALS and are driven low.
2. MODE must be tenninated to circuit ground, except during device

programming or debugging.
4. All unassigned pins are available for use as I/Os.

1-27

II

Package Pin Assignments (continued)

(Top View)

Signal

PRA

PR8

MODE

SOl

OCKL

Vpp

ClK or I/O

GNO

Vee
N/C (No Connection)

Notes:

2 3 4 5 6 7 8 9 10 11

AOOOOOOOOOOO
800000000000
COO. 000 00
0 00 00
EOOO 000
F 84-Pin
GOOO CPGA 000
HOOO 000
100 00
JOO 000 00
KOOOOOOOOOOO
LOOOOOOOOOOO

• Orientation Pin (C3)

A10108 Devices

A11

810

E11

811

C10

K2

F9

87,E2,E3,K5,F10,G10

B5,F1,G2,K7,E9,E10

81,82, C1, C2, K1, J2, J10, K10, K11, C11, 010, 011

A1020B Devices

A11

810

E11

811

C10

K2

F9

87, E2, E3, K5,F10,G10

B5,F1,G2,K7,E9,E10

B2

1. V pp must be terminated to Vee, except during device programming. 3. Unused I/O pins are designated as outputs by ALS and are driven low.
2. MODE must be terminated to circuit ground, except during device

programming or debugging.

1-28

4. All unassigned pins are available for use as I/Os.

Package Pin Assignments (continued)

(Top View)

~
o

() 0 co
() Z a:
> CJ 0.. Pin #1

Index 84838281 80 79 78 77 76 75 74 73 72 71 7069686766 65 64

NC 1

GND
GND

10
11
12
13

Vee 14

Vee 15
16
17
18
19
20
21

Notes:

84·Pin
CQFP

22232425262728293031 32333435363738394041 42
Cl.
Cl.
>

o
Z
CJ

()
()

>

ACT 1 FPGAs

63 PRAor I/O
62 DClKor I/O
61 SOl or I/O
60
59
58
57 Vee
56 Vee
55 MODE
54
53 ClK or I/O
52
51
50 GND
49 GND
48
47
46
45
44
43

1. V pp must be terminated to Vee, except during device programming. 3. Unused I/O pins are designated as outputs by ALS and are driven low.
2. MODE must be terminated to circuit ground, except during device

programming or debugging.
4. All unassigned pins are available for use as I/Os.

1·29

I

1·30

ACTTM 2
Field Programmable
Gate Arrays

Features

Up to 8000 Gate Array Gates
(20,000 PLD equivalent gates)

Replaces up to 200 TTL Packages

Replaces up to eighty 20-Pin PAL ® Packages

Design Library with over 500 Macro Functions

Single-Module Sequential Functions

Wide-Input Combinatorial Functions

Up to 1232 Programmable Logic Modules

Up to 998 Flip-Flops

Datapath Performance at 105 MHz

16-Bit Accumulator Performance to 42 MHz

Two In-Circuit Diagnostic Probe Pins Support Speed
Analysis to 50 MHz

Two High-Speed, Low-Skew Clock Networks

I/O Drive to 10 rnA

Nonvolatile, User Programmable

Logic Fully Tested Prior to Shipment

Product Family Profile

Device

Capacity
Gate Array Equivalent Gates
PLD Equivalent Gates
TTL Equivalent Packages
20-Pin PAL Equivalent Packages

Logic Modules
S-Modules
C-Modules

Flip-Flops (maximum)

Routing Resources
Horizontal Tracks/Channel
Vertical Tracks/Channel
PLiCE Antifuse Elements

User I/Os (maximum)

Packages 1

Performance2

16-8it Prescaled Counters
16-8it Loadable Counters
16-8it Accumulators

CMOS Process

Note:
1. See product plan on page 1-33 for package availability.

Description

The ACTTM 2 family represents Actel's second generation of field
programmable gate arrays (FPGAs). The ACT 2 family presents a
two-module architecture, consisting of C-modules and S-modules.
These modules are optimized for both combinatorial and sequential
designs. Based on Actel's patented channeled array architecture,
the ACT 2 family provides significant enhancements to gate
density and performance while maintammg downward
compatibility with the ACT 1 design environment and upward
compatibility with the ACT 3 design environment. The devices are I
implemented in silicon ~ate, 1.0-/JI11, two-level metal CMOS, and
employ Actel's PLICE R antifuse technology. This revolutionary
architecture offers gate array design flexibility, high performance,
and fast time-to-production with user programming. The ACT 2
family is supported by the Designer and Designer Advantage
Systems, which offers automatic pin assignment, validation of
electrical and design rules, automatic placement and routing,
timing analysis, user programming, and diagnostic probe
capabilities. The sy~~ems are s~ported o~ the following platfo~s:
386/486™ PC, Sun ,and HP workstatlOns. The systems proVIde
CAE interfaces to the following design environments: Cadence,
Viewlogic®, Mentor Graphics®, and OrCADTM.

A1225A A1240A A1280A

2,500 4,000 8,000
6,250 10,000 20,000

63 100 200
25 40 80

451 684 1,232
231 348 624
220 336 608

382 568 998

36 36 36
15 15 15

250,000 400,000 750,000

83 104 140

100 CPGA 132 CPGA 176 CPGA
100 PQFP 144 PQFP 160 PQFP

84 PLCC 84 PLCC 172 CQFP

105 MHz 100 MHz 85 MHz
66 MHz 63 MHz 59 MHz
42 MHz 39 MHz 34 MHz

1.0 Ilm 1.0 Ilm 1.0 Ilm

2. Perfonnance is based on '-2' speed devices at commercial worst-case operating conditions using PREP Benchmarks (mean frequency results), Suite
#1, Version 1.2, dated 3-28-93, any analysis is not endorsed by PREP.

© 1993 Actei Corporation
1-31

Ordering Information

A1280

1-32

A - PG 176 c

I Application (Temperature Range)
C = Commercial (0 to +70°C)
I = Industrial (-40 to +85°C)
M = Military (-55 to + 125°C)
B = MIL-STD-883
E = Extended Military Flow

Package Lead Count

Package Type
PL = Plastic J-Leaded Chip Carrier
PQ = Plastic Quad Flatpack
CQ = Ceramic Quad Flatpack
PG = Ceramic Pin Grid Array

Speed Grade
Blank Standard Speed

-1 Approximately 15% faster than Standard
-2 = Approximately 25% faster than Standard

Die Revision
A =1.0-j.lm CMOS process

Part Number
A 1225A = 2500 Gates
A 1240A = 4000 Gates
A 1280A = 8000 Gates

Product Plan 1

A 1225A Device

1 DO-pin Ceramic Pin Grid Array (PG)
1 DO-pin Plastic Quad Flatpack (PQ)
84-pin Plastic Leaded Chip Carrier (PL)

A 1240A Device

132-pin Ceramic Pin Grid Array (PG)
144-pin Plastic Quad Flatpack (PQ)
84-pin Plastic Leaded Chip Carrier (PL)

A 1280A Device

176-pin Ceramic Pin Grid Array (PG)
160-pin Plastic Quad Flatpack (PQ)
172-pin Ceramic Quad Flatpack (CQ)

Applications: C = Commercial
I = Industrial

Note:

M = Military
B = MIL-STD-883
E = Extended Flow

Availability:

Std

t/
t/
t/

t/
t/
t/

t/
t/
t/

ACT 2 FPGAs

Speed Grade* Application

-1 -2 C M B E

t/ t/
t/ t/
t/ t/

t/ t/
t/ t/
t/ t/

t/ t/
t/ t/
t/ t/

tI' = Available • Speed Grade: -1 = Approx. 15% faster than Standard
P = Planned -2 = Approx. 25% faster than Standard
- = Not Planned

1. Please consult Actel representatives for current availability.

Device Resources

Device Logic
CPGA

Series Modules Gates 176-pin 132-pin

A1225A 451 2500

A1240A 684 4000 104

A1280A 1232 8000 140

User lias

PQFP

100-pin 160-pin 144-pin

83

104

125

PLCC

100-pin 84-pin

83 72

72

CQFP

172-pin

140

1-33

II

Pin Description

ClKA Clock A (Input)

TTL Clock input for clock distribution networks. The Clock input
is buffered prior to clocking the logic modules. This pin can also
be used as an I/O.

ClKB Clock B (Input)

TTL Clock input for clock distribution networks. The Clock input
is buffered prior to clocking the logic modules. This pin can also
be used as an I/O.

DClK Diagnostic Clock (Input)

TTL Clock input for diagnostic probe and device programming.
DCLK is active when the MODE pin is HIGH. This pin functions
as an I/O when the MODE pin is LOW.

GND Ground

LOW supply voltage.

I/O Input/Output (Input, Output)

The I/O pin functions as an input, output, three-state, or
bidirectional buffer. Input and output levels are compatible with
standard TTL and CMOS specifications. Unused I/O pins are
automatically driven LOW by the ALS software.

MODE Mode (Input)

The MODE pin controls the use of multifunction pins (DCLK,
PRA, PRB, SOl). When the MODE pin is HIGH, the special
functions are active. When the MODE pin is LOW, the pins
function as 1/0s.

NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

The Probe A pin is used to output data from any user-defined
design node within the device. This independent diagnostic pin is

1-34

used in conjunction with the Probe B pin to allow real-time
diagnostic output of any signal path within the device. The Probe
A pin can be used as a user-defined I/O when debugging has been
completed. The pin's probe capabilities can be permanently
disabled to protect programmed design confidentiality. PRA is
active when the MODE pin is HIGH. This pin functions as an I/O
when the MODE pin is LOW.

PRB Probe B (Output)

The Probe B pin is used to output data from any user-defined
design node within the device. This independent diagnostic pin is
used in conjunction with the Probe A pin to allow real-time
diagnostic output of any signal path within the device. The Probe
B pin can be used as a user-defined I/O when debugging has been
completed. The pin's probe capabilities can be permanently
disabled to protect programmed design confidentiality. PRB is
active when the MODE pin is HIGH. This pin functions as an I/O
when the MODE pin is LOW.

SDI Serial Data Input (Input)

Serial data input for diagnostic probe and device programming.
SOl is active when the MODE pin is HIGH. This pin functions as
an I/O when the MODE pin is LOW.

Vee 5 V Supply Voltage

HIGH supply voltage.

Programming Voltage

Supply voltage used for device programming. This pin must be
connected to GND during normal operation.

Vpp Programming Voltage

Supply voltage used for device programming. This pin must be
connected to Vee during normal operation.

Vsv Programming Voltage

Supply voltage used for device programming. This pin must be
connected to Vee during normal operation.

ACT 2 Architecture

This section of the data sheet is meant to familiarize the user with
the architecture of ACT 2 family devices. A generic description of
the family will be presented first, followed by a detailed
description of the logic blocks, the routing structure, the
antifuses, and the special function circuits. Diagrams for the
ACT 2 devices are provided at the end of the data sheet. The
additional circuitry required to program and test the devices will
not be covered.

Array Topology

The ACT 2 family architecture is composed of five key building
blocks: Logic modules, I/O modules, Routing Tracks, Global
Clock Networks, and Probe Circuits. The basic structure is
similar for all devices in the family, differing only in the number
of rows, columns, or I/Os (see Table 1).

The logic and I/O modules are arranged in a two-dimensional
array (Figure 1). There are three types of modules: Logic, I/O,
and Bin. Logic and I/O modules are available as user

ACT 2 FPGAs

resources. Bin modules are used during testing and are not
available to users.

Table 1. Array Sizes

Device Rows

A1225A 13

A1240A 14

A1280A 18

Logic Modules

Columns

46

62

82

Logic

451

684

1232

1/0

83

104

140

Logic modules are classified into two types: combinatorial
(C-modules) and sequential (S-modules) (see Figures 2 and 3).
The C-module is an enhanced version of the ACT 1 family logic
module optimized to implement high fanin combinatorial macros,
such as 5-input AND, and 5-input OR. The full ACT 2 I
combinatorial logic module is available for use as the CM8 hard
macro. The S-module is designed to implement high-speed flip-
flop functions within a single module. S-modules also include

o 10 20 30 70 80
171~1~1~1~1~1-1~1-1~1-1~1-1~-'~I-'~-'~I-'~I-'~I~'~I-'~I~'~I-'~I~' 1 ••• 1 I I I I I I I I I I I I I

o 1 0 20 30 70 80
16 I I I I IslslslclclslslclclslslclclslslclclslslclclslslclclslsIclclslsl ••• Islslclclslslclclslslcl I I I I

o 10 20 30 70 80
8 I I I I IslslslclclslslclclslslclclslslclclslslclclslslclclslsIclclslsl ••• Iclclslslclclslslclclsl I I I I

o 1 0 20 30 70 80
7 I I I I IslslslclclslslclclslslclclslslclclslslclclslslclclslsIclclslsl ••• Iclclslslclclslslclclsl I I I I

o 1 0 20 30 70 80
6 I I I I IslslslclclslslclclslslclclslslclclslslclclslslclclslsIclclslsl ••• Iclclslslclclslslclclsl I I I I

o 10 20 30 70 80
5 I I I I IslslslclclslslclclslslclclslslclclslslclclslslclclslsIclclslsl ••• Iclclslslclclslslclclsl I I I I

o 1 0 20 30 70 80
4 I I I I IslslslclclslslclclslslclclslslclclslslclclslslclclslsIclclslsl ••• Iclclslslclclslslclclsl I I 1/

o 1 0 20 30 70 80
3 I I I I /slslslclclslslclclslslclclslslclclslslclclslslclclslsIclclslsl ••• Iclclslslclclslslclclsl I I I I

o 1 0 20 30 70 80
2 I I I I IslslslclclslslclclslslclclslslclclslslclclslslclclslsIclclslsl ••• Iclclslslclclslslclclsl I I I I

o 1 0 20 30 70 80
1 I I I I IslslslclclslslclclslslclclslslclclslslclclslslclclslsIclclslsl ••• Iclclslslclclslslclclsl I I I I

o 10 20 30 70 80
0~1 -'~I~I~'~I-'~I -'~I-'~-'~-'~I-'~-'~I-'~I-'~-' ~I-'-I~'~I-'~I~' I ... ~I -'~I-'~-'~I--' ~I-'~-'~I~I

s = Sequential Module
C = Combinatorial Module
1= 110 Module
S = Sinning Module (Actel use only)

Figure 1. A 1280A Simplified Floor Plan

1-35

combinatorial logic, which allows an additional level of logic to
be implemented without additional propagation delay. C-modules
and S-modules are arranged in pairs called module-pairs.
Module-pairs are arranged in alternating pairs (shown in Figure
I) and make up the bulk of the array. This arrangement allows the
placement software to support two-module macros of four types
(CC, CS, SC, and SS). I/O modules are arranged around the
periphery of the array.

The combinatorial module (shown in Figure 2) implements the
following function:

y= !Sl * !SO*DOO+ !Sl *SO*DOI *Sl * !SO*DlO+S1 *SO*Dll

where:

SO =AO *BO

Sl =AI +BI

The sequential module implements this same function Y (except
that SO = AO only, since the BO input is used for reset), followed
by a sequential block. The sequential block can implement either
a D-type flip-flop or a transparent latch. It can also be fully
transparent so that the S-modules can be used to implement
purely combinatorial functions. The function of the sequential

000

001

010
y

80

ClR

ClK
OUT

Up to 7-input function plus O-type flip-flop with clear

00
ClR

y OUT

01
GATE

8

Up to 4-input function plus latch with clear

000

001

010

y

Up to 8-input function

OUT

Figure 2. C-module Implementation

module is determined by the macro selection from the design
library of hard macros. Allowable S-module implementations are
shown in Figure 3.

000

001

010
y

80

GATE

Up to 7-input function plus latch

000

001

010

y OUT

Up to 8-input function (same as C-module)

OUT

Figure 3. S-module Implementations

1-36

II0s

The I/O architecture consists of pad drivers located near the
bonding pads and I/O modules located in the array. Top/bottom
I/O modules are located in the top and bottom rows respectively.
Side I/O modules occupy the leftmost two columns and the
rightmost two columns of the array. The function of all I/O
modules is identical, but the top/bottom I/O modules have a
different routing interface to the array than the side I/O modules.
I/Os implement a variety of user functions determined by library
macro selection.

Special Purpose II0s

Certain I/O pads are temporarily used for programming and
testing the device. During normal user operation, these special
I/O pads are identical to other I/O pads. The following special I/O
pads and their functions are shown in Table 2.

Table 2. Special I/O Pads

SDI

DCLK

PRA
PRB

Serial Data In

Serial Data Clock In

Probe A Output

Probe B Output

Two other pads, CLKA and CLKB, also differ from normal l/Os
in that they can be used to drive the global clock networks. Power,
Ground, and Programming pads are not considered I/O functions.
Their function is summarized as follows:

Vee

GND

Vsv, VKS, Vpp

MODE

1/0 Pads

Power

Circuit Ground

Programming Pads

Program/Debug Control

I/O pads are located on the periphery of the die and consist of the
bonding pad, the high-drive CMOS drivers, and the TTL
level-shifter inputs. Each I/O pad is associated with a specific I/O
module. Connections from the I/O pad to the I/O module are
made using the signals DATAOUT, DATAIN, and EN (shown in
Figure 4).

1/0 Modules

There are two types of I/O modules: side and top/bottom. The I/O
module schematic is shown in Figure 5. In the side I/O modules,
there are two inputs supplying the data to be output from the chip
UOI and U02. (UO stands for user output.) Two are used so that
the router can choose to take the signal from either the routing
channel above or the routing channel below the I/O module. The
top/bottom I/O modules interact with only one channel and
therefore have only one UO input.

The EN input enables the tristate output buffer. The global signals
INEN and OUTEN (Figure 4 and Figure 5) are used to disable the
inputs and outputs during certain test modes. Latches are

OUTEN
(global)

EN

SELECT

SEL

DATAOUT DO Y 1------1

D1

SDATA

ACT 2 FPGAs

DATAIN ~---------------'

Figure 4. 1/0 Pad Signals

EN -------------I.~ EN

GOUT

U01~
U02 ~ - d:d----ir.----..... ~ DATAOUT

D1
Y ... 1--------1._-1

GIN --------'

INEN
(global)

Figure 5. 1/0 Module

DATAIN

provided in the input and output path. When GOUT is high, the
latch is transparent. The latch can be used as the second stage of a
rising-edge flip-flop. GIN is the reverse of GOUT. When GIN is
high, the input data is latched; when it is low, the input latch
becomes transparent.

1-37

•

The output of the module, Y, is used for data being input to the
chip. Side I/O modules have a dedicated output segment for Y
extending into the routing channels above and below (similar to
logic modules). Side I/O modules may also connect to the array
through nondedicated Long Vertical Tracks (LVTs). Top!Bottom
I/O modules have no dedicated output segment. Signals coming
into the chip from the top or bottom must be routed using F-fuses
and LVTs (F-fuses and LVTs are explained in detail in the routing
section). I/O signals connected to I/O modules on either the top or
bottom of the array may incur a delay penalty over signals
connected to I/O modules on the sides.

Hard Macros

Designing within the Actel design environment is accomplished
using a building block approach. Over 350 logic function macros
are provided in the ACT 2 design library. Hard macro logic
functions range from simple SSI gates such as AND, NOR, and
Exclusive OR to more complex functions such as flip-flops with
4: 1 Multiplexed Data inputs. Hard macros are implemented in the
ACT 2 architecture by using one or more C-modules or
S-modules. Over 200 of the macros are implemented in a single
module, while several two-module macros are also available.
Two-module hard macros always utilize a module-pair, either SS,
CC, CS, or Sc. Because one- and two-module macros have small
propagation delay variances, their performances can be predicted
very accurately. Hard macro propagation delays are specified in

the data sheet. Soft macros comprise multiple hard macros
connected together to form complex functions. These functions
range from MSI functions to 16-bit counters and accumulators. A
large number of TTL equivalent hard and soft macros are also
provided. Soft macro delays are not specified in the data sheet.

Routing Structure

The ACT 2 architecture uses Vertical and Horizontal routing
tracks to interconnect the various logic and I/O modules. These
routing tracks are metal interconnects that may either be of
continuous length or broken into pieces called segments.
Segments can be joined together at the ends using antifuses to
increase their lengths up to the full length of the track.

Horizontal Routing

Horizontal channels are located between the rows of modules and
are composed of several routing tracks. The horizontal routing
tracks within the channel are divided into one or more segments.
The minimum horizontal segment length is the width of a
module-pair, and the maximum horizontal segment length is the
full length of the channel. Any segment that spans more than one­
third the row length is considered a long horizontal segment. A
typical channel is shown in Figure 6. Nondedicated horizontal
routing tracks are used to route signal nets. Dedicated routing
tracks are used for the global clock networks and for power and
ground tie-off tracks.

MODULE ROW

TRACK~---------..--------~()r--------~.---------------------
SEGMENT--~========-======================~·~ ________________ ___

--------------------------~()~------~()------------
--------------~()--------------~()~---------------

-----H-F~·~----~()~------~()~------~()~-------------

------------~()~--------------~()~----~()~-------

MODULE ROW

Figure 6. Horizontal Routing Tracks and Segments

1-38

CLKO

NVCC

SIGNAL

SIGNAL
(LHT)

I
I
I
I
I
I
I

SIGNAL

NVSS

CLK1

Vertical Routing

Other tracks run vertically through the module. Vertical tracks are
of three types: input, output, and long. Vertical tracks are also
divided into one or more segments. Each segment in an input
track is dedicated to the input of a particular module. Each
segment in an output track is dedicated to the output of a
particular module. Long segments are uncommitted and can be
assigned during routing. Each output segment spans four
channels (two above and two below), except near the top and
bottom of the array where edge effects occur. LVTs contain either
one or two segments. An example of vertical routing tracks and
segments is shown in Figure 7.

VERTICLE INPUT
SEGMENT

S-MODULE

S-MODULE

C

VF4•

ACT 2 FPGAs

Antifuse Structures

An anti fuse is a "normally open" structure as opposed to the
normally closed fuse structure used in PROMs or PALs. The use
of antifuses to implement a Programmable Logic Device results
in highly testable structures as well as efficient programming
algorithms. The structure is highly testable because there are no
preexisting connections; therefore, temporary connections can be
made using pass transistors. These temporary connections can
isolate individual antifuses to be programmed as well as isolate
individual circuit structures to be tested. This can be done both
before and after programming. For example, all metal tracks can
be tested for continuity and shorts between adjacent tracks, and
the functionality of all logic modules can be verified.

LVTS

C-MODULE MODULE ROW

.. ... CHANNEL
1II~XF

4.FF

C-MODULE

Figure 7. Vertical Routing Tracks and Segments

Antifuse Connections

Four types of antifuse connections are used in the routing structure of the ACT 2 array. (The physical structure of the antifuse is identical
in each case; only the usage differs.) The four types are:

XF Cross-connected antifuse

HF Horizontally connected antifuses

VF Vertically connected antifuse

FF "Fast-Fuse" antifuse

Most intersections of horizontal and vertical tracks have an XF that connects
the perpendicular tracks.

Adjacent segments in the same horizontal tracks are connected end-to-end
by an HF.

Some long vertical tracks are divided into two segments. Adjacent long
segments are connected end-to-end by a VF.

The FF connects a module output directly to a long vertical track.

Examples of all four antifuse connections are shown in Figures 6 and 7.

1·39

•

Antifuse Programming

The ACT 2 family uses the PLICE antifuse developed by Actel.
The PLICE element is programmed by placing a high voltage
(-17 V) across the element and supplying current (-5 mA) for a
short duration (<1 ms). In the ACT 2 architecture, most antifuses
are programmed to -500 ohms resistance, except for the F-fuses
which are programmed to -250 ohms. The programming circuits
are transparent to the user.

Clock Networks

Two low-skew, high fanout clock distribution networks are
provided in the ACT 2 architecture (Figure 8). These networks
are referred to as CLKO and CLK 1. Each network has a clock
module (CLKMOD) that selects the source of the clock signal
and may be driven as follows:

1. extemally from the CLKA pad

2. externally from the CLKB pad

3. internally from the CLKINA input

4. internally from the CLKINB input

The clock modules are located in the top row of I/O modules.
Clock drivers and a dedicated horizontal clock track are located
in each horizontal routing channel.

[;

CLKB

CLKA

FROM
PADS

CLOCK [
DRIVERS

ClKINS,

CLKINAi

SO INTERNAL
S1 SIGNAL

CLKO(17)

CLKO(16)

CLKO(15)

CLKO(2)

CLKO(1)

CLOCK TRACKS

Figure 8. Clock Networks

1-40

The user controls the clock module by selecting one of two clock
macros from the macro library. The macro CLKBUF is used to
connect one of the two external clock pins to a clock network, and
the macro CLKINT is used to connect an internally generated
clock signal to a clock network. Since both clock networks are
identical, the user does not care whether CLKO or CLKI is being
used.

The clock input pads may also be used as normall/Os, bypassing
the clock networks.

Module Interface

Connections to logic and I/O modules are made through vertical
segments that connect to the module inputs and outputs. These
vertical segments lie on vertical tracks that span the entire height
of the array.

Module Input Connections

The tracks dedicated to Module inputs are segmented by pass
transistors in each module row. During normal user operation, the
pass transistors are inactive (off), which isolates the inputs of a
module from the inputs of the module directly above or below it.
During certain test modes, the pass transistors are active (on) to
verify the continuity of the metal tracks. Vertical input segments
span only one channel. Inputs to the array modules come either
from the channel above or the channel below. The logic modules
are arranged so that half of the inputs are connected to the
channel above and half of the inputs to segments in the channel
below (Figure 9).

Module Output Connections

Module outputs have dedicated output segments. Output
segments extend vertically two channels above and two channels
below, except at the top or bottom of the array. Output segments
twist, as shown in Figure 9, so that only four vertical tracks are
required.

LVT Connections

Outputs may also connect to nondedicated segments (LVTs).
Each module-pair in the array shares three LVTs that span the
length of column as shown in Figure 9. Any module in the
column pair can connect to one of the LVTs in the column using
an FF connection. The FF connection uses antifuses connected
directly to the driver stage of the module output, bypassing the
isolation transistor. FF antifuses are programmed at a higher
current level than HF, VF, or XF antifuses to produce a lower
resistance value.

Antifuse Connections

In general, every intersection of a vertical segment and a
horizontal segment contains an unprogrammed antifuse
(XF-type). One exception is in the case of the clock networks.

ACT 2 FPGAs

Clock Connections

To minimize loading on the clock networks, only a subset of
inputs has fuses on the clock tracks. Only a few of the C-module
and S-module inputs can be connected to the clock networks. To

further reduce loading on the clock network, only a subset of the
horizontal routing tracks can connect to the clock inputs of the
S-module. Both of these are illustrated in Figure 10.

S-MODULES C-MODULES

Figure 9. Logic Module Routing Interface

MODULE

C1 C2

Clock CLKO }

..=C-=L:.:....K:...:.1 ___ ---l,,-t---t+-t-H-+t+--+t-T-f-t+____ Tracks

Antifuses
Deleted

Figure 10. Fuse Deletion on Clock Networks

Normal
Routing
Tracks

1-41

II

Programming and Test Circuits

The array of logic and I/O modules is surrounded by test and
programming circuits controlled by the external pins: MODE,
SOl, and DCLK. When MODE is low (GND), the device is in
normal or user mode. When MODE is high (V Cc), the device is
placed into one of several programming or test states. The SDI
pin (when MODE is high) is used to input serial data to the Mode
Register and various address registers surrounding the array. Data
is clocked into these registers using the DCLK pin. The registers
are connected as a long series of shift registers as shown in Figure
11. The Mode register determines the test or programming state
of the device. Many of the test modes are used during wafer sort
and final test at the factory. Other test modes are used during
programming with the Activator® 2, and some of the modes are
available only after programming. The Actionprobe® function is
one such function available to users.

1\
V
X

a::
UJ
f0-
CI)

Y1<O> Y1 REGISTER

Y2 REGISTER

Actionprobe

If a device has been successfully programmed and the security
fuse has not been programmed, any internal logic or I/O module
output can be observed using the Actionprobe circuitry and the
PRA and/or PRB pins. The Actionprobe diagnostic system
provides the software and hardware required to perform real-time
debugging. The software automatically performs the following
functions.

A pattern of ones and zeros is shifted into the device from the SDI
pin at each positive edge transition of DCLK. The complete
sequence contains 10 bits of counter, 21 bits of Mode Register, n
bits of zeros (filler of unused fields, where n depends on the
particular device type), R bits ofX2, C bits ofY2, R bits of Xl, C
bits ofY1, and a stop bit ("0" or "I"). After the stop bit has been
shifted in, DCLK is left high. Xl and Y1 represent the (X,Y)
location in the array for the Actionprobe output, PRA.

MODE REGISTER

Y1<c>

Y2<c>

1\

V
C\J
X

a::
UJ
f0-
CI)

SDI

«}------------ DC LK

«}------------ MO D E

(3 MODULE ARRAY (3

1-42

UJ
a::
X

1\
o
V

X

OTHER REGISTERS

Figure 11. ACT 2 Shift Register

UJ
a::
C\J x

1\
o
V

C\J
X

ACT 2 FPGAs

X2 and Y2 represent the (X,Y) location in the array for the
Actionprobe output, PRB. Rand C are the row and column size as
defined in Table 1. The filler bits, counter pattern, and Mode
Register pattern are shown in Table 3. Addressing for rows and
columns is active high; that is, unselected rows and columns are
"zeros" and the selected row and column is "high." The timing

sequence is shown in Figure 12. The recommended frequency is
10 MHz with 10 ns setup and hold times allowing for SOl and
DCLK transitions. The selected module output will be present at
the PRA or PRB output approximately 20 ns after the stop-bit
transition.

Table 3. Bit Stream Definitions for Actionprobe Diagnostics

Device Probe_Mode Filler (n) Counter_Pattern

A1225A Probe A only 308 1101011010

A1225A Probe B only 308 1101011010

A1225A Probe A and B 308 1101011010

A1240A Probe A only 361 1111000001

A1240A Probe B only 361 1111000001

A1240A Probe A and B 361 1111000001

A1280A Probe A only 443 0011011111

A1280A Probe B only 443 0011011111

A1280A Probe A and B 443 0011011111

For example: Selecting PRA for A 1280 results in the following bit stream.

0011011111_000000110001111100000_

Mode_Register_Pattern

000000110001111100000

000000101001111100000

000000111001111100000

000000110001111100000

000000101001111100000

000000111001111100000

000000110001111100000

000000101001111100000

000000111001111100000

(433 zerosLX2<0> ... X2<17> _ Y2<81> ... Y2<0> _X1 <0> ... X1 <0> ... X1 <17>_ Y1 <0> ... Y1 <81 >_0,

where "_" is used for clarity only

FILLER ZEROS

of clocks

458

458

458

545

545

545

675

675

675

f.- LOAD COUNTER ~ LOAD MODE REG~ I f.-- X, Y ADDRESS -.j S~~Pf.- PROBING -.j ~g~6.
MODE~

SDI~==~r'CX

Figure 12. Timing Waveforms

1-43

I

Absolute Maximum Ratings 1 Recommended Operating Conditions
Free air temperature range

Parameter Commercial Industrial Military Units

Units Symbol Parameter Limits Temperature

DC Supply Voltage2,3,4 Range1 o to +70 -40 to +85 -55 to +125 °C
Vee -0.5 to +7.0 V

VI Input Voltage -0.5 to Vee +0.5 V Power Supply
±5 ±10 ±10 %Vee Tolerance

Vo Output Voltage -0.5 to Vee +0.5 V Note:
110 I/O Source/Sink ±20 mA 1. Ambient temperature (T A) is used for commercial and industrial; case

Current5

TSTG Storage Temperature -65 to +150 °C

Notes:
1. Stresses beyond those listed under "Absolute Maximum Ratings"

may cause permanent damage to the device. Exposure to absolute
maximum rated conditions for extended periods may affect device
reliability. Device should not be operated outside the Recommended
Operating Conditions.

2. V pp = Vee, except during device programming.
3. V sv = Vee, except during device programming.
4. VKS = GND, except during device programming.
5. Device inputs are normally high impedance and draw extremely low

current. However, when input voltage is greater than Vee + 0.5 V or
less than GND - 0.5 V, the internal protection diode will be forward
biased and can draw excessive current.

Electrical Specifications

Commercial
Symbol Parameter

Min. Max.

VOH
1 (IOH =-10 mA)2 2.4

(lOH =-6 mA) 3.84

(lOH =-4 mA)

VOL 1 (IOL = 10 mA) 2 0.5

(lOL = 6 mA) 0.33

-0.3 0.8

2.0 Vee + 0.3

Input Transition Time tR, tF2 500

CIO I/O Capacitance2, 3 10

Standby Current, lee 4 2

Leakage Current5 -10 10

Notes:
1. Only one output tested at a time. Vee = min.
2. Not tested, for information only.
3. Includes worst-case 176 CPGA package capacitance. VOUT = 0 V, f = 1 MHz.

temperature (T c> is used for military.

Industrial Military

Min. Max. Min. Max.

3.7 3.7

0.40 0.40

-0.3 0.8 -0.3 0.8

2.0 Vee + 0.3 2.0 Vee + 0.3

500 500

10 10

10 20

-10 10 -10 10

4. All outputs unloaded. All inputs = Vee or GND, typical Icc = 1 rnA. Icc limit includes Ipp and Isv during normal operation.
5. VOUT , VIN = Vee orGND.

1-44

Units

V

V

V

V

V

V

V

ns

pF

mA

f.lA

Package Thermal Characteristics

The device junction to case thermal characteristic is 9jc, and the
junction to ambient air characteristic is 9ja. The thermal
characteristics for 9ja are shown with two different air flow rates.

ACT 2 FPGAs

Maximum junction temperature is I50aC.

A sample calculation of the absolute maximum power dissipation
allowed for a PQFP 160-pin package at commercial temperature
is as follows:

Max. junction temp. (0C) - Max. commercial temp.
9ja (°C!W)

Package Type Pin Count

Ceramic Pin Grid Array 100
132
176

Ceramic Quad Flatpack 172

Plastic Quad Flatpack 1 100
144
160

Plastic Leaded Chip Carrier2 84

Notes:
1. Maximum Power Dissipation for PQFP packages is 2.0 Watts.
2. Maximum Power Dissipation for PLCC packages is 1.5 Watts.

Power Dissipation

P = [Icc + lactive] * V cc + IOL *v OL *N + IOH*(V cc-v OH)*M

Where:

ICC is the current flowing when no inputs or outputs are
changing.

lactive is the current flowing due to CMOS switching.

IOL, IOH are TTL sink/source currents.

V OL, V OH are TTL level output voltages.

N equals the number of outputs driving TTL loads to VOL'

M equals the number of outputs driving TTL loads to VOH'

An accurate determination of Nand M is problematic because
their values depend on the design and on the system I/O. The
power can be divided into two components: static and active.

Static Power

Static power dissipation is typically a small component of the
overall power. From the values provided in the Electrical
Specifications, the maximum static power (commercial)
dissipation is:

2 rnA * 5.25 V = 10.5 mW

The static power dissipation by TTL loads depends on the number
of outputs that drive high or low and the DC lead current flowing.
Again, this number is typically small. For instance, a 32-bit bus
driving TTL loads will generate 42 mW with all outputs driving
low or 140 mW with all outputs driving high. The actual
dissipation will average somewhere between as I/Os switch states
with time.

Sic

5
5
8

8

13
15
15

12

Sia Sia Units Still Air 300 ft/min

35 17 °C/W
30 15 °C/W
23 12 °C/W

25 15 °C/W

55 47 °C/W
35 26 °C/W
33 24 °C/W

44 33 °C/W

Active Time

The active power component in CMOS devices is frequency
dependent and is contingent on the user's logic and the external
I/O. Active power dissipation results from charging internal chip
capacitance such as that associated with the interconnect,
unprogrammed antifuses, module inputs, and module outputs
plus external capacitance due to PC board traces and load device
inputs. An additional component of active power dissipation is
due to totem-pole current in CMOS transistor pairs. The net effect
can be associated with an equivalent capacitance that can be
combined with frequency and voltage to represent active power
dissipation.

Equivalent Capacitance

The power dissipated by a CMOS circuit can be expressed by
Equation 1.

Power (llW) = CEQ * Vcc2 * f (1)

Where:

CEQ is the equivalent capacitance expressed in picofarads
(pF).

V CC is power supply in volts (V).

f is the switching frequency in megahertz (MHz).

Equivalent capacitance is calculated by measuring lactive at a
specified frequency and voltage for each circuit component of
interest. The results for ACT 2 devices are:

Modules
Input Buffers
Output Buffers
Clock Buffer Loads

CEQ (pF)
--7.-7-

18.0
25.0

2.5

1-45

I

To calculate the active power dissipated from the complete
design, you must solve Equation 1 for each component. To do
this, you must know the switching frequency of each part of the
logic. The exact equation is a piece-wise linear summation over
all components, as shown in Equation 2.

Power <!lW) = [(m * 7.7 x f1) + (n * 18.0 x f2)
+ (p * (25.0 + CL) * f3) + (q x 2.5 x f4)] * Vee2 (2)

Where:

m = Number of logic modules switching at frequency f 1

n = Number of input buffers switching at frequency f2

p = Number of output buffers switching at frequency f3

q = Number of clock loads on the global clock network

f1 = Average logic module switching rate in MHz

f2 = Average input buffer switching rate in MHz

f3 = Average output buffer switching rate in MHz

f4 = Frequency of global clock

CL = Output load capacitance in pF

Determining Average Switching Frequency

To determine the switching frequency for a design, you must have
a detailed understanding of the data input values to the circuit.
The following rules will help you to determine average switching
frequency in logic circuits. These rules are meant to represent
worst-case scenarios so that they can be generally used to predict
the upper limits of power dissipation. These rules are as follows:

Module Utilization = 80% of combinatorial modules

Average Module Frequency = F/l0

Inputs = 1/3 of I/O

Average Input Frequency = F/5

Outputs = 2/3 of I/Os

Average Output Frequency = F/I0

Clock Net 1 Loading = 40% of sequential modules

Clock Net 1 Frequency = F

Clock Net 2 Loading = 40% of sequential modules

Clock Net 2 Frequency = F/2

1-46

Estimated Power

The results of estimating active power are displayed in Figure 13.
The graphs provide a simple guideline for estimating power. The
tables may be interpolated when your application has different
resource utilizations or frequencies.

3.0

2.0

1.0

Watts

0.1 /
./

LL
VL
V

1.0

V
V V
/ /

V
V

VII'

A1,
V
/

./ 1,/
/ ./

V/
V
A1225

10.0

MHz

V
V
/

Figure 13. ACT 2 Power Estimates

A1240

)/

/1/

100.0

ACT 2 Timing Model*

Input Delays Internal Delays

fIfO Module - - I Combinatorial
Logic Module

tlNYL = 2.6 ns I tlRo2 = 4.8 nst
f---+-~ __ ---1

r-1r-----j G

tpo = 3.8 ns

Sequential
Logic Module

Predicted
Routing
Delays

tR01 = 1.4 ns
tR02 = 1.7 ns
tR04 = 3.1 ns
tR08 = 4.7 ns

ACT 2 FPGAs

Output Delays

liIo Module - I
tOLH = 8.0 ns

I tlNH = 2.0 ns
tlNSU = -2.5 ns
~GL=4.7~

I

~ r-----,I

ARRAY
CLOCKS

tCKH = 11 .8 ns

FMAX = 100 MHz

Fa = 256

I

L

Combin­
atorial
Logic
included
in tSUD

tsuo = 0.4 ns
tHO = 0.0 ns

*Yalues shown for Al 240A-2 at worst-case commercial conditions.

o Q f-----o-I----,I------.! 0

tRD1 = 1.4 ns

I G

~
tco = 3.8 ns

t Input Module Predicted Routing Delay

I
tENHZ = 7.1 ns

I

I

~

1-47

•

Parameter Measurement

Output Buffer Delays

o

tDLH tDHL

AC Test Loads

Load 1
(Used to measure propagation delay)

To the output under test

>~l

T
50PF

Input Buffer Delays

GND

tlNYH tlNYL

1-48

To AC test loads (shown below)

GND

Load 2
(Used to measure rising/falling edges)

Vee

•

To the output under test >-----

R to Vee for tpLZ/tpZL

R to GND for tpHZ/tpZH
R = 1 kn

T
SOPF

Combinatorial Macro Delays

Vee
S,A ~ "50% Soo2'~ GND

Vee
y /VSO% "'r-... SO%
GND

tpLH tpHL
Y Vee

Soo/:' GND /VSO%

tpHL tpLH

ACT 2 FPGAs

Sequential Timing Characteristics

Flip-Flops and Latches

D1 X

DAy
CL~¥

(Positive edge triggered)

--I tHO f--

X
I--tsuo -l tWCLKA I- -I I- tA -I

G,CLK I I I I
--ItSUENAf-- i-twcLKI-1

j.-j tHENA
E ~--~I
------------------------~ I--t~co---.--'I---------------------

Q--~)(~----~)(~---------------
I---jtRS

PRE,CLR ~---------------------------------------~I ~I ____________ ___
l-twASYN-1

Note:
1. D represents all data functions involving A, B, and S for multiplexed flip-flops.

1-49

I

Sequential Timing Characteristics (continued)

Input Buffer Latches

ISDl

ClK

DATA X X
~ tlNH ~

G I
I~ tlNSU ·1

~tHEXT~
ClK

l~tsuEXT~

Output Buffer Latches

:~OBDLHsr

D X X
~ tOUTSU---.j

G

~tOUTH~

1-50

Predictable Performance:
Tight Delay Distributions

Propagation delay between logic modules depends on the
resistive and capacitive loading of the routing tracks, the
interconnect elements, and the module inputs being driven.
Propagation delay increases as the length of routing tracks, the
number of interconnect elements, or the number of inputs
increases.

From a design perspective, the propagation delay can be
statistically correlated or modeled by the fanout (number of
loads) driven by a module. Higher fanout usually requires some
paths to have longer routing tracks.

The ACT 2 family delivers a very tight fanout delay distribution.
This tight distribution is achieved in two ways: by decreasing the
delay of the interconnect elements and by decreasing the number
of interconnect elements per path.

Actel's patented PLICE antifuse offers a very low
resistive/capacitive interconnect. The ACT 2 family's antifuses,
fabricated in 1.0 JlIl1 lithography, offer nominal levels of 500
ohms resistance and 7.5 femtofarad (fF) capacitance per antifuse.

The ACT 2 fanout distribution is also tight due to the low number
of antifuses required for each interconnect path. The ACT 2
family's proprietary architecture limits the number of antifuses
per path to a maximum of four, with 90% of interconnects using
two antifuses.

Table 4. Logic Module + Routing Delay, by Fanout (ns)
(Worst-Case Commercial Conditions)

Family FO=1 FO=2 FO=3 FO=4 FO=8

A1225A-2 4.9 5.5 6.1 6.6 8.2

A1240A-2 5.2 5.5 6.1 6.9 8.5

A1280A-2 5.5 6.3 6.8 7.5 10.5

ACT 2 FPGAs

Timing Characteristics

Timing characteristics for ACT 2 devices fall into three
categories: family dependent, device dependent, and design
dependent. The input and output buffer characteristics are
common to all ACT 2 family members. Internal routing delays
are device dependent. Design dependency means actual delays
are not determined until after placement and routing of the user's
design is complete. Delay values may then be determined by
using the ALS Timer utility or perfonning simulation with post­
layout delays.

Critical Nets and Typical Nets

Propagation delays are expressed only for typical nets, which are
used for initial design performance evaluation. Critical net delays
can then be applied to the most time-critical paths. Critical nets
are determined by net property assignment prior to placement and
routing. Up to 6% of the nets in a design may be designated as I
critical, while 90% of the nets in a design are typical.

Long Tracks

Some nets in the design use long tracks. Long tracks are special
routing resources that span mUltiple rows, columns, or modules.
Long tracks employ three and sometimes four antifuse
connections. This increases capacitance and resistance, resulting
in longer net delays for macros connected to long tracks.
Typically, up to 6% of nets in a fully utilized device require long
tracks. Long tracks contribute approximately 6 ns to 12 ns delay.
This additional delay is represented statistically in higher fanout
(FO=8) routing delays in the data sheet specifications section.

Timing Derating

A best case timing derating factor of 0.45 is used to reflect best
case processing. Note that this factor is relative to the "standard
speed" timing parameters, and must be multiplied by the
appropriate voltage and temperature derating factors for a given
application.

1-51

Timing Derating Factor (Temperature and Voltage)

Industrial Military

Min. Max. Min.

(Commercial Minimum/Maximum Specification) x 0.69 1.11 0.67

Timing Derating Factor for Designs at Typical Temperature (T J = 25°C) and Voltage (5.0 V)

(Commercial Maximum Specification) x 0.85

-55 ~o 0 25 70 85

4.50 0.75 0.79 0.86 0.92 1.06 1.11

4.75 0.71 0.75 0.82 0.87 1.00 1.05

5.00 0.69 0.72 0.80 0.85 0.97 1.02

5.25 0.68 0.69 0.77 0.82 0.95 0.98

5.50 0.67 0.69 0.76 0.81 0.93 0.97

Junction Temperature and Voltage Derating Curves

1.3

1.2

0 1.1
ti
ca
LL 1.0 Cl
c

~
0.9 CI)

c

0.8

0.7

0.6
4.50

Note:

(normalized to Worst-Case Commercial, TJ = 4.75 V, 70°C)

4.75

__________ -c------~ 850C

5.00

Voltage (V)

------. 70°C

5.25 5.50

This derating factor applies to all routing and propagation delays.

1-52

Max.

1.23

1.23

1.16

1.13

1.09

1.08

ACT 2 FPGAs

A1225A Timing Characteristics
(Worst-Case Commercial Conditions, Vee = 4.75 V, TJ = 70°C)

Logic Module Propagation Delays 1 'Std'Speed '-1' Speed '-2' Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

tpD1 Single Module 5.0 4.3 3.8 ns

teo Sequential Clk to Q 5.0 4.3 3.8 ns

tGO Latch G to Q 5.0 4.3 3.8 ns

tRs Flip-Flop (Latch) Reset to Q 5.0 4.3 3.8 ns

Predicted Routing Delays2

tRD1 FO=1 Routing Delay 1.4 1.2 1.1 ns

tRD2 FO=2 Routing Delay 2.2 1.9 1.7 ns

tRD3 FO=3 Routing Delay 3.0 2.6 2.3 ns I tRD4 FO=4 Routing Delay 3.7 3.1 2.8 ns

tRD8 FO=8 Routing Delay 5.8 4.9 4.4 ns

Sequential Timing Characteristics3,4

tSUD Flip-Flop (Latch) Data Input
Setup 0.4 0.4 0.4 ns

tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 ns

tSUENA Flip-Flop (Latch) Enable Setup 1.0 1.0 1.0 ns

tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 ns

tWCLKA Flip-Flop (Latch) Clock Active
Pulse Width 6.0 5.0 4.5 ns

tWASYN Flip-Flop (Latch) Asynchronous
Pulse Width 6.0 5.0 4.5 ns

tA Flip-Flop Clock Input Period 13.0 11.0 9.4 ns

tlNH Input Buffer Latch Hold 0.0 0.0 0.0 ns

tlNSU Input Buffer Latch Setup 0.4 0.4 0.4 ns

tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 ns

tOUTSU Output Buffer Latch Setup 0.4 0.4 0.4 ns

fMAX Flip-Flop (Latch) Clock
Frequency 75.0 90.0 105.0 MHz

Notes:
l. For dual-module macros, use tpDl + tRDI + tPDn , teo + tRDl + tPDn or tpDl + tRDI + tSUD' whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance.

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay
measurements performed on the device prior to shipment.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the ALS
Timer utility.

4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to
the internal setup (hold) time.

1-53

A 1225A Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Input Module Propagation Delays 'Std'Speed '-1' Speed '-2 Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

tlNYH Pad to Y High 3.8 3.3 2.9 ns

tlNYL Pad to Y Low 3.5 3.0 2.6 ns

tlNGH G to Y High 6.6 5.7 5.0 ns

tlNGL G to Y Low 6.3 5.4 4.7 ns

Input Module Predicted Routing Delays 1

tlRD1 FO=1 Routing Delay 5.4 4.6 4.1 ns

tlRD2 FO=2 Routing Delay 6.1 5.2 4.6 ns

tlRD3 FO=3 Routing Delay 7.1 6.0 5.3 ns

tlRD4 FO=4 Routing Delay 7.6 6.4 5.7 ns

tlRD8 FO=8 Routing Delay 9.8 8.3 7.4 ns

Global Clock Network

tCKH Input Low to High FO= 32 12.8 11.0 10.2 ns
FO = 256 15.7 13.0 11.8

tCKL Input High to Low FO= 32 12.8 11.0 10.2 ns
FO = 256 15.9 13.2 12.0

tpWH Minimum Pulse Width High FO=32 4.5 4.1 3.4 ns
FO = 256 5.0 4.5 3.8

tpWL Minimum Pulse Width Low FO=32 4.5 4.1 3.4 ns
FO = 256 5.0 4.5 3.8

tCKSW Maximum Skew FO= 32 0.7 0.7 0.7 ns
FO = 256 3.5 3.5 3.5

tSUEXT Input Latch External Setup FO= 32 0.0 0.0 0.0 ns
FO = 256 0.0 0.0 0.0

tHEXT Input Latch External Hold FO= 32 7.0 7.0 7.0 ns
FO = 256 11.2 11.2 11.2

tp Minimum Period FO= 32 9.1 8.3 7.7 ns
FO = 256 10.0 8.8 8.1

fMAX Maximum Frequency FO= 32 110.0 120.0 130.0 MHz
FO = 256 100.0 115.0 125.0

Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays

are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case
perfonnance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

1-54

ACT 2 FPGAs

A1225A Timing Characteristics (continued)
(Worst-Case Commercial Conditions)

Output Module Timing 'Std'Speed '-1' Speed '-2 Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

TTL Output Module Timing 1,2

tOLH Data to Pad High 10.6 9.0 8.0 ns

tOHL Data to Pad Low 13.4 11.4 10.1 ns

tENZH Enable Pad Z to High 11.8 10.0 8.9 ns

tENZL Enable Pad Z to Low 15.5 13.2 11.6 ns

tEN HZ Enable Pad High to Z 9.4 8.0 7.1 ns

tENLZ Enable Pad Low to Z 11.1 9.5 8.3 ns

tGLH G to Pad High 11.9 10.2 8.9 ns I
tGHL G to Pad Low 14.9 12.7 11.2 ns

dTLH Delta Low to High 0.09 0.08 0.07 ns/pF

dTHL Delta High to Low 0.16 0.13 0.12 ns/pF

CMOS Output Module Timing1, 2

tOLH Data to Pad High 13.5 11.5 10.1 ns

tOHL Data to Pad Low 11.2 9.6 8.4 ns

tENZH Enable Pad Z to High 11.8 10.0 8.9 ns

tENZL Enable Pad Z to Low 15.5 13.2 11.6 ns

tENHZ Enable Pad High to Z 9.4 8.0 7.1 ns

tENLZ Enable Pad Low to Z 11.1 9.5 8.3 ns

tGLH G to Pad High 11.9 10.2 8.9 ns

tGHL G to Pad Low 14.9 12.7 11.2 ns

dTLH Delta Low to High 0.16 0.13 0.12 ns/pF

dTHL Delta High to Low 0.12 0.10 0.09 ns/pF

Notes:
1. Delays based on 50 pF loading.
2. Maximum Recommended Simultaneous Switching Outputs:

PLCC 20pF 72
35pF 45
50pF 32

PQFP, CPGA 20pF 80
35pF 45
50pF 32

1-55

A 1240A Timing Characteristics

(Worst-Case Commercial Conditions, Vee = 4.75 V, TJ = 70°C)

Logic Module Propagation Delays 1 'Std'Speed '-1' Speed '-2' Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

tpD1 Single Module 5.0 4.3 3.8 ns

tco Sequential Clk to Q 5.0 4.3 3.8 ns

tGO Latch G to Q 5.0 4.3 3.8 ns

tRS Flip-Flop (Latch) Reset to Q 5.0 4.3 3.8 ns

Predicted Routing Delays2

tRD1 FO=1 Routing Delay 1.8 1.5 1.4 ns

tRD2 FO=2 Routing Delay 2.3 2.0 1.7 ns

tRD3 FO=3 Routing Delay 3.0 2.6 2.3 ns

tRD4 FO=4 Routing Delay 4.1 3.5 3.1 ns

tRD8 FO=8 Routing Delay 6.3 5.4 4.7 ns

Sequential Timing Characteristics3, 4

tSUD Flip-Flop (Latch) Data Input
Setup 0.4 0.4 0.4 ns

tHD Flip-Flop (Latch) Data Input
Hold 0.0 0.0 0.0 ns

tSUENA Flip-Flop (Latch) Enable Setup 1.0 1.0 1.0 ns

tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 ns

tWCLKA Flip-Flop (Latch) Clock Active
Pulse Width 6.5 6.0 4.5 ns

tWASYN Flip-Flop (Latch) Asynchronous
Pulse Width 6.5 6.0 4.5 ns

tA Flip-Flop Clock Input Period 15.0 12.0 9.8 ns

tlNH Input Buffer Latch Hold 0.0 0.0 0.0 ns

tlNSU Input Buffer Latch Setup 0.4 0.4 0.4 ns

tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 ns

tOUTSU Output Buffer Latch Setup 0.4 0.4 0.4 ns

fMAX Flip-Flop (Latch) Clock
Frequency 66.0 80.0 100.0 MHz

Notes:
l. For dual-module macros, use tpDI + tRDI + tPDn' teo + tRDI + tPDn or tpDI + tRDI + tSUD, whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance.

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay
measurements performed on the device prior to shipment.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the ALS
Timer utility.

4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to
the internal setup (hold) time.

1-56

ACT 2 FPGAs

A 1240A Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Input Module Propagation Delays 'Std'Speed '-1' Speed '-2' Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

tlNYH Pad to Y High 3.8 3.3 2.9 ns

tlNYL Pad to Y Low 3.5 3.0 2.6 r.3

tlNGH G to Y High 6.6 5.7 5.0 ns

tlNGL Gto Y Low 6.3 5.4 4.7 ns

Input Module Predicted Routing Delays 1

tlRD1 FO=1 Routing Delay 5.6 4.8 4.2 ns

tlRD2 FO=2 Routing Delay 6.4 5.4 4.8 ns

I tlRD3 FO=3 Routing Delay 7.2 6.1 5.4 ns

tlRD4 FO=4 Routing Delay 7.9 6.7 5.9 ns

tlRD8 FO=8 Routing Delay 10.5 8.9 7.9 ns

Global Clock Network

tCKH Input Low to High FO= 32 12.8 11.0 10.2 ns
FO = 256 15.7 13.0 11.8

tCKL Input High to Low FO=32 12.8 11.0 10.2 ns
FO = 256 15.9 13.2 12.0

tpWH Minimum Pulse Width High FO= 32 5.5 4.5 3.8 ns
FO = 256 5.8 5.0 4.1

tpWL Minimum Pulse Width Low FO=32 5.5 4.5 3.8 ns
FO = 256 5.8 5.0 4.1

tCKSW Maximum Skew FO=32 0.5 0.5 0.5 ns
FO = 256 2.5 2.5 2.5

tSUEXT Input Latch External Setup FO=32 0.0 0.0 0.0 ns
FO = 256 0.0 0.0 0.0

tHEXT 'lput Latch External Hold FO =32 7.0 7.0 7.0 ns
FO = 256 11.2 11.2 11.2

tp Minimum Period FO=32 11.1 9.1 8.1 ns
FO = 256 11.7 10.0 8.8

fMAX Maximum Frequency FO=32 90.0 110.0 125.0 MHz
FO = 256 85.0 100.0 115.0

Note:
l. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays

are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed or. ~he device prior to shipment.

1-57

A1240A Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Output Module Timing 'Std'Speed '-1' Speed '-2' Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

TTL Output Module Timing 1,2

tOLH Data to Pad High 10.6 9.0 8.0 ns

tOHL Data to Pad Low 13.4 11.4 10.1 ns

tENZH Enable Pad Z to High 11.8 10.0 8.9 ns

tENZL Enable Pad Z to Low 15.5 13.2 11.7 ns

tEN HZ Enable Pad High to Z 9.4 8.0 7.1 ns

tENLZ Enable Pad Low to Z 11.1 9.5 8.4 ns

tGLH G to Pad High 11.9 10.2 9.0 ns

tGHL G to Pad Low 14.9 12.7 11.2 ns

dTLH Delta Low to High 0.09 0.08 0.07 ns/pF

dTHL Delta High to Low 0.16 0.13 0.12 ns/pF

CMOS Output Module Timing 1,2

tOLH Data to Pad High 13.5 11.5 10.2 ns

tOHL Data to Pad Low 11.2 9.6 8.4 ns

tENZH Enable Pad Z to High 11.8 10.0 8.9 ns

tENZL Enable Pad Z to Low 15.5 13.2 11.7 ns

tEN HZ Enable Pad High to Z 9.4 8.0 7.1 ns

tENLZ Enable Pad Low to Z 11.1 9.5 8.4 ns

tGLH G to Pad High 11.9 10.2 9.0 ns

tGHL G to Pad Low 14.9 12.7 11.2 ns

dTLH Delta Low to High 0.16 0.13 0.12 ns/pF

dTHL Delta High to Low 0.12 0.10 0.09 ns/pF

Notes:
1. Delays based on 50 pF loading.
2. Maximum Recommended Simultaneous Switching Outputs:

PLCC 20pF 72
35pF 45
50pF 32

PQFP,CPGA 20pF 104
35pF 68
50pF 48

1-58

ACT 2 FPGAs

A 1280A Timing Characteristics
(Worst-Case Commercial Conditions, Vcc = 4.75 V, TJ = 70°C)

Logic Module Propagation Delays 1 'Std'Speed '-1' Speed '-2' Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

tpD1 Single Module 5.0 4.3 3.8 ns

tco Sequential Clk to Q 5.0 4.3 3.8 ns

tGO Latch G to Q 5.0 4.3 3.8 ns

tRs Flip-Flop (Latch) Reset to Q 5.0 4.3 3.8 ns

Predicted Routing Delays2

tRD1 FO=1 Routing Delay 2.3 2.0 1.7 ns

tRD2 FO=2 Routing Delay 3.3 2.8 2.5 ns

tRD3 FO=3 Routing Delay 4.0 3.4 3.0 ns II tRD4 FO=4 Routing Delay 4.9 4.2 3.7 ns

tRDB FO=8 Routing Delay 8.8 7.5 6.7 ns

Sequential Timing Characteristics3,4

tSUD Flip-Flop (Latch) Data Input Setup 0.4 0.4 0.4 ns

tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 0.0 ns

tSUENA Flip-Flop (Latch) Enable Setup 1.0 1.0 1.0 ns

tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 0.0 ns

tWCLKA Flip-Flop (Latch) Clock Active
Pulse Width 7.0 6.0 5.5 ns

tWASYN Flip-Flop (Latch) Asynchronous
Pulse Width 7.0 6.0 5.5 ns

tA Flip-Flop Clock Input Period 18.0 13.3 11.7 ns

tlNH Input Buffer Latch Hold 0.0 0.0 0.0 ns

tlNSU Input Buffer Latch Setup 0.4 0.4 0.4 ns

tOUTH Output Buffer Latch Hold 0.0 0.0 0.0 ns

tOUTSU Output Buffer Latch Setup 0.4 0.4 0.4 ns

fMAX Flip-Flop (Latch) Clock
Frequency 50.0 75.0 85.0 MHz

Notes:
l. For dual-module macros, use tpDl + tRDl + tPDn , tco + tRDl + tPDn ' or tpDl + tRDl + tSUD ' whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance.

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay
measurements performed on the device prior to shipment.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the ALS
Timer utility.

4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup!hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to
the internal setup (hold) time.

1-59

~cI@I!

A 1280A Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Input Module Propagation Delays 'Std'Speed '-1' Speed '-2' Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

tlNYH Pad to Y High 3.8 3.3 2.9 ns

t lNYL Pad to Y Low 3.5 3.0 2.7 ns

tlNGH G to Y High 6.6 5.7 5.0 ns

tlNGL G to Y Low 6.3 5.4 4.8 ns

Input Module Predicted Routing Delays 1

tlRD1 FO=1 Routing Delay 6.0 5.1 4.6 ns

tlRD2 FO=2 Routing Delay 6.9 5.9 5.2 ns

tlRD3 FO=3 Routing Delay 7.4 6.3 5.6 ns

tlRD4 FO=4 Routing Delay 8.6 7.3 6.5 ns

tlRD8 FO=8 Routing Delay 12.4 10.5 9.4 ns

Global Clock Network

tCKH Input Low to High FO=32 12.8 11.0 10.2 ns
FO = 384 17.2 14.6 13.1

tCKL Input High to Low FO= 32 12.8 11.0 10.2 ns
FO = 384 17.5 14.9 13.3

tpWH Minimum Pulse Width High FO= 32 6.6 5.5 5.0 ns
FO = 384 7.6 6.4 5.8

tpWL Minimum Pulse Width Low FO= 32 6.6 5.5 5.0 ns
FO = 384 7.6 6.4 5.8

tCKSW Maximum Skew FO=32 0.5 0.5 0.5 ns
FO = 384 2.5 2.5 2.5

tSUEXT Input Latch External Setup FO=32 0.0 0.0 0.0 ns
FO = 384 0.0 0.0 0.0

tHEXT Input Latch External Hold FO=32 7.0 7.0 7.0 ns
FO = 384 11.2 11.2 11.2

tp Minimum Period FO= 32 13.3 11.2 9.6 ns
FO = 384 15.3 12.6 10.6

fMAX Maximum Frequency FO=32 75.0 90.0 105.0 MHz
FO = 384 65.0 80.0 95.0

Note:
l. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays

are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

1-60

ACT 2 FPGAs

A 1280A Timing Characteristics (continued)

(Worst-Case Commercial Conditions)

Output Module Timing 'Std'Speed '-1' Speed '-2' Speed

Parameter Description Min. Max. Min. Max. Min. Max. Units

TTL Output Module Timing 1,2

tOLH Data to Pad High 10.6 9.0 8.1 ns

tOHL Data to Pad Low 13.4 11.4 10.2 ns

tENZH Enable Pad Z to High 11.8 10.0 9.0 ns

tENZL Enable Pad Z to Low 15.5 13.2 11.8 ns

tENHZ Enable Pad High to Z 9.4 8.0 7.1 ns

tENLZ Enable Pad Low to Z 11.1 9.5 8.4 ns

tGLH G to Pad High 11.9 10.2 9.0 ns II
tGHL G to Pad Low 14.9 12.7 11.3 ns

dTLH Delta Low to High 0.09 0.08 0.07 ns/pF

dTHL Delta High to Low 0.16 0.13 0.12 ns/pF

CMOS Output Module Timing 1,2

tOLH Data to Pad High 13.5 11.5 10.3 ns

tOHL Data to Pad Low 11.2 9.6 8.5 ns

tENZH Enable Pad Z to High 11.8 10.0 9.0 ns

tENZL Enable Pad Z to Low 15.5 13.2 11.8 ns

tENHZ Enable Pad High to Z 9.4 8.0 7.1 ns

tENLZ Enable Pad Low to Z 11.1 9.5 8.4 ns

tGLH G to Pad High 11.9 10.2 9.0 ns

tGHL G to Pad Low 14.9 12.7 11.3 ns

dTLH Delta Low to High 0.16 0.13 0.12 ns/pF

dTHL Delta High to Low 0.12 0.10 0.09 ns/pF

Notes:
1. Delays based on 50 pF loading.
2. Maximum Recommended Simultaneous Switching Outputs:

PQFP, CPGA, CQFP 20pF 160
35pF 90
50pF 64

1-61

Macro Library

Hard Macros-Combinatorial

Function

ACT 2
Combinatorial

. Logic Module

ACT 2
Sequential
Logic Module

Adder

AND

AND-OR

1·62

Macro

CMS

DFM7A

DFM7B

FA1A

FA1B

FA2A

HA1

HA1A

HA1B

HA1C

At\D2

AND2A

AND2B

AND3

AND3A

AND3B

AND3C

AND4

AND4A

AND4B

AND4C

AND4D

AND5B

A01

A010

A011

A01A

A01B

A01C

A01D

A01E

A02

A02A

A02B

A02C

A02D

A02E

A03

A03A

A03B

A03C

A04A

A05A

A06

A06A

Description

Combinational Module (Full ACT 2 Logic Module)

4-input D-Type Flip-Flop with Multiplexed Data, active low Clear, and active
high clock

4-input D-Type Flip-Flop with Multiplexed Data, active low Clear, and clock

1-bit adder, carry in and carry out active low, A-input active low

1-bit adder, carry in and carry out active low

2-bit adder, carry in and carry out active low, AO and A 1 inputs active low

Half-Adder

Half-Adder with active low A-input

Half-Adder with active low carry out and sum

Half-Adder with active low carry out

2-inputAND

2-input AND with active low A-input

2-input AND with active low inputs

3-input AND

3-input AND with active low A-input

3-input AND with active low A- and B-inputs

3-input AND with active low inputs

4-inputAND

4-input AND with active low A-input

4-input AND with active low A- and B-inputs

4-input AND with active low A-, B-, and C-inputs

4-input AND with active low inputs

5-input AND with active low A- and B-inputs

3-input AND-OR

5-input AND-OR-AND

3-input AND-OR

3-input AND-OR with active low A-input

3-input AND-OR with active low C-input

3-input AND-OR with active low A- and C-inputs

3-input AND-OR with active low A- and B-inputs

3-input AND-OR with active low inputs

4-input AND-OR

4-input AND-OR with active low A-input

4-input AND-OR with active low A- and B-inputs

4-input AND-OR with active low A- and C-inputs

4-input AND-OR with active low A-, B-, and C-inputs

4-input AND-OR with active low inputs

4-input AND-OR

4-input AND-OR

4-input AND-OR

4-input AND-OR

4-input AND-OR

4-input AND-OR

2-wide 4-input AND-OR

2-wide 4-input AND-OR with active low D-input

Modules

s C

2

2
2

2
2
2
2

2
1

ACT 2 FPGAs

Hard Macros-Combinatorial (continued)

Modules

Function Macro Description S C

AND-OR A07 5-input AND-OR

A08 5-input AND-OR with active low C- and D-inputs

A09 5-input AND-OR

AOl1 3-input AND-OR-INVERT

AOl1A 3-input AND-OR-INVERT with active low A-input

AOl1B 3-input AND-OR-INVERT with active low C-input

AOl1C 3-input AND-OR-INVERTwith active low A- and B-inputs

AOI1D 3-input AND-OR-INVERT with active low inputs

AOl2A 4-input AND-OR-INVERT with active low A-input

AOl2B 4-input AND-OR-INVERT with active low A- and C-inputs

AOl3A 4-input AND-OR-INVERT with active low inputs

I AOl4 2-wide 4-input AND-OR-INVERT 2

AOl4A 2-wide 4-input AND-OR-INVERT with active low C-input 1

AND-XOR AX1 3-input AND-XOR with active low A-input 1

AX1A 3-input AND-XOR-INVERT with active low A-input 2

AX1B 3-input AND-XOR with active low A- and B-inputs

AX1C 3-input AND-XOR
Buffer BUF Buffer with active high input and output

BUFA Buffer with active low input and output

Clock Net ClKINT Clock Net Interface a 0
GAND2 2-input AND Clock Net

GMX4 4-to-1 Multiplexor Clock Net

GNAND2 2-input NAND Clock Net

GNOR2 2-input NOR Clock Net

GOR2 2-input OR Clock Net

GXOR2 2-input Exclusive OR Clock Net

Inverter INV Inverter with active low output

INVA Inverter with active low input

Majority MAJ3 3-input complex AND-OR

MUX MX2 2-to-1 Multiplexor

MX2A 2-to-1 Multiplexor with active low A-input

MX2B 2-to-1 Multiplexor with active low B-input

MUX MX2C 2-to-1 Multiplexor with active low output
MX4 4-to-1 Multiplexor 1

MXC1 Boolean 2

MXT Boolean 2

NAND NAND2 2-input NAND

NAND2A 2-input NAND with active low A-input

NAND2B 2-input NAND with active low inputs

NAND3 3-input NAND

NAND3A 3-input NAND with active low A-input

NAND3B 3-input NAND with active low A- and B-inputs

NAND3C 3-input NAND with active low inputs

NAND4 4-input NAND 2

NAND4A 4-input NAND with active low A-input

NAND4B 4-input NAND with active low A- and B-inputs

NAND4C 4-input NAND with active low A-, B-, and C-inputs

NAND4D 4-input NAND with active low inputs

NAND5C 5-input NAND with active low A-, B-, and C-inputs

1-63

~c/@//

Hard Macros-Combinatorial (continued)

Modules

Function Macro Description S C

NOR NOR2 2-input NOR

NOR2A 2-input NOR with active low A-input

NOR2B 2-input NOR with active low inputs

NOR3 3-input NOR

NOR3A 3-input NOR with active low A-input

NOR3B 3-input NOR with active low A- and B-inputs

NOR3C 3-input NOR with active low inputs

NOR4 4-input NOR 2

NOR4A 4-input NOR with active low A-input 1

NOR4B 4-input NOR with active low A- and B-inputs

NOR4C 4-input NOR with active low A-, B-, and C-inputs

NOR4D 4-input NOR with active low inputs

NORSC S-input NOR with active low A-, B-, and C-inputs

OR OR2 2-input OR

OR2A 2-input OR with active low A-input

OR2B 2-input OR with active low inputs

OR3 3-input OR

OR3A 3-input OR with active low A-input

OR3B 3-input OR with active low A- and B-inputs

OR3C 3-input OR with active low inputs

OR4 4-input OR

OR4A 4-input OR with active low A-input

OR4B 4-input OR with active low A- and B-input

OR4C 4-input OR with active low A-, B-, and C-inputs

OR4D 4-input OR with active low inputs 2

ORSB S-input OR with active low A- and B-inputs

OR-AND OA1 3-input OR-AND

OA1A 3-input OR-AND with active low A-input

OA1B 3-input OR-AND with active low C-input

OA1C 3-input OR-AND with active low A- and C-inputs

OA2 2-wide 4-input OR-AND

OA2A 2 wide 4-input OR-AND with active low A-input

OA3 4-input OR-AND

OA3A 4-input OR-AND with active low C-input

OA3B 4-input OR-AND with active low A- and C-inputs

OA4 4-input OR-AND

OA4A 4-input OR-AND with active low C-input

OAS 4-input complex OR-AND

OAI1 3-input OR-AND-INVERT

OAI2A 4-input OR-AND-INVERT with active low D-input

OAI3 4-input OR-AND-INVERT

OAI3A 4-input OR-AND-INVERT with active low C- and D-inputs

XNOR XNOR 2-input XNOR

XNOR-AND XA1A 3-input XNOR-AND

XNOR-OR X01A 3-input XNOR-OR

XOR XOR 2-input XOR

XOR-AND XA1 3-input XOR-AND

XOR-OR X01 3-input XOR-OR

1-64

Hard Macros-Sequential

Function

D-Type

J-K Type

Macro

DF1

DF1A

DF1B

DF1C

DFC1

DFC1A

DFC1B

DFC1D

DFE

DFE1B

DFE1C

DFE3A

DFE3B

DFE3C

DFE3D

DFEA

DFM

DFM1B

DFM1C

DFM3

DFM3B

DFM3E

DFM4C

DFM4D

DFM6A

DFM6B

DFMA

DFMB

DFME1A

DFP1

DFP1A

DFP1B

DFP1C

DFP1D

DFP1E

DFP1F

DFP1G
DFPC

DFPCA
JKF
JKF1B
JKF2A

Description

0-Type Flip-Flop

D-Type Flip-Flop with active low output

D-Type Flip-Flop with active low clock

0-Type Flip-Flop with active low clock and output

0-Type Flip-Flop with active high Clear

D-Type Flip-Flop with active high Clear and active low clock

0-Type Flip-Flop with active low Clear

0-Type Flip-Flop with active low Clear and clock

D-Type Flip-Flop with active high Enable

0-Type Flip-Flop with active low Enable

D-Type Flip-Flop with active low Enable and clock

D-Type Flip-Flop with Enable and active low Clear

D-Type Flip-Flop with Enable and active low Clear and clock

D-Type Flip-Flop with active low Enable and Clear

D-Type Flip-Flop with active low Enable, Clear, and clock

D-Type Flip-Flop with Enable and active low clock

2-input D-Type Flip-Flop with Multiplexed Data

2-input D-Type Flip-Flop with Multiplexed Data and active low output

2-input D-Type Flip-Flop with Multiplexed Data and active low clock and
output

2-input D-Type Flip-Flop with Multiplexed Data and Clear

2-input D-Type Flip-Flop with Multiplexed Data and active low Clear and
clock

2-input D-Type Flip-Flop with Multiplexed Data, Clear, and active low clock

2-input D-Type Flip-Flop with Multiplexed Data and active low Preset and
output

2-input D-Type Flip-Flop with Multiplexed Data and active low Preset, clock,
and output

4-input D-Type Flip-Flop with Multiplexed Data, active low Clear, and active
high clock

4-input D-Type Flip-Flop with Multiplexed Data, active low Clear, and clock

2-input D-Type Flip-Flop with Multiplexed Data and active low clock

2-input D-Type Flip-Flop with Multiplexed Data and active low Clear

2-input D-Type Flip-Flop with Multiplexed Data and active low Enable

D-Type Flip-Flop with active high Preset

D-Type Flip-Flop with active high Preset and active low clock

D-Type Flip-Flop with active low Preset

D-Type Flip-Flop with active high Preset and active low output

D-Type Flip-Flop with active low Preset and clock

0-Type Flip-Flop with active low Preset and output

D-Type Flip-Flop with active high Preset and active low clock and output

D-Type Flip-Flop with active low Preset, clock, and output
D-Type Flip-Flop with active high Preset, active low Clear, and active high
clock
D-Type Flip-Flop with active high Preset and active low Clear and clock
JK Flip-Flop with active low K-input
JK Flip-Flop with active low clock and K-input
JK Flip-Flop with active low Clear and K-input

ACT 2 FPGAs

Modules

S c

2

2

2

2

2

2

1·65

I

Hard Macros-Sequential (continued)

Function Macro

J-K Type JKF2B
JKF2C
JKF2D

T-Type TF1A
TF1B

Latch DL1
DL1A
DL1B
DL1C
DLC
DLC1
DLC1A
DLC1F
DLC1G
DLCA
OLE
DLE1D
DLE2B
DLE2C
DLE3B
DLE3C
OLEA
DLEB
DLEC
DLM
DLM3
DLM3A
DLM4
DLM4A
DLMA
DLME1A
DLP1
DLP1A
DLP1B
DLP1C
DLP1D
DLP1E

1-66

Description

JK Flip-Flop with active low Clear, clock, and K-input
JK Flip-Flop with active high Clear and active low K-input
JK Flip-Flop with active high Clear and active low clock and K-input
T-Type Flip-Flop with active low Clear
T-Type Flip-Flop with active low Clear and clock
Data Latch
Data Latch with active low output
Data Latch with active low clock
Data Latch with active low clock and output
Data Latch with active low Clear
Data Latch with active high Clear
Data Latch with active high Clear and active low clock
Data Latch with active high Clear and active low output
Data Latch with active high Clear and active low clock and output
Data Latch with active low Clock and Clear
Data Latch with active high Enable
Data Latch with active high Enable and clock and active low input and output
Data Latch with active low Enable, Clear, and clock
Data Latch with active low Enable and clock and active high Clear
Data Latch with active low Enable and clock and active low Preset
Data Latch with active low Enable, Preset, and clock
Data Latch with active low Enable and active high clock
Data Latch with active high Enable and active high clock
Data Latch with active low Enable and clock
2-input Data Latch with Multiplexed Data
4-input Data Latch with Multiplexed Data
4-input Data Latch with Multiplexed Data and active low clock
Data Latch with Multiplexed Data
Data Latch with Multiplexed Data
2-input Data Latch with Multiplexed Data and active low clock
2-input Data Latch with Multiplexed Data and Enable and active low clock
Data Latch with active high Preset and clock
Data Latch with active high Preset and active low clock
Data Latch with active low Preset and active high clock
Data Latch with active low Preset and clock
Data Latch with active low Preset and output and active high clock
Data Latch with active low Preset, clock, and output

Modules

s c

Input/Output Macros

Function

Buffer

Bidirectional

Input

Output

Macro

IBDL

INBUF

OBHS

OUTBUF

BBHS

BBDLHS

BIBUF

CLKBIBUF

CLKBUF

DBDLKS

OBHS

TBHS

TRIBUFF

Description

Input Buffer with Latch Clock

Input Buffer

Output Buffer, High Slew

Output Buffer, High Slew

Bidirectional Buffer, High Slew

Bidirectional with Input Latch and Output Latch

Bidirectional Buffer, High Slew (with hidden buffer at Y pin)

Bidirectional with Input Dedicated to Clock Network

Input for Dedicated Routed Clock Network

Output Buffer with Latch

Output Buffer

Tristate output, High Slew

Tristate output, High Slew

ACT 2 FPGAs

1/0
Modules

1·67

•

50ft Macros

Maximum Modules

Function Macro Description
Logic

5 C Levels

Adder FADD10 1 O-bit adder 3 56

FADD12 12-bit adder 4 9

FADD16 16-bit adder 5 97

FADD8 8-bit adder 4 44

FADD9 9-bit adder with active low carry out 3 49

VAD16C Very fast 16-bit adder, no Carry in 3 91

VADC16C Very fast 16-bit adder with Carry in 3 97

Comparator ICMP4 4-bit Identity Comparator 2 5

ICMP8 8-bit Identity Comparator 3 9

MCMPC2 2-bit Magnitude Comparator with Enable 3 9

MCMPC4 4-bit Magnitude Comparator with Enable 4 18

MCMPC8 8-bit Magnitude Comparator with Enable 6 36

Counter CNT4A 4-bit binary counter with load and clear 4 4 8

CNT4B 4-bit binary counter with load, clear, carry-in, carry-out 4 4 7

FCTD16C Fast 16-bit Down Counter, parallel loadable 2 19 33

FCTD8A Fast 8-bit Down Counter, parallel loadable 10 18

FCTD8B Fast 8-bit Down Counter, parallel loadable 1 9 13

FCTU16C Fast 16-bit Up Counter, parallelloadable 2 19 31

FCTU8A Fast 8-bit Up Counter, parallel loadable 10 17

FCTU8B Fast 8-bit Up Counter, parallel loadable 1 9 12

UDCNT4A 4-bit up/down counter with load, carry-in, and carry-out 5 4 13

VCTD16C Very fast 16-bit down counter, delay after load, registered control inputs 34 41
VCTD2CP 2-bit down counter, prescaler, delay after load, used to build VCTD 5 2

counters
VCTD2CU 2-bit down counter, upper bits, delay after load, used to build VCTD 2 3

counters
VCTD4CL 4-bit down counter, lower bits, delay after load, used to build VCTD 4 7

counters
VCTD4CM 4-bit down counter, middle bits, delay after load, used to build VCTD 4 8

counters

Decoder DEC2X4 2-to-4 decoder 4

DEC2X4A 2-to-4 decoder with active low outputs 4

DEC3X8 3-to-8 decoder 8

DEC3X8A 3-to-8 decoder with active low outputs 8

DEC4X16A 4-to-16 decoder with active low outputs 2 20

DECE2X4 2-to-4 decoder with enable 4

DECE2X4A 2-to-4 decoder with enable and active low outputs 4

DECE3X8 3-to-8 decoder with enable 2 11

DECE3X8A 3-to-8 decoder with enable and active low outputs 2 11

Latch DLC8A Octal latch with clear active low 8-bit Data Latch with active low Clear 8

DLE8 Octal latch with enable 8-bit Data Latch with active high Enable 8

DLM8 Octal latch with multiplexed data 8-bit Data Latch with Multiplexed Data 8

MUX MX16 16-to-1 Multiplexor 2 5

MX8 8-to-1 Multiplexor with active high output 2 3

MX8A 8-to-1 Multiplexor with active low output 2 3

Multiplier SMULT8 8-bit by 8-bit Multiplier 242

Shift Register SREG4A 4-bit shift register with clear active low 4

SREG8A 8-bit shift register with clear active low 8

1-68

ACT 2 FPGAs

Soft Macros-TIL Equivalent

Maximum Modules

Function Macro Description
Logic

S C Levels

TAOO 2-input NAND

TA02 2-input NOR

TA04 Inverter

TA07 Buffer

TA08 2-input AND

TA10 3-input NAND

TA11 3-input AND 1

TA138 3-to-8 decoder with enable and active low outputs 2 12

TA139 2-to-4 decoder with active low enable and outputs 1 4

TA150 16-to-1 multiplexor with active low enable 3 6

TA151 8-to-1 multiplexor with enable and both active low and active high output 3 5 • TA153 4-to-1 multiplexor with active low enable 2 2

TA154 4-to-16 decoder with active low outputs and select lines 2 22

TA157 2-to-1 multiplexor with active low enable 1 1

TA160 4-bit decade counter with active low clear and load 4 4 8

TA161 4-bit binary counter with active low clear and load 3 4 6

TA164 8-bit serial in, parallel out shift register, active low clear 8

TA169 4-bit Up/Down Counter 6 4 14

TA174 hex D-type flip-flop with active low clear 6

TA175 quadruple D-type flip-flop with active low clear 4

TA181 ALU 37

TA190 4-bit up/down decode counter with up/down mode 7 4 31

TA191 4-bit up/down binary counter with up/down mode 7 4 30

TA194 4-bit bidirectional universal shift register 4 4

TA195 4-bit parallel-access shift register 4

TA20 4-input NAND 2

TA21 4-input AND 1 1

TA269 8-bit up/down binary counter 8 8 28

TA27 3-input NOR

TA273 octal register with clear 8

TA280 9-bit odd/even parity generator and checker 4 9

TA32 2-input OR

TA377 octal register with active low enable 8

TA40 4-input NAND 2

TA42 4 to 10 decoder 10

TA51 AND-OR-Invert 2

TA54 4-wide 2-input AND-OR-Invert 2 5

TA55 2-wide 4-input AND-OR-Invert 2 3

TA688 8-bit identity comparator 3 9

TA86 2-input exclusive OR

1-69

Package Pin Assignments
176-Pin CPGA (Top View)

Signal

PRAor 1/0

PR8 or 1/0

MODE

SOl or I/O

OClK or I/O

ClKA or I/O

ClK8 or I/O

GNO

Notes:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A~OOOOOOOOOOOOOOA

BOOOOOOOOOOOOOOOB
cOOOOOOOOOOOOOOOC
DOOOOOOOOOOOOOOOD
EO 0 0 0 0000 E
F 0 0 0 0 000 OF
GO 0 0 0 OOOOG
H 0 0 0 0 176-Pin 0000 H CPGA
J 0 0 0 0 o 0 0 0 J

K 0 0 0 0 0000 K

LOOOO OOOOL
MOOOOOOOOOOOOOOOM
NOOOOOOOOOOOOOOON
pOOOOOOOOOOOOOOOP
ROOOOOOOOOOOOOOOR

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pad Number Location

152

160

2

135

175

154

158

1,8,18,23,33,38,45,57,67,77,89
101,106,111,121,126,133,145,156,165

13,24,28,52,68,82,112,116,140,155,170

110

25,113

109

C9

07

C3

814

83

A9

88

04,E4,G4,H4,K4,L4,M4,M6,M8,M10,M12
K12,J12,H12,F12,E12,012,010,C8,06

F4, H3, J4, M5, N8, M11, H13, G12, 011,08,05

J14

H2,H14

J13

1. Unused I/O pins are designated as outputs by ALS and are driven low. 4. Vpp = Vee, except during device programming.
2. All unassigned pins are available for use as I/Os. 5. V sv = Vee, except during device programming.
3. MODE = GND, except during device programming or debugging. 6. VKS = GND, except during device programming.

1-70

Package Pin Assignments (continued)

132-Pin CPGA (Top View)

Signal Pad Number

PRAor 110 113

PRB or I/O 121

MODE 2

SDI or I/O 101

DClK or I/O 132

ClKAor I/O 115

ClKB or I/O 119

2 3 4 5 6 7 8 9 10 11 12 13

A ~O 0 0 0 0 0 0 0 0 0 OOA
BOO 0 0 0 0 0 0 0 0 0 OOB
cOOOOOOOOOOOOOC
Doooe 000 o 00 D
EOOO o 00 E
FOOOO o 0 00 F
GOOOO 132-Pin o 0 00 G CPGA

HOOOO o 0 00 H
000 o 00 J

K 000 000 o 00 K
L OOOOOOOOOOOOOL
M OOOOOOOOOOOOOM
NOOOOOOOOOOOOON

2 3 4 5 6 7 8 9 10 11 12 13

e Orientation Pin

Location

B8

C6

A1

B12

C3

B7

B6

ACT 2 FPGAs

GND 9,10,26,27,41,58,59,73,74,92,93, E3, F4, J2, J3, l5, 19, M9, K12, J11, E12, E11,
107,108,125,126 C9,B9,B5,C5

Vee 18,19,49,50,83,84,116,117 G3, G2, l7, K7, G1 0, G11, D7, C7

Vpp 82 G13

Vsv 17,85 G4, G12

VKS 81 H13

Notes:
1. Unused I/O pins are designated as outputs by ALS and are driven low. 4. V pp = Vee, except during device programming.
2. All unassigned pins are available for use as l/Os. 5. V sv = Vee, except during device programming.
3. MODE = GND, except during device programming or debugging. 6. VKS = GND, except during device programming.

1-71

I

Package Pin Assignments (continued)

100-Pin CPGA (Top View)

Signal

PRA or I/O

PRS or I/O

MODE

SDI or I/O

DClK or I/O

ClKAor I/O

ClKS or I/O

GND

Vee

Vpp

Vsv
VKS

Notes:

Pad Number

85

92

2

77

100

87

90

1 2 3 4 5 6 7 8 9 10 11

AQOOOOOOOOOOA
8000000000008
cOOOOOOOOOOOC
DO 00. o
EO 0 0 \'r====:::;')

FO 0 0 0
GO 0 0

100-Pin
CPGA

o 0 0 D

o 0 0 E

o 0 0 0 F

000 G

HOOO 0 OOOH
JOOOOOOOOOOOJ
KOOOOOOOOOOOK
LOOOOOOOOOOOL

2 3 4 5 6 7 8 9 10 11

• Orientation Pin

Location

A7

A4

C2

C8

C3

C6

D6

7,20,32,44,55,70,82,94 E3, G3, J5, J7, G9, D10, C7, C5

F3, K6, F9,S6 15,38,64,88

63 F10

14,65 G1, E11

62 F11

1. Unused I/O pins are designated as outputs by ALS and are driven low. 4. V pp = Vee, except during device programming.
2. All unassigned pins are available for use as I/Os. 5. V sv = Vee, except during device programming.
3. MODE = GND, except during device programming or debugging. 6. VKs = GND, except during device programming.

1-72

Package Pin Assignments (continued)

172-Pin CQFP (Top View)

Pin #1
Index

11

21

31

41

51

61

71

81

•
•
•

351

361

371

381

391

401

411

421

431

Signal PIN Number

172-Pin
CQFP

•
•
•

1129

1128

1127

1126

1125

1124

1123

1122

195

194

193

192

191

190

IS9

IS8

IS7

MODE

GND

Vee
Vsv
VKS

7,17,22,32,37,55,65,75,98,103,108,118,123,141,152,161

12,23,27,50,66,80,109,113,136,151,166

Notes:

Vpp

SDI or I/O

PRAor I/O

PRS or I/O

ClKA or I/O

ClKS or I/O

DClK or I/O

24,110

106

107

131

148

156

150

154

171

1. Unused I/O pins are designated as outputs by ALS and are driven low.
2. All unassigned pins are available for use as I/Os.
3. MODE = GND, except during device programming or debugging.

4. Vpp = Vee, except during device programming.
5. V sv = Vee, except during device programming.
6. VKS = GND, except during device programming.

ACT 2 FPGAs

I

1-73

Package Pin Assignments (continued)

160-Pin PQFP (Top View)

1
DClK or I/O 2

3
4
5

Vce 6
7
8
9

10
GND 11

12
13
14
15

PRB or 1/016
17

ClKB or 1/0 18
19

Vee 20
ClKA or 1/0 21

22
PRAor I/O 23

24
25
26
27
28
29

GND 30
31
32
33
34

Vee 35
36
37

SDI or 1/038
39

GND 40

w
00
zO
Cl:::i:

o z
Cl

o z
Cl

o t) >
Z t) C/)
Cl»

o
z
Cl

o z
Cl

~~~~~~~~~g~~~~~~~~~gw~~~~~~~~~~~~~~~~~~~ 
o 0 t) > t)o a. C/) 0 0 0 
z z t) C/)t)z a.:.:: z z z 
Cl Cl > »Cl» Cl Cl Cl 

Notes: 
1. Unused I/O pins are designated as outputs by ALS and are driven low. 4. V pp = Vee, except during device programming. 
2. All unassigned pins are available for use as I/Os. 5. V sv = V CO except during device programming. 
3. MODE = GND, except during device programming or debugging. 6. VKS = GND, except during device programming. 

1-74 

120 GND 
119 I/O 
118 I/O 
117 
116 
115 
114 Vee 
113 
112 
111 
110 
109 GND 
108 
107 
106 
105 
104 
103 
102 
101 
100 
99 GND 
98 Vee 
97 
96 
95 
94 
93 
92 
91 
90 
89 GND 
88 
87 
86 Vee 
85 
84 
83 
82 
81 



Package Pin Assignments (continued) 

144·Pin PQFP (Top View) 

37 
38 
39 
40 
41 
42 
43 

GNO 44 
GNO 45 
GNO 46 

47 
48 
49 
50 
51 
52 
53 

VCC 54 
VCC 55 
VCC 56 

57 
58 
59 
60 
61 
62 
63 

GND 64 
GNO 65 

66 
67 
68 
69 
70 
71 
72 

Notes: 

000 zzz 
CD CD CD 

000 zzz 
CD CD CD 

000> 
ooocn »» 

144·Pin 
PQFP 

cnIl.OOO> 
~Il.OOocn »»» 

1. Unused I/O pins are designated as outputs by ALS and are driven low. 
2. All unassigned pins are available for use as I/Os. 
3. MODE = GND, except during device programming or debugging. 

000 zzz 
CD CD CD 

000 zzz 
CD CD CD 

LU 
o o 
::;; 

4. Vpp = Vee, except during device programming. 

144 
143 
142 
141 
140 
139 
138 
137 
136 
135 
134 
133 
132 
131 
130 
129 
128 
127 
126 
125 
124 
123 
122 
121 
120 
119 
118 
117 
116 
115 
114 
113 
112 
111 
110 
109 

5. V sv = Vee, except during device programming. 
6. VKS = GND, except during device programming. 

ACT 2 FPGAs 

1/0 or OCLK 

II 
GNO 
GNO 
GNO 

1/0 or PRS 

1/0 or CLKS 

VCC 
VCC 
VCC 
1/0 or CLKA 

110 or PRA 

GNO 
GNO 
GNO 

1/0 or 801 

1·75 



Package Pin Assignments (continued) 

1 ~O-Pin PQFP (Top View) 

15 
00 

g 
Cl 
Z 
(!) 

>00..00 
CIl00..l<: 

> > > > 

Cl 
Z 
(!) 

80 79 78 77 76 75 74 73 72 71 70 69 68 67 68 65 64 63 62 61 60 59 58 57 58 55 54 53 52 51 
81 50 
82 0 49 
83 48 

GND 84 47 
85 46 
86 45 

PRA, I/O 87 44 
88 43 

ClKA, I/O 89 100-Pin 42 

Vee 90 
PQFP 

41 
91 40 

ClKB, I/O 92 39 
93 38 

PRB, I/O 94 37 
95 36 

GND 96 35 
97 

0 
34 

98 33 

99 0 32 
100 31 

1 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 18 19 2021 22 23242526 2728 29 30 

Notes: 

l<: W 
.J Cl 
o 0 
Cl ::2; 

Cl 
Z 
(!) 

1. Unused I/O pins are designated as outputs by ALS and are driven low. 
2. All unassigned pins are available for use as l/Os. 
3. MODE = GND, except during device programming or debugging. 

1-76 

>0 
000 » 

Cl 
Z 
(!) 

4. V pp = Vee, except during device programming. 
5. V sv = Vee, except during device programming. 
6. VKS = GND, except during device programming. 

GND 

Vee 

GND 



Package Pin Assignments (continued) 

84-Pin PLCC (Top View) 

:J 
u 
0 

g 

11 10 9 

MODE 12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

vSV 22 

Vee 23 

24 

25 

26 

27 

GND 28 

29 

30 

31 

32 

Notes: 

III 
a: 

0 a.. 
z g <.9 

1. Unused I/O pins are designated as outputs by ALS and are driven low. 
2. All unassigned pins are available for use as I/Os. 
3. MODE = GND, except during device programming or debugging. 

ACT 2 FPGAs 

III g ~ :J 15 
u u U a.. (f) 

g u g g g > 

1 84 83 82 75 

0 

74 

73 • 72 

71 

70 GND 

69 

68 

67 

66 

84-Pin 65 Vee 

PLCC 64 vpp 

63 VKS 

62 

61 

60 

59 

58 

57 

56 

55 

54 

4. Vpp = Vee, except during device programming. 
5. V sv = Vee, except during device programming. 
6. VKS = GND, except during device programming. 

1-77 



1-78 



ACTTM 3 
~c/@II 

• 
Field Programmable 
Gate Arrays Preliminary 

Features 

Highly Predictable Performance with 100% Automatic 
Placement and Routing 
9 ns Clock-to-Output Times 
Up to 150 MHz On-Chip Performance 
Up to 228 User-Programmable I/O Pins 
Four Fast, Low-Skew Clock Networks 
More Than 500 Macro Functions 
Up to 10,000 Gate Array Equivalent Gates 
(up to 25,000 equivalent PLD Gates) 
Replaces up to 250 TTL Packages 
Replaces up to 100 20-pin PAL ® Packages 
Up to 1153 Dedicated Flip-Flops 
I/O Drive to 12 rnA 
PQFP, PLCC, and CPGA Packages 
Nonvolatile, User Programmable 
Low-power 0.8 !lII1 CMOS Technology 
Fully Tested Prior to Shipment 

Product Family Profile 

Device 

Capacity 
Gate Array Equivalent Gates 
PLD Equivalent Gates 
TTL Equivalent Packages (40 gates) 
20-Pin PAL Equivalent Packages (100 gates) 

Logic Modules 
S-Module 
C-Module 

Dedicated Flip-Flops i 

User I/0s (maximum) 

Packages2 

CPGA 
PLCC 
PQFP 

Performance::! (maximum, worst-case commercial) 
Chip-to-Chip4 

Accumulators (16-bit) 
Loadable Counter (16-bit) 
Prescaled Loadable Counters (16-bit) 
Shift Registers 
1/0, Clock-to-Output 

CMOS Process 

Notes: 
1. One flip-flop per S-Module, two flip-flops per I/O-Module. 
2. See product plan on page 1-84 for package availability. 
3. Based on A1425A-I device. 
4. Clock-to-Output + Setup 

© 1993 Actel Corporation 

Description 

The ACT 3 family, based on Actel's proprietary PLICE® antifuse 
technology and 0.8-micron double-metal, double-poly CMOS 
process, offers a high-performance programmable solution 
capable of 150 MHz on-chip perfonnance and 9 nanosecond 
clock-to-output speeds. The ACT 3 family spans capacities from 
1,500 to 10,000 gate array equivalent gates (up to 25,000 PLD 
gates), and offers very high pin-to-gate ratios, with up to 228 user 
I/Os for 10,000 gate designs. 

Predictable Performance* (Worst-Case Commercial) 

Accumulators (16-bit) 146-47 MHz 

Loadable Counters (16-bit) 176-82 MHz 

Prescaled Loadable Counters (16·bit) 1127-145 MHz 

Shift Registers /150-150 MHz 

'See page 1-82 for further details. 

A1415A A1425A A1440A A1460A A14100A 

1,500 2,500 4,000 6,000 10,000 
3,750 6,250 10,000 15,000 25,000 

40 60 100 150 250 
15 25 40 60 100 

200 310 564 848 1,377 
104 160 288 432 697 
96 150 276 416 680 

264 360 568 768 1,153 

80 100 140 168 228 

100-pin 133-pin 175-pin 207-pin 257-pin 
84-pin 84-pin 

100-pin 100-pin 160-pin 208-pin TBD 
160-pin 

83 MHz 83 MHz 77 MHz 75 MHz 72 MHz 
47 MHz 47 MHz 47 MHz 47 MHz 47 MHz 
82 MHz 82 MHz 82 MHz 80 MHz 80 MHz 

145 MHz 145 MHz 145 MHz 115 MHz 115 MHz 
150 MHz 150 MHz 150 MHz 120 MHz 120 MHz 

10 ns 10 ns 11 ns 11.6 ns 12 ns 

0.8 11m 0.8 11m 0.8 11m a.8l1m 0.8 11m 

1-79 

II 



The ACT 3 family represents the third generation of Actel Field 
Programmable Gate Arrays (FPGAs). The family improves on the 
proven ACT 2 family two-module architecture, consisting of 
combinatorial and sequential-combinatorial logic modules. The 
ACT 3 family offers registered I/O modules delivering 9 ns clock­
to-out times. The devices contain four clock distribution 
networks, including dedicated array and I/O clocks, supporting 
very fast synchronous and asynchronous designs. In addition, 
routed clocks can be used to drive high fanout signals like resets 
or output enables, reducing buffering requirements. 

The ACT 3 family is supported by the Designer and Designer 
Advantage systems, which offers automatic or fixed pin 
assignment, automatic placement and routing with optional manual 
placement, timing analysis, user programming, and diagnostic 
probe capabilities. The system is supported on the following 
platforms: 386/486™ PC, Sun™ Microsystems, and HpTM 

workstations. The software provides CAE interfaces to Cadence, 
Mentor Graphics®, OrCADTM and Viewlogic® design 
environments. Additional platforms and CAE interfaces are 
supported through Actel's Industry Alliance Program, including the 
CAD/CAM Group, DATA I/O® (ABEL™ FPGA), DAZIX, and 
MINe. 

With the introduction of ACT 3, Actel extends its line of 
programmable devices. The ACT I family offers up to 2,000 gate 
array equivalent gates (to 6,000 PLD equivalent gates) at industry 
leading price-to-gate ratios. The ACT 2 family advances this price 
leadership into higher speed, higher I/O applications requiring 2,500 
to 8,000 gate array equivalent gates (to 20,000 PLD equivalent 
gates). The ACT 3 family offers very high speed with very high 
I/O-to-gate ratios for designs requiring from less than 1,500 to 
10,000 gate array equivalent gates (to 25,000 PLD equivalent gates). 

Actel Families: Gates Versus I/Os 

I/Os 

MHz 

1-80 

228 

208 
I.ACT1 

188 

168 

148 

128 

108 

88 
Ll 

68 
.Ll 

48 

28 • 
o 

Gate Array 1 ,000 
PLD Gates 2,500 

~ 

• 
2,000 
5,000 

II ACT 2 

Ll 

; 

3,000 
7,500 

Ll ACT 31 

~ 

II1II 

II1II 

4,000 
10,000 

5,000 
12,500 

Gates 

6,000 
15,000 

, 7,000 
17,500 

II 

II 

8,000 
20,000 

Performance: ACT 3 Versus ACT 2 (Standard-Speed Devices) 

150 

125 

100 

75 

50 

25 

0 

,- ACT 2 

Accumulators 
(16-bit) 

D ACT 3 

Loadable Counters 
(16-bit) 

Prescaled Loadable 
Counters (16-bit) 

9,000 
22,500 

10,000 
25,000 

Shift Registers 



Chip-to-Chip Performance 

1/0ClK 

A1425A-1 

A1460A-1 

Chip #1 

I/O Module ,--, 

I 
L ~ 

/~ 
tCKHS 

tCKHS 

9.0 

10.4 

1/0 ClK 

--/--
tTRACE 

--/--

Chip-to-Chip Performance 
(Worst-Case Commercial) 

tTRACE t lNSU 

1.0 3.0 

1.0 3.0 

Chip #2 

1/0 Module 

, I 

L ~ 

tlNSU --I 

Total 

13.0 ns 

14.4 ns 

ACT 3 FPGAs 

I 

MHz 

77 

69 

1-81 



ACT 3 PREP Performance Examples 

The ACf 3 family offers very high system petfonnance. Typical 
application design building blocks have been developed and 
implemented to estimate and report ACT 3 system perfonnance. 
These building blocks have been routed in mUltiple instances, 
replicated to fill a device in a step and repeat fashion. The average, 
minimum, and maximum perfonnances were then determined, giving 
a realistic estimate of achievable perfonnance. ACT 3 perfonnance is 
very predictable, as observed by the small spread between maximum 
and minimum perfonnance. The step and repeat methodology is 
illustrated in Figure 1. 

16-bit Shift Registers 

The 16-bit Shift Register Example is a parallelloadable shift register 
with clear, shift enable, serial in, and serial out. It is replicated by 
connecting parallel data in to parallel data out, and serial data in to 
serial data out. 

16-bit Prescaled Counters 

The 16-bit Prescaled Counter Example is a very high-speed loadable 
counter optimized for counting. The load requires multiple clock 
cycles (four), but counting and holding occur at the full clock rate. 
This counter is ideal for address generation and high-speed timing 
applications. It is replicated by connecting data inputs to data outputs. 

• Step and Repeat Methodology 

• Fully Utilized Device 

16-bit Non-Prescaled Counters 

The Non-Prescaled 16-bit Counter Example is the more 
traditional 16-bit loadable counter, where loading, counting, and 
hold all occur at the same clock rate. It is replicated by connecting 
inputs to counter outputs. 

16-bit Accumulators 

The 16-bit Accumulator adds a 16-bit number to the previous 
output value. It is replicated by connecting the data output to the 
data input. 

Performance Results 

These designs were completed using Actel's 100% automatic 
place and route software. No manual placement or routing was 
used when completing these designs. The perfonnance 
measurements reflect worst-case commercial conditions. 

Table 1 below presents the perfonnance results for each design in 
minimum, maximum, and average measurements. The table also 
shows the number of design iterations completed within the 
device. Notice the tight distribution between minimum and 
maximum perfonnance, in all cases within 1 ns, and in all cases 
automatic place and route was used exclusively. 

• 100% Automatic Placement and Routing 

• No Manual Placement or Routing 

Figure 1. Layout of Performance Examples 

Table 1. A1425A-1 Performance Results: Worst-Case Commercial Conditions 

Performance 
Design Iterations 

Minimum Maximum Average 

16-bit Shift Registers 10 150 MHz 150 MHz 150 MHz 

16-bit Prescaled Counters 3 127 MHz 145 MHz 134 MHz 

16-bit Non-Prescaled Counters 6 76 MHz 82 MHz 80 MHz 

16-bit Accumulators 3 46 MHz 47 MHz 47 MHz 

Note: 
For more information on the PREP Benchmarks, see Section 2 of this data book. 

1-82 



Ordering Information 

A1425 A - PQ 160 C 

I Application (Temperature Range) 
C = Commercial (0 to + 70°C) 
I = Industrial (-40 to +85°C) 
M = Military (-55 to + 125°C) 
B = MIL-STD-883 

Package Lead Count 

Package Type 
PG = Ceramic Pin Grid Array 
PL = Plastic Leaded Chip Carrier 
PQ = Plastic Quad Flatpack 

Speed Grade 
Std = Standard Speed 
-1 = Approximately 15% faster than Standard 

Die Revision 

Part Number 
A1415A 
A1425A 
A1440A 
A1460A 
A14100A 

= 1500 Gates 
= 2500 Gates 
= 4000 Gates 
= 6000 Gates 
= 1 0000 Gates 

ACT 3 FPGAs 

I 

1·83 



Product Plan 1 

Speed Grade* Application 

Std -1 C M B E 

A1415A Device 

84-pin Plastic Leaded Chip Carrier (PL) P P P P 
100-pin Plastic Quad Flatpack (PQ) P P P P 
100-pin Ceramic Pin Grid Array (PG) P P P 

A 1425, A 1425A Devices 

84-pin Plastic Leaded Chip Carrier (PL) t/ II' II' II' 
100-pin Plastic Quad Flatpack (PQ) II' t/ t/ II' 
133-pin Ceramic Pin Grid Array (PG) II' t/ t/ P P 
160-pin Plastic Quad Flatpack (PQ) II' II' II' II' 

A 1440A Device 

160-pin Plastic Quad Flatpack (PQ) P P P P 
175-pin Ceramic Pin Grid Array (PG) P P P 

A 1460A Device 

207 -pin Ceramic Pin Grid Array (PG) II' P t/ P P 
208-pin Plastic Quad Flatpack (PQ) II' P II' P 

A 141 ODA Device 

257-pin Ceramic Pin Grid Array (PG) P P P P P 

Applications: C = Commercial Availability: II' = Available * Speed Grade: -1 = 15% faster than Standard 
I = Industrial P = Planned 
M = Military - = Not Planned 
B = MIL-STO-883 
E = Extended Flow 

Note: 
1. Availability as of January 1993. Please consult Actel Representatives for current availability. 

Device Resources 

User II0s 

PLCC PQFP CPGA 

Device Logic 
Series Modules Gates 84-pin 100-pin 160-pin 208-pin 100-pin 133-pin 175-pin 207-pin 257-pin 

A1415A 200 1500 70 80 - - 80 - - - -

A1425A 310 2500 70 80 100 - - 100 - - -

A1440A 564 4000 - - 130 - - - 140 - -

A1460A 848 6000 - - - 167 - - - 168 -

A14100A 1377 10000 - - - - - - - - 228 

1-84 



Pin Description 

ClKA Clock A (Input) 

TTL Clock input for clock distribution networks. The Clock input 
is buffered prior to clocking the logic modules. This pin can also 
be used as an I/O. 

ClKB Clock B (Input) 

TTL Clock input for clock distribution networks. The Clock input 
is buffered prior to clocking the logic modules. This pin can also 
be used as an I/O. 

DClK Diagnostic Clock (Input) 

TTL Clock input for diagnostic probe and device programming. 
DCLK is active when the MODE pin is HIGH. This pin functions 
as an I/O when the MODE pin is LOW. 

GND Ground 

LOW supply voltage. 

HClK Dedicated (Hard-wired) 
Array Clock (Input) 

TTL Clock input for sequential modules. This input is directly 
wired to each S-Module and offers clock speeds independent of 
the number of S-Modules being driven. This pin can also be used 
as an I/O. 

I/O Input/Output (Input, Output) 

The I/O pin functions as an input, output, three-state, or 
bidirectional buffer. Input and output levels are compatible with 
standard TTL and CMOS specifications. Unused I/O pins are 
automatically driven LOW by the ALS software. 

10ClK Dedicated (Hard-wired) 
I/O Clock (Input) 

TTL Clock input for I/O modules. This input is directly wired to 
each I/O module and offers clock speeds independent of the 
number of I/O modules being driven. This pin can also be used as 
an I/O. 

10PCl Dedicated (Hard-wired) 
I/O Preset/Clear (Input) 

TTL input for I/O preset or clear. This global input is directly 
wired to the preset and clear inputs of all I/O registers. This pin 
functions as an I/O when no I/O preset or clear macros are used. 

MODE Mode (Input) 

The MODE pin controls the use of diagnostic pins (DCLK, 
PRA, PRB, SDI). When the MODE pin is HIGH, the special 
functions are active. When the MODE pin is LOW, the pins 
function as IIOs. 

ACT 3 FPGAs 

NC No Connection 

This pin is not connected to circuitry within the device. 

PRA Probe A (Output) 

The Probe A pin is used to output data from any user-defined 
design node within the device. This independent diagnostic pin 
can be used in conjunction with the Probe B pin to allow real-time 
diagnostic output of any signal path within the device. The Probe 
A pin can be used as a user-defined I/O when debugging has been 
completed. The pin's probe capabilities can be permanently 
disabled to protect programmed design confidentiality. PRA is 
accessible when the MODE pin is HIGH. This pin functions as an 
I/O when the MODE pin is LOW. 

PRB Probe B (Output) 

The Probe B pin is used to output data from any user-defined 
design node within the device. This independent diagnostic pin 
can be used in conjunction with the Probe A pin to allow real-time 
diagnostic output of any signal path within the device. The Probe 
B pin can be used as a user-defined I/O when debugging has been 
completed. The pin's probe capabilities can be permanently 
disabled to protect programmed design confidentiality. PRB is 
accessible when the MODE pin is HIGH. This pin functions as an 
I/O when the MODE pin is LOW. 

SDI Serial Data Input (Input) 

Serial data input for diagnostic probe and device programming. 
SDI is active when the MODE pin is HIGH. This pin functions as 
an I/O when the MODE pin is LOW. 

Vee 5 V Supply Voltage 

HIGH supply voltage. 

Programming Voltage 

Supply voltage used for device programming. This pin must be 
connected to GND during normal operation. 

Vpp Programming Voltage 

Supply voltage used for device programming. This pin must be 
connected to Vee during normal operation. 

Vsv Programming Voltage 

Supply voltage used for device programming. This pin must be 
connected to Vee during normal operation. 

1-85 

I 



Architecture 

This section of the data sheet is meant to familiarize the user with 
the architecture of the ACT 3 family of FPGA devices. A generic 
description of the family will be presented first, followed by a 
detailed description of the logic blocks, the routing structure, the 
antifuses, and the special function circuits. The on-chip circuitry 
required to program the devices is not covered. 

Topology 

The ACT 3 family architecture is composed of six key elements: 
Logic modules, I/O modules, I/O Pad Drivers, Routing Tracks, 
Clock Networks, and Programming and Test Circuits. The basic 
structure is similar for all devices in the family, differing only in 
the number of rows, columns, and lIOs. The array itself consists 
of alternating rows of modules and channels. The logic modules 
and channels are in the center of the array; the I/O modules are 
located along the array periphery. A simplified floor plan is 
depicted in Figure 2. 

Logic Modules 

ACT 3 logic modules are enhanced versions of the ACT 2 family 
logic modules. As in the ACT 2 family, there are two types of 
modules: C-modules and S-modules. The C-module is 
functionally equivalent to the ACT 2 C-module and implements 
high fanin combinatorial macros, such as 5-input AND, 5-input 
OR, and so on. It is available for use as the CM8 hard macro. The 
S-module is designed to implement high-speed sequential 
functions within a single module. S-modules consist of a full 
C-module driving a flip-flop, which allows an additional level of 
logic to be implemented without additional propagation delay. It 
is available for use as the DFM8AIB and DLM8AIB hard macros. 
C-modules and S-modules are arranged in pairs called module­
pairs. Module-pairs are arranged in alternating patterns and make 
up the bulk of the array. This arrangement allows the placement 
software to support two-module macros of four types (CC, CS, 
SC, and SS). The C-module implements the following function: 

Y = !SI * !SO* DOO * !SI * SO+ DOl * Sl * !SO * DlO+Sl * SO * 011 

where: SO =AO * BO and SI =Al + BI 

An Array with n rows and m columns 

o 2 3 4 5 c-1 c c+1 Columns 
Rows Channels 

n+2 ~------------------------------------------------~I 

110 110110 I CLKM 110 110 110 110 110 110 F Top 1I0s 

n 110 110 I BINI SIS I C I CIS I I SIC I CIS I CIS 1
10 110 I 

n 
n-1 110 110 I BINI sis I c Icisl I sic I cis I cis 110 110 I 

n-1 
2 110 110 I BINI sis I C Icisl I sic I cis I cis 110 110 I 

2 

110 110 I BINI sis I C I cis I 
t t 

I sic I cis I cis 110 110 I 
t t 

0 Left II0s I Bioi 10 110110110110 I 110 110 110110110110 1:9h1 1/~~nom II0s 
0 I I 

Figure 2. Generalized Floor Plan of ACT 3 Device 

1-86 



The S-module contains a full implementation of the C-module 
plus a clearable sequential element that can either implement a 
latch or flip-flop function. The S-module can therefore implement 
any function implemented by the C-module. This allows complex 
combinatorial-sequential functions to be implemented with no 
delay penalty. The Action Logic System will automatically 
combine any C-module macro driving an S-module macro into 
the S-module, thereby freeing up a logic module and eliminating 
a module delay. 

000 

001 

010 y OUT 

011 

81 80 

A1 81 AO 80 

Figure 3. C-Module Diagram 

000 

001 

ACT 3 FPGAs 

The clear input CLR is accessible from the routing channel. In 
addition, the clock input may be connected to one of three clock 
networks: CLKO, CLKl, or HCLK. The C-module and S-module 
functional descriptions are shown in Figures 3 and 4. The clock 
selection multiplexor selects the clock input to the S-module. 

II0s 

I/O Modules 

I/O modules provide an interface between the array and the I/O 
Pad Drivers. I/O modules are located in the array and access the 
routing channels in a similar fashion to logic modules. There are 
two types of I/O modules: side and top/bottom. The I/O module 
schematic is shown in Figure 5. VOl and V02 are inputs from 
the routing channel, one for the routing channel above and one for 
the routing channel below the module. The top/bottom I/O 
modules interact with only one channel and therefore have only 
one VO input. The signals Dataln and DataOut connect to the I/O I 
pad driver. Each I/O module contains two D-type flip-flops. Each 
flip-flop is connected to the dedicated I/O clock (IOCLK). Each 
flip-flop can be bypassed by nonsequentialI/Os. In addition, each 
flip-flop contains a data enable input that can be accessed from 
the routing channels (ODE and IDE). The asynchronous 
preset/clear input is driven by the dedicated preset/clear network 
(IOPCL). Either preset or clear can be selected individually on an 
I/O module by I/O module basis. 

The I/O module output Y is used to bring Pad signals into the 
array or to feed the output register back into the array. This allows 
the output register to be used in high-speed state machine 
applications. Side I/O modules have a dedicated output segment 
for Y extending into the routing channels above and below 

y r-------IO Qr---- OUT 
010 

011 

81 80 

ClK ClR 

A1 81 AO 80 

Figure 4. S-Module Diagram 

1-87 



OTB------------------------------------~ 

U01 
U02 

ODE -----------1-------' 

IDE -----, 

lEN 

Y---+--+---I 

DATAOUT 
D Q~--I----1 

1-----4I---.t Q D 

IOPCl 

IOClK 

DATAIN 

Figure 5. Functional Diagram for I/O Module 

(similar to logic modules). Top/Bottom I/O modules have no 
dedicated output segment. Signals coming into the chip from the 
top or bottom are routed using F-fuses and LVTs (F-fuses and 
LVTs are explained in detail in the routing section). 

I/O Pad Drivers 

All pad drivers are capable of being tristate. Each buffer connects 
to an associated I/O module with four signals: OE (Output 
Enable), IE (Input Enable), DataOut, and DataIn. Certain special 
signals used only during programming and test also connect to 
the pad drivers: OUTEN (global output enable), INEN (global 
input enable), and SLEW (individual slew selection). See 
Figure 6. 

Special I/Os 

The special I/Os are of two types: temporary and permanent. 
Temporary special I/Os are used during programming and 
testing. They function as normal I/Os when the MODE pin is 
inactive. Permanent special I/Os are user programmed as either 
normall/Os or special I/Os. Their function does not change once 
the device has been programmed. The permanent special I/Os 

1-88 

consist of the array clock input buffers (CLKA and CLKB), the 
hard-wired array clock input buffer (HCLK), the hard-wired I/O 
clock input buffer (IOCLK), and the hard-wired I/O register 
preset/clear input buffer (IOPCL). Their function is determined 
by the I/O macros selected. 

Clock Networks 

The ACT 3 architecture contains four clock networks: two high­
performance dedicated clock networks and two general purpose 
routed networks. The high-performance networks function up to 
1 SO MHz, while the general purpose routed networks function up 
to 75 MHz. 

Dedicated Clocks 

Dedicated clock networks support high performance by providing 
sub-nanosecond skew and guaranteed performance. Dedicated 
clock networks contain no programming elements in the path 
from the I/O Pad Driver to the input of S-modules or I/O modules. 
There are two dedicated clock networks: one for the array 
registers (HCLK), and one for the I/O registers (IOCLK). The 
clock networks are accessed by speciall/Os. 



OE --+--+--1 

SLEW --+-+------. 

DATAOUT --+-+-----1 

DATAIN --+--+----< 

lEN --+--+--1 

INEN 

OUTEN 

Figure 6. Function Diagram for I/O Pad Driver 

Routed Clocks 

The routed clock networks are referred to as CLKO and CLKl. 
Each network is connected to a clock module (CLKMOD) that 
selects the source of the clock signal and may be driven as 
follows (see Figure 7): 

externally from the CLKA pad 

externally from the CLKB pad 

internally from the CLKINA input 

internally from the CLKINB input 

The clock modules are located in the top row of I/O modules. 
Clock drivers and a dedicated horizontal clock track are located in 
each horizontal routing channel. The function of the clock 
module is determined by the selection of clock macros from the 
macro library. The macro CLKBUF is used to connect one of the 
two external clock pins to a clock network, and the macro 
CLKINT is used to connect an internally generated clock signal 
to a clock network. Since both clock networks are identical, the 
user does not care whether CLKO or CLK! is being used. Routed 
clocks can also be used to drive high fanout nets like resets, 
output enables, or data enables. This saves logic modules and 
results in performance increases in some cases. 

Routing Structure 

The ACT 3 architecture uses vertical and horizontal routing tracks 
to connect the various logic and I/O modules. These routing 

ACT 3 FPGAs 

tracks are metal interconnects that may either be of continuous 
length or broken into segments. Segments can be joined together 
at the ends using antifuses to increase their lengths up to the full 
length of the track. 

Horizontal Routing 

Horizontal channels are located between the rows of modules and 
are composed of several routing tracks. The horizontal routing 
tracks within the channel are divided into one or more segments. 
The minimum horizontal segment length is the width of a 
module-pair, and the maximum horizontal segment length is the 
full length of the channel. Any segment that spans more than one­
third the row length is considered a long horizontal segment. A 
typical channel is shown in Figure 8. Undedicated horizontal 
routing tracks are used to route signal nets. Dedicated routing 
tracks are used for the global clock networks and for power and 
ground tie-off tracks. 

Vertical Routing 

Other tracks run vertically through the modules. Vertical tracks 
are of three types: input, output, and long. Vertical tracks are also 
divided into one or more segments. Each segment in an input 
track is dedicated to the input of a particular module. Each 
segment in an output track is dedicated to the output of a 
particular module. Long segments are uncommitted and can be 
assigned during routing. Each output segment spans four 
channels (two above and two below), except near the top and 
bottom of the array where edge effects occur. LVTs contain either 
one or two segments. An example of vertical routing tracks and 
segments is shown in Figure 9. 

~
ClKS 

ClKA 

FROM 
PADS 

CLOCK [ 
DRIVERS 

ClKINS, 

ClKINAi 

SO INTERNAL 
S1 SIGNAL 

CLKO(17) 

CLKO(16) 

CLKO(15) 

ClKO(2) 

ClKO(1) 

CLOCK TRACKS 

Figure 7. Clock Networks 

1-89 

I 



Antifuse Connection~ 

An antifuse is a "normally open" structure as opposed to the 
normally closed fuse structure used in PROMs or PALs. The use 
of antifuses to implement a programmable logic device results in 
highly testable structures as well as an efficient programming 
architecture. The structure is highly testable because there are no 
preexisting connections; temporary connections can be made 
using pass transistors. These temporary connections can isolate 
individual antifuses to be programmed as well as isolate 
individual circuit structures to be tested. This can be done both 
before and after programming. For example, all metal tracks can 
be tested for continuity and shorts between adjacent tracks, and 
the functionality of all logic modules can be verified. 

Four types of antifuse connections are used in the routing 
structure of the ACT 3 array. (The physical structure of the 
antifuse is identical in each case; only the usage differs.) Table 2 
shows four types of antifuses. 

Table 2. Antifuse Types 

XF Horizontal-to-Vertical Connection 

HF Horizontal-to-Horizontal Connection 

VF Vertical-to-Vertical Connection 

FF "Fast" Vertical Connection 

Examples of all four types of connections are shown in Figure 8 
and Figure 9. 

Module Interface 

Connections to Logic and I/O modules are made through vertical 
segments that connect to the module inputs and outputs. These 
vertical segments lie on vertical tracks that span the entire height 
of the array. 

Module Input Connections 

The tracks dedicated to module inputs are segmented by pass 
transistors in each module row. During normal user operation, the 
pass transistors are inactive, which isolates the inputs of a module 
from the inputs of the module directly above or below it. During 
certain test modes, the pass transistors are active to verify the 
continuity of the metal tracks. Vertical input segments span only 
the channel above or the channel below. The logic modules are 
arranged such that half of the inputs are connected to the channel 
above and half of the inputs to segments in the channel below as 
shown in Figure 10. 

Module Output Connections 

Module outputs have dedicated output segments. Output 
segments extend vertically two channels above and two channels 
below, except at the top or bottom of the array. Output segments 
twist, as shown in Figure 10, so that only four vertical tracks are 
required. 

MODULE ROW 

TRACK~--------~.--------~()~--------~.---------------------
SEGMENT--~~~~~==~~~~~~~~~~~~~ ____________________ ___ 

1-90 

--------------------------~()~------~()~------------
--------------~()~------------~()~----------------

------~.~----~()~------~()r------~()r------------­HF 

------------~()~--------------~()~----~O~-------

MODULE ROW 

Figure 8. Horizontal Routing Tracks and Segments 

HCLK 

CLKO 

NVCC 

SIGNAL 

SIGNAL 
(LHT) 

I 
I 
I 
I 
I 
I 
I 

SIGNAL 

NVSS 

CLK1 



LVT Connections 

Outputs may also connect to nondedicated segments called Long 
Vertical Tracks (LVTs). Each module pair in the array shares four 
LVTs that span the length of the column. Any module in the 
column pair can connect to one of the LVTs in the column using 
an FF connection. The FF connection uses antifuses connected 
directly to the driver stage of the module output, bypassing the 
isolation transistor. FF antifuses are programmed at a higher 
current level than HF, VF, or XF antifuses to produce a lower 
resistance value. 

Antifuse Connections 

In general every intersection of a vertical segment and a 
horizontal segment contains an unprogrammed anti fuse 
(XF-type). One exception is in the case of the clock networks. 

VERTICLE INPUT 
SEGMENT 

S-MODULE 

----
S-MODULE 

C,... 

V4_ 

ACT 3 FPGAs 

Clock Connections 

To minimize loading on the clock networks, a subset of inputs has 
antifuses on the clock tracks. Only a few of the C-module and 
S-module inputs can be connected to the clock networks. To 
further reduce loading on the clock network, only a subset of the 
horizontal routing tracks can connect to the clock inputs of the 
S-module. 

Programming and Test Circuits 

The array of logic and I/O modules is surrounded by test and 
programming circuits controlled by the temporary special I/O 
pins MODE, SDJ, and DCLK. The function of these pins is 
similar to all ACT family devices. The ACT 3 family also 
includes support for two Actionprobe@ circuits allowing complete 
observability of any logic or I/O module in the array using the 
temporary special I/O pins, PRA and PRB. 

LVTS 

C-MODULE MODULE ROW 

.... CHANNEL 

"''''XF 

4_FF 

C-MODULE 

Figure 9. Vertical Routing Tracks and Segments 

1-91 

II 



Y-2 

S-MODULES 

Figure 10. Logic Module Routing Interface 

1-92 



ACT 3 FPGAs 

Absolute Maximum Ratings 1 Recommended Operating Conditions 
Free air temperature range 

Parameter Commercial Industrial Military Units 
Symbol Parameter Limits Units 

Vee DC Supply Voltage2 -0.5 to +7.0 V 
Temperature o to +70 -40 to +85 -55 to +125 °C Range1 

V, Input Voltage -0.5 to Vee +0.5 V 

Vo Output Voltage -0.5 to Vee +0.5 V 

Power Supply 
±5 ±10 ±10 %Vee Tolerance 

Note: 
1'0 1/0 Source Sink 

Current3 ±20 mA 1. Ambient temperature (T A) is used for commercial and industrial; case 
temperature (T d is used for military. 

TSTG Storage Temperature -65 to +150 °C 

Notes: 
1. Stresses beyond those listed under "Absolute Maximum Ratings" may 

cause permanent damage to the device. Exposure to absolute 
maximum rated conditions for extended periods may affect device 
reliability. Device should not be operated outside the Recommended 
Operating Conditions. 

2. V pp, V sv = Vee, except during device programming. 
3. Device inputs are normally high impedance and draw extremely low 

current. However, when input voltage is greater than Vee + 0.5 V or 
less than GND - 0.5 V, the internal protection diodes will forward bias 
and can draw excessive current. 

Electrical Specifications 

Symbol Parameter Test Condition 

VOH
1,2 HIGH Level Output IOH = -4 mA (CMOS) 

10H = -8 mA (TTL) 

VOL
1,2 LOW Level Output 10L = +6 mA (CMOS) 

10L = +12 mA (TTL) 

V'H HIGH Level Input TTL Inputs 

V'L LOW Level Input TTL Inputs 

I'N Input Leakage V, = Vee or GND 

loz 3-state Output Leakage Vo = Vee or GND 

lee(s) Standby Vee Supply Current V, = Vee or GND, 

10 = 0 mA 

lee(D) Dynamic Vee Supply Current See "Power Dissipation" Section 

Notes: 

Commercial 

Minimum I Maximum 

3.84 

2.40 

0.33 

0.50 

2.0 Vee + 0.3 

-0.3 0.8 

-10 +10 

-10 +10 

2 

1. Actel devices can drive and receive either CMOS or TTL signal levels. No assignment of l/Os as TTL or CMOS is required. 
2. Tested one output at a time, Vee = min. 

Units 

V 

V 

V 

V 

V 

V 

IlA 

!lA 

mA 

1-93 

I 



Package Thermal Characteristics 

The device junction to case thennal characteristic is 8jc, and the 
junction to ambient air characteristic is 8ja. The thennal 
characteristics for 8ja are shown with two different air flow rates. 

Maximum junction temperature is ISO°C. 

A sample calculation of the absolute maximum power dissipation 
allowed for a CPGA 177 -pin package at commercial temperature 
and still air is as follows: 

Absolute Maximum Power Allowed 
Max. junction temp. eC) - Max. ambient temp. (0C) 

eja (OCfW) 

Package Type Pin Count 9jc 9ja 9ja Units Still Air 300 ft/min 

Ceramic Pin Grid Array 100 8 35 17 °C/W 
133 8 30 15 °C/W 
175 8 25 14 °C/W 
207 8 22 13 °C/W 
257 2 15 8 °C/W 

Plastic Quad Flatpack 1 100 13 55 47 °C/W 
160 15 33 26 °C/W 
208 15 33 26 °C/W 

Plastic Leaded Chip Carrier2 84 15 44 38 °C/W 

Notes: 
1. Maximum Power Dissipation for 160-pin PQFP package is 1.75 Watts, 208-pin PQFP package is 2.0 Watts, and lOO-pin PQFP package is 1.0 Watt. 
2. Maximum Power Dissipation for PLCC package is 1.5 Watts. 

Power Dissipation 

P= [Icc + Iactive] * vee + IOL * VOL * N + IOH * (Vee-voH) * M 

Where: 

ICC is the current flowing when no inputs or outputs are 
changing. 

lactive is the current flowing due to CMOS switching. 

IOL' IOH are TTL sink/source currents. 

VOL, V OH are TTL level output voltages. 

N equals the number of outputs driving TTL loads to VOL. 

M equals the number of outputs driving TTL loads to V OH. 

An accurate detennination of Nand M is problematical because 
their values depend on the design and on the system I/O. The 
power can be divided into two components: static and active. 

Static Power 

Static power dissipation is typically a small component of the 
overall power. From the values provided in the Electrical 
Specifications, the maximum static power (commercial) 
dissipation is: 

1 rnA x 5.25 V = 5.25 mW 

1-94 

The static power dissipation by TTL loads depends on the number 
of outputs that drive high or low and the DC lead current flowing. 
Again, this number is typically small. For instance, a 32-bit bus 
driving TTL loads will generate 42 m W with all outputs driving 
low or 140 rnA with all outputs driving high. The actual 
dissipation will average somewhere between as I/Os switch states 
with time. 

Active Time 

The active power component in CMOS devices is frequency 
dependent and depends on the user's logic and the external I/O. 
Active power dissipation results from charging internal chip 
capacitance such as that associated with the interconnect tracks, 
unprogrammed antifuses, module inputs, and module outputs plus 
external capacitance due to PC board traces and load device 
inputs. An additional component of active power dissipation is 
due to totem-pole current in CMOS transistor pairs. The net effect 
can be associated with an equivalent capacitance that can be 
combined with frequency and voltage to represent active power 
dissipation. 

Equivalent Capacitance 

The power dissipated by a CMOS circuit can be expressed by 
Equation l. 

Power (IlW) = CEQ * Vee
2 * f (1) 



Where: 

CEQ is the equivalent capacitance expressed in picofarads 
(pF). 

Vee is power supply in volts (V). 

f is the switching frequency in megahertz (MHz). 

Equivalent capacitance is calculated by measuring Iactive at a 
specified frequency and voltage for each circuit component of 
interest. The results for ACT 3 devices are: 

CEQ (pF) 

Modules 8.2 
Input Buffers 1.5 
Output Buffers 2.3 
I/O Clock Buffer Loads 0.4 
Dedicated Array Clock Buffer Loads 0.5 
Routed Array Clock Buffer Loads 0.5 + fixed/device 

To calculate the active power dissipated from the complete 
design, you must solve Equation 1 for each component. To do 
this, you must know the switching frequency of each part of the 
logic. The exact equation is a piece-wise linear summation over 
all components, as shown in Equation 2. 

Power (I..IW) = [em x 8.2 x f1) + (n x 1.5 x f2) + 
(p x (2.3 + CL ) x f3) + (q x 0.5 x f4) + «r1 + 0.5 r2) x fs) + 
(s x 0.4 x f6)] xV ee2 (2) 

Where: 

m= Number oflogic modules switching at f1 

n = Number of input buffers switching at f2 

p = Number of output buffers switching at f3 

q = Number of clock loads on the dedicated array clock 
network 

A1415A: q = 104 

A1425A: q = 160 

A1440A: q = 288 

A1460A: q =432 

A14100A: q =697 

r1 = Fixed capacitance due to routed array clock network 

A1415A: r1 = 60 

A1425A: r1 = 75 

A 1440A: r1 = 105 

A1460A: r1 = 145 

AI4100A: r1 = 195 

ACT 3 FPGAs 

r2 = Number of clock loads on the routed array clock 
network 

s = Number of clock loads on the dedicated I/O clock 
network 

A1415A: 

A1425A: 

A1440A: 

A1460A: 

A14100A: 

s = 80 

s = 100 

s = 140 

s = 168 

s = 228 

f1 = Average logic module switching rate in MHz 

f2 = Average input buffer switching rate in MHz 

f3 = Average output buffer switching rate in MHz 

f4 = Average dedicated array clock rate in MHz 

fs = Average routed array clock rate in MHz 

f6 = Average dedicated I/O clock rate in MHz 

CL = Output load capacitance in pF 

Determining Average Switching Frequency 

To determine the switching frequency for a design, you must have 
a detailed understanding of the data input values to the circuit. 
The following rules are meant to represent worst-case scenarios 
so that they can be generally used to predict the upper limits of 
power dissipation. These rules are as follows: 

Logic Modules (m) 

Average module switching rate (f1) 

Inputs switching (n) 

Average input switching rate (f2) 

Outputs switching (p) 

Output loading (CL> 

Average output switching rate %) 
Dedicated array clock loads (q) 

80% of modules 

F/lO 

# I/Os used/12 

F 

# I/Os used/IS 

35 

F/2 

fixed by device 

Average dedicated array switching F 
rate (f4) 

Routed array fixed capacitance (r1) 

Routed array clock loads (r2) 

Average routed array switching 
rate (fs) 

I/O clock loads (s) 

Average I/O switching rate (f6) 

fixed by device 

40% of sequential 
modules 

F/2 

# I/Os used 

F 

1-95 

I 



ACT 3 Timing Model* 

Input Delays 

roo Module - - I 

Internal Delays Predicted 
Routing 
Delays 

Output Delays 

tiNY = 4.2 ns tlRo2 = 1.8 ns 

Combinatorial 
Logic Module nJo Module - I 

ARRAY 
CLOCK 

\ tlNH = 0 ns 
tlNSU = 3.0 ns 
~CKy=7.0~ 

tHCKH = 4.5 ns 

FHMAX = 125 MHz 

I/O CLOCK 
tlOCKH = 3.0 ns 

FIOMAX = 125 MHz 

*Values shown for A1425A. 

Output Buffer Delays 

VCC 
In 50% 

Out 
VOL 

\ 

~ 

GND 

toHS, tOHS, 
toLS tOLs 

1-96 

tpo = 3.0 ns 

Sequential 
Logic Module 

tR01 = 1.3 ns 
tR04 = 2.5 ns 
tR08 = 4.2 ns 

.----.1 

!I/O Module - - I 
tOHS = 7.5 ns 

Combin-
atorial 
Logic 
included 

D Q r--,-----:-\ ~ D 

tR01 = 1.3 ns 
\ 

tENZHS = 6.0 ns 

\ in tSUD 

L __ 
tsuo = 0.8 ns 
tHO= 0.5 ns 

\ 

~ 
tco = 3.0 ns 

\ tOUTH= 1.0 ns 
tOUTSU = 1.0 ns 

LtCKHS = 10.0 ns_ 

\ 

D 
.r----.lij"r:.',. To AC test loads (shown below) 

Vcc 
GND 50% GND 

Out Out 
VOL GND 

tENZHS, tENHSZ, tENZHS, tENHSZ, 
tENZLS tENLSZ tENZLS tENLSZ 



ACT 3 FPGAs 

AC Test Loads 
Load 1 Load 2 

(Used to measure propagation delay) (UseJ to measure rising/falling edges) 

To the output under test 

)>------'l 

T
35PF 

Input Buffer Delays 

OV 
Vee 

Out 50% 
GND 

Sequential Module Timing Characteristics 

Flip-Flops 

Vee GND 

• • 

To the output under test }------.. 

R to Vee for tpLZ/tpZL 

R to GND for tpHZ/tpZH 
R = 1 kQ 

T
35PF 

Module Delays 

Vee 

S,A ~ VsO% 50%, GND 

Out 

GND 

Out 

D-r-lQ 
CLK~ 
(Positive edge triggered) 

-I tHD I--

Vee 

..... ...vSO% 

tpD 

50%" 
tpD 

",50% 

tpD 

Vee 
GND /"50% 

tpD 

D ____ ~><~ ___________ ~><~---------------
~ tSUD ------I tweLKA I~OI--__ I 1-111---- tA --~.I 

CLK ______________ ~~I ------~ ______ ~I I I '---_---II 
I I- tweLKA--1 

I-- teo-I 

Q -------------------------------------~--------><~----~><~----------
I- -I f-teLR~ 

CLR --------~lt_S_UA_S_YN __________________________ ~1 ~I __________ _ 

100twASYN-1 

1-97 

II 



1/0 Module: Sequential Input Timing Characteristics 

IOCLK 

D 
E 

CLR 

y 

(Positive edge triggered) 

--j tlNH l--D ____ ~><~ _______________________ ><~---------------
!--tINSU ----..j tlOPWH I~" --.. I I---- t lOP ---..l .. 1 

IOCLK _______ ..;-1 ------.'---__ __11 1'---__ __11 I I 
--j tlDESU l--

E ____________ ----11 

y-----------------------------------><~---)(~-----------
I.. ..I 1----+1 tlCLRY 

PRE,CLR ----~~lt_ISU_A_SY_N ________________________ __I1 ~I ________ _ 

l\oASPv.: I 

1/0 Module: Sequential Output Timing Characteristics 

1-98 

D PRE 
E 

IOCLK CLR 

Y ------------I 
(Positive edge triggered) 

j--.I tOUTH 

D ___ ~><~-----------------------><~---------------

f.- tOUTSU-! tlOPWH 141"--·~1 I.. tlOP ---..l .. 1 
IOCLK _____ ----11 1 1 1 I 

--jtODESUl--

E ____________ -11 
I- tOCKy-j 

Y------------------------------~---><~----~)(~-----------
l_ttCKHS, _I 
r- CKLS ~ 

Q-------------------------------~~--~)(----------
I.. ·1 1----+1 tOCLRY 

PRE,CLR -----~I~~_S_UA_S_YN ________________________ _II ~I ________ __ 

I.. ·1 
tlOASPW 



Predictable Performance: 
Tightest Delay Distributions 

Propagation delay between logic modules depends on the resistive 
and capacitive loading of the routing tracks, the interconnect 
elements, and the module inputs being driven. Propagation delay 
increases as the length of routing tracks, the number of 
interconnect elements, or the number of inputs increases. 

From a design perspective, the propagation delay can be 
statistically correlated or modeled by the fanout (number of loads) 
driven by a module. Higher fanout usually requires some paths to 
have longer lengths of routing track. 

The ACT 3 family delivers the tightest fanout delay distribution of 
any FPGA. This tight distribution is achieved in two ways: by 
decreasing the delay of the interconnect elements and by 
decreasing the number of interconnect elements per path. 

Actel's patented PLICE antifuse offers a very low 
resistive/capacitive interconnect. The ACT 3 family's antifuses, 
fabricated in 0.8 JlIll lithography, offer nominal levels of 200n 
resistance and 6 femtofarad (fF) capacitance per antifuse. 

The ACT 3 fanout distribution is also tighter than alternative 
devices due to the low number of antifuses required per 
interconnect path. The ACT 3 family's proprietary architecture 
limits the number of antifuses per path to only four, with 90% of 
interconnects using only two antifuses. 

Table 3. Logic Module + Routing Delay, by fanout (ns) 1 

(Worst-Case Commercial Conditions) 

Family FO=1 FO=2 FO=3 FO=4 FO=8 

ACT 1 5.0 5.7 6.6 7.9 12.5 

ACT 2 5.5 6.2 6.9 7.4 9.2 

ACT3 3.7 4.2 4.4 4.8 6.2 

Note: 
1. '-1' Speed Devices Specified 

The ACT 3 family's tight fanout delay distribution offers an FPGA 
design environment in which fanout can be traded for the increased 
performance of reduced logic level designs. This also simplifies 
performance estimates when designing with ACT 3 devices. 

ACT 3 FPGAs 

Timing Characteristics 

Timing characteristics for ACT 3 devices fall into three categories: 
family dependent, device dependent, and design dependent. The 
input and output buffer characteristics are common to all ACT 3 
family members. Internal routing delays are device dependent. 
Design dependency means actual delays are not determined until 
after placement and routing of the user's design is complete. Delay 
values may then be determined by using the ALS Timer utility or 
performing simulation with post-layout delays. 

Critical Nets and Typical Nets 

Propagation delays are expressed only for typical nets, which are 
used for initial design performance evaluation. Critical net delays 
can then be applied to the most time-critical paths. Critical nets are 
determined by net property assignment prior to placement and 
routing. Up to 6% of the nets in a design may be designated as 
critical, while 90% of the nets in a design are typical. II 
Long Tracks 

Some nets in the design use long tracks. Long tracks are special 
routing resources that span multiple rows, columns, or modules. 
Long tracks employ three and sometimes four antifuse connections. 
This increases capacitance and resistance, resulting in longer net 
delays for macros connected to long tracks. Typically up to 6% of 
nets in a fully utilized device require long tracks. Long tracks 
contribute approximatley 4 ns to 14 ns delay. This additional delay 
is represented statistically in higher fanout (FO=8) routing delays 
in the data sheet specifications section. 

Timing Derating 

ACT 3 devices are manufactured in a CMOS process. Therefore, 
device performance varies according to temperature, voltage, and 
process variations. Minimum timing parameters reflect maximum 
operating voltage, minimum operating temperature, and best-case 
processing. Maximum timing parameters reflect minimum 
operating voltage, maximum operating temperature, and worst-case 
processing. 

1·99 



Timing Derating Factor, Temperature and Voltage 

Industrial Military 

Minimum Maximum Minimum Maximum 

(Commercial Minimum/Maximum Specification) x 0.85 1.07 0.81 1.16 

Timing Derating Factor for Designs at Typical Temperature (T J = 25°C) and Voltage (5.0 V) 

(Commercial Maximum Specification) x 

1.20 

1.15 

1.10 

1.05 

Factor 1.00 

0.95 

0.90 

0.85 

0.80 

Note: 

Voltage Derating Curve 

"-~, 

I'~ 
'" 

4.5 4.75 5.0 5.25 5.5 

Vee (Volts) 

This derating factor applies to all routing and propagation delays. 

1·100 

Factor 

0.87 

Temperature Derating Curve 

1.40 

1.30 

1.20 ,;~ 

1.10 
,;~~ 

1.00 ~,; 
~"'" 

0.90 """"'~ 
~I' 

0.80 ~ 
~~ 

I"" 
0.70 

-60 -40 -20 0 20 40 60 80100120 

Junction Temperature (0C) 



ACT 3 FPGAs 

A1415A Timing Characteristics 

(Worst-Case Commercial Conditions, Vee = 4.75 V, TJ = 70°C) 

Preliminary Information Advanced Information* 

Logic Module Propagation Delays 1 'Std'Speed '-1' Speed 

Parameter Description Min. Max. Min. Max. Units 

tpD Internal Array Module 3.0 2.6 ns 

tco Sequential Clock to Q 3.0 2.6 ns 

tCLR Asynchronous Clear to Q 3.0 2.6 ns 

Predicted Routing Delays2 

tRDl FO=1 Routing Delay 1.3 1.1 ns 

tRD2 FO=2 Routing Delay 1.8 1.6 ns 

tRD3 FO=3 Routing Delay 2.1 1.8 ns 

tR04 FO=4 Routing Delay 2.5 2.2 ns 

tROB FO=8 Routing Delay 4.2 3.6 ns 

Logic Module Sequential Timing 

tSUD Flip-Flop Data Input Setup 0.8 0.8 ns 

tHo Flip-Flop Data Input Hold 0.5 0.5 ns 

tSUD Latch Data Input Setup 0.8 0.8 ns 

tHo Latch Data Input Hold 0.5 0.5 ns 

tSUASYN Asynchronous Input Setup TBD TBD ns 

tWASYN Asynchronous Pulse Width 3.8 3.2 ns 

tWCLKA Flip-Flop Clock Pulse Width 3.8 3.2 ns 

tA Flip-Flop Clock Input Period 8.0 6.B ns 

fMAX Flip-Flop Clock Frequency 125 150 MHz 

Notes: 
1. For dual-module macros, use tpD + tRDl + tPDn ' teo + tRDl + tPDn or tpDl + tRDl + tSUD ' whichever is appropriate. 
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. 

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay 
measurements performed on the device prior to shipment. 

*Actel is offering "Advanced Information" only on '-1' Speed devices. Consult Actelfor '-1' device availability. 

1-101 

I 



A 1415A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

I/O Module Input Propagation Delays 

Parameter 

tiNY 

tlCKY 

tOCKY 

tlCLRY 

Description 

Input Data Pad to Y 

Input Reg IOCLK Pad to Y 

Output Reg IOCLK Pad to Y 

Input Asynchronous Clear to Y 

tOCLRY Output Asynchronous Clear to Y 

Predicted Input Routing Delays 1 

tIRD1 FO=1 Routing Delay 

tlRD2 FO=2 Routing Delay 

tlRD3 FO=3 Routing Delay 

tlRD4 FO=4 Routing Delay 

tlRD8 FO=8 Routing Delay 

I/O Module Sequential Timing 

tlNH Input F-F Data Hold 
(w.r.t. IOCLK Pad) 

tlNSU Input F-F Data Setup 
(w.r.t. IOCLK Pad) 

tlDEH Input Data Enable Hold 
(w.r.t. IOCLK Pad) 

tlDESU Input Data Enable Setup 
(w.r.t. IOCLK Pad) 

tlSUASYN Input Asynchronous Setup 

tOUTH Output F-F Data Hold 
(w.r.t. IOCLK Pad) 

tOUTSU Output F-F Data Setup 
(w.r.t. IOCLK Pad) 

tODEH Output Data Enable Hold 
(w.r.t. IOCLK Pad) 

tODESU Output Data Enable Setup 
(w.r.t. IOCLK Pad) 

tOSUASYN Output Asynchronous Setup 

Note: 

Preliminary Information Advanced Information· 

'Std'Speed '-1' Speed 

Min. Max. Min. Max. Units 

4.2 3.6 ns 

7.0 6.0 ns 

7.0 6.0 ns 

7.0 6.0 ns 

7.0 6.0 ns 

1.3 1.1 ns 

1.8 1.6 ns 

2.1 1.8 ns 

2.5 2.2 ns 

4.2 3.6 ns 

0.0 0.0 ns 

3.0 3.0 ns 

0.0 0.0 ns 

9.0 9.0 ns 

TBD TBD ns 

1.0 1.0 ns 

1.0 1.0 ns 

0.5 0.5 ns 

2.0 2.0 ns 

TBD TBD ns 

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. 
Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay 
measurements performed on the device prior to shipment. 

*Actel is offering "Advanced Information" only on '-1' Speed devices. Consult Actelfor '-1' device availability. 

1-102 



ACT 3 FPGAs 

A1415A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

Preliminary Information Advanced Information* 

1/0 Module - TTL Output Timing 1 'Std'Speed '-1' Speed 

Parameter Description Min. Max. Min. Max. Units 

tOHS Data to Pad, High Slew 7.5 6.4 ns 

tDLS Data to Pad, Low Slew 12.0 10.2 ns 

tENZHS Enable to Pad, Z to H/L, Hi Slew 6.0 5.1 ns 

tENZLS Enable to Pad, Z to H/L, Lo Slew 11.0 9.4 ns 

tENHSZ Enable to Pad, H/L to Z, Hi Slew 10.0 8.5 ns 

tENLSZ Enable to Pad, H/L to Z, Lo Slew 10.0 8.5 ns 

tCKHS IOCLK Pad to Pad H/L, Hi Slew 10.0 9.0 ns II 
tCKLS IOCLK Pad to Pad H/L, Lo Slew 15.0 13.5 ns 

dTLHHS Delta Low to High, Hi Slew TBD TBD ns/pF 

dTLHLS Delta Low to High, Lo Slew TBD TBD ns/pF 

dTHLHS Delta High to Low, Hi Slew TBD TBD ns/pF 

dTHLLS Delta High to Low, Lo Slew TBD TBD ns/pF 

110 Module - CMOS Output Timing 1 

tOHS Data to Pad, High Slew 9.3 7.9 ns 

tOLS Data to Pad, Low Slew 17.5 14.9 ns 

tENZHS Enable to Pad, Z to H/L, Hi Slew 7.8 6.6 ns 

tENZLS Enable to Pad, Z to H/L, Lo Slew 13.3 11.3 ns 

tENHSZ Enable to Pad, H/L to Z, Hi Slew 10.0 8.5 ns 

tENLSZ Enable to Pad, H/L to Z, Lo Slew 10.0 9.0 ns 

tCKHS IOCLK Pad to Pad H/L, Hi Slew 11.8 10.7 ns 

tCKLS IOCLK Pad to Pad H/L, Lo Slew 17.3 15.6 ns 

dTLHHS Delta Low to High, Hi Slew TBD TBD ns/pF 

dTLHLS Delta Low to High, Lo Slew TBD TBD ns/pF 

dTHLHS Delta High to Low, Hi Slew TBD TBD ns/pF 

dTHLLS Delta High to Low, Lo Slew TBD TBD ns/pF 

Note: 
1. Delays based on 35pF loading. 

*Actel is offering "Advanced Information" only on '-1' Speed devices. Consult Actelfor '-1' device availability. 

1-103 



A1415A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

Preliminary Information Advanced Information* 

Dedicated (Hard-Wired) I/O Clock Network 'Std'Speed '-1' Speed 

Parameter Description Min. Max. Min. Max. Units 

tlOCKH Input Low to High 
(Pad to I/O Module Input) 3.0 2.6 ns 

tlOPWH Minimum Pulse Width High 3.8 3.3 ns 

tlOPWL Minimum Pulse Width Low 3.8 3.3 ns 

tlOSAPW Minimum Asynchronous Pulse 
Width 3.8 3.3 ns 

tlOCKSW Maximum Skew 0.4 0.4 ns 

t10p Minimum Period 8.0 6.8 ns 

flOMAX Maximum Frequency 125 150 MHz 

Dedicated (Hard-Wired) Array Clock Network 

tHCKH Input Low to High 
(Pad to S-Module Input) 4.5 3.9 ns 

tHCKL Input High to Low 
(Pad to S-Module Input) 4.5 3.9 ns 

tHPWH Minimum Pulse Width High 3.8 3.3 ns 

tHPWL Minimum Pulse Width Low 3.8 3.3 ns 

tHCKSW Maximum Skew 0.3 0.3 ns 

tHP Minimum Period 8.0 6.8 ns 

fHMAX Maximum Frequency 125 150 MHz 

Routed Array Clock Networks 

tRCKH Input Low to High (FO=64) 5.5 4.7 ns 

tRCKL Input High to Low (FO=64) 6.0 5.1 ns 

tRPWH Min. Pulse Width High (FO=64) 4.9 4.2 ns 

tRPWL Min. Pulse Width Low (FO=64) 4.9 4.2 ns 

tRCKSW Maximum Skew (FO=128) 1.0 0.9 ns 

tRP Minimum Period (FO=64) 10.0 8.7 ns 

fRMAX Maximum Frequency (FO=64) 100 115 MHz 

Clock-to-Clock Skews 

tlOHCKSW 1/0 Clock to H-Clock Skew 0.0 1.3 0.0 3.0 ns 

tlOHCKSW 1/0 Clock to R-Clock Skew 0.0 3.0 0.0 3.0 ns 

tHRCKSW H-Clock to R-Clock Skew 0.0 1.0 0.0 1.0 ns 

Note: 
1. Delays based on 35pF loading. 

*Actel is offering "Advanced Information" only on '-1' Speed devices. Consult Actelfor '-1' device availability. 

1-104 



ACT 3 FPGAs 

A1425A Timing Characteristics 

(Worst-Case Commercial Conditions, Vee = 4.75 V, TJ = 70°C) 

Preliminary Preliminary Advanced 
Information Information Information· 

Logic Module Propagation Delays 1 'Std'Speed '-1' Speed '-2' Speed 

Parameter Description Min. Max. Min. Max. Min. Max. Units 

tpo Internal Array Module 3.0 2.6 2.3 ns 

tco Sequential Clock to Q 3.0 2.6 2.3 ns 

tCLR Asynchronous Clear to Q 3.0 2.6 2.3 ns 

Predicted Routing Delays2 

tR01 FO=1 Routing Delay 1.3 1.1 1.0 ns 

tRD2 FO=2 Routing Delay 1.8 1.6 1.4 ns II tR03 FO=3 Routing Delay 2.1 1.8 1.6 ns 

tR04 FO=4 Routing Delay 2.5 2.2 1.9 ns 

tR08 FO=8 Routing Delay 4.2 3.6 3.2 ns 

Logic Module Sequential Timing 

tsuo Flip-Flop Data Input Setup 0.8 0.8 0.8 ns 

tHo Flip-Flop Data Input Hold 0.5 0.5 0.5 ns 

tsuo Latch Data Input Setup 0.8 0.8 0.8 ns 

tHO Latch Data Input Hold 0.5 0.5 0.5 ns 

tSUASYN Asynchronous Input Setup TBD TBD TSD ns 

tWASYN Asynchronous Pulse Width 3.8 3.2 2.9 ns 

tWCLKA Flip-Flop Clock Pulse Width 3.8 3.2 2.9 ns 

tA Flip-Flop Clock Input Period 8.0 6.8 6.0 ns 

fMAX Flip-Flop Clock Frequency 125 150 167 MHz 

Notes: 
1. For dual-module macros, use tpD + tRDl + tPDn ' teo + tRDl + tPDn or tpDl + tRDl + tSUD ' whichever is appropriate. 
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. 

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay 
measurements performed on the device prior to shipment. 

*Actel is offering "Advanced Information" only on '-2' Speed devices. Consult Actelfor '-2' device availability. 

1-105 



A1425A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

Preliminary Preliminary Advanced 
Information Information Informatlon* 

I/O Module Input Propagation Delays 'Std'Speed '-1' Speed '-2'Speed 

Parameter Description Min. Max. Min. Max. Min. Max. Units 

tiNY Input Data Pad to Y 4.2 3.6 3.2 ns 

tlCKY Input Reg IOCLK Pad to Y 7.0 6.0 5.3 ns 

tOCKY Output Reg IOCLK Pad to Y 7.0 6.0 5.3 ns 

tlCLRY Input Asynchronous Clear to Y 7.0 6.0 5.3 ns 

tOCLRY Output Asynchronous Clear to Y 7.0 6.0 5.3 ns 

Predicted Input Routing Delays 1 

tlRD1 FO=1 Routing Delay 1.3 1.1 1.0 ns 

tlRD2 FO=2 Routing Delay 1.8 1.6 1.4 ns 

tlRD3 FO=3 Routing Delay 2.1 1.8 1.6 ns 

tlRD4 FO=4 Routing Delay 2.5 2.2 1.9 ns 

tlRD8 FO=8 Routing Delay 4.2 3.6 3.2 ns 

I/O Module Sequential Timing 

tlNH Input F-F Data Hold 
(w.r.t. IOCLK Pad) 0.0 0.0 0.0 ns 

tlNSU Input F-F Data Setup 
(w.r.t. IOCLK Pad) 3.0 3.0 3.0 ns 

tlDEH Input Data Enable Hold 
(w.r.t. IOCLK Pad) 0.0 0.0 0.0 ns 

tlDESU Input Data Enable Setup 
(w.r.t. IOCLK Pad) 9.0 9.0 9.0 ns 

tlSUASYN Input Asynchronous Setup TBD TBD TBD ns 

tOUTH Output F-F Data Hold 
(w.r.t. IOCLK Pad) 1.0 1.0 1.0 ns 

tOUTSU Output F-F Data Setup 
(w.r.t. IOCLK Pad) 1.0 1.0 1.0 ns 

tODEH Output Data Enable Hold 
(w.r.t. IOCLK Pad) 0.5 0.5 0.5 ns 

tODESU Output Data Enable Setup 
(w.r.t. IOCLK Pad) 2.0 2.0 2.0 ns 

tOSUASYN Output Asynchronous Setup TBD TBD TBD ns 

Note: 
1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. 

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay 
measurements performed on the device prior to shipment. 

*Actel is offering "Advanced Information" only on '-2' Speed devices. Consult Actelfor '-2' device availability. 

1-106 



ACT 3 FPGAs 

A1425A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

Preliminary Preliminary Advanced 
Information Information Informatlon* 

1/0 Module - TTL Output Timing 1 'Std'Speed '-1' Speed '-2' Speed 

Parameter Description Min. Max. Min. Max. Min. Max. Units 

tOHs Data to Pad, High Slew 7.5 6.4 5.6 ns 

toLs Data to Pad, Low Slew 12.0 10.2 9.0 ns 

tENzHS Enable to Pad, Z to H/L, Hi Slew 6.0 5.1 4.5 ns 

tENZLS Enable to Pad, Z to H/L, Lo Slew 11.0 9.4 8.3 ns 

tENHSZ Enable to Pad, H/L to Z, Hi Slew 10.0 8.5 7.5 ns 

tENLSZ Enable to Pad, H/L to Z, Lo Slew 10.0 8.5 7.5 ns I tCKHS IOCLK Pad to Pad H/L, Hi Slew 10.0 9.0 7.5 ns 

tCKLS IOCLK Pad to Pad H/L, Lo Slew 15.0 13.5 11.3 ns 

dTLHHS Delta Low to High, Hi Slew TBD TBD TBD ns/pF 

dTLHLS Delta Low to High, Lo Slew TBD TBD TBD ns/pF 

dTHLHS Delta High to Low, Hi Slew TBD TBD TBD ns/pF 

dTHLLs Delta High to Low, Lo Slew TBD TBD TBD ns/pF 

I/O Module - CMOS Output Timing 1 

tOHs Data to Pad, High Slew 9.3 7.9 7.0 ns 

tOLS Data to Pad, Low Slew 17.5 14.9 13.1 ns 

tENZHS Enable to Pad, Z to H/L, Hi Slew 7.8 6.6 5.9 ns 

tENZLS Enable to Pad, Z to H/L, Lo Slew 13.3 11.3 10.0 ns 

tENHSZ Enable to Pad, H/L to Z, Hi Slew 10.0 8.5 7.5 ns 

tENLSZ Enable to Pad, H/L to Z, Lo Slew 10.0 9.0 7.5 ns 

tCKHS IOCLK Pad to Pad H/L, Hi Slew 11.8 10.7 8.9 ns 

tCKLS IOCLK Pad to Pad H/L, Lo Slew 17.3 15.6 13.0 ns 

dTLHHS Delta Low to High, Hi Slew TBD TBD TBD ns/pF 

dTLHLS Delta Low to High, Lo Slew TBD TBD TBD ns/pF 

dTHLHS Delta High to Low, Hi Slew TBD TBD TBD ns/pF 

dTHLLs Delta High to Low, Lo Slew TBD TBD TBD ns/pF 

Note: 
1. Delays based on 35pF loading. 

*Actel is offering "Advanced Information" only on '-2' Speed devices. Consult Actelfor '-2' device availability. 

1-107 



A 1425A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

Preliminary Preliminary Advanced 
Information Information Informatlon* 

Dedicated (Hard-Wired) I/O Clock Network 'Std'Speed '-1' Speed '-2' Speed 

Parameter Description Min. Max. Min. Max. Min. Max. Units 

tlOCKH Input Low to High 
(Pad to I/O Module Input) 3.0 2.6 2.3 ns 

tlOPWH Minimum Pulse Width High 3.8 3.3 2.9 ns 

tlOPWL Minimum Pulse Width Low 3.8 3.3 2.9 ns 

tlOSAPW Minimum Asynchronous Pulse 
Width 3.8 3.3 2.9 ns 

tlOCKSW Maximum Skew 0.4 0.4 0.4 ns 

tlOP Minimum Period 8.0 6.8 6.0 ns 

flOMAX Maximum Frequency 125 150 167 MHz 

Dedicated (Hard-Wired) Array Clock Network 

tHCKH Input Low to High 
(Pad to S-Module Input) 4.5 3.9 3.4 ns 

tHCKL Input High to Low 
(Pad to S-Module Input) 4.5 3.9 3.4 ns 

tHPWH Minimum Pulse Width High 3.8 3.3 2.9 ns 

tHPWL Minimum Pulse Width Low 3.8 3.3 2.9 ns 

tHCKSW Maximum Skew 0.3 0.3 0.3 ns 

tHP Minimum Period 8.0 6.8 6.0 ns 

fHMAX Maximum Frequency 125 150 167 MHz 

Routed Array Clock Networks 

tRCKH Input Low to High (FO=64) 5.5 4.7 4.1 ns 

tRCKL Input High to Low (FO=64) 6.0 5.1 4.5 ns 

tRPWH Min. Pulse Width High (FO=64) 4.9 4.2 3.8 ns 

tRPWL Min. Pulse Width Low (FO=64) 4.9 4.2 3:8 ns 

tRCKSW Maximum Skew (FO=128) 1.0 0.9 0.8 ns 

tRP Minimum Period (FO=64) 10.0 8.7 8.0 ns 

fRMAX Maximum Frequency (FO=64) 100 115 125 MHz 

Clock-to-Clock Skews 

tlOHCK8W I/O Clock to H-Clock Skew 0.0 1.3 0.0 3.0 0.0 3.0 ns 

t lOHCK8W I/O Clock to R-Clock Skew 0.0 3.0 0.0 3.0 0.0 3.0 ns 

tHRCKSW H-Clock to R-Clock Skew 0.0 1.0 0.0 1.0 0.0 1.0 ns 

Note: 
1. Delays based on 35pF loading. 

*Actel is offering "Advanced Information" only on '-2' Speed devices. Consult Actelfor '-2' device availability. 

1-108 



ACT 3 FPGAs 

A 1440A Timing Characteristics 

(Worst-Case Commercial Conditions, Vee = 4.75 V, TJ = 70°C) 

Preliminary Information Advanced Information* 

Logic Module Propagation Delays 1 'Std'Speed '-1' Speed 

Parameter Description Min. Max. Min. Max. Units 

tpo Internal Array Module 3.0 2.6 ns 

tco Sequential Clock to Q 3.0 2.6 ns 

tClR Asynchronous Clear to Q 3.0 2.6 ns 

Predicted Routing Delays2 

tR01 FO=1 Routing Delay 1.3 1.1 ns 

tR02 FO=2 Routing Delay 1.8 1.6 ns 

tR03 FO=3 Routing Delay 2.1 1.8 ns 

tR04 FO=4 Routing Delay 2.5 2.2 ns 

tR08 FO=8 Routing Delay 4.2 3.6 ns 

Logic Module Sequential Timing 

tsuo Flip-Flop Data Input Setup 0.8 0.8 ns 

tHO Flip-Flop Data Input Hold 0.5 0.5 ns 

tsuo Latch Data Input Setup 0.8 0.8 ns 

tHO Latch Data Input Hold 0.5 0.5 ns 

tSUASYN Asynchronous Input Setup TBD TBD ns 

tWASYN Asynchronous Pulse Width 3.8 3.2 ns 

tWClKA Flip-Flop Clock Pulse Width 3.8 3.2 ns 

tA Flip-Flop Clock Input Period 8.0 6.8 ns 

fMAX Flip-Flop Clock Frequency 125 150 MHz 

Notes: 
1. For dual-module macros, use tpo + tROl + tPOn , teo + tROl + tPOn or tpOl + tRDl + tsuo , whichever is appropriate. 
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. 

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay 
measurements performed on the device prior to shipment. 

*Actel is offering "Advanced Information" only on '-I' Speed devices. Consult Actelfor '-I' device availability. 

1-109 

II 



A 1440A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

I/O Module Input Propagation Delays 

Parameter 

tiNY 

tlCKY 

tOCKY 

tlCLRY 

Description 

Input Data Pad to Y 

Input Reg IOCLK Pad to Y 

Output Reg IOCLK Pad to Y 

Input Asynchronous Clear to Y 

tOCLRY Output Asynchronous Clear to Y 

Predicted Input Routing Delays 1 

tlRD1 FO=1 Routing Delay 

tlRD2 FO=2 Routing Delay 

tlRD3 FO=3 Routing Delay 

tlRD4 FO=4 Routing Delay 

tlRD8 FO=8 Routing Delay 

I/O Module Sequential Timing 

tlNH Input F-F Data Hold 
(w.r.t. IOCLK Pad) 

tlNSU Input F-F Data Setup 
(w.r.t. IOCLK Pad) 

tlDEH Input Data Enable Hold 
(w.r.t. IOCLK Pad) 

tlDESU Input Data Enable Setup 
(w.r.t. IOCLK Pad) 

tlSUASYN Input Asynchronous Setup 

tOUTH Output F-F Data Hold 
(w.r.t. IOCLK Pad) 

tOUTSU Output F-F Data Setup 
(w.r.t. IOCLK Pad) 

tODEH Output Data Enable Hold 
(w.r.t. IOCLK Pad) 

tODESU Output Data Enable Setup 
(w.r.t. IOCLK Pad) 

tOSUASYN Output Asynchronous Setup 

Note: 

Preliminary Information Advanced Information* 

'Std'Speed '-1' Speed 

Min. Max. Min. Max. Units 

4.2 3.6 ns 

7.0 6.0 ns 

7.0 6.0 ns 

7.0 6.0 ns 

7.0 6.0 ns 

1.3 1.1 ns 

1.8 1.6 ns 

2.1 1.8 ns 

2.5 2.2 ns 

4.2 3.6 ns 

0.0 0.0 ns 

3.0 3.0 ns 

0.0 0.0 ns 

9.0 9.0 ns 

TBD TBD ns 

1.0 1.0 ns 

1.0 1.0 ns 

0.5 0.5 ns 

2.0 2.0 ns 

TBD TBD ns 

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device perfonnance:' 
Post-route timing analysis or simulation is required to detennine actual worst-case perfonnance. Post-route timing is based on actual routing delay 
measurements perfonned on the device prior to shipment. 

*Actel is offering "Advanced Information" only on '-1' Speed devices. Consult Actelfor '-1' device availability. 

1-110 



ACT 3 FPGAs 

A1440A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

Preliminary Information Advanced Information* 

I/O Module - TTL Output Timing 1 'Std'Speed '-1' Speed 

Parameter Description Min. Max. Min. Max. Units 

tOHS Data to Pad, High Slew 7.5 6.4 ns 

tOLS Data to Pad, Low Slew 12.0 10.2 ns 

tENZHS Enable to Pad, Z to HIL, Hi Slew 6.0 5.1 ns 

tENZLS Enable to Pad, Z to HIL, Lo Slew 11.0 9.4 ns 

tENHSZ Enable to Pad, HIL to Z, Hi Slew 11.0 9.4 ns 

tENLSZ Enable to Pad, HIL to Z, Lo Slew 11.0 9.4 ns 

II tCKHS IOCLK Pad to Pad HIL, Hi Slew 11.0 10.0 ns 

tCKLS IOCLK Pad to Pad HIL, Lo Slew 15.0 13.5 ns 

dTLHHS Delta Low to High, Hi Slew TBD TBD ns/pF 

dTLHLS Delta Low to High, Lo Slew TBD TBD ns/pF 

dTHLHS Delta High to Low, Hi Slew TBD TBD ns/pF 

dTHLLS Delta High to Low, Lo Slew TBD TBD ns/pF 

110 Module - CMOS Output Timing 1 

tOHS Data to Pad, High Slew 9.3 7.9 ns 

tOLS Data to Pad, Low Slew 17.5 14.9 ns 

tENZHS Enable to Pad, Z to HIL, Hi Slew 7.8 6.6 ns 

tENZLS Enable to Pad, Z to HIL, Lo Slew 13.3 8.5 ns 

tENHSZ Enable to Pad, HIL to Z, Hi Slew 11.0 9.4 ns 

tENLSZ Enable to Pad, HIL to Z, Lo Slew 11.0 9.4 ns 

tCKHS IOCLK Pad to Pad HIL, Hi Slew 11.8 10.7 ns 

tCKLS IOCLK Pad to Pad HIL, Lo Slew 17.3 15.6 ns 

dTLHHS Delta Low to High, Hi Slew TBD TBD ns/pF 

dTLHLS Delta Low to High, Lo Slew TBD TBD ns/pF 

dTHLHS Delta High to Low, Hi Slew TBD TBD ns/pF 

dTHLLS Delta High to Low, Lo Slew TBD TBD ns/pF 

Note: 
1. Delays based on 35pF loading. 

*Actel is offering "Advanced Information" only on '-I' Speed devices. Consult Actelfor '-I' device availability. 

1-111 



~c/@/j 

A1440A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

Preliminary Information Advanced Information* 

Dedicated (Hard-Wired) I/O Clock Network 'Std'Speed '-1' Speed 

Parameter Description Min. Max. Min. Max. Units 

tlOCKH Input Low to High 
(Pad to I/O Module Input) 3.0 2.6 ns 

tlOPWH Minimum Pulse Width High 3.8 3.3 ns 

tlOPWL Minimum Pulse Width Low 3.8 3.3 ns 

tlOSAPW Minimum Asynchronous Pulse 
Width 3.8 3.3 ns 

tlOCKSW Maximum Skew 0.4 0.4 ns 

t10p Minimum Period 8.0 6.8 ns 

flOMAX Maximum Frequency 125 150 MHz 

Dedicated (Hard-Wired) Array Clock Network 

tHCKH Input Low to High 
(Pad to S-Module Input) 4.5 3.9 ns 

tHCKL Input High to Low 
(Pad to S-Module Input) 4.5 3.9 ns 

tHPWH Minimum Pulse Width High 3.8 3.3 ns 

tHPWL Minimum Pulse Width Low 3.8 3.3 ns 

tHCKSW Maximum Skew 0.3 0.3 ns 

tHP Minimum Period 8.0 6.8 ns 

fHMAX Maximum Frequency 125 150 MHz 

Routed Array Clock Networks 

tRCKH Input Low to High (FO=64) 5.5 4.7 ns 

tRCKL Input High to Low (FO=64) 6.0 5.1 ns 

tRPWH Min. Pulse Width High (FO=64) 4.9 4.2 ns 

tRPWL Min. Pulse Width Low (FO=64) 4.9 4.2 ns 

tRCKSW Maximum Skew (FO=128) 1.0 0.9 ns 

tRP Minimum Period (FO=64) 10.0 8.7 ns 

fRMAX Maximum Frequency (FO=64) 100 115 MHz 

Clock-to-Clock Skews 

tlOHCKSW I/O Clock to H-Clock Skew 0.0 1.3 0.0 3.0 ns 

tlOHCKSW I/O Clock to R-Clock Skew 0.0 3.0 0.0 3.0 ns 

tHRCKSW H-Clock to R-Clock Skew 0.0 1.0 0.0 1.0 ns 

Note: 
1. Delays based on 35pF loading. 

* Actel is offering "Advanced Information" only on '-1' Speed devices. Consult Actel for '-1' device availability. 

1-112 



ACT 3 FPGAs 

A 1460A Timing Characteristics 

(Worst-Case Commercial Conditions, Vee = 4.75 V, TJ = 70CC) 

Preliminary Information Advanced Information* 

Logic Module Propagation Delays 1 'Std'Speed '-1' Speed 

Parameter Description Min. Max. Min. Max. Units 

tpD Internal Array Module 3.0 2.6 ns 

tco Sequential Clock to Q 3.0 2.6 ns 

telR Asynchronous Clear to Q 3.0 2.6 ns 

Predicted Routing Delays2 

tRD1 FO=1 Routing Delay 1.3 1.1 ns 

tRD2 FO=2 Routing Delay 1.8 1.6 ns 

tRD3 FO=3 Routing Delay 2.1 1.8 ns 

tRD4 FO=4 Routing Delay 2.5 2.2 ns 

tRD8 FO=8 Routing Delay 4.2 3.6 ns 

Logic Module Sequential Timing 

tSUD Flip-Flop Data Input Setup 0.8 0.8 ns 

tHD Flip-Flop Data Input Hold 0.5 0.5 ns 

tsuo Latch Data Input Setup 0.8 0.8 ns 

tHO Latch Data Input Hold 0.5 0.5 ns 

tSUASYN Asynchronous Input Setup TBD TBD ns 

tWASYN Asynchronous Pulse Width 4.8 4.1 ns 

tWClKA Flip-Flop Clock Pulse Width 4.8 4.1 ns 

tA Flip-Flop Clock Input Period 10.0 8.5 ns 

fMAX Flip-Flop Clock Frequency 100 120 MHz 

Notes: 
1. For dual-module macros, use tpD + tRDI + tPDn ' teo + tRDl + tPDn or tpDl + tRDl + tSUD ' whichever is appropriate. 
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. 

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay 
measurements performed on the device prior to shipment. 

*Actel is offering "Advanced Information" only on '-1' Speed devices. Consult Actelfor '-1' device availability. 

1-113 

I 



A 1460A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

1/0 Module Input Propagation Delays 

Parameter 

tiNY 

tlCKY 

tOCKY 

tlCLRY 

Description 

Input Data Pad to Y 

Input Reg IOCLK Pad to Y 

Output Reg IOCLK Pad to Y 

Input Asynchronous Clear to Y 

tOCLRY Output Asynchronous Clear to Y 

Predicted Input Routing Delays 1 

tlRD1 FO=1 Routing Delay 

tlRD2 FO=2 Routing Delay 

tlRD3 FO=3 Routing Delay 

tlRD4 FO=4 Routing Delay 

tlRD8 FO=8 Routing Delay 

I/O Module Sequential Timing 

tlNH Input F-F Data Hold 
(w.r.t. IOCLK Pad) 

tlNSU Input F-F Data Setup 
(w.r.t. IOCLK Pad) 

tlDEH Input Data Enable Hold 
(w.r.t. IOCLK Pad) 

tlDESU Input Data Enable Setup 
(w.r.t. IOCLK Pad) 

tlSUASYN Input Asynchronous Setup 

tOUTH Output F-F Data Hold 
(w.r.t. IOCLK Pad) 

tOUTSU Output F-F Data Setup 
(w.r.t. IOCLK Pad) 

tODEH Output Data Enable Hold 
(w.r.t. IOCLK Pad) 

tODESU Output Data Enable Setup 
(w.r.t. IOCLK Pad) 

tOSUASYN Output Asynchronous Setup 

Note: 

Preliminary Information Advanced Information* 

'Std'Speed '-1' Speed 

Min. Max. Min. Max. Units 

4.2 3.6 ns 

7.0 6.0 ns 

7.0 6.0 ns 

7.0 6.0 ns 

7.0 6.0 ns 

1.3 1.1 ns 

1.8 1.6 ns 

2.1 1.8 ns 

2.5 2.2 ns 

4.2 3.6 ns 

0.0 0.0 ns 

3.0 3.0 ns 

0.0 0.0 ns 

9.0 9.0 ns 

TBD TBD ns 

1.0 1.0 ns 

1.0 1.0 ns 

0.5 0.5 ns 

2.0 2.0 ns 

TBD TBD ns 

1. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. 
Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay 
measurements performed on the device prior to shipment. 

*Actel is offering "Advanced Information" only on '-1' Speed devices. Consult Actelfor '-1' device availability. 

1-114 



ACT 3 FPGAs 

A 1460A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

Preliminary Information Advanced Information* 

I/O Module - TTL Output Timing 1 'Std'Speed '-1' Speed 

Parameter Description Min. Max. Min. Max. Units 

tOHS Data to Pad, High Slew 7.5 6.4 ns 

tOLS Data to Pad, Low Slew 12.0 10.2 ns 

tENZHS Enable to Pad, Z to H/L, Hi Slew 6.0 5.1 ns 

tENZLS Enable to Pad, Z to H/L, La Slew 11.0 9.4 ns 

tENHSZ Enable to Pad, H/L to Z, Hi Slew 11.6 9.9 ns 

tENLSZ Enable to Pad, H/L to Z, La Slew 11.0 9.4 ns 

tCKHS IOCLK Pad to Pad H/L, Hi Slew 11.6 10.4 ns II 
tCKLS IOCLK Pad to Pad H/L, La Slew 17.0 15.3 ns 

dTLHHS Delta Low to High, Hi Slew TBD TBD ns/pF 

dTLHLS Delta Low to High, La Slew TBD TBD ns/pF 

dTHLHS Delta High to Low, Hi Slew TBD TBD ns/pF 

dTHLLs Delta High to Low, La Slew TBD TBD ns/pF 

110 Module - CMOS Output Timing 1 

toHs Data to Pad, High Slew 9.3 7.9 ns 

tOLs Data to Pad, Low Slew 17.5 14.9 ns 

tENZHS Enable to Pad, Z to H/L, Hi Slew 7.8 6.6 ns 

tENZLS Enable to Pad, Z to H/L, La Slew 13.3 11.3 ns 

tENHSZ Enable to Pad, H/L to Z, Hi Slew 11.0 9.4 ns 

tENLSZ Enable to Pad, H/L to Z, La Slew 11.0 9.4 ns 

tCKHS IOCLK Pad to Pad H/L, Hi Slew 13.8 12.4 ns 

tCKLS IOCLK Pad to Pad H/L, La Slew 19.3 17.4 ns 

dTLHHS Delta Low to High, Hi Slew TBD TBD ns/pF 

dTLHLS Delta Low to High, La Slew TBD TBD ns/pF 

dTHLHs Delta High to Low, Hi Slew TBD TBD ns/pF 

dTHLLS Delta High to Low, La Slew TBD TBD ns/pF 

Note: 
1. Delays based on 35pF loading. 

*Actel is offering "Advanced Information" only on '-I' Speed devices. Consult Actelfor '-I' device availability. 

1-115 



~cf@// 

A1460A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

Preliminary Information Advanced Information* 

Dedicated (Hard-Wired) I/O Clock Network 'Std'Speed '-1' Speed 

Parameter Description Min. Max. Min. Max. Units 

tlOCKH Input Low to High 
(Pad to 110 Module Input) 3.5 3.0 ns 

tlOPWH Minimum Pulse Width High 4.8 4.1 ns 

tlOPWL Minimum Pulse Width Low 4.8 4.1 ns 

tlOSAPW Minimum Asynchronous Pulse 
Width 3.8 3.3 ns 

tlOCKSW Maximum Skew 0.8 0.7 ns 

tlOP Minimum Period 10.0 8.5 ns 

flOMAX Maximum Frequency 100 120 MHz 

Dedicated (Hard-Wired) Array Clock Network 

tHCKH Input Low to High 
(Pad to S-Module Input) 5.5 4.7 ns 

tHCKL Input High to Low 
(Pad to S-Module Input) 5.5 4.7 ns 

tHPWH Minimum Pulse Width High 4.8 4.1 ns 

tHPWL Minimum Pulse Width Low 4.8 4.1 ns 

tHCKSW Maximum Skew 0.8 0.7 ns 

tHP Minimum Period 10.0 8.5 ns 

fHMAX Maximum Frequency 100 120 MHz 

Routed Array Clock Networks 

tRCKH Input Low to High (FO=256) 9.0 7.7 ns 

tRCKL Input High to Low (FO=256) 9.0 7.7 ns 

tRPWH Min. Pulse Width High (FO=256) 6.1 5.4 ns 

tRPWL Min. Pulse Width Low (FO=256) 6.1 5.4 ns 

tRCKSW Maximum Skew (FO=128) 1.8 1.6 ns 

tRP Minimum Period (FO=256) 12.5 11.1 ns 

fRMAX Maximum Frequency (FO=256) 80 90 MHz 

Clock-to-Clock Skews 

tlOHCKSW I/O Clock to H-Clock Skew 0.0 3.5 0.0 3.5 ns 

tlOHCKSW I/O Clock to R-Clock Skew 0.0 5.0 0.0 5.0 ns 

tHRCKSW H-Clock to R-Clock Skew 0.0 3.0 0.0 3.0 ns 

Note: 
1. Delays based on 35pF loading. 

*Actel is offering "Advanced Information" only on '-I' Speed devices. Consult Actelfor '-I' device availability. 

1-116 



ACT 3 FPGAs 

A14100A Timing Characteristics 

(Worst-Case Commercial Conditions, Vee = 4.75 V, TJ = 70°C) 

Preliminary Information Advanced Information* 

Logic Module Propagation Delays 1 'Std'Speed '-1' Speed 

Parameter Description Min. Max. Min. Max. Units 

tpo Internal Array Module 3.0 2.6 ns 

tco Sequential Clock to Q 3.0 2.6 ns 

tCLR Asynchronous Clear to Q 3.0 2.6 ns 

Predicted Routing Delays2 

tR01 FO=1 Routing Delay 1.3 1.1 ns 

tR02 FO=2 Routing Delay 1.8 1.6 ns 

tR03 FO=3 Routing Delay 2.1 1.8 ns 

tR04 FO=4 Routing Delay 2.5 2.2 ns 

tROS FO=8 Routing Delay 4.2 3.6 ns 

Logic Module Sequential Timing 

tsuo Flip-Flop Data Input Setup 0.8 0.8 ns 

tHO Flip-Flop Data Input Hold 0.5 0.5 ns 

tsuo Latch Data Input Setup 0.8 0.8 ns 

tHO Latch Data Input Hold 0.5 0.5 ns 

tSUASYN Asynchronous Input Setup TBD TBD ns 

tWASYN Asynchronous Pulse Width 4.8 4.1 ns 

tWCLKA Flip-Flop Clock Pulse Width 4.8 4.1 ns 

tA Flip-Flop Clock Input Period 10.0 8.5 ns 

fMAX Flip-Flop Clock Frequency 100 120 MHz 

Notes: 
1. For dual-module macros, use tpD + tRDI + tPDn ' teo + tRDI + tPDn or tpDl + tRDI + tSUD ' whichever is appropriate. 
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. 

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay 
measurements performed on the device prior to shipment. 

*Actel is offering "Advanced Information" only on '-1' Speed devices. Consult Actelfor '-I' device availability. 

1-117 

I 



A14100A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

1/0 Module Input Propagation Delays 

Parameter 

tiNY 

tlCKY 

tOCKY 

tlCLRY 

Description 

Input Data Pad to Y 

Input Reg IOCLK Pad to Y 

Output Reg IOCLK Pad to Y 

Input Asynchronous Clear to Y 

tOCLRY Output Asynchronous Clear to Y 

Predicted Input Routing Delays 1 

tlRD1 FO=1 Routing Delay 

tlRD2 FO=2 Routing Delay 

tlRD3 FO=3 Routing Delay 

tlRD4 FO=4 Routing Delay 

tlRD8 FO=8 Routing Delay 

I/O Module Sequential Timing 

tlNH Input F-F Data Hold 
(w.r.t. IOCLK Pad) 

tlNSU Input F-F Data Setup 
(w.r.t. IOCLK Pad) 

tlDEH Input Data Enable Hold 
(w.r.t. IOCLK Pad) 

tlDESU Input Data Enable Setup 
(w.r.t. IOCLK Pad) 

tlSUASYN Input Asynchronous Setup 

tOUTH Output F-F Data Hold 
(w.r.t. IOCLK Pad) 

tOUTSU Output F-F Data Setup 
(w.r.t. IOCLK Pad) 

tODEH Output Data Enable Hold 
(w.r.t. IOCLK Pad) 

tODESU Output Data Enable Setup 
(w.r.t. IOCLK Pad) 

tOSUASYN Output Asynchronous Setup 

Note: 

Preliminary Information Advanced Information* 

'Std'Speed '-1' Speed 

Min. Max. Min. Max. Units 

4.2 3.6 ns 

7.0 6.0 ns 

7.0 6.0 ns 

7.0 6.0 ns 

7.0 6.0 ns 

1.3 1.1 ns 

1.8 1.6 ns 

2.1 1.8 ns 

2.5 2.2 ns 

4.2 3.6 ns 

0.0 0.0 ns 

3.0 3.0 ns 

0.0 0.0 ns 

9.0 9.0 ns 

TBD TBD ns 

1.0 1.0 ns 

1.0 1.0 ns 

0.5 0.5 ns 

2.0 2.0 ns 

TBD TBD ns 

l. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance. 
Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay 
measurements performed on the device prior to shipment. 

*Actel is offering "Advanced Information" only on '-I' Speed devices. Consult Actelfor '-I' device availability. 

1-118 



ACT 3 FPGAs 

A14100A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

Preliminary Information Advanced Information· 

I/O Module - TTL Output Timing 1 'Std'Speed '-1'Speed 

Parameter Description Min. Max. Min. Max. Units 

tOHS Data to Pad, High Slew 7.5 6.4 ns 

tOLS Data to Pad, Low Slew 12.0 10.2 ns 

tENZHS Enable to Pad, Z to H/L, Hi Slew 6.0 5.1 ns 

tENZLS Enable to Pad, Z to H/L, Lo Slew 11.0 9.4 ns 

tENHSZ Enable to Pad, H/L to Z, Hi Slew 12.0 10.2 ns 

tENLSZ Enable to Pad, H/L to Z, Lo Slew 11.0 9.4 ns 

I tCKHS IOCLK Pad to Pad H/L, Hi Slew 12.0 10.8 ns 

tCKLS IOCLK Pad to Pad H/L, Lo Slew 17.0 15.3 ns 

dTLHHS Delta Low to High, Hi Slew TSD TSD ns/pF 

dTLHLS Delta Low to High, Lo Slew TSD TSD ns/pF 

dTHLHS Delta High to Low, Hi Slew TSD TSD ns/pF 

dTHLLS Delta High to Low, Lo Slew TSD TSD ns/pF 

I/O Module - CMOS Output Timing 1 

tOHS Data to Pad, High Slew 9.3 7.9 ns 

tOLS Data to Pad, Low Slew 17.5 14.9 ns 

tENZHS Enable to Pad, Z to H/L, Hi Slew 7.8 6.6 ns 

tENZLS Enable to Pad, Z to H/L, Lo Slew 13.3 11.3 ns 

tENHSZ Enable to Pad, H/L to Z, Hi Slew 12.0 10.0 ns 

tENLSZ Enable to Pad, H/L to Z, Lo Slew 11.0 9.4 ns 

tCKHS IOCLK Pad to Pad H/L, Hi Slew 13.8 12.4 ns 

tCKLS IOCLK Pad to Pad H/L, Lo Slew 19.3 17.4 ns 

dTLHHS Delta Low to High, Hi Slew TSD TSD ns/pF 

dTLHLS Delta Low to High, Lo Slew TSD TSD ns/pF 

dTHLHS Delta High to Low, Hi Slew TSD TSD ns/pF 

dTHLLS Delta High to Low, Lo Slew TSD TBD ns/pF 

Note: 
l. Delays based on 35pF loading. 

*Actel is offering "Advanced Information" only on '-1' Speed devices. Consult Actel for '-/' device availability. 

1-119 



A14100A Timing Characteristics (continued) 

(Worst-Case Commercial Conditions) 

Preliminary Information Advanced Information· 

Dedicated (Hard-Wired) I/O Clock Network 'Std'Speed '-1' Speed 

Parameter Description Min. Max. Min. Max. Units 

tlOCKH Input Low to High 
(Pad to I/O Module Input) 3.5 3.0 ns 

tlOPWH Minimum Pulse Width High 4.8 4.1 ns 

tlOPWL Minimum Pulse Width Low 4.8 4.1 ns 

tlOSAPW Minimum Asynchronous Pulse 
Width 3.8 3.3 ns 

tlOCKSW Maximum Skew 0.8 0.7 ns 

tlOP Minimum Period 10.0 8.5 ns 

flOMAX Maximum Frequency 100 120 MHz 

Dedicated (Hard-Wired) Array Clock Network 

tHCKH Input Low to High 
(Pad to S-Module Input) 5.5 4.7 ns 

tHCKL Input High to Low 
(Pad to S-Module Input) 5.5 4.7 ns 

tHPWH Minimum Pulse Width High 4.8 4.1 ns 

tHPWL Minimum Pulse Width Low 4.8 4.1 ns 

tHCKSW Maximum Skew 0.8 0.7 ns 

tHP Minimum Period 10.0 8.5 ns 

fHMAX Maximum Frequency 100 120 MHz 

Routed Array Clock Networks 

tRCKH Input Low to High (FO=256) 9.0 7.7 ns 

tRCKL Input High to Low (FO=256) 9.0 7.7 ns 

tRPWH Min. Pulse Width High (FO=256) 6.1 5.4 ns 

tRPWL Min. Pulse Width Low (FO=256) 6.1 5.4 ns 

tRCKSW Maximum Skew (FO=128) 1.8 1.6 ns 

tRP Minimum Period (FO=256) 12.5 11.1 ns 

fRMAX Maximum Frequency (FO=256) 80 90 MHz 

Clock-to-Clock Skews 

tlOHCKSW I/O Clock to H-Clock Skew 0.0 3.5 0.0 3.5 ns 

tlOHCKSW I/O Clock to R-Clock Skew 0.0 5.0 0.0 5.0 ns 

tHRCKSW H-Clock to R-Clock Skew 0.0 3.0 0.0 3.0 ns 

Note: 
1. Delays based on 35pF loading. 

*Actel is offering "Advanced Information" only on '-1' Speed devices. Consult Actelfor '-1' device availability. 

1-120 



Macro Library 
Hard Macros-Combinatorial 

Function 

ACT 3 
Combinatorial 
Logic Module 

ACT 3 
Sequential 
Logic Module 

Adder 

AND 

AND-OR 

Macro 

CM8 

DFM8A 

DFM8B 

FA1A 

FA1B 

FA2A 

HA1 

HA1A 

HA1B 

HA1C 

AND2 

AND2A 
AND2B 

AND3 

AND3A 

AND3B 

AND3C 
AND4 

AND4A 

AND4B 
AND4C 

AND4D 

AND5B 

A01 

A010 

A011 

A01A 

A01B 

A01C 

A01D 

A01E 

A02 

A02A 

A02B 
A02C 

A02D 

A02E 

A03 
A03A 

A03B 

A03C 

A04A 

A05A 

A06 

Description 

Combinational Module (Full ACT 3 Logic Module) 

4-bit D-Type Flip-Flop with Multiplexed Data, active low Clear, and active 
high clock 
4-bit D-Type Flip-Flop with Multiplexed Data, active low Clear, and active low 
clock 

1-bit adder, carry in and carry out active low, A-input active low 

1-bit adder, carry in and carry out active low 

2-bit adder, carry in and carry out active low, AO and A 1 inputs active low 

Half-Adder 
Half-Adder with active low A-input 

Half-Adder with active low carry out and sum 

Half-Adder with active low carry out 

2-inputAND 

2-input AND with active low A-input 
2-input AND with active low inputs 

3-inputAND 

3-input AND with active low A-input 

3-input AND with active low A- and B-inputs 

3-input AND with active low inputs 
4-input AND 

4-input AND with active low A-input 

4-input AND with active low A- and B-inputs 
4-input AND with active low A-, B-, and C-inputs 

4-input AND with active low inputs 
5-input AND with active low A- and B-inputs 

3-input AND-OR 

5-input AND-OR-AND 
3-input AND-OR 

3-input AND-OR with active low A-input 

3-input AND-OR with active low C-input 
3-input AND-OR with active low A- and C-inputs 

3-input AND-OR with active low A- and B-inputs 

3-input AND-OR with active low inputs 
4-input AND-OR 

4-input AND-OR with active low A-input 

4-input AND-OR with active low A- and B-inputs 
4-input AND-OR with active low A- and C-inputs 

4-input AND-OR with active low A-, B-, and C-inputs 

4-input AND-OR with active low inputs 

4-input AND-OR 
4-input AND-OR 

4-input AND-OR 

4-input AND-OR 

4-input AND-OR 

4-input AND-OR 

2-wide 4-input AND-OR 

ACT 3 FPGAs 

Modules 

5 C 

2 

2 
2 
2 
2 

2 

2 

2 

1-121 

I 



Hard Macros-Combinatorial (continued) 

Modules 

Function Macro Description S C 

AND-OR A06A 2-wide 4-input AND-OR with active low D-input 

A07 5-input AND-OR 

A08 5-input AND-OR with active low C- and D-inputs 

A09 5-input AND-OR 

AOl1 3-input AND-OR-INVERT 

AOl1A 3-input AND-OR-INVERT with active low A-input 

AOl1B 3-input AND-OR-INVERT with active low C-input 

AOl1C 3-input AND-OR-INVERT with active low A- and B-inputs 

AOl1D 3-input AND-OR-INVERT with active low inputs 

AOl2A 4-input AND-OR-INVERT with active low A-input 

AOl2B 4-input AND-OR-INVERT with active low A- and C-inputs 

AOl3A 4-input AND-OR-INVERT with active low inputs 1 

AOl4 2-wide 4-input AND-OR-INVERT 2 

AOl4A 2-wide 4-input AND-OR-INVERT with active low C-input 

AND-XOR AX1 3-input AND-XOR with active low A-input 

AX1A 3-input AND-XOR-INVERT with active low A-input 2 

AX1B 3-input AND-XOR with active low A- and B-inputs 

AX1C 3-input AND-XOR 

Buffer BUF Buffer, with active high input and output 

BUFA Buffer, with active low input and output 

Clock Net CLKINT Clock Net Interface 0 0 
GAND2 2-input AND Clock Net 

GMX4 4-to-1 Multiplexor Clock Net 

GNAND2 2-input NAND Clock Net 

GNOR2 2-input NOR Clock Net 

GOR2 2-input OR Clock Net 

GXOR2 2-input Exclusive OR Clock Net 

Inverter INV Inverter with active low output 

INVA Inverter with active low input 

Majority MAJ3 3-input complex AND-OR 

MUX MX2 2-to-1 Multiplexor 

MX2A 2-to-1 Multiplexor with active low A-input 

MX2B 2-to-1 Multiplexor with active low B-input 

MUX MX2C 2-to-1 Multiplexor with active low output 

MX4 4-to-1 Multiplexor 

MXC1 Boolean 2 

MXT Boolean 2 

NAND NAND2 2-input NAND 

NAND2A 2-input NAND with active low A-input 

NAND2B 2-input NAND with active low inputs 

NAND3 3-input NAND 

NAND3A 3-input NAND with active low A-input 

NAND3B 3-input NAND with active low A- and B-inputs 

NAND3C 3-input NAND with active low inputs 
NAND4 4-input NAND 2 

NAND4A 4-input NAND with active low A-input 

NAND4B 4-input NAND with active low A- and B-inputs 

NAND4C 4-input NAND with active low A-, B-, and C-inputs 

NAND4D 4-input NAND with active low inputs 

1-122 



ACT 3 FPGAs 

Hard Macros-Combinatorial (continued) 

Modules 

Function Macro Description S C 

NAND NAND5C 5-input NAND with active low A-, B-, and C-inputs 

NOR NOR2 2-input NOR 

NOR NOR2A 2-input NOR with active low A-input 

NOR2B 2-input NOR with active low inputs 

NOR3 3-input NOR 

NOR3A 3-input NOR with active low A-input 
NOR3B 3-input NOR with active low A- and B-inputs 

NOR3C 3-input NOR with active low inputs 

NOR4 4-input NOR 2 
NOR4A 4-input NOR with active low A-input 

NOR4B 4-input NOR with active low A- and B-inputs 

II NOR4C 4-input NOR with active low A-, B-, and C-inputs 

NOR4D 4-input NOR with active low inputs 

NOR5C 5-input NOR with active low A-, B-, and C-inputs 

OR OR2 2-input OR 

OR2A 2-input OR with active low A-input 

OR2B 2-input OR with active low inputs 

OR3 3-input OR 

OR3A 3-input OR with active low A-input 

OR3B 3-input OR with active low A- and B-inputs 

OR3C 3-input OR with active low inputs 

OR4 4-input OR 

OR4A 4-input OR with active low A-input 

OR4B 4-input OR with active low A- and B-input 

OR4C 4-input OR with active low A-, B-, and C-inputs 

OR4D 4-input OR with active low inputs 2 
OR5B 5-input OR with active low A- and B-inputs 

OR-AND OA1 3-input OR-AND 

OA1A 3-input OR-AND with active low A-input 

OA1B 3-input OR-AND with active low C-input 

OA1C 3-input OR-AND with active low A- and C-inputs 

OA2 2-wide 4-input OR-AND 

OA2A 2 wide 4-input OR-AND with active low A-input 

OA3 4-input OR-AND 

OA3A 4-input OR-AND with active low C-input 

OA3B 4-input OR-AND with active low A- and C-inputs 

OA4 4-input OR-AND 

OA4A 4-input OR-AND with active low C-input 

OA5 4-input complex OR-AND 

OAI1 3-input OR-AND-INVERT 

OAI2A 4-input OR-AND-INVERT with active low D-input 

OAI3 4-input OR-AND-INVERT 

OAI3A 4-input OR-AND-INVERT with active low C- and D-inputs 

XNOR XNOR 2-input XNOR 
XNOR-AND XA1A 3-input XNOR-AND 

XNOR-OR X01A 3-input XNOR-OR 

XOR XOR 2-input XOR 

XOR-AND XA1 3-input XOR-AND 

XOR-OR X01 3-input XOR-OR 

1·123 



Hard Macros-Sequential 

Modules 

Function Macro Description S C 

D-Type DF1 D-Type Flip-Flop 

DF1A D-Type Flip-Flop with active low output 

DF1B D-Type Flip-Flop with active low clock 

DF1C D-Type Flip-Flop with active low clock and output 

DFC1 D-Type Flip-Flop with active high Clear 

DFC1A D-Type Flip-Flop with active high Clear and active low clock 

DFC1B D-Type Flip-Flop with active low Clear 

DFC1D D-Type Flip-Flop with active low Clear and clock 

DFE D-Type Flip-Flop with active high Enable 

DFE1B D-Type Flip-Flop with active low Enable 

DFE1C D-Type Flip-Flop with active low Enable and clock 

DFE3A D-Type Flip-Flop with Enable and active low Clear 

DFE3B D-Type Flip-Flop with Enable and active low Clear and clock 

DFE3C D-Type Flip-Flop with active low Enable and Clear 

DFE3D D-Type Flip-Flop with active low Enable, Clear, and clock 

DFEA D-Type Flip-Flop with Enable and active low clock 

DFM 2-bit D-Type Flip-Flop with Multiplexed Data 

DFM1B 2-bit D-Type Flip-Flop with Multiplexed Data and active low output 

DFM1C 2-bit D-Type Flip-Flop with Multiplexed Data and active low clock and output 

DFM3 2-bit D-Type Flip-Flop with Multiplexed Data and Clear 

DFM3B 2-bit D-Type Flip-Flop with Multiplexed Data and active low Clear and clock 

DFM3E 2-bit D-Type Flip-Flop with Multiplexed Data, Clear, and active low clock 

DFM4C 2-bit D-Type Flip-Flop with Multiplexed Data and active low Preset and 
output 

DFM4D 2-bit D-Type Flip-Flop with Multiplexed Data and active low Preset, clock, 
and output 

DFM6A 4-bit D-Type Flip-Flop with Multiplexed Data, active low Clear, and active 
high Clock 

DFM6B 4-bit D-Type Flip-Flop with Multiplexed Data, active low Clear, and clock 

DFM7A 4-bit D-Type Flip-Flop with Multiplexed Data, active low Clear, and active 
high clock 

DFM7B 4-bit D-Type Flip-Flop with Multiplexed Data, active low Clear and clock 

DFMA 2-bit D-Type Flip-Flop with Multiplexed Data and active low clock 

DFMB 2-bit D-Type Flip-Flop with Multiplexed Data and active low Clear 

DFME1A 2-bit D-Type Flip-Flop with Multiplexed Data and active low Enable 

DFP1 D-Type Flip-Flop with active high Preset 2 

DFP1A D-Type Flip-Flop with active high Preset and active low clock 2 

DFP1B D-Type Flip-Flop with active low Preset 2 

DFP1C D-Type Flip-Flop with active high Preset and active low output 1 

DFP1D D-Type Flip-Flop with active low Preset and clock 2 

DFP1E D-Type Flip-Flop with active low Preset and output 

DFP1F D-Type Flip-Flop with active high Preset and active low clock and output 

DFP1G D-Type Flip-Flop with active low Preset, clock, and output 
DFPC D-Type Flip-Flop with active high Preset, active low Clear, and active high 2 

clock 
DFPCA D-Type Flip-Flop with active high Preset, and active low Clear and clock 2 

J-K Type JKF JK Flip-Flop with active low K-input 

1-124 



Hard Macros-Sequential (continued) 

Function 

J-K Type 

T-Type 

Latch 

Macro 

JKF18 
JKF2A 
JKF2B 
JKF2C 
JKF2D 
TF1A 
TF18 
DL1 
DL1A 
DL1B 
DL1C 
DLC 
DLC1 
DLC1A 
DLC1F 
DLC1G 
DLCA 
OLE 
DLE1D 
DLE2B 
DLE2C 
DLE3B 
DLE3C 
OLEA 
DLEB 
DLEC 
DLM 
DLM3 
DLM3A 
DLM4 
DLM4A 
DLMA 
DLME1A 
DLP1 
DLP1A 
DLP1B 
DLP1C 
DLP1D 
DLP1E 

Description 

JK FiJp-Flop with active low clock and K-Input 
JK Flip-Flop with active low Clear and K-input 
JK Flip-Flop with active low Clear, clock, and K-input 
JK Flip-Flop with active high Clear and active low K-input 
JK Flip-Flop with active high Clear and active low clock and K-input 
T-Type Flip-Flop with active low Clear 
T-Type Flip-Flop with active low Clear and clock 
Data Latch 
Data Latch with active low output 
Data Latch with active low clock 
Data Latch with active low clock and output 
Data Latch with active low Clear 
Data Latch with active high Clear 
Data Latch with active high Clear and active low clock 
Data Latch with active high Clear and active low output 
Data Latch with active high Clear and active low clock and output 
Data Latch with active low Clock and Clear 
Data Latch with active high Enable 
Data Latch with active high Enable and clock and active low input and output 
Data Latch with active low Enable, Clear, and clock 
Data Latch with active low Enable and clock and active high Clear 
Data Latch with active low Enable and clock and active low Preset 
Data Latch with active low Enable, Preset, and clock 
Data Latch with active low Enable and active high clock 
Data Latch with active high Enable and active high clock 
Data Latch with active low Enable and clock 
2-bit Data Latch with Multiplexed Data 
4-bit Data Latch with Multiplexed Data 
4-bit Data Latch with Multiplexed Data and active low clock 
Data Latch with Multiplexed Data 
Data Latch with Multiplexed Data 
2-bit Data Latch with Multiplexed Data, and active low clock 
2-bit Data Latch with Multiplexed Data and Enable and active low clock 
Data Latch with active high Preset and clock 
Data Latch with active high Preset and active low clock 
Data Latch with active low Preset and active high clock 
Data Latch with active low Preset and clock 
Data Latch with active low Preset and output and active high clock 
Data Latch with active low Preset, clock, and output 

ACT 3 FPGAs 

Modules 

S c 

• 

1-125 



Input/Output Macros 

Function 

Buffer 

Bidirectional 

Input 

Output 

1-126 

Macro 

BBHS 

BBUFTH 

BBUFTL 

BIBUF 

HCLKBUF 

IBUF 

INBUF 

10CLKBUF 

10PCLBUF 

OBHS 

OBUFTH 

OBUFTL 

OUTBUF 

BRECTH 

BRECTL 

BREPTH 

BREPTL 

CLKBIBUF 

DECETH 

DECETL 

DEPETH 

DEPETL 

CLKBUF 

IREC 

IREP 

FECTMH 

FECTML 

FEPTMH 

FEPTML 

ORECTH 

ORECTL 

OREPTH 

OREPTL 

TBHS 

TRIBUFF 

Description 

Bidirectional Buffer, High Slew 

Bidirectional Buffer, Tristate Enable, High Slew 

Bidirectional Buffer, Tristate Enable, Low Slew 

Bidirectional Buffer, High Slew (with hidden buffer at Y pin) 

Dedicated High-Speed S-Module Clock Buffer 

Input Buffer 

Input Buffer 

Dedicated I/O Module Clock Buffer 

Dedicated I/O Module 10PCL Buffer 

Output buffer, High Slew 

Output Buffer, Tristate Enable, High Slew 

Output Buffer, Tristate Enable, Low Slew 

Output Buffer, High Slew 

Bidirectional, Output Register with Clear, Data Enable, Tristate Enable, High 
Slew 

Bidirectional, Output Register with Clear, Data Enable, Tristate Enable, Low 
Slew 

Bidirectional, Output Register with Preset, Data Enable, Tristate Enable, 
High Slew 

Bidirectional, Output Register with Preset, Data Enable, Tristate Enable, Low 
Slew 

Bidirectional with Input Dedicated to Clock Network 

Bidirectional, Double Registered with Clear, Data Enable, Tristate Enable, 
High Slew 

Bidirectional, Double Registered with Clear, Data Enable, Tristate Enable, 
Low Slew 

Bidirectional, Double Registered with Preset, Data Enable, Tristate Enable, 
High Slew 

Bidirectional, Double Registered with Preset, Data Enable, Tristate Enable, 
Low Slew 

Input for Dedicated Routed Clock Network 

Input Register with Clear 

Input Register with Preset 

Output Register with Muxed Feedback, Clear, Data Enable, Tristate Enable, 
High Slew 

Output Register with Muxed Feedback, Clear, Data Enable, Tristate Enable, 
Low Slew 

Output Register with Muxed Feedback, Preset, Data Enable, Tristate Enable, 
High Slew 

Output Register with Muxed Feedback, Preset, Data Enable, Tristate Enable, 
Low Slew 

Output Register with Clear, Data Enable, Tristate Enable, High Slew 

Output Register with Clear, Data Enable, Tristate Enable, Low Slew 

Output Register with Preset, Data Enable, Tristate Enable, High Slew 

Output Register with Preset, Data Enable, Tristate Enable, Low Slew 

Tristate output, High Slew 

Tristate output, High Slew 

I/O 
Modules 



ACT 3 FPGAs 

50ft Macros 

Maximum Modules 

Function Macro Description 
Logic 

5 C Levels 

Adder FADD10 10-bit adder 3 56 

FADD12 12-bit adder 4 9 

FADD16 16-bit adder 5 97 

FADD8 8-bit adder 4 44 

FADD9 9-bit adder with active low carry out 3 49 

VAD16C Very fast 16-bit adder, no Carry in 3 97 

VADC16C Very fast 16-bit adder with Carry in 3 97 

Comparator ICMP4 4-bit Identity Comparator 2 5 

ICMP8 8-bit Identity Comparator 3 9 

MCMPC2 2-bit Magnitude Comparator with Enable 3 9 

MCMPC4 4-bit Magnitude Comparator with Enable 4 18 I MCMPC8 8-bit Magnitude Comparator with Enable 6 36 

Counter CNT4A 4-bit binary counter with load and clear 4 4 8 

CNT4B 4-bit binary counter with load, clear, carry-in, carry-out 4 4 7 

FCTD16C Fast 16-bit Down Counter, parallel loadable 2 19 33 

FCTD8A Fast 8-bit Down Counter, parallel loadable 10 18 

FCTD8B Fast 8-bit Down Counter, parallel loadable 9 13 

FCTU16C Fast 16-bit Up Counter, parallel loadable 2 19 31 

FCTU8A Fast 8-bit Up Counter, parallelloadable 10 17 

FCTU8B Fast 8-bit Up Counter, parallel loadable 1 9 12 

UDCNT4A 4-bit up/down counter with load, carry-in, and carry-out 5 4 13 

VCTD16C Very fast 16-bit down counter, delay after load, registered control inputs 34 41 

VCTD2CP 2-bit down counter, prescaler, delay after load, use to build VCTD counters 5 2 

VCTD2CU 
2-bit down counter, upper bits, delay after load, use to build VCTO 

2 3 
counters 

VCTD4CL 4-bit down counter, lower bits, delay after load, use to build VCTD counters 4 7 

VCTD4CM 
4-bit down counter, middle bits, delay after load, use to build VCTD 

4 8 
counters 

Decoder DEC2X4 2-to-4 decoder 4 

DEC2X4A 2-to-4 decoder with active low outputs 4 

DEC3X8 3-to-8 decoder 8 

DEC3X8A 3-to-8 decoder with active low outputs 8 

DEC4X16A 4-to-16 decoder with active low outputs 2 20 

DECE2X4 2-to-4 decoder with enable 1 4 

DECE2X4A 2-to-4 decoder with enable and active low outputs 4 

DECE3X8 3-to-8 decoder with enable 2 11 

DECE3X8A 3-to-8 decoder with enable and active low outputs 2 11 

Latch DLC8A octal latch with clear active low 8-bit Data Latch with active low Clear 8 

DLE8 octal latch with enable 8-bit Data Latch with active high Enable 8 

DLM8 octal latch with multiplexed data 8-bit Data Latch with Multiplexed Data 8 

MUX MX16 16-to-1 Multiplexor 2 5 

MX8 8-to-1 Multiplexor with active high output 2 3 

MX8A 8-to-1 Multiplexor with active low output 2 3 

Multiplier SMULT8 8-bit by 8-bit Multiplier 242 

Shift Register SREG4A 4-bit shift register with clear active low 4 

SREG8A 8-bit shift register with clear active low 8 

1-127 



Soft Macros-TIL Equivalent 

Maximum Modules 

Function Macro Description 
logic 

S C levels 

TAOO 2-input NAND 

TA02 2-input NOR 

TA04 Inverter 

TA07 Buffer 

TA08 2-input AND 

TA10 3-input NAND 

TA11 3-input AND 

TA138 3-to-8 decoder with enable and active low outputs 2 12 

TA139 2-to-4 decoder with active low enable and outputs 4 

TA150 16-to-1 multiplexor with active low enable 3 6 

TA151 8-to-1 multiplexor with enable and both active low and active high output 3 5 

TA153 4-to-1 multiplexor with active low enable 2 2 

TA154 4-to-16 decoder with active low outputs and select lines 2 22 

TA157 2-to-1 multiplexor with active low enable 1 

TA160 4-bit decade counter with active low clear and load 4 4 8 

TA161 4-bit binary counter with active low cle3r and load 3 4 6 
TA164 8-bit serial in, parallel out shift register, active low clear 1 8 

TA169 4-bit Up/Down Counter 6 4 14 

TA174 hex D-type flip-flop with active low clear 6 

TA175 quadruple D-type flip-flop with active low clear 4 

TA181 ALU 37 

TA190 4-bit up/down decode counter with up/down mode 7 4 31 

TA191 4-bit up/down binary counter with up/down mode 7 4 30 

TA194 4-bit bidirectional universal shift register 4 4 

TA195 4-bit parallel-access shift register 4 

TA20 4-input NAND 2 

TA21 4-input AND 1 1 

TA269 8-bit up/down binary counter 8 8 28 

TA27 3-input NOR 

TA273 octal register with clear 8 

TA280 9-bit odd/even parity generator and checker 4 9 

TA32 2-input OR 

TA377 octal register with active low enable 8 

TA40 4-input NAND 2 

TA42 4 to 10 decoder 10 

TA51 AND-DR-Invert 1 2 

TA54 4-wide 2-input AND-DR-Invert 2 5 

TA55 2-wide 4-input AND-DR-Invert 2 3 

TA688 8-bit identity comparator 3 9 

TA86 2-input exclusive OR 

1-128 



Package Pin Assignments 
84-Pin PLCC (Top View) 

~ 
a 
~ 
....J 
() 
0 

SOl or 1/0 12 

13 

14 

15 

MODE 16 

17 

18 

19 

20 

~ 
a 

0 
~ () () 

}J z () 
0.. Cl > 

21 84-Pin 
22 PLCC 

23 

24 

25 

26 

GND 27 

Vee 28 

29 

30 

31 

32 

~ (] 0 
() z a > Cl 

III cr: 
0.. 

Notes: 
1. Unused I/O pins are designated as outputs by ALS and are driven low. 
2. All unassigned pins are available for use as I/Os. 
3. MODE must be terminated to circuit ground, except during device 

programming or debugging. 

<3 
() 
> 

ACT 3 FPGAs 

~ ~ 
a a 
III 

~ ~ 
() 

74 I/0orlOCLK 

73 II 72 

71 

70 

69 VKS 

68 Vpp 

67 

66 

65 

64 

63 

62 

61 GND 

60 Vee 

59 VSV 

58 

57 

56 

55 

54 

~ ~ 
is 0 

~ ....J 
() 

() 0.. :r Q 

4. Vpp = Vee, except during device programming. 
5. V sv = V ce, except during device programming. 
6. VKS = GND, except during device programming. 

1-129 



Package Pin Assignments (continued) 
1 ~O-Pin PQFP (Top View) 

~ 
0 
() 

0...J zOo 
<!)Q 

~ ~ 0 
~ 0 
...J ()O U 0 III 
U uz U Z II: 
:I: > <!) > C!) a. 

81 50 

VSV 
vee 
GND 

o 
100-Pin 
PQFP 

49 
48 
47 
46 
45 
44 
43 
42 
41 
40 
39 

37 

Vee 
GND 

82 

84 
85 
B6 
B7 
BB 
B9 
90 
91 
92 
93 
94 
95 
96 

36 GND 38. 
35 Vee 

97 0 34 MODE 
W ~ 

~O ~ 
123456789101112131415161718192021222324252627282930 

o 

:s 
U 
Q 

Notes: 
1. Unused I/O pins are designated as outputs by ALS and are driven low. 
2. All unassigned pins are available for use as I/Os. 
3. MODE must be terminated to circuit ground, except during device 

programming or debugging. 

1-130 

000 
:::,z:::, 

o C!' 0 
:s is 
U (fJ 

o 

4. V pp = Vee, except during device programming. 
5. V sv = Vee, except during device programming. 
6. V KS = GND, except during device programming. 



Package Pin Assignments (continued) 
160·Pin PQFP (Top View) 

GND 
SOl or I/O 

NC 

MODE 
Vee 10 

11 
12 
13 

NC 14 
GND 15 

16 
17 

Vee 18 
GND 19 

NC 20 
21 
22 
23 

NC 24 
25 
26 

NC 27 
Vee 28 
Vsv 29 

30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

GND 40 

Notes: 

00000 z z z z z 

« 
a: 
0.. 

00 0 

~~a a 

A1425A 
160·Pin 
PQFP 

!ll« 
~~ 
-'-' 
00 
i5 0 
~~ 0 0 z z 

~NM~~~~romD~NM~~w~romO~NM~~w~romo~NMv~w~rom 
~~~~~~~vv~~~~~~~~~~IDIDIDIDIDIDWIDIDID~~~~~~~~~~ 

o 0 ogo 0 0 0 oog 00 08000
z z z>z z z z ~a> ~a z>zzz

~ :5
0.. 0

:r:

0 z
(!)

1. Unused I/O pins are designated as outputs by ALS and are driven low. 4. Vpp = Vee, except during device programming.
2. All unassigned pins are available for use as I/Os.
3. MODE must be terminated to circuit ground, except during device

programming or debugging.

5. V sv = Vee, except during device programming.
6. VKs = GND, except during device programming.

ACT 3 FPGAs

120 110 or 10CLK
119 NC
118

I 117
116
115
114
113 NC
112 Vee
111 VKS
110 Vpp
109 NC
108
107 NC
106
105
104
103 GND
102
101
100 NC
99 Vee
98 GND
97
96
95
94
93 NC
92 NC
91 Vee
90 Vsv
89
88
87
86
85
84
83
82
81 GND

1·131

Package Pin Assignments (continued)
160-Pin PQFP (Top View)

~
...J
0
Cl

00«
« :l:l a:
c.. 00

(; 00 0 00 Cl

~ tl ~~~~~~~ z
> (9

GND 1
801 or 110 2

3
4
5
6
7
8

MODE 9
Vee 10

11
12
13
14

GND 15
16
17

Vee 18
GND 19

20 A1440A
21 160-Pin
22 PQFP
23
24
25
26
27

Vee 28
Vsv 29

30
31
32
33
34
35
36
37
38
39

GND 40

Notes:
1. Unused I/O pins are designated as outputs by ALS and are driven low.
2. All unassigned pins are available for use as I/Os.
3. MODE must be terminated to circuit ground, except during device

programming or debugging.

1-132

4. V pp = Vee, except during device programming.
5. V sv = Vee, except during device programming.
6. VKS = GND, except during device programming.

120 I/O or 10CLK
119
118
117
116
115
114
113
112 Vee
111 VKS
110 Vpp
109
108
107
106
105
104
103 GND
102
101
100
99 Vee
98 GND
97
96
95
94
93
92
91 Vee
90 Vsv
89
88
87
86
85
84
83
82
81 GND

Package Pin Assignments (continued)
208-Pin PQFP (Top View)

GND 1
SOlar I/O 2

3
4
5
6
7
8
9

10
MODE 11

Vee 12
13
14
15
16
17
18
19
20
21
22
23
24

Vee 25
GND 26

Vee 27
GND 28

29
30
31
32
33
34
35
36
37
38
39

Vee 40
Vsv 41

42
43
44
45
46
47
48
49
50
51

GND 52

Notes:

" ...J
()
o
a

~

()
Z

()
Z

8
>

()
Z

()
Z

o 0
Z Z
o 0

A1460A
208-Pin
PQFP

008 0 8
:::::-z>z>
50 0
III g:

1. V pp must be terminated to Vee, except during device programming.
2. MODE must be terminated to circuit ground, except during device

programming or debugging.

o
()Z
Z0

mro~w~vMN~omro~w~ MN~omro~
~~~~~~~~~~wwwww wwww~~~ 
~~~~~~~~~~~~~~~ ~~~~~~~ 

~ 8 ()

> Z
a
:l
()
I

ACT 3 FPGAs

156 I/O or 10CLK
155
154
153
152
151
150
149
148 Vee
147 NC
146 VKS
145 Vpp
144
143
142
141
140
139
138
137
136
135
134
133
132 Vee
131 GND
130 Vee
129 GND
128
127
126
125
124
123
122
121
120
119
118
117
116 NC
115 Vee
114 Vsv
113
112
111
110
109
108
107
106
105 GND

3. Unused I/O pins are designated as outputs by ALS and are driven low.
4. All unassigned pins are available for use as l/Os.

1-133

II

Package Pin Assignments (continued)

1 OO-Pin CPGA (Top View)

Signal

ClKA or I/O

ClKB or I/O

DClK or I/O

GND

HClK or I/O

10ClK or I/O

10PCl or I/O

MODE

PRA OR I/O

PRB or I/O

SOl or I/O

Vee
VKS

Vpp

Vsv
Notes:

Pad Number

94
95
107

1 2 3 4 5 6 7 8 9 10 11

A~OOOOOOOOOOA

BOOOOOOOOOOOB
cOOOOOOOOOOOC
D 0 0 O.~ 0 0 0 0 D

EOOO OOOE
FO 0 0 0
GO 0 0

100-Pin
CPGA 000 0 F

00 0 G

HOOO 0 OOOH
JOOOOOOOOOOO
KOOOOOOOOOOOK
LOOOOOOOOOOOL

2 3 4 5 6 7 8 9 10 11

• Orientation Pin

Location

C7
D6

C4
1,9,21,37,39,49,55,63,75,87,97,99 C3, F3,J3, C6,J6,J8,C9, F9,J9

H6 42
81
54
7

100
36
2

8,14,22,38,40,62,68,76,96,98
74
73
23, 61

C10
K9

C2
A6

l3
B3
F2, K2, B6, K6,B10, F10, K10
E9
E11
G2

1. Unused I/O pins are designated as outputs by ALS and are driven low. 4. Vpp = Vee, except during device programming.

2. All unassigned pins are available for use as l/Os.
3. MODE must be terminated to circuit ground, except during device

programming or debugging.

1-134

5. V sv = Vee, except during device programming.
6. VKS = GND, except during device programming.

Package Pin Assignments (continued)
133-Pin CPGA (Top View)

Signal Pad Number

115
116

2 3 4 5 6 7 8 9 10 11 12 13

A~OOOOOOOOOOOO

BOOOOOOOOOOOOO
cOOOOOOOOOOOOO
DOOOe 000 000
E

F

G

H

K

L

M

N

000 000
0000 0000
0000 133-Pin 0000 CPGA

0000 0000
000 000
000 000 000
0000000000000
0000000000000
0000000000000

Location

07
B6
04

ACT 3 FPGAs

ClKA or 110

ClKB or 1/0

OClK or 110

GND
134

1,10,22,35,36,48,50,64,68,79,93,101,106,
118,120,132

A2, C3, C7, C11, C12, G3, G11, l3, l7, L11, M3, N1:

HClK or 1/0

10ClK or 1/0

10PCl or 1/0

MODE
NC

53
100
67
8

121
47

K7
C10
l10
E3
A1,A7,A13,G1,G13,N1, N7, N13
A6
l6

PRA OR 1/0

PRB or 1/0

SDI or 1/0

Vee
VKS

2

9,16,23,39,49,51,65,78,84,94,117,119,127
92

C2
B2,B7,B12,G2,G12,M2,M7,M12
F10

Vpp 91

Vsv 24, 77

Notes:
1. Unused I/O pins are designated as outputs by ALS and are driven low.
2. All unassigned pins are available for use as I/Os.
3. MODE must be terminated to circuit ground, except during device

programming or debugging.

E11
J2,J12

4. Vpp = Vee, except during device programming.
5. V sv = Vee, except during device programming.
6. VKS = GND, except during device programming.

1·135

II

Package Pin Assignments (continued)

17S-Pin CPGA (Bottom View)

Signal
ClKAor 1/0
ClKB or 1/0
OClK or 1/0
GNO

HClK or 1/0
10ClKor 1/0
10PClor 110
MODE
NC
PRAOR 1/0
PRB or 1/0
SOl or 1/0

Vee

Notes:

2 3 4 5 6 7 8 9 10 11 12 13 14 15

ADOOOOOOOOOOOOOOA
80000000000000008
cOOOOOOOOOOOOOOOC
DOOOOOOOOOOOOOOOD
EOOOO 0000 E
FOOOO 0000 F
G 0000 0000 G

HOOOO 175-Pin 0000 H
CPGA

JOOOO OOOOJ
KOOOO 0000 K
LOOOO 0000 L
MOOOOOOOOOOOOOOOM
NOOOOOOOOOOOOOOON
pOOOOOOOOOOOOOOOP
ROOOOOOOOOOOOOOOR

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pad Number Location
159
160
185
1,12,22,24,33,46,47,57,67,69,80,90,93,104,
113,115,128,138,139,151,162,164,175,183
72
137
92
10

165
66
2
11,21,23,34,53,68,70,86,103,114,116,129,
144,161,163,178
127
126
35, 102

C9
A9
05
04,08,011,012, E4, H4, H12, l4, l12, M4, M8,
M12
R8
E12
P13
F3

A2,A15,B2,B3,P2,P14,R1,R2,R14, R15
88
R7
03
C3,C8,C13,H3,H13,N3,N8,N13

E14
E15
l1, l14

1. Unused I/O pins are designated as outputs by ALS and are driven low. 4. Vpp = Vee, except during device programming.
2. All unassigned pins are available for use as I/0s.
3. MODE must be terminated to circuit ground, except during device

programming or debugging.

1-136

5. V sv = Vee, except during device programming.
6. VKS = GND, except during device programming.

Package Pin Assignments (continued)

207-Pin CPGA (Top View)

Signal

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

A 00000000000000000 A

B

C

D

E

F

G

H

J

K

L

M

N

p

R

00000000000000000
00000000000000000
00000000000000000
0000 0000
0000 0000
0000 0000
0000 0000
o 000 207-Pin 0 0 0 0

CPGA
0000 0000
0000 0000
0000 0000
0000 0000
00000000000000000
00000000000000000

B

C

D

E

F

G

H

J

K

L

M

N

p

R

s 00000000000000000 S

T 00000000000000000 T

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Pad Number Location

185
186
213

K1
J3
E4

ACT 3 FPGAs

ClKA or 110
ClKB or I/O
DClK or I/O
GND 1, 13, 27, 29, 41, 55, 56, 68, 80, 82, 94, 106, 109,

120,133,135,151,161,162,175,188,190,200,210
C15, D4, D5, D9, 014,J4,J14, P3, P4, P9, P14, R1!

HCKl or I/O
10ClK or I/O
10PCl or I/O
MODE

85
160
108
11

J15
P5
N14
07

NC A1,A2,A16,A17, B1, B17,C1, C2,S1,S3,S17, T1,
T2, T16, T17

191 H1
79 K16

PRA OR 110
PRB or I/O
SOl or I/O

Vee
2

12,26,28,42,63,81,83,102,119,134,136,152,
168,187,189,206

C3
B2,B9,B16,J2,J16,S2,S9,S16

150
149
43, 118

Notes:
1. Unused I/O pins are designated as outputs by ALS and are driven low.
2. All unassigned pins are available for use as I/Os.
3. MODE must be terminated to circuit ground, except during device

programming or debugging.

P7
T5
011, P12

4. Vpp = Vee, except during device programming.
5. V sv = Vee, except during device programming.
6. VKS = GND, except during device programming.

1-137

II

1-138

ACTTM 1 and ACT 2 Military
Field Programmable
Gate Arrays

ACT 1 Features

Up to 2000 Gate Array Gates
(6000 PLD equivalent gates)

Replaces up to 53 TTL Packages

Replaces up to seventeen 20-Pin PAL ® Packages

Design Library with over 250 Macro Functions

Single Logic Module Architecture

Up to 547 Logic Modules

Up to 273 Flip-Flops

Two In-Circuit Diagnostic Probe Pins Support Speed
Analysis to 25 MHz

Built-In High Speed Clock Distribution Network

I/O Drive to 6 rnA

Nonvolatile, User Programmable

Logic Fully Tested Prior to Shipment

Product Family Profile

Family

Device

Capacity
Gate Array Equivalent Gates
PLD Equivalent Gates
TTL Equivalent Packages
20-Pin PAL Equivalent Packages

Logic Modules
S-Modules
C-Modules

Flip-Flops (maximum)

Routing Resources
Horizontal Tracks/Channel
Vertical Tracks/Channel
PUCE Antifuse Elements

User I/Os (maximum)

Packages 1

CMOS Process

Note:
1. See product plan on page 1-142 for package availability.

© 1993 Actel Corporation

A1280A

8,000
20,000

210
69

1,232
624
608

998

36
15

750,000

140

176 CPGA
172 CQFP

1.0 f.lm

ACT 2 Features

Up to 8000 Gate Array Gates
(20,000 PLD equivalent gates)

Replaces up to 200 TTL Packages

Replaces up to eighty 20-Pin PAL Packages

Design Library with over 500 Macro Functions

Single-Module Sequential Functions

Wide-Input Combinatorial Functions

Up to 1232 Programmable Logic Modules

Up to 998 Flip-Flops

16-Bit Counter Performance at 50 MHz (MIL Temp)

16-Bit Accumulator Performance to 25 MHz (MIL Temp)

Two In-Circuit Diagnostic Probe Pins Support Speed
Analysis to 50 MHz

Two High-Speed, Low-Skew Clock Networks

I/O Drive to 6 rnA

Nonvolatile, User Programmable

Logic Fully Tested Prior to Shipment

ACT 2

A1240A A1020B

4,000 2,000
10,000 6,000

105 53
34 17

684 547
348 0
336 547

565 273

36 22
15 13

400,000 190,000

104 69

ACT 1

A1010B

1,200
3,000

34
12

295
0

295

147

22
13

110,000

57

132 CPGA 84 CPGA 84 CPGA
84 CQFP

1.0 f.lm 1.0f.lm 1.0 f.lm

1·139

•

High Reliability, Low Risk Solution

Actel builds the most reliable field programmable gate arrays
(FPGAs) in the industry, with overall antifuse reliability ratings of
less than 10 Failures-In-Time (FITs), corresponding to a useful
life of more than 40 years. Actel FGPAs have been production­
proven, with more than one million devices shipped and more
than 130 billion antifuses manufactured. Actel devices are fully
tested prior to shipment, with an outgoing defect level of only 122
ppm. (Further reliability data is available in the "Actel Reliability
Report.")

100% Tested

Device functionality is fully tested before shipment and during
device programming. Routing tracks, logic modules, and
programming, debug, and test circuits are 100% tested before
shipment. Antifuse integrity also is tested before shipment.
Programming algorithms are tested when a device is programmed
using Actel's Activator® 2 or Activator 2S programming stations.

Benefits

No Cost Risk-Once you have a Designer/Designer Advantage™
System, Actel's CAE software and programming package, you
can produce as many chips as you like for just the cost of the
device itself, with no NRE charges to eat up your development
budget each time you want to tryout a new design.

No Time Risk-After entering your design, placement and
routing is automatic, and programming the device takes only
about 5 to 15 minutes for an average design. You save time in the
design entry process by using tools that are familiar to you. The
Action Logic System software interfaces with popular CAE
Cadence software such as Mentor Graphics®, OrCAD™, and
Viewlogic® and runs on popular platforms such as Hp™, Sun™,
and 386/486™ PC compatible machines.

No Reliability Risk-The PLICE® antifuse is a one-time
programmable, nonvolatile connection. Since Actel devices are
permanently programmed, no downloading from EPROM or
SRAM storage is required. Inadvertent erasure is impossible and
there is no need to reload the program after power disruptions.
Both the PLICE antifuses and the base process are radiation
tolerant. Fabrication using a low-power CMOS process means
cooler junction temperatures. Actel's non-PLD architecture
delivers lower dynamic operating current. Our reliability tests
show a very low failure rate of 66 FITs at 90°C junction
temperature with no degradation in AC performance. Special
stress testing at wafer test eliminates infant mortalities prior to
packaging.

No Security Risk-Reverse engineering of programmed Actel
devices from optical or electrical data is extremely difficult.
Programmed antifuses cannot be identified from a photograph or
by using a SEM. The antifuse map cannot be deciphered either
electrically or by microprobing. Each device has a silicon
signature that identifies its origins, down to the wafer lot and
fabrication facility.

1-140

No Testing Risk-Unprogrammed Actel parts are fully tested at
the factory. This includes the logic modules, interconnect tracks,
and I/Os. AC performance is ensured by special speed path tests,
and programming circuitry is verified on test antifuses. During
the programming process, an algorithm is run to ensure that all
antifuses are correctly programmed. In addition, Actel's
Actionprobe® diagnostic tools allow 100% observability of all
internal nodes to check and debug your design.

ACT 1 Description

The ACTTM 1 family of FPGAs offers a variety of package, speed,
and application combinations. Devices are implemented in silicon
gate, 1.2-micron two-level metal CMOS, and they employ Actel's
PLICE antifuse technology. The unique architecture offers gate
array flexibility, high performance, and instant turnaround
through user programming. Device utilization is typically 95
percent of available logic modules.

ACT 1 devices also provide system designers with unique on-chip
diagnostic probe capabilities, allowing convenient testing and
debugging. Additional features include an on-chip clock driver
with a hardwired distribution network. The network provides
efficient clock distribution with minimum skew.

The user-definable I/Os are capable of driving at both TTL and
CMOS drive levels. Available packages include ceramic I-leaded
chip carriers, ceramic quad flatpacks, and ceramic pin grid array.

A security fuse may be programmed to disable all further
programming and to protect the design from being copied or
reverse engineered.

ACT 2 Description

The ACT 2 family represents Actel's second generation of FPGAs.
The ACT 2 family presents a two-module architecture consisting of
C-modules and S-modules. These modules are optimized for both
combinatorial and sequential designs. Based on Actel's patented
channeled array architecture, the ACT 2 family provides significant
enhancements to gate density and performance while maintaining
downward compatibility with the ACT 1 design environment. The
devices are implemented in silicon gate, 1.0-1lID, two-level metal
CMOS, and employ Actel's PLICE antifuse technology. This
revolutionary architecture offers gate array design flexibility, high
performance, and fast time-to-production with user programming.

The ACT 2 family is supported by the ALS, which offers automatic
pin assignment, validation of electrical and design rules, automatic
placement and routing, timing analysis, user programming, and
debug and diagnostic probe capabilities. The Action Logic System
is supported on the following platforms: 386/486 PC, Sun, and HP
workstations. It provides CAE interfaces to the following design
environments: Cadence, View logic, Mentor Graphics, and OrCAD.

ACT 1 and ACT 2 Military FPGAs

Military Device Ordering Information

A1010 B PG 84 B

I Application (Temperature Range)
C = Commercial (0 to + 70°C)
M = Military (-55 to + 125°C)
B = MIL-STD-883
E = Extended (Space) Flow

Package Lead Count

Package Type
CQ = Ceramic Quad Flatpack
PG = Ceramic Pin Grid Array

Speed Grade
Std Standard Speed
-1 = Approximately 15% faster than Standard

Device Revision

Part Number
A1 01 0 = 1200 Gates
A 1 020 = 2000 Gates
A 1 240 = 4000 Gates
A 1280 = 8000 Gates

SMD Drawing Number at Actel Part Number Cross Reference

SMD Number Cage Number Actel Part Number

5962-9096401 MZC OJ4Z0 A 101 OA-PG84B

5962-9096501 MUC OJ4Z0 A 1 020B-PG84B

5962-9096502MUC OJ4Z0 A 1 020B-IPG84B

5962-9096501 MTC OJ4Z0 A 1 020B-CQ84B

5962-9096502MTC OJ4Z0 A 1 020B-ICQ84B

5962-9215601 MXC OJ4Z0 A 1280A-PG 176B

5962-9215601 MYC OJ4Z0 A 1280A-CQ 172B

5962-9215602MXC OJ4Z0 A 1280A-1 PG 176B

5962-9215602MYC OJ4Z0 A 1280A-1 CQ172B

1-141

II

Product Plan

A 1280A Device

176-pin Ceramic Pin Grid Array (PG)
172-pin Ceramic Quad Flatpack (PQ)

A 1240A Device

132-pin Ceramic Pin Grid Array (PG)

A 1 020B Device

84-pin Ceramic Pin Grid Array (PG)
84-pin Ceramic Quad Flatpack (CQ)

A1010B Device

84-pin Ceramic Pin Grid Array (PG)

Applications: C = Commercial
M = Military
B = MIL-STO-883
E = Extended Flow

Device Resources

Device Series Logic Modules

A1280A 1232

A1240A 684

A1020B 547

A1020B 295

1-142

Availability:

Gates

8000

4000

2000

1200

Speed Grade*

Std

II
II

II
II

-1

P
P

P

II
II

C

Application

M

II
II

B

II
II

E

II = Available • Speed Grade: -1 = Approx. 15% faster than Standard
P = Planned
- = Not Planned

User II0s

CPGA CQFP

176-pin 132-pin 84-pin 172-pin 84-pin

140 140

104

69 69

57

Pin Description

ClKA Clock A (Input)

TTL Clock input for clock distribution networks. The Clock input
is buffered prior to clocking the logic modules. This pin can also
be used as an I/O.

elKB Clock B (Input)

TTL Clock input for clock distribution networks. The Clock input
is buffered prior to clocking the logic modules. This pin can also
be used as an I/O.

DClK Diagnostic Clock (Input)

TTL Clock input for diagnostic probe and device programming.
DCLK is active when the MODE pin is HIGH. This pin functions
as an I/O when the MODE pin is LOW.

GND Ground

LOW supply voltage.

I/O Input/Output (Input, Output)

The I/O pin functions as an input, output, three-state, or
bidirectional buffer. Input and output levels are compatible with
standard TTL and CMOS specifications. Unused I/O pins are
automatically driven LOW by the ALS software.

MODE Mode (Input)

The MODE pin controls the use of multifunction pins (DCLK,
PRA, PRB, SOl). When the MODE pin is HIGH, the special
functions are active. When the MODE pin is LOW, the pins
function as I/Os.

NC No Connection

This pin is not connected to circuitry within the device.

PRA Probe A (Output)

The Probe A pin is used to output data from any user-defined
design node within the device. This independent diagnostic pin is

ACT 1 and ACT 2 Military FPGAs

used in conjunction with the Probe B pin to allow real-time
diagnostic output of any signal path within the device. The Probe
A pin can be used as a user-defined I/O when debugging has been
completed. The pin's probe capabilities can be permanently
disabled to protect programmed design confidentiality. PRA is
active when the MODE pin is HIGH. This pin functions as an I/O
when the MODE pin is LOW.

PRB Probe B (Output)

The Probe B pin is used to output data from any user-defined
design node within the device. This independent diagnostic pin is
used in conjunction with the Probe A pin to allow real-time
diagnostic output of any signal path within the device. The Probe
B pin can be used as a user-defined I/O when debugging has been
completed. The pin's probe capabilities can be permanently
disabled to protect programmed design confidentiality. PRB is
active when the MODE pin is HIGH. This pin functions as an I/O
when the MODE pin is LOW.

SOl Serial Data Input (Input)

Serial data input for diagnostic probe and device programming.
SOl is active when the MODE pin is HIGH. This pin functions as
an I/O when the MODE pin is LOW.

Vee 5 V Supply Voltage

HIGH supply voltage.

Programming Voltage

Supply voltage used for device programming. This pin must be
connected to GND during normal operation.

Vpp Programming Voltage

Supply voltage used for device programming. This pin must be
connected to Vee during normal operation.

Vsv Programming Voltage

Supply voltage used for device programming. This pin must be
connected to Vee during normal operation.

1-143

II

Actel Military Product Flow

833C-Class B 833C-Class B Military
Step Screen 833C Method Requirement Datasheet

Requirement

1.0 Internal Visual 2010, Test Condition B 100% 100%

2.0 Temperature Cycling 1010, Test Condition C 100% 100%

3.0 Constant Acceleration 2001, Test Condition E 100% 100%
(min), Y1, Orientation Only

4.0 Seal 1014
a. Fine 100% 100%
b. Gross 100% 100%

5.0 Visual Inspection 100% 100%

6.0 Pre Burn-in In accordance with Actel 100% N/A
Electrical Parameters applicable device specification

7.0 Burn-in Test 1015 Condition D 100% N/A
160 hours @ 125°C Min.

B.O Interim (post burn-in) In accordance with Actel 100% 100%
Electrical Parameters applicable device specification (as final test)

9.0 Percent Defective Allowable 5% All Lots N/A

10.0 Final Electrical Test In accordance with Actel
applicable device specification

a. Static Tests 100% 100%
(1) 25°C

(Subgroup 1, Table I, 5005)
(2) -55°C and + 125°C

(Subgroups 2, 3, Table I, 5005)

b. Dynamic and Functional Tests 100% 100%
(1) 25°C

(Subgroup 7, Table I, 5005)
(2) -55°C and + 125°C

(Subgroups BA and 8B, Table I, 5005)

c. Switching Tests at 25°C 100% 100%
(Subgroup 9, Table I, 5005)

11.0 Qualification or Quality 5005 All Lots N/A
Confirmation Inspection Test
Sample Selection (Group A)

12.0 External Visual 2009 100% Actel
specification

1-144

ACT 1 and ACT 2 Military FPGAs

Actel Extended Flow 1

Screen Method Requirement

1. Wafer Lot Acceptance 5007 with step coverage waiver All Lots

2. Destructive In-Line Bond Pull2 2011, condition D Sample

3. Internal Visual 2010, condition A 100%

4. Temperature Cycling 1010, condition C 100%

5. Constant Acceleration 2001, condition E (min), Y1 orientation only 100%

6. Visual Inspection 2009 100%

7. Particle Impact Noise Detection 2020, condition A 100%

8. Serialization 100%

9. Pre Burn-in Test In accordance with Actel applicable device speCification 100%

10. Burn-in Test 1015, 240 hours @ 125°C minimum 100% I 11. Interim (Post Burn-in) Electrical Parameters In accordance with Actel applicable device specification 100%

12. Reverse Bias Burn-in 1010, condition A or C, 72 hours @ 150°C minimum 100%

13. Interim (Post Burn-in) Electrical Parameters In accordance with Actel applicable device specification 100%

14. Percent Defective Allowable (PDA) 5%,3% functional parameters @ 25°C All Lots
Calculation

15. Final Electrical Test In accordance with Actel applicable device specification 100%

a. Static Tests 100%
(1) 25°C 5005

(Subgroup 1, Table1)
(2) -55°C and + 125°C 5005

(Subgroups 2, 3, Table 1)

b. Dynamic and Functional Tests 100%
(1) 25°C 5005

(Subgroup 7, Table 15)
(2) -55°C and + 125°C 5005

(Subgroups 5 and 6, 8a and b, Table 1)

c. Switching Tests at 25°C 5005 100%
(Subgroup 9, Table I, 5005)

16. Seal 1014 100%
a. Fine
b. Gross

17. Radiographic 2012 100%

18. Qualification or Quality Conformance 5005 Per Group A
Inspection Test Sample Selection

19 External Visual 2009 100%

Notes:
1. Actel offers the Extended Flow in order to satisfy those customers that require additional screening beyond the requirements of MIL-STD-883C,

Class B. Actel is compliant to the requirements of MIL-STD-883C, Paragraph 1.2.1, and MIL-M-3851O Appendix A. Actel is offering this extended
flow incorporating the majority of the screening procedures as outlined in Method 5004 of MIL-STD-883C Class S. The exceptions to Method 5004
are shown in Notes 2 to 4 below.

2. Method 5004 requires a 100%, Non-Destructive Bond Pull to Method 2023. Actel substitutes a Non-Destructive Bond Pull to Method 2011, condition
D on a sample basis only.

1-145

Absolute Maximum Ratings 1

Free air temperature range

Symbol Parameter Limits Units

Vee DC Supply Voltage2,3,4 -0.5 to +7.0 V

VI Input Voltage -0.5 to Vee +0.5 V

Vo Output Voltage -0.5 to Vee +0.5 V

110 I/O Source Sink ±20 mA
CurrentS

TSTG Storage Temperature -65 to +150 °C

Notes:
I. Stresses beyond those listed under "Absolute Maximum Ratings" may

cause permanent damage to the device. Exposure to absolute
maximum rated conditions for extended periods may affect device
reliability. Device should not be operated outside the Recommended
Operating Conditions.

2. V pp = Vee, except during device programming.
3. V sv = Vee, except during device programming.
4. VKS = GND, except during device programming.
5. Device inputs are normally high impedance and draw extremely low

current. However, when input voltage is greater than Vee + 0.5 V or
less than GND - 0.5 V, the internal protection diode will be forward
biased and can draw excessive current.

Package Thermal Characteristics

The device junction to case thermal characteristic is 8jc, and the
junction to ambient air characteristic is 8ja. The thermal
characteristics for 8ja are shown with two different air flow rates.

Recommended Operating Conditions

Parameter Commercial Military Units

Temperature
Rangel o to +70 -55 to +125 °C

Power Supply Tol-
±5 ±10 %Vee erance

Note:
1. Ambient temperature (T A) is used for commercial and industrial; case

temperature (T c) is used for military.

Maximum junction temperature is IS0°C.

A sample calculation of the absolute maximum power dissipation
allowed for a CPGA 176-pin package at military temperature is as
follows:

Max. junction temp. (0C) -Max. military temp. ISO°C - 12SoC

23°C/W
1.lW

Sja (OC/W)

Package Type Pin Count Sjc Sja Sja Units Still Air 300 ft/min

Ceramic Pin Grid Array 84 8 33 20 °C/W
132 5 30 15 °C/W
176 8 23 12 °C/W

Ceramic Quad Flatpack 84 5 40 30 °C/W
172 8 25 15 °C/W

1-146

ACT 1 and ACT 2 Military FPGAs

ACT 1 Electrical Specifications

Commercial Military
Symbol Parameter Units

Min. Max. Min. Max.

(IOH =-6 mA) 3.84 v
(lOH =-4 mA) 3.7 V

(lOL = 6 mA) 0.33 0.40 V

-0.3 0.8 -0.3 ::>.8 V

2.0 Vee + 0.3 2.0 Vee + 0.3 V

Input Transition Time tR' tF2 500 500 ns

CIO I/O Capacitance2, 3 10 10 pF

20 mA

10 j.LA II
Standby Current, lee 4 3

Leakage CurrentS -10 10 -10

140 mA

-100 mA

los Output Short Circuit (Vo = Ved 20 140 20
Current6 -(-V-

0
-=-G-N-D-)--------1-0-------1-0-0-------1 0------------

Notes:
1. Only one output tested at a time. Vee = min.
2. Not tested, for information only.
3. Includes worst-case 84-pin PLCC package capacitance. VOUT = 0 V, f = 1 MHz.
4. Typical standby current = 3 rnA. All outputs unloaded. All inputs = Vee or GND.
5. Vo, V IN = Vee orGND.
6. Only one output tested at a time. Min. at Vee = 4.5 V; Max. at Vee = 5.5 V.

ACT 2 Electrical Specifications

Commercial Military
Symbol Parameter Units

Min. Max. Min. Max.

(IOH =-6 mA) 3.84 V

(lOH =-4 mA) 3.7 V

(lOL = 6 mA) 0.33 0.40 V

-0.3 0.8 -0.3 0.8 V

2.0 Vee + 0.3 2.0 Vee + 0.3 V

Input Transition Time tR, tF2 500 500 ns

CIO I/O Capacitance2, 3 10 10 pF

Standby Current, lee 4 2 20 mA

Leakage CurrentS -10 10 -10 10 ~A

Notes:
1. Only one output tested at a time. Vee = min.
2. Not tested, for information only.
3. Includes worst-case 176 CPGA package capacitance. VOUT = 0 V, f = 1 MHz.
4. All outputs unloaded. All inputs = Vee or GND.
5. V 0 ' VIN = Vee or GND.

1-147

ACT 1 Power Dissipation

The following fonnula is used to calculate total device
dissipation.

Total Device Power (mW) = (0.20 x N x FI) + (0.085 x M x F2) +
(0.80 x P x F3)

Where:

Fl = Average logic module switching rate in MHz

F2 = CLKBUF macro switching rate in MHz

F3 = Average I/O module switching rate in MHz

M = Number of logic modules connected to the CLKBUF
macro

N = Total number of logic modules used in the design
(including M)

P = Number of outputs loaded with 50 pF

Average switching rate of logic modules and of I/O modules is
some fraction of the device operating frequency (usually
CLKBUF). Logic modules and I/O modules switch states (from
low-to-high or from high-to-Iow) only if the input data changes
when the module is enabled. A conservative estimate for average
logic module and I/O module switching rates (variables Fl and
F3, respectively) is 10% of device clock driver frequency.

If the CLKBUF macro is not used in the design, eliminate the
second term (including F2 and M variables) from the fonnula.

Sample A1020 Device Power Calculation

To illustrate the power calculation, consider a large design
operating at high frequency. This sample design utilizes 85% of
available logic modules on the A1020-series device (.85 x 547 =
465 logic modules used). The design contains 104 flip-flops (208
logic modules). Operating frequency of the design is 16 MHz. In
this design, the CLKBUF macro drives the clock network. Logic
modules and I/O modules are switching states at approximately
10% of the clock frequency rate (.10 x 16 MHz = 1.6 MHz).
Sixteen outputs are loaded with 50 pF.

To summarize the design described above: N = 465; M = 208;
F2 = 16; Fl = 4; F3 = 4; P = 16. Total device power can be
calculated by substituting these values for variables in the device
dissipation fonnula.

Total device power for this example =

(0.20 x 465 x 1.6) + (0.085 x 208 x 16) + (0.80 x 16 x 1.6) = 452 mW

1-148

ACT 2 Power Dissipation

P = [lee + lactive] * vee + IOL *V OL *N + IOH*(Vec-v OH)*M

Where:

lee is the current flowing when no inputs or outputs are
changing.

lactive is the current flowing due to CMOS switching.

IOL' IOH are TTL sink/source currents.

VOL, V OH are TTL level output voltages.

N equals the number of outputs driving TTL loads to VOL'

M equals the number of outputs driving TTL loads to VOH'

An accurate detennination of Nand M is problematic because
their values depend on the design and on the system I/O. The
power can be divided into two components: static and active.

Static Power

Static power dissipation is typically a small component of the
overall power. From the values provided in the Electrical
Specifications, the maximum static power (commercial)
dissipation is:

2 mA * 5.25 V = 10.5 m W

The static power dissipation by TTL loads depends on the number
of outputs that drive high or low and the DC lead current flowing.
Again, this number is typically small. For instance, a 32-bit bus
driving TTL loads will generate 42 mW with all outputs driving
low or 140 mW with all outputs driving high. The actual
dissipation will average somewhere between as I/Os switch states
with time.

Active Time

The active power component in CMOS devices is frequency
dependent and is contingent on the user's logic and the external
I/O. Active power dissipation results from charging internal chip
capacitance such as that associated with the interconnect,
unprogrammed antifuses, module inputs, and module outputs
plus external capacitance due to PC board traces and load device
inputs. An additional component of active power dissipation is
due to totem-pole current in CMOS transistor pairs. The net effect
can be associated with an equivalent capacitance that can be
combined with frequency and voltage to represent active power
dissipation.

Equivalent Capacitance

The power dissipated by a CMOS circuit can be expressed by
Equation 1.

Power (/lW) = CEQ * Vee
2 * f (1)

Where:

CEQ is the equivalent capacitance expressed in
picofarads(pF).

Vee is power supply in volts (V).
f is the switching frequency in megahertz (MHz).

Equivalent capacitance is calculated by measuring lactive at a
specified frequency and voltage for each circuit component of
interest. The results for ACT 2 devices are:

Modules
Input Buffers
Output Buffers
Clock Buffer Loads

CEQ (pF)

7.7
18.0
25.0

2.5

To calculate the active power dissipated from the complete
design, you must solve Equation 1 for each component. To do
this, you must know the switching frequency of each part of the
logic. The exact equation is a piece-wise linear summation over
all components, as shown in Equation 2.

Power (j.lW) = [em * 7.7 x f1) + (n * 18.0 x f2)
+ (p * (25.0 + CL) * f3) + (q x 2.5 x f4)] * Vee

2 (2)

Where:

m = Number of logic modules switching at frequency f1

n = Number of input buffers switching at frequency f2

p = Number of output buffers switching at frequency f3

q = Number of clock loads on the global clock network

f1 = Average logic module switching rate in MHz

f2 = Average input buffer switching rate in MHz

f3 = Average output buffer switching rate in MHz

f4 = Frequency of global clock

CL = Output load capacitance in pF

Determining Average Switching Frequency

To determine the switching frequency for a design, you must have
a detailed understanding of the data input values to the circuit.
The following rules will help you to determine average switching
frequency in logic circuits. These rules are meant to represent
worst-case scenarios so that they generally can be used to predict
the upper limits of power dissipation. These rules are as follows:

Module Utilization = 80% of combinatorial modules

Average Module Frequency = F/IO

ACT 1 and ACT 2 Military FPGAs

Inputs = 1/3 of I/O

Average Input Frequency = F/5

Outputs = 2/3 of I/Os

Average Output Frequency = F/IO

Clock Net 1 Loading = 40% of sequential modules

Clock Net 1 Frequency = F

Clock Net 2 Loading = 40% of sequential modules

Clock Net 2 Frequency = F/2

Estimated Power

The results of estimating active power are displayed in Figure 1.
The graphs provide a simple guideline for estimating power. The
tables may be interpolated when your application has different
resource utilizations or frequencies.

3.0

2.0

1.0

Watts

0.1 /
/'

L/
V/
V

/V
V /
/ /

V
A1/

V V
/ /

/' /'
/' ./

V/
V V

/ A1225

VI"

1.0 10.0

MHz

Figure 1. ACT 2 Power Estimates

A1240

/ 1111

VI""

100.0

1-149

I

Parameter Measurement
Output Buffer Delays

Vee

SO% SO% GND
VOH

PAD 1.S V 1.S V

VOL

tOLH tOHL

AC Test Load

Load 1

D

PAD

(Used to measure propagation delay)

To the output under test

)>-----,

t WPF

Input Buffer Delays

GND

1-150

tENZL

~---'I"· '~". To AC test loads (shown below)

Vee
GND SO% GND

PAD
VOL GND

tENLZ tENZH tENHZ

Load 2
(Used to measure rising/falling edges)

Vee

•
GND

•

To the output under test >---_e

R to Vee for tpLZ/tpZL
R to GND for tpHZ/tpZH
R = 1 kn

T
SOPF

Combinatorial Macro Delays

Vee

S,A ,..2!:.V VsO% sock', GND
Vee

y /I"SO% "'I'...SO%
GND

tpLH tpHL
Y Vee

SOO/;;., GND / SO%
tpHL tpLH

ACT 1 and ACT 2 Military FPGAs

Sequential Timing Characteristics

Flip-Flops and Latches

D1 X

D~Y
CL~¥

(Positive edge triggered)

-l tHD I--

X
I--tsuD --I tWCLKA I· -I I- tA -I

G,CLK I I I I I
-ltSUENAI-- I-- tWCLKI -I

I---l tHENA
E ~----~I

------------------------~ I--t~co---.--'I---------------------

Q--------------------------------~><~------~><~----------
I---ItRS

PRE,CLR ~------------------------~I ~I ___________ _
l'twASYN-1

Note:
1. D represents all data functions involving A, B, and S for multiplexed flip-flops.

1-151

I

Sequential Timing Characteristics (continued)

Input Buffer Latches (ACT 2 only)

elK

PAD X
G

1--

elK

ISDL

X
~ tlNH ~

I
tlNSU ·1
~ tHEXT ----.j

1"'-- tSUEXT--.j

Output Buffer Latches (ACT 2 only)

D

~ tOUTSU---.j

G

1-152

ACT 1 and ACT 2 Military FPGAs

ACT 1 Timing Characteristics

(Worst-Case Military Conditions)

Logic Module Propagation Delays 'Std'Speed '-1' Speed

Parameter Description Min. Max. Min. Max. Units

tpD1 Single Module 5.5 4.7 ns

tpD2 Dual Module Macros 12.7 10.8 ns

tco Sequential Clk to Q 5.5 4.7 ns

tGO Latch G to Q 5.5 4.7 ns

tRS Flip-Flop (Latch) Reset to Q 5.5 4.7 ns

Predicted Routing Delays 1

tRD1 FO=1 Routing Delay 1.7 1.5 ns

tRD2 FO=2 Routing Delay 2.7 2.3 ns I tRD3 FO=3 Routing Delay 4.0 3.4 ns

tRD4 FO=4 Routing Delay 5.9 5.0 ns

tRDB FO=8 Routing Delay 12.5 10.6 ns

Sequential Timing Characteristics2

tSUD Flip-Flop (Latch) Data Input Setup 10.4 8.8 ns

tHD Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns

tSUENA Flip-Flop (Latch) Enable Setup 10.4 8.8 ns

tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns

tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 12.9 10.9 ns

tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 12.9 10.9 ns

tA Flip-Flop Clock Input Period 27.3 23.2 ns

fMAX Flip-Flop (Latch) Clock
Frequency 37 44 MHz

Notes:
l. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance.

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay
measurements performed on the device prior to shipment.

2. Setup times assume fanout of 3. Further derating information can be obtained from the ALS Timer utility.

1-153

ACT 1 Timing Characteristics (continued)

(Worst-Case Military Conditions)

Input Module Propagation Delays 'Std'Speed '-1' Speed

Parameter Description Min. Max. Min. Max. Units

tlNYH Pad to Y High 5.8 4.9 ns

tlNYL Pad to Y Low 5.8 4.9 ns

Input Module Predicted Routing Delays 1

tlRD1 FO=1 Routing Delay 1.7 1.5 ns

tlRD2 FO=2 Routing Delay 2.7 2.3 ns

tlRD3 FO=3 Routing Delay 4.0 3.4 ns

tlRD4 FO=4 Routing Delay 5.9 5.0 ns

tlRD8 FO=8 Routing Delay 12.5 10.6 ns

Global Clock Network

tCKH Input Low to High FO= 16 9.2 7.8 ns
FO = 128 10.5 8.9

tCKL Input High to Low FO= 16 12.1 10.3 ns
FO = 128 13.2 11.2

tpWH Minimum Pulse Width High FO = 16 12.2 10.4 ns
FO = 128 12.9 10.9

tpWL Minimum Pulse Width Low FO = 16 12.2 10.4 ns
FO = 128 12.9 10.9

tCKSW Maximum Skew FO = 16 2.2 1.9 ns
FO = 128 3.4 2.9

tp Minimum Period FO = 16 25.6 21.7 ns
FO = 128 27.3 23.2

fMAX Maximum Frequency FO= 16 40 46 MHz
FO = 128 37 44

Note:
1. These parameters should be used for estimating device performance. Routing delays are for typical designs across worst-case operating conditions.

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay
measurements performed on the device prior to shipment.

1-154

ACT 1 and ACT 2 Military FPGAs

ACT 1 Timing Characteristics (continued)

(Worst-Case Military Conditions)

Output Module Timing 'Std'Speed '-1' Speed

Parameter Description Min. Max. Min. Max. Units

TTL Output Module Timing 1

tOLH Data to Pad High 14.2 12.1 ns

tOHL Data to Pad Low 16.3 13.8 ns

tENZH Enable Pad Z to High 14.1 12.0 ns

tENZL Enable Pad Z to Low 17.1 14.6 ns

tENHZ Enable Pad High to Z 18.8 16.0 ns

tENLZ Enable Pad Low to Z 17.0 14.5 ns

dTLH Delta Low to High 0.11 0.09 ns/pF I dTHL Delta High to Low 0.15 0.12 ns/pF

CMOS Output Module Timing 1

tOLH Data to Pad High 17.7 15.1 ns

tOHL Data to Pad Low 13.6 11.5 ns

tENZH Enable Pad Z to High 14.1 12.0 ns

tENZL Enable Pad Z to Low 17.1 14.6 ns

tEN HZ Enable Pad High to Z 18.8 16.0 ns

tENLZ Enable Pad Low to Z 17.0 14.5 ns

dTLH Delta Low to High 0.18 0.16 ns/pF

dTHL Delta High to Low 0.11 0.09 ns/pF

Note:
1. Delays based on 50 pF loading.

1-155

A1240A Timing Characteristics
(Worst-Case Military Conditions)

Logic Module Propagation Delays 1 'Std'Speed '-1' Speed

Parameter Description Min. Max. Min. Max. Units

tp01 Single Module 6.1 5.2 ns

tco Sequential Clk to Q 6.1 5.2 ns

tGO Latch G to Q 6.1 5.2 ns

tRS Flip-Flop (Latch) Reset to Q 6.1 5.2 ns

Predicted Routing Delays2

tR01 FO= 1 Routing Delay 2.2 1.9 ns

tR02 FO=2 Routing Delay 2.8 2.4 ns

tR03 FO=3 Routing Delay 3.7 3.1 ns

tR04 FO=4 Routing Delay 5.0 4.3 ns

tROB FO=8 Routing Delay 7.7 6.6 ns

Sequential Timing Characteristics3, 4

tsuo Flip-Flop (Latch) Data Input Setup 1.0 1.0 ns

tSUASYN Flip-Flop (Latch) Asynchronous Input
Setup 2.0 2.0 ns

tHO Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns

tSUENA Flip-Flop (Latch) Enable Setup 7.5 7.5 ns

tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns

tWCLKA Flip-Flop (Latch) Clock Active Pulse
Width 8.4 7.1 ns

tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 8.4 7.1 ns

tA Flip-Flop Clock Input Period 18.6 15.8 ns

tlNH Input Buffer Latch Hold 2.5 2.5 ns

tlNSU Input Buffer Latch Setup -3.5 -3.5 ns

tOUTH Output Buffer Latch Hold 0.0 0.0 ns

tOUTsu Output Buffer Latch Setup 1.0 1.0 ns

fMAX Flip-Flop (Latch) Clock
Frequency 54 63 MHz

Notes:
1. For dual-module macros, use tpDl + tRDl + tPDn , teo + tRDl + tPDn or tpDl + tRDl + tSUD , whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance.

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing delay
measurements performed on the device prior to shipment.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the ALS
Timer utility.

4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/hold timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to
the internal setup (hold) time.

1-156

ACT 1 and ACT 2 Military FPGAs

A1240A Timing Characteristics (continued)

(Worst-Case Military Conditions)

Input Module Propagation Delays 'Std'Speed '-1' Speed

Parameter Description Min. Max. Min. Max. Units

tlNYH Pad to Y High 4.7 4.0 ns

tlNYL Pad to Y Low 4.3 3.6 ns

tlNGH G to Y High 8.1 6.9 ns

tlNGL G to Y Low 7.7 6.6 ns

Input Module Predicted Routing Delays 1

tlRD1 FO=1 Routing Delay 6.9 5.8 ns

tlRD2 FO=2 Routing Delay 7.8 6.7 ns

tlRD3 FO=3 Routing Delay 8.8 7.5 ns II
tlRD4 FO=4 Routing Delay 9.7 8.2 ns

tlRDB FO=8 Routing Delay 12.9 10.9 ns

Global Clock Network

tCKH Input Low to High FO=32 15.7 13.3 ns
FO = 256 19.2 16.3

tCKL Input High to Low FO= 32 15.7 13.3 ns
FO = 256 19.5 16.5

tpWH Minimum Pulse Width High FO =32 6.7 5.7 ns
FO = 256 7.1 6.0

tpWL Minimum Pulse Width Low FO=32 6.7 5.7 ns
FO = 256 7.1 6.0

tCK8W Maximum Skew FO= 32 0.5 0.5 ns
FO = 256 2.5 2.5

tSUEXT Input Latch External Setup FO = 32 0.0 0.0 ns
FO = 256 0.0 0.0

tHEXT Input Latch External Hold FO=32 7.0 7.0 ns
FO = 256 11.2 11.2

tp Minimum Period FO=32 13.5 11.5 ns
FO = 256 14.3 12.2

fMAX Maximum Frequency FO=32 74 87 MHz
FO = 256 70 82

Note:
1. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays

are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

1-157

-=iff!JilcI@i!

A 1240A Timing Characteristics (continued)

(Worst-Case Military Conditions)

Output Module Timing 'Std'Speed '-1' Speed

Parameter Description Min. Max. Min. Max. Units

TTL Output Module Timing 1

tOLH Data to Pad High 13.0 11.0 ns

tOHL Data to Pad Low 16.4 13.9 ns

tENZH Enable Pad Z to High 14.4 12.3 ns

tENZL Enable Pad Z to Low 19.0 16.1 ns

tEN HZ Enable Pad High to Z 11.5 9.8 ns

tENLZ Enable Pad Low to Z 13.6 11.5 ns

tGLH G to Pad High 14.6 12.4 ns

~HL G to Pad Low 18.2 15.5 ns

dTLH Delta Low to High 0.11 0.09 ns/pF

dTHL Delta High to Low 0.20 0.17 ns/pF

CMOS Output Module Timing 1

tOLH Data to Pad High 16.5 14.0 ns

tOHL Data to Pad Low 13.7 11.7 ns

tENZH Enable Pad Z to High 14.4 12.3 ns

tENZL Enable Pad Z to Low 19.0 16.1 ns

tEN HZ Enable Pad High to Z 11.5 9.8 ns

tENLZ Enable Pad Low to Z 13.6 11.5 ns

tGLH G to Pad High 14.6 12.4 ns

tGHL G to Pad Low 18.2 15.5 ns

dTLH Delta Low to High 0.20 0.17 ns/pF

dTHL Delta High to Low 0.15 0.12 ns/pF

Note:
1. Delays based on 50 pF loading.

1-158

ACT 1 and ACT 2 Military FPGAs

A1280A Timing Characteristics

(Worst-Case Military Conditions)

Logic Module Propagation Delays 1 'Std'Speed '-1' Speed

Parameter Description Min. Max. Min. Max. Units

tp01 Single Module 6.1 5.2 ns

tco Sequential Clk to Q 6.1 5.2 ns

tGO Latch G to Q 6.1 5.2 ns

tRS Flip-Flop (Latch) Reset to Q 6.1 5.2 ns

Predicted Routing Delays2

tR01 FO=1 Routing Delay 2.8 2.4 ns

tR02 FO=2 Routing Delay 4.0 3.4 ns

tR03 FO=3 Routing Delay 4.9 4.2 ns

tR04 FO=4 Routing Delay 6.0 5.1 ns

tR08 FO=8 Routing Delay 10.8 9.2 ns

Sequential Timing Characteristics3,4

tsuo Flip-Flop (Latch) Data Input Setup 1.0 1.0 ns

tSUASYN Flip-Flop (Latch) Asynchronous Input
Setup 2.0 2.0 ns

tHo Flip-Flop (Latch) Data Input Hold 0.0 0.0 ns

tSUENA Flip-Flop (Latch) Enable Setup 7.5 7.5 ns

tHENA Flip-Flop (Latch) Enable Hold 0.0 0.0 ns

tWCLKA Flip-Flop (Latch) Clock Active Pulse Width 11.6 9.9 ns

tWASYN Flip-Flop (Latch) Asynchronous Pulse
Width 11.6 9.9 ns

tA Flip-Flop Clock Input Period 24.5 20.8 ns

tlNH Input Buffer Latch Hold 2.5 2.5 ns

tlNSU Input Buffer Latch Setup -3.5 -3.5 ns

tOUTH Output Buffer Latch Hold 0.0 0.0 ns

touTSU Output Buffer Latch Setup 1.0 1.0 ns

fMAX Flip-Flop (Latch) Clock
Frequency 41 48 MHz

Notes:

1. For dual-module macros, use tpDl + tRDl + tPDn , teo + tRDl + tPDn or tpDl + tRDl + tSUD ' whichever is appropriate.
2. Routing delays are for typical designs across worst-case operating conditions. These parameters should be used for estimating device performance.

Post-route timing analysis or simulation is required to determine actual worst-case performance. Post-route timing is based on actual routing de/'iy
measurements performed on the device prior to shipment.

3. Data applies to macros based on the S-module. Timing parameters for sequential macros constructed from C-modules can be obtained from the ALS
Timer utility.

4. Setup and hold timing parameters for the Input Buffer Latch are defined with respect to the PAD and the D input. External setup/holu timing
parameters must account for delay from an external PAD signal to the G inputs. Delay from an external PAD signal to the G input subtracts (adds) to
the internal setup (hold) time.

1-159

I

A1280A Timing Characteristics (continued)

(Worst-Case Military Conditions)

Input Module Propagation Delays 'Std'Speed '-1' Speed

Parameter Description Min. Max. Min. Max. Units

tlNYH Pad to Y High 4.7 4.0 ns

tlNYL Pad to Y Low 4.3 3.6 ns

tlNGH G to Y High 8.1 6.9 ns

tlNGL G to Y Low 7.7 6.6 ns

Input Module Predicted Routing Delays 1

tRD1 FO=1 Routing Delay 7.3 6.2 ns

tRD2 FO=2 Routing Delay 8.4 7.2 ns

tRD3 FO=3 Routing Delay 9.1 7.7 ns

tRD4 FO=4 Routing Delay 10.5 8.9 ns

tRDB FO=8 Routing Delay 15.2 12.9 ns

Global Clock Network

tCKH Input Low to High FO =32 15.7 13.3 ns
FO = 384 21.1 17.9

tCKL Input High to Low FO=32 15.7 13.3 ns
FO = 384 21.4 18.2

tpwH Minimum Pulse Width High FO=32 8.1 6.9 ns
FO = 384 9.3 7.9

tpWL Minimum Pulse Width Low FO=32 8.1 6.9 ns
FO = 384 9.3 7.9

tCKSW Maximum Skew FO = 32 0.5 0.5 ns
FO = 384 2.5 2.5

tSUEXT Input Latch External Setup FO=32 0.0 0.0 ns
FO = 384 0.0 0.0

tHEXT Input Latch External Hold FO=32 7.0 7.0 ns
FO = 384 11.2 11.2

tp Minimum Period FO=32 16.2 13.7 ns
FO = 384 18.9 16.0

fMAX Maximum Frequency FO=32 62 73 MHz
FO = 384 53 63

Note:
l. These parameters should be used for estimating device performance. Optimization techniques may further reduce delays by 0 to 4 ns. Routing delays

are for typical designs across worst-case operating conditions. Post-route timing analysis or simulation is required to determine actual worst-case
performance. Post-route timing is based on actual routing delay measurements performed on the device prior to shipment.

1-160

ACT 1 and ACT 2 Military FPGAs

A 1280A Timing Characteristics (continued)

(Worst-Case Military Conditions)

Output Module Timing 'Std'Speed '-1' Speed

Parameter Description Min. Max. Min. Max. Units

TTL Output Module Timing 1

tOLH Data to Pad High 13.0 11.0 ns

tOHL Data to Pad Low 16.4 13.9 ns

tENZH Enable Pad Z to High 14.4 12.3 ns

tENZL Enable Pad Z to Low 19.0 16.1 ns

tEN HZ Enable Pad High to Z 11.5 9.8 ns

tENLZ Enable Pad Low to Z 13.6 11.5 ns

tGLH G to Pad High 14.6 12.4 ns II tGHL G to Pad Low 18.2 15.5 ns

dTLH Delta Low to High 0.11 0.09 ns/pF

dTHL Delta High to Low 0.20 0.17 ns/pF

CMOS Output Module Timing 1

tOLH Data to Pad High 16.5 14.0 ns

tOHL Data to Pad Low 13.7 11.7 ns

tENZH Enable Pad Z to High 14.4 12.3 ns

tENZL Enable Pad Z to Low 19.0 16.1 ns

tENHZ Enable Pad High to Z 11.5 9.8 ns

tENLZ Enable Pad Low to Z 13.6 11.5 ns

tGLH G to Pad High 14.6 12.4 ns

tGHL G to Pad Low 18.2 15.5 ns

dTLH Delta Low to High 0.20 0.17 ns/pF

dTHL Delta High to Low 0.15 0.12 ns/pF

Note:
1. Delays based on 50 pF loading.

1-161

Package Pin Assignments

84-Pin CPGA (Top View)

Signal

PRA

PR8

MODE

SOl

DCKL

Vpp

ClK or 1/0

GNO

Vcc
N/C (No Connection)

Notes:

2 3 4 5 6 7 8 9 10 11

AQOOOOOOOOOO
800000000000
COO. 000 00
0 00 00
EOOO 000
F 84-Pin 0 0 0 GOO 0 CPGA

HOOO 000
00 00

JOO 000 00
KOOOOOOOOOOO
LOOOOOOOOOOO

• Orientation Pin (C3)

A1010B Devices

A11

810

E11

811

C10

K2

F9

87,E2,E3,K5,F10,G10

85,F1,G2,K7,E9,E10

81, 82, C1, C2, K1, J2, J1 0, K10, K11, C11, 010, 011

1. V pp must be terminated to Vee, except during device programming.
2. MODE must be terminated to circuit ground, except during device programming or debugging.
3. Unused I/O pins are designated as outputs by ALS and are driven low.
4. All unassigned pins are available for use as I/Os.

1-162

A 1 020B Devices

A11

810

E11

811

C10

K2

F9

B7,E2,E3,K5,F10,G10

B5,F1,G2,K7,E9,E10

B2

ACT 1 and ACT 2 Military FPGAs

Package Pin Assignments
132-Pin CPGA (Top View)

Signal

PRA or I/O

PRB or I/O

MODE

SDI or I/O

DCLK or I/O

CLKA or I/O

CLKB or I/O

GND

Vee

Vpp

Vsv

VKS

Notes:

Pad Number

113

121

2

101

132

115

119

2 3 4 5 6 7 8 9 10 11 12 13

A~OOOOOOOOOOOOA

BOOOOOOOOOOOOOB
cOOOOOOOOOOOOOc
DOOOe 000 OOOD
EOOO
FOOOO
GOOOO 132-Pin

CPGA

o 00 E

o 0 00 F

o 0 OOG
HOOOO OOOOH
000 OOOJ

KOOO 000 OOOK
L OOOOOOOOOOOOOL
MOOOOOOOOOOOOOM
NOOOOOOOOOOOOON

2 3 4 5 6 7 8 9 10 11 12 13

e Orientation Pin

Location

B8

C6

A1

B12

C3

B7

B6

9,10,26,27,41,58,59,73,74,92,93, E3, F4, J2, J3, L5, L9, M9, K12, J11, E12, E11,
107,108,125,126 C9,B9,B5,C5

18,19,49,50,83,84,116,117 G3,G2,L7,K7,G10,G11,D7,C7

82 G13

17,85 G4, G12

81 H13

1. Unused I/O pins are designated as outputs by ALS and are driven low.
2. All unassigned pins are available for use as I/Os.
3. MODE = GND, except during device programming or debugging.
4. Vpp = Vee, except during device programming.
5. V sv = Vee, except during device programming.
6. VKS = GND, except during device programming.

1-163

I

Package Pin Assignments
176-Pin CPGA (Top View)

Signal

PRA or I/O

PR8 or I/O

MOOE

SOl or I/O

OClK or 1/0

CLKAor 1/0

ClK8 or 110

GNO

Vee
Vpp

Vsv
VKS

Notes:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
AQOOOOOOOOOOOOOOA
80000000000000008
cOOOOOOOOOOOOOOOC
DOOOOOOOOOOOOOOOD
EO 000 0000 E
FO 000 o 0 0 0 F
GO 0 0 0 0000 G
HO 000 176-Pin 0000 H CPGA
J 0 000 000 0 J

K 0 0 0 0 0000 K

MOOOO OOOOM
NOOOOOOOOOOOOOOON
pOOOOOOOOOOOOOOOP
00000000000000000
ROOOOOOOOOOOOOOOR

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pad Number location

152

160

2

135

175

154

158

1,8,18,23,33,38,45,57,67,77,89
101,106,111,121,126,133,145,156,165

13,24,28,52,68,82,112,116,140,155,170

110

25, 113

109

C9

07

C3

814

83

A9

88
04,E4,G4,H4,K4,L4,M4,M6,M8, M10,M12
K12,J12, H12, F12, E12, 012, 010,C8, 06

F4, H3, J4, M5, N8, M11, H13, G12, D11, 08, 05

J14

H2,H14

J13

1. Unused I/O pins are designated as outputs by ALS and are driven low.
2. All unassigned pins are available for use as I/Os.
3. MODE = GND, except during device programming or debugging.
4. V pp = Vee, except during device programming.
5. V sv = Vee, except during device programming.
6. VKS = GND, except during device programming.

1-164

Package Pin Assignments

84-Pin CQFP

Notes:

Pin#1
Index

~
o

() 0 co
() Z a:
> <.'} 0..

84838281 80797877 76 75 74 73 72 71 70696867666564

ACT 1 and ACT 2 Military FPGAs

63 PRAor 1/0
62 DClK or 1/0
61 SOl or 1/0
60
59
58
57 Vee
56 Vee
55 MODE
54
53 ClK or 1/0
52
51
50 GND
49 GND
48
47
46
45
44
43

1. V pp must be tenninated to Vee, except during device programming. 3. Unused I/O pins are designated as outputs by ALS and are driven low.
2. MODE must be tenninated to circuit ground, except during device

programming or debugging.
4. All unassigned pins are available for use as I/Os.

1-165

II

Package Pin Assignments
172-Pin CQFP (Top View)

Pin #1
Index

11

21

31

41

51

61

71

81

•
•
•

351

361

371

381

391

40 I

411

421

431

Signal

1129

1128

1127

1126

1125

1124

1123

1122

•
172-Pin • CQFP •

195

194

193

192

191

190

189

188

187

PIN Number

MODE

GND

Vee
Vsv
VKS

Vpp

7,17,22,32,37,55,65,75,98,103,108,118,123,141,152,161

12,23,27,50,66,80,109,113,136,151,166

Notes:

SOl or I/O

PRAor I/O

PRS or I/O

ClKAor I/O

ClKS or I/O

DClK or I/O

24,110

106

107

131

148

156

150

154

171

1. V pp must be tenninated to Vee, except during device programming.
2. MODE must be tenninated to circuit ground, except during device

programming or debugging.

1-166

3. Unused I/O pins are designated as outputs by ALS and are driven low.
4. All unassigned pins are available for use as I/Os.

dfMc/@1! PREP Data
•

PREP Data

© 1993 Actel Corporation

Introduction to PREp™ Benchmarks. 2-1

PREp™ Benchmarks Confirm Cost-Effectiveness of FPGAs . 2-3

Actel PREp™ Benchmark Results. 2-7

Estimating FPGAApplications Performance Using PREp™ Benchmarks. 2-17

Introduction to
TM

PREP Benchmarks

The PREP benchmarks measure the capacity and performance of
high-capacity programmable logic devices. A benchmark circuit
is repeated to completely fill the measured device in a step and
repeat manner. Each circuit's input is connected to the output of
the previous circuit. The first instance's inputs are connected to
input pins, and the last instance's outputs are connected to output
pins.

Capacity

Capacity is measured by reporting the number of instances of the
benchmark circuit that fit in a particular device. Nine different
benchmark circuits are used and thus capacity measurements are
reported for all nine of the benchmarks for an individual device.
For example, the first benchmark circuit is a datapath circuit and
is shown in Figure 1. The circuits are repeated as shown in
Figure 2, with inputs and outputs interconnected. Notice that
some signals are global and go to all instances, while other
signals are only used to interconnect instances. The first and last
instances are connected to package inputs and outputs. In the
A1425, ten instances of the datapath circuit can fit; thus, the
capacity for benchmark 1 is reported as 10. It is important to point
out that the current PREP methodology requires that each
benchmark instance be implemented exactly the same. This
makes it impossible to use the A1425 10 modules to the fullest
extent thus reporting a fewer number of benchmark instances than

I

what actually fits into the device. Real designs are able to utilize
the A1425 IO modules, and the actual capacity of the device is
higher than the PREP benchmarks indicate.

Performance

Performance is reported in the benchmarks by measuring the
worst-case commercial maximum operating frequency of each
benchmark instance. The maximum operating frequency of a
single benchmark instance is determined by the slowest of the
following:

• The longest path between a flip-flop in the benchmark
instance and a flip-flop in the previous benchmark instance,
including any combinatorial delays between the flip-flops

• The longest path between any two flip-flops in the same
benchmark instance, including any combinatorial delays
between the flip-flops

The first benchmark instance performance is not reported, since it
has no previous instance.

The slowest, fastest, and mean frequency of the benchmark
instances in a given device are then reported for each benchmark.
For example, all of the datapath benchmark instances run at a
worst-case frequency of 125 MHz, so the minimum frequency is
125 MHz, the maximum is 125 MHz, and the mean is 125 MHz.

8-BIT SHIFT REGISTER

Q7 I
8-BIT 4:1 MUX 8-BIT REGISTER

10 [23:16)

IS [15:8)
10 [7:0)

IPO [7:0)

SO
S1

S/l

elK

RST

© 1993 Actel Corporation

I
I

I

I
I
I

I
I

I

L

03

02 Y
01

DO

SO
S1

I --- S1

0 Q 0 Q I Q [7:0)

I
S/l I

- > .---> 1 RST RST

I
I

- _I

Figure 1. A Datapath Benchmark Circuit

2-1

External Performance More Information

External frequency of operation is also reported by taking the
output of the last benchmark instance and connecting it to the
input of the first benchmark instance through the input and output
pins of the device. A single number is reported since only a single
instance exists for this measurement.

For more information on the PREP benchmarks, contact PREP
Corp. at 408-356-2169 and ask for data on the PREP benchmark
suite.

2-2

0[23:0]

10 [23:16]
03

10 [23:16]
~

10 [15:8]
02

10 [15:8]
I--

10 [7:0]
01

10 [7:0] --
DO Q [7:0]

IPO [7:0]
FIRST

INSTANCE

S/L

- S1

- SO

~

S/L
S1

SO

C LK

R ST

I-- 03

I-- 02

---- 01

DO Q [7:0]

SECOND
INSTANCE

S/L

- S1

- SO

->

- - --- - --
- - -- - --
--- f---

- - 1---

- -

03

02

01

------- DO Q [7:0] t-----t

LAST
INSTANCE

r--------I S/L

r-----IS1

SO

Q [7:0]

Figure 2. A Datapath Benchmark Circuit with Interconnected Inputs and Outputs

PREp™ Benchmarks Confirm
Cost-Effectiveness of FPGAs

PREP benchmarks help determine the best value
in programmable devices.

The Programmable Electronics Performance Corporation (PREP)
has released the programmable logic industry's first performance
and capacity benchmarks. In conjunction with published pricing,
the PREP benchmarks offer excellent insight into the value of
programmable architectures and devices. The following
summarization of the PREP benchmarks introduces simple but
effective methods for interpreting the PREP data and choosing an
appropriate programmable device based on the value,
performance, and predictability of the architecture.

Interpreting PREP Benchmark Results

The PREP benchmarks measure both capacity and performance
for each of the nine benchmark circuits. The capacity of a device
is expressed by the number of instances, or repetitions, of each
benchmark circuit that fits in the programmable device. The
performance of a device is reported for both internal and external
operating frequencies for each benchmark circuit. All
benchmarks are measured while automatically placing and

Average Performance

80 MHz
Better Value

60 MHz

routing the design circuits. Manual placement and routing
capabilities are shown optionally by some manufacturers.

Since most designers in the evaluation stage have not used all the
manufacturers' design tools, it would be wise to compare
automatically placed and routed designs in similar capacity
devices. A simple and effective way to compute capacity is to
average the benchmark unit repetitions over all nine benchmarks;
a good way to compare performance is to average the benchmark
suite's mean internal operating frequency (Fmean) while
automatically placeing and routing the designs.

Best Value

The PREP benchmarks have set realistic expectations for
performance and capacity, and when used in conjunction with
equitable pricing comparisons, they can provide an excellent
measure of value.

A simple method of determining value is to plot the average
performance of a device versus its price per unit of capacity, as
shown in Figure 1. When viewing the chart, one will find that the
less expensive devices are positioned towards the left and the

/'
• A1425-2POB4C'

o EPM712BLCB4-1 ./

A1425-1P0160C' • /0 EPM71920C160-1

• A1460A-1P020BC'
/'

• A1425-P0160C
• A 1460A-P020BC'

OL 12x16-2PL84C 0

/'
A1225A-2PLB4C' • • A1240A-2,.B4C • XC3190-3PCB4C

• A 1225-1 PLB4C • A 12BO-2P0160C' 0 EPM7256MC20B-2
40 MHz

20 MHz

• A1240-PL84C ~PF811B8GC232-2
• XC4010-5M020BC

• A 12BO-1 P0160C

• XC3090-125PCB4C

$10

Presentations use or include the most recent certified and/or
uncertified PREP PLD Benchmark data which was
measured according to Benchmark Suite #1, Version 1.2,
dated 3/28/93. Any analysis is not endorsed by PREP.

Worse Value

$20 $30

Price Per Average Instance

Figure 1. The average performance, expressed in MHz, is the mean internal operating frequency averaged over the set of benchmark circuits. Price
per unit of capacity, expressed as price per average instance, is the 100-piece distributor price quotation for the device (March 1993) divided by the
average of the number of unit repetitions for the nine benchmarks. Projected values (*) are based on simulated perfomance and projected pricing.

© 1993 Actel Corporation
2-3

E

higher performance devices towards the top. A "value line" is
drawn through the chart with best value (7 of 13 devices with
multiple speed grades) appearing above the line. These provide
either the same performance as more costly devices or better
performance than similarly priced devices. The value line
represents an increasing cost with increasing performance.

Figure 1 clearly shows that Actel ACTTM 2 devices (AI2xx ...)
offer the highest value for designs with performance up to
50 MHz. Device comparisons show the Actel A1240A-2PL84C
device offering 48.4 MHz average performance for $9.78 per
average instance, the Xilinx XC3190-3PC84C device offering
46.2 MHz average performance for $15.41 per average instance,
and the Altera EPM7256GCI92-2 device offering 45.3 MHz
average performance for $25.77 per average instance. The
antifuse-based Actel device has the highest value, offering higher
performance for a cost 37% less than the Xilinx device and 62%
less than the Altera device.

The data in Figure 1 is also important in understanding the value
of devices by architecture. The antifuse-based FPGA
architectures (Axx, QLxx devices) offer the highest value across a
wide range of performances and capacities. Indeed, six of the
seven "high value" devices are antifuse-based FPGAs, with five
of these six devices offered by Actel's ACT 2 (A 12xx) and ACT 3
(AI4xx) families. The fixed architecture of the Complex-PLD

80 MHz High Speed

• A1425-2*

o EPM7128-1

• A1425-1*

devices (EPMxx) offers high performance at low gate densities,
but the architecture's performance dwindles and costs rise
dramatically as gate capacity increases. The SRAM-based FPGA
architecture (XCxx, EPFxx devices) is quite expensive and
lacking in device performance, with all SRAM-based devices
falling below the value line.

Conclusions:

1. Actel ACT 2 family devices are the best value in the mid-range
and high-density classes.

2. Actel antifuse-based FPGAs represent five of the seven best
programmable devices with the best value based on certified
PREP results.

3. Actel ACT 2 family devices have a 40% to 70% cost
advantage over similar Xilinx devices.

Classifying Programmable Devices

Determining the right programmable device for a design can be a
difficult task. Information regarding the usable device capacity,
performance, I/O count, and price is vital in choosing the most
appropriate programmable device. Graphically displaying the
devices by the PREP benchmark measurements of performance
and capacity, as shown in Figure 2, can expedite this decision
process.

S
".' >c,. .. Presentations use or include the most recent certified and/or
~ uncertified PREP PLD Benchmark data which was
~~; measured according to Benchmark Suite #1, Version 1.2,
O·~<N". , •• / dated 3/28/93. Any analysis is not endorsed by PREP.

o EPM7192-1 High Speed, High Capacity

• A1460A-1*

60 MHz

40 MHz

• A1425

Mid Range

o QL12x16-2
• A1460A*

• A 1225A-2* • A 1240A-2
o EPM7256-2

• A1225-1

• A1240

• XC3090-125

10 20

• A1280A-2*

•• XC4010-5
A1280-1

30

Average Number of Instances

High Capacity

EPF811882-2 0

XC3190-3 •

40 50

Figure 2. The average performance, expressed in MHz, is calculated as the mean internal operating frequency averaged over the set of benchmark
circuits while using 100% automatic placement and routing software. The device capacity, expressed as the average number of instances, is the
average number of unit repetitions for the nine benchmarks. Projected values (*) are based on simulated perfomance and projected capacity.

2·4

When viewing the chart, one will find distinctive device
classifications. The high-speed devices congregate in the upper
left-hand comer of the chart, the high-speed, high-capacity
devices in the upper middle to right side of the chart, the high­
capacity devices in the middle of the right side of the chart, and
the remaining mid-range devices in the middle of the chart.

These four classifications offer designers a quick means of
determining which devices will satisfy their performance and
capacity requirements. For instance, if a design needs both high
speed and high capacity, the designer would quickly realize that
only the Actel AI460 device offers both characteristics. Once the
required device classification is determined, the designer can then
compare the devices' values by reviewing Figure 1. For instance,
if a designer needed only moderate speed and density, the
mid-range devices would suffice. Recalling the data from Figure
1, the best value in the mid-range devices can be realized by
buying Actel AI225 or AI240 devices. Similar value, or cost,
comparisons can be made for any classification. When comparing
devices based on PREP benchmark data, it is wise to make
performance and value comparisons only between devices within
the same classification. In addition, the availability of user IIOs
varies by package type. Designers should reference vendor
package literature to determine which packaged devices provide
the required interconnect resources.

Conclusions:

1. Device-to-device comparisons are valid within each class, but
are inappropriate between devices in different classes.

2. The Actel ACT 3 family is the only architecture that offers
high-speed, high-capacity class devices. The ACT 3 family
also offers the highest performance in the high-speed
classification.

3. Actel ACT 2 family devices are the best value in the mid-range
and high-density classes.

Performance Predictability

With time-to-market issues becoming a significant factor, the
ability of a device to meet required performance goals without
using manual optimization is vital. Design architectures that offer
both design flexibility and highly predictable performance while
using 100% automatic place and route software can ensure a
designer that his or her design will be completed on time.

PLDs, known for their predictability, do not offer the design
flexibility required in many time-to-market applications. FPGAs,
known for their flexible design architecture, can also offer very
predictable performance, as shown in Figure 3. The PREP
benchmark data shows antifuse-based FPGAs (Axx, QLxx
devices) to be much more predictable than SRAM-based FPGAs
(EPFxx, XCxx devices). In the mid-range class, Actel A1240 and
AI225 devices are three to four times more predictable than their
Xilinx counterparts (XC3xx devices). In the high-density class,
the Actel AI280 device is up to twice as predictable as its SRAM
counterparts (XC4xx, EPFxx devices). Only antifuse-based
FPGAs are classified as high-speed or high-speed, high-density
devices.

PREpTM Benchmarks Confirm Cost-Effectiveness of FPGAs

A1280-1

A1240A-2

A1225-1

A1425

More
Predictability

Less

A 1460A * mmllDlD
QL12X16-2.

EPF81188-2 iiii5ii:=F:~ XC3090-125

XC4010-5 ;;

XC3190-3
10% 20% 30%

Performance Variation
Presentations use or include the most recent certified

918"''''''','''°'\ and/or uncertified PR~P PLD Benchmark ~ata which
: PREP.; was measured accordmg to Benchmark Suite #1,
\""0.'0'./ Version 1.2, dated 3/28/93. Any analysis is not

endorsed by PREP.

Figure 3. A measure of predictability can be determined by computing
the standard deviation of the best- and worst-case peiformance of each
benchmark and dividing by the average benchmark peiformance. The
resulting number measures the expected percentage spread around the
average benchmark peiformance a device will exhibit while using 100%
automatic placement and routing software. The lower the number, the
more predictable the device peiformance is expected to be. Projected
predictability (*) is based on simulated performance.

Conclusions:

1. Only antifuse-based FPGAs offer both high flexibility and
highly predictable performance.

2. The Actel ACT 2 devices are 3 to 4 times more predictable
than Xilinx devices in the mid-range class and are up to twice
as predictable as other devices in the high-capacity class.

Many of the benchmarked devices exhibit a wide range of
capacity depending on the characteristics of the benchmark
designs. Some devices are more efficient at state machines, some
more efficient at arithmetic functions, and so on. The ideal
devices would be efficient for all types of applications and exhibit
a narrow spread in gate capacity over the range of applications
represented by the benchmark suite. A wide variation in gate
count means it is difficult for users to predict whether a particular
application will fit in a given device. A smaller variation in gate
count makes it easier for the user to estimate if the application
will fit, since gate count will be independent of application.
Additionally, a device with a small variation will be more general
purpose and thus able to address a wider set of applications.

A numeric measure of this predictability can be expressed by
computing the standard deviation of the difference between the
device capacity for an individual benchmark and the average
capacity over the entire suite and dividing this number by the

2-5

I

average benchmark capacity. The resulting number measures the
expected percentage spread around the average benchmark
capacity a device will exhibit. The lower the number the more
tightly around the average the capacity will fall, and the more
predictable the device is expected to be. As shown in Figure 4, the
Actel devices have the tightest spread of any of the benchmarked
FPGA devices.

The narrow distribution in gate counts for Actel devices is the
direct result of the fine-grained architecture and the antifuse
interconnect element used in the devices. The logic building
blocks are small, making them very efficient at implementing a
wide variety of logic functions. Larger grained devices (like
Xilinx devices) are less efficient if their logic blocks are under­
utilized by a logic function. Conversely, if the logic application
fits the logic building block just right, a much higher than
expected gate count can result. Actel devices also contain
abundant routing resources, thanks to the antifuse, which ensures
that each logic block can be used (high logic module utilization)
and that application dependent routing congestion can be
eliminated. Routing congestion can significantly reduce the
usable gates in architectures with fewer routing resources.
Routing requirements are application dependent and sometimes
difficult to judge at the beginning of the design phase. Sometimes
the types of logic components needed at the beginning of a design
can be estimated, but the interconnectivity between blocks and

50

40

c.
c 30

Presentation use or include the most
recent PREP PLD Benchmark data
which was measured according to

Benchmark Suite #1,
Version 1.2,
dated 3/28/93.

Any analysis is
not endorsed by PREP.

the interactions between various routing needs are very difficult
to judge before completing the design. Congestion can make it
difficult to use every logic module and thus can reduce device
capacity significantly.

Conclusions:

1. The capacity of Actel devices is the most predictable of any
benchmarked device because of its fine-grained architecture
and abundant routing resources available when using an
antifuse interconnect element and patented segmented channel
routing.

Designers now have a resource to measure and predict FPGA
performance by using PREP benchmarks. Actel's ACT 2 devices
are production-proven FPGAs offering the highest value and
predictability for designs running up to 50 MHz. The ACT 3
family introduces an entire new class of devices by offering the
only high-speed, high-capacity programmable devices in the
industry. The ACT 3 family also offers the highest performance in
the high-speed class of programmable devices.

For detailed information on the ACT 2 and ACT 3 families of
field programmable gate arrays or to obtain a copy of the
complete PREP benchmarks on Actel devices, please call PREP
Corp. at 408-356-2169 and ask for the Actel benchmark results.

43%

30% i 27%
28%

~
(,)

[20
~

10

o
A12BO-1 A1240A-2 A1225-1 A1425 EPM7128-1 EPM7192-1 EPM7256-2EPFB1188-3 QL12x16-2 XC4010-5 XC3090-125 XC3190-3

Devices

Figure 4. The bar chart above shows a measure of capacity predictability of each benchmarked FPGA device. The standard deviation of the
difference between the device gate capacity for a benchmark and the average gate capacity over the benchmark suite is divided by the average gate
count over the benchmark suite [STDEVP(CapBI-CapAve, CapB2-CapAve, .. .)/CapAvej. The resulting percentage measures the spread in capacity of
a device. The lower the percentage, the more predictable the capacity of the device. The Actel devices have the most predictable capacity of any
benchmarked FPGA device.

2-6

TM

Actel PREP Benchmark Results

Datapath
(Benchmark #1)

Functions

• Data Selecting/Holding

• Data Shifting

• 24-Bit Global Data Bus (Routing
Intensive)

Actel Characteristics

• Single Logic Level

• Runs at Clock Rate

• Ample Routing Resources

Capacity

Device/Grade Reps Worst

A1280-1 48 29

A1280-1 39 55

A1240 21 66

A1240A-2 27 49

A1240 27 37

A1240A-2 21 95

A1225-1 18 44

A1225-1 14 85

A1425 10 125

A1425 (I/Os only) 7 64

100% Automatically placed and routed in ALS 2.2 software.

© 1993 Actel Corporation

a-Bit a-Bit
4:1 Reg
Mux a

SO S1 CLR
Shift

Clk

Performance

Best Mean

41 34

65 61

66 66

61 57

46 43

95 95

53 49

85 85

125 125

74 70

Ext

12

30

30

24

20

35

25

35

38

50

a-Bit
Shift

a Reg a

Optimized

Cap Perf

X

X

X

X

X

X

X

X

Presentations use or include the most
recent PREP PLD Benchmark data
which was measured according to

Benchmark Suite #1,
Version 1.2,
dated 3/28/93.

Any analysis is
not endorsed by PREP.

2-7

I

Timer Counter
(Benchmark #2)

Functions

• Counting

• Data Comparing/Holding

• Bit Global Data Bus (Routing
Intensive

Actel Characteristics

• Register Intensive

• Four Logic Level Compare

• High-Speed Counter

• Ample Routing Resources

Capacity

Device/Grade Reps

A1225-1 9

A1240A-2 14

A1280-1 20

A1425 6

A1240 14

8

Clk

Worst

28

35

19

39

26

100% Automatically placed and routed in ALS 2.2 software.

2-8

a

a-Bit
Reg

clr

CLR

Performance

Best Mean

32 31

36 35

23 21

44 41

27 27

2:1
Mux

Clk

8

Ext

29

24

12

45

18

clr

Comp

A B

A=B

Presentations use or include the most
recent PREP PLD Benchmark data
which was measured according to

Benchmark Suite #1,
Version 1.2,
dated 3/28/93.

Any analysis is
not endorsed by PREP.

State Machine
(Benchmark #3)

Functions

• Simple State Machine

Eight States, Eight Inputs, Eight
Outputs

• Mostly Single Transitions

Actel Characteristics

• Three Logic Levels

• Use Bit Per State

Capacity

Device/Grade Reps

A1225-1 15

A1240A-2 23

A1280-1 42

A1425 10

A1240 23

Worst

32

37

26

42

28

100% Automatically placed and routed in ALS 2.2 software.

Performance

Best Mean Ext

36 34 21

41 39 23

31 29 19

48 46 29

30 29 18

Actel PREpTM Benchmark Results

cond=/3c
out=OO

out=80

Presentations use or include the most
recent PREP PLD Benchmark data
which was measured according to

Benchmark Suite #1,
Version 1.2,
dated 3/28/93.

Any analysis is
not endorsed by PREP.

2-9

I

Large State Machine
(Benchmark #4)

Functions

• State Machine

• 16 States, 8 Inputs, 8 Outputs

• Complex Transactions and Outputs

Actel Characteristics

• Five Logic Levels

• Use Bit Per State

Capacity

Device/Grade Reps Worst

A1225-1 6 21

A1240A-2 10 22

A1280-1 18 16

A1425 4 26

A1240 10 17

100% Automatically placed and routed in ALS 2.2 software.

2-10

Performance

Best Mean

22 21

25 24

19 17

29 28

19 18

i=O

Ext

15

17

14

20

13

Presentations use or include the most
recent PREP PLD Benchmark data
which was measured according to

Benchmark Suite #1,
Version 1.2,
dated 3/28/93.

Any analysis is
not endorsed by PREP.

Arithmetic
(Benchmark #5)

Functions

• Multiplying

• Adding

• Data Holding 4/ ...
I ..

Actel Characteristics

• 10 Logic Levels 4/_
• Module Speed Trade-Offs / ..

Capacity

Device/Grade Reps Worst

A1225-1 6 13

A1240A-2 9 14

A1280-1 16 11

A1425 4 18

A1240 9 11

100% Automatically placed and routed in ALS 2.2 software.

Actel PREpTM Benchmark Results

8 /
/

8-Bit

4X4
... A Reg

Mult 8/ .. B S 8/ .. -,- ,- • -
8-Bit

Adder

Clk

CLR

Performance

Best Mean

13 13

15 15

12 11

18 18

11 11

Ext

10

12

9

14

9

r---> clr
C)

Presentations use or include the most
recent PREP PLD Benchmark data
which was measured according to

a,." '" Benchmark Suite #1,

8
,' °"0 Version 1.2,

~. PRE. 'R ,; dated 3/28/~3 ..
O''''NC, ,o.",~· Any analYSIS IS

not endorsed by PREP.

2-11

I

Accumulator
(Benchmark #6)

Functions

• 16-BitAdder

• 16-Bit Register

Actel Characteristics

• Three Logic Levels

• Parallel Implementation Faster than
Competitor's Serial Approaches

• Module Speed Trade-Offs

Capacity

Device/Grade Reps

A1225-1 5

A1240A-2 8

A1280-1 15

A1425 3

A1240 8

A1225-1 4

A1240A-2 7

A1280-1 13

A1425 3

A1240 7

16

16

Worst

23

27

18

36

21

32

32

21

39

24

100% Automatically placed and routed in ALS 2.2 software.

2-12

A

S
16

B

Clk

16-Bit Adder

Performance

Best Mean

25 24

30 29

23 21

37 36

23 22

33 32

36 36

28 28

40 40

27 27

16-Bit

Ext

16

20

17

26

15

20

24

17

28

18

Reg

CLR

Optimized

Cap Perf

X

X

X

X

X

X

X

X

X

X

Presentations use or include the most
recent PREP PLD Benchmark data
which was measured according to

Benchmark Suite #1,
Version 1.2,
dated 3/28/93.

Any analysis is
not endorsed by PREP.

16-Bit Counter
(Benchmark #7)

Functions

• Counting

• Loading

• Count After Load

Actel Characteristics

• Two Logic Levels

• Uses Look Ahead to Cut Logic
Levels

Capacity

Device/Grade Reps

A1225-1 9

A1240A-2 13

A1280-1 25

A1425 6

A1240 13

Worst

46

52

33

65

39

100% Automatically placed and routed in ALS 2.2 software.

Load--~

Data _1_6+--.-~

Count--~

Clk----1

Performance

Best Mean

54 50

64 58

47 41

70 68

48 44

16-Bit
Cntr

clr

CLR

Ext

29

32

21

40

24

Actel PREpTM Benchmark Results

16 Output

Presentations use or include the most
recent PREP PLD Benchmark data
which was measured according to

Benchmark Suite #1,
Version 1.2,
dated 3/28/93.

Any analysis is
not endorsed by PREP.

2·13

I

16-Bit Prescaled
Counter
(Benchmark #8)

Functions

• Counting

• Multicyc1e

• Uses Prescalar for LSBs

Actel Characteristics

• Single Logic Level

• Runs at Full Clock Rate

Capacity

Device/Grade Reps

A1225-1 6

A1240A-2 10

A12BO-1 18

A1425 4

A1240 10

Worst

85

95

75

108

66

100% Automatically placed and routed in ALS 2.2 software.

2-14

Load--~

Data_1_6~~
Count--~

Clk---f

Performance

Best Mean

85 85

95 95

75 75

123 114

66 66

16-Bit
Cntr

16 Output

CLR

Ext

18

20

15

27

15

Presentations use or include the most
recent PREP PLD Benchmark data
which was measured according to

Benchmark Suite #1,

8s"""U"'O>'O Version 1 2

~.PREP.; dated 3/28/~3 ..
O-""CE c06,o" Any analysIs IS

not endorsed by PREP.

Memory Map
(Benchmark #9)

Functions

• Address Decode

• Address Hold

• Wide Gating

• 8-Bit Global Address Bus (Routing
Intensive

Actel Characteristics

• Three Logic Levels

• Abundant Routing

Capacity

Device/Grade Reps

A1225-1 20

A1240A-2 31

A1280-1 56

A1425 14

A1240 31

Worst

33

37

26

43

37

A[15:8]
A[7:0]

AS

Clk

--
... -
--

>

Performance

Best Mean

36 34

42 39

33 30

53 49

42 39

100% Automatically placed and routed inALS 2.2 software.

Actel PREpTM Benchmark Results

clr
(.)

CLR

Ext

21

23

20

30

23

..

A
B
C
D
E
F
G
H
Bus Error

Presentations use or include the most
recent PREP PLD Benchmark data
which was measured according to

Benchmark Suite #1,
Version 1.2,
dated 3/28/93.

Any analysis is
not endorsed by PREP.

2-15

I

2-16

Estimating FPGA
Applications Performance
Using PREp™ Benchmarks

Application
Note

Introduction

The PREP Benchmarks provide data for estimating the
performance of an application in an Actel field programmable
gate array (FPGA). The PREP benchmarks were developed to
help programmable logic users better understand the capabilities
of programmable logic devices. Several common benchmark
functions were selected to measure capacity and performance.
The data is used to determine which device would suitably
implement a particular application early in the design process.
Before benchmarks, large portions of a design had to be
completed to estimate the potential fit of the application in the
device.

The nine PREP benchmarks are listed in Table I. The
performance of all nine benchmarks was measured in Actel
FPGAs. The methodology requires that a benchmark circuit is
continually repeated, connecting outputs of one instance to the
inputs of another until a device is full. The device performance is
determined by measuring the maximum operating frequency at
worst-case commercial temperature and voltage conditions. The
maximum operating frequency is the slowest of the following two
cases:

• The longest path between a register in the benchmark instance
and a register in the previous benchmark instance, including
any combinatorial delays between the registers

• The longest path between any registers in the same benchmark
instance, including any combinatorial delays between the
registers

Table 1. PREP Benchmarks

Benchmark

Datapath

Timer/Counter

Small State
Machine

Large State
Machine

Arithmetic

Accumulator

Counter

Pre-scaled
Counter

Memory Mapper

© 1993 Actel Corporation

Function

8-bit 4:1 Multiplexer, 8-bit register, and
8-bit shift register

Counter, Load Register, Compare
Register, and Comparator (8 bit)

8-State Machine with simple transition
terms

16-State Machine with complex transi­
tion terms

4x4 Multiplier, 8-bit Adder, and 8-bit
Register

Registered 16-bit Adder

16-bit Loadable Counter

16-bit Counter optimized for counting
(Multiple cycle load)

Multiple address Decode with error
detection

Measuring FPGA Performance

These benchmarks can be applied to individual circuits to
estimate FPGA performance. The first step in estimating FPGA
performance is to identify the key functions of the design.
Drawing a block diagram will usually suffice. Choose the major
functions from the block diagram and estimate the required
performance for each critical section. Next, identify which
benchmarks match the critical functions in the design. The
benchmark results for several ACTTM 2 and ACT 3 devices are
given in Table 2. In addition, notice that "levels of logic" data is
reported for each benchmark. This information aids in choosing
the most similar benchmark for the particular function. Figure 1
displays an example of two levels of logic. Comparing the I
performance requirements and the benchmark results shows •
which ActeI FPGA best fits the target application.

Estimate Example

Figure 2 represents a typical block diagram of a design, including
a datapath, shift register, counters, and a state machine. The other
parts of the design, such as various combinatorial functions are
not important to the performance because they operate at low
speeds. For this design, the target performance is 32 MHz for the
relatively simple state machine; 32 MHz for the ALU, address
counter, and datapath; and 64 MHz for the shift registers.

The next step is to match the critical functions to a particular
benchmark. For example, since the interface state machine is
relatively simple, the small state machine benchmark can be used
to predict its performance. The shift register is part of the
datapath circuit, so the datapath benchmark is a good choice.
Likewise, because the ALU implements only logical operations
and nothing else arithmetic, the accumulator benchmark will
provide a good, but conservative estimate. The address counters
in the design require two levels of logic, so the simple counter
benchmark will be used to estimate their performance. The
benchmark results of this example for several Actel devices are
listed in Table 3. This estimation shows that the A1280-1 device
misses the desired performance of the ALU block. However, the
A1225-1, Al 240A-2, and theAI425 devices meet all the required
performances. Any of these devices would be able to implement
the required application at the specified performance.

PREP Benchmarks serve an important role in predicting FPGA
application performance. The task is relatively simple and fast.
Now many devices can be excluded from consideration before the
details of the design are completed. This allows for flexibility,
reduced risk, and overall success with an Actel FPGA.

Note: The benchmark suite is available from PREP Corp. For
more information, contact PREP Corp. at 504 Mino Ave.,
Los Gatos, CA, 95032, 408-356-2169.

2-17

Net Net Net
delay delay delay

LM LM

~ ~

Module
delay Module

delay

If module is combined

Figure 1. Logic Levels

Table 2. Benchnmark Performance of Actel Devices (Mean Performance)

Benchmark

Datapath

Timer/Counter

Small State Machine

Large State Machine

Arithmetic

Accumulator

Counter

Pre-scaled counter

2-18

Logic Levels

4

3

5

10

3

2

A1225-1 A1240A-2

85 MHz 95 MHz

31 MHz 35 MHz

34 MHz 39 MHz

21 MHz 24 MHz

13 MHz 15 MHz

32 MHz 36 MHz

50 MHz 58 MHz

85 MHz 95 MHz

A1280-1 A1425

61 MHz 125 MHz

21 MHz 41 MHz

29 MHz 46 MHz

17 MHz 28 MHz

11 MHz 18 MHz

28 MHz 40 MHz

41 MHz 68 MHz

75 MHz 114 MHz

Presentations use or include the most
recent PREP PLD Benchmark data
which was measured according to

Benchmark Suite #1,
Version 1.2,
dated 3/28/93.

Any analysis is
not endorsed by PREP.

Interface
State

Machines

32 MHz

ALU

Estimating FPGA Applications Performance Using PREpTM Benchmarks

Address
Counters

32 MHz

32 MHz

Figure 2. Example Design

Table 3. Benchmark Estimates

Functions Benchmark Target Speed A1225-1

Address Counter Counter 32 MHz 50 MHz

ALU Accumulator 32 MHz 32 MHz

Shift Register Datapath 64 MHz 85 MHz

State Machine Small State Machine 32 MHz 34 MHz

A1240A-2 A1280-1 A1425

58 MHz

36 MHz

95 MHz

39 MHz

41 MHz 68 MHz

28 MHz 40 MHz

61 MHz 125 MHz

29 MHz 46 MHz

Presentations use or include the most
recent PREP PLD Benchmark data
which was measured according to

e Benchmark Suite #1,

8
,".,fI.~··:61..Eel...t(''''''''O Version 1.2,

~PREP.) dated 3/28/93.

0+",." co.,o'· Any analysis is
not endorsed by PREP.

2-19

I

2-20

© 1993 Actel Corporation

Packaging and
Mechanical Drawings

Packaging and Mechanical Drawings

Package Options: User lias per Package. 3-1

Package Thermal Characteristics. 3-3

Package Mechanical Drawings. 3-5

Socket Recommendation for Actel FPGA Packages. 3-23

PQFP Handling Instructions . 3-25

Package Options:
User I/Os per Package

ACT 1 ACT 2 ACT 3

CD CD <C <C <C <C <C <C <C <C
0 0 It) 0 0 It) It) 0 0 0

Package Pins 0 C\I C\I o:r to ; C\I o:r (0 0
0 C\I C\I C\I o:r o:r o:r ,...

o:r < < < < < < < < < <
PLCC 44 34 34

68 57 57

84 69 69 72 72 70 70

PQFP 100 57 69 83 80 80

144 104

160 125 100 130

208 167

VQFP 80 57 69

CPGA 84 57 69 I
100 83 80

132/133 104 100

175/176 140 140

207 168

257 228

CQFP 84 69

172 140

© 1993 Actel Corporation
3-1

3-2

~c/@I!
•

Package Type

Plastic Leaded Chip Carrier

Plastic Quad Flatpack

Very Thin (1.0mm) Quad Flatpack

Cermaic Pin Grid Array

Ceramic Quad Flatpack

© 1993 Actel Corporation

Package Thermal
Characteristics

Pin Count

PLCC 44

68

84

PQFP 100

144

160

208

VQFP 80

CPGA 84

100

132

133

175

176

207

257

CQFP 84

172

0 JC
0 JA 0 JA Units

Still Air 300 ft/min

15 52 40 °C/W

13 45 35 °C/W

15 44 38 °C/W

13 55 47 °C/W

15 35 26 °C/W

15 33 26 °C/W

15 33 26 °C/W

12 68 55 °C/W

8 33 20 °C/W

8 35 17 °C/W

5 30 15 °C/W

8 30 15 °C/W

8 25 14 °C/W

8 23 12 °C/W

8 22 13 °C/W

2 15 8 °C/W

5 40 30 °C/W

8 25 15 °C/W

3-3

3-4

Package Mechanical Drawings

E

© 1993 Actel Corporation
3-5

Plastic J·Leaded Chip Carrier
44·, 68·, and 84·Pin PlCC

3·6

j

1
.050" ± .005"

.018" ± .003"

L
T

.020" m;o. -1 ~
.175" ± .010"

lead Count

44

68

84

o

o 01

~Jll
D,E

.690" ± .005"

.990" ± .005"

1.190" ± .005"

~ I.- .029" ± .003"

01, E1

.655" ± .005"

.955" ± .005"

1 .155" ± .005"

Package Mechanical Drawings

Very Thin Quad Flatpack
SO-pin VQFP
Dimensions in millimeters

~
~0.65

1.00±0.05L~d NNNHNNHNHNNNHNNHHHh~L I '020 MAX
i"',"'-----, ~ __ t::Jt::Jt::Jt::Jt::Jt::Jt::Jt::Jt::JI:::it::Jt::Jt::Jt::Jt::Jt:::rE3t::Jt::Jt::J--. _ -

f t 1.-060+. 15
.17 MAX 0.25 LEAD COPLANARITY: .08 MAX. I . -.10

.05/.15

o

o

~
~0.65

3-7

E

Plastic Quad Flatpack
1 ~O-Pin PQFP ..
Dimensions in millimeters.

~~210\95±15 i: 0.18±.O5 --to i
:::!=:f====0-7=oE=~' 20.00±.05~ I

--"J ~ ... 0.80 ± .15 -lc: 23.20 ± .10

----- ...

14.00 ± .05

3-8

Package Mechanical Drawings

Plastic Quad Flatpack (continued)
144-Pin PQFP
Dimensions in millimeters.

1+--------- 31.20 ± .25 -----------1

31.20 ± .25

28.00 ± .10-

Pin#11D

~
~0.65BSC

3.42±25L~ 1'·07MAX 0.18±.05~~1.-0.80±13

3-9

I

Plastic Quad Flatpack (continued)
160-Pin PQFP (ACT 2)
Dimensions in millimeters

1+--------- 31.90 ± .25 ------------+1

31.90 ± .25

28.00 ± .10-

Pin#11D

3'2±25L~ 1.07MAX
0.1.±.05 ~ -1.-0.80 ±13

3-10

Package Mechanical Drawings

Plastic Quad Flatpack (continued)
160·Pin PQFP (ACT 3)
Dimensions in millimeters

342>25L~ j'07MAX
0.18±.05 ~ i.-O.ao ±15

3·11

11

Plastic Quad Flatpack (continued)
208-Pin PQFP
Dimensions in millimeters

1+---------- 30.60 ± .25 ------------+1

30.60 ± .25

28.00 ± .10-

Pin #1 10

342±25L~ ['07 MAX
0.18±.05 =- 1-- 0.60 :>::::6

3-12

Ceramic Pin Grid Array
84-Pin CPGA

-, " \
,

'-

Pin #1

,,-

F'·'00.±.020."'",rn~
00000000000
00000000000
00 000 00
00 00
000 000
000 000
000 000
00 00
00. 000 00
00000000000
00000000008

• Orientation Pin

Package Mechanical Drawings

----.J k- .050" ± .010"
I I (4 pies)

~8"±.002"

I
JI'

1.000 BS c

,It

3-13

Ceramic Pin Grid Array (continued)
100-Pin CPGA

3-14

/ Pin#11D

~1·050"±.
0(1.100"±.015"SqUare~ (4Plac

OOOOOOOOOOG-tt------.----
00000000000
00000000000
000 0 000
000 000
0000
000
000. o

0000
000
000

1.000 BSG

00000000000
00000000000
OOOOOOOOOOG-tt---L-

• Orientation Pin

~
t

0.18" ± .002"

__ i_
.100" BSG. - -f-

Ceramic Pin Grid Array (continued)
132·Pin CPGA

/Pin#110

0(1.360" ± .015" square •
000000000000
0 000000000000
0 000000000000
0 00 000 000
0 00 000
0 000 0000
0 000 0000
0 000 0000
0 00 000
0 00. 000 000
0 000000000000
0 000000000000
0 00000000000
• Orientation Pin

Package Mechanical Drawings

.11

~ 0.18" ± .002"

t

-
t
.100" sse

- -f- I .050"± .
(4 plac

.120"

.140"

J~

1.200 SS e

'If

3-15

Ceramic Pin Grid Array (continued)
133-Pin CPGA

r- Pin #1

3-16

~O.18"±.002"
t

Ceramic Pin Grid Array (continued)
175-Pin CPGA

INDEX MARK

----.---+1'!1.~_-0000000000000000
~ 00000000000000000

1.400 ± 0.015

00000000000000000
00000000000000000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
00000000000000000
00000000000000000
00000000000000000

0000000000000000

1 ... 1II(f-------1.570 ± .015 square ---------l~~1

•

Package Mechanical Drawings

~
__ 0.018 ± .002

t
i
0.050 ± .005 '--to-

I.- 0.130 ± .010

-.1 k 0.050 ± .005

-. ~ 0.105±.012

3-17

II

Ceramic Pin Grid Array (continued)
176-Pin CPGA

3-18

E1.570.±015",,"'"'4
00000000000000 -T+--

1

;--
000000000000000
000000000000000
000000000000000
0000 0000
0000 0000
0000 0000
0000 0000 1.400" sse

0000 0000
0000 0000
0000 0000
000000000000000
000000000000000
000000000000000
dooooooOOOOOOO~~-'~~

.120"

.140"

Ceramic Pin Grid Array (continued)
207-Pin CPGA

INDEX MARK r ·070TYP

-'---+1/f-1:-00000000c500000000
00000000000000000
00000000000000000
00000000000000000

1.600 Bse

0000· 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
0000 0000
00000000000000000
00000000000000000
00000000000000000

0000000000000000
~~========================~

I f------- 1.750 ± .015 square ---------;.~I

/, "

Package Mechanical Drawings

0.115±.008H

Index Mark

~
__ 0.018 ± .002

t

* 0.050 ± .005 '--tr-

h- 0.180±.010

3-19

I

Ceramic Pin Grid Array (continued)
257-Pin CPGA

3-20

~oooooooooooooooooo
0000000000000000000
0000000000000000000
0000000000000000000
00000. 0 0 0 0 0000
0000 0000
00000 00000
0000 0000
00000 00000
0000 0000
00000 00000
0000 0000
00000 00000
0000 0000
0000 0 0 0 0 0000
o 0 0 0 0 () 0 0 0 0 0 0 0 CD 0 0 0 0 0
o 0 0 0 0 () 0 0 0 0 0 0 0 CD 0 0 0 0 0
o 0> 0 0 0 () 0 0 0 0 0 0 0 CD 0 0 0 0 0
o 0 0 0 0 () 0 0 0 0 0 0 0 CD 0 0 0 0 0

..-- 0.850 ± .005 ~

, <f--------1.970±.015 ------~

0.105±.012

gOld-plate on
bottom of chip

~ 0.018 ± .002 . - - - -f - - - - --

0.180 ± .010

Ceramic Quad Flatpack
84-Pin CQFP

o
o
ci
+1 o
CD
'<I:

0.030 DIA
12x

1.635 MAX

+0.015 ------- _ II 1 .600 -0.005

1.325±0.015

0.950±0.010

Mechanical Drawings Package

I
Ii)

g
ci
+1 o
Ii)
CD
ci

---.JI1..-0.035±0.005

---.J~0.006±0.002

3-21

I

Ceramic Quad Flatpack (continued)
172·Pin CQFP
Dimensions in inches

3·22

LL
UJ
a:
a

'" C\!

~ 0.025 TYP

8-<1>0.080 REF

4-2.300 ± 0.010

4-1.500 ± 0.015

4-1.180 ± 0.012 -

~ 0.018TYP

2-1.140 ± 0.005

--.- 2-<1>0.100 ± 0.200

ci
+1
o
;:!:
N

- 1. 0.035 ± 0.005

NCTB
(alumnia 90%)

ALLOY 42

0.008 ± 0.002

ALUMNIA
(90% BLACK)

LOLO
o~
00
cic:i
+1
o
~
C\i
N

0.105 ± 0.012

0.090 ± 0.010

0.084 ± 0.012 -

0.006 ~ g:gg~

co #87 E1
~6,~, ,

" 4-<1>0.060 REF 0.008 ~ g:gg~

Socket Recommendation
for Actel FPGA Packages

Actel has compiled this list of know suppliers for the convenience
of our customers. This is simply a list of suppliers that we are
aware of rather than a list of recommended sockets, as we have
not tested them for reliability. For information on these sockets,
contact the manufacturers directly.

Socket Sources for Actel FPGA Packages

Prototype/Production Sockets

Lead Count Source Through-Hole Source

PLCC 44 AMP 821551-3 AMP
METHODE 213-44-101 METHODE

68 AMP 821574-3 AMP
METHODE 213-068-101 METHODE

84 AMP 821573-3 AMP
METHODE 213-084-101 METHODE

PQFP 100 N/A YAMAICHI

144 AMP 822114-3 or 822115-3 AMP

(ACT 2) 160 AMP 822114-4 or 822115-4 YAMAICHI

(ACT 3) 160 822114-4 or 822115-4 AMP

208 N/A AMP

VQFP 80 N/A YAMAICHI

PGA (llxll) 85 MILL-MAX 510-91-085-11-041
McKENZE PGA-85H-012B-1-1107

PGA (llxll) 101 McKENZE PGA-1 01 M-012B-1-11 B5

PGA (13x13) 133 McKENZE PGA-133H-003B-1-13GO

PGA (15x15) 175/176 MILL-MAX 510-91-176-15-061
McKENZE PGA-177M-003B-1-1552

PGA(17x17) 207 AMP 916227-6

PGA (19x19) 257 AMP 916229

© 1993 Actel Corporation

Surface-Mount

821979-3 or 822035-3
213-044-602

822029-3 or 822073-3
213-068-602

821808-1 (high profile) I 213-084-602

IC149-100-014-S5

LMMC prototype

IC 149-160-023-S5

P93-1970-075

P93-1970-076

IC198-080-2001

N/A
N/A

N/A

N/A

N/A
N/A

N/A

N/A

3-23

Zero Insertion Sockets

Lead Count Source Through-Hole

CQFP 84 WELLS 619-1000311-001

172 ENPLAS OTO-172(196)-0.635-02

PQFP 100 YAMAICHI IC51-1004-814-2

144 YAMAICHI IC51-1 014-KS1 0418

160 YAMAICHI IC51-1604-845-1

208 ENPLAS OTO-208-0.5-01

PGA 84 YAMAICHI NP35-112-G4-BF85

101 YAMAICHI NP89-1211 0-G4-BF1 01

132/133 NEPENTHE NEP5-132-RS1311

175/176 YAMAICHI NP89-22508-G4-BF177

207 AMP 55287-2

257 AMP 55289-1

PLCC 44 YAMAICHI IC51-0444-400

68 YAMAICHI IC51-0684-390-1

84 YAMAICHI IC51-0844-40 1-1

VQFP 80 YAMAICHI IC51-0804-795

CONTACTS: AMP (408) 725-4914
ENPLAS (415) 572-1683
METHODE (408) 262-3812
MIL-MAX (516) 922-6000
McKENZE (510) 651-2700
NEPENTHE (415) 856-9332
WELLS (408) 559-8118
YAMAICHI (408) 452-0797

3-24

PQFP Handling Instructions

Humidity Control

Follow the instructions on the packaging bag to keep devices dry
prior to board assembly.

Handling Trays

The tray stack should be kept fastened with straps during
transportation to prevent devices from coming out of their sockets
and bending their leads. If a single loaded tray is to be moved, an
empty tray should be placed over it as a cover and both trays
should be taped to secure the devices in position (see Figure 1).

/covertray

F==-=======~GL ~ I
~ Place tape at both sides

of tray.

Figure 1. Temporary Tray Holding

Device Programming

Always use the vacuum wand provided to transfer devices.

Removing Devices from Tray

1. Position the vacuum needle at the proper angle so that your
index finger can rest on the vacuum switch (see Figure 2).

Figure 2. Vacuum Wand

2. Slightly depress the vacuum switch and then place the
vacuum cup on the surface of the device.

© 1993 Actei Corporation

3. Release the vacuum switch while holding the cup down to
generate the vacuum that causes the cup to adhere to the
device body.

4. Make certain to transfer a device within 5 to 8 seconds.

Loading the Device into the Programming Socket

1. Carefully align the device with the socket and gently lower
the device into the socket (see Figure 3).

Programming
Socket

Figure 3. Inserting the Device in the Socket

2. Do not force the device into the socket; otherwise, the comer
leads may be bent if the alignment is out.

3. Release the vacuum by depressing the vacuum switch. The
device will be self-aligned to the socket.

Note: To completely release the vacuum, the switch should be
pressed down further than when pressed to generate the
vacuum. Otherwise, a partial vacuum will pull the device
back and may cause bent leads.

4. Close the lid. The device is ready for programming.

Removing the Device from the Programming Socket

When the programming of the device is complete, use the vacuum
wand to remove the device from the socket and to place it in a tray
labeled "programmed devices."

Cleaning the Vacuum Wand

The suction cup of the vacuum wand should be cleaned
periodically using IPA to minimize possible leakage in vacuum.

3-25

I

3-26

Testing and Reliability

© 1993 Actei Corporation

Testing and Programming Actel Field Programmable Gate Arrays (FPGAs) 4-1

ACT Family Reliability Report. 4-9

Antifuse Field Programmable Gate Arrays . 4-29

Oxide-Nitride-Oxide Antifuse Reliability. 4-45

Conductive Channel in ONO Formed by Controlled Dielectric Breakdown. 4-53

Metastability of ACT 1 Devices . 4-55

~c/@I!
•

Testing and Programming Actel Field
Programmable Gate Arrays (FPGAs)

Introduction

Testing has long been a struggle for users of masked gate arrays.
To avoid board level, system level, or even possible field failures,
the system designer must extend great effort in developing test
vectors for gate array designs. Even after the vectors are
developed, fault coverage for typical designs may be only about
70 percent, with 95 percent coverage about the best possible.
With a 70 percent fault coverage, typical masked gate array
designs are likely to have 2 to 5 percent devices defective 1.

In general, field programmable logic devices have allowed the
user to avoid the need to develop test vectors. These devices allow
the tests to be perfonned by the semiconductor vendor prior to
programming. However, most one-time programmable logic
devices have not yet achieved the functional quality levels of
other semiconductor devices because they don't allow the chip
manufacturer to access and test all internal gates. Early one-time
programmable devices had poor test coverage, and users were
often disappointed to see functional failure rates of more than 10
percent on parts that had passed programming. Over time, on­
chip test circuits and testing techniques have greatly improved
and now one-time programmable devices have functional defect
rates in the range of 0.1 to 1 percent2. Although this failure rate is
low for individual chips, putting 10 such chips on a single board
can still mean a board failure rate of 5 to 10 percent.

Reprogrammable logic devices that use EPROM, EEPROM, or
RAM technology however, have improved functional quality
levels to nearly 100 percent. Since the semiconductor
manufacturer can program these chips to any desired
configuration, it is possible to test all internal gates. This can
result in functional failure rates equivalent to most other
semiconductor devices.

The Actel FPGA Product Family

There are three Actel FPGA product families. The ACTTM 1
family offers 1200 (A 1010) and 2000 (A1020) gate products. The
ACT 2 family consists of three products (A1225, A1240, and
A1280) with 2500, 4000, and 8000 gate array equivalent gates.
This family offers improved perfonnance and number of I/O's
compared to ACT 1. The ACT 3 family contains five products
(AI415A, AI425A,AI440A,AI460A, andA14100A) with 1500,
2500, 4000, 6000, and 10,000 equivalent gates. The ACT 3
products offer the highest perfonnance and number of I/Os of the
three families.

Testability of Actel FPGAs

Although Actel's FPGA Family arrays use a one-time
programmable technology, the device's unique architecture
permits a degree of testability comparable to reprogrammable
devices. Special test modes allow functional testing of

© 1993 Actel Corporation

unprogrammed devices at essentially 100 percent fault coverage.
This testability is independent of the large number of equivalent
gates in the AIOIO (1200 gates) through the A14100 (10,000
gates). To show how this accomplished, we will first review the
architecture of the Actel FPGAs and describe how they are
programmed.

Arch itectu re

The basic building block of all Actel FPGAs is the logic module.
Each logic module is programmable and capable of implementing
all two-input logic functions, most three-input functions, and
many other functions up to eight inputs. With an architecture
similar to a channeled gate array, logic modules are organized in
rows and columns across the chip (Figure 1). Adjacent to each
row of logic modules are routing channels. Horizontal routing
channels are shown in the figure, but vertical channels also run
through the logic modules. These are used to configure a logic
module and connect inputs and outputs of logic modules together
to implement a design. Surrounding the array of logic modules
and routing channels are I/O buffers and test circuits.

Within the routing channels are programmable antifuse
(PLICETM) elements. The antifuse is normally open and is
programmed to fonn an electrical connection between routing
elements. An antifuse that connects a horizontal routing track to a
vertical track is called a cross antifuse. An example of a logic
module interconnection (or a net) is shown in Figure 2. Here the
output from Module 3 is connected to a horizontal routing track
by programming a cross antifuse. Another cross antifuse is
programmed to connect an input to Module 4. In a similar
manner, the output of Module 3 is connected to the input of
Module 2. Notice that not all horizontal tracks are continuous
across the chip. Often tracks are broken into a series of smaller
tracks called "segments." Segments are useful because it is often
desirable to connect logic modules that are close to each other,
and using a full horizontal track would waste routing resources
and slow down circuit perfonnance. Sometimes, however, it is
necessary to connect two segments together to form a longer
segment. This can be done by programming a special type of
antifuse referred to as a horizontal antifuse. As an example, the
output of Module 3 is also connected to the input of Module I by
programming two cross antifuses and one horizontal antifuse.
Vertical antifuses are used to connect two vertical segments (not
shown).

A more detailed example of the Actel FPGA architecture is
shown in Figure 3. Six logic modules (two rows, three columns)
are shown. Between the two rows are six horizontal tracks. Down
each column are five vertical tracks. Note that the products
actually have 25 to 36 horizontal and 13 to 15 vertical tracks. The
circles at the intersection of vertical and horizontal tracks
represent cross antifuses. There are also circles at certain points

4-1

II

4-2

II
'3
~
(3
~
~
'0 c:
t1I

E
t1I

~
Q.

~
!
~
!XI

g

Logic Module
Input

Input
Segment

Rows of
Logic

Modules

L

If 0 Buffers, Program and Test Circuits

• ~outinRl hann

•
•

Row of
Logic Modules •

I

Figure 1. Architecture

Programmed
Horizontal Antlfuse

Output
Segment

"

Figure 2. Routing

I
I

Logic Module
Output

I

Programmed
Cross
Antifuses

Testing and Programming Actel Field Programmable Gate Arrays (FPGAs)

on the horizontal tracks that are horizontal antifuses. No vertical
antifuses are shown. Notice the transistors that connect both
horizontal and vertical tracks. By turning on selected transistors,
various horizontal or vertical tracks can be connected together
even though an antifuse has not been programmed. This ability to
connect tracks in unprogrammed devices is used extensively
during antifuse programming and is one of the key elements
responsible for the excellent testability of the Actel FPGAs.

Logic configuration of modules is interesting because there are no
dedicated antifuses in the module to accomplish this. Instead, the
inputs (and outputs) of logic modules extend into the cross
antifuse array. Each logic module has eight to ten inputs and one
output. By programming appropriate antifuses, an input can be
connected to a dedicated horizontal ground line, a V cc line, or a
horizontal routing track. The logic module implements a
particular logic function by tying appropriate unused inputs to
ground or V cc.

Vertical
Control

4_

L"
..J1

L"
,..JI

4~
4_

L,I
,...JI

Programming

The following discussions about programming and testing modes
are specific to the ACT 1 family of FPGAs. However, basic
concepts also apply to the ACT 2 and ACT 3 families.

An antifuse is programmed by applying a sufficiently high
voltage across it. This voltage is referred to as Vpp. To access an
antifuse deep inside the chip, it is necessary to create electrical
paths from Vpp and ground to the antifuse. This is done by
turning on the appropriate horizontal and vertical pass transistors
(in normal chip operation, these transistors are always off). The
transistors are turned on by applying Vpp to their gates. In Figure
4, we see an example of programming a typical cross antifuse.
Vpp is applied to a vertical track at the top of the chip and ground
is applied to a horizontal track on the right side. The design of the
AlOlO/A1020 actually allows Vpp or ground to be applied from
the top, bottom, left, or right as is appropriate to best access a
particular antifuse. Notice that Vpp is also applied to the gates of

1,1 1,1 1,1
,...JI ,...JI ,...JI

4~
4_

I~

Vertical
Track

Segment "'" " '" " " ,,'" rFl r'\ '.... "" ,,, , " /~ r~ '7 , 7 , I-' 'J I '+'
I'" I'" 1"\
\1-1 \ 1-1 , I-' 'I-'

Cross
Antifuse -------== , ,

" " ;:1=; 1""'\
'I-' I-' 'I-' 'I-' L

-,.r-. ,1"\ 1"\ ,.r-.
I-' 1..1 i-' I-'

,.r-. ,r-. 1'\ ,.1"\
7 7 ." v
il .,1

Vertical
Pass ____-

Transistor _____

,...JI ,JI

,- •
Logic

Module ---

,.r-. ,r-. ,1"\ 1"\ ;:
'I-' 1..1 'I-' 'I-' l ,,, ,

"
Horizontal

Track --­
Segment 'I-' \. '" , I-' ''''

/
Horizontal

Control

'+'

1=;1""'\
'¥

'7 , 7'1-' 'I-' '7 '7 'V 'I-'
, ,,1"\ ;:1=; 1""'\ " L~ \1-1 \ 17' I-' 'I-' I W \1-' '1-1 1.7 'j.I

" , , , 1"\ " 1"\ ,,1"\
I-' 'I-' V 'I-' 'I-' I-' 1..1 'V

,.r-. ,.1"\ ,,, ,r-. rh r'\ ,.1"\ ,.r-. 11"\ "I'\.
I-' 1..1 V '7 I 'I-" ..., I-' I-' 'V

"r-. ,r-. ,," ,,1"\ ,.1"\ ,.1"\ Ir-. "I'\.
'I-' I-' I-' ." i-' I-' I-' 'I-'

'11 "11 '11 il
,...JI ,...JI ,..JI .-JI

,- 4. ~
4_

r-. 1"\ ,.r-, " "I'\. ,,1'\ I'r-. ,,1"\
'I-' , 7 , 7 'I-' 'I-' \. 1..1 ,

11"\ " '" " "\,,'" ;:q~ 1"1"\ "r-. ,
"\ "'" '7 \.

7 ''''
1 -/ '+'~v 'I-' , I-' ,."

7
Horizontal

Pass Transistor
Horizontal
Antifuse

Figure 3. Programmable Interconnect

I

r r-v-I

r r-v-I

4-3

II

the horizontal and vertical pass transistors on the tracks accessing
the cross antifuse. The circled cross anti fuse now has Vpp applied
to it on one side and ground on the other. This voltage breaks
down the antifuse's dielectric and creates an electrical connection
between the horizontal and vertical routing tracks.

There is one other important consideration when programming an
antifuse. Notice that the cross antifuses in the same vertical track
as the antifuse to be programmed also have Vpp applied to them
on one side. This is true until the track is broken by a vertical pass
transistor below it that is turned off. However, the potential on the
other side of the antifuses is not being driven. Should this
potential be at ground, the other cross antifuses on the vertical
segment could be accidentally programmed.

Vertical
Control

~I
roll

~I
roll

GND Vpp

~I
..,ll

The same logic applies to other antifuses on the same horizontal
track. Here, one side of the antifuse is being driven to ground and
if the other side were at Vpp, extra antifuses could program.This
problem is solved by first applying what is referred to as a
"precharge cycle." During the precharge cycle, all horizontal and
vertical tracks are charged to Vpp/2. As a result, there is no
voltage across the antifuses. The appropriate vertical track is then
driven to Vpp and a horizontal track to ground (Figure 5). At this
point, other antifuses on the vertical track have a potential of
Vpp/2 across them (Vpp on one side and Vpp/2 on the other).
This Vpp/2 voltage is not sufficient to program the antifuses.
Other antifuses on the same horizontal track also have Vpp/2
across them (Vpp/2 on one side and ground on the other). Most
other antifuses in the chip still have Vpp/2 on both sides and will
not program.

Vpp Vpp

~I ~I ~I
,-II ...JI ..,ll Vpp

0 ~~ 4~ 4~ 0 0

Vertical
Track

Segment

Cross

" '-./

['\
'-./

"t-. "t-. ,...t-.
'-1./ '-1./ '-v

"t-. "t-. ,...t-.
'-v '-1./ '-v

Antlfuse -------= L" Lt'\ 1"1"\ 1"~
'-1/ '-1/ '-1/ '1/

:1:1'\ rl'. ,,1'. I'.
'-1/ '-1/ '-1./ 'I-'

Vertical
Pass ___-

Transistor ____
I't-. 1"1'. "1'. "\
'-v '-1./ '-1./ 'I-'

'1 'II
.-JI ,-It

•• 0
Logic

Module ---

/1'\ I"
"\ " " ,,"\

Horizontal
'-1/ '-1/ '-I-'
/1"\ ,... 1"\ I' 1"\ 1'1"\

Ph r'\ "t-. I' "\ "t-. I't-. 1'"'\ 1'"'\ 1'''\ "
I 'V v '- '-1./ V '" '-'" '" '-v

~ "\ "t-. ~ j::; r'\ I' ,..~

'-I-' '- ./ '-v '" I 'V '-'" '-'" '''' '-v
;:f=i.~ "i-I. I" ~ /. I".. J"~ £"\ / "\ ./ "\ 1"1"\

L ~ 'I-' \" '" '-1/ '1./ '''' , '" , '" '-v
I'':'!.A ~,.. 1'\ l:".. j:=;.~ /'''\ f "\ ./ "\ 1"1"\.

Antifuse to ' ~'fot ~'-1./ '-'" I 'V '''' , '" , '" '-v
be Programmed ---

"\ " t-. "
t-. "\ L 1" ~. 1"1"\.

'V '-V '- I-' '-'" '''' , '" , '" '-v

" '11 II II
,.JI ,-II ...JI roll

.~ 0 . ~ ••

r=t:; r'\ r"\ ,,1"\ ~ 1'''\ I' rt-. I" 1"1"\.
1 'V , '-1./ 'I-' '''' \"./ '-v '-./ '-I-'

r"\ rt-. 1"\ I' rh r'\ rl"\ 1"" 1"1"\. Track --­
Segment '-v '-1/ V ''''

/
, '-1./ ':.-' '''' 1/ 'V"'./ '-v '-./ '-1/

/

4-4

Horizontal
Control

Horizontal
Pass Transistor

Figure 4. Programmable Interconnect

Horizontal
Antifuse

I r~

r ~ I
GND

GND

r L4v-I

Testing and Programming Actel Field Programmable Gate Arrays (FPGAs)

Vertical
Control

Vpp/2
"..----A---..,

L" L"
,-ll ,-ll

GND Vpp/2 Vpp

L"
rl

Vpp/2
Vpp

L,\
r

Vpp/2
"..----A---..,

~ ~I
,-ll r11

Vpp

Vpp

4~ .. 4~ 0 U ••
Vertical
Track --­

Segment

Cross
Antlfuse~

" 1""
"V V

" I"
..... "

" 1""
V

1"" 1""
'-[../ "V
1"1'\ 1""

"1,

Vertical
Pass ~ _.

Transistor ---....

roll

4;
Logic

Module ---

1"'" 1"'"

Horizontal
1"'" 1"'"

I"

"V
I"

"
I"

"
I"

" "1,
roll

rh r-. 1'1'\
I '+'

" 1'1'\
,,~ "

rh r-.. 1'1'\
'1/ I '+' ,~ " I-' '-

" . .1" "
~I'

Antifuse to ' ~~ pg'
1'\ be Pro rammed--;' I' 1'\ I'

,,~ " I-' '-
'1,
,-ll

I. 4.

" ;:Fi r-.. 1''''
'1/ I '+' " "

1'''' Track --­
Segment '-I-' " V ' V '1/ '

/
Horizontal

Control

" I' 1 L'~ I'~ ~

" " " "
rh.r. .1 L'~ I'~ ~

I ..'-V ,,~ " ~ " '
" I' I'~ '" ~ ,~ , "I-' 'I-'
1"\ I' rh. ..I"""".. .Lb.. .Lb.. .L~ b
~ ,~ l ..'-V ,

" "I-" 'I-'
1'\ 1'1'\ ~.L ~ .L~ b
~ ,~ ,

" 'I-" "I-'
'11 '1, :u
,-ll ,-ll .-II

,~ I~ '.
1'"\ I'~ 1"'\ , I-' 'I-'
1'"\ rhr-.. 1'1'"\ 1"'\

1/ '+'~ "
/

Horizontal
Pass Transistor

Horizontal
Antlfuse

I IF-v-

I r-v-I

; r-v-I

Vpp/2

Vpp/2

Vpp/2

GND

Vpp/2

GND

Vpp/2

Vpp/2

Figure 5. Programmable Interconnect

Programming Algorithm

In concept, the Actel FPGAs are programmed in a manner very
similar to many other programmable logic devices as well as
memories such as EPROMs. The programming algorithm
consists of the following steps:

1. An addressing sequence to select the antifuse to be
programmed.

2. A programming sequence where Vpp is applied in pulses
until the antifuse programs.

3. A soak or "overprogram" step to ensure unifonn, low antifuse
resistance.

4. A verify step to make sure the antifuse was properly
programmed.

Unlike a memory where an antifuse is addressed by applying a
parallel address, the FPGAs are addressed in a serial manner by
using the special DCLK (Data Clock) and SOl (Serial Data In)

pins. There is a large shift register that travels around the
periphery of the chip. Bits in this shift register can be used to
drive tracks to ground, Vcc, Vpp, or float. It is also possible to
sense the level on the track (high or low) and load this
infonnation into the shift register. By shifting in the correct
address, any antifuse can be selected for programming. The shift
register also plays a key role in testing the chip. This will be
discussed later.

The programming sequence starts with the precharge pulse
where Vpp/2 is applied to the Vpp pin. This is followed by a
programming pulse where Vpp is applied to the pin.
Following the program pulse, the voltage on the Vpp pin is
returned to a nominal value (about 6 V). See Figure 6 for a
typical Vpp wavefonn. The precharge/program pulse sequence
is repeated until either the selected antifuse programs or a
maximum number of pulses is exceeded (in which case the
antifuse is considered nonprogrammable and the device is
rejected).

4-5

I

Confirmation that an antifuse has programmed is determined by
monitoring the current on the Vpp pin. This current is very low
(typically < 10 J..Ia) until an antifuse programs. Once an antifuse is
programmed, an electrical connection is made between Vpp and
ground in which case currents in the range of 3 to 15 rnA may be
observed on Vpp. Once this current is observed, the antifuse is
considered programmed and enters the soak or "overprogram"
cycle. Here, extra pulses are applied to the antifuse to achieve
minimum antifuse resistance.

150-300 }As

6V

Figure 6. Vpp Waveform

ACT 1 Programming Algorithm

Current Parameters

V Program

V Precharge

V Verify

tProgram

t Precharge

I Threshold

I Max

Soak

Maxpulses

21 V

12.35 V

6.0V

150-300 j..lS

-2.5 mA (to detect programmed
antifuse)

15 mA (clamp current)

30-800 pulses

60,000

Test Modes of Actel FPGAs

The unique architecture described above allows outstanding
testability of unprogrammed devices at the factory. Details of the
various test modes available are as follows:

1. The shift register circling the periphery of the chip can be
both downloaded and uploaded. This allows the use of
various test patterns to ensure that the shift register is fully
functional.

2. All vertical and horizontal tracks can be tested for continuity
and shorts. There are several ways to implement these tests.
One way of doing continuity testing is to precharge the array,
tum on all vertical or horizontal pass transistors on a track,
drive the track low from one side of the chip, and read a low

4-6

on the other side. Shorts can be detected by driving every
other track low after precharge and reading back on the other
side. Note that these tests also confirm that the vertical and
horizontal pass transistors will tum on.

3. It is important for programming to make sure that all tracks
can hold the precharge level. By charging a track, floating it,
and waiting a predetermined amount of time, the track can be
read back and confirmed to be still high.

4. Leakage of vertical and horizontal pass transistors can be
tested for by driving one side of a track to a voltage via the
Vpp pin and grounding the other side. All pass transistors
except the one being tested are turned on. If excess current is
detected on the Vpp pin, the pass transistor is considered
defective.

5. There are one or two dedicated clock buffers that travel across
all horizontal channels. This buffer can be tested by driving
with the clock pin and reading for the proper levels at the
sides of the array.

6. There are two special pins referred to as Probe A and Probe B
(Actionprobes™). By entering a test mode, the shift register
can be made to address the internal output of any logic
module. This output is then directed to one of two dedicated
vertical tracks, which in tum can be observed externally on
the Probe A or B pins. This ability to observe internal signals
(even on unprogrammed parts) allows Actel to perform a
large number of functional tests. The first such test is the
Input Buffer Test. Input buffers on all 1/0 pins can be tested
for functionality by driving at the input pad and reading the
internal 1/0 output node through the probe pins.

7. Test modes exist to drive all output buffers low, high, or
tristate. This allows testing of Vol, Voh, 101, loh, and leakage
on alII/Os.

8. One of the key tests is the ability to functionally test all
internal logic modules. By turning on various vertical pass
transistors and driving from the top or bottom of the chip, any
of the eight to ten module inputs can be forced to a high or
low. The output of the module can then be read through the
Actionprobe pins. The logic module test allows 100 percent
fault coverage of each module. In addition, the architecture
allows modules to be tested in parallel for reduced test time.

9. Actel FPGAs have one or two dedicated columns on the chip
that are transparent to the user and used by the factory for
speed selection. These columns are referred to as the
"Binning Circuit." Modules in the columns are connected to
each other by programming antifuses. The speed of the
completed test circuit can then be tested. The Binning Circuit
allows the separation of units into different speed categories.
It also allows the speed distribution within each category to
be minimized.

10. There are several tests to confirm that the programming
circuitry is working. The first such test is a basic junction
stress/leakage test. The program mode is enabled and Vpp
voltage plus a guardband is applied to the Vpp pin. All

Testing and Programming Actel Field Programmable Gate Arrays (FPGAs)

vertical and horizontal tracks are driven to Vpp; thus, no
voltage is applied across the antifuses. The Ipp current is then
measured. If it exceeds its normal value, the device is
rejected.

11. There is a test to ensure that all antifuses are not programmed.
This is referred to as the Antifuse Shorts Test (or Blank Test).
The array is precharged and then the vertical tracks are driven
to ground. The horizontal tracks are then read to confirm that
they are still high (a programmed or leaky antifuse would
drive a horizontal track low). The test is repeated by driving
horizontal tracks low and reading vertical tracks.

12. The functionality of the programming circuitry can be
verified by programming various extra antifuses on the chip
that are transparent to the user. Some of these antifuses were
already described earlier when the Binning Circuit was
discussed. Actel FPGAs also have a Silicon Signature™. In
the ACT 1 family, the Silicon Signature consists of four words
of data, each word 23 bits in length. The first word is hard
wired (no antifuses) and contains a manufacturer ID number
as well as a device ID number. These numbers can be read by
a programmer and the proper programming algorithm would
be automatically selected. The other words contain antifuses
and are programmable. Actel is currently using bits in these
words to store information such as the chip's run number and
wafer number. Thus, each Actel FPGA has traceability down
to the wafer level. By programming this information, the
functionality of the programming circuitry is also tested.
Actel software also aIlows the user to program a design ID
and checksum into the Silicon Signature. By later reading this
back, the user can verify that the chip is correctly
programmed to a given design.

13. The most important antifuse test is the stress test. When this
test is enabled, a voltage applied to the Vpp pin can be applied
across all antifuses on the chip (the other side is grounded).
The voltage applied is the precharge voltage plus a significant
guardband. After the voltage is applied, the Antifuse Shorts
Test is again used to make sure no antifuses have
programmed. The antifuse stress test is effective at catching
antifuse defects. Becasue the reliability of the antifuse is
much more voltage dependent than it is temperature
dependent, this test is also an effective antifuse infant
mortality screen. See the Actel Reliability Report for details.

Burn-In of Actel FPGAs

As mentioned above, Actel has found that antifuse infant
mortality failures can be effectively screened out during electrical
testing, and it is thus unnecessary to do any kind of bum-in for
standard commercial production units to screen out antifuse
infant mortality failures. However, bum-in is still an effective
screen for standard CMOS infant mortality failure mechanisms,
and it is required for all military 883D products. MIL-883D
Method 1005 allows several types of bum-in screens. These can
be divided into two categories: steady-state (static) and dynamic.
Static bum-in applies DC voltage levels to the pins of the device

under test. The device mayor may not be powered up. Dynamic
bum-in applies AC signals to device inputs. These signals are
selected so that the device receives internal and external stresses
similar to what it may see in a typical application.

Static bum-in is by far the simplest to implement. By choosing
appropriate biasing conditions and load resistors, it is possible to
design a single bum-in circuit that could be used for both
unprogrammed and programmed devices. It would not matter
what pattern is programmed into the device. Static bum-in can be
an effective screen for some types of failure modes, particularly
those that may happen at device inputs or outputs (such as
screening for mobile ionic contamination). It is not, however,
very effective at stressing internal device circuits. Many internal
nodes may be biased at ground without receiving any voltage or
current stress. Signal lines will not toggle, and it may not be
possible to screen failure modes such as metal electromigration.

A properly designed dynamic bum-in can effectively stress
inputs, outputs, and internal circuits. However, dynamic bum-in
of ASIC products can be very expensive because
customer-specific bum-in circuits and bum-in boards must be
designed and built to properly stress each design implemented in
the ASIC. This results in large NRE costs and long lead times to
design and build these boards. From the standpoint of bum-in, a
programmed FPGA is essentially the same as a mask­
programmed ASIC, and it would require similar custom bum-in II
circuits to do a dynamic bum-in. However, Actel has been able to ~

use the testability features of its FPGA products to allow effective
dynamic bum-in of unprogrammed devices. This dynamic burn-
in allows us to stress circuits in a way that static bum-in would be
unable to duplicate.

During bum-in of unprogrammed units, test commands are
serially shifted into each device using the SOl pin and clocked
using the DCLK pin. There are three test modes shifted into each
device. The first test stresses each cross antifuse with a voltage of
Vpp--2 V (Vpp is normally set at 7.5 V so that each antifuse gets
5.5 V across it). This voltage is applied to all vertical tracks while
the horizontal tracks are grounded. Once enabled, the stress mode
is held for 10 ms.

The second test mode is identical to the first except that the
horizontal tracks are driven to Vpp-2 V while the vertical tracks
are grounded. Note that both of these modes are similar to the
antifuse stress test described earlier (although the stress voltage is
lower during bum-in). Not only do these tests stress the antifuses,
but they also toggle all routing tracks in the chip to Vpp-2 V and
ground. All input and output tracks to the logic modules are also
toggled.

The third test drives several I/O pins on the chip to a low state.
Prior to this, they are at high impedance state and held at V cc
through pull-up resistors. This test confirms that the bum-in is
being properly implemented by looking at these I/O pins to see if
they display the proper waveform. It also passes current through
each I/O as it toggles low.

Although the chip is unprogrammed, these tests allow us to apply
stresses to the inputs, outputs, and internal nodes that are similar

4-7

to what a programmed device may see in normal operation. Once
bum-in is completed, post bum-in testing as specified by
MIL-883D is performed (including PDA) to ensure that fully
compliant devices are shipped to the customer.

Conclusion

The description of the Actel FPGA architecture and the numerous
test modes attest to the outstanding testability of these devices.
All internal logic gates can be tested without programming
antifuses other than the few for the Binning Circuit and Silicon
Signature. Because Actel FPGAs are one-time programmable, the
only item that is not fully tested at the factory is the

4-8

programmability of all the individual antifuses. However, this is
done on the programmer while the units are being programmed.
Being able to test all internal gates allows Actel to achieve
functional yields superior to other one-time programmable
devices and equivalent to reprogrammable parts.

References

1. Henshaw, "User Requirements for Fault Coverage," Wescon
Proceedings, 1990, P. 179

2. AMD PAL Device Data Book, 1988, P. 3-106

~c/@I!
•

ACT Family
Reliability Report

Actel's field programmable gate arrays (FPGAs) are currently
available in three product families-ACT™ 1, ACT 2, and ACT 3.
The ACT 1 family consists of the A1010 and A1020, which are
1200- and 2000-gate FPGAs respectively. The ACT 2 family
includes the A1225, A1240, and A12S0 FPGAs, which offer
2500, 4000, and SOOO gates respectively. The ACT 3 family is the
newest family of FPGAs and contains products ranging from
1500 to 10,000 gates (A1415, A1425, A1440, A1460, and
A14100). This report will cover the ACT 1 and ACT 2 families; a
future addendum will include ACT 3 products.

The programming element for all Actel FPGAs is an
Actel-invented PLICE® (Programmable Low-Impedance Circuit
Element) antifuse. An antifuse is a device that is normally open
and in which an electrical connection is established by applying
programming voltage. Although Actel FPGAs are one-time
programmable devices, their unique architecture includes
complete functional testability.

ACT 1 products were originally manufactured using 2 /lIl1 design
rules (AlOlO/A1020). Later they were linearly shrunk in size by
20% to 1.2 /lIl1 (A 10 lOA/A 1020A). Recently, the family has been

Table 1. ACT 1 and ACT 2 Process Description

shrunk again to 1.0 /lIl1 (A 10 lOB/AI 020B). ACT 2 products were
first introduced with 1.2 /lIl1 design rules (A1225/A1240/A12S0)
and as a result of a 20% linear shrink are now available in 1.0 /lIl1
versions (A1225A/A1240A/A12S0A). ACT 3 products are
manufactured using a O.S /lIl1 process. In all cases, the technology
is a standard double metal, twin well, CMOS process in which
three additional masking steps have been added to implement the
PLICE antifuse. The main process parameters are shown in
Table 1. Because Actel FPGAs are manufactured with a
conventional CMOS process, normal CMOS failure modes are
observed. However, the addition of the antifuse adds another
structure that could affect the device's reliability.

To quantify the reliability of the antifuse, Actel has completed
numerous studies. These studies lead to the conclusion that the
time-to-failure of the antifuse is substantially more than 40 years
under normal operating conditions and that the combined
contribution of all antifuses to the gate array product's hard
failure rate is less than 10 FITs (Failures-in-Time or 0.001%
failures per 1000 hours).

Dimensions 2.0 11m Process 1.2 11m Process 1.0 11m Process 0.8 11m Process

Width Space Width Space Width Space Width Space
(11m) (11m) (11m) (11m) (11m) (11m) (11 m) (11m)

N+ 4.0 2.0 3.2 1.6 2.4 1.2 1.8 1.4
p+ 4.0 2.0 3.2 1.6 24 1.2 1.8 1.4
Cell PolySilicon 2.0 3.6 2.1 2.4 1.5 0.9 1.4 1.0
Gate PolySilicon 1.6 2.4 1.6 1.6 1.2 1.2 1.0 1.2
Metal I 4.0 2.0 3.2 1.6 2.2 1.2 1.5 1.3
Metal" 4.8 2.2 3.8 1.8 2.1 1.6 1.5 1.5
Contact 1.8 x 1.8 2.0 1.2 x 1.2 1.8 1.0 x 1.0 1.0 1.0 x 1.0 1.2
Via 2.0 x 2.0 2.0 1.3 x 1.3 1.9 1.0 x 1.0 1.0 1.0 x 1.0 1.2

Thickness 2.0 11m Process 1.2 11m Process 1.0 11m Process 0.8 11m Process

Normal Gate Oxide 25 nm 25 nm 20 nm 18 nm
High Voltage Gate Oxide 40 nm 40 nm 32.5 nm 35 nm
Cell PolySilicon 450 nm 450 nm 450 nm 400 nm
Gate PolySilicon 450 nm 450 nm 450 nm 400 nm
Metal I 900 nm 900 nm 750 nm 750 nm
Metal II 1000 nm 1000 nm 1050 nm 1050 nm
Passivation 1000 nm 1000 nm 1100 nm 1100 nm

Compositions

Metal I AI- SI (1%) - Cu (5%) AI- SI (1%) - Cu (5%) TilTiNI Ai - Si - Cu TilTiN/Ai - Si - Cu
Metal" AI- SI (1%) - Cu (5%) AI- SI (1%) - Cu (5%) Ti/AI- Si - Cu Ti/AI- Si - Cu
Passivation 300 nm Si02, 300 nm Si02, 300 nm Si02, 300 nm Si02,

800 nm SiN 800 nm SiN 800 nm SiN 800 nm SiN

© 1993 Actel Corporation
4-9

I

The PLiCE Antifuse

The antifuse is a vertical, two-terminal structure. It consists of a
polysilicon layer on top, N+ doped silicon on the bottom, and an
ONO (oxide-nitride-oxide) dielectric layer in between. A
Scanning Electron Microscope (SEM) cross section of the
antifuse is shown in Fi~ure 1. The size of the antifuse is 3.2 ~2,
1.4 ~2, and 1.0 ~ for the 2.0 ~, 1.2 ~, and 1.0 ~
processes respectively. This small size, along with a low
programmed on-resistance (typically 500 ohms) makes the
PLICE antifuse an attractive alternative to EPROM, EEPROM, or
RAM as a programming element in a large programmable gate
array. In the unprogrammed state, the resistance of the antifuse is
more than 100 megohms. Actel FPGAs may contain anywhere
from 112,000 anti fuses (A 10 10) to 750,000 (AI280). However,
typical applications that utilize 85% of the available gates require
you to program only 2% to 3% of the available antifuses.

The Unprogrammed Antifuse

To evaluate antifuse reliability, Actel has developed models and
collected data for both unprogrammed and programmed
antifuses. 1,2 We'll consider the unprogrammed antifuse first.
Since the antifuse is a dielectric sandwiched between poly silicon
and silicon, the model to evaluate its reliability in the
unprogrammed condition is the same as that used for MOS
transistor gate oxides.3 The parameter to evaluate is the dielectric
time-to-breakdown (tbd)' This parameter is a function of the
electric field across the dielectric, as well as temperature. It has
the following relationship.3

tbd = to * exp(GIE) (1)

Where tbd is the time-to-breakdown in seconds, to is a constant in
seconds, E is the electric field in Mv/cm, and G is the field
acceleration factor in Mv/cm. (G is temperature dependent and
will be discussed later.)

By taking the log of both sides of equation 1, we have:

In (tbd) = G * (lIE) + In(to) (2)

From experimental data, we can plot the log of the
time-to-breakdown of the antifuse at various temperatures versus
the reciprocal of the electric field across it and derive G from the
slope and to from the y-intercept. Actel has done this on single
antifuses, large antifuse capacitors, test arrays of 28,000
antifuses, and actual FPGA products. These antifuse areas range
from 3.2 ~2 to 0.35 mm2. Figure 2 shows plots of data collected
on antifuses of different sizes.

There is some discussion in the literature regarding whether
time-to-breakdown depends on E or lIE. To verify the validity of
equation 2, we conducted the following experiment. Large 200 ~
by 200 ~ (0.04 mm2) area capacitors were packaged and then
stressed at more than 11 different voltages. Capacitors with
thicknesses ranging from a low of 8.0 nm to a high of 9.5 nm were
chosen from two different wafer runs. A total of 610 capacitors
were used in the experiment. The test splits and sample sizes are
summarized in Table 2. The distribution of time-to-breakdown of
the dielectric at each voltage is shown in Figure 3. In Figure 4, the
median of the cumulative failure percentage rates (t50) from
Figure 3 is plotted versus lIE. In Figure 5 the median failure
percentage is plotted versus E. By comparing the two figures, the
validity of the lIE model is clearly established. A more detailed
statistical verification of the lIE model for the ONO antifuse is
given by S. Chiang, eta1.2

Metal 2

Metal 1

BPSG

Polysilicon

ONOAntifuse

N+ Diffusion

Figure 1. Antifuse SEM Cross Section

4-10

ACT Family Reliability Report

Table 2. Field Accelerated Test Data for Two Lots with Thicknesses Ranging from 8 nm to 9.5 nm.
(The test was done on a 0.04 mm2 area capacitor.)

Lot A Lot B

Voltage Tox E·Field # of tso Voltage Tox E·Field
(V) (nm) (MV/cm) Capacitors (sec) (V) (nm) (MV/cm)

13.5 8.3 16.2 22 4.2 e-3 14.0 8.7 15.9

12.5 8.3 15.1 22 3.7 e-2 13.0 8.7 14.9

12.0 8.3 14.4 22 1.5 e-1 12.5 8.7 14.3

11.5 8.3 13.8 22 8.6 e-1 12.0 8.7 13.7

11.0 8.4 13.1 22 4.7 eO 11.4 8.7 13.1

10.5 8.4 12.5 9 5.8 e1 11.2 8.7 13.1

10.0 8.3 12.0 6 3.2 e2 10.8 8.7 12.5

9.5 8.3 11.4 6 2.5 e3 10.2 9.0 12.0

9.0 8.3 10.7 36 2.5 e5 9.7 9.0 11.3

8.5 8.3 10.2 15 2.335 9.0 8.7 10.3

8.0 8.3 9.6 59 1.5 e6 9.0 9.3 9.7

Subtotal of tested capacitors: 241

Total of tested capacitors:

of
Capacitors

25

25

25

25

25

45

45

45

45

32

32

369

610

TODS (sec)
1.0E+10--~

1.0E+09

1.0E+08

1.0E+07

1.0E+06

1.0E+05

1.0E+04

1.0E+03

1.0E+02

1.0E+0 1

1.0E+00

1.0E-01

1.0E-02

1.0E-03

Single Antifuse: 3.2um2

Capacitor: O.04mm2

Product: 0.35mm2

Single Antifuse

1.0E-04L-----L-----~--~~--~~--~~--~~--~----~

4 5 6 789

100/E (cm/MV)

Figure 2. Field Accelerated Test

10 11 12

tso
(sec)

9.8 e-3

5.0 e-2

2.4 e-1

1.3 eO

9.0 eO

8.0 e1

3.52 e2

2.88 e3

2.88 e3

3.35 e5

2.22 e6

4·11

I

4-12

TDDB(sec)
1.0E+08...---------------------------,

MV/cm

1.0E+07

1.0E+06

1.0E+05

1.0E+04

1.0E+03

1.0E+02

1.0E+01

1.0E+00

1.0E-01

1.0E-02

1.0E-03

1.0E-04
0

.
1 12

)(')(')(~~~~~~'J<AXX X X

X XXX ~DDD

o OOO~*~~(****** *
** * * +++++++ +

+ + ++++-t++-++t+
+ ++

. . ..
.........

6. 9.7

0 10.3

X 11.4

0
12.5

*
13.0

+ 14.0

16.0

5 10 20 30405060 70 80 90 95 9899 99.9

Cumulative Failure (%)
Figure 3. lDDB Distribution

TDDB (sec)
1.0E+08~--------------------------~

1.0E+07

1.0E+06

1.0E+05

1.0E+04

1.0E+03

1.0E+02

1.0E+01

1.0E+OO

1.0E-01

1.0E-02

+ Lot A o Lot B

1.0E-03~----~----~----~~----~----~----~----~

5 6 7 8 9 10 11 12

100/E (em/MV)

Figure 4. ONO Reliability (1/E Model)

ACT Family Reliability Report

lDDB (sec)
1.0E+08~--~

1.0E+07

1.0E+06

1.0E+05

1.0E+04

1.0E+03

1.0E+02

1.0E+01

1.0E+OO

1.0E-01

1.0E-02

+ Lot A o Lot B

1.0E-03~--~----~----~--~----~----~----~--~----~

8 9 10 11 12 13 14 15 16 17

E (MV fern)

Figure 5. ONO Reliability (E Model)

To quantify the temperature dependence of the
time-to-breakdown, we use the Arrhenius equation to determine
the semiconductor failure rate of a given process (failure mode)
over temperature:

R = RO * exp (EafkT) (3)

where R is the failure rate, Ro is a constant for a particular
process, T is the absolute temperature in degrees Kelvin, k is
Boltzmann's constant (8.62 X 10-5 eV;oK) and Ea is the
activation energy for the process in electron volts. To determine
the acceleration factor for a given failure mode at temperature T 2
as compared with temperature T 1 we use equation 3 to derive:

(4)

where A is the acceleration factor.

In Figure 6 we plot t50 at different temperatures and electric
fields. This plot shows that time-to-breakdown is dependent on
temperature as well as electric field. For a given
time-to-breakdown of a dielectric, the expression,

Ea = k *dln(tbd)/d(Iff) (5)

gives us the activation energy2. The slope in Figure 6 represents
the activation energy Ea' Ea also shows a linear correlation with
lIE as shown in Figure 7. The field acceleration factor, G, is also
temperature dependent, that is,

G(T) = G(298) * [1 + 5/k * {Iff - 1/298}] (6)

where G(298) is the field acceleration factor at room temperature
(25°e = 298°K) and 0 (in eV) characterizes the temperature
dependence of G.

By combining equations 1, 5, and 6, Ea can be related to G(T) by:

Ea = G(298) * 0 IE - Eb (7)

where 0 and Eb are treated as fitting parameters between Ea
andG.

From the data shown in Figures 3, 4, 6, and 7, we can obtain
values of G(298), 0, Eb, and Ea regardless of antifuse area.
Typical values of G(298), 0, Eb, and Ea at 5.5 V are 480 MV/cm,
0.014 eV, 0.43 eV, and 1 X 10-16. By combining equations 1,6,
and 7, we obtain an overall equation for the time-to-breakdown
for a given temperature and E field:

tbd = to * exp{(G(298)1E) [1+(5/k) * (lff-1/298)] - (E~) *
OfT -1/298) } (8)

By applying the values for the constants as defined above, the
time-to-breakdown for the antifuse dielectric can be derived for a
given temperature and electric field. In Table 3, we have used
equation 8 to solve for the acceleration factors associated with
powering up a device at high voltage or temperature or both. Then
we compare the failure rate with more typical voltages or
temperatures. We can see the effect of temperature by comparing
125°e at 5.5 V with 55°e at 5.5 V. The Actel model (equation 8)
gives us an acceleration factor of 55.3, or 6.3 equivalent years for

4-13

II

a 1000 hour bum-in at 125°C. Note that this acceleration factor of
55.3 is close to the value of 41.8 derived from the Arrhenius
equation (equation 4) using an activation energy of 0.6eV and the
same temperatures. We use 0.6 eV (and 0.9 eV) as the activation
energy of a general semiconductor failure mode when calculating
failure rates based on high temperature operating life (HTOL)
later in this report.

We can also see from Table 3 that a small change in voltage is a
much more effective reliability screen than is a change in
temperature. For example, if we compare 25°C at 5.75 V to 25°C
at 5.25 V, we see that a change of just a half volt yields an
acceleration factor of 1092.6, or 124.7 equivalent years per 1000
hours at 5.75 V. This strong dependence on voltage allows Actel
to screen antifuse infant mortality failures during normal wafer
sort testing simply by applying a higher than normal voltage
across all antifuses. Because antifuse infant mortality failures can
be detected and effectively screened, Actel FPGAs have as high a
level of reliability as standard CMOS-processed products.

To establish that the antifuse contributes less than 10 FITs (at 5.5
V, 125°C) to the overall product reliability, Actel has calculated
the product failure rates due to the antifuse using three different
techniques. In the first case, we evaluated the tbd distribution of
125 A1010 units in which the antifuses received an 11 V stress.
Using Ea = 0.9 eV and extrapolating to 5.5 V, we found that the
1 % antifuse failure lifetime at 5.5 V is well over 40 years and less
than 10 FITs.

TDDS (sec) 125G 85G
1.00E+07

1.00E+06

1.00E+OS 9.7

1.00E+04 10.2

10.8 -t-
1.00E+03

11.3 *'"'
1.00E+02 11.8

0
LT"

6 1.00E+01 12.3 6.

1.00E+00

1.00E-01 14.3 k g

1.00E-02
2.2 2.4 2.6 2.8

The second method of determining product reliability was to look
at the results of production wafer sorts. As mentioned earlier, all
antifuses receive a high voltage stress at wafer sort to screen out
infant mortality failures. Specifically, all antifuses receive the
equivalent of two 10 V stresses for one second each. The first
stress is to screen out clearly defective antifuses. The second
stress is to catch weaker antifuses that could cause problems with
product programming yield or infant mortality failures. Actual
failure rates observed on the A 10 10 over ten runs for these two
stresses (FS-l and FS-2) demonstrate average yield loss at the
second stress screen of less than 0.3%. By extrapolating this yield
loss to a normal 5.5 V operating voltage, we thus conclude that
the contribution of the antifuse to the product's lifetime is less
than 10 FITs.

The third technique of determining the product's antifuse failure
rate is by performing an accelerated bum-in of Actel FPGA
products. The acceleration is accomplished by using both higher
voltage (5.75 V to 6.0 V) and higher temperatures (125°C to
150°C). Units are programmed to a specific design and exercised
in a manner similar to what may occur in a real application. For a
detailed description of the test and the results, see "High
Temperature Operating Life" later in this report. The results
indicate that the antifuse contributes less than 10 FITs to the
product's overall failure rate; it is thus an insignificant factor in a
product lifetime of 40 years at 5.5 V and 125°C.

5SG 25G

D :
6.

6

Z ..2:

3 3.2 3.4 3.6

1000/T (1/Kelvin)

Figure 6. Dependence of E-Field Acceleration on Temperature

4-14

ACT Family Reliability Report

Activation Energy (ev)
0.9

-
• S e 'ie~ 1 -t-.Reg l seri is 1) /

-

/'
/'"

/

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

-----V

o
-0.1

-0.2

-0.3

-0.4

-0.5

-

/"
V

-----//

/

I

¥
/'

~?
/
~

/:
:/

I I

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

100/E (cm/MV)

Figure 7. Activation Energy versus 1/E

Table 3. Acceleration Factor versus Operating Conditions (Unprogrammed Antifuse)

to = 1 x 10-16 sec., G = 480 MV/cm, f = 0.014 eV, Eb = 0.43 eY.

TemperatureiVoltage Acceleration Equivalent Years

Factor for 1000 Hour
Model High Typical 125°C Burn-In

Fixed Voltage 125°C/5.5 V 55°C/5.5 V 55.3 6.3

125°C/5.5 V 90°C/5.5 V 6.1 0.7

Fixed Temperature 25°C/5.5 V 25°C/5.25 V 38.8 4.4

25°C/5.75 V 25°C/5.25 V 1092.6 124.7

25°C/5.75 V 2SoC/S.S V 28.2 3.2

25°C/6.0 V 2soC/5.25 V 23321 2662

25°C/6.0 V 2soC/5.5 V 601.8 68.7

Varied Temperature and Voltage 125°C/5.5 V 5soC/5.25 V 1787.2 204.0

125°C/5.75 V 5soC/5.5 V 987.8 112.8

125°C/5.75 V 90°C/S.5 V 109.4 12.5

12soC/6.0 V 5soC/5.S V 13865 1583

125°C/6.0 V 90°C/5.5 V 1535.9 175.3

Fixed 0.6 eV Activation Energy 150°C/5.5 V 5soC/5.5 V 117.6 13.4
Voltage-Independent 150°C/5.5 V 90°C/5.5 V 15.2 1.7

125°C/5.S V 5soC/5.5 V 41.8 4.8

125°C/5.5 V 90°C/5.5 V 5.4 0.6

4-15

The Programmed Antifuse

A Kelvin test structure as shown in Figure 8 was used to evaluate
the reliability of a programmed antifuse. Here, a strip of
poly silicon crosses an N+ diffusion. The antifuse is located at the
intersection of the two. There are metal-to-poly contacts at nodes
1 and 3, as well as metal-to-N+ contacts at nodes 2 and 4. A
four-tenninal Kelvin structure is useful should a failure occur,
because antifuse opens can be separated from other problems
(such as polysilicon or contact opens) simply by checking for
continuity on appropriate pairs of nodes.

N+
Diffusion - 0 2

GND
+V

p oly-

0
3

40

1

0

Figure 8. Antifuse Kelvin Structure

Test devices were stressed by forcing a constant 5 rnA current
from polysilicon to N+ through the antifuse at 250°C. Note that
this stress is far greater than a programmed antifuse would be
subject to in a device under nonnal operating conditions. Because
the antifuse is used to connect two networks, there is usually no
voltage across it; hence, no current passes through. A voltage will
appear across the antifuse only momentarily while a network
switches from low-to-high or high-to-Iow.

During the 5 rnA, 250°C stress, the voltage across the antifuse
was monitored. Figure 9 is a plot of the voltage as a function of
stress time. A sudden increase in voltage indicates that an open
occurred. As can be seen from the figure, failures occurred at
about 300 hours of stress. However, by probing on nodes 3 and 4
of the Kelvin structure, we were able to measure continuity and
detennine that the cause of failure was not the antifuse. The failed
units were then examined on an SEM, where the cause of failure
was revealed as metal-to-poly contact electromigration. This is a
well-known failure mode in CMOS, which has been detennined
to have an activation energy of 0.9 eV. Using equation 4, we can
predict a lifetime under normal operating conditions in excess of
40 years for this failure mode. The lifetime of the programmed
antifuse is even longer.

4-16

12

Antifuse Accelerated Ufetest ,.- ,- -- ,,'
11

10

250°C 5 mA Test ,

~ ~ P-~
~

... ~ I.:::::

" I'
I

,
3l
~ c: r
.:(I

~
~

I ,
CD

1
~

I

I
I
I

I I
_IU- J

- 1--::... --p.. ,,' ~ -' p ~ -- .-
""

2
24487296120144168192216240264288312336360384408432456

Elapsed Time (Hours)

Figure 9. Voltage Across Antifuse versus Stress Time

Actel FPGA Product Reliability

Product reliability was evaluated on fourteen Actel products: a
64K PROM (PROM64), a 300-gate FPGA (l003), 1200-gate
FPGAs (A 101O/A 10 lOA/A 10 lOB), 2000-gate FPGAs
(A1020/A1020A/AI240B), 2500-gate FPGAs
(AI225/AI225A), 4000-gate FPGAs (AI240/AI240A), and
8000-gate FPGAs (AI280/AI280A). The PROM64 product
uses the same process and antifuse as the FPGAs. The 1003 is a
test device that is a smaller version of the AlOlO/A1020; it was
used for early characterization and qualification. As mentioned
earlier, the "A" and "B" versions of the FPGAs are linear
shrinks of the original 2.0 /JIll (ACT 1) and 1.2 /JIll (ACT 2)
products. Reliability tests were conducted on units assembled
in many different package types as listed in Tables 6 through
11. Package characteristics for Actel FPGAs are shown in Table
4.

High Temperature Operating Life (HTOL)

The intent of an HTOL test is to operate a device dynamically at a
high temperature (usually 125°C or 150°C) and extrapolate the
failure rate to typical operating conditions. This test is defined by
Military Standard-883 in the Group C Quality Conformance
Tests. The Arrhenius relationship in equations 3 and 4 is used to
do the extrapolation. To use the Arrhenius equation, we need to
know the activation energy of the failure mode. Activation
energies of antifuse failure modes were discussed previously.
Table 5 gives the activation energies of general semiconductor
failure modes.

ACT Family Reliability Report

Table 4. Actel FPGA Package Characteristics

Characteristics PLCC PQFP

Sumitomo 6300 H Sumitomo 6300 H Molding Compound

Filler Material

Lead Frame Material

Lead Plating Composition

Die Attach Material

Fused silicon 70% by weight
Copper (Olin 150 or equiv.)

Fused silicon 70% by weight

Copper (Olin 150 or equiv.)

Solder, 300-800 micro inches (!lin)

Silver Epoxy

Solder, 300-800 micro inches (!lin)

Silver Epoxy

Flame Retardance

Bond Wire

Bond Attach Method

Characteristics

Body Material
Lid Material

Sealant

UL-94, V-O

Gold, 1.3 mil diameter

Thermosonic

JQCC

Ceramic

Ceramic

Glass

UL-94, V-O

Gold, 1.3 mil diameter

Thermosonic

PGA/CQFP

Alumina

Kovar, 50 !lin gold plated
Au/Sn Solder

Lead Frame Material
Bond Wire

Bond Attach Method

Lead Finish

Alloy 42 (40% Nickel, 60% Iron)

99% Aluminum, 1 % Si, 1.25 mil dia.

Ultrasonic

N/A
99% Aluminum, 1 % Si, 1.25 mil. dia.

Ultrasonic

Die Attach Material

I Thermal Resistance (DC/Watt)

Package 44 PLCC 44 JQCC

8JC 15 8

8JA (still air) 52 38

Package

8JC

8JA (still air)

100 PQFP

13

55

100 PGA

5
35

Solder dip, 200 !lin. min.

Silver loaded glass

68 PLCC 68 JQCC

13 8
45 35

132 PGA 144 PQFP

5 15

30 35

Six different data patterns are programmed into the 64K PROMs
for HTOL testing: a diagonal of zeros (98% programmed); a
diagonal of ones (2% programmed); a topological checkerboard
pattern (50%); all zeros (100%); all ones (0%); and an
incrementing pattern (50%). During bum-in, all addresses are
sequenced through at a 1 MHz clock rate. The outputs are enabled
and loaded with a 100 ohm resistor to a 2 V supply. This results in
an output loading of equal to or greater than the specified limits of
loh = -4 rnA and 101 = l6mA. In most cases, the PROMs are
burned in at Vcc = 5.5 V and at 125°C. However, voltage
acceleration experiments are also done at 7 V, 125°C and 8 V,
25°C.

The PROM is useful for antifuse reliability studies for several
reasons. First, it allows us to program anywhere from 0% to
100% of the antifuses, although we program only 2% to 3% of the
antifuses for a given design in an FPGA device. Also, an antifuse
failure on the PROM is very noticeable because the antifuse is
directly addressed. A weak fuse would show an Ae speed drift,
and a failed antifuse would read the wrong data.

For evaluating the 1003/AlOl0/A 1020/A 1 225/A 1 240/Al 280,
we programmed an actual design application into most devices
(some units were burned-in unprogrammed) and performed a
dynamic bum-in by toggling the clock pins at 1 MHz. The
designs selected utilized 85% to 97% of the available logic

A42 or Kovar

Silver loaded glass

80 VQFP 84 PLCC 84 JQCC 84PGA 84 CQFP

12 12 8 8 5

68 44 34 33 40

160 PQFP 172 CQFP 176 PGA 207 PGA 208 PQFP

15 8 8 8 15

33 25 23 22 33

modules and 85% to 94% of the I/Os. Outputs were usually
loaded with 1.2 K ohm resistors to V cc, which results in greater
than 4 rnA of sink current as each I/O toggled low. Under these
conditions, each unit typically draws a minimum of 100 rnA
during dynamic bum-in. Most of this current comes from the
output loading while about 5 rnA is from the device supply
current. For a 125°C bum-in, this results in junction temperatures
of at least 150°C for plastic packages and 145°C for ceramic
packages (depending on package type). Most bum-in was done at
5.75 V or 6.0 V (for voltage acceleration of the antifuse) and
125°C or 150°C.

Table 5. CMOS Failure Modes

Failure Mechanism

Ionic Contamination

Oxide Defects

Hot Carrier Trapping in Oxide
(Short Channels)

Silicon Defects

Aluminum-Silicon-Copper
Electromigration

Contact Electromigration

Electrolytic Corrosion

Activation Energy

1.0 eV

0.3 eV

-0.06 eV

0.5 eV

0.6 eV

0.9 eV

0.54 eV

4-17

I

As mentioned previously, some units are burned in
unprogrammed. To accomplish this, we use a special bum-in
circuit that allows us to use the product's test features to serially
shift in commands to the chip during bum-in. All internal routing
tracks are toggled between V ss and V cc. When vertical tracks are
at V cc, horizontal tracks are held at V ss and vice versa. Thus, all
antifuses that can connect vertical and horizontal tracks receive a
full V cc stress in both directions. Since vertical tracks connect to
logic module inputs and outputs, these are also toggled between
Vss and Vcc. Finally, a command is sent to the chip to toggle
some external I/O pins between Vss and Vcc. This special
dynamic bum-in circuit is the same one used by Actel to screen
unprogrammed products to MIL-883D requirements. Since
virtually all antifuses receive a full Vcc stress, this screen is much
more effective at catching unprogrammed antifuse infant
mortality failures than is burning in programmed devices where
only a fraction of the antifuses are stressed.

A summary of the HTOL data collected by Actel is shown in
Table 6. A failure is defined as any device that shows a functional
failure, exceeds datasheet DC limits, or exhibits Ae speed drift.
Among the parts tested, no speed drift, faster or slower, was
observed within the accuracy of the test set-up. Failure rates at
55°C, 70°C, and 90°C were extrapolated by using the Arrhenius
equation and general activation energies of 0.6 eV and 0.9 eV.
Poisson statistics were used to derive a calculated failure rate with
a 60% confidence level. Using Poisson statistics is valid for a
failure rate that is low and a failure mode that occurs randomly
with time. At 55°C, the calculated failure rate with 60%
confidence level was found to be 26 FITs or 0.0026% failures per
1000 hours. This number was derived from over 8.6 million
device hours (125°C) of data. There were eight total failures out
of 6598 tested units. Only one occurred in the first 80 hours of
bum-in (of a 1003 product). Seven of the eight failures observed
were due to common CMOS failure modes (gate oxide failure,
silicon defects, or open via). Only one unit failed because the
antifuse failed. This unit was burned in in the unprogrammed
state to stress all antifuses. It was stressed at 6 V, 150°C. It passed
at 168 hours and failed at 650 hours because an antifuse became
programmed. By passing at 168 hours, the unit received a total
stress well in excess of 100 years of operation at 5.5 V, 125°C
(using equation 8). With only one antifuse related failure in 8.66
million device hours at 125°C, we use equation 8 to derive that
this one antifuse failure at 6 V is significantly less than 10 FITs at
5.5V.

4-18

Unbiased Pressure Pot Test

This test is used to qualify products in plastic packages. Units are
placed in an autoclave (pressure pot) and exposed to a saturated
steam atmosphere at 121°C and 15 psi. Problems with bonding,
molding compounds, or wafer passivation can cause metal
corrosion to occur in this atmosphere. The existence of metal
corrosion is detected during a full electrical test of the device
following exposure in the autoclave.

A total of 1771 units from 44 wafer runs were evaluated. Read
points were taken at 96, 168,240, and 336 hours. There were a
total of seven failures (Table 7). Five failures were found to be
due to bond wires lifting off bond pads. These were caused by
assembly problems that occurred only in our first lots of plastic
units. The failures were caused by temperature and not by metal
corrosion. The assembly problems have been corrected, with no
further failures observed. Two AlOlOA units failed at 336 hours
because of metal corrosion at the bond pads, but both units had
passed at 168 hours.

Biased Moisture Life Test (85/85)

In this test, the units are placed in a chamber at a temperature of
85°C and a relative humidity of 85%. A voltage of 5.5 V is
applied to every other device pin while other pins are grounded.
5.5 V is applied to Vcc while Vss is grounded. This test
effectively detects die-related and plastic package-related
problems.

As shown in Table 8, a total of 1277 units have been stressed.
There have been three failures. Two failures were due to lifted
bond wires; these units came from the same lot in which we saw
failures in the steam pressure pot. The 1000-hour failure is
nonfunctional due to an open Metal 1 line.

Highly Accelerated Stress Test (HAST) at
131°C/85% Humidity

As in the 85/85 test, units receive an alternate pin bias (5.5 V and
o V) but are exposed to a higher pressure and higher temperature
environment. Fifty hours of HAST is generally considered to be
equivalent to 1000 hours of 85/85. As summarized in Table 9, 716
units from 18 wafer runs have been tested with no failures.

Temperature Cycling

This test checks for package integrity by cycling units through
temperature extremes. Data was taken for cycles of DoC to 125°C,
-40oe to 125°C, and --65°e to 150°C. Both programmed and
unprogrammed units were placed on temperature cycle. As shown
in Table 10, of 3151 units tested to date, there have been no
failures.

ACT Family Reliability Report

Table 6. High Temperature Operating Life (HTOl) Summary

Device Equiv. Equiv. Equiv.

Product Total Units
Total Wafer Hours at

Failures
Dev. Hrs. Dev. Hrs. Dev. Hrs.

Runs 125°C at 55°C at 70°C at 90°C
(0.6 eV) (0.6 eV) (0.6 eV) (0.6 eV)

64K PROM 295 4 6.1BE+OS 0 2.59E+07 1.02E+07 3.34E+06

1003 238 3 3.60E+OS 1.S0E+07 5.94E+06 1.94E+06

A1010 703 10 1.17E+06 4.87E+07 1.93E+07 6.29E+06

A1010A 618 13 8.20E+OS 3.43E+07 1.36E+07 4.43E+06

A1010B S36 S S.OBE+OS 1 2.12E+07 8.39E+06 2.74E+06

A1020 334 5 2.16E+OS 0 9.04E+06 3.57E+06 1.17E+06

A1020A 1720 29 2.61 E+06 3 1.09E+OB 4.32E+07 1.41 E+07

A1020B 612 10 5.72E+OS 0 2.39E+07 9.46E+06 3.09E+06

A1225 207 2.07E+OS 0 8.66E+06 3.42E+06 1.12E+06

A122SA BO 2 8.00E+04 0 3.35E+06 1.32E+06 4.32E+OS

A1240 48S 7 6.11E+OS 0 2.S5E+07 1.01 E+07 3.30E+06

A1240A 130 3 1.30E+05 0 5.44E+06 2.15E+06 7.02E+OS

A1280 586 12 7.03E+05 2.94E+07 1.16E+07 3.80E+06

A1280A 54 2 5.40E+04 0 2.26E+06 8.93E+OS 2.92E+OS

Totals 6598 103 8.66E+06 8 3.62E+08 1.43E+08 4.68E+07

Overall FITs I Ambient Temperature Activation Energy Observed 60% Confidence

90 0 e 0.6 EV 171 202

70 0 e 0.6 EV 56 66

55°e 0.6 EV 22 26

90 0 e 0.9 EV 66 78

70 0 e 0.9 EV 12 15

55°e 0.9 EV 3 4

High Temperature Operating Life

Product Run # Package # Units Pattern # Hours # Failures Temp. Vee

64KPR DG1060 24 SB 59 6 PATS 2000 0 125 5.50

64KPR DG1064 24 SB 36 6 PATS 2500 0 125 5.50

64KPR JB13 24 SB 40 6 PATS 2000 0 125 5.50

64KPR JB13 24 SB 40 6 PATS 2000 0 125 7.00

64KPR JB13 24 SB 10 6 PATS 2000 0 25 8.00

64KPR JB14 24 SB 50 6 PATS 2500 0 125 5.50

64KPR JB14 24 SB 50 6 PATS 2500 0 125 7.00

64KPR JB14 24SB 10 6 PATS 2500 0 25 8.00

1003 DG1063 84 JLCC 25 AL7C 2000 0 125 5.75

1003 DG1065 84 JLCC 32 AL7C 2000 0 125 5.75

1003 DG1065 84 JLCC 159 AL7C 500 150 7.00

1003 DG1067 84 JLCC 22 AL7C 1000 0 125 5.75

4-19

Table 6. High Temperature Operating Life (HTOL) Summary (Continued)

High Temperature Operating Life

Product Run# Package

4-20

1010

1010

1010

1010

1010

1010

1010

1010

1010

1010

1010

1010

1010

1010

1010A

1010A

1010A

1010A

1010A

1010A

1010A

1010A

1010A

1010A

1010A

DG1042

DG1047

DG1073

DG1077

JB13

JB13

JB13

JB14

JB14

JB22

JB42

JB44

JB46

TI24

JG03

JG03

TI24

TI29

TI31

TI32

TI33

TI35

TI1104

TI1243

TI1263

TI1297

E01-1

E02-1

84 JLCC

84 JLCC

84 JLCC

84 JLCC

84 PLCC

68 PLCC

84 JLCC

68 PLCC

68 JLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

68 PLCC

1010B TI2072857 68 PLCC

TI2072858

1010B

1010B

1020

1020

1020

1020

1020

1020

1020

TI2072860

U1G-01

U1G-02

DG1133

JB22

JB22

JB25

JB26

JE03

JB33

68 PLCC

68 PLCC

84 JLCC

84 PLCC

84 JLCC

84 PLCC

84 PLCC

84JQCC

84 JLCC

Units

3

2

10

15

32

126

64

100

50

100

47

40

49

65

59

117

74

53

26

9

19

15

107

69

70

400

79

57

29

16

32

16

32

104

105

Pattern

4BCNTR

4BCNTR

AL9B

AL9B

AL9B

AL9B

AL9B

AL9B

AL9B

AL9B

VFUSE

VFUSE

VFUSE

VFUSE

VFUSE

VFUSE

VFUSE

AL9B

AL9B

AL9B

AL9B

AL9B

AL9B

AL9B

AL9B

AL9B

AL9B

AL9B

AL 11

AL 11

AL 11

AL11

AL 11

AL11

AL 11

Hours

1000

1000

2000

2000

2000

2000

2000

2000

2000

1000

1000

1000

1000

2000

2000

1000

2000

1000

2000

2000

2000

2000

1000

1000

1000

1000

1000

500

2000

1000

1000

1000

500

186

80

Failures

o
o
o
o
o
1

o
o
o
o
o
o
o
o
o
o
o
1

o
o
o
o
o

o
o

o
o
o
o
o
o
o
o
o

Temp.

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

150

150

Vee
5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

Table 6. High Temperature Operating Life (HTOL) Summary (Continued)

High Temperature Operating Life

Product Run # Package

1020A JF01 84 JLCC

1020A JF01 84 PLCC

1020A JF02 84 JLCC

1020A JF02 84 JLCC

1020A JF04 84 PLCC

1020A JF04 84 PLCC

1020A JF14 84 PLCC

1020A JF14 84 PLCC

1020A JF37 84 PLCC

1020A JF37 84 PLCC

1020A JF39 84 PLCC

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

1020A

JF39 84 PLCC

JF42 84 PLCC

JF42 84 PLCC

JF66 84 PLCC

JF66 84 PLCC

JF67 84 PLCC

JF67 84 PLCC

TI S#1

E-14

E-15

E-17

JF-207

D1J1815

D2B2704

E-01

E-02

E-03

ADK29X

ADA72X

ADC21 X

TI1130

84 PLCC

84 PLCC

84 PLCC

84 PLCC

100 PQFP

84 PGA

84 PLCC

84 PLCC

84 PLCC

84 PLCC

84 PLCC

84 PLCC

84 PLCC

1020A TI1139

1020A TI1210

1020A

1020A

1020A

TI1800 84 PLCC

TI1803

UP-04 84 PLCC

UP-05 84 PLCC

Units

25

15

44

41

77

20

58

100

14

20

32

29

49

30

33

39

49

45

79

45

44

45

129

51

45

45

45

45

45

45

223

34

40

40

Pattern

AL11

VFUSE

AL11

VFUSE

VFUSE

VFUSE

AL11

BLANK

AL11

BLANK

AL11

BLANK

BLANK

VFUSE

AL11

BLANK

AL11

BLANK

AL11

AL11

AL11

AL11

AL11

ICE20

AL11

AL11

AL11

AL11

AL11

AL11

AL11

AL11

AL11

AL11

Hours

2000

2000

2000

2000

1000

500

417

417

300

300

300

300

650

650

1000

1000

1000

1000

1000

2000

2000

2000

1000

1000

1000

1000

1000

2000

2000

2000

1000

648

1000

1000

ACT Family Reliability Report

Failures

o
o
o
o
o
o
o
1

1

o
o
o
o

o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
o
o

o

o
o

Temp.

125

125

125

125

125

125

150

150

150

150

150

150

150

150

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

150

150

125

125

Vee
5.75

5.75

5.75

5.75

5.75

5.75

6.00

6.00

6.00

6.00

6.00

6.00

6.00

6.00

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

6.00

6.00

5.75

5.75

4-21

I

Table 6. High Temperature Operating Life (HTOL) Summary (Continued)

High Temperature Operating Life

Product

4-22

1020B

1020B

1020B

1020B

1020B

1020B

1020B

1020B

1020B

1020B

1020B

1225

1225

1225A

1240

1240

1240

1240

1240

1240

1240

1240

1240A

1240A

1280

1280

1280

1280

1280

1280

1280

1280

1280

1280

1280

1280

1280

1280A

1280A

Run#

JJ-14

JJ-15

JJ-17

JJ-13

JJ-13

JJ-16

U1 P-01

U1 P-02

JJ-24

EBFJ004

EBFI004

UJ-01

UJ-01

U1J-02

TI3257

TI3257

TI1045571

TI1053933

TI1053932

TI1220494

UI-01

UI-03

E-02

E-03

Package

84 PLCC

84 PLCC

84 PLCC

84PGA

84PGA

84 PLCC

84 PLCC

84 PLCC

84 PLCC

84 PLCC

84 PLCC

100 PGA

100 PQFP

100 PQFP

132 PGA

144 PQFP

132 PGA

132 PGA

132 PGA

132 PGA

132 PGA

84 PLCC

144 PQFP

E-04 84 PLCC

JH05 176 PGA

JH06 176 PGA

JH03(K) 176 PGA

JH03(SB) 176 PGA

TI1143649 176 PGA

TI1143650 176 PGA

TI1136307 176 PGA

UH-01 176 PGA

UH-02 176 PGA

UH-05 176 PGA

UH-04 160 PQFP

UH-10 176 PGA

UH-14

ADC18X 160 PQFP

UHI-01 160 PQFP

UH1-02 160 PQFP

Units

45

45

45

30

80

80

40

40

87

80

40

80

127

80

7

129

38

55

36

90

50

80

100

30

15

15

25

25

44

44

42

26

26

40

79

75

130

27

27

Pattern

AL11

AL11

AL11

ICE20

AL 11

AL 11

AL 11

AL11

AL11

AL11

AL11

SPEED26

PQFP26

PQFP26

CHI1240

CHI1240

CHI1240

CHI1240

CHI1240

CHI1240

CHI1240

ACT40

CHI1240

ACT40

BETA12

BETA12

BETA12

BETA12

BETA12

BETA12

BETA12

BETA12

BETA12

SPEED9

SPEED12

SPEED13

SPEED12

SPEED12

SPEED12

Hours

1000

1000

1000

1000

500

1000

1000

1000

1000

1000

1000

1000

1000

1000

500

1000

2000

2000

2000

1000

1000

1000

1000

1000

2000

2000

2000

2000

1000

1000

1000

1000

1000

1000

1000

1487

1000

1000

1000

Failures

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

o
o
o
o
o
1

o
o
o
o
o
o
o

o
o
o

Temp.

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

125

Vee
5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

5.75

ACT Family Reliability Report

Table 6. High Temperature Operating Life (HTOL) Summary (Continued)

HTOL Failure Analysis

Product Run# Hours Cause

1003 DG1065 80 Icc = 40 mA. Fails at High Vee. Functional at Low Vee·
Not antifuse related

1010 JB13 500 lee = 30 to 40 mA. Not Functional.
Liquid crystal shows hot spot in chip periphery.
Silicon defect. Not antifuse related.

1010A TI29 500 Functional at Vee> 4.5 V. All nets slow.
Damaged isolation transistor oxide.
Not antifuse related. Unit was marginal at T Q.

1010B TI2072857 144 IDDH failure at 144 hours. Gate poly to drain
short due to gate oxide breakdown in I/O.

1020A JF14 417 Open Metal I to Metal II via.

1020A JF37 300 Gross functional failure due to shorted gate oxide
in the logic module. Unit was good at 112 hours.

1020A JF42 650 Failed fuse shorts. Cause is shorted antifuse.
Unit was good at 168 hours.
Blank pattern at 6 V is much stronger stress than normal application.

1280 TI1143649 500 Tristate LKG pin 28. No cause determined due to
bond wire damage during decapsulation.

Table 7. 121°C, 15 PSI Steam Pressure Pot (Unbiased Autoclave)

I Number of Failures

Product Run # Package # Units 96 Hours 168 Hours 240 Hours 336 Hours

1010 JB13 84 PLCC 34 0 3 0

1010 JB13 68 PLCC 71 0 0

1010 JB14 68 PLCC 71 0 0 0

1010 JB22 68 PLCC 50 0 0 0

1010 JB27 68 PLCC 50 0 0 0

1010 JB28 68 PLCC 42 1 0 0

1010A TI15 68 PLCC 77 0 0 0

1010A TI24 68 PLCC 129 0 0 0

1010A TI1104 68 PLCC 77 0 0 0

TI1243

TI1263

TI1297

1010A E01-1 68 PLCC 30 0 0 0

1010A E02-1 68 PLCC 30 0 0 0

1010A E03-1 68 PLCC 30 0 0 2

1010B TI2072857 68 PLCC 45 0 0 0

TI2072858

T12072860

1010B U1G-01 68 PLCC 40 0

1020A TI1800 84 PLCC 77 0 0

TI1859

TI2156

4-23

Table 7. 121°C, 15 PSI Steam Pressure Pot (Unbiased Autoclave) (Continued)

Number of Failures

Product Run # Package # Units 96 Hours 168 Hours 240 Hours 336 Hours

1020A E-01 84 PLCC 26 0 0 0

E-02 84 PLCC 28 0 0 0

E-03 84 PLCC 26 0 0 0

1020A ADK29 84 PLCC 27 0

ADC21X 84 PLCC 27 0

ADA72X 84 PLCC 27 0

1020A JF-207 100 PQFP 80 0

1020A S-1702A 84 PLCC 25 0 0

S-1702B 26 0 0

S-1702C 25 0 0

1020B JJ14-17 84 PLCC 81 0

1020B U1 P-01 84 PLCC 40 0

1225 UJ-01 100 PQFP 80 0 0

1240 TI10301 144 PQFP 79 0 0

1240 UI-03 84 PLCC 79 0 0

1240A E-02 144 PQFP 25 0

1240A E-03 144 PQFP 30 0

1240A E-04 84 PLCC 25 0

1280 JH-14 160 PQFP 80 0 0

1280 ADC18X 160 PQFP 82 0

Failure Analysis:

Three 1010 JB13 failures at 168 hours due to lifted bond wires.
Corrective action implemented at assembly vendor.

1010 JB13 failure at 96 hours; same problem as above.

1010 JB28 failure at 96 hours due to open bond wire caused by lifted die paddle. This was the first qual lot from
a new assembly vendor and corrective action was implemented.

Two 101 OA E03-1 failed cont. at 336 hours. Both units had corroded pads.

4-24

ACT Family Reliability Report

Table 8. 85°C/85% Humidity with DC Alternate Pin Bias of 0 V to 5.5 V

Number of Failures

Product Run # Package # Units 168 Hours 500 Hours 1000 Hours 2000 Hours

1010 JB13 68 PLCC 80 2 1 0

1010 JB14 68 PLCC 81 0 0 0

1010 JB22 68 PLCC 54 0 0

1010 JB26 68 PLCC 54 0 0

1010 JB27 68 PLCC 19 0 0

1010A E01-1 68 PLCC 79 0

1010A E02-2 68 PLCC 0

1010A E03-1 68 PLCC 0

1010A TI1104 68 PLCC 80 0 0 0

TI1243

TI1263

TI1297

1010B TI2072857 68 PLCC 201 0 0 0

T12072858

TI2072860

1020 JF48 84 PLCC 34 0 0

JF49 84 PLCC 49 0 0

1020A E-01 84 PLCC 64 0 0

E-02 84 PLCC I E-03 84 PLCC

1020A ADK29 84 PLCC 27 0 0

ADC21X 84 PLCC 27 0 0

ADA72X 84 PLCC 27 0 0

1020A E14 84 PLCC 24 0 0

E15 84 PLCC 29 0 0

E17 84 PLCC 32 0 0

1020A UP-06 100 POFP 77 0 0

1020B JJ-14 84 PLCC 27 0

JJ-15 84 PLCC 27 0

JJ-17 84 PLCC 27 0

1240 TI3256 144 POFP 78 0 0

1280 UH-04 160 POFP 80 0 0

Failure Analysis:

1010 JB13 Two failures at 500 hours. Open pins due to bond lifting. Corrective action implemented at
assembly vendor.

One failure at 1000 hours. Horizontal track open (Metal I).

4-25

Table 9. Biased Humidity (HAST) 131°C/85% Humidity

Number of Failures

Product Run # Package # Units 50 100 200 240 300 400
Hours Hours Hours Hours Hours Hours

1020 E18,22 84 PLCC 29 0 0 0 0

1020A TI1130 84 PLCC 77 0 0 0

TI1139

TI1210

1020B EBFJ001 84 PLCC 44 0

1020B EBFI004 84 PLCC 36 0

1225 UJ-03 100 PQFP 80 0 0

1240 UI-03 84 PLCC 80 0 0

1240A E-04 84 PLCC 77 0

1240A E-02,03 144 PQFP 53 0

1280 ADC20X 160 PQFP 80 0

1280A U1H-01 160 PQFP 40 0

1280A U1H-02 160 PQFP 40 0

1280A EBFJ002 160 PQFP 30 0

1280A EBFJo03 160 PQFP 30 0

1280A EBFJ004 160 PQFP 20 0

Table 10. Temperature Cycle

Number of Failures

Product Run # Package # Units 100 Cycles 500 Cycles 1000 Cycles 2000 Cycles

aoc to 125°C Cycles

1010 DG1077 84 JLCC 20 0

1010 JB13 68 PLCC 158 0 0

1010 JB14 68 PLCC 28 0 0

1010 JB26 68 PLCC 21 0 0

1010 JB28 68 PLCC 31 0 0

1010A TI15 68 PLCC 125 0 0

1010A TI24 68 PLCC 176 0 0

1010A TI1104 68 PLCC 129 0 0 0 0

TI1243

TI1263

TI1297

1020 JB22 84 JLCC 17 0 0

1020A TI1800 84 PLCC 129 0 0 0 0

TI1859

TI2156

-40c C to 125c C Cycles

1010A TI1104 68 PLCC 129 0 0 0 0

TI1243

TI1263

TI1297

1020A TI1800 84 PLCC 129 0 0 0 0

TI1859

TI2156

4·26

ACT Family Reliability Report

Table 10. Temperature Cycle (Continued)

Number of Failures

Product Run # Package # Units 100 Cycles 500 Cycles 1000 Cycles 2000 Cycles

-65°C to 1505°C Cycles
1010A TI1104 68 PLCC 129 0 0 0 0

TI1243

TI1263

TI1297

1010B TI2072857 68 PLCC 201 0 0 0

TI2072858

TI2072860

1010B U1G-01,02 68 PLCC 40 0

1020A TI1800 84 PLCC 129 0 0 0 0

TI1859

TI2156

1020A JF-71 100 PQFP 129 0

1020A E01 84 PLCC 85 0

E02

E03

1020A S-1702A, B, C 84 PLCC 144 0 0

1020B JJ14-17 84 PLCC 81 0

1020B U1 P-01 ,02 84 PLCC 40 0

I 1020B EBFJ001 84 PLCC 80 0

1225 UJ-01 100 PGA 80 0 0

1225 UJ-01 100 PQFP 80 0

1240 TI1053932 132 PGA 15 0 0 0

TI1045571 20

TI1053933 42

1240 TI3256 144 PQFP 80 0 0

1240 UI-01 132 PGA 50 0 0
1240 UI-02 132 PGA 50 0 0

1240 UI-03 84 PLCC 80 0

1240A E-02 144 PQFP 25 0

1240A E-03 144 PQFP 28 0

1240A E-04 84 PLCC 77 0
1280 TI1136307 176 PGA 71 0 0

TI1143650 176 PGA 5 0 0

TI1143649 176 PGA 0 0
1280 UH-01 176 PGA 25 0 0

1280 UH-02 176 PGA 26 0 0
1280 UH-04 160 PQFP 34 0 0

1280 JH-14 160 PQFP 48 0 0

1280 ADE16X 160 PQFP 27 0

1280 ADC18X 160 PQFP 30 0

1280 ADC20X 160 PQFP 27 0
1280A UH1-01 160 PQFP 40 0
1280A UH1-02 160 PQFP 40 0

4-27

Other Tests

Electrostatic Discharge (ESD)

All Actel products contain static electricity protection circuitry
and are tested for sensitivity to static electricity by using the
human body model as described in MIL-STD-883D (l00 pf
discharged through I.S Kohms). Three positive and three negative
pulses are discharged into each pin tested at each voltage level.
For inputs and I10s, these six pulses are applied with three
different grounding conditions: Vss only grounded, Vcc only
grounded, and all other II0s grounded. Thus, each pin receives a
total of eighteen pulses for each test voltage. After pulsing, the
units are then tested on a VLSI tester. Leakage currents are
measured at 0 V and S.S V. Any pin showing more than I j.lA of
leakage is considered to be a failure. To date, all Actel products
pass ESD testing at ISOO V or better. For further information
about specific products and packages, please contact Actel.

Latch-Up

Latch-up is a well known cause of failure in CMOS circuits.
Parasitic bipolar transistors are created by the P-Channel
transistors, the N -channel transistors, the N -Well, and the
P-Substrate. These transistors are connected in a manner that
effectively creates an SCR. If a voltage on an external pin were to
forward bias to the substrate, the parasitic SCR can be latched to
the on state, thereby creating a low impedance path between V cc
and ground. A large amount of current then flows through this
path. This current can, at best, temporarily make the device
nonfunctional and, at worst, cause permanent damage.

There are several techniques used by CMOS designers to reduce
the chance of latch-up. One of the most common techniques is
using guard rings to isolate P-Channel and N-Channel transistors.
The disadvantage of this method is that it requires additional
silicon die area. Another method is to use a substrate bias
generator. Creating a negative substrate bias means that an input
must go even more negative to cause latch-up. A third technique
is to use EPI wafers to achieve low substrate resistance, which
lowers the chance of triggering latch-up. Actel uses both guard
ring and EPI wafer techniques for all FPGA devices.

The latch-up test method is defined by JEDEC Standard No. 17.
Each I/O pin on a tested device was forward biased in both
directions (to Vss and Vcc) by forcing negative and positive
currents ranging from ±SO rnA to ±2S0 rnA in SO rnA increments.
Following each stress, the device Icc current was measured. If the
current exceeded the datasheet limit of lOrnA, the unit was
rejected. The device was also functionally tested.

4-28

Six units from three different wafer lots are tested to qualify each
Actel product. Testing is done at room temperature as well as at a
worst-case temperature of 13SoC. All device I/Os and power
supplies are tested. To date, no failures have been detected up
through 2S0 rnA.

Radiation Hardness

A programmed antifuse makes a connection between an upper
layer of polysilicon and an N+ diffusion on the bottom. This
connection is very similar to a "buried contact" used in some
MOS processes. Many other programmable logic products rely
on a stored charge to make their connections (for example, RAM,
EPROM, or EEPROM). This stored charge can be susceptible to
degradation from radiation exposure. The Actel antifuse makes a
hard contact and does not rely on a stored charge. As a result, one
would expect the Actel products to have superior radiation
tolerance compared to products that use a stored charge.

Although Actel has not yet performed radiation testing, several
customers and independent laboratories have performed tests and
shared their data. This data shows that the AIOIO/AI020 devices
can withstand a total radiation dose of more than one million
RADs. Upsets/bit-day have been measured at 1 X 10-6. Single
Event Upset (SEU) sensitivity measurements gave an asymptotic
cross section of 3.6 X 10-6 cm2/bit. The threshold for Linear
Energy Transfer (LET) was 22 MeV-<:m2/mg. For further
information, please contact Actel.

Summary

The data presented in this report establishes the excellent
reliability of Actel FPGAs. Both Actel models and actual device
testing show that the antifuse is highly reliable and that the
combined contribution of all antifuses to the gate array product's
hard failure rate is less than 10 FITs or 0.001 % failures per 1000
hours.

References

1. E. Hamdy, et aI, "Dielectric Based Antifuse for Logic and
Memory ICs," IEDM paper, p. 786-789,1988

2. S. Chiang, et aI, "Oxide-Nitride-Oxide Antifuse Reliability,"
Proc. Int. ReI. Phys. Symp., 1990

3. J. Lee, I. Chen, and C. Hu, "Modeling and Characterization of
Gate Oxide Reliability," IEEE Trans. of Elec. Dev., Dec. 1988.

Antifuse Field Programmable
Gate Arrays

Article
Reprint

Antifuse Field Programmable Gate Arrays

JONATHAN GREENE, MEMBER, IEEE, ESMAT HAMDY, SENIOR MEMBER, IEEE, AND SAM BEAL

Invited Paper

An antifuse is an electrically programmable two-terminal device
with small area and low parasitic resistance and capacitance.
Field programmable gate arrays (FPGA's) using antifuses in a
segmented channel routing architecture now offer the digital logic
capabilities of an 8000-gate conventional gate array and system
speeds of 40-60 MHz. A brief survey of antifuse technologies is
provided. The antifuse technology, routing architecture, logic mod­
ule, design automation, programming, testing and use of ACT™
antifuse FPGA 's are described. Some inherent tradeoffs involving
the antifuse characteristics, routing architecture and logic module
are illustrated.

I. INTRODUCTION

A decade ago the designer of an application specific
integrated circuit (ASIC) was constrained chiefly by the per­
fonnance, logic complexity, and fabrication cost attainable
with state-of-the-art semiconductor process technology. To­
day, the capabilities of leading edge silicon have outstripped
the requirements of typical applications. Gate arrays with
over 100 000 usable gates and propagation delays well
below 1 nsec are now available. Yet estimates show that
over half the volume of the gate array market is in designs
below 10 000 gates [1], and that over half the systems using
gate arrays run at clock frequencies below 25 MHz [2].
At the same time, pressures to reduce product development
time have become intense. Gate arrays require a customized
mask for the metal wiring and hence take weeks to months
to produce.

This environment motivated the development of field pro­
grammable gate arrays (FPGA's). For the many users who
do not require the speed and gate capacity of conventional
arrays, it is preferable to program an off-the-shelf FPGA
and have chips available within minutes after their design
is completed.

A key characteristic of an FPGA is the programmable
switch technology used to configure it. Many such tech­
nologies have been considered for use in FPGA's, including
laser programming [3], [4], pass transistors controlled by

Manuscript received December 30, 1990; revised January 30, 1992.
J. Greene is with the BioCAD Corporation, Mountain View, CA 94043.
E. Hamdy and S. Beal are with the Actel Corporation, Sunnyvale, CA

94086.
IEEE Log Number 9210746.

either SRAM [5] or EPROM [6] memory cells and antifuses
[7]-[10]. (See [11] for a list of recent references.)

An antifuse is an electrically programmable two-terminal
device. It irreversibly changes from a high to a low resis­
tance when a programming voltage (in excess of normal
signal levels) is applied across its terminals. Antifuses
offer several unique features for FPGA's, most notably
a relatively low "on" resistance of 100-600 ohms and a
small size. The layout area of an antifuse cell is generally
smaller than the pitch of the metal lines it connects; it
is about the same size as a via connecting metal lines
in a mask programmed array. Nearly 750 000 antifuses
can now be integrated on a single FPGA chip, facilitating
the development of routing architectures approaching the
flexibility and scaling potential of conventional gate arrays.
Current antifuse FPGA's offer complexity equivalent to an
8000-gate conventional gate array and typical system clock
speeds of 40-60 MHz.

This paper describes the technology, architecture and
use of the ACT FPGA families, which are based on the
PLICE(R) antifuse [8]. Similar principles will most likely
apply to other antifuse-based FPGA's now emerging as the
field undergoes rapid development of both anti fuse process
technology and FPGA architecture. The ACT 1 family [12]
[13] ranges from 1200 to 2000 gates and the ACT 2 family
[14] from 2500 to 8000 gates. I An ACT 3 family supporting
higher speeds over a range of 1000-10 000 gates is planned.

Figure I shows the basic structure of an ACT FPGA.
Rows of logic modules are interspersed with horizontal
routing channels containing predefined wiring segments
of various lengths and horizontal positions. Other wiring
segments run vertically through the modules and across the
channels. (The figure shows only a few suggestive vertical

I Logic capacities in this paper are based on the stated capacity in
"gates" (cells of four transistors) of an equivalent conventional channeled
gate array. The estimates are derived as follows using various benchmark
circuits and realistic application designs. First one determines the number
of replications of a circuit that fit in a given FPGA; placement and TOuting
are done automatically and must complete. The number of replications
is then multiplied by the number of gates each instance of the circuit
would require in a conventional channeled gate array, assuming the 80%
gate utilization typical of such arrays. The benchmarks include data path,
counter, state machine and arithmetic circuits. See [15] for details.

0018-9219/93$03.00 © 1993 IEEE

1042 PROCEEDINGS OF THE IEEE, VOL. 81, NO.7, JULY 1993

© 1993 Actel Corporation
4-29

I

4-30

Programmed Output Logic Module
. Antifuses '- Segment '- Output

Logic '\',,- --.... L

Module =--t-:-d.~~11~\~""~1~1 ~@ 11~A~J~ Input .?

Input ~1[§1~1~1~1.~2~1~13~q~~IJ~ Segment ~

/~'1~1~~1~1.41~1~1~~~1~1 Rows of
Logic

MOdules-I'-..L.......L.--Ji.-""-....L.--J_""--'-.....

Fig. 1. Basic structure of an ACT FPGA.

segments.) Each logic module computes a single-output
function of several inputs. Each module input is connected
to a dedicated vertical wiring segment spanning either the
channel just above or below the module. Each output signal
appears on a dedicated vertical wiring segment of somewhat
longer length. An antifuse is provided at each intersection
of a horizontal and vertical segment, permitting them to be
connected. The output of the driver, module 3, is connected
by programmed antifuses to horizontal segments, which in
tum are connected to input segments. In the top channel,
an antifuse is used to link two adjacent horizontal segments
end-to-end, making it possible to reach an input of module
I as well as 2.

The central array of modules and channels is surrounded
by input/output pads and buffers. Each I/O buffer can be
connected to the internal logic through a special module
near the edge of the array.

The remainder of this paper is organized as follows. Sec­
tion II begins with a brief survey of the history and current
status of antifuse technology in general, and then describes
the physical structure, manufacture and reliability of the
PLICE anti fuse. Section III describes some basic principles
of programmable routing applicable to any programmable
switch technology, and the "segmented routing channel"
model. Section IV describes the routing architecture of ACT
FPGA's, which employ antifuses to implement segmented
channels. Section V discusses the factors influencing the
choice of the basic logic module and gives a full description
of the modules used in the ACT families. Section VI
briefly describes how input/output and clock distribution
are handled. Section VII gives an overview of programming
and testing methods, while Section VIII describes how a
design is created and the design automation tools used.
The design examples given in Section IX convey the speed
and integration capabilities of antifuse FPGA's. By way of
summary, Section X discusses how antifuse FPGA's have
been used in practice and are expected to evolve in the
future.

II. ANTIFUSE TECHNOLOGY

A high-performance FPGA requires a programmable
interconnect switch having small area and low parasitic
resistance and capacitance. The switch technology must be
manufacturable and reliable.

GREENE et al.: ANTIFUSE FIELD PROGRAMMABLE GATE ARRAYS

Laser-programmed switches [3], [4] can offer good per­
formance, but require costly equipment having direct access
to' the unpackaged die for programming. Although the
switch itself may be small, some approaches require a
buffer zone around it to protect adjacent structures from
being damaged by the laser.

Early PROM's and PLD's employed electrically blown
fuses made of various types of material, e.g., polysilicon,
platinum silicide, tungsten-titanium, and nickel-chromium.
These have proven difficult to manufacture and program
with sufficient reliability for state-of-the-art integrated cir­
cuits. The most common difficulty is that an inadequately
blown fuse can "grow back" (reconnect) over time.

A pass transistor can also be used as a programmable
switch [5]. Although this approach is widely used (see [11]
for references), the significant resistance and capacitance
of the switch transistor and the large area of the SRAM
or EPROM cell controlling it constrain the design of the
routing architecture and the performance of the circuit.

An antifuse switch technology offers these advantages
for FPGA's:

• Antifuses have a significantly lower "on" resistance
and parasitic capacitance than switch transistors, re­
ducing RC delays in the routing.

• Antifuses are small, typically fitting within the min­
imum pitch of metal wires. This allows the use of"
regular and flexible routing architectures.

• Antifuses are "normally off' devices. Only the small
fraction of the total that need to be turned on must be
programmed (about 2% for a typical application). So
other things being equal, programming is faster with
antifuses than with "normally on" devices.

The concept of antifuses dates back at least to 1957, when
they were considered for use in memories [16]. Antifuses
developed since then fall into two categories: amorphous
silicon and dielectric.

A layer of amorphous silicon placed between two metal
layers undergoes a phase change when current is passed
through it, becoming conductive. Devices based on this
principle have been the subject of research for many
years [7], [9], [10], [17]-[20], and were considered for
an early FPGA design [21]. Their use has been hampered
by two difficulties. First, application of a reverse current
can return the amorphous silicon in a programmed antifuse
to a nonconductive state. Second, even unprogrammed
devices pass a small but significant current, termed leakage
current. In a memory, where only a few bits must be active
simultaneously, these problems can be avoided by careful
design. They are more significant in an FPGA since the
supply voltage is present across about half the antifuses at
any given time.

Recent efforts at developing an amorphous silicon anti­
fuse for FPGA' s report the following results. Resistance is
inversely proportional to the programming current, and is
50--110 ohms with a mode of 80 ohms at a programming
current above 10 rnA [22]. The capacitance contributed by
each antifuse is 1.3 femtofarads in a 1.0 micron CMOS

1043

ONO Resistance Distribution
% Distrbution

~,-------------------------------------~

50

40

30

20

10

200 300 400 500 600 700 800 900 1000

Resistance

Fig. 2. Resistance distribution of PLICE anti fuses programmed
with SmA.

process [22]. (This figure does not account for the ca­
pacitance of the metal lines themselves, which contribute
several times this amount per antifuse.) Preprogramming
leakage current is under 10 nanoamperes at 5.5 volts [10].

Dielectric antifuses consist of a layer of dielectric ma­
terial placed between N+ diffusion and polysilicon. Upon
application of sufficient voltage, the dielectric breaks down.
Early dielectric antifuses used a single-layer oxide di­
electric. The remainder of this section focuses on the
"programmable low impedance circuit element"· (PUCE),
a multilayer oxide-nitride-oxide (ONO) dielectric antifuse
developed for use in FPGA's [8]. FPGA's integrating as
many as 150 000 PUCE antifuses on a single chip are
currently in volume production.

Application of a 16 V programming pulse across the
PLICE melts the dielectric, creating a conductive link of
polycrystalline silicon between the electrodes. Typically, a
single link is observed. The radius of the link increases
with programming current, hence lowering the resistance.
As the programming current flows, dopant atoms flow from
both electrodes into the link, providing a controllable low
resistance. A pulse of under one msec suffices.

For a minimum area PLICE programmed with 5 rnA,
the resistance is distributed as shown in Fig. 2, with a
mode of 600 ohms. With a programming current of 15 rnA,
the mode of the distribution is shifted down to about 100
ohms. Capacitance is 10 femtofarads per antifuse in a 1.2
micron CMOS process; this includes the contribution of the
polysilicon and diffusion electrodes and the metal lines used
to connect them. An unprogrammed PUCE has a leakage
current of about one femtoampere, so even for the largest
FPGA's the total leakage is negligible.

The PUCE structure is shown in Fig. 3. A thin layer
of oxide is thermally grown on top of the N+ surface, fol­
lowed by low pressure chemical vapor deposition (LPCVD)
nitride and the reoxidized top oxide. Use of the ONO
structure tightens the resistance distribution and also im­
proves both the yield and the reliability compared to
simple oxide anti fuses [23]. The PUCE adds three masks

1044

Antifuse Field Programmable Gate Arrays

1.211

PLiCE Diffusion

Fig. 3. PLICE anti fuse structure.

ONO Reliability (1/E Model)

1.0E+08 rTD_D_B-'.-<s_sc-'-.l ______________________________ --,

1.0E+07 + LOT A Z 0

1.0E+06 0 LOTS ~

1.0E+05
Z LOTe ~

1.0E+04
~

Z
~

1.0E+03
~

1.0E+02 ~
LOE+Ol ~
LOE+oo ~

LOE·Ol ~
4'

1.0E·02 f
LOE·03

5 8 9 10 11

100lE (cm/MV)

Fig. 4. Time to dielectric breakdown versus reciprocal of
electric field.

12

to a conventional double-metal CMOS process. It can
be fabricated in a typical CMOS facility using standard
material, processing equipment and techniques.

Antifuse reliability must be considered for both the un­
programmed and programmed states. For an unprogrammed
antifuse, with ONO less than 10 nm thick, time dependent
dielectric breakdown (TDDB) reliability over 40 years is
an important consideration. Ordinary accelerated testing
using electric field and temperature stress has been done in
order to extrapolate the dielectric's lifetime under normal
operating conditions. Figure 4 shows a plot of the time-to­
breakdown vs. the reciprocal of the electric field applied to
the dielectric, which has been shown to be the proper model
[23]. Based on this data, one can extrapolate a lifetime for
an ONO antifuse of well over 40 years of normal operation
at 5.5 V and 125 C.

It is equally important that the resistance of a pro­
grammed anti fuse remain low during the life of the part.
Single-layer oxide dielectrics are known to be suscep­
tible to "self healing," which would increase the resis­
tance with time. This is not the case for ONO dielectrics.
Temperature-accelerated measurements reveal no intrinsic
failure mechanism; the programmed antifuse resistance
remains unchanged in all cases. The true lifetime of a
programmed antifuse has yet to be determined since normal
CMOS electromigration failures destroy the test structure
first.

PROCEEDINGS OF THE IEEE. VOL. 81. NO.7. JULY 1993

4-31

I

4-32

Of course, the reliability of the FPGA is affected by the
reliability of the base CMOS process as well as the PUCE.
PUCE-based FPGA product reliability studies show failure
levels encountered with normal CMOS circuits. [24]

Fortuitously, the ONO dielectric is highly radiation re­
sistant. Initial results show that products containing ONO
antifuses can withstand I 500 ()()() rads [25].

III. PRINCIPLES OF PROGRAMMABLE ROUTING

A routing architecture for an FPGA must meet two
criteria: routability and speed. Routability refers to the
capability of an FPGA to accommodate all the nets of a
typical application, despite the fact that the wiring segments
must be defined at the time the blank FPGA is made.
Only the switches connecting the wiring segments can be
customized (by programming) for a specific application, not
the numbers, lengths or locations of the wiring segments
themselves. While sufficient wiring segments for good
routability must be provided, excess wiring segments will
waste chip area. It is also important that the routing of
an application can be determined by an automatic program
with little or no manual intervention.

Propagation delay through the routing is a major factor in
FPGA performance. In any efficient gate array architecture,
whether mask or field programmable, it is inevitable that
some nets require longer routings than others. After routing,
the exact segments and switches used to establish the net are
known and the delay from the driving output to each input
can be computed accordingly. The resulting post-layout
delays will deviate from prelayout estimates according to
some statistical distribution. If the distribution of the delays
for nets of a particular fanout is too broad, a user will have
difficulty estimating delays when designing an application.
And, of course, if the average of the distribution is too
high the chip will be slow.

The delay .distribution for mask-programmed arrays is
sufficiently tight that variation isn't a major difficulty for
the designer, since the resistance and capacitance of the
metal wires are low.2 This problem is more challenging for
FPGA architectures. Any programmable switch (EPROM,
MOS pass device, or antifuse) has a significant resistance
and capacitance. Each time a signal passes through a
programmable switch, another RC stage is added to the
propagation path. For a fixed R and C, the propagation
delay mounts quadratically with the number of series RC
stages. This tends to increase the average of the net delays
and to broaden the post-layout delay distribution.

The use of a low resistance switch, such as an antifuse,
helps to keep the delay low and its distribution tight.
Of equal significance is optimization of the routing ar­
chitecture. Some tradeoffs involving the length of wiring
segments in a channel, the area required and the the
resistance and capacitance of the switch are illustrated in
Fig. 5.

2 As feature size shrinks, however, metal resistance increases faster
than capacitance decreases. Even with current masked gate arrays, it is
becoming important to model the distributed RC delay in the final routing
to get accurate delays.

GREENE et al.: ANTIFUSE FIELD PROGRAMMABLE GATE ARRAYS

2 3 324 4
I LJ I LJ

(a) routing in unconstrained channel.

tt f: f ±f±f±f
(b) routing in fully segmented channel.

(c) routing in non-segmented channel.

hiittHti
(d) segmented for 1-segment routing.

12133 2 4 4

; t·; t t~t ; tii
(e) segmented for 2-segment routing.

Fig. 5. Segmented routing tradeoffs. Dark circles denote pro­
grammed anti fuse, open circles unprogrammed antifuses.

Figure 5(a) shows a set of nets routed in a conventional
channel. With the complete freedom to configure the wiring
afforded by mask programming, the positions and lengths
of the horizontal wires can be customized for the particular
set of nets. The ~'left edge algorithm" [26] shows how
to do this using a number of tracks equal to the channel
density, the maximum number of nets passing through any
cut across the channel [27]. (This assumes there are no
"vertical constraints" [27]. Vertical constraints do not occur
in FPGA's since each signal enters or leaves the channel
on its own vertical segment.)

In an FPGA, achieving this complete freedom would
require switches at every cross point. More switches would
be required between each two cross points along a track
to allow the track to be subdivided into segments of
arbitrary length [Fig. 5(b)]. Since the number of RC stages
encountered by a net is proportional to its length, the delay
of long nets becomes unacceptable.

Another alternative would be to provide continuous tracks
in sufficient number to accommodate all nets [Fig. 5(c)].
This is the approach used in many types of programmable
logic arrays and in the interconnect array portion of certain
programmable logic devices (e.g., [6], [28]). Advantages
are that only two RC stages are encountered and that the
delay of each net is identical and predictable. However,
even short nets incur the capacitance of a full track length.
Furthermore the area is excessive, growing quadratically
with the number of nets.

A segmented routing channel offers an intermediate ap­
proach. The tracks are divided into segments of varying
lengths [Fig. 5(d)], allowing each net to be routed using
a single segment of the appropriate size. Greater routing
flexibility is obtained by allowing mUltiple adjacent seg-

1045

ments in the same track to be joined end-to-end by switches
[Fig. 5(e)]. Enforcement of simple limits on the number of
segments joined or their total length guarantees that the
delay will not be unduly increased.

The problem of routing a segmented channel, i.e., deter­
mining which segment(s) to assign to each net, is solvable
in linear time for single-segment routing [the model of Fig.
5(d)]. When a net is allowed to use multiple segments
[Fig. 5(e)], the general routing problem becomes more
difficult (in particular, NP-complete [29]). However many
important special cases can be solved in polynomial time,
and practical problems can be routed in a few minutes on a
personal computer using heuristic methods. Reference [29]
gives a more thorough review of algorithms for segmented
channel routing.

How does one design a segmented channel? In a con­
ventional channel the number of tracks, or channel width,
must be chosen to accommodate most applications. Statis­
tical models have been developed to estimate the required
channel width (e.g., [30]). In a segmented channel, both
the channel width and the segment lengths and positions
must be chosen carefully to suit the statistics of anticipated
applications. Analytical solutions to this problem are as
yet unknown, but experience indicates that even channels
designed in an ad hoc manner can be quite efficient (with
limited use of multiple-segment routing).

A well-designed segmented channel does not require
many more tracks than would be needed in a conventional
channel. This is a surprising finding given the consider­
able restrictions segmented routing imposes, but it can be
supported both experimentally and analytically. A distribu­
tion giving the probability of occurrence of a connection
as a function of length and starting point was derived
from placements of 510 channels from 34 applications. A
segmentation was designed for a channel with 32 tracks,
taking this distribution into account and assuming that at
most two segments will be used for each net. Then sets of
nets with various densities were chosen randomly from the
distribution, and an attempt was made to route each set in
the channel. Figure 6 shows the results. In a conventional
channel, any problem with density 32 or less can always
be routed. A high probability of routing in the segmented
channel is observed when the density is only three or four
below the number of tracks. (Further details of this study
are given in [31].)

An asymptotic analysis [29] has confirmed that the num­
ber of tracks required in a segmented channel grows linearly
wi th the expected channel density, just as with conventional
channels. This is true even for single-segment routing.

IV. ROUTING ARCHITECTURE OF ACT FPGAs

We now describe how segmented routing is applied in the
routing architecture of the ACT 2 and 3 FPGA's. Figure 7
shows a simplified view of a four row by two column
section of the array of modules. Segmented channels extend
horizontally between the rows.

1046

Antifuse Field Programmable Gate Arrays

• conventional unconstrained routing

• 2-segment routing

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

Density of Connections

Fig. 6. Probability of successful routing in a 32-track channel vs.
density of connections.

Uncommitted
A ff H ertical segments Antifuse X n I use v

II I I I I
II

I I II II I I --r ... - '\ w...-; ... - "'I
- - -

): 1: II
I i III

:>.
-r i
j -. '" (It '" '" - -I - - - -

'-'"'I 1: 1: I
1: 1:11

II 1:
i r ... - ill '" - '" - -I - - -

1:1:
-r1: 1: I I I 1: 1:1

j--'" 1/ [II _\- - _1 - - -I , 1\' I I I
~ \ I~ 1.11

Antif se F JI /
Module u /

Antifuse V
Output Input

segments segments

Fig. 7. Detailed view of routing architecture and modules. (Only
a representative sample of input and uncommitted segments are
shown.)

A module has several inputs, each of which appears on
a dedicated vertical input segment. (The figure shows six
inputs per module, but the actual number varies according
to the function of the module; it is typically eight for a
basic logic module., The input segments each span only
one channel in order to minimize their capacitance and the
total wiring area.

Each module has a single output, which appears on a
dedicated vertical output segment. Output segments span
two channels above and two channels below the module.
(Those reaching the top or bottom channel may be slightly
longer or shorter). In this way a module can distribute its
output to more than one nearby channel without the need
for inserting more antifuses in the signal path. The added
capacitance of the output segment is a small price to pay
since the segment is driven directly by the module, not
through any antifuses.

PROCEEDINGS OF THE IEEE, VOL. 81, NO.7, JULY 1993

4-33

I

4-34

Each input or output segment can connect to any of the
uncommitted horizontal segments in the channels it crosses
through an antifuse such as the one marked X. Antifuses
such as the one marked H allow connection of the horizontal
segments end-to-end to support multiple-segment routing.
The number of tracks per channel varies with the size of
the array, according to the need for routing resources. Each
channel also contains one full length horizontal segment
that is grounded and another tied high so that any input can
be programmed to logical 0 or 1.

Uncommitted segments are also provided in the vertical
direction. These span several rows and channels, in many
cases the full height of the array. Typically either one or
two tracks of uncommitted vertical segments are provided
per column of modules (as shown in the figure), but
again this varies with array size. The uncommitted vertical
segments can be joined end-to-end by antifuses such as the
one marked V, and thus constitute a vertical segmented
channel. However we do not refer to them as a channel
since in the actual layout the vertical segments pass over
the modules rather than between them (like the "feed­
throughs" in a conventional channeled gate array). Each
uncommitted vertical segment can connect to the horizontal
segments it crosses. Also, special antifuses such as the one
marked F connect a module's output and each uncommitted
vertical segment passing over the module or its neighbor;
two horizontally adjacent modules thus share one set of
uncommitted vertical segplents. These antifuses are located
within the area of the module itself, but are considered part
of the routing.

(The earlier ACT 1 architecture is similar to the above
description except in the following respects. Additional
antifuses permit certain pairs of inputs of a module to be
joined; this increases routing flexibility. Also, antifuses such
as the one marked F are not provided in ACT 1.)

The routing shown in Fig. 1 is typical of many nets. Note
that in order to minimize the number of series RC stages,
each channel's horizontal segments are driven directly by
the dedicated output segment. This style of global routing is
classified as a "Steiner Tree with Trunk" [32]. The chosen
Ojltput segment length is sufficient to Permit this routing to
be used for most nets.

Although this favorable routing can be assured for all
speed critical nets, another 5-10% of the nets usually
must be placed with an input in some channel beyond
the reach of the dedicated output segment. In this case,
a suitable uncommitted vertical segment is selected to
provide an altemate trunk for the channels not reached by
the output. The vertical segment is driven by the output
through one "F' antifuse, as shown in Fig. 8. Since this
antifuse may be called upon to drive nearly the whole
capacitive load of a widely dispersed net, the delay is very
sensitive to its resistance. By programming these antifuses
with higher currents and providing them with additional
strapping contacts, the resistance is reduced to about 100
ohms, compared to 600 ohms for the other antifuses. The
"F' antifuses thus require greater layout area but sinct- there
are few of them the cost is negligible.

GREENE el al.: ANTlFUSE FIELD PROGRAMMABLE GATE ARRAYS

I II II -
mmitted ..,-/ Unco

vertica I segment --- Horizontal segment l~
I II II S

\
Input Segment

I II II
segment

/AntifuseF

"'-
Output

I -til II

Fig. 8. Routing using directly driven uncommitted vertical seg­
ment.

I II II - I

Horizontal segments \ 11
I II \ II / I

\
Input 'egment

1\

I II II \ I

/ Output segment
U'ncommitted

vertical segment

I II II I

Fig. 9. Routing using indirectly driven uncommitted vertical
segment.

I

I

I

I

In rare instances an uncommitted vertical segment is
needed but there is none available that is accessible to
the driving module's column and that extends through the
required channels. A segment from some other column must
be used instead. In this case the uncommitted segment is
driven through one of the horizontal channels spanned both
by it and the module's output, as shown in Fig. 9. This
route involves an extra RC stage, and so it is reserved for
nets whose speed is not critical.

Assignment of uncommitted segments in each horizontal
and vertical channel to those nets that need them consti­
tutes a segmented channel routing problem. Algorithms for
solving these are discussed in [29].

V. LOGIC MODULE

FPGA architectures are often categorized by the com­
plexity of their basic logic module, termed granularity. A
simpler module will have less internal delay and, since each
module takes less area, more of them can be provided on
the chip. Furthermore, a fine-grained architecture tends to
be more flexible. For example, a wide variety of functions
can be built with equal efficiency out of two-input NAND
gates, but eight-input NAND gates are much better at some
functions than others. With simple modules there is also
often more than one way to implement a function, allowing
beneficial tradeoffs between area and delay.

1047

AO

A1

BO

B1

50-------'
51--------------~

Fig. 10. ACT I logic module.

OUT

On the other hand, using a module that is too simple can
overburden the routing network. If a function that could
be packed into a few complex modules must instead be
distributed among many simple modules, more connections
must be made through the programmable routing network.

As a rule of thumb, an FPGA should be as fine-grained as
possible while maintaining good routability and routing de­
lay for the given switch technology. The module should be
chosen to implement a wide variety of functions efficiently,
y~t have minimum layout area and delay.

Our approach to selecting a module began by collecting
statistics on usage of various logic functions, or macros,
in actual gate array applications. These were then used to
evaluate candidates for the function of the module itself.
The idea is to choose a module into which the most
commonly used macros can be efficiently embedded.3

The ACT 1 family uses one general-purpose logic module
[12], shown in Fig. 10. The module is composed of three
two-to-one multiplexors and a gate. Various macrofunc­
tions (AND, NOR, flip-flops, etc.) can be implemented
by applying each input signal to the appropriate module
input(s) and tying other module inputs to 0 or 1. .The
module can implement all combinational functions of two
inputs, all functions of three inputs with at least one
positive unate input, many functions of four inputs, and
others ranging up to eight inputs. AND gates and OR
gates up to four inputs wide are accommodated (for one or
more combination of inversions at the inputs). In all, 702
distinct combinational macros are possible. Any sequential
macro can be configured from one or more modules using
appropriate feedback routings. Over a range of designs, an
ACT 1 FPGA accommodates just over three gates of logic
per module. This value is fairly consistent independent
of the ratio of combinational to sequential macros in the
design.

For larger chips, we can rely more strongly on the law
of averages to keep the fraction of sequential macros in a

3Given the parameters of antifuse routing, our efforts focused on
modules not more complex than a typical gate array macro. Thus statistics
from a design targeted for implementation in a gate array were taken
to reflect designs targeted at any candidate module. The possibility of
simple local optimizations (such as relocating inversions or combining
a macro with a subsequent D flip-flop) was accounted for. but nothing
beyond that. Ideally one would optimally reorganize the logic of each
sample design for the module under consideration using logic synthesis
and technology mapping, as has been done in more recent work [33], [34].
Such reoptimization becomes more important for more complex modules.

1048

Antifuse Field Programmable Gate Arrays

000 00

001 01

010 10

011

Z OUT

Al B1AO 80

Fig. 11. "C" module.

DOO

001

010

011

A1 B1AOBO ClRC2C1

OUT

Fig. U. "S" module. In ACT 2 chips, the 80 and C LR inputs
are joined.

design within a given range. Furthermore, statistics indicate
a significant proportion of the nets driving the data input of
a flip-flop have no other fanout. This motivated the use of
a mixture of two specialized modules for the ACT 2 and
3 families.

The C module (Fig. 11) is a modified version of the ACT
1 module reoptimized to better accommodate high-fan-in
combinational macros, notably some five-wide AND and
OR gates, though with some loss in ability to build sequen­
tial functions. It is composed of a four-to-one multiplexor
and two gates, and can implement a total of 766 distinct
combinational macros.

The S module consists of a front end equivalent to the
C module followed by a sequential block built around two
latches; Fig. 12 gives a functional diagram. The sequential
block can be used as a rising- or falling-edge D flip-flop,
or a transparent-high or transparent-low latch, by tying the
C 1 and C2 inputs to a clock signal, logical zero or logical
one in various combinations. For example, tying Cl to 0
and clocking C2 implements a rising-edge D flip-flop. The
block can also be set permanently transparent (by tying
Cl to 1 and C2 to 0), making the S module equivalent to
a simple C module with a small additional delay. Figure
13 shows the function categories that can be implemented
using the S module. Toggle or enabled flip-flops can be
built using the combinational front end in addition to the
D flip-flop. Other less commonly used flip-flops (such as
JK or set/reset) not supported by the sequential block can
be configured from one or more C or S modules using
external feedback connections.

In ACT 2 chips, the clear input is joined to the BO input
of the front end to limit the total number of inputs at some

PROCEEDINGS OF THE IEEE. VOL. 81, NO.7. JULY 1993

4-35

I

4-36

minor cost in logic flexibility. ACT 3 FPGA's will provide
independent clear and BO inputs for greater regularity,
primarily for the benefit of logic synthesis programs.

A chip with an equal mixture of C and S modules
provides sufficient flip flops for most designs, plus an extra
margin to assure flexibility in placement. Over a range of
designs. the ACT 2 mixture provides about 1.4-2.0 times
the logic capacity per module of the ACT I module.4

Figure 14 shows a typical critical path in a state machine
implemented using four C modules and one S module. The
ability to fit a five-wide gate in one C module saves one
routed net compared to an ACT I module implementation.
The use of the S module eliminates one more routed net
(which is now internal to the module in the second stage).

The choice of module also greatly influences the routabil­
ity of the chip. Because each input is accessible from
only one of the two channels adjacent to a module, it
would appear that routability is degraded compared to a
conventional double-entry gate array cell, which a signal
can enter from either channel at the convenience of the
router. However, there is nearly always more than one
way to implement a macro. For an N-input macro, there
may be as many as 2N different assignments of the input
signals to the two channels. This corresponds to full double­
entry symmetry. Even if not all of the 2N assignments
are possible, a sufficiently sophisticated router can take
advantage of whatever flexibility exists.

For the C module, a given signal can be routed from
either side of the module an average of 70% of the
time (weighted by macro usage), quite sufficient for good
routability. This figure is affected by both the module
function and the assignment of the module inputs to sides.
It is another important criterion in selecting a module
function.

Finally, we note that the user is insulated from the details
of the module function. Logic is entered as a schematic
using a familiar gate-array-style macro library or a logic
synthesis program. Software automatically determines how
each module should be connected to realize the desired
macro. (Methods of design entry are described more fully
in Section VIII.)

VI. INPUT/OUTPUT AND CLOCK DISTRIBUTION

Each I/O pad has an adjacent bidirectional buffer, which
connects to the array through an associated I/O module.
These modules fit in the outer columns and rows of the
array next to the logic modules, and interface to the routing
channels in the same way. Each I/O module has inputs for
outgoing data and enable, which are sent to the buffer, and
an output for incoming data which is driven from the pad.

4It is interesting to note the related work of Rose et al. [33]. They
found that the addition of a D flip-flop to a module increased the logic
capacity by a factor of 1.4-2.3. The results are not exactly comparable,
however, since their model differs from ours in several respects: their
module is a three- or four-input look-up table; they add flip-flops to all
modules rather than to half of them; our results include a slight change in
the combinational capabilities of the module as well.

GREENE et al.: ANTIFUSE FIELD PROGRAMMABLE GATE ARRAYS

\If 01
10 C OUT
11 \If 01

10 C OUT
11

D-fllp.flop with clear

~
01
10 OUT
11 GA

OUT

Latch with clear

Q 01
10 OUT
11

Transparent (same as C module)

Fig. 13. "S" module function categories.

Fig. 14. Sample critical path in an ACf 2 FPGA.

Thus the I/O module can be programmed to provide input,
output, tristate or bidirectional capability.

In order to keep clock-to-output delay to a minimum, the
ACT 2 family has a dedicated transparent-high latch for
each pad, which can serve as the slave stage of a flip-flop.
The latch is controlled by a gate input to the I/O module.
If flow-through operation is desired, the gate is simply tied
high to make the latch transparent. A dedicated transparent­
low latch is similarly provided on each input path. The
polarities of the input and output latches are chosen so
they can be combined with each other, and possibly with
other internal latches or flip-flops, to form a path that is
functionally equivalent to a chain of rising-edge flip-flops.

Clock signals present unusual requirements: they have
high fanout and yet allow only minimal delay and skew.
Rather than attempt to route clocks like any other signal,
dedicated clock distribution networks are provided. Each
network is driven directly from a special input pad for high
speed. The signal passes through a buffer tree, and appears
on a dedicated full-length horizontal track in each channel.
Thus the network reaches every logic and 10 module in the

1049

Gnd Vpp/2

U:~
antifuse

programmed

Fig. 15. Application of programming voltage.

array. The ACT 2 family provides two clock distribution
networks. Each network can be driven from user-defined
internal logic as well as from an input pad.

To minimize the capacitive load on the clock network,
antifuses are provided to connect the clock track to only
certain module inputs, specifically the clock inputs of the S
and 10 modules and a subset of the combinational inputs on
all the logic modules. Skew is further reduced by having
the automatic placement program attempt to balance the
loading on each branch of the distribution tree.

The clock inputs to the S module, like other inputs,
can also be connected to the uncommitted horizontal seg­
ments. This accommodates designs with several local asyn­
chronous clocks routed in the normal fashion.

VII. PROGRAMMING AND TESTING

One of the great puzzles in the development of antifuse
FPGA's was to find an efficient way to address each of
the two-terminal antifuses uniquely. Diodes in series with
each antifuse would allow unique addressing, but block
signal flow. Early schemes required the use of an individual
control line for each routing track, doubling the number of
lines required in each direction [21]. However, methods for
programming and testing antifuse FPGA's that use only a
few control lines for an entire channel have been developed
[12], [14]. Although a full description is beyond the scope
of this paper, the following explanation conveys the basic
concepts.

Consider an array of antifuses at the intersection of some
horizontal and vertical segments, as shown in Fig. 15.
An antifuse is programmed by applying a programming
voltage, Vpp, across it. This is done by precharging all
segments to an intermediate voltage of about Vppl2. Then
a selected vertical segment is grounded and a selected
horizontal segment is driven to Vpp. Other segments are left
floating at Vpp/2. Only the single antifuse at the intersection
of the selected segments sees the full Vpp.

We now show how the segments can be selectively
driven. Figure 16 illustrates the series pass transistor ad­
dressing method. A sample of horizontal and vertical seg­
ments are shown. Each pair of adjacent segments in the
same track is connected by a pass transistor. (In tracks
containing uncommitted segments there is already an an­
tifuse joining adjacent segments, and so the transistor is
hooked in parallel with the antifuse.) These transistors are

1050

Antifuse Field Programmable Gate Arrays

Horizontal pass transistor

Fig. 16. Pass transistor addressing.

GND

+

Vertical pass transistor

~
Column control line

-- Vpp

Fig. 17. Programming an antifuse between a horizontal and a
vertical segment.

used only for programming and testing and are all shut
off during normal operation of the programmed part. The
transistors in each row of modules are gated by a control
line running along the row, and the transistors in each
column of modules are gated by a control line running along
the column. These lines in turn are driven by special logic
at the periphery of the array. Note that only one control line
per row or column is required, regardless of the number of
tracks.

Figure 17 shows how this circuitry is used to program
an antifuse at the intersection of a horizontal and vertical
segment. The vertical track containing the antifuse is driven
to ground from one end by special logic at the periphery of
the array. The pass transistors in all rows from the driving
periphery to the antifuse are turned on. The horizontal track
is driven to Vpp in a similar manner. Figure 18 shows how
an antifuse between two adjacent segments in the same
track is programmed. All columns of pass transistors except
the one bypassing the antifuse are turned on, and the track is
grounded at one end and driven to Vpp at the opposite end.

In certain cases direct addressing circuitry offers a favor­
able alternative to series pass transistors. Figure 19 shows
how this method can be used to address horizontal seg-

PROCEEDINGS OF THE IEEE, VOL. 8/, NO.7, JULY /993

4-37

I

4-38

on on off on
GND ~- ---lOi.----lOL- ... Vpp

. /
Antlfuse programmed

Fig. 18. Programming an antifuse between two adjacent segments
in the same track.

Column supply ~

I II II

1
,.J ,.J I~
''-L. ''<-- ''<--

[
Ir I~ ,,.1
I'-L. I~ ''<--

I II II

Fig. 19. Direct addressing circuitry.

I

I

> Group 1
tracks

--- Group 1
select

)
Group 2
tracks

---Group 2
select

ments. Column supply lines run vertically through the array.
Each segment along a track can be connected through its
own addressing transistor to a supply line. These transistors
are gated by a horizontal select line. Each select line serves
all the segments in a group of one or more adjacent tracks in
the same channel. Activating one supply line and one select
line uniquely addresses a particular horizontal segment. The
number of segments in a channel that can be addressed is
limited by the number of supply lines times the number of
group select lines. It follows from this that the ratio of tracks
to select lines is at most the average segment length. Also
note that the supply path from the periphery to the segment
includes only one transistor, rendering the programming
current independent of the position of the segment and the
segmentation of its track. Thus the direct addressing method
is. most efficient for irregularly segmented channels with
long segments.

ACT 1 chips use only the pass transistor method. ACT 2
and 3 chips use the pass transistor method for the vertical
tracks, which contain many short input segments, and the
direct address method for the horizontal tracks.

In either scheme, some care is required to assure that
a unique antifuse is addressed once other antifuses have
already been programmed. Figure 20 gives an example
of how improper addressing might allow programming
current to divert along a sneak path through previously
programmed antifuses 3 and 4, programming antifuse 1
instead of the intended antifuse 2. Fortunately, we are not
interested in programming an arbitrary pattern of antifuses
(an FPGA is not a PROM!). For example, we are not called
upon to program a pattern connecting two outputs together
since this does not form a useful net. For the relevant
pattems, it can be proved that there is always an order

GREENE el 01.: ANTIFUSE FIELD PROGRAMMABLE GATE ARRAYS

Vpp

GND

on I

'1

on I

,/2

off I

on I

4/

onl

3
"-

off I

Fig. 20. A sneak path. The arrow shows the path of programming
current through anti fuse I, bypassing anti fuse 2.

in which the antifuses can be programmed such that sneak
paths never occur.

Special care is also required to protect the module cir­
cuitry from the voltages present on the segments during
programming. Transistors that are in contact with routing
segments must be specially designed to withstand the
programming voltage.

Next we tum to testing. This takes place in three phases:
before, during and after programming. Preprogramming
tests check for shorted or open segments, shorted or even
weak antifuses, and proper module and I/O operation.
Continuity of the segments is easily verified by turning on
all pass transistors, using the peripheral circuits to drive
the segment at one end of a track and read the segment
at the other end. Testing for the absence of shorts between
segments in adjacent tracks is done in a similar way by
applying a pattern of alternating zeros and ones. Weak
antifuses can be screened out by applying the proper stress
voltage (higher than normal operating voltage but lower
than Vpp) across groups of antifuses in parallel using the
programming circuits. Breakdown of an antifuse is detected
by passage of excessive current.

To verify the functionality of the modules, we need to
apply test vectors to their inputs and read their outputs.
A vector can be applied simultaneously to all modules
by turning on all vertical pass transistors and applying
the vector to the vertical tracks from the peripheral logic.
A simple row-select and column-sense scheme conveys
the output of each module in tum to an output pad for
monitoring. (This same circuitry allows users to probe
internal nodes during normal operation, as described in the
next section).

Proper closure of the programmed antifl,lses is verified
during programming by sensing the passage of program­
ming current. A complete test for unintended connections
between any two segments can be done after programming

1051

Antifuse Field Programmable Gate Arrays

(macro library)

logic
synthesis

~
schematic
capture

\/

functional
simulation

timinQ
simulation

I
(netlist) (post-layout delays)

r-l----~~, i .. placement timing i
I val,dabon - and luting analyzer I

i programming debugger i

I ... ~~~~ .. ~r.~ / ~.~~~~.~J

Fig. 21. Design process.

ALS Design
Environment

using the programming circuitry to precharge, drive and
read the segments. This is true despite the fact that it
is no longer possible to address each individual antifuse
uniquely once programming commences. The solution to
this paradox is that detection (though not location) of shorts
can be accomplished simultaneously for many antifuses in
parallel.

Taken together, these tests insure correct functioning of
the programmed part. (Further details of testing in ACT 1
FPGA's are found in [35].)

VIII. DESIGN PROCESS AND SOFIWARE

Figure 21 diagrams the process of embedding a design
in an ACT FPGA. This process begins with capture of the
design in a computer readable format. Currently, most users
enter their designs as schematics built of macros from a
library. Any of several standard schematic capture programs
can be used. Since the ACT 1 and C modules have about the
same complexity as a typical gate array library macro, the
problem of selecting which groups of macros should share
one module is avoided; each macro is usually assigned its
own module. The larger capabilities of the S module are
handled by software that automatically combines a flip-flop
and a preceding combinational macro into one S module
where possible. This process is transparent to the user and
does not require modifying the schematic.

Another increasingly popular alternative is to enter de­
signs in terms of Boolean equations, state machine de-

1052

programming
station

t
FPGA

scriptions, or functional (rather than structural) schematics.
Different portions of a design can be described in different
ways, compiled separately, and the results merged accord­
ing to a top-level hierarchical schematic. Various industry
standard formats are supported.

High-level synthesis tools such as MIS-II [36] or Syn­
opsys [37] can be used with ACT FPGA's by providing
a suitable library. This can encompass only the standard
schematic library macros, or the complete set of all 700 or
so functions embeddable in the module can be included.
Recent research has investigated other more efficient ways
to allow synthesis tools access to the full flexibility of the
module. A method for rapid searching of large libraries
using Boolean matching is given in [38]. Other approaches
take advantage of the multiplexer structure of the module,
using either binary decision diagrams [39] or "if-then-else
DAG's" [40].

Several guidelines are suggested for reliable logic design
with FPGA's. The general goal is to make proper circuit
function independent of shifts in timing from one part to
the next.

• Use synchronous logic design where possible.
• Avoid gated clocks, using enabled flip-flops instead.
• Avoid race conditions.
• Limit fanout by buffering.

These guidelines are the same as those for users of mask
programmed gate arrays [41]. In addition, designs for ACT

PROCEEDINGS OF THE IEEE, VOL. 81, NO.7, JULY 1993

4-39

I

4-40

10SIC pins rcr
mo ule logc

8000 gate FPGA
utilization module

a) design done In an 8K TI gate array 99.5% 4.28
b) 32 bit data path, 16x16 mult, state machine 99.4 4.30
c) 2901 ALU (x4) 98.1 4.57
d) DMA controller (x3) 97.1 3.99
e) asynchronous serial ECC 97.0 4.78
1) plpellned fixed point mult, dlv, sqrt 94.5 3.37
g) state mach., multladd, datapath, counter 92.7 4.34
h) color crt controller (x3) 87.3 3.83
I) 32 bit data path with sum, compare (x3) 86.8 5.25
J) 40 bit floating point adderlsubtractor 86.7 4.33

4000 gate FPGA

k) 16 bit datapath, 16x16 mult, state machine 98.1 4.86
I) 2901 (x2) 93.2 4.68
m) DRAM, DMA & SCSI controllers, UART 92.6 4.73

Fig. 22. Statistics for some placed and routed designs.

FPGA's must use multiplexers rather than tristate drivers
since internal tristate is not supported.

Once the design has been entered, it can be simulated
either functionally or using prelayout delay estimates. The
netlist is checked by a validation program for problems
such as undriven nets, outputs shorted together, excessive
fanout, etc.

The next step is to map the netlist into the ACT architec­
ture. The placement problem (selecting a module for each
macro) is similar to that for a conventional gate array, with
a few additional considerations. I/O pins not constrained
by the user must be assigned to locations that minimize
delay and routing congestion inside the chip. Macros must
be placed in modules of the appropriate type (C or S).
Macros hooked to a clock network should be distributed
so as to balance the load on the network's branches.
Routing congestion within each horizontal channel must be
limited. Whenever possible, the dedicated output segments
should be used in preference to the uncommitted vertical
s~gments, especially for nets identified by the user as speed
critical. Uncommitted vertical segments must be assigned
to any remaining nets. Routing of the segmented channels is
done as previously described. The automatic placement and
routing software takes 45-60 min to complete an 8000-gate
FPGA on a 68030 microprocessor workstation.

Once placement and routing are completed, the propaga­
tion delay to each input pin is estimated. The calculation
accounts for the module internal delay as well as the delay
through each RC stage in the routed net. The estimates are
about as accurate as what would be obtained with a SPICE
circuit simulation. The delays can be back-annotated to a
simulator, or checked with a static timing analyzer program.

A list of antifuses to be programmed is generated and
downloaded to a programming station into which the FPGA
is plugged. Programming time is about 5-10 min, depend-(
ing on the size of the FPGA and the design. The station>
allows up to four chips to be programmed simultaneously

GREENE et al.: ANTlFUSE FIELD PROGRAMMABLE GATE ARRAYS

in this time. The standard tests applied before, during and
after programming, described in Section VII, assure correct
function of the programmed part. No design-specific test
vectors are required from the user.

The programming system can also access the previously
described test circuitry inside the programmed FPGA, caus­
ing the FPGA to sense any selected module output and
present it on an external pin in real time. This virtual probe
can be used and its address changed even as the chip is
operating in the user's system. The probe provides a useful
back-up when simulation is difficult or impossible, such as
for highly asynchronous designs or when the design must
accommodate a poorly documented interface. Debugger
software is also provided to enable the programmer to be
used as a functional tester, presenting stimuli at the FPGA's
pins and reading data back via the pins and the probe.

IX. DENSITY AND PERFORMANCE

In this section we report results with various design
examples to convey the density and performance of the
ACT 2 architecture.

The logic capability of an FPGA depends on more than
the number and capacity of it modules. The fraction of the
modules that can be used without running out of routing
capacity must also be considered. A simple design such as
one long shift register can use all modules with very little
routing, but realistic designs are more demanding.

Figure 22 summarizes results for a variety of designs
in 8000- and 4000-gate FPGA's having 1232 and 649
logic modules, respectively. The designs were placed and
routed automatically with no manual intervention. The table
includes the number of routed pins per logic module to
demonstrate the realistic burdens the designs impose on the
routing. Nearly all designs with module utilization under
85%, most designs with utilization under 95%, and many
with utilization up to 100%, route completely.

1053

Antifuse Fielci Programmable Gate Arrays

1280 culll.llative % 01 Input pins
vs delay

culll.llalll(e % 01 input pins

100

J ~-~~
90 ~------If-----/-;+-??,?:; /,,;

/' ".-'" LtL- //.
OO~--------4----/!~/+-1 I ----/~7~-+----------r--------~

ro ~rio~/~i~ __ -.,~/ __ ;-________ r-______ ~

60 I----t---f!(/ 1/
OO~------If-~~-+---4-~~------+--------+--------4

ill i I
~~---------f-~4-~-----4~-------+-------------+------------4

/1/ i v
~~-------r+-H~r----ft-----------+---------r----------4 ; II / /
~~---------Hrrr-+-----T-1--------+--------r---------4

I/I!/ rl 101-----/...&..,:vtl r'/
_________ ~ ______ &.: ... :t:::.~.:::.-____L... ______I.. ______ ~ ______ ---I.

10 15

delay (ns)

Fig. 23. Cumulative distribution of pin delays grouped by the fanout of their net. Delays were
computed by the postlayout extraction program for conditions of 5V, 25C, and worst-case processing.
Data based on 29 designs in an 8000-gate FPGA (AI280-1). The designs were automatically placed
and routed without manual intervention.

20 25

lanoul-l

o
lanout-2

x
lanout-3

lanoula4-6

lanoul-7-10

How successful is the architecture in controlling routing
delay? Figure 23 shows the distribution for the routing delay
to each input pin for various ranges of net fanout. The figure
includes all nets in the design. Pins on nets identified by
the user as speed critical would generally be among the
fastest 30%, and nearly always among the fastest 90%.
Especially for low fanouts and critical nets, the routing
delay distributions are tight, offering the user predictable
delays.

Table 1. Implementations of Some Typical Subcircuits

Finally, we give some results regarding some basic circuit
blocks. Table 1 shows the number of C and S modules
used, number of levels of modules in the critical path,
and nominal speed at 5V and 25C including routing delay.
The counters are binary, with synchronous parallel load and
asynchronous clear. The accumulator consists of an adder
feeding into a register with asynchronous clear. Area-delay
tradeoffs are possible using different types of adders. The
state machine handles arbitration for a DRAM controller in
a 68030 microprocessor system. It has 3 state bits.

X. THE PRACTICAL IMPACT OF ANTIFUSE FPGA's

The major impact of FPGA's is the ability to get a design
into production quickly and cheaply, even if iterations are
required. This is demonstrated in the following case history
from commercial practice.
Example I: A digital video signal processing system was
designed for the consumer market. Four 2000-gate FPGA's

1054

Example

8-bit counter, I-cycle
load

16-bil counter, I-cycle
load

Modules

16

50

8-bit counter, 2-cycle 40
load

16-bit counter, 2-cycle
load

8-bit ripple-carry
accumulator

8-bit carry-select
accumulator

16-bit carry-select
accumulator

state machine

80

17

40

89

16

Levels

2

2

2

Clock
period
(nsec)

17

18

12

12

60

28

33

16

were used to integrate registers, multipliers, adders and dig­
ital phase-locked-loops; the pipelined data paths are 12-16
bits wide, and operate at a 16MHz clock rate. It is estimated
that the use of FPGA's saved two to three months in product
development time. Subsequently, it became necessary to add

PROCEEDINGS OF THE IEEE, VOL. 81, NO.7. JULY 1993

4-41

I

4-42

features to the product. A single BOOO-gate FPGA replaced
the four 2000-gate FPGA's and provided the new circuitry.

A surprising fraction of conventional gate array designs
(estimates indicate about halt) never reach high-volume
production. This may be because either the lifetime of the
product is short or because new features or other changes
are required. In such cases use of FPGA's for all production
saves the nonrecurring engineering costs associated with
developing a mask programmed gate array.

For the lucky few whose products are required in high
volume, the FPGA design can be transferred to a conven­
tional gate array. Due to the small granularity of the module,
an antifuse FPGA netlist can be efficiently converted to a
gate array library by substituting the appropriate realization
for each macro in the FPGA library. Test vectors can often
be generated automatically. Several vendors support this
conversion path. The design in Example 1 was eventually
converted to an 8000-gate conventional array.

Even when designs require the greater speed or density
of conventional arrays, use of FPGA's for functional pro­
totyping accelerates product development. This was true in
the next example.
E.xample 2: A multiprocessor file server for a PC network
was under development. The system employed multiple
80486 microprocessors, banks of DRAM, and multiple
64- and 32-bit busses. Several 8000-gate FPGA's imple­
mented the random logic in a functional prototype using
synchronous logic design. Since the logic was composed
of clearly defined subblocks, principally state machines
and simple datapaths, partitioning of the logic among the
FPGA's was easy. For this complex system, the design
process was incremental and somewhat experimental. Be­
cause it was anticipated that the design would be modified
or extended several times, a fast design flow was necessary.
The logic for each FPGA was synthesized with a Synopsys
hardware description language (HDL) compiler using an
Actel macro library, and then checked with an HDL sim­
ulator. Each design was automatically placed and routed,
and resimulated with postlayout delays. This methodology
allowed software to be developed and tested concurrently
with the completion of the logic design.

We conclude with some comments on the future evolution
of antifuse FPGA's. Research into antifuse technologies is
gaining momentum due to the commercial importance of
FPGA's. Reductions in the parasitic resistance or capaci­
tance will help improve speeds. Reductions in the program­
ming voltage· or current will reduce the overhead area re­
quired for pass transistors and other programming circuitry,
and hence cost. On the architecture front, better logic mod­
ules and improved methods of designing segmented routing
channels may be developed. FPGA architectures could be
specialized for certain classes of applications. Of course,
antifuse FPGA's will also directly benefit from anticipated
improvements in the underlying CMOS technology. Thus
one would expect antifuse FPGA's to evolve more rapidly
than conventional arrays, reducing the current gap between
them. Ultimately it is possible that FPGA's will supplant
conventional gate arrays for application-specific logic to

GREENE el al.: ANTlFUSE FIELD PROGRAMMABLE GATE ARRAYS

the same extent that EPROM's have supplanted ROM's for
application-specific memory.

ACKNOWLEDGMENT

The authors would like to thank C.-L. Chan, R. Gopisetty,
S. Kaptanoglu, D. McCarty, W. Miller, W. S"'u, and T.
Whitney for their help in preparing data for this paper; J.
Birkner for his kind discussions with the authors regarding
the programming currents for the resistances reported in
[22]; and A. Haines, D. How, J. Schlageter, and the review­
ers for their suggested improvements to the manuscript.

REFERENCES

[1] G. Worchel, "Analysis of the CMOS gate array merchant
market," In-stat Services, Mar. 1991.

[2] "Programmable logic user study," Electronic Eng. Times, May
1990.

[3] J. F. Smith, et al., "Laser-induced personalization and alter­
ations of LSI and VLSI circuits," in Proc. 1st Int. Laser
Processing Con!, Anaheim, Calif., Laser Institute of America,
Nov. 16, 1981.

[4] D. Allen and R. Goldenberg, "Design aids and test results for
laser-programmable logic arrays," in Proc. Int. Conf. Computer
Design, pp. 386-390, 1990.

[5] W. Carter et al., "A user programmable reconfigurable gate
array," in Proc. Custom Integrated Circuits Con!, pp. 233-235,
1986.

[6] S. Wong, H. So, J. Ou, and J. Costello, "A 5000-gate CMOS
EPLD with multiple logic and interconnect arrays," in Proc.
Custom Integrated Circuits Con!, pp. 5.8.1-5.8.4, 1989.

[7] L. Gerzberg. U.S. Patent 4,590,589, 1986.
[8] E. Hamdy, J. McCollum, S. Chen, S. Chiang, S. Eltoukhy, J.

Chang, T. Speers, and A. Mohsen, "Dielectric based antifuses
for logic and memory ICs," IEDM Tech. Digest, pp. 786-789,
1988.

[9] "ICC takes the antifuse one step further," Electronics Mag., p.
87, Mar. 1989.

[10] R. Whitten, R. Bechtel, M. Thomas, H.T. Chua, A. Chan, and
J. Birkner, European Patent Application No. 90309731.9, May
9, 1990.

[11] J. Rose, A. El Gamal, and A. Sangiovanni-Vincentelli, "A
classification and survey of field-programmable gate array ar­
chitectures," Proc. IEEE, vol. 81, no. 7, July 1993 ..

[12] A. El Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. El-Ayat,
and A. Mohsen. "An architecture for electrically configurable
gate arrays." IEEE J. Solid-State Circuits, vol. 24, no. 2, pp.
394-398, Apr. 1989.

[13] K. El Ayat, et aI., "A CMOS Electrically Configurable Gate Ar­
ray," IEEE J. Solid-State Circuits, Vol. 24, No.3, pp. 752-762,
June 1989.

[14] M. Ahrens, et al., "An FPGA family optimized for high den­
sities and reduced routing delay," in Proc. Custom Integrated
Circuits Con!, 1990.

[15] B. Osann and A. El Gamal. "Compare ASIC capacities with
gate array benchmarks," Electronic Design, pp. 93-98, Oct. 13,
1988.

[16] U.S. Patent 2,784,389, 1957.
[17] B. Roesner, U.S. Patents 4,424,579 and 4,442,507, 1984.
[18] Holmberg, et aI., U.S. Patents 4,499,557, 1985 and 4,599,705,

1986.
[19] Lim et al. ,U.S. Patent 4,5fi9,121 , 1986. Stacy et al. U.S. Patent

4,569,120, 1986.
[20] H. Stopper, et al. ,U.S. Patent 4,847,732, 1989.
[21] H, Graham and D. Seltz. "Electronically programmable gate

array having programmable interconnect lines," U.S. Patent
4,786,904, Nov. 22, 1988.

[22] J. Birkner, A. Chan, H.T. Chua, A. Chao, K. Gordon, B.
Kleinman, P. Kolze, and R. Wong, "A very high-speed field
programmable gate array using metal-to-metal antifuse pro­
grammable elements," in 1991 IEEE Custom Integrated Circuits
Conf., San Diego, CA, May 12, 1991.

1055

[23) S. Chiang, R. Wang, J. Chen, K. Hayes, J. McCollum, E.
Hamdy, and C. Hu, "Oxide-nitride-oxide antifuse reliability,"
Int. Reliability Physics Symp., pp. 186-192, Mar. 1990.

[24) S. Chiang aQd K. Hayes, Act 1010/1020 Reliability Report,
Actel Corporation, Sunnyvale, CA, April 1990.

[25) Preliminary data from a military system manufacturer. Test done
on total dose Gamma Irradiation Survivability Test.

[26) A. Hashimoto, J. Stevens, "Wire routing by optimizing channel
assignment within large apertures," in Proc. 8th IEEE Design
Automation Workshop, 1971.

[27) M. Lorenzetti and D. Baeder, "Routing," in Physical Design
Automation of VLSI Systems,B. Preas and M. Lorenzetti, Eds.
Benjamin Cummings, Chapter 5, 1988.

[28) C. Marr, "Logic array beats development time blues," Elec­
tronic System Design Mag., pp. 38-42, Nov. 1989.

[29) A. EI Gamal, J. Greene, and V. Roychowdhury, "Segmented
channel routing is nearly as efficient as channel routing (and
just as hard)," in Proc. Coni Advanced Research in VLSI, Santa
Cruz, CA, Mar. 1991.

[30) A. EI Gamal, "Two dimensional stochastic model for inter­
connections in master slice integrated circuits," IEEE Trans.
Circuits Syst., CAS-28, pp. 127-138, Feb. 1981.

[31) 1. Greene, V. Roychowdhury, S. Kaptanoglu, and A. EI Gamal,
"Segmented channel routing," in Proc. ACMIIEEE Design Au­
tomation Coni, June 1990.

[32] B. Preas and P. Karger, "Placement, assignment and ftoor­
planning," in Physical Design Automation of VLSI Systems, B.
Preas and M. Lorenzetti, Eds. Benjamin Cummings, Chapter
4, 1988.

[33) J. Rose, R, Francis, D. Lewis, and P. Chow, "Architecture of
programmable gate arrays: the effect of logic block functionality
on area efficiency," IEEE J. Solid State Circuits, vol. 25, no. 5,
pp. 1217-1225, Oct. 1990.

[34] 1. Kouloheris and A. EI Gamal, "FPGA performance versus
cell granularity," in Proc. Custom Integrated Circuits Coni.,
pp. 6.2.1-6.2.4, May 1991.

[35) K. EI Ayat, A. Haines, and K. Hayes, "Testing antifuse-based
FPGAs," Electronic Eng. Times, May 15, 1989.

[36) R. Brayton, R. Rudell, A. Sangiovanni-Vincentelli, and A.
Wang, "MIS: A multiple-level logic optimization system," IEEE
Trans. CAD, Nov. 1987.

[37] R. Rudell and R. Segal, "Logic synthesis can help in explor­
ing design choices," 1989 Semicustom Design Guide, CMP
Publications, Manhasset, NY.

[38] S. Ercolani and G. de Micheli, "Technology mapping for elec­
trically programmable gate arrays," in Proc. 28th ACMIIEEE
Design Automation Conf., pp. 234-239, 1991.

[39] R. Murgai, Y. Nishizaki, N. Shenoy, R. Brayton, and A.
Sangiovanni-Vincentelli. "Logic synthesis for programmable
gate arrays," in Proc. 27th ACMIIEEE Design Automation Coni,
1990.

[40] K. Karplus, "Amap: a technology mapper for selector-based
field-programmable gate arrays," in proc. 28th ACMIIEEE De­
sign Automation Coni, pp. 244-247, 1991.

[41] HCMOS Gate Array Databook and Design Manual, LSI Logic
Corp., Oct. 1986.

1056

Antifuse Field Programmable Gate Arrays

Jonathan Greene (Member, IEEE) received the
Sc.B. degree in biology from Brown University
in 1979, and the Ph.D. degree in electrical
engineering from Stanford University in 1983.

He then worked on various aspects of
computer-aided IC design at Hewlett-Packard
Laboratories and LSI Logic Systems Research
Lab. From 1986 to 1990 he was with
Acte! Corporation, where he helped develop
the architecture and software for their field­
programmable gate arrays and became Director

of System Architecture. He is currently with BioCAD Corp., Mountain
View, Calif., applying computer-aided design and information theoretic
techniques to the process of drug discovery.

Esmat Hamdy (Senior Member, IEEE) was
born in Cairo, Egypt, of February 2, 1950.
He received the B.Sc. and M.Sc. degrees from
Cairo University in 1971 and 1975, respec­
tively, and the M.A.Sc. and Ph.D. degrees from
the University of Waterloo, Ontario, Canada, in
1977 and 1980, respectively, all in electrical
engineering.

From 1971 to 1975 he served an Instructor
in the Department of Electrical Engineering,
Helwan University, Helwan, Egypt. From 1975

to 1980 he was a Research and Teaching Assistant in the Department
of Electrical Engineering, University of Waterloo, where he was engaged
in the analysis, modeling, and design of high-density bipolar and MOS
integrated structures for LSIIVLSI technologies. He joined Intel Corp.,
Aloha, Oreg., in 1981, where he was a Senior Staff EngineerlProject
Manager in the Technology Department involved in device physics and
circuit design of the world first 256K CMOS DRAM and submicrometer
CMOS for Microprocessors. In Actel he managed and coinverted the
PLICE antifuse technology used in the world's first antifuse FPGA. He
has authored or coauthored over 20 papers on LSIIVLSI circuits including
contributions to IlL, single-de vice-well (SDW) MOSFET's CMOS latch­
up and PLICE antifuse. He is the winner of the Best Student paper at the
1979 IEDM meeting. He also has 10 pending or granted patents.

Sam Beal received B.S., M.S., and Ph.D. de­
grees in electrical engineering from Southern
Methodist University, Dallas, Tex., in 1975,
1977, and 1979, respectively, having done re­
search in AIGaAs solar cells.

He joined Texas Instruments in 1980, working
in the CMOS Technology Department, where his
responsibilities included CMOS process devel­
opment and ASIC design development. In 1984
he assumed responsibility for Texas Instruments'
ASIC design center in Santa Clara, Ca. He

joined Actel in 1988 as Applications Engineering Manager. He is currently
Applications and Product Planning Manager for Development Systems.

PROCEEDINGS OF THE IEEE, VOL. 81, NO.7, JULY 1993

4-43

I

4-44

Oxide-Nitride-Oxide
Antifuse Reliability

Article
Reprint

oaide-Ritrid.-oxid. Antifu •• Reliabilit~

steve Chiang, Roger Wang, Jacob Chen, Ken Hayes, John McCollum, Esmat Hamdy, Chenming HU*

Actel Corp. 955 E. Arques Ave. Sunnyvale, CA 94086
Phone:(408)739-1010

*Department of Electrical Engineering and Computer Science U.C. Berkeley, Berkeley, CA 94720

Abstract

Compact, low-resistance oxide-nitride-oxide
antifuses are studied for TOOB, program dis­
turb, programmed anti fuse resistance stabi 1-
ity, and effective screen. aNa antifuse is
superior to oxide anti fuse. No aNa antifuse
failures were observed in 1.8 million accel­
erated burn-in device-hours accumulated on
1108 product uni ts. This is in agreement
with the l/E field acceleration model.

Introduction

Field programmable gate arrays has been a
fast growing field only recently [1]. The
key to their configurability is the develop­
ment of a programmable interconnect element.
This element should have small area, low post
programming resistance, and be reI iabl e.
Many known interconnect elements have been
used, inc 1 uding SRAMs, EPROMS, and EEPROMs.
Problems encountered using these elements
are: large area, high resistance, or ineffi­
cient utilization due to circuit complexity.
The antifuse approach, however, has some
unique and attractive features. Since it is
only a two terminal device, the area required
is small, and the simple two terminal resis­
tor structure allows simple and efficient
routing schemes [2]. The programmed antifuse
has very low resistance. I t was found that
oxide-nitride-oxide (aNa) antifuses have a
lower and tighter resistance distribution
than that of oxide antifuses (Fig. 1). The
choice of antifuse material has further im­
proved both the yield and the reliability
over that of oxide antifuses. In addition,
aNa is highly radiation resistant. Initial
evaluation results indicate that products
containing aNa antifuses can withstand 1.5
million rads [3]. The technology and perfor­
mance characteristics of the aNa antifuse has
been previously described [4]. In this pa­
per, we wi 11 report the rei iabi 1 i ty charac­
terization of the aNa antifuse.

We will discuss three different types of
antifuse reliability. The first is that the
unprogrammed antifuse has to survive as. 5V
40 year operating condition. The second is
that during programming, all unprogrammed
antifuses are subject to a momentary stress
of half the programming voltage (Vpp/2). The
programming yield is required to match or ex­
ceed PAL yields which are in excess of 99\.
The third is that programmed antifuses should
have a very low resistance, which will not
increase in value over the life of the part.
As wjll be shown below, the unprogrammed
antifuse is reliable, well in excess of the

© 1993 Actel Corporation

40 year lifespan, the programming yield is
excellent, and the programmed antifuse is not
subject to any measurable electromigration.
The weakest link in the technology is not the
antifuse, but typical CMOS process limita­
tions.

Antifuse structure

The aNa anti fuse is sandwiched between N+
diffusion and N+ poly-silicon gate to form a
very dense array with density limited by
metal pitches (Fig. 2). A thin layer of ox;"
ide is thermally grown on trip of the N+ sur­
face, followed by LPCVP nitride, and the re­
oxidized top oxide. The target electrical
thickness of the combined layer is equivalent
to 9nm of silicon dioxide.

TDDB of Unprogrammed Antifuses at S.SV

For the sub 10 nm aNa thickness, time-de­
pendent-dielectic-breakdown (TDDB) reliabil­
ity over 40 years is an important considera­
tion. The very first task in determining the
feasibility of the anti fuse was to examine
its TDDB reliability. Typical electrical
field and temperature accelerated tests were
done in order to extrapolate the dielectric
lifetime under normal operating conditions.
Based on the oxide study [5], it was reported
that there may be different field dependen­
cies of lifetime in high field (>6MV/cm) and
in low field «5MV/cm) regimes. In the case
of aNa antifuses, the 5.5V operating field is
already over 6MV/cm. The extrapolated data
from the high field regime was therefore as­
sumed accurate. This assumption was later
confirmed with device burn-in data.

Field Acceleration (E vs lIE model for ORO)

200X200 um2 (0.04mm2) area capacitors were
packaged and then stressed at different volt­
ages. aNa thickness ranging from 8nm to
9.5nm were studied. The test splits and sam­
ple sizes are summarized in Table 1. The
TOOB distribution at each voltage condition
is shown in Fig. 3.

In the literature, the oxide intrinsic
lifetime has been observed to have an
exp(l/E) dependence, which is explained
mainly with the Fowler-Nordheim tunneling
mechanism [6]. Oxide Log(I) curves and life­
time Log (t 50) curves exhibit a linear func-
tion of lIE behavior. On the other hand,
ni tride Log(I) has been shown to follow the
Frenkel Poole behavior ([E) [7]. Log(I) of
ONO is not a linear function of liE
(Fig. 4a). Rather, it more closely follows E

4-45

II

4-46

(Fig. 4b). Also, several studies have fitted
lifetime of ONO to an E model [8,9].

lIevertheless a careful examination of our
data revealed that TDDB lifetime of ONO fol­
lows the l/E model (Fig. 5) better than the E
model (Fig. 6). This is in agreement with
conclusions from one study (10), but in con­
tradiction with others which did not examine
the fit between data and the l/E model [8,9).
Based on our observation, we found that the E
model can fit the data well over 4 to 5 or­
ders of magnitude of time span. However, as
time span increases to 7 orders of magnitude,
the E model is clearly inadequate (Fig. 6).

Since there is no theoretical basis for ONO
to follow the l/E model or the E model, we
tried a statistical approach to find out
which model can best fit the data. First,
the data is fitted to different field depen-
dent models of exp(En) with n ranging from
-1.5 to 1 at 0.5 intervals. Then the
correlation coefficient is compared for
different models in Fig. 7. The residual
comparison is shown in Fig. 8. Again, the E
model (n=l) turns out not to be a good fit
for the data. The best fi t appears to be
n = -.5 or -1. This seems to suggest that
OftO behavior is similar to oxide (n = -1).
But, the addition of nitride (n=0.5) has
changed the n to between -0.5 to -1. Which
of the two exponents, n=-0.5 or -1, should be
used may depend on the ONO processing
conditions. The difference between
extrapolated lifetime based on these two
models is not nearly as dramatic as the
choice between E and l/E. At 5.5V, the
difference in the extrapolated lifetime
between n= -0.5 and -1 is one order of
magnitude in time. On the other hand, the
difference between n=l and -1 is 5 orders of
magnitude. In the subsequent analysis. we
will use liE model exclusively for simplic­
i ty. The concl usion reached wi 11 not change
much if the l/~E model were to be used.

Besides the 0.04mm2 area capacitor data, we
also did a TDDB study on single antifuses
(3. 2um2) and ACT 1010 product antifuse arrays
(O.36mm2). Results are shown in Fig. 9.
A9ain. the data follows the liE model well
for all different area sizes.

Temperature Acceleration

The temperature effect on the 0.04mm2 ONO
area capacitor lifetime is shown in Fig. 10.
The activation energy as a function of the
electrical field is shown in Fig. 11. A
field dependent activation energy has been
reported for oxide TDDB lifetime, as well.

For the 5.5 volt lifetime estimate, the ac­
tivation energy is close to 0.geV (l/E
model) . Using this estimate and the product
TDDB defect distribution (Fig. 12). the 1\
failure lifetime at 5.5V is well over 40
years. The projected product antifuse fail­
ure rate (containing lOOK to 200K antifuses'
is less than 50 FITS at 125·C.

Program Diaturb and 8creen

During programming, all antifuse electrodes
are precharged at a given voltage, Vpre. To
program the antifuse, its poly-silicon elec­
trode is raised to vpp while its N+ diffusion
is grounded. The unselected antifuses are
subjected to the stress of ei ther Vpre to
ground or vpp to Vpre for an average of 100
times the single antifuse programing time.
Usuall y the VItre is set such that stress is
approximately Vpp/2. If defective unselected
anti fuses fail (become programmed) due to
this stress, they will show up as programming
failures. These defective antifuses can be
screened out at wafer sort by a 1 second
stress at 10 volts (lOv/ls). This screen is
done twice during sort. The first 10v/ls
(FS-l) screens out the defective dielectric
distribution. The second 10V/ls stress
(FS-2) simulates the percent yield loss
during programming. In Fig. 13, it shows a
typical wafer trend on the failure rate of
both first and second stress. The 10 run
average of FS-2 is 0.3 \. This suggests that
the programming fai 1 ure loss due to anti fuse
defects after the screen should be less than
0.3\.

unlike floating gate EPROMs and EEPROMs,
latent ONO defects can be easily screened out
with a voltage stress as described above.
This is one more advantage of the anti fuse
structure as a programming element. Once an
antifuse has passed the voltage screen at
sort, it is very reliable. Based on either
liE or l/~E model, the lOV/ls stress is
equivalent to a stress time at 5.5V well over
40 years. We have calculated the equivalent
product failure rate at 5.5V as a function of
the Fs-2 screen yield loss. It shows that
for an FS-2 of 0.5\, the equivalent FITs at
5.5V 125'C is less than 50, which is consis­
tent with the results mentioned at the end of
the previous section.

Programmed antifuae aeliabilitr

Once the antifuse is programmed and forms a
low resistance path, the resistance should
remain ~ ow. In the case of oxide. it is a
known fact that they are susceptible to self
healing [11) or an increase in resistance
wi th time. This is not the case for ONO as
will be shown in the following section.

A four terminal Kelvin structure was used
for the reliability study (Fig. 14). A con­
stant 5mA current, which is much larger than
the operating current, \'as passed through the
antifuse at 250'C (through terminals A,B)
~hile the voltage across the antifuse was
monitored between terminals A and B. A typi­
cal vol tage vs time graph is shown in Fig.
15. A sudden increase in vol tage indicates
that an open circuit has formed. Prior to
that, there is no significant change in the
voltage across the anti fuse indicating that
the resistance remained low.

Next, el ectric continuity measurement and
scanning electron microscopy (SEM) were done
on the Kelvin structure. It was found that

the antifuse resistance still remained low
when measured from the other two unstressed
terminals C and D. This is the case for all
samples tested under this condition. SEM
analysis showed that the open circuit was re­
lated to the metal to poly contact electromi­
gration failure (Fiq. 16). The activation
energy (based on 250'C and 200'C data) for
the contact el ectromiqration is 1.leV, which
is in agreement wi th typical val ues obtained
from contact electromiqration failures [12].
The extrapolated lifetime of cont.cts in
these circuits under normal operatin!. condi­
tions is well in excess of 40 years. The
real lifetime of a programmed anti fuse itself
is yet to be determined.

Hi~h ~..,erature Product Burn-in Life Data

In previous sections, it was demonstrated
that the extrapolated ONO anti fuse lifetime
follo~s the l/E model instead of the E model.
Product burn-in data supports this conclu­
sion. ll08 units (including PROMs, ACTI010,
and ACTI020) containing an average of about
lOOK anti fuses per unit., about 5\ of which
were programmed, underwent dynamic burn-in at
125'c and 5.5V with roughly an accumulated
1.8 mi Ilion device hours. No anti fuse fai l­
ure has been observed while two CMOS circuit
failures have been observed and identified in
the peripheral circuitry. This data is con­
sistent with the failure rate projection
based on lIE extrapolation, while the E model
extrapolation based on TDDB test data would
have projected 90 unit failures (out of 1108
units) due to ONO antifuses.

conclusions

We have investigated three reliability as­
pects of the ONO anti fuses. During opera­
tion, the lifetime of the ONO antifuse is
well in excess of 40 years at elevated tem­
peratures. I t has been further demonstrated
that the E model is not adequate for lifetime
extrapolation. Results indicate that l/E is
a better choice. The key to successful ex­
trapolation is that data should span over
seven orders of magnitude in time. Based on
the 1/E model, the extrapolated lifetime is
well over 40 years at 5. 5V. To screen out
the programming yield loss due to breakdowns
of defective unselected antifuses, a screen
was developed. This is not a yield limiting
factor in the typical process as the yield
loss due to the screen on the average is 1\.
After the screen, the programming' yield is
higher than 99\. The reliability of pro­
grammed ONO antifuses was also studied. It
was found that the lifetime is limited by the
contact electromigration, not by the ONO
antifuse. In addition, the resistance
remains low throughout the test indicating
the anti fuse resistance does not increase.
Finally, more than 1100 product units and
over 1. 8 million unit hours of burn-in data
have shown no failure at all that can be
attributed to the ONO antifuses. This is in
agreement with the prediction based on wafer­
level tests and the l/E model.

Oxide-Nitride-Oxide Antifuse Reliability

Reference.

[1] A. Haines , "Field-Programmable Gate Ar­
ray wi th Non-Vol ati I e Configuration", Micro­
processors and Microsystems, Vol. 13, No.5,
pp. 305-312, June, 1989.

(2] A' El Gamal, J. Greene, J. Reyneri, E.
Rogoyski, K. El-ayat, and A' Mohsen, "An Ar­
chitecture for Electrically Configurable Ar­
rays", IEEE J. Solid-State Circuits. Vol 24,
No. 2 pp. 394-398, Apr. 1989.

[3] Preliminary data from a military system
manufacturer. Test done on total dose Gamma
Irradiation Survivability Test.

[4] E. Hamdy, J. Mccollum, S. Chen, S. chi­
ang, S. ELtoukhy, J. Chang, T. Speers, A.
Mohsen, " Dielectric Based Antifuses for
Logic and Memory ICs", IEDM Tech. Digest, pp.
786-789, 1988.

[5] K. Boyko, D. Gerlach, "Time Dependent Di­
el ectric Breakdown of 210 A Oxides", Proc.
Int. Rei. phys. Symp. pp. 1-8, 1989.

[6) 1. chen, S. Holland, C. Hu, "Electric
Breakdown in Thin Gate and Tunnelinq Oxides",
IEEE Trans. Electron Devices, ED-32, No.2,
pp. 413-422, Feb. 1985.

[7) S. Sze, "physics of Semiconductor de­
vices", 2nd Edition, John wiley and Sons,Inc.
pp 402-407, 1981.

[8] A. Nishimura, S. Murata, S. Kuroda, O.
Enomoto, H. Kitaqawa, and s. Haseqawa, "Long
Term Reliability of si02/siN/sio2 Thin Layer
Insulator Formed in 9 urn Deep Trench on High
Boron Concentrated Silicon", Proc. Int. ReI.
phys. Symp. pp. 158-162, 1989.

[9] Y. Ohji, T. Kusaka, 1. Yoshida, A. Hi­
raiwa, K. Yagi, and K. Mukai, and O. Kasa­
hara. "~eliability of Nano-Meter Thick Multi­
Layer Dielectric Films on poly-Crystalline
Silicon", Proc. Int. Rei. Phys. Symp. pp. 55-
59, 1987.

[10) P. Hierqeist, A' Spitzer, and S. Rohl,
"Lifetime of Thin Oxide-Nitride-Oxide Di­
electrics within Trench Capacitors for
DRAM's", Trans. Electron devices, Vol. 36,
No.5, pp. 913-919, May, 1989.

[11) D. walters, J. van
"Dielectric Breakdown in MOS
I,ll, III", Phillips J. Res.
ll5-192, 1985.

der School,
Devices, Part
Vol. 40, pp.

[12] D.S. Peck and 0.0. Trapp, "Accelerated
Testing Handbook", pp. 5-36 to 5-37, 1987.

4-47

4-48

Table 1 Field accelerated test data for two lots with thickness ranging from 8am to 9.5aa. The
test was done on 0.04mm2 area capacitor.

Lot A

Voltage Tox E-field
(V) (DID) (MY/em)

13.5 8.3 16.2
12.5 8.3 15.1
12.0 8.3 14.4
11.5 8.3 13.8
11.0 8.4 13.1
10.5 8.4 12.5
10.0 8.3 12.0
9.5 8.3 11.4
9.0 8.3 10.7

~
8.5 8.3 10.2
8.0 8.3 9.6

Sub-total of tested cap.
Total of t8sted cap.

, of cap

22
22
22
22
22

9
6
6

36
15
59

241
642

t50
(sec)

4.2e-3
3.7e-2
1.5e-1
8.6e-1
4.7eO
5.8e1
3.2e2
2.5e3
2.5e4
2.3e5
1.5e6

LotS

voltage Tox B-field • of cap. t50
(V) (DID) (MY/em) (aee)

14.0 8.7 15.9 25 9.8.-3
13.0 8.7 14.9 25 5.0.-2
12.5 8.7 14.3 25 2.4.-1
12.0 8.7 13.7 25 1.380
11.4 8.7 13.1 25 9.080
11.2 8.7 12.5 45 8.081
10.8 9.0 12.0 45 3.5282
10.2 9.0 11.3 45 2.8883

9.7 9.0 10.8 45 2.07e4
9.0 8.7 10.3 32 3.3585
9.0 9.3 9.7 32 2.2286

401

Table 2 High temperature operating life test data (HTOL).

Device , of I of fuse Device Hours I fuse Equivalent
units per unit @ 125°C/5. 5V· Fail Device Hours

@ 55°C

PROM64 275 65,536 450,000 0 18.8 Killion
1003JLCC 238 40,000 359,400 0 15.0
1010JLCC 144 112,000 283,000 0 11.8
1020JLCC 61 186,000 90,000 0 3.8
1010PLCC 358 112,000 616,000 0 25.8
1020PLCC 32 186,000 5,300 0 0.2

Total 1108 701,536 1,804,100 0 75.5 Million

* A1l PLCC, 114/144 of 1010 JLCC and 32/61 of 1020 JLCC have 5.75V.

eo.-------------------------------~

150 ..
40

30

20

10

eoo 1000 1400 1800

Antifuse Resistance (ohms)

Fig. 1 ONO antifuse has a tighter resistance
distribution than oxide antifuse.

I

" I I I J
-......... -.......... -/ ~ / -

~ /

X I I I
I "J ..

Fig. 2 Simplified product architectur8
showing logic modules, routing tracks, and
antifuse arrays. Vpp is applied to program a
selected antifuse. On selected antifuses have
vpp/2 or OV stress.

'~;~~="~·~-----------------------.WWl.'_~
t.-.or
,~

,~ ,.....
~ ,
,.-.0, , , ,
,
'''-01

0666

00000 0 0

6 .. ,
o , ... 66666

o OOOUD

X X x
... A ... OO 1 .. _---"'u""""'OOC)()()(It ...

IIdJSlDD D D --....... ;:;._ .. = .. -.-. -.'. '
D aaa::fD!::--"""-'-... --­

......... 111111 11111 ++ + +
+ +++tf'

, !l,,.....~tI~-!.--:,!:-.--: .. ~ .. ~ .. ~ .. :. .. ~,,~ ... ~ ~ .. ~"iI"~ .•
CwUatIw F (~)

rig. 3 Caaulati". percentage railure verses
tt.. on a log-nor.aal scale.

****** GR~~~~~~:**
lIIiWV'l

****** GRAPHICS PLOT ******
0.0" J-£ NOOEL.

rig. 4 I-V characteristics or oxide, nitride,
and ONO. Ca) rovler-Nordheim tunneling plot.
Cb) J vs I: plot. Log CJ) of ONO is not a
linear runction of 1/1: I-V.

Oxide-Nitride-Oxide Antifuse Reliability

1.0E.oe~TDO~8~(~'IO~1 _____________ ---1

l.OE007

'.OE'"

l.oEoOI

1.0E004

1.0E·03

I.GE002

I.GE·OI

I.GE·OO

I.GE-Ol

I.GE-02

+ Lei A 0 Loll

1.0£-03 L_-'-=-_.J.-_-'-' __ ~I --:IO::---11::--~12
• 100/E Cem/MV)

iJ,
Fig. 5 Log tso vs 1/1: ror tvo lots.
area capacitor vas used.

0.0 2

l'O£'O.;TD::D::B:..:(~ • .::ee::.) ____________ -,

1.0E·07

1.0E·08

1.0E·0.

1.0E·04

1.0E·03

1.0E·02

1.0E·01

+ LolA 0 Lei.

1.0EoOO~

1.0E-Ol.

1.0E-02~

1.0E-03 .L-'----'IO'----'I1'----'12---'13-~M--II=--.~-::17

E (MY/em)

rig. 6 Log tso vs I: ror two lots. Log tl0
has a similar E dependence.

Correlallon Coelflclenl(R .qaur.)
o,"~~=~;':"';'':'''''':'--'---=--''---------.,

0.188 • • •
0.1111

0.1184

0.182

0.11'

•
0.17a

•
0.17._L2--_ I.I--... _1---o --0'---0 ~-.... ,---:1.I

n(exponent of E field dependence)

Fig. 7 tso vas fitted to 5 dirferant
distributions. The rittiDg correlation
coerricient ca2) is plotted against the rield
exponent n in [exp(l:n»). 1/1:Cn- -1) has the
bast fit vith the largest correlatioD
coerricient.

4-49

I

4-50

.~R'~'=ld~U='I=.I~ln~(t=db~)~J ____________ -,

1.1

0.'

-0.1

-f

-1.1

n ··1

0.15

-0.15

-1

-1.5

-21L--~~--~ff--U~-~Q--M~-~~~-.=--~17
E-Fleld (MY/em)

riq. 8 Re.iduals at .ach data point are
plotted j!or 5 dij!j!.rent n' • • J: j!i.ld
dependeJlc. has tb. larg •• t r •• iduals . 1/1'.
and 1/~ bav. tb. small •• t r •• iduals

TDDB (.. c)
1.0E.l0r:-::..:;....:..:...;..:.:..--------------,
1.0£001 :--- 40 YEAIIS

1.0£001
1.0£007
1.0£001
1.0£·0.
1.0£004
1.OEoOl
I.GE·O'
1.0£001
1.0£·00
1.0£-01
1.0£-02
1.0£-03

81no" Fu ... 3.2ulll2
e.pacltor, 0.04I11III2

lOtO Product, 0.3liliiii2

1.0£-04 E-......,_'__ _--'-_--' __ ~ _ _'__ _ _l

4 7 S 1
100/E (em/MY)

to 11 U

riq. 9 Log t50 can be nt as a linear
j!unction oj! lIE with tbe slope j!or tb!ee
diff.rent .tructur •• : lingl. j!u.. (3. 2ua),
ar.a calacitor (0.0411111l), and product array
(0.3511111l)_

l.OE007rT~DD~8~~~.~e)~ ____________ _,
0.04I11III2 are. oap.

1.0£001

1.0£000

II

1.0£-01 14.3 •• ----.... -----'~----...
1.0E-0' L.. __ ~ ___ '__ __ __ __''__ __ ..J

1.4 U 1

1000/T (1/Kelvln)
3.4

riC] _ 10. ri.ld .fj!.ct on t50 at difj!.rent
temperatur •• rangiDg j!rom 2S·C to lS0·C.

0.1 ~Ac~t~IY~.t~lo~n~E~n=.r~g!..y~(.:.:v:..) ___________ -,

0.4

0.3

0.1

0.1

°1L---~--~S----'I'---~~~--:"~-~U
100/E (em/MV)

Fig. 11. ri.ld dependence of ONO activation
energy.

1.0E.04T ~1::_:..::to:.:IIIe::.::.=IIdow::::.:n(:::;.:..:.=cl:...----------__,

1.0E·03

1.0E002
~++

++~ 1.0EoOl

1.0£·00

".0£-01

I.GE-020.1 II • 10 10 804080.070" ".. •••• • •••
Cumulative failure (..)

Fig. 12. Cumulative percental.. j!ailure of
product antifu.e array (0.3511111l) v. breakdown
tim. at llV .tr ••••

.. Fallur.IArblt"y Unit)

1010 Product .. ,..,
-e- rl-' 10 Run Averag. for FS-2: 0.3 ..

Wafer No.

riC] . 13 A typical waj!.r .ort yi.ld 10.. plot
j!or on. lot. Aft.r tb. .creen, th. 10 run
av.rag. yi.ld los. ia 1 ••• tbaa 0.3t. Sinc.
tb. acreen is aor. a.ver. thaD 5.5V/40 year.,
tb. product will be very reliable tbrouC]bout
tb. operatinC] lif.time.

C Antifuse

Diffusion

+ D
0 A

R
Poly

Fiq. 14 A four terminal Kelvin structure i.
used for proqrammed antifuse reliability
test. When an open failure is detected
throuqh two stressed terminals, A and B, the
antifuse resistance remains low as measured
throuqh two unstressed terminals, C and D.

12
W
UI 11
~

250°C. 5mA Test r ~

§ 10

~

.,. L
W

~
fg
0 a:
U
~
W
CI ...
~
0 r-
>

ELAPSED TIME (HOURS)

Fiq. 15 Voltaqe across antifuse versus stress
t~e, with SmA current. Antifuse resistances
remains little chanqed prior to contact
failure.

Oxide-Nitride-Oxide Antifuse Reliability

Fiq. 16 SEN photoqraph of the Kelvin
structure after showinq an open circuit. The
open is identified to be at poly to metal
contact due to contact electromiqration.

4-51

I

4-52

Conductive Channel in
aNa Formed by

Article
Reprint

Controlled Dielectric Breakdown

Conductive Channel in ONO Formed by Controlled Dielectric Breakdown

S. Chiang. R. Wang. T. Speers. J. McCollum. E. Hamdy and C. Hu*

Actcl Corporation
955 East Arqucs Avcnuc. Sunnyvalc. California 94086

*Univcrsity of California
Bcrkclcy, California 94720

Abstract - For lhc lirst timc. cross scction TEM photos capturc
the conductive channel of Oxide-Nitride-Oxide (ONO) IiIms aftcr
clectric breakdown. It reveals a single crystal or polycrystal channel
with a dome-shaped cap depending on the breakdown current. The
implication of this structure on electric characteristics is analyzed
with a spherical thermal-electric model. The use of ONO as anti fuses
in FPGA 's is also discussed.

INTRODUCTION

OND as wcJl as NO or ON has been well developed for DRAM
capacitor and FPGA antiruse applications[I][2). Its low defect den­
sity. scalability, and reliability make it very attractive[3J. One main
difference between DRAM capacitor and FPGA antifuse application
is that besides good dielectric integrity for both applications. under­
standing how the conductive channel is formed during hreakdown is
of considerable importance in controlling the resistance of the con­
ductive channel in anti fuse applications. Since the hreakdown spot is
very small and randomly located. capturing this spot in cross section
TEM with high degree of repeatahility has not been reported before.

STRUCTURE OF THE CONDUCTIVE PATH

Fig.1 Shows the TEM cross section of an ONO dielectric with
an equivalent of 9nm oxide thickness. ONO is sandwiched between
N+ poly and N+ diffusion. Programming. or breakdown of the ONO
IiIm, was achieved with controlled high voltage pulses. External
resistor is used to limit the current going through the breakdown
spot.

Fig.2 shows the SEM top view of the breakdown spot after the
polysilicon gate is removed by wet etching. Etching stops on ONO
film. Fig.2 revealed a dome-shaped loose network of the dielectric
over the breakdown spot. The many channels through the loose net­
work are apparently the conductive paths of the breakdown dielec­
tric. The diameter of the dome is roughly 3000A for 16mA program­
ming current and the link resistance is loon.

This dome-shaped structure is conlirmed by cross sectional
TEM as shown in Fig.3. Fig.3(a) shows a 200nm diameter dome pro­
duced by programming current of 12mA. In addition. the material
inside the breakdown spot is single crystal. Fig.3(b) shows a small
dome produced by a programming currenL of 3.SmA. Close examina­
lion of the photo shows that there are defects inside the N+ silicon
near the breakdown channel and the material inside the conductive
channel now is polycrystailine.

Apparently, during breakdown (programming), programming
current produces sufficiently high temperature to melt the silicon and
ONO film over a small volume centered around the point of break­
down. ONO IiIm breaks up into a loose network and protrudes
toward anode. probably due to the drift momcntum of the electrons
in the molten silicon. Upon cooling at the end of programming.
nitride (melting point 1900°C) and oxide (melting point 1700°C)
solidify into the dome first, then followed by silicon (melting point

20 .1992 Symposium on VLSI Technology Digest of Technical Papers

© 1993 Actel Corporation

14(X)oq solidification. High quality epitaxial growth of silicon takes
place when the melt volume is large. ego at 16mA current. When the
melt volume is small. such as at 3.5mA current. the temperature gra­
dient and cooling rate are large - resulting in defects in the break­
down spot below ONO IiIm. This prevents fonnation of cpitaxial sin­
gle crystal·inside the channel. In addition, a small-grain polysilicon
crest is limned over thc dome. It shows that moltcn silicon region
11:Is a large diameter than the molten ONO becilusc of silicon's lower
melting point.

RESISTANCE CHARACTERISTICS AND MODEL

It was mcntioned above that when the programming current is
3.SmA, the conductive channel is constitutcd with polysilicon. Tem­
perature dependcnce of the resistance of a SmA programmed anti­
fuse. shown in FigA is indeed similar to that of polysilicon resistor.
Fig.5 shows that the conductive channel resistance decreased with
incrcasing prograrr .. ning current.

Without the dome-cap (ONO part) in Fig.3(a). the resistance
through the opening of IOOnm radius. r. in the DND IiIm would have
been R= p/2r. where p is the resistivity (2m11-cm) of the surround­
ing N+ silicon. i.e. R=100H. Thc measurcd resistance is about
2(X)U, from which the resistivity of the. dome matcrial can be
estimated to be ISmn-cm. Empirically. the dome cap contributes
about half of the resistance over the range of programming current
studied, i.e. it raiscd the effcctive p by 2X. To understand what
determincs rand R. assume that the tcmperature is spherically sym­
metrical and equal to 1900°C, ONO melting point, at radius r during
programming and that most of the heat [2R is dissipated within r. The
result is

r=I·(~)Jn

R = % = (I9(x)· Vt I(p)l12 ::: 2.5 t)
(I)

(2)

wherc p is resistivity of the surrounding N+ silicon (2mn-cm). I(is
lhe silicon thermal conductivity (O.2SW/cm°C). and I is the program­
ming current.

Fig.6 shows thc antifusc resistancc versus measurement current
aftcr programming at SmA. Resistancc read at IOOuA is very similar
10 that read at SmA. As the read current increascs. the resistance also
increases duc to heating and increasc in resistivity. The trend rev­
crses when silicon begins to melt. The melting occurs before thc read
current reaches SmA since the melting of silicon can take place at
lower current than melting of the initial dielectric. Beyond 5mA
measurement current. the radius of the opening. r, in ONO increases
and resistance, R. continues to decrease. On the second scan, R
would start at the new lower value corresponding to the larger r.

When ONO films are used as antifuse in FPGA product. the
resistance of the anti fuse can be controlled by choosing a sufficiently
large programming current level and the resistance remains stable
during 1000 hours of bum-in at I2SoC and 5.7SV. Negligible change
in delay time along many different data paths were observed as
shown in Fig.7.

92CH3172-4/9210000·0020$3.00 © 1992 IEEE

4-53

I

4-54

REFERENCES

II) A. Nishimura, S. Murata, S. Kuroda, O. Enomoto, H. Kita­
gawa, and S. Hasegawa, "Long tenn reliability of SiO:>lSiN/Si~
thin layer insulator formed in 9J.lm deep trench on high boron
concentrated silicon," IEEE IRPS Proc., pp.158-162, 1989.

121 A. EI Gamal. J. Greene, J. Reynerl. E. Rogoyski. K. EI-Ayat.
and A. Mohsen. "An architecture for electrically conligurable
!:lute arrays," IEEE J. Solid-State Circuts; VoI.SC-24, no.2,
pp.394-398. Apr. 1989.

131 S. Chiang. R. Wang. J. Chen. K. Hayes, J. McCollum. E.
Handy. and C. Hu. "Oxide-nitride-oxide anti fuse reliability,"
IEEE IRPS Proc., pp.186-192. 1990.

-

Fig. 2. SEM shows that 16mA breakdown pulse produced a 3000.J. opening
in the ONO film with a dome cap of a loose network of dielectrics.

~r-----------------------------~

~L-__ ~ ____ ~ __ ~ ____ ~ ____ ~ __ ~

o 100 1SO 200

Temperature (C)

Fig. 4. Temperature dependence of anlifusc. N+ diffusion. and polysilicon
resistance.

1~r-----------------------------~ -

10

_Cunenl(mAl

Fig. 6. Rcsistance versus mca~uremenl current after programming with SmA
of breakdown current.

Fig. 1. TEM cross-section of ONO anti fuse.

<a) <b)

Fig. 3. TEM photos of (a) 2000A diameter opening in the ONO produced by
12mA breakdown and (b) 700A diameter opening after 3.SmA breakdown.

'-r-----------------------------,

d
I l 1100

t

j ~fL~~--~~~~~~--~
o 6' 12 11

programming Current (mA)

Fig. 5. Antifusc resistance decreases with programming current.

._~_._._. , lUlU.

DELTAlNtuHOSI!CONDS.lOODMINUSoHOUlt

Fig. 7. Change in delay time from a 1000 gate programmable gate array
after 1000 hours dynamic bum-in at 125°C and 5.75V.

1992 Symposium on VLSI Technology Oigesl of Technical Papers. 21

Metastability
of ACT 1 Devices

Actel Metastability Characteristics

Designers often have asynchronous signals coming into
synchronous systems. Typically a flip-flop is used to synchronize
the incoming signal with the system clock.

If the asynchronus incoming signal does not meet the setup time
requirement for the flip-flop, a window of time exists where the
incoming signal may cause the flip-flop to develop an unknown,
or metastable, logic condition. Figure 1 shows this window as two
Actual clock setup time of the flip-flop is shown as tsu;
propagation delay of the flip-flop is shown as tCQ' Resolution
time (tres) between flip-flop output and the next clocked device is
the amount of time required for the metastable condition to
stabilize.

The duration of a metastable condition is probabilistic. But the
designer can calculate how often a metastable state will last
longer than a given duration. Mean time between failures
(MTBF) can be calculated from the following equation:

DATA IN ----to

ClK

DATA IN

ClK

MTBF
f

elk
· f

dat
. Cl e-C2 *tres

where the constants depend on the ACTTM
characteristics, and:

MTBF Mean time between failures (s)

felk System clock frequency (Hz)

fda! Incoming data rate (Hx)

e Natural log base

tres Resolution time (ns)

Cl 1O-9/Hz

C2 4.6052/ns

(Value of C2 derived from circuit simulations.)

o 01

CP

~)r4"'t---_tr_es _~~('--__ _
01

"1 "

"0"

Figure 1. Metastable Condition

© 1993 Actel Corporation

device

I

4-55

Sample Calculation

Using the MTBF equation for a design with a system clock
frequency of 10 MHz and a data rate of 1 MHz, various resolution
times produce the results shown in Figure 2. Linear increases in
resolution time cause exponential increases in MTBF.

1011

1010

109

108

107

MTBF
106

105

104

103

102

101

2 4

1000 years

6 8
ns

Figure 2. Metastable MTBF as a Function of Resolution Time

4-56

Development Tools

Development Tools Ii

© 1993 Actel Corporation

System Product Selector Guide. 5-1

Designer and Designer Advantage System Environment. 5-3

Designer and Designer Advantage System with Cadence Composer/Verilog Design Kit. 5-7

Designer and Designer Advantage System with Cadence ConceptiRapidSIM Design Kit. 5-9

Designer Advantage System with Mentor Graphics Design Kit. 5-11

Designer and Designer Advantage System with OrCAD Design Kit. 5-15

Designer and Designer Advantage System with Viewlogic Design Kit. 5-17

Logic Synthesis Libraries. 5-21

Actel's Industry Alliance Program . 5-23

Activator® 2 and Activator 2S Programmers. 5-25

ACT 1 Hard Macro Library Overview. 5-27

ACT 2 and ACT 3 Hard Macro Library Overview. 5-41

PC Development Systems

Development
System Design Kit Schematic

System Product
Selector Guide

Software Options

PLD

Hardware Options

Programming
Simulation Entry Mapping Activator® 2 I Activator 2S

Designer Development Systems (up to 2,500 gates)

DS-PC-OR OrGAO™ Supports AGTmap
TM

Supports Optional Optional
SOT 386+ FPGA Fitter VST 386+ (ALS-219) (OS-P2S-PG)

(included)

DS-PC-VL Viewlogic® Optional AGTmap Optional Optional Optional
(VL-005) FPGA Fitter (ALS-017) (ALS-219) (OS-P2S-PG)

(included)

OS-PC Generic Supports AGTmap Supports Optional Optional
EDIF-based FPGA Fitter EDIF-based (ALS-219) (OS-P2S-PG)

tools (included) tools

Designer Advantage™ Development Systems (up to 10,000 gates)

DA-PC-OR OrGAO Supports AGTmap Supports Optional Optional
SOT 386+ FPGA Fitter VST 386+ (ALS-219) (OS-P2S-PG)

(included)

DA-PC-VL Viewlogic Optional AGTmap Optional Optional Optional
(VL-005) FPGA Fitter (ALS-016) (ALS-219) (OS-P2S-PG)

(included)

DA-PC Generic Supports AGTmap Supports Optional Optional
EDIF-based FPGA Fitter EOIF-based (ALS-219) (OS-P2S-PG)

tools (included) tools

© 1993 Actel Corporation

Actionprobe® ChipEdit
Diagnostics

Optional Optional
(ALS-218) (OS-GE-PG)

Optional Optional
(ALS-218) (OS-GE-PG)

Optional Optional
(ALS-218) (OS-GE-PG)

Optional Optional
(ALS-218) (OA-GE-PG)

Optional Optional
(ALS-218) (OA-GE-PG) I
Optional Optional

(ALS-218) (OA-GE-PG)

5-1

Workstation Development Systems

Software Options Hardware Options

Development Design Kit Synopsys Programming Actionprobe® ChipEdit System Schematic PlD
Entry Mapping Simulation Synthesis

Activator® 2 I Activator 2S Diagnostics Libraries

Designer Advantage Development Systems (up to 10,000 gates)

SUN™
Workstations

DA-SN-CD Cadence
TM

Supports ACTmap Supports Optional Optional Optional Optional Optional
Composer FPGA Fitter Verilog (ALS-SYN-S4) (ALS-249) (DS-P2S-SN) (ALS-218) (DA-CE-SN)

(included)

DA-SN-MG Mentor Supports ACTmap Supports Optional Optional Optional Optional Optional
Graphics® NETEDTM FPGA Fitter Quicksim IFM (ALS-SYN-S4) (ALS-249) (DS-P2S-SN) (ALS-218) (DA-CE-SN)

(included)

DA-SN-Vl Viewlogic Supports ACTmap Supports Optional Optional Optional Optional Optional
Viewdraw® FPGA Fitter Viewsim® (ALS-SYN-S4) (ALS-249) (DS-P2S-SN) (ALS-218) (DA-CE-SN)

(included)

DA-SN Generic Supports ACTmap Supports Optional Optional Optional Optional Optional
EDIF-based FPGA Fitter EDIF-based (ALS-SYN-S4) (ALS-249) (DS-P2S-SN) (ALS-218) (DA-CE-SN)

tools (included) tools

HP 700®
Workstations

DA-HP7-MG Mentor Supports ACTmap Supports Optional Optional Optional Optional Optional
Graphics NETED FPGA Fitter Quicksim II (ALS-SYN- (DS-P2-HP7) (DS-P2S-HP7) (ALS-218) (DA-CE-HP7)

(included) HP7)

DA-HP7 Generic Supports ACTmap Supports Optional Optional Optional Optional Optional
EDIF-based FPGA Fitter EDIF-based (ALS-SYN- (DS-P2-HP7) (DS-P2S-HP7) (ALS-218) (DA-CE-HP7)

tools (included) tools HP7)

5-2

Designer and Designer Advantage
System Environment

Overview

The Designer and Designer Advantage ™ systems are high­
productivity computer-aided engineering environments used with
Actel's family of field programmable gate array (FPGA) devices.
A new, user-friendly Microsoft Windows TM (PC) and X Window ™
(workstation) graphical user interface allows completion of Actel
designs from concept to silicon in hours without costly
nomecurring engineering expenses. The systems consist of
placement and routing, timing verification, and programming
software with interfaces to many popular CAE platforms such as
Cadence TM, Mentor Graphics®, OrCAD™, and Viewlogic®. In
addition, the Designer and Designer Advantage systems support
programming on Data I/O's Unisite and 3900 series
programmers. With minimal investment in the Designer and
Designer Advantage systems, designers can use their existing
environments to enter PAL ® or Boolean equations, to capture
schematics, to simulate, verify, and place and route, to perform
timing analysis, to program, and to debug their chips.

Desi~ner for 386™ PC and 486™ PC platforms supports all
ACT M 1, ACT 2, and ACT 3 devices up to and including 2500
gates. In addition, Designer customers who maintain their system
with annual software support will receive free software upgrades
for any devices up to 2500 gates in future Actel families.

Designer Advantage for 386 PC, 486 PC, Sun™, and Hp®
platforms covers the entire range of Actel FPGAs. It also supports
all Actel devices from 1200 to 10,000 gates.

The following sections describe the various modules that make up
the Designer and Designer Advantage systems. This information
will provide the background information necessary to decide
which Designer product is correct for your design requirements.

PAL and PLD Entry

Actel fully supports PAL and PLD design entry methodology
through the ACTmapTM FPGA Fitter. This Fitter is part of the
design software that allows PAL descriptions, Boolean equations,
and state machines to be quickly entered and optimized into any
Actel device. Actel architecture-specific algorithms are used to
maximize device utilization and performance. The user can
specify whether the design should be optimized for area or speed,
depending on design requirements.

Schematic Capture and Simulation

Users enter their design into the ACT device by drawing a
schematic using the Actel Macro Library. Once schematic capture
has been completed, functional simulation can be performed on
the design. Actel provides the Macro Library for popular
schematic capture and simulation systems such as Cadence,
Mentor Graphics, OrCAD, and Viewlogic.

© 1993 Actel Corporation

Logic Synthesis

Actel FPGA designs can be synthesized and optimized from
hardware description language specifications such as VHDL or
Verilog HDL. Popular logic synthesis tools such as Mentor
Graphics Autologic and Viewlogic's VHDL Synthesis support
Actel FPGAs. Mentor Graphics and Viewlogic offer their own
synthesis libraries for ACT family FPGAs, while the optional
Synopsys library can be obtained directly from Actel.

Macro Library

The Actel Macro Library contains the building blocks of logic
functions necessary to create a design. The library includes
macros ranging in complexity from simple gates to complex
functions. Each macro has a graphic symbol, which is used to
enter it on a schematic.

For added design flexibility, soft macros such as counters, adders,
and decoders can be created from hard macros. The Actel Macro
Library contains more than 500 different hard and soft macro
functions.

Design Validator

The Actel Design Validator examines an ACT design for I
adherence to Actel device-specific design rules. Validation '
calculates routability and performs design rule checks prior to
routing. The Validator produces error and information messages
and system warnings regarding electrical rule violations such as
excessive fanout, shorted outputs, and unconnected inputs. For
example, a warning message is issued if a net exceeds a fanout of
ten. An unconnected module input, however, produces an error
message.

The Validator also provides statistical information about
routability, logic module count, average fanout per net, and array
utilization. After passing through the Validator, the design is free
of electrical rule violations.

Automatic Place and Route

Fully automatic place and route software minimizes design delay
by assigning macros to optimal locations on the chip. The system
uses the design's netlist, critical net information, and I/O
assignments to automatically place and route all the logic blocks
within the circuit. No manual intervention is required, even at
high device utilization.

During automatic place and route, users have the choice of either
automatic I/O placement or manual placement. Typically,
automatic I/O pin assignment is preferred because it does a better
job than manual assignment, and it is much faster. However, for
those situations requiring manual pin assignment, the user can
view the chip in the Chip View window (described in a later
section) and easily assign I/O pin placement using a graphical or
list box entry.

5-3

The place and route software provides the user with data on actual
interconnect delay. This data can be used in the Timer timing
verification tool or backannotated to a simulation netlist for
accurate post-route timing simulations. To minimize delay, the
route program assigns the shortest possible connections between
logic modules, routing 100% of the nets automatically for up to
95% logic module utilization. Because of the abundance of
routing resources in the Actel architecture, the nets typically have
tight delay distributions, making the oesign's performance more
predictable.

For greater control, users can create speed critical nets by
assigning a criticality value to the net. The place and route
software will minimize the net delay. The user can choose from
four levels of criticality, and the place and route software will
minimize the net delay accordingly.

Incremental Place and Route

Incremental Place and Route software allows quick iterations of
an existing design by making small logic changes without
changing the entire placement and routing. After the initial
automatic placement and routing, the user can freeze or select
varying levels of incremental strength and layout the design again
to include the changes. This tool saves time because incremental
place and route makes use of the initial automatic place and route
file. Design flexibility is enhanced because changes can be made
to the design while preserving most of the original performance
characteristics.

ChipView

During placement and routing, the actual I/O and logic module
placement can be displayed in Chip View, which is a window in
the Designer or Designer Advantage system running Microsoft
Windows (PC) or X Window (workstation) interfaces. ChipView
allows users to zoom, resize, pan, and show multiple windows of
the I/O and logic module placement. By identifying critical
design paths and viewing the associated logic modules, users can
gain insight as to the impact of placement on their design's
performance.

ChipEdit

Chip Edit is an optional placement tool that allows users to
achieve optimal design performance by manually placing critical
logic modules. ChipEdit allows the preplacement of key design
sections, as well as the ability to change the existing placement,
just by pointing and clicking in the ChipEdit display. Logic
modules corresponding to specific design functions can be
quickly located and edited by highlighting the function in a
hierarchical list box that shows all design macros. After the
desired modules are manually placed, the automatic tools are
used to place and route the remaining logic modules.

5-4

Timing Analysis

The timing analyzer (Timer) is an interactive tool that determines
and analyzes the performance of all critical and noncritical paths
within a specified design. The Timer performs a static timing
analysis, using the post-route delays that were extracted from the
layout. Using this information, designs are optimized to meet
timing specifications. Delay reports generated by the timing
analyzer using post-route numbers provide the final AC
specifications for the design. Also, timing analysis can be
performed by using an optional CAE simulator supplied by
vendors such as Cadence, Mentor Graphics, OrCAD, and
Viewlogic. The Designer system generates a post-route
backannotation file that can be used by these simulators to
provide accurate timing information.

Device Programming and Functional Test

After final timing analysis is completed, the Designer and
Designer Advantage systems produce device programming files
that can be used by either Data I/O or Actel Activator® series
programmers. Existing Data I/O customers can utilize the Unisite
or series 3900 programmers to program all Actel ACT 1, ACT 2,
and ACT 3 devices when certified by Actel.

Alternatively, Actel offers the Activator 2 and Activator 2S
programmers, which program all Actel FPGAs. The Activator 2
programs up to four devices of the same design at a time, while
the Activator 2S is a single-device programmer. Users can mount
the appropriate programming adapter for their device and
package selection.

Designer and Designer Advantage system software generates a
fuse map for the ACT device, which is used by the Data I/O or
Activator programmers. The fuse map contains information that
specifies the programming of the PLICE® antifuse, which
determines interconnections within the FPGA. A programming
sequence is then initiated. It programs antifuses to customize the
FPGA so that it implements the user's design.

In-Circuit Test and Debug

Once the device is programmed and functionally verified, it is
ready for operation in the system. Optional Actionprobe®
diagnostic tools may be used then to further evaluate circuit
integrity. The Actionprobe diagnostic tool works as an adapter to
the Activator programmer. It connects to the FPGA diagnostic
probe pins in the target system. Under full control of the
Actionprobe software, any two internal design signals can be
selected and analyzed at the two diagnostic probe pins during
system operation. Timing and waveform analysis is then
accomplished with an oscilloscope or a logic analyzer. The
Actionprobe diagnostic system works with the Activator 2 and
Activator 2S programming systems.

Optional Features

Synopsys Libraries

Actel supplies a technology library for the Synopsys logic
synthesis environment. It allows designers to capture Actel
designs by entering VHDL/HDL format source files into the
Synopsys Design Compiler or FPGA Compiler. The compilers
create an EDIF netlist, which is read by the Actel supplied EDIF
reader in the Designer Advantage environment. Versions of the
Synopsys libraries are available for the Sun and HP workstation
platforms.

Annual Support Program

The Annual Support Program ensures that the Designer and
Designer Advantage software is updated to support the most
recently released devices and packages.

Software updates are typically released twice a year and are sent
to Annual Support cu~tomers at no additional charge.

Another additional benefit of the Annual Support program is that
it provides access to technical expertise through the Actel
Technical Hotline. Applications engineers are available any time
during Actel's regular working hours to answer questions. Also,
users have access to Actel's on-line Bulletin Board System
(BBS). Services available on the BBS are:

• Software corrections and updates

• Design file uploading and downloading for troubleshooting

• A message service for communicating with applications
engineers

The Software Support program also provides access to the Action
Facts system. This system allows fast access to Actel's latest
application notes, software bug documentation and workarounds,
and new product information by means of a dial-up phone system
that faxes back the selected document.

Design Platforms

Versions of the Designer and Designer Advantage systems are
available to run on a variety of platforms. These systems and
options can be bought in various configurations to meet design
requirements. Brief descriptions follow for typical system
configurations using combinations of the following design styles:
PAL/Boolean, equation entry, schematic entry, and HDL or
VHDL synthesis.

Designer and Designer Advantage System Environment

Designer and Designer Advantage systems support these
platforms:

Viewlogic on 386 PC and 486 PC-This system is designed to
run on a 386 or 486 IBM-compatible PC running DOS and,
optionally, Windows. It integrates with Viewlogic's PROcapture
schematic capture and PROsim simulator tools. In addition, it
works with Viewlogic's Workview® Plus and Powerview®
software packages, which are sold directly by Viewlogic. Actel
provides the macro libraries for these tools and the placement and
routing, timing, and programming software. Available options are
View logic 's PROcapture schematic capture, PROsim simulator,
ChipEdit placement editor, Activator 2 and Activator 2S
programmers, and Actionprobe diagnostic tools.

OrCAD on 386 PC and 486 PC-This system is designed to run
on a 386 or 486 IBM-compatible PC running DOS and,
optionally, Windows. It integrates with OrCAD's SDT 386+
schematic capture and VST 386+ simulation software packages.
Actel provides the macro libraries for these tools and the
placement and routing, timing, and programming software.
Available options are ChipEdit placement editor, Activator 2 and
Activator 2S programmers, and Actionprobe diagnostic tools.

Mentor Graphics on HP and Sun Workstations-These
packages integrate with existing design systems utilizing Mentor
Graphics' Design Architect schematic capture and QuickSim U™
simulator running on HP or Sun workstations. Actel provides the
macro libraries for these tools and the placement and routing,
timing, and programming software. Available options are
ChipEdit placement editor, Activator 2 and Activator 2S I
programmers, Actionprobe diagnostic tools, and the Synopsys
technology library.

Cadence Design Systems on Sun Workstations-This package
integrates with existing design systems utilizing Cadence's
Compose/

M
schematic capture and Verilog@ simulator running

on Sun workstations. Actel provides the macro libraries for these
tools and the placement and routing, timing, and programming
software. Available options are ChipEdit placement editor,
Activator 2 and Activator 2S programmers, Actionprobe
diagnostic tools, and the Synopsys technology library.

Viewlogic on Sun Workstations-This package integrates with
existing design systems utilizing View logic 's Powerview
schematic capture and simulator running on Sun workstations.
Actel provides the macro libraries for these tools and the
placement and routing, timing, and programming software.
Available options are ChipEdit placement editor, Activator 2 and
Activator 2S programmers, Actionprobe diagnostic tools, and the
Synopsys technology library.

5-5

Typical System Configurations

Table 1 lists four major design methodologies and typical system
configurations used to support these approaches.

A System Product Selector Guide was provided at the front of this
chapter to help you select the version of the software that best
suits your needs. Complete data sheets for each version of the
software follow.

Table 1. Major Design Methods and Recommended System Configurations

Design Method

PAL/Boolean equation

Mixed PAL/Boolean equation/Schematic entry/
Simulation

Schematic entry/Simulation

Logic synthesis

5-6

System Configuration

Designer or Designer Advantage system

Data I/O or optional Activator 2S/Activator 2 Programmer

Designer or Designer Advantage system

Schematic capture tool with EDIF write capability
(for example, Viewlogic ViewDraw®)

CAE simulator (for example, Viewlogic ViewSim®)

Data I/O or optional Activator 2S/Activator 2 Programmer

Designer or Designer Advantage system

Schematic Capture tool with EDIF write capability
(for example, Viewlogic Viewdraw)

CAE simulator (for example, Viewlogic Viewsim)

Data I/O or optional Activator 2S/ Activator 2 Programmer

Designer Advantage system

Actel technology libraries for logic synthesis (for example, Synopsys)

Data I/O or optional Activator 2S/ Activator 2 Programmer

Designer and Designer Advantage System
with Cadence Composer/Verilog Design Kit

Development System Capabilities

Actel's Designer Advantage™ system for the Cadence™ design
environment is a low-cost field programmable gate array (FPGA)
design, programming, and verification software system for the
ACT™ I, ACT 2, and ACT 3 families. The Designer Advantage
system supports all ACT FPGA devices including the 10K gate
A14100. The system consists of Actel's design software and
design kit for the Cadence environment, which contains macro
libraries and simulation models for all three families of Actel
FPGAs. Included in the design software is the ACTmap ™ FPGA
Fitter that optimizes schematic or behavioral design descriptions
for Actel FPGAs. Available options are the Activator® 2 and
Activator 2S Programmer and Actionprobe® diagnostic tools.

Cadence Design Flow

Figure 1 shows how the ACT design kit is integrated with
Cadence's Composer schematic capture (1) and Veri log simulator
packages (2 and 9) to provide all the elements for a complete
FPGA design, simulation, and programming environment. Design
files can be exported (3) from Cadence directly into the Designer
Advantage environment, which runs as a Unix application on the
Sun Workstation®.

After importing the files into the Designer Advantage system, the
design can be optimized with the ACTmap FPGA Fitter (4).
PALs®, Boolean equation descriptions, or state machines can be
merged into the design. A specific Actel device is selected (5),
and the Design Validator then verifies design rule compliance by
completing an electrical rules check and provides statistical
information such as utilization percentage and average fanout.
After validation, the automatic place and route software (6)
implements the engineer's design within the FPGA. The physical
placement of the FPGA can be viewed using ChipView, a
graphical placement viewer, which operates in the X Window ™

system. After automatic placement and routing, the design can be
optimized by either utilizing the incremental place and route tool
or the optional ChipEdit manual placement tool. After placement
and routing, the Timer (7), a static timing analysis tool, verifies
circuit timing and delays. Alternately, post-route simulations (8
and 9) can be done with a backannotated delay file to the Cadence
Verilog simulator. Once the design is complete, the Activator
programmer (10) programs the proper antifuses to configure the
FPGA. The Actionprobe diagnostic hardware and software (11)
provides 100 percent real-time observability of internal nodes
while the FPGA is in the target system.

ChipEdit (option)

Figure 1. DeSigner Advantage with Cadence's ComposerlVeriiog

© 1993 Actel Corporation
5-7

I

Software Requirements
Sun Workstation

• Sun OS 4.1.1 or 4.1.2

• Sun OpenWindows version 3.0 (or later) or SunView

• Cadence Composer version 4.2.1 or later

• Cadence Verilog version 1.6a.7.1 or 1.6b

Hardware Requirements
Sun Workstation

• Sun SPARC or SPARC 2

• 16 MB RAM (minimum)

• High-density cartridge tape drive

Activator Programming Adapters

ACT 1
Programming Package

Adapters

ALS-280 100 QFP

ALS-281 44 PLCC

ALS-282 68 PLCC

ALS-283 84 PLCC

ALS-284 84PGA

ALS-285 84QFP

MA1-VQ80 80 VQFP

Actionprobe Diagnostic Tools
ALS-218

ACT 2
Programming

Adapters

ALS-286

ALS-287

ALS-288

ALS-289

ALS-290

ALS-292

ALS-293

ALS-294

Actionprobe diagnostic tools provide 100 percent real-time
observability of internal nodes while the FPGA is running in the
target system. This observability is a unique feature that reduces
the time required for design verification and debugging.

Designer Advantage System Selector Table

ACT 1, ACT 2,
System Part and ACT 3 design Activator 2S

Number software up to Programmer
10,000 gates

DA-SN-CD Included Optional

5-8

Activator Programmers
DS-P2S-SN

The Activator 2S programmer is used for ACT 1, ACT 2, and
ACT 3 FPGA families. It programs one device at a time, making
it ideal for proto typing and low to medium volume production
applications. Its modular approach allows for different packages
to be programmed by switching programming adapters. Each
Activator 2S requires at least one programming adapter.

ALS-249

The Activator 2 programmer is used for ACT 1, ACT 2, and
ACT 3 FPGA families. It can program up to four devices
simultaneously, making it ideal for medium to high volume
production applications. Its modular approach allows for different
packages to be programmed by switching programming adapters.
Each Activator 2 requires at least one programming adapter.

ACT 3
Package Programming

Adapters

132 PGA MA3-PL84

176 PGA MA3-QF100

84 PLCC MA3-QF160

100 PGA MA3-QF208

100 QFP MA3-PG100

144 QFP MA3-PG133

160 QFP MA3-PG177

172 QFP MA3-PG207

MA3-PG257

ChipEdit Placement Editor
DA-CE-SN

Package

84 PLCC

100 QFP

160 QFP

208 QFP

100 PGA

133 PGA

177 PGA

207 PGA

257 PGA

The ChipEdit placement editor allows design optimization after
automatic placement and routing. Designs are viewed in
Chip View, a graphical placement viewer operating in X Window
on the Sun Workstation, and then optimized by manual placement
of logic modules.

Activator 2 Actionprobe ChipEdit Programmer Diagnostics

Optional Optional Optional

~c/@I!
•

Designer and Designer Advantage System
with Cadence Concept/RapidSIM Design Kit

Development System Capabilities

Actel's Designer Advantage™ system for the Cadence™ design
environment is a low-cost field programmable gate array (FPGA)
design, programming, and verification software system for the
ACT™ 1, ACT 2, and ACT 3 families. The Designer Advantage
system supports all ACT FPGA devices including the 10K gate
A14100. The system consists of Actel's design software and
design kit for the Cadence environment, which contains macro
libraries and simulation models for all three families of Actel
FPGAs. Included in the design software is the ACTmapTM FPGA
Fitter that optimizes schematic or behavioral design descriptions
for Actel FPGAs. Available options are the Activator® 2 and
Activator 2S Programmer and Actionprobe® diagnostic tools.

Cadence Design Flow

Figure 1 shows how the ACT design kit is integrated with
Cadence's Concept™ schematic capture (1) and RapidSIM™
simulator packages (2 and 9) to provide all the elements for a
complete FPGA design, simulation, and programming
environment. Design files can be exported (3) from Cadence
directly into the Designer Advantage environment, which runs as
a Unix application on the Sun Workstation™.

nment

After importing the files into the Designer Advantage system, the
design can be optimized with the ACTmap FPGA Fitter (4).
PALs®, Boolean equation descriptions, or state machines can be
merged into the design. A specific Actel device is selected (5),
and the Design Validator then verifies design rule compliance by
completing an electrical rules check and provides statistical
information such as utilization percentage and average fanout.
After validation, the automatic place and route software (6)
implements the engineer's design within the FPGA. The physical
placement of the FPGA can be viewed using Chip View, a
graphical placement viewer, which operates in the X Window ™
system. After automatic placement and routing, the design can be
optimized by either utilizing the incremental place and route tool
or the optional ChipEdit manual placement tool. After placement
and routing, the Timer (7), a static timing analysis tool, verifies
circuit timing and delays. Alternately, post-route simulations (8
and 9) can be done with a backannotated delay file to the Cadence
RapidSIM simulator. Once the design is complete, the Activator
programmer (10) programs the proper antifuses to configure the
FPGA. The Actionprobe diagnostic hardware and software (11)
provides 100 percent real-time observability of internal nodes
while the FPGA is in the target system.

I-----r"-----__ ~I 2 Functional

Figure 1. Designer Advantage with Cadence's ConceptlRapidSIM

© 1993 Actel Corporation
5-9

I

Software Requirements

Sun Workstation

• Sun OS 4.1.1 or 4.1.2

• Sun OpenWindows version 3.0 (or later)

• Cadence Logic Workbench™ version 1.0 (or later)

• Cadence RapidSIM version 1.0 (or later)

Hardware Requirements

Sun Workstation

• Sun SPARC or SPARC 2

• 16 MB RAM (minimum)

• High-density cartridge tape drive

Activator Programming Adapters

ACT 1
Programming Package

Adapters

ALS-280 100 QFP

ALS-281 44 PLCC

ALS-282 68 PLCC

ALS-283 84 PLCC

ALS-284 84 PGA

ALS-285 84QFP

MA1-VQ80 80 VQFP

Actionprobe Diagnostic Tools

ALS-218

ACT 2
Programming

Adapters

ALS-286

ALS-287

ALS-288

ALS-289

ALS-290

ALS-292

ALS-293

ALS-294

Actionprobe diagnostic tools provide 100 percent real-time
observability of internal nodes while the FPGA is running in the
target system. This observability is a unique feature that reduces
the time required for design verification and debugging.

DeSigner Advantage System Selector Table

ACT 1,ACT2,
System Part and ACT 3 design Activator 2S

Number software up to Programmer
10,000 gates

DA-SN-CR Included Optional

5-10

Activator Programmers

DS-P2S-SN

The Activator 2S programmer is used for ACT 1, ACT 2, and
ACT 3 FPGA families. It programs one device at a time, making
it ideal for prototyping and low to medium volume production
applications. Its modular approach allows for different packages
to be programmed by switching programming adapters. Each
Activator 2S requires at least one programming adapter.

ALS-249

The Activator 2 programmer is used for ACT 1, ACT 2, and ACT
3 FPGA families. It can program up to four devices
simultaneously, making it ideal for medium to high volume
production applications. Its modular approach allows for different
packages to be programmed by switching programming adapters.
Each Activator 2 requires at least one programming adapter.

ACT 3
Package Programming

Adapters

132 PGA MA3-PL84

176 PGA MA3-QF100

84 PLCC MA3-QF160

100 PGA MA3-QF208

100 QFP MA3-PG100

144 QFP MA3-PG133

160 QFP MA3-PG177

172 QFP MA3-PG207

MA3-PG257

ChipEdit Placement Editor

DA-CE-SN

Package

84 PLCC

100 QFP

160 QFP

208 QFP

100 PGA

133 PGA

177 PGA

207 PGA

257 PGA

The ChipEdit placement editor allows design optimization after
automatic placement and routing. Designs are viewed in
Chip View, a graphical placement viewer operating in X Window
on the Sun Workstation, and then optimized by manual placement
of logic modules.

Activator 2 Actionprobe ChipEdit Programmer Diagnostics

Optional Optional Optional

~C/@I/
•

Designer Advantage System with
Mentor Graphics Design Kit

Development System Capabilities

Actel's Designer Advantage™ system for the Mentor Graphics®
design environment is a low-cost field programmable gate array
~;<PGA) desi~n, programming, and verification software system
for the ACT M 1, ACT 2, and ACT 3 families. The Designer
Advantage system supports all ACT FPGA devices including the
10K gate A14100. The system consists of Actel's design software
and design kit for the Mentor Graphics environment, which
contains macro libraries and simulation models for all three
families of Actel FPGAs. Included in the design software is the
ACTmapTM FPGA Fitter that optimizes schematic or behavioral
design descriptions for Actel FPGAs. Available options are the
Activator® 2 and Activator 2S Programmer and Actionprobe®
diagnostic tools.

Mentor Graphics Design Flow

Figure 1 shows how the ACT design kit is integrated with Mentor
Graphics' Design Architect schematic capture (1) and QuickSim
IITM simulator packages (2 and 9) to provide all the elements for a
complete FPGA design, simulation, and programming
environment. Design files can be exported (3) from Mentor
Graphics directly into the Designer Advantage environment, which
runs as a Unix application on the Sun ™ or HP 700® workstation.

After importing the files into the Designer Advantage system, the
design can be optimized with the ACTmap FPGA Fitter (4).
PALs®, Boolean equation descriptions, or state machines can be
merged into the design. A specific Actel device is selected (5),
and the Design Validator then verifies design rule compliance by
completing an electrical rules check and provides statistical
information such as utilization percentage and average fanout.
After validation, the automatic place and route software (6)
implements the engineer's design within the FPGA. The physical
placement of the FPGA can be viewed using ChipView, a
graphical placement viewer, which operates in the X WindowTM
system. After automatic placement and routing, the design can be
optimized by either utilizing the incremental place and route tool
or the optional ChipEdit manual placement tool. After placement
and routing, the Timer (7), a static timing analysis tool, verifies
circuit timing and delays. Alternately, post-route simulations (8
and 9) can be done with a backannotated delay file to the Mentor
Graphics QuickSim II simulator. Once the design is complete, the
Activator programmer (10) programs the proper antifuses to
configure the FPGA. The Actionprobe diagnostic hardware and
software (11) provides 100 percent real-time observability of
internal nodes while the FPGA is in the target system.

Figure 1. Designer Advantage with Mentor Graphics

© 1993 Actel Corporation
5-11

I

Software Requirements

Sun Workstation

• Sun OS version 4.1.1 or 4.1.2

• Sun OpenWindows version 2.0 (or later) or SunView

• Mentor Graphics version 8.2

HP700 Workstation

• HPUX version 9.01

• Mentor Graphics version 8.2

Hardware Requirements

Sun Workstation

• Sun SPARC or SPARC 2

• 32 MB RAM (minimum)

• High-density cartridge tape drive

HP700 Workstation

• HP700 series workstation

• 32 MB RAM (minimum)

• High-density cartridge tape drive

Activator Programming Adapters

ACT 1
Programming Package

Adapters

ALS-280 100 QFP

ALS-281 44 PLCC

ALS-282 68 PLCC

ALS-283 84 PLCC

ALS-284 84PGA

ALS-285 84QFP

MA1-VQ80 80 VQFP

Actionprobe Diagnostic Tools

ALS-218 (Sun and HP700 Workstations)

ACT 2
Programming

Adapters

ALS-286

ALS-287

ALS-288

ALS-289

ALS-290

ALS-292

ALS-293

ALS-294

Actionprobe diagnostic tools provide 100 percent real-time
observability of internal nodes while the FPGA is running in the
target system. This observability is a unique feature that reduces
the time required for design verification and debugging.

5-12

Activator Programmers

DS-P2S-SN (Sun Workstation)

DS-P2S-HP7 (HP700 Workstation)

The Activator 2S programmer is used for ACT 1, ACT 2, and
ACT 3 FPGA families. It programs one device at a time, making
it ideal for prototyping and low to medium volume production
applications. Its modular approach allows for different packages
to be programmed by switching programming adapters. Each
Activator 2S requires at least one programming adapter.

ALS-249 (Sun Workstation)

DS-P2-HP7 (HP700 Workstation)

The Activator 2 programmer is used for ACT 1, ACT 2, and
ACT 3 FPGA families. It can program up to four devices
simultaneously, making it ideal for medium to high volume
production applications. Its modular approach allows for different
packages to be programmed by switching programming adapters.
Each Activator 2 requires at least one programming adapter.

ACT 3
Package Programming

Adapters

132 PGA MA3-PL84

176 PGA MA3-QF100

84 PLCC MA3-QF160

100 PGA MA3-QF208

100 QFP MA3-PG100

144 QFP MA3-PG133

160 QFP MA3-PG177

172 QFP MA3-PG207

MA3-PG257

ChipEdit Placement Editor

DA-CE-SN (Sun Workstation)

DA-CE-HP7 (HP700 Workstation)

Package

84 PLCC

100 QFP

160 QFP

208 QFP

100 PGA

133 PGA

177 PGA

207 PGA

257 PGA

The ChipEdit placement editor allows design optimization after
automatic placement and routing. Designs are viewed in
Chip View, a graphical placement viewer operating in X Window
on the Sun or HP700 workstation, and then optimized by manual
placement of logic modules.

Designer Advantage System with Mentor Graphics Design Kit

Designer Advantage System Selector Table

ACT 1, ACT 2,
System Part and ACT 3 design Activator 2S Activator 2 Actionprobe ChipEdit Number software up to Programmer Programmer Diagnostics

10,000 gates

DA-SN-MG Included Optional Optional Optional Optional

DA-HP7-MG Included Optional Optional Optional Optional

I

5-13

5-14

~c/@I!
•

Designer and Designer Advantage System
with OrCAD Design Kit

Development System Capabilities

Actel's Designer and Designer Advantage™ system for the
OrCAD™ design environment is a low-cost field programmable
gate array (FPGA) design, programming, and verification software
system for the ACT™ 1, ACT 2, and ACT 3 families. The Designer
Advantage system supports all ACT FPGA devices including the
10K gate A14100. The system consists of Actel's design software
and design kit for the OrCAD environment, which contains macro
libraries and simulation models for all three families of Actel
FPGAs. Included in the design software is the ACTmap ™ FPGA
Fitter that optimizes schematic or behavioral design descriptions
for Actel FPGAs. Available options are the Activator® 2 and
Activator 2S Programmer and Actionprobe® diagnostic tools.

DrCAD Design Flow

Figure 1 shows how the ACT design kit is integrated with
OrCAD's Schematic Design Tools 386+ schematic capture (1)
and Design Simulation Tools 386+ simulator packages (2 and 9)
to provide all the elements for a complete FPGA design,
simulation, and programming environment. Design files can be
exported (3) from OrCAD directly into the Designer or Designer
Advantage environment, which runs under Microsoft Windows TM.

After importing the files into the Designer Advantage system, the
design can be optimized with the ACTmap FPGA Fitter (4).
PALs, Boolean equation descriptions, or state machines can be
merged into the design. A specific Actel device is selected (5) and
the Design Validator then verifies design rule compliance by
completing an electrical rules check and provides statistical
information such as utilization percentage and average fanout.
After validation, the automatic place and route software (6)
implements the engineer's design within the FPGA. The physical
placement of the FPGA can be viewed using ChipView, a
graphical placement viewer, which operates in the Microsoft
Windows environment. After automatic placement and routing,
the design can be optimized by either utilizing the incremental
place and route tool or the optional ChipEdit manual placement
tool. After placement and routing, the Timer (7), a static timing
analysis tool, verifies circuit timing and delays. Alternately,
post-route simulations (8 and 9) can be done with a
backannotated delay file to the OrCAD Digital simulation tools
simulator. Once the design is complete, the Activator or Data I/O
programmer (10) programs the proper antifuses to configure the
FPGA. The Actionprobe diagnostic hardware and software (11)
provides 100 percent real-time observability of internal nodes
while the FPGA is in the target system.

Figure 1. Designer Advantage with OrCAD

© 1993 Actel Corporation
5-15

I

Software Requirements

• MS_DOSTM version 3.3 or later

• Windows version 3.1 or later

• OrCAD Schematic Design Tools 386+ version 1.1 or later

• OrCAD Digital Simulation Tools 386+ version 1.1 or later

Hardware Requirements
386/486 based PC-AT

• 8 MB RAM (Designer for Windows)

• 16 MB RAM (Designer Advantage for Windows)

• 30 MB Free Hard Disk Space

• One Parallel Port

• 1.2 or 1.44 MB Floppy Drive

• VGA, EGA, or Monochrome Graphics Card

Activator Programming Adapters

ACT 1
Programming Package

Adapters

ALS-280 100 QFP

ALS-281 44 PLCC

ALS-282 68 PLCC

ALS-283 84 PLCC

ALS-284 84 PGA

ALS-285 84QFP

MA1-VQ80 80 VQFP

Actionprobe Diagnostic Tools
ALS-218

ACT 2
Programming

Adapters

ALS-286

ALS-287

ALS-288

ALS-289

ALS-290

ALS-292

ALS-293

ALS-294

Actionprobe diagnostic tools provide 100 percent real-time
observability of internal nodes while the FPGA is running in the
target system. This observability is a unique feature that reduces
the time required for design verification and debugging.

Activator Programmers
DS-P2S-PC

The Activator 2S programmer is used for ACT 1, ACT 2, and
ACT 3 FPGA families. It programs one device at a time, making
it ideal for prototyping and low to medium volume production
applications. Its modular approach allows different packages to
be programmed by switching programming adapters. Each
Activator 2 requires at least one programming adapter.

ALS-219

The Activator 2 programmer is used for ACT 1, ACT 2, and
ACT 3 FPGA families. It can program up to four devices
simultaneously, making it ideal for medium to high volume
production applications. Its modular approach allows different
packages to be programmed by switching programming adapters.
Each Activator 2 requires at least one programming adapter.

ACT 3
Package Programming

Adapters

132 PGA MA3-PL84

176 PGA MA3-QF100

84 PLCC MA3-QF160

100 PGA MA3-QF208

100 QFP MA3-PG100

144 QFP MA3-PG133

160 QFP MA3-PG177

172 QFP MA3-PG207

MA3-PG257

ChipEdit Placement Editor
DS-CE-PC or DA-CE-PC

Package

84 PLCC

100 QFP

160 QFP

208 QFP

100 PGA

133 PGA

177 PGA

207 PGA

257 PGA

The ChipEdit placement editor allows design optimization after
automatic placement and routing. Designs are viewed in Chip View, a
graphical placement viewer operating in Microsoft Windows on the
PC and then optimized by manual placement of logic modules.

Designer and Designer Advantage System Selector Table

ACT 1, ACT 2, ACT1,ACT2,
System Part and ACT 3 and ACT 3 Activator 2S Activator 2 Actionprobe design design ChipEdit Number software up to software up to Programmer Programmer Diagnostics

2500 gates 10,000 gates

DS-PC-OR Included Optional Optional Optional Optional

DA-PC-OR Included Optional Optional Optional Optional

5-16

Designer and Designer Advantage System
with Viewlogic Design Kit

Development System Capabilities

Actel's Designer and Designer Advantage™ system for the
Viewlogic® design environment is a low-cost field programmable
gate array (FPGA) design, programming, and verification
software system for the ACT™ 1, ACT 2, and ACT 3 families.
The Designer Advantage system supports all ACT FPGA devices
including the 10K gate A14100. The system consists of Actel's
design software and design kit for the Viewlogic environment,
which contains macro libraries and simulation models for all
three families of Actel FPGAs. Included in the design software is
the ACTmapTM FPGA Fitter that optimizes schematic or
behavioral design descriptions for Actel FPGAs. Available
options are the Activator® 2 and Activator 2S Programmer and
Actionprobe® diagnostic tools.

Viewlogic Design Flow

Figure 1 shows how the ACT design kit is integrated with
Viewlogic's ViewDraw® or PROcapture® schematic capture (1)
and ViewSim® or PROsim simulator packages (2 and 9) to
provide all the elements for a complete FPGA design, simulation,
and programming environment. Design files can be exported (3)
from Viewlogic directly into the Designer or Designer Advantage
environment, which runs under Microsoft Windows ™ .

After importing the files into the Designer Advantage system, the
design can be optimized with the ACTmap FPGA Fitter (4).
PALs®, Boolean equation descriptions, or state machines can be
merged into the design. A specific Actel device is selected (5),
and the Design Validator then verifies design rule compliance by
completing an electrical rules check and provides statistical
information such as utilization percentage and average fanout.
After validation, the automatic place and route software (6)
implements the engineer's design within the FPGA. The physical
placement of the FPGA can be viewed using Chip View, a
graphical placement viewer, which operates in the Microsoft
Windows environment or the X Window ™ environment on
Workstations. After automatic placement and routing, the design
can be optimized by either utilizing the incremental place and
route tool or the optional ChipEdit manual placement tool. After
placement and routing, the Timer (7), a static timing analysis tool,
verifies circuit timing and delays. Alternately, post-route
simulations (8 and 9) can be done with a backannotated delay file
to the Viewlogic ViewSim or PROsim simulators. Once the
design is complete, the Activator programmer (10) programs the
proper antifuses to configure the FPGA. The Actionprobe
diagnostic hardware and software (11) provides 100 percent real­
time observability of internal nodes while the FPGA is in the
target system. I

Figure 1. Designer Advantage with Viewlogic

© 1993 Actel Corporation
5-17

Software Requirements

PC

MS_DOSTM version 3.3 or later (required)

• Windows version 3.1 or later (optional)

• View logic Workview® PLUS, or PROSeries

• View logic Viewsim or PROsim

Sun Workstation

• Sun OS version 4.1 or 4.1.1

• Sun OpenWindows version 2.0 (or later)

• Viewlogic Powerview®

Hardware Requirements

386/486 based PC-AT

• 8 MB RAM (Designer for Windows)

• 16 MB RAM (Designer Advantage for Windows)

• 30 MB Free Hard Disk Space

• One Parallel Port

• 1.2 or 1.44 MB Floppy Drive

• VGA, EGA, or Monochrome Graphics Card

Activator Programming Adapters

ACT 1
Programming Package

Adapters

ALS-280 100 QFP

ALS-281 44 PLCC

ALS-282 68 PLCC

ALS-283 84 PLCC

ALS-284 84PGA

ALS-285 84QFP

MA1-VQ80 80 VQFP

Actionprobe Diagnostic Tools

ALS-218 (PC and Sun Workstation)

ACT 2
Programming

Adapters

ALS-286

ALS-287

ALS-288

ALS-289

ALS-290

ALS-292

ALS-293

ALS-294

Actionprobe diagnostic tools provide 100 percent real-time
observability of internal nodes while the FPGA is running in the
target system. This observability is a unique feature that reduces
the time required for design verification and debugging.

5-18

Sun Workstation

• SunSPARC

• 16 MB RAM (minimum)

• High-density cartridge tape drive

Activator Programmers

DS-P2S-PC (PC)
DS-P2S-SN (Sun Workstation)

The Activator 2S programmer is used for ACT 1, ACT 2, and
ACT 3 FPGA families. It programs one device at a time, making
it ideal for prototyping and low to medium volume production
applications. Its modular approach allows different packages to
be programmed by switching programming adapters. Each
Activator 2 requires at least one programming adapter.

ALS-219 (PC)
ALS-249 (Sun Workstation)

The Activator 2 programmer is used for ACT 1, ACT 2, and
ACT 3 FPGA families. It can program up to four devices
simultaneously, making it ideal for medium to high volume
production applications. Its modular approach allows for different
packages to be programmed by switching programming adapters.
Each Activator 2 requires at least one programming adapter.

ACT 3
Package Programming

Adapters

132 PGA MA3-PL84

176 PGA MA3-QF100

84 PLCC MA3-Q';60

100 PGA MA3-QF208

100 QFP MA3-PG100

144 QFP MA3-PG133

160 QFP MA3-PG177

172 QFP MA3-PG207

MA3-PG257

ChipEdit Placement Editor

DA-CE-PC (PC) or DS-CE-PC (PC) or
DA-CE-SN (Sun Workstation)

Package

84 PLCC

100 QFP

160 QFP

208 QFP

100 PGA

133 PGA

177 PGA

207 PGA

257 PGA

The ChipEdit placement editor allows design optimization after
automatic placement and routing. Designs are viewed in
Chip View, a graphical placement viewer operating in either
Microsoft Windows on the PC or X Window on the Sun
Workstation, and then optimized by the manual placement of
logic modules.

Designer and Designer Advantage System with Viewlogic Design Kit

Designer and Designer Advantage System Selector Table

ACT1,ACT2, ACT 1, ACT 2,
and ACT 3

System Part and ACT 3 design Activator 2S Activator 2 Actionprobe design ChipEdit Number software up software up Programmer Programmer Diagnostics

to 2500 gates to 10,000
gates

DS-PC-VL Included Optional Optional Optional Optional

DA-PC-VL Included Optional Optional Optional Optional

DA-SN-VL Included Optional Optional Optional Optional

I

5-19

5-20

Logic Synthesis Libraries

Logic Synthesis

Actel field programmable gate array (FPGA) designs can be
synthesized and optimized from hardware description language
specifications such as VHDL or Verilog HDL. Popular logic
synthesis tools such as Mentor Graphics'® Autologic, and
Viewlogic's® VHDL Synthesis support Actel FPGAs. These
technology libraries and tools are directly available from these
vendors. Designs using synthesis methodology can be quickly
converted from design concept to programmed FPGA.

Support for Synopsys is available from Actel. Listed below is a
detailed description of the optional technology libraries available
from Actel to support the Synopsys Design Compiler and FPGA
Compiler environment.

Synopsys Library Capability

Actel's FPGA libraries for the Synopsys Design Compiler
environment support a high-level design synthesis methodology.
Designs are described in VHDL or Verilog HDL and mapped into
an Actel library using the Synopsys Design Compiler or FPGA
Compiler. Then they are transferred to Actel's Designer
Advantage ™ system for placement and routing, timing
verification, and programming.

Design Flow

The Synopsys libraries support all ACT™ 1, ACT 2, and ACT 3
FPGA devices including the 10K gate AI4WO. These libraries

interface with the Synopsys Design Compiler, FPGA Compiler,
and Design Analyzer for synthesis and optimization into the Actel
architecture. Each compiler maps the HDL behavioral description
(1) into the Actel architecture. After satisfactory optimization, the
compiler produces an EDIF 2 0 0 netlist. The Actel EDIF netlist
program, cae2adl (3), converts the EDIF file to an Actel.adl netlist.

After importing the netlist files into the Designer Advantage
system, the Design Validator verifies design rule compliance by
completing an electrical rules check and provides statistical
information such as utilization percentage and average fanout.
After validation, the automatic place and route (6) software
customizes the FPGA to the engineer's design. The actual
placement of the FPGA can be viewed using Chip View, a graphical
placement viewer, which operates in the X Window ™ System.
After automatic placement and routing, the design can be
optimized by either utilizing the incremental place and route tool or
the optional ChipEdit manual placement tool. After placement and
routing, the Timer (7), a static timing analysis tool, verifies circuit
timing and delays. Alternately, post-route simulations can be done
with a backannotated delay file to a CAE simulator. Once the
design is complete, the Activator® programmer (10) programs the
proper antifuses to configure the FPGA. The Actionprobe®
diagnostic hardware (11) and software provide 100 percent real­
time observability of internal nodes while the FPGA is in the target
system.

Figure 1. Designer Advantage with Synopsys

© 1993 Actel Corporation
5-21

I

Note: For a more detailed description of how to design with the
Synopsys libraries, please refer to the application brief
titled "High-Level FPGA Design in the Synopsys
Environment. "

Software Requirements

• Actel version 2.2 libraries for Synopsys Design Compiler

Choose one:

• Synopsys VHDL Compiler version 2.2 or 3.0

• HDL Compiler for Verilog version 2.2 or 3.0

Choose one:

• Synopsys Design Compiler version 2.2 or 3.0

• FPGA Compiler version 3.0, or Design Analyzer version 2.2
or 3.0

Choose one:

• DA-SN (Designer Advantage system for Sun™)

• DA-SN-CD (Designer Advantage system for Sun with
Cadence design kit)

5-22

• DA-SN-MG (Designer Advantage system for Sun with Mentor
Graphics design kit)

• DA-SN-VL (Designer Advantage system for Sun with
View logic design kit)

• DA-HP7-MG (Designer Advantage system for HP700@ with
Mentor Graphics design kit)

Note: For detailed descriptions of the Designer Advantage
systems, please refer to the specific data sheets listed
earlier in the data book.

Table 1. Synopsys Library Selector Table

Synopsys Platform

Sun

HP700

HP400

Part Number

ALS-SYN-S4

ALS-SYN-HP7

ALS-SYN-H P4

Actel's Industry Alliance Program

Purpose

The Actel Industry Alliance program establishes a practical
Technology Transparent Design (TTD) environment for Actel
field programmable gate array (FPGA) users. Actel and
Alliance members cooperate to provide Actel FPGA users
complete design support using the EDA system of their choice.
Actel design libraries available from Alliance members allow
users to describe and simulate Actel designs using their existing
EDA tools. After satisfactory design entry and simulation, these
designs can be transferred to Actel 's Designer Series development
system to complete placement and routing, timing analysis, and
programming.

PAL/Boolean Equation
Design Entry

ACT 1, ACT 2, ACT 3
Libraries

Alliance Design Environment

Technical Cooperation

Actel provides technical cooperation and support to Alliance
members, including:

• Access to Actel's FPGA development environment, the
Designer Series, for placement and routing, timing analysis,
and programming.

• CAE connection package, which provides the information
necessary to connect the CAE system to Actel's development
system.

• Standard verification circuits and test vectors for self
certification of the design libraries and interfaces by the
Alliance member.

Alliance CAE Design Environment

Timer:
Timing Analysis

Figure 1. Shown above are typical ways Alliance member CAE environments interface with the Actel design environment.

© 1993 Actel Corporation
5-23

I

Alliance Members

Customers can obtain the certified design libraries and interfaces to Actel's development system and FPGA devices by contacting their
respective CAE vendor. CAE Alliance members and contacts are listed below.

Current Alliance members

Company Name Contact Name Address Telephone

Aldec Stanley Hyduke 3525 Old Conejo Road, Suite 111 (805) 499-6867
Newbury Park, CA 91320

Cadence Design System Jim Watts 2655 Seely Road, Bldg. 6 (408) 428-5817
San Jose, CA 95134

Compass Design Automation Mahendra Jain 1865 Lundy Avenue (408) 434-7950
San Jose, CA 95131

Data I/O Linda Burgess 10525 Willows Road N.E. (206) 881-6444
Redmond, WA 98073-9746

Exemplar Nanette Collins 2550 Ninth Street, Suite 102 (510) 849-0937
Berkeley, CA 94710

GenRad Jim Redditt 510 Cottonwood Drive (408) 432-1 000
Milpitas, CA 95035-7499

Gould/AMI Robert Kirk 18711 Tiffeni Dr., Suite A (209) 586-7422
Twain Harte, CA 95383

Intergraph Company Vincent Mazur 6101 Lookout Road, Suite A (303) 581-2301
Boulder, CO 80301

Logic Modeling Corporation Laura Nichols 19500 N. W. Gibbs Drive (503) 531-2271
Beaverton, OR 97075

Mentor Graphics Sam Picken 8005 SW Boeckman Road (503) 685-1298
Wilsonville, OR 97070-7777

Minc Bill Schulze 6755 Earl Drive (719) 590-1155
Colorado Springs, CO 80918

OrCAD Patrick Karger 3175 NW Aloclek Drive (503) 690-9881
Hillsboro, OR 97124-7135

Recal-Redac Joe Cerruto 1000 Wyckoff Avenue (201) 848-8000
Mahwah, NJ 07430

Synopsys Lynn Fiance 700 East Middlefield Road (415) 694-4289
Mountain View, CA 94043-4033

Viewlogic Paul Granese 293 Boston Post Road (508) 480-0881
West Marlboro, MA 01752

UTMC Ron Lake 575 Garden of the Gods Road (719) 594-8491
Colorado Springs, CO 80907

Zuken Shyamal Roy 3945 Freedom Circle, Suite 1100 (408) 562-0177
Santa Clara, CA 95054

5-24

Activator® 2 and
Activator 28 Programmers

Features

• Supports ACT™ 1, ACT 2, and ACT 3 device families and
packages

• Versions available for 386™ PC, 486™ PC, Sun™, and Hp®
workstations

• Supports functional verification with Actionprobe®
diagnostics

• Activator 2 simultaneously programs up to four identical
devices

• Activator 2S is a low-cost, single-site version of the
Activator 2

• Supports checksum and design name verification

Product Description

Activator 2 and Activator 2S are Actel's state-of-the-art desktop
programmers. They utilize Actel's Designer and Designer
Advantage™ system software and PLICE® antifuse technology to
program Actel's ACT 1, ACT 2, and ACT 3 field programmable
gate arrays (FPGAs). Customized programming adapters for each
device type allow different packages to be programmed by
switching adapters. Programming, verification, and debugging
are executed on these programmers. The optional Actionprobe
diagnostic hardware and software support observation of all
internal signals. Individual versions of these programmers are
available to support industry standard platforms such as 386 PC,
486 PC, Sun, and HP workstations.

The programmers are software-driven, providing flexibility of
application and a built-in barrier to obsolescence. Independently
powered, the units provide desktop device programming,
functional testing, and in-circuit debugging. By using a SCSI
interface, the programmers support different hardware platforms.

For easy device identification and verification, the blank check
(blankchk) command in the programming software allows users
to read back checksums and silicon signatures after
programming. The checksum data is automatically generated by
the Designer software, and the silicon signature is defined by the
user during fuse file generation.

© 1993 Actel Corporation

Activator 2 Base Unit

The base unit contains the control board and the analog board.
The LED display on the top of the programmer shows when the
unit receives power. Four adapter ports located on the top of the
base unit accept different programming adapters for each device
type. The adapter ports are identical, which allows programming
adapters to be interchanged. SCSI connectors are located on the
back of the unit.

Activator 2S Base Unit

Activator 2S is a low-cost, single-site version of the Activator 2
and supports all the Activator 2 features. A single adapter port is
located on the top of the base unit; it accepts different
programming adapters for each device type. The SCSI connectors
are located on the back of the unit.

The Programming Adapters

There are unique programming adapters available to support each
package type within a product family. The user only needs to
switch programming adapters to program a different device type
or package. For the Activator 2, one to four ports may be used
simultaneously when programming a design. Any adapter may be I
used on any available port. •

The Diagnostic Pod

The diagnostic pod supports Actionprobe diagnostics and
connects to the programmer by a cable. The Activator 2 or
Activator 2S permits the user to view any internal circuit activity
in an Actel FPGA mounted on the user's PC board through
Acte! 's on-chip diagnostic pins. These pins are connected to the
programmer by the diagnostic pod; by using the Actionprobe
diagnostics software to specify a circuit point, each pod can
access two signals simultaneously. A single pod may be
connected to the Activator 2S or Activator 2. A six-foot cord
connects the pod to the programmer and provides diagnostic
flexibility.

5-25

5-26

ACT 1 Hard Macro
Library Overview

The following illustrations show all the available hard macros. The ACT Family Macro Library Guide contains module count,
combinability, and pin loading information of each hard macro. It also includes a complete truth table for each macro.

Most ACT 1 hard macros are impl~mented by a single logic module. The following ACT 1 hard macros require two logic modules to
implement:

All flip-flops

All adders

Two-module hard macro gates: AND4, AND4A, AND4D, AOIl, A0I4, NAND3, NAND4, NAND4A, NAND4B, NOR4, NOR4C,
NOR4D, OAB, OR3C, OR4B, OR4C, OR4D

Two-module hard macro gates have a "2" displayed on some input pins. This indicates that the input to output path has two levels of logic
delay for these input pins only. Also, the full adders have a "2" on the "s" output pins. This indicates that there are two levels of logic
delay from the input pins to the "s" output pin. Refer to the ACT 1 Timing Characteristics for detailed timing information of all ACT 1
macros.

Input and Output Buffers

INBUF CLKBUF

~ ~
OUTBUF TRIBUFF BIBUF

~ ~ ~
CLKBUF Interface Macros

A

~
A

~
A

~
A

G)tNO¥
G SO

DO

D1

D2 GMX4
y

D3

© 1993 Actel Corporation
5-27

I

2-lnput Gates

~ ~ AND2~ Y !j AND2V Y

: INAND~ ~NAND~ !jNAND2~

~ ~
A

~
~ ~NO~ ~NOR~

3-lnput Gates

A

~
A

~ AND3~ Y

A

~ AND3V Y

A

:~
A 2 A A

3NAND¥ B B NAND3A Y B

C C C

~ :)OR~
A

~ ~ : OR3C y

SNO~ :7NO~ ~NOR~ :)NO~

5-28

ACT 1 Hard Macro Library Overview

4-lnput Gates

A 2 A 2
A

B B
2 2 Y Y

C AND4 C AND4A

D D

A 2

B
2 Y

C NAND4

D D

~A ; OR4 Y~
A

Y g)NO~ E

5-29

XOR Gates XOR-OR Gates XOR-AND Gates

:)) x3> Y
y

C C

A

~JXN~
C C

AND-XOR Gates

5-30

AND-OR Gates

A

B

C

D

A

~

ACT 1 Hard Macro Library Overview

A

B

c

I

5-31

OR-AND Gates

c
OA3

y c
OA3A

y c
OA3B

y

o o o

A

c
OAI3

y c
OAI3A

y

o o

5-32

Buffers

Multiplexors

A

B

Combinatorial

_A~ ~

~-~-'!-

A

B B

DO

D1

02

D3

c

D

A

B

s

AO Y
A1
BO
B1

CM8A
SA
SB
SO
S1

A

B

ACT 1 Hard Macro Library Overview

S
00

01

MX4
Y

02

D3

I

5-33

D-Latches

~
--LJ

D-Latches with Clear

D

DLC1

G CLR

a

D-Latches wilth Preset

5-34

D PRE a

DLP1
G

o PRE a

DLP1C

G

---r::p­
~

---r::t­
~

D

DLC

G CLR

D

DLC1A

a

a

D PRE a

DLP1A
G

DLP1D
G

D a
DLCA

D ON

DLC1F

G CLR

~
-LJ

D ON

DLC1G

D PRE a
DLP1B

G

DLP1E

G

D-Latches with Preset and Clear

o PRE a

DL2A

G CLR

D-Latches with Enable

f7I
=t:J

D ON

E DLE1D

G

Mux Latches

D PRE a

E DLE3A

G

D

DL2B

~
~

D

E DLE2A

a

D PRE a

E DLE3B

G

A a
B

S
G

DLMA

ACT 1 Hard Macro Library Overview

o PRE a

DL2C

f::I
~

D a

D PRE a

E DLE3C

G

A a
B

DLME1A
S
E
G

DL2D

G CLR

=f=t­
~

D a

a

5-35

I

Adders

A

B

HA1

co

s

0-Type Flip-Flops

A

B

FA1A

co
CI 2 S

1210

DF1

ClK

D-Type Flip-Flops with Clear

5-36

D

DFC1

ClK
ClR

a

D a
DFC1D

ClK
ClR

A
co

B

HA1A S

D ON

DF1A

ClK

D a
DFC1A

ClK
ClR

D ON

DFC1E

ClK
ClR

A

B

FA1B

co
CI 2 S

A
co

B

HA1B S

D a

D

DF1B

ClK

a
DFC1B

ClK
ClR

D ON

DFC1F

ClK
ClR

AO FA2A

A1

B co
CI 2 S

A
co

B

HA1C S

D

D ON

DF1C

ClK

ON

DFC1C

ClK
ClR

D ON

DFC1G

ClK
ClR

0-Type Flip-Flops with Preset

PRE
o a

DFP1

ClK

PRE
o a

DFP1D

ClK

PRE
o a

DFP1A

ClK

PRE
o ON

DFP1E

ClK

0-Type Flip-Flops with Preset and Clear

PRE o
DFPC

ClK
ClR

a

PRE
o a

DFP1B

ClK

PRE
o ON

DFP1F

ClK

PRE o
DFPCA

a

ACT 1 Hard Macro Library Overview

PRE
o ON

DFP1C

ClK

PRE
o ON

DFP1G

ClK

5-37

I

0-Type Flip-Flops with Enable

D Q

E DFE

ClK

D PRE Q

D

E DFE3A

ClK
ClR

PRE

Q

D Q

E DFE4

ClK

JK Flip-Flops

5-38

D Q

E DFEA

ClK

D Q

E DFE1B

ClK

J

ClK

D

E DFE3B

ClK
ClR

PRE

Q

D Q

E DFE4A

ClK

Q

JKF

PRE
D Q

E DFEB

D

ClK
ClR

PRE

Q

Q

D Q

E DFE4B

elK

J

ClK

Q

K JKF1B

D PRE Q

E DFEC

PRE
D Q

ClK
ClR

PRE

Q

D Q

JK Flip-Flops with Clear

JKF2A
J a JKF2B

J a

ClK ClK

K ClR K
ClR

JK Flip-Flops with Preset

PRE PRE
J a J a
ClK ClK

K JKF3A K JKF3B

JK Flip-Flops with Preset and Clear

Mux Flip-Flops

A
B

DFM
S

ClK

a

PRE
J 0-

JKF4B
ClK

K
ClR

A
B

DFMA
S

ClK

a

ACT 1 Hard Macro Library Overview

J JKF2C a

J PRE a

ClK
K

JKF3C

PRE
J Q

A
B

JKFPC
ClK

K
ClR

ON

DFM1B
S

ClK

J JKF2DO

J PRE a

ClK
K

A
B

JKF3D

ON

DFM1C
S

ClK

5-39

I

Mux Flip-Flops with Clear

A
8

S DFMB
ClK

ClR

a

A a
8

DFM3E
S
ClK

ClR

Mux Flip-Flops with Preset

PRE
A a
8

DFM4
S
ClK

A
8

S
DFM4C

ClK

Mux Flip-Flops with Preset and Clear

5-40

PRE
A a
8
s DFM5A
ClK

ClR

A
8

S
DFM3

ClK
ClR

a

A ON
8

DFM3F
S
ClK

ClR

PRE
A a
8

DFM4A
S
ClK

A
8
S DFM4D

ClK

PRE

A
8

a
DFM3B

ON

PRE
A a
8

DFM4B
S
ClK

PRE
A 0-
8

DFM4E
s
ClK

A a
8

ACT 2 and ACT 3
Hard Macro Library Overview

The following illustrations show all the available hard macros. The ACT Family Macro Library Guide contains module count,
combinability, and pin loading information of each hard macro. It also includes a complete truth table for each macro.

Most ACT 2 and ACT 3 hard macros are implemented by a single logic module. The following ACT 2 and ACT 3 hard macros require
more than one logic module to implement:

Two-module hard macro gates: AND4D, A0I4, AXIA, MXCI, MXT, NAND4, NOR4, OAI3, OR4D

Two-module adders: FAIA, FAIB, FA2A, HAl, HAIA, HAIB, HAIC

Two-module latches: DL2A, DL2B, DL2C, DL2D, DLE2A, DLE3A, DLM2A

Two-module flip-flops: DFCl, DFCIA, DFClE, DFCIG, DFM3, DFM3E, DFPl, DFPIA, DFPIB, DFPIC, DFPID, DFPIF, DFPC,
DFPCA, JKF2C, JKF2D, JKF3A, JKF3B, JKF3C, JKF3D, JKF4B, JKFPC

Two-module hard macro gates have a "2" displayed on some input pins. This indicates that the input to output path has two levels of logic
delay for these input pins only. Also, the full adders have a "2" on the "s" output pins. This indicates that there are two levels of logic
delay from the input pins to the "s" output pin. Refer to the ACT 2 and ACT 3 Timing Characteristics for detailed timing information of
all ACT 2 and ACT 3 macros.

Input Buffers

_P_A_D ________ ~ __ --____ --y-

Input Buffers (ACT 2 only)

© 1993 Actel Corporation
5-41

I

Input Buffers (ACT 3 only)

PAD
IBUF >-----y-

Q
Q

D Q
Q

D

IDE IREC IDE IREP
ClK ClK

ClK ClK
ClR PRE

IOPCl IOPCl

Output Buffers

HIGH SLEW

_D __ ---1~PAD _D ___ ~PAD

HIGH SLEW

_D ___ ~PAD ~ PAD
---TRIBUF
D

5-42

ACT 2 and ACT 3 Hard Macro Library Overview

Output Buffers (ACT 2 only)

HIGH SLEW ORH
HIGH SLEW

D D D Q D Q D Q

OBDLHS DL1B OBDlHS
G

G G
elK

ORH

ORIH HIGH SLEW ORITH

D D Q 0 0 Q

OBDlHS

G G
elK elK

ORTH TBDLHS

~
D

D Q D Q

~: DL1B

Q PAD

G
elK

ORTH I

5-43

Output Buffers (ACT 3 only)

FECTMH FECTML FEPTMH

o o

M M

FEPTML OBUFTH OBUFTL

o o

M

5-44

Bidirectional Buffers

BBHS

Bidirectional Buffers (ACT 3 only)

BBUFTH

D

Y

BRECTH

D
ODE D

BREPTH

o

ACT 2 and ACT 3 Hard Macro Library Overview

BIBUF BBDLHS (ACT 2 ONLY)

~
EH1GH SLEW

PAD D D Q

GOUT G

D Q f----___ -'-O

G

BRECTL

D I
o

BREPTL

5-45

Bidirectional Buffers (ACT 3 only) (continued)

DECETH

D

Q

lopel

DEPETH

Q

lopel

Clock (Dedicated Network) Buffers

CLKBIBUF
E

y

A

5-46

DECETL

D

ODE

lopel

DEPETL

lopel

PAD

Q

ACT 2 and ACT 3 Hard Macro Library Overview

Clock (Dedicated Network) Buffers (ACT 3 only)

HCLKBUF IOCLKBUF

~~y
IOPCLBUF

CLKBUF Interface Macros

A

~
A

G ~~NAND¥
A

~
A

~
G SO

00
"'V I

01

02 GMX4
Y

03

5-47

2-lnput Gates

~ ~ AND, Y ~ AND2, Y

: INAND~ ~NAND~ ~NAND2~

~ ~
A

~
~ ~NO~ :JNO~

3-lnput Gates

A

~
A D AND3~ Y

A

~ AND3, Y :~
: I NAND~

A A

~NAND~ B NAND3A Y B

C C

~ :)OR~
A

~
A

:)OR~

jNO~ :)NO~
A

8NO~ :~NO~

5-48

ACT 2 and ACT 3 Hard Macro Library Overview

4-lnput Gates

~
A

§AN~~
A

B

C

D D D D

I

5-lnput Gates

A

c
AND5B

y

D D

E E E

5-49

Buffers

A~ ~~

~ A~_~

XOR Gates

XOR-OR Gates

5-50

ACT 2 and ACT 3 Hard Macro Library Overview

XOR-AND Gates

c XA1
y

c XA1A
y

AND-XOR Gates

E

5·51

AND-OR Gates

C A02C Y C

D D

A

B

C

D

5-52

A

B

C

D

A

B

C

D

E

C

D

A

y

ACT 2 and ACT 3 Hard Macro Library Overview

AND-OR Gates (continued)

A

A

B

c

E

5-53

OR-AND Gates

A

~
A

~
A

~
A

~

c
OA3

y c
OA3A

y c
OA3B

y

D D D

A

~

c
OAI3A

y

D D

5-54

Multiplexors

A

B

Combinatorial

DO Y
D1
D2
D3

CMS
SOO
S01
S10
S11

A

B

DO

D1

D2

D3

c

D

A

ACT 2 and ACT 3 Hard Macro Library Overview

S

A DO

D1
MX4

y
D2

B

D3

c

D

A

B

S

I
c
D

B

5-55

Adders

FA1A
A

8 CO

CI 2 S

U
HA1

CO
8

S

A HA1A

CO
8

S

81
CY2A

A1
Y

80

AO

5-56

FA1B
A

8 CO

CI 2 S

A HA1B
CO

8
S

81
CY2B

A1
Y

80

AO

AO

A1

8

CI

FA2A

CO

2 S

A HA1C

CO
8

S

D-Latches

~
---h:J

D-Latches with Clear

o
DLC1

G CLR

Q

D-Latches with Preset

o PRE Q

DLP1
G

o PRE Q

DLP1C

G

ACT 2 and ACT 3 Hard Macro Library Overview

-r:::F-­
~

f.7I
~

o
DLC

G CLR

o
DLC1A

Q

Q

o PRE Q

DLP1A
G

DlP1D

G

o Q

DLCA

o QN

DLC1F

G CLR

f.:t­
~

o QN

DLC1G

o PRE Q

DLP1B

G

DLP1E

G

5-57

I

D-Latches with Preset and Clear

o PRE a

DL2A

G CLR

D-Latches with Enable

5-58

~
=LJ

o ON

E DLE1D

G

o PRE Q

E DLE3A

G

o
DL2B

L:t­
=r:J

o

E DLE2A

Q

o PRE Q

E DLE3B

G

o PRE a

DL2C

=t=or­
~

o a

D PRE Q

E DLE3C

G

DL2D

G CLR

L:t­
~

o a

ACT 2 and ACT 3 Hard Macro Library Overview

Mux Latches

H
A Q 00 Q 00 Q A Q i DLM
B 01 01 B

DLMA 02 02 SDLME1A
S 03

DLM3
03

G DLM3A E
SO SO G
S1 S1
G G

Q 00 Q 00 Q
01 01
02 02
03 03

DLM4 DLM4A
SO SO
S10 S10
S11 S11
G G

E

5-59

D-Type Flip-Flops

a DF1

ClK

D-Type Flip-Flops with Clear

D a
DFC1

ClK
ClR

D a
DFC1D

ClK
ClR

D-Type Flip-Flops with Preset

PRE
D a

DFP1

ClK

PRE
D a

DFP1D

ClK

5-60

D ON

DF1A

ClK

D a
DFC1A

ClK
ClR

D ON

DFC1E

ClK
ClR

PRE
D a

DFP1A

ClK

PRE
D ON

DFP1E

ClK

D a
DF1B

ClK

D a
DFC1B

ClK
ClR

D ON

DFC1F

ClK
ClR

PRE
D a

DFP1B

ClK

PRE
D ON

DFP1F

ClK

D ON

DF1C

ClK

D ON
DFC1C

ClK
ClR

D ON
DFC1G

ClK
ClR

PRE
D ON
DFP1C

ClK

PRE
D ON

DFP1G

ClK

D-Type Flip-Flops with Preset and Clear

D-Type Flip-Flops with Enable

o Q

E DFE

ClK

o PRE Q

E DFED

ClK
ClR

o
E DFE3A

ClK
ClR

PRE

Q

o Q

E DFE4

ClK

PRE o
DFPC

ClK
ClR

Q

o Q

E DFEA

ClK

o Q

E DFE1B

ClK

o Q

E DFE3B

PRE o Q

E DFE4A

ClK

ACT 2 and ACT 3 Hard Macro Library Overview

PRE o
DFPCA

ClK
ClR

PRE

Q

o Q

E DFEB

ClK
ClR

o

ClK
ClR

PRE

Q

Q

o Q

E DFE4B

ClK

o PRE Q

E DFEC

ClK
ClR

PRE o Q

Q

ClK
ClR

PRE o Q

E DFE4C

ClK

5-61

I

JK Flip-Flops

JK Flip-Flops with Clear

JKF2A
J Q

ClK

K ClR

JK Flip-Flops with Preset

PRE
J Q

ClK

K JKF3A

J

ClK

K

Q

JKF

JKF2B
J Q

ClK

K
ClR

PRE
J Q

ClK

K JKF3B

JK Flip-Flops with Preset and Clear

PRE
J Q-

JKF4B
ClK

K
ClR

5-62

J

ClK

Q

K JKF1B

J JKF2C Q

PRE
J Q

ClK

K
JKF3C

PRE
J Q

JKFPC
ClK

K
ClR

J JKF2D Q

ClK

K
ClR

J PRE Q

ClK

K
JKF3D

Toggle Flip-Flops

Mux Flip-Flops

A a
B

DFM
S
ClK

T

TF1A

ClK
ClR

A a
B

DFMA
S
ClK

a

A a
B
SDFME1A

E
ClK

ACT 2 and ACT 3 Hard Macro Library Overview

T

TF1B

ClK
ClR

a

A ON
B

DFM1B
S
ClK

A ON
B

DFM1C
S
ClK

5-63

I

Mux Flip-Flops with Clear

A a
B
8 DFMB
ClK

ClR

00
01
02
03

a

DFM6A
80
81
ClK

ClR

Mux Flip-Flops with Preset

5-64

A a
B

DFM3

00 a
01
02
03

DFM6B
80
81
ClK

ClR

DFMSA (ACT 3 ONLY)

--00
--01
--02
--03

--800
--801
--810
--811

ClK
ClR

a

A PRE ON

B
DFM4C

8
ClK

A a
B

DFM3B
8
ClK

ClR

00
01
02
03

DFM7A
810
811
80
ClK

ClR

a

DFMSB (ACT 3 ONLY)

00
01
02
03

800
801
810
811
ClK

ClR

A
B

a

8 DFM4D

ClK

a

00 a
01
02
03

DFM7B
810
811
80
ClK

ClR

EDN-Special Report:
Hands-on FPGA Project

EON-Special Report: Hands-on FPGA Project

© 1993 Actel Corporation

Taking the First Steps . 6-1

Migrating to FPGAs: Any Designer Can Do It. 6-17

Taking the First Steps

© 1993 Actel Corporation

engineering
software
pg 122

DESIGN FEATURE

Improve
reliability by
rigging pc boards
for in-circuit
programming
pg 135

TECHNOLOGY UPDATES

Design software
links active-filter
performance
with real devices
pg 45

FDDI routers and
bridges create
niche for content­
addressable
memories
pg 61

Product Updates
pg 73

I

6-1

6-2

EDN"SPECIAL PROJECT

Taking t;he
first; st;eps

If you're consider­
ing designing
with FPGls, this
2-part hands-on
design proied
will show you
exadly what is
inYolyed. Part 1
coyers the de.ign
and schematic
entry, and part 2
coyers simulation

~_.t"f"""'.
\.. , '" cinult.

~

DOUG CONNER, Technical Editor

The fear and uncertainty of making
a major shift in your design and
development methodology is always
compounded by tight schedules. As
a result, you may be putting off de­
signing with field-programmable
gate arrays (FPGAs) because you
don't know what to expect from
them and you don't have the time
to find out.

FPGAs and high-density PLDs
provide some very attractive fea­
tures. They typically give you 1000
to 10,000 logic gates you can design
with for a modest cost. They make
sense for designs where the product

volume is anything from 1 to
more than 1000.

Although it is
true that in

high-vol­
ume

production a masked gate array can
offer substantial savings, it is also
true that they offer a much larger
financial commitment up front.
Penalties for an inexperienced de­
signer who makes a design mis­
take or a system-definition mistake
is high, both financially and in
time lost in making another design
tum.

For a designer experienced with
gate-array design, the transition to
designing an FPGA should be sim­
ple. The tools to design and simu­
late circuits are similar. One large
difference is that the penalty for
making a mistake is quite low. In
fact, you can view a mistake on sili­
con as just part of the development
process, instead of a disaster.

For the large group of designers
who haven't designed gate arrays,
using an FPGA can be a significant

change and can cause anxiety.
These designers are often de­

signing with standard SSI
and MSI (medium­

scale integra­
tion)'ITL

and

CMOS devices that interface to mi­
croprocessors, analog circuits, or
both. Many have never used digital
simulation. Moving to FPGAs is a
step up for them. This project is for
those engineers who want to know
what it's like when you take this
step.

I began the project with zero
experience designing FPGAs and
zero experience using digital simu­
lation. My background in digital de­
sign covers standard TIL, CMOS,
and ECL IC families. My expe­
rience with CAD and CAE software
includes schematic capture, but
with different software than I used
for this project.

I chose to design a record and
playback circuit (Fig 1) to get first­
hand experience of designing
with an FPGA. The circuit
digitizes an analog signal
to 12-bit resolution
and stores the re­
sults in RAM.
After fill-
ing the
RAM
with

1.1

32k words of data, it plays back the
data, reconverting it to analog. The
circuit is designed to work with an
analog oscilloscope to capture a one­
time event and play it back continu­
ously, providing all necessary logic
and control signals.

The FPGA performs all of the
digital logic functions for the circuit,
including successive-approximation
conversion, adjustable input
trigger level selection,
adjustable output
trigger-position
control, read
and write
control,
and

Taking the First Steps

6-3

6-4

addressing the RAM. The design
incorporates more than 1500 true
logic gates and includes large regu­
lar structures, such as counters and
compare circuits, plus plenty of
gate-and register-level logic. (For a
detailed circuit description and
schematics for the full circuit, see
box, "Pack the digital logic into one
FPGA.")

Selecting the FPGA
I decided to use the Actel Act 1

FPGA family for my design. The
choice of Actel was an arbitrary
one-there. are perhaps a dozen
companies with products that fall
into the FPGA and complex-PLD
category that are appropriate for
my design (Ref 1).

I chose the Act 1 family over

Actel's higher performance and high­
er density Act 2 family because I
didn't need the extra features. And,
the Act 1 family costs less-the
AI020A FPGA costs $36.25 (100).

To begin the project, I took
Actel's 2-day training class. The
class is included in the price of a
system ($2950), or you can purchase
it separately for $495. The class
takes you through the process of
designing an FPGA with Viewlogic
schematic capture and simulation
tools, and Actel's ALS software
tools for all other functions. The ba­
sic design floW' is shown in Fig 2.

The class uses canned files that
you modify. For example, you'll add
some components to a partially
completed schematic to finish it.
The class runs at a reasonably fast
pace, but you won't fall behind even
if you're unable to complete a step
in the time allotted, because fin­
ished files are available. For exam-

CONTROl. LOGIC

• TIMING GENERATION
• STATE CONTROL
• RAM AND I/O CONTROL
• OPTICAL ROTARY
ENCODER DECODE

• 5tH CONTROL

pie, if you haven't finished the sche­
matic when it's time to move on to
simulation, you can use a file that
contains the completed schematic.

The class also covers some tools
I didn't use in the project. A syn­
thesis tool (ALES) lets you convert
Boolean equations directly into
logic. You can use the synthesized
logic blocks in your schematic as
you would use other macro sym­
bols. Another tool, called the
Timer, is a static timing tool that
lets you look at path delays, both
before layout and after place and
route. At the end of the class you
program an FPGA that contains a c

timing circuit and drives a 7-seg- ~
ment display. ~

Because Viewlogic CAE tools ~
were used in the class, I elected to ~
use them on the project, although a
Actel provides libraries and support .~
for a variety of other workstation §

and PC-based tools.

fig I-The FPGA contains .. the dlgltallogk of this record CIICI playback drwh. The drwh converts 0 ± 5V signol to 12-bh resolution
at 161 ks s/sl(CIICI plays It back continuously for viewing on an analog osdlloscope.

The building block on an Actel
Act 1 FPGA is a logic module. What
you actually design with is a logic
module or group of logic modules
configured as a hard or soft macro.
A logic module starts as a flexible
uncommitted block of logic; it can
perform many different logic nmc­
tions depending on how its connec­
tions are programmed. Actel pro­
vides hard macros, which define the
logic-module connections to perform
specific functions.

The hard-macro building blocks
for designing an Actel FPGA are
gates, gate combinations, latches,
flip-flops, multiplexers, adders, and
buffers. You can also configure
every 110 pin as an input buffer,
an output buffer, a bidirectional
buffer, or a 3-state buffer. One in­
put pin is designated as a clock
buffer. You can see many of the ba­
sic building blocks and variations on
pages of the circuit schematic (see
Figs 4 to 15, which begin on pg 107).

Designing with the FPGA build­
ing blocks is similar to designing
with 7400 series SSI devices, except
in most cases the FPGAs are more
flexible. For example, 2- and 3-
input AND gates are available with
any or all of their inputs inverted.
You can select D flip-flops with
positive clear, negative clear, and
so on. Every gate macro I used re­
quires a single module. Even a rela­
tively complex gate combination,
such as the 4-input AND/OR gate
shown in Fig 15, is a single module.
Although there are a few combina­
tions that require two modules, I
was able to avoid using them.

Latches also require only one
module, even with a clear, an en­
able, or multiplexed inputs. Flip­
flops, however, require two mod­
ules. In cases where a latch will
work as well as a flip-flop, the mod­
ule savings makes the latch a better
choice. For example, the circuit
needed to generate the DLY shown
at the bottom of Fig 6 uses two
latches instead of flip-flops.

Taking the First Steps

EDN"SPECIAL PROJECT

Another gate-saving consideration
is to use multiplexed data inputs on
both latches and flip-flops to bring
2-input gates inside them. The re­
sult saves a module. For example,
the latch generating DISP _TRIG
in Fig 6 effectively ANDs together
DISP _TM and PLYBK.

Part way through the design, I
learned that the ALS software
automatically combines 2-input
gates with flip-flops and latches
wherever possible. Therefore, you
can see cases where I've left the
gate separate, such as the latch
and AND gate in Fig 15. The sche­
matic is easier to read with the AND
gate separate, so I'd recommend
letting the software do its job. The

END

end result on the FPGA is the same.
When your design calls for larger

blocks (such as counters, adders,
multipliers, decoders, and large
registers), you've got several
choices. You can use a soft macro
if one exists, alter one if it's close
but not quite what you need, or
build what you want from scratch.
The soft-macro library includes a
wide selection of functions.

For example, you can select an
adder with 8-, 12-, 16-, 24-, or 32-bit
capacity. The soft-macro library
also includes macros that are
equivalent to some MSI TTL cir­
cuits. For example, the 8-bit up and
down synchronous counter with rip-

Text continued on pg 104

Fig 2-The total time for running nellist conversion, design validation, place and route,
and exporting os routed delays took about half an hour for the design. This nlotively
fast turnaround lets you make quite a few design iterotians in one day. The logk synthesis
and internal probing for debug were not used on the proied.

6-5

6-6

Pack the digital logic into one FPGA
When I decided to design an FPGA (field-programmable
gate array) and write about it, I wanted to use it in a
circuit with a minimum of ather parts, yet I wanted the
circuit to be moderately complex so that it would be a
true test of designing with an FPGA. The record and
playback circuit I chose packs all the digital logic into
the FPGA, and the only other parts it requires are RAM
and a few analog ICs (see Figs 4 to 15 beginning on
pg 107).

The top-level schematic for the overall circuit is shown
in Fig A. The circuit uses the same 1 2-bit DAC and
op amp for successive-approximation conversion during
record and for generating the analog output during
playback. Because conversion and playback use the
same DAC, the gain and offset errors of the DAC and
op amp do not add to the system error.

During conversion, the circuit compares the DAC's
current output, converted to voltage by a high-speed
op amp, with the sampled input voltage. The com­
parator output drives the successive-approximation
logic. Two parallel paths alternately sample and com­
pare the input against the DAC output. The alternating
approach saves both the sampling time and the hold­
selliing time. Each bit decision takes 500 nsec, providing
a complete 12-bit conversion every 6 ,""sec.

The design depends on closely matched offsets in
each of the two 5tH and comparator paths. You can
expect close matching because both comparators are
on the same monolithic Ie. The same is true for the 5tH
channels.

Gain accuracy of the circuit depends on the gain
accuracy of the 5tH circuit and on the comparator's
CMRR. The AD684 provides a worst-case gain error
of ± 5 mV over the ± 5V input range. The lT119A
used in the circuit has a minimum CMRR of 90 dB,
contributing less than a O.4-mV error over the ± 5V
input range. Although the LT119A used in the circuit
has a minimum CMRR of 90 dB at dc, the CMRR is not
specified at the 2-MHz frequency of the deSign. In
fact, depending on high CMRR at frequency is risky,
and generally frowned upon by knowledgeable analog
designers. In this design I felt the risk was justified by
being able to use one DAC for both record and play­
back.

The digital part of the circuit has four basic states
(Fig 5): clear memory, ormed, triggered, and playback.
Playback is the default state when the circuit is reset.
The other three states are also ORed together in the
circuit to form the recording state (RECD).

To start recording, you depress the momentary arm
switch to initiate the clear memory state. The clear
memory state starts writing AID conversions from the
successive-approximation conversion into RAM, but dis­
ables the trigger until you fill the entire memory with
new data, writing zeros to D 13 and ones to D 14. After

you overwrite the entire memory, the state changes to
armed, and the circuit continues to record data until the
trigger logic is satisfied. Once triggered, the state
changes to triggered (TRIGD) and the circuit converts
24,000 more samples, stores them in memory, and
returns to the playback state.

You set the trigger level using a rotary encoder to
adjust a 1 O-bit up-and-down counter (Fig 14). The logic
performs a 10-bit magnitude compare (Fig 15) of the
successive-approximation converter output with the trig­
ger level to determine when to trigger the circuit.

The trigger-level compare is a full-magnitude com­
pare that tests whether the digitized input Signal is
greater than or equal to the trigger-level setting or less
than or equal to it, depending on the input (TRIG_GE).
The 10-bit range provides a trigger-level resolution of
10 mV and gives time for the magnitude-compare results
to become valid while the successive approximation is
finishing the last two bits.

Control logiC (Fig 10) also generates the RAM write
enable (N_WE), the RAM output enable (N_OE), and
the FPGA's output enable (F _OUT). Fig B diagrams the
basic record and playback timing.

A 1 2-bit shift register (Fig 4) generates the 12 timing
states needed for the successive-approximation conver­
sion. These timing signals are also used to control 011
timing-related logic in the FPGA.

A clock-select circuit lets you select between two
clocks. The circuit can play back the data at a much
higher rate than it can during recording, because the
DAC only changes state once every 1 2 clock cycles
during playback.

Successive-approximation conversion
The A/D conversion starts with sampling and then

holding the input. The timing generator uses a 12-bit
shift register to control the 1 2 states of the successive­
approximation conversion. I created a macro, called
5AR, for the conversion and used one for each bit (Figs
7 and 8). The details of the macro are shown in Fig 3.

The conversion starts at the beginning of the T1 cycle,
DAC data inputs are reset to a low state, except the
M5B, which is set high. The correct analog-comparator
input is multiplexed to the successive-approximation
logiC, and near the end of the Tl cycle, the global
clock signal (GClK) clocks in the comparator's output
state. At the beginning of cycle T2, the next bit, DAC2,
is set high, and driving the M5B remains in the state
latched in at the end of T1. The conversion process
continues in a similar manner through T11 and the 11th
bit. The L5B is slightly different. Near the end of T1 2,
the FPGA will write all 1 2 bits to the RAM. For this
reason the data for the L5B comes straight from the
comparator without being clocked into the flip-flop.

When in the playback state, the DAC receives data

Taking the First Steps

51 ANALOG
.------~o__----------__oOUT

-5TO+5V

Vee Vee Vee Vee Vee Vee

~~ ~~~ ~ ~ (LSB)

50 DAG1Q
71 DAC9
84 DAC8
14 DAC 7

79 DAC6
81 DAC5
78 DAC4
80 DAC3
83 DAC2

2~ ~~~ ~ (MS8)

17 CMP2
28 S2
3D 51

27 N RESET

37 N_AAM

58 N_D_AT_T

32 TRIG_GE

OPTICAL
51

PANEL-MOUNT 0 1

ENCODER 1-"-__ --=-__ +++-+--"-'-1 RE2

HP HRPG-A-SCA

49 TCNT_HR

23 TLVL

CLK_SEL

i~~CD
~~~~~T ~~~ : r:-C>---+-+-++-+-+-11--'-'-1 

'::" 5V o---+-......... >-+--J 

NOTES, 

1. ALL RESISTORS 10k, UNLESS 
OTHERWISE NOTED 

2. ALL DIODES 1 N918, UNLESS 
OTHERWISE NOTED 

3. "*' DIGITAL GROUND 

? ANALOG GROUND 

EXTERNAL 
CLOCK 
(OPTIONAL) 

4. O,I-~F CERAMIC OR FILM LOW-INDUCTANCE 
CAPACITOR ADJACENT ALL IC POWER PINS 

CLK 1 

63 CLK2 
65 CLK 

64 CLOCK 
66 MODE 

73 DCLK 
72 SOl 
33 VPP 

Fig A-The hands-on proied was a record playback circuit. 

N_WE 

N_OE 
AD14 
AD13 

AD10 
AD9 

AD7 
AD6 

AD3 
AD2 
ADI 
ADO 

06 

A1020A 
04 
03 

011 

DISP_TRIG 

ARMED-{)UT 

TRIGD-{)UT 

Vee Vee 
27 
~ ~ 22 22 
OE 

10 
43 6 6 
59 26 
45 4 

NEC 54 24 24 NEC 

44 5 
D43256A D43256A 

-10L -10L 
56 

48 2 
57 23 23 
47 3 
36 
41 
52 

19 

:: ) 18 
10 17 
8 16 DATA 

15 
11 11 
12 

11 
22 

DISPLAY 
TRIGGER 

TRIGGER 
OUTPUT 

76 DATA 
MARKERS 

'l 
PANASONIC 
5352T5-5VLC 

'l 
5352T3-5VLC 

6·7 

II 



6-8 

pie carry used in Fig 12 performs 
the function of a 74269. 

When you need something a little 
different from the stock parts, the 
flexibility of a soft macro really 
shines. Unlike hard macros, which 
you cannot alter, you can copy and 
then alter soft macros to perform 
exactly the function you want. In 
fact, any time during the design 
that you want to see what is sche­
matically in the guts of any soft 

macro, you just select the device 
and push down into the next level 
of the hierarchy. 

The device labeled CNT 128 in 
Fig 13 is a 7 -bit version of the 
TA269 in Fig 12. I created CNT 
128, my first soft-macro conversion, 
in approximately 10 minutes. Now 
that I know how, it should take less 
than 5 minutes. It really is that sim­
ple. All you do is copy and rename 
the macro's schematic and symbol, 
then make the modifications to the 
new schematic and symbol. When 
you want to use the new function, 
you call up the symbol and put it 
on your schematic. You can find 

Pack the digital logic into one FPGA (continued) 

other customized soft-macro exam­
ples in the schematic, such as 3-bit 
counters (Fig 10) and 7-bit latches 
(Fig 12). 

Making a custom macro takes a 
little longer than merely modifying 
an existing macro because you need 
to create the full schematic and 
symbol. However, it isn't really any 
more difficult. SAR, used in Figs 
7 and 8, is a custom macro I created 
to save a few pages on the sche­
matic. The schematic for the macro 
is shown in Fig 3. 

You don't necessarily have to 
modify a standard soft macro if you 
don't need all of it. The rule is that 

from the RAM ond clocks it into the flip-flops ot the end 
of cycle T12. A multiplexer switches the trigger-level 
setting (Tll -Tll 0) into the DAC input when the adjust 
trigger-level signal (TlVL) is asserted. 

The 32k·word RAM stores conversion data from the 
successive-approximation conversion, plus two control 
Signals (D 13 and D 14) (Fig 6). A 15-bit counter gener-

ates addressing for the RAM. While in record mode, 
the address counter is free running. The FPGA continu­
ously writes the AID results into RAM. When the trigger­
level compare condition is satisfied by the incoming 
signal, the current value of the address counter is 
latched, the 15-bit up-and-down horizontal trigger­
position counter is loaded, and the memory-trigger 

GCLK Il.JlJ"1J -
RECORD TIMING 

TIMING STATES 1 T1 1 T2 1 T3 1 T4 1 T5 1 T6 1 T7 1 T8 1 T9 1 T10 1 T11 11121 T1 1 T2 1 T3 1 T4 1 T5 1 T6 1 T7 1 T8 1 T9 1 no 1 111 11121 

ADDRESS N-1 N (EVEN) N+1 (ODD) 

DATA INVALID (CONVERTING) INVALID (CONVERTING) 

VALID VALID 

N_WE 

S1 SAMPLE HOLD 

S2 HOLD SAMPLE ~ 
~~M~AREDATAI CMP2 CMP1 

PLAYBACK TIMING 
GCLK 

TIMING STATES 1 T1 1 T2 1 T3 1 T4 1 T5 1 T6 1 T7 1 T8 1 T9 1 T10 1 T11 11121 T1 1 

ADDRESS N+1 

DATAD1·D14 0~N]=~=~=====~N~+1=====:J 
DAC 

Fig I-At the end of each AID conversion, the FPGA writes the dato to RAM_ During playback the FPGA latches data fram RAM 
at the end of T12 to drive the DAC_ 



Taking the First Steps 

EDN"SPECIAL PROJECT 

you can't leave any unused inputs­
all inputs must be tied to a signal, 
V"" or ground. You may leave out­
puts unused; the software should 
remove any unnecessary logic asso­
ciated with the unused outputs. The 
software will issue a warning when­
ever an output is unused, giving 
you a chance to verify that the omis­
sion is intentional. 

eliminate the load function on the 
counter. Even if the change doesn't 
result in a module savings, unneces­
sary inputs tied to power and 
ground restrict routing flexibility, 
which might affect the overall per­
formance of the circuit. 

signal. Thllre is only one global 
clock signal on ACT 1 devices, and 
it can drive any number ofloads. 

On the surface, these fan-out lim­
its may not seem too stringent, but 
you have to remember that macros 
are just a graphic convenience, no 
signal buffering occurs unless you 
put it inside the macro. 

You shouldn't tie unused inputs 
to V". or ground if it's possible to 
eliminate them. The flip-flops in Fig 
10 should be changed to macros 
without the preset. CNT4B on Fig 
6 loads all zeros. A more efficient 
design would just use a Clear and 

Fan-out limits are perhaps the 
most noticeable change from stan­
dard TTL design. The software 
gives you a warning for more than 
10 loads, and an error for more than 
24. For the special cases of nets you 
designate as "fast criticality" (I'll 
discuss criticality in part 2), the fan­
out limit drops to six loads. The 
only exception is the global clock 

For example, the latch-control input 
of the 8-bit latch shown in Fig 12 is 
eight loads, not one. You'll note a buf­
fer in front of it. In fact, you'll see 
quite a few buffers scattered through­
out the pages of the schematic. 

Buffers are easy to add, and the 
software errors and warnings tell 

match condition (N_MEM_TM) is set up to stop acquisi­
tion after recording 24,000 more words of data, pro­
viding 8k words of pretrigger data. The FPGA writes 
the display-trigger match (DISP _ TM) bit to RAM (D 13) 
to mark the capture-trigger location during playback. 
N_MEM_ TM is also recorded in RAM (D 14) to mark 
the beginning and end of data. 

During playback, the circuit compares the address 
counter with the IS-bit horizontal-trigger-position, up­
and-down counter. When the two IS-bit words match 
the display, trigger-match condition (DISP _ TM) is satis­
fied, and the display-trigger signal (DISP _TRIG) goes 
high for 12 clock cycles to drive on oscilloscope trigger. 
Initially, the circuit sets the horizontal-trigger position 
counter to the capture-trigger address. Subsequently, 
you may change it with the rotary encoder to trigger 
the oscilloscope at any address. 

The address counter runs continuously during play­
back except when interrupted by one of two events: 

• When the data at trigger Signal (N_D-AT _ T) goes 
low, the address counter is disabled the next time 
it reaches the display-trigger match and stays dis­
abled until N_D_AT_T goes high. With the address 
counter disabled, the data going to the DAC is 
frozen so that the DAC continually outputs the volt­
age at the display trigger address. You can read the 
dc voltage on the analog output with a voltmeter. 

• When D 14 from the RAM goes low, indicating the 
end of the data, the address counter is disabled 
for 16 periods of 12 clock cycles each, before 
repeating the data. A high signal on the CH2 output 
provides a marker to use on an oscilloscope to 
indicate the beginning and end of data. 

CHANNEL 1 (RE1) ILJL 

CHANNEL 2 (RE2) ....r-L...SL 
CLOCKWISE 
ROTATION 

RE1 RE2 FUNCTION 

COUNT 

SET COUNT·UP STATE 

SET COUNT· DOWN STATE 

NONE 

Fig (-The counter either counts up or down one cycle each 
time both encoder outputs ore low. The count direction is 
determined by the previous stote of the encoder. 

Logic shown in Fig 9 decodes the quadroture signals 
(Fig C) from the panel-mount, rotary, optical encoder 
(RE I and RE2) into count-up and -down signals and 
count-enable signals. A panel-mount switch lets you se­
lect between adjusting the input-trigger level and adjust­
ing the output horizontal-trigger position. 

Because the horizontal-trigger position covers a 15-
bit range (32k-word address) a high- and low-range 
select lets you count in increments of I or increments 
of 256 addresses. The rotary encoder provides I 20 
quadrature cycles per revolution, so using the low range 
you'd need to turn the knob 273 revolutions to scroll 
the full address range. Using the high range, you can 
scroll the whole range in just over one revolution. 

6-9 

I 



6·10 

you where they are needed. None­
theless, they are a minor nuisance 
and one of the few blemishes to 
what I consider a nearly ideal de­
sign environment. Of course, the 
addition of buffers should remain 
under the designer's control and not 
be made automatic because buffer­
ing is more than just a cosmetic 
change to the schematic. 

Buffers require a module and add 
a module delay to the signal (In part 
2, I'll discuss timing in detail). Let­
ting module fan-out increase above 
the warning limit can cause large 
time delays too. For my particular 
design, the timing was not too 
tight, so I just added buffers as 
needed to eliminate errors and 
warnings. I probably could have left 
the warnings and still been okay. 
If your design has tight timing and 
you can't afford extra module de­
lays, you can regenerate the signal. 

For example, in Fig 10 you'll find 
F _OUT and a buffered version 
F_OUT-A. Had this signal been 
timing critical, I could have cloned 
the preceding flip-flop to generate 
two identical versions of the signal 
without any additional module de­
lays. The cost in this case would 
be an extra module because the flip­
flop hard macro requires two mod­
ules, compared with the single mod-

(SAR) 

-- -- -- ----. ---- "-_ .. ---_ .. "--- ---- -
---- ---- --- ---------

Getting from a concept to a finished circuit using an FPGA requires learning new software. 
Even though all the software was new to me, I learned to use it eRectively for this project 
in less than a week. 

ule for the buffer. Also it means 
doubling the load on the flip-flop's 
input signals because they'll be 
driving two flip-flops instead of one. 

On the overall schematics (Figs 
4 to 15) I've only labeled nets where 
I needed to for design reasons, with 
very few exceptions. One exception 
is lAO in Fig 11. It's labeled for 
simulation reasons I'll discuss in 
part 2. In future designs, however, 
I plan to label every net and every 
module. Although labeling takes 
time, it pays off when simulating, 
using the static timing analysis soft­
ware, and reading error reports. I 
have to note that several people 
recommended labeling everything, 
and I ignored the advice. In the 
end, I didn't save any time by omit­
ting the labels. You can take my 
advice or learn the way I did. 

After reading this far you may 
have come to the conclusion that de­
signing an FPGA is not much differ­
ent from designing with SSI and 
MSI Ies. That's my conclusion too. 
I spent my time during schematic 
design battling with system design 
issues and how to improve the de­
sign, not fighting with tools or won­
dering if the clever use of a differ­
ent MSI device would make a 
cleaner design. In part II, I'll show 
you some of the bugs I caught in 
simulation and two that I didn't 
catch until I tested the circuit. I'll 
also present you with the chrono­
logical account of the project so you 
can see how much time I spent in 
each step. ~ 

Reference 
l. Conner, Doug, "High-Density 

PLDs," EDN, January 2, 1992, pg 76. 

Doug Conner is a 
technical editor for 
EDN based in 
California. You 
can reach him at 
(805) 461-9669. 

Fig 3-Creating custom macros is very simple and simplifies the schematic of the overall 
design. SAR is used in Figs 7 and 8 of the FPGA schematic. If you need to make changes 
to the design later, you need to change only the macro. 



Taking the First Steps 

EDN'SPECIAL PROJECT 

CLK_SEL~P:: . 
CLK1 " PAD 

'" eLK 
CLK2 PAD B 

CLKBUF 

CLOCK~GCLK 

EON 

TIMING GENERATION 

REeD A 

RECD_B 

RECD_C 

RECD_D 

+-----f-----+--------l--f----- CL_MEM 

N MEM FULL 
- -T1_A 

N RESET -~~[>--~=F====J~======tt~2:==----tI 

EON 

STATE GENERATION 

Fig 4 (top)-The schematk shows the Iogk for generating the 12 timing states used for aR record and playback operations; Fig 5 
(bottom) shows the Iogk for generating the playback state and the 3 record states: clear memory, armed, and triggered. 

6-11 

11 



6-12 

DISPD~~ :==::;::=:::[::>------------1-----------..... 

C~R~~~ 
T1_A _---"'=::::1 

T1 
T12 A 
CMP_A 

RECD_A 

TL_AD;ct 

F_OUT _---, 

T4 
T12_A 
CMP_A 

RECD_B 

TL_AD;C: 

N_R_S~'6L~ 

N_A_SAR_A 

N_R_SAR_B 

N_R_SAR_C 

N_R_SAR_D 

EDN 

CONTROL LOGIC 
F2 
SHEET 3 

EDN 

DATA 1-6 

F2 
SHEET 4 

fig 6 (top)-logk for mlscelaneovs control fundlons Is IRustrated In this diagram; Fig 1 (bottom) shows the Iogk for the lower six 
data bits (see Fig 3 for SAR macro schematic). 



Taking the First Steps 

(SAMPLE) 

EDN"SPECIAL PROJECT 

T11 

T'~_~p 

RTEL~~D~ 

N_A_S~~L~ 

COMPARE MUL TIPLEXEA '----' 

~~D:~ 
C~Pl PAD A Sy C CMP 

CMP2 PAD B .-'--. __ eMP_A 

(LSB) 

EON 

DATA 7-12 

F2 
SHEET 5 

CONTROL LOGIC 

F2 
SHEET 6 

I DRAW: BY:D Conner 

Fig 8 (top)-This schematic details the logic for the upper six data bits (see Fig 3 for SAR macro schematic); in Fig 9 (bottom), you can 
see the controllogk for the 5/H circuit, compare multiplexer, and rotary-encoder decode logk. 

6-13 

I 



6·14 

EDN·SPECIAL PROJECT 

RAM AND I/O CONTROL 

T~~C~ __ --'k--

T, 

EDN 

RAM AND I/O CONTROL 

EDN 

(MSB) 
RAM ADDRESS COUNTER 

fig 10 (top}-The schematk ilustrates the write-enable and output-enable Iogk for the RAM and the output control for biclrectional 
data lines; Fig 11 (boHom) highlights the IS-bit counter for RAM address lines. 



Taking the First Steps 

EDN'SPECIAl PROJECT 

N TeNT LD _--{>------, 

IADO 
IAD1 
IAD2 
lADS 
IAD4 
lADS 
lADS 
IAD7 

IAD[7:0] 

N_TCNT_LD _-----------, 

TeNT_UP _-----------, 

N_TCNT_EN _----------, 

lADS 
lADS 
fADtO 
lAD" 
IAD12 
IAO'3 
IAD14 

IADa 
lADS 
rA 10 
IA011 
IA012 
IA 13 
IAD14 

IAO[14:S] 

TA[7:0] 

TAO 
TA1 
TA2 
TA3 
TA4 
TA5 
TAG 
TA7 

TA(14:81 

TAB 
TA9 
TA10 
TA11 

A12 
TA1S 
TA14 

IADO 
IAD1 
IAD2 
lADS 

TAO 
TA1 
TA2 

IAD4 
lADS 
lADs 
IA07 

TA4 
TA5 
TAG 
TA7 

F2 
SHEET 9 

EON 

2-26-1 992_' 6:55 

lADe 
IAD9 
IAC10 
IAD11 

TAB 
TAg 
TA10 

IA012 
TA12 
fAD1S 
TA13 
IA014 
TA14 

EON 

F2 
SHEET 10 

2-26- 1 992_16:59 

fig 12 (top)--The '-r eight bits for horIxontaI-outp position cOlltl'ol en ilustrated here; fig 13 (boHom) ~ the upper seven 
bits for horizontal-output position control. 

6-15 

I 



6-16 

lOAC10 
IDACe 

TL10 
TL9 

'DAC7 
IDAC6 
IDACS 
IDAC4 

TL7 
TLS 
TL5 
TL4 

EDN-SPECIAL PROJECT 

TAIG_GE _--!><I-D----------------' 

(TRIGGER ON SIGNAL >_ TRIGGER) 

EON 

TRIGGER LEVEL COUNTER 

2-27~1992 5:56 I DRAWN BY:D Conner 

EON 

TRIGGER LEVEL COMPARE 

2-26-1992_17:10 

Fig 14 (top)-Thls schematic shows the IO-blt counter for setting the Input trigger level; Fig 15 (bottom) Illustrotes the IO-blt 
magnitude-compare drcult for detedlng the Input-trigger event. 



Migrating to FPGAs: 
Any Designer Can Do It 

~c/@I! 
• 

EUROPEAN EDITION 

ELECTRONIC TECHNOLOGY FOR ENGINEERS AND ENGINEERING MANAGERS WORLDWIDE 

© 1993 Actel Corporation 

A CAHNERS PUBLICATION 

April 23, 1992 

Combine C, 
assembler to 
program DSP 
processors 
pg 153 

Ada and generic 
FFf generate 
routines tailored 
to your needs 
pg 165 

• Uiiil[.] !.ra.i iij.J.ii\. 
Sensorless 
motor-control ICs 
pg 43 

Liquid-crystal 
displays 
pg 61 

Control-systems 
simulation 
software 
pg 79 

PROFESSIONAL ISSUES 

Managing stress 
pg 255 

Expanded Design 
Ideas section 
pg 171 

I 

6-17 



6-18 

Part I of this 2-part 
hands-on design proied 
(in the April 9 EDN) dis­
cuned the overall circuit 
and the sCMlllatic entry 
of this FPGA (field-pro­
grallllllable gate array) 

design proied. Part 2 con­
centrates on the ste,. 
frolll silllulation to the 
final functioning circuit. 

The proied took 29 
working days frolll 

start to finish. 

EDN·SPECIAL PROJECT 

Migrating to FPGAs: 
any designer can do it 
DOUG CONNER, Technical Editor 

In the April 9 issue I discussed the 
first part of my journey into FPGA 
design. The schematic part of the 
design wasn't much different from 
ordinary SSI or MSI TTL design. 
Because logic simulation is seldom 
used in SSI or MSI TTL design, it 
was a new experience for me and 
was the greatest worry when I 
started the project. If you haven't 
been using logic simulation, you'll 
find this phase of verifying your 
FPGA design a big change. 

For the project, I had decided to 
design and build a circuit to convert 
an analog signal to digital, record 
it in RAM, then play back the 

signal (the circuit schematic 
appears in EDN, 

April 9, 1992, 
pg 98). 

All digital functions would be per­
formed in the FPGA. I wanted to 
keep the analog portion of the cir­
cuit simple, yet be as fast as possi­
ble. I began the project by blocking 
out the design and figuring out 
what the overall circuit should do. 

Days 1 to 11 
Performing the initial design and 

selecting the analog parts took 
longer than I expected. I spent the 
first eight days doing the prelimi­
nary analog design, blocking out the 
digital circuit functions, selecting 
all the les, and ordering samples. 
On day 8, I started the schematic de­
sign of the FPGA on Viewdraw (View­
logic's schematic capture software). 

Days 12 to 15 
With the initial schematic mostly 

done, I counted 339 



used modules. That's too big for the 
295 modules on an Actell010 device 
and only 60% of the 547 modules 
on a 1020 device. I decided to bring 
triggering inside the FPGA and 
made a few more changes to take 
advantage of the capacity of the 
1020 device. 

By day 14, the FPGA schematic 
was mostly complete, letting me up­
date the overall circuit schematic. 
I spent some time drawing timing 
diagrams to make sure all the read, 
write, trigger match, and other con­
trollogic would work. 

I needed to have this project done 
in two weeks, and at this point I 
hadn't started simulation, 
which was my great-
est fear in the 
whole 

project. The schematic-entry tools 
were working fine, but I kept find­
ing design problems that had to be 
solved or improvements I consid­
ered necessary. I initiated 12-hour 
workdays and 6-day work weeks. 

Day 16 
Even though I wasn't quite fin­

ished refining the schematic, I 
elected to run the netlist converter 
(makeadl) and do a trial place and 
route. I couldn't afford to get 
bogged down in software 
problems during the 
real place and route. 

Migrating to FPGAs: Any Designer Can Do It 

I 

6-19 



6-20 

I wanted to find them immediately 
and get them out of the way. 

The netlist conversion is a single 
command and takes about five min­
utes to run. The Validator software 
checked the design and the com­
puter returned the errors and 
warnings: I had one incorrectly 
named net, four fan-out errors, and 
ten fan-out warnings. I corrected 
the errors and went on to try an 
auto-pin placement. 

The autopin software under the 
Pin Edit menu wouldn't run 
because it needed a file named 
design. pin, which I hadn't created 
yet. I put in a call to Actel, but 
before they returned my call, I 
tried some experiments. Under the 
configure selection on the menu I 
found an automatic 110 assignment 
selection. Reviewing the documen­
tation, I learned that this appears 
to be the right menu selection to 
use to do the automatic 110 pin as­
signment. I tried it, and it worked. 
After you run the automatic 110 pin 
assignment once, the design. pin file 
is created. After that I could edit 
the pin assignments if I wanted to. 

I left the automatic 110 pin as­
signments because they should let 
the automatic place-and-route soft­
ware do its best job. The first time 
I ran the place-and-route software, 
it produced a fully placed-and­
routed design in 16 minutes. I had 
used 486 modules and 57 110 pins. 

Day 17 
Day 17 marked the beginning of 

simulation, or more accurately, the 
~ preparations. I was a complete nov-
o ice at simulation, so I alternated 

between reading the Viewsim 
~ (View logic's digital simulator) ref­

erence manual and setting up the 

if the file would do what I wanted. 
I found learning to use the simu­

lator similar to learning a relatively 
simple computer language. I used 
fewer than 20 of the roughly 60 
commands available. 

The Viewsim simulation environ­
ment (Fig 1) lets you work in three 
different modes. A text mode lets 
you input data and commands and 
output results. A graphical-wave­
form mode gives a logic-analyzer­
type display showing the states of 
signals. You can bus signals to­
gether, such as data and address 
lines, so you can view many signals 
at once. You can also create stimu­
lus in the graphical-waveform 
mode, although I didn't use that 
method on the project. The third 
method is to drop down into the 
schematic and see the actual data 
values on every node. You can even 
push down through the levels of hi­
erarchy into macros so you can see 
what is happening inside a counter 
or the SAR macro (a soft macro I 
created). 

I created my input commands and 
data in text files, viewed results 
with the waveform graphical dis-

play and occasionally dropped down 
into the schematic display to verify 
exactly where a problem identified 
in simulation was occurring. I found 
this method similar to debugging 
and testing real hardware. 

I did not use any expect-data files 
to make automatic comparisons 
with simulation results. I visually 
examined the waveform graphical 
displays to get the most informa­
tion. Although I reduced the num­
ber of signals displayed in the pho­
tographs to make them easier to 
read, in practice I crammed as 
many signals as I could onto the 
graphical waveform display for 
maximum information. 

For those who haven't used digi­
tal simulation before, I can offer 
some comments on my experience. 
You have to set the initial condi­
tions for all inputs (high, low, high­
impedance, or unknown) for every 
input or 110 pin on the FPGA. Set­
ting the inputs for control lines and 
changing them during simulation 
is straightforward. For bidirec­
tional data lines such as the ones 
connecting to the RAM in this de­
sign, you need to drive them with 

_=~ files to provide stimulus for the cir- Fig I-The FPGA software lets you observe simulation resuhs in three diHerent formats: 
cuit. I ran a few simulations to see text, graphical waveform, and on the schematic. 



Migrating to FPGAs: Any Designer Can Do It 

the correct data during RAM reads, 
and release them during RAM 
writes. Even after you've set up the 
proper conditions on all external in­
puts and 110 lines, you're still not 
done. You may have to initialize in­
ternal conditions. Some of the in­
itializing may be covered by reset 
logic you've designed into your cir­
cuit, and some of it may not. 

For example, the address counter 
(Fig 11 in Part 1, pg 98) is a free­
running counter. When the simula­
tion starts (and in the real hard­
ware) the address is in an unknown 
state. After each count cycle, the 
hardware progresses from some in­
itial state n to n + 1, then n + 2, and 
so on. 

When you start simulation, the 
counter is in an unknown state and 
will stay there. To get useful simu­
lation results, you have to force the 
counter into a known state, and 
then it will begin counting. I forced 
the counter's outputs to an initial 
state, then released the outputs, 
and the counter ran properly. You 
should label all counter output nets 
so that you can force them to known 
states during simulation. 

Simulation is slow compared with 
real hardware, so you need to keep 
the clock-cycle count low if you 
want to make many simulation 
runs. Most of my simulation runs 

Editor's analysis 

EDN"SPECIAL PROJECT 

Table 1-FPGA and other products used on 
, this project' 

were a few hundred clock cycles or 
fewer. I don't believe a simulation 
ever took more than five minutes 
to run; a typical simulation run took 
about two minutes. For reference, 
the design is 1514 gates by standard 
gate-array counting measures. I ran 
the ·software on a 33-MHz 486 PC 
with 8 Mbytes of RAM. 

To run the 15-bit counter through 
all 32,768 cycles would have taken 
nearly 400,000 clock cycles. Rather 
than having the simulator run for 
a day and generate reams of data, 

I forced counters to states near 
where some event should happen 
(or shouldn't happen, but might), 
released the counter, and let it 
count through the cycles I wanted 
to see. Then I forced the counter 
to the next event of int1lrest (Figs 
2 and 3). 

My approach to simulating the 
design was twofold. First I tried 
to identify every part of the circuit 
where I had concerns, list them, 
and then make simulation test cases 
to verify that the function per-

All things considered, my opinion based on this project 
is that designing with an FPGA is actually easier than 
designing with SSI and MSI logiC. You can use the 
same schematic design approach you are familiar with. 
You don't have to use simulation to design with FPGAs, 
but I'd highly recommend it. My first attempt at simula­
tion wasn't perfect, but it got me close. Finding the last 
few bugs in hardware and correcting them was not a 
problem. Correcting the bugs did not even necessitate 
pc-board changes. 

logic. High-current bus drivers are one; extremely sim­
ple logic circuits are another. Same high-speed logic 
will favor SSI and MSI devices, but a number of FPGAs 
are available with the capability of loading and operat­
ing 16-bit counters in the 50- to I ~O-MHz speed range. 

Price is perhaps the biggest barrier to FPGAs' taking 
over the low- to medium-volume logic market. At $36.25 
(IDOl for the device I used, it's competitive with SSI 
and MSI devices, especially if you factor in the cost 
of pc-board space and the flexibility to make design 
changes easily. As you move to higher-density and 
higher-speed FPGAs, you'll pay a premium over SSI 
and MSI parts. 

I no longer wonder what applications FPGAs are use­
ful for, but rather what applications still make sense for 
small- and medium-scale integratk>n TTl and CMOS 

6-21 

I 



6-22 

-*,~ .......... . 
rl 1 

p, 
formed as expected. These cases in­
clude counters, magnitude com­
pares, optical-encoder signal de­
code, and others. Second, I simu­
lated the FPGA as a whole, per­
forming entire sequences of clear­
ing, arming, recording, and playing 
back the data. Other simulation se­
quences tested the trigger-level and 
trigger-position-adjust operations. 

My concerns on this design were 
mostly functional. Counters have to 
count, so I simulated all major tran­
sitions. In fact, it's a good idea to 
test all macros you create or alter 
separately. And because macros 
contain relatively few gates, they 
simulate quickly. Even though I 
tested the counter macros that I 
modified, I still tested the entire 
counter in the full schematic. 

Because I had already run a place 
and route on the design, I could ex­
port the as-routed delays to the 
simulator and have a more accurate 

fig 2-Thls sequence takes the design through reset, dearing memory, arming, triggering, 
completing data acquisition, playback with capture trigger marker, and end of data 
marker. To see more details, you need to loom In as shown In Figs 3 and 4. 

simulation. But I didn't want to use could change a schematic, recompile 
the as-routed delays at that time the simulation, and simulate in 
because I was still fixing a few about five minutes. The turnaround 
bugs, and the unit-delay simulation time with as-routed delays requires 
provided a faster turnaround. I a netlist transfer, design validation, 

place and route, and exporting the 
delays to simulation. The total time 
for doing all those things is about 
half an hour. 

Day 18 
I spent lots of time on day 17 

reading the simulation reference 
manual to understand the simula­
tion commands and trying to figure 
out how to test my circuit with the 
available commands. By day 18 I 
was writing command files contain­
ing series of commands that initial­
ize the FPGA and start taking it 
through its paces. 

Fig 3-I've loomed in to show a portion of the display in Fig 2 where the Memory 
Cleared (MEM_CL) signal indicates the memory has been deared, and the FPGA changes 
its state to Armed. A short time later I force the trigger signal (TRIG) high, which causes 
the FPGA to change its state to T~iggered (TRIGD). 

It seems incredible, but in two 
days I was able to learn enough to 
make simulation a useful tool. One 
of the attractive aspects of simulat­
ing an FPGA is that I didn't have 
to worry about simulation models. 
Anything I can design into the 
FPGA is covered by the simulation 
library. For this design, all the digi-



tal logic was in the FPGA, so I 
didn't see any need for board-level 
simulation. 

Here are some of the bugs I found 
in one day (I corrected the bugs on 
the schematics in Part' 1): 
• D-14 needed to be gated so it 

only inhibited ADDR_CE (ad­
dress count enable) on playback, 
not during record. 

• &DISP _TM needed more delay 
so it wouldn't reset immediately 
when initiating CL_MEM. I 
had put in a delay, but simula­
tion indicated it needed to be 
longer than I thought. 

• The circuit was changing the 
compare multiplexer from com­
pare 1 to compare 2 when the 
address changed during T2, in­
stead of at the beginning of Tl 
(when it should happen). 

I had been dreading simulation. 
I assumed I'd be bogged down in 
learning to use difficult software. 
Instead, I find myself a simulation 
convert-learning the software is 
reasonably easy. The bugs jump 
right out once you start exercising 
the circuit functions. It's just as 

EDN·SPECIAL PROJECT 

much fun as debugging hardware, 
and you don't have to put probes 
on difficult-to-reach pins. 

Day 19 

I made a few changes to the suc­
cessive-approximation logic and de­
cided to create a soft macro (called 
SAR). I ran more simulation, and 
then I ran the place-and-route soft­
ware and generated as-routed delay 
information for simulation. I spent 
a couple of hours making a final 
check of what remained to be simu­
lated before I was ready to call 
simulation done. 

The list of what was left to simu­
late seemed long, but because I was 
more familiar with the simulation 
commands and had simulation com­
mand files to perform most of the 
major functions on the FPGA, it 
went faster. I put simulations to­
gether quickly by calling initializa­
tion routines I'd already written, 
adding some commands, or modify­
ing an existing command file. 

I made some changes to the sche­
matic and compressed the design 
onto fewer sheets. I then wanted 

Fig 4-Zooming in still further on Fig 2, you can see the data written to RAM when the 
negative Write-Enable line (N_WE) goes high. Here I'm looking at the hold time an the 
Data bus. 

Migrating to FPGAs: Any Designer Can Do It 

to delete the excess pages, but 
couldn't find a utility for deleting 
schematic sheets. Instead, I deleted 
them from DOS. 

A few hours later while simulat­
ing the design, things weren't quite 
right. I traced the problem to a 2-
input multiplexer with the correct 
data going in, the correct data on 
the select pin, and unknown data 
on the output. I expected to find 
another output driving the net, but 
a double-check of the schematic 
indicated that that wasn't the 
problem. 

This was my first, and only, seri­
ous problem with the simulation 
tools. It lasted for about two hours. 
Finally, I made the connection that 
perhaps the schematic sheets I de­
leted were not completely gone. It 
turns out that when you save a 
schematic sheet, the software cre­
ates a wirelist description file in the 
WIR directory. I deleted the files 
in the WIR directory for the sche­
matic sheets I had deleted earlier, 
recompiled the simulation file, and 
was back on track. Of course, the 
simulation tools weren't really at 
fault, but I never did find anything 
in the documentation about how to 
delete schematic sheets properly. 

I continued on to simulate the as­
routed delays, exporting the delay 
information after a place and route 
into the simulator. The relatively 
short place-and-route time (ap­
proximately 15 minutes) is really 
useful when you make a design 
change and want to get back into 
a simulation with accurate timing. 

Day 20 
On day 20, my schedule called for 

having the design done and a func­
tioning prototype board in one 
week, leaving me a week to tie up 
any loose ends before the article 
was due. However, I still hadn't got 
the design to the point where I 
wanted to freeze the FPGA pin­
outs. After that, I needed to lay 
out the prototype board, build the 

6-23 

I 



6-24 

board, program the FPGA, and get 
the circuit working. 

Later that day, while running 
through my simulation test cases, 
I discovered a serious error: The 
FPGA would never write the mem­
ory-full signal to D14 because of a 
setup timing error. The problem 
was very easy to fix, but it made 
me wonder how many other errors 
remained. 

I made a few minor changes and 
tried to run a unit-delay simulation, 
which didn't work. All the timing 
is in even clock cycles, but unit de­
lay simulation should give each logic 
module a I-nsec delay. I'm reason­
ably sure what the problem is, but 
don't know how to fix it. 

Once you run the place and route 
software and export as-routed de­
lays, the simulation software shifts 
from unit delay to zero delay per 
interconnect. It then looks up the 
real delay for each interconnect in 
a file. Because I've changed the 
schematic, the software apparently 
knows it can no longer use the as­
routed delay file, but it isn't reset­
ting the simulation to unit delays. 
I could have called Actel and found 
out how to fix the problem, but I 
elected just to run the place-and­
route software, export the delays, 
and get on with simulation. I was 
at the point where I needed the tim­
ing accuracy anyway. (After I fin­
ished the project, I called Actel and 
got the answer to my problem. 
After you export the as-routed time 
delays, the software creates a file 
named design. VAR in your work­
view directory. You need to delete 
that file and run export wirelist in 
the schematic window to return to 
the unit-delay simulation.) 

My particular design had very 
few c-ases of critical timing because 
I was running at low clock rates. 
My requirement was 2 MHz, and 
10 MHz was my goal for the digital. 

The analog part of the design could 
play back at more than 2 MHz, but 
the record mode probably couldn't 
go beyond 2 MHz and still settle 
properly during conversion. With 
this extremely loose timing, I didn't 
have to make any changes for speed 
in the design; I was more concerned 
about saving gates. 

When designing faster circuits, 
you need to be sure critical net­
works don't end up with long inter­
connect delays. These long delays 
happen when two interconnecting 
modules are spaced far apart on the 
FPGA. The automatic place and 
route software attempts to place 
the design into the modules with a 
minimum of long interconnects. For 
this FPGA, long-vertical tracks are 
the worst, and long-horizontal 
tracks are the next worst. My de­
sign ended up having 16 long-ver­
tical and 54 long-horizontal tracks. 

The way you protect critical net­
works from long delays is with 
a network-criticality assignment. 
You can assign networks a criti-

cality value of fast, medium, or un­
critical. Fast or medium criticality 
keeps nets off long interconnects. 
You can designate as many as 5% 
of the nets fast and 15% medium. 
Assigning nets uncritical when they 
can tolerate long delays lets the 
routing software connect them with 
long tracks when necessary. 

In my design, I designated fast 
criticality for the write-enable cir­
cuit because the tightest timing is 
at the end of a write cycle to the 
RAM. The RAM requires a zero 
hold time on the data when write­
enable goes inactive. Initially, the 
design had a <10-nsec hold time in 
simulation, which should be okay. 
The fast criticality assignment wid­
ens the margin. Eventually, I 
added extra gating just to be sure 
my timing margin stayed on the 
proper side of zero. 

Day 21 
By day 21 I was still simulating. 

But since the circuit was in reason­
ably good shape, I started to push 

Here I pushed the clock up to see where the circuit foils. At 20 MHz the signal enabling 
the upper 7-bit counter for the horizontal trigger position (N_TCNT_H) has only 2.S-nsec 
setup time before the rising edge of the clock, insuHicient for the counter. You can see 
the Trigger Address bus (TA) does not make the transition from OFFF to 1000 but goes 
to OFOO. 



Migrating to FPGAs: Any Designer Can Do It 

the speed. I had been working with 
a 2.5-MHz clock because that is all 
the speed I needed to have. I 
pushed the circuit up to 10 MHz, 
and then to 20 MHz. 

At higher clock speeds, the simu­
lator often puts out a warning that 
the circuit is not yet stable. What 
this means is that the results of the 
last data or clock transition are still 
propagating through the circuit. 

An example of a relatively long 
path where I would get a circuit­
not-yet-stable warning is in the 
trigger-level compare circuit. The 
4-bit magnitude-compare soft macro 
was listed in the data book as hav­
ing four module delays. The 2-bit 
compare had three module delays. 
The last bit to change in the com­
pare will always be IDACI0, so this 
part of the circuit showed seven 
module delays through the com­
parator, plus three more modules 
to the TRIG signal for a total often 
module delays. Actually, the AND 
gate was combined with the latch 
when I compiled the design, so 
there were nine module delays. 

Typical module delays, including 
interconnect, range from <6 nsec 
to approximately 11 nsec for a fan­
out of eight. Long tracks can push 
the delay to approximately 35 nsec. 
Using 10 nsec as a round number, 
the delay from a magnitude-com­
pare input change to the trigger­
signal output was 90 nsec. Because 

EDN·SPECIAL PROJECT 

I hadn't specified any of the nets 
in the trigger-level compare circuit 
as being critical, long tracks could 
show up anywhere, even inside the 
soft macros. Because I had two 
clock cycles of 500 nsec each before 
I needed valid data for the nominal 
design condition, I wasn't con­
cerned. Even if every module had 
a long track connection, the delay 
would be about 315 nsec. Of course, 
the as-routed simulation or the 
static timer would show just how 
long it takes to get through a given 
path. 

When I simulated the circuit at 
20 MHz and stopped it to view the 
data one 50-nsec clock cycle after a 
data bit had changed going into the 
trigger-level compare circuit, I 
would get a circuit-not-yet-stable 
warning. The simulator was still 
giving me the correct results at that 

The analog-circuit perfor.nee 

Fig 5-The waveform iIIt;s­
trates the record and playback 
circuit capturing a signal that 
changes from ground to a 
I-kHz, 40-mV Pop triangle 
wave. The waveform was pho­
tographed during playback at 
twice the record speed using 
0.2 msec/div and 10 mV/div. 
You can dearly see the 2.S-mV 
quantization levels. The pulse 
on the lower trace marks the 
capture-trigger location. 

instant, but it was also warning me 
that even if all clocks and external 
inputs freeze in their present state, 
some outputs have yet to reach 
their final state. 

The simulation indicated that my 
FPGA would work at 12.5 MHz. If 
I needed the circuit to work at 20 
MHz, I'd need to go back and start 
assigning fast and medium criti­
cality to the appropriate nets or 
change the design. 

With simulation ,complete, I 
spent the second half of the day lay­
ing out the circuit for the prototype 
board. 

Days 22 to 24 
Finally I got to the point where 

I was ready to freeze the pinouts. 
I had left them floating so that the 
place-and-route tools would have 
maximum flexibility to place and 

The dc offset of the circuif froman~g input to analQ9 2r.j~i,Yiithlt~167.kHz{idmple)(~~,fil¥i~~toavoid 
output is -S to -7.S mY. Tne de gain error is witnin aI!!)~9')I~ an~c~~irth. (;itcUit',svs.eato exomirle 
± 1 bit (2.SmY) overtne ±SY range, althovgh the $igoolswltll~ende5:De1OOd.$f)ktt%. TM,3~.word 
component specifications indicate you shouldn't expect RAM provides 0, 1~7 secQf ~tQrOQ$wifh)1if 2~MH% dock 
better than±2 bit5~For.betterclc C/ccura:y~ yotlcBuld s~)~d. ~Y5IQ~llg'~fi);~ s~ cil'Qlit 
trim the offSet wif~ an op amp on the input. transition cc:ms(Jmple at 1,kptz~~'mQre) '.' •... ()unrtg 
noise is approximately ±O.75bit.lhaven'tbeeA able ploybO&.,.~ ,ca(li~l'$'(l~etne clock speedte; •. t2 
to charocferi%e .. the ae OC{;urocy Qf the.$ylOfem to 12~bitMHz JQf a fJi~4re~.~a,y. onal\!iJ~g pSj;lilk>~ 

stOpe.· , 

6-25 

II 



6-26 

route the design efficiently with a 
minimum of long tracks. 

I had no more time for improve­
ments. The only changes I could al­
low now were to fix bugs if I found 
them. As I transferred the FPGA 
pinout list to the full-circuit sche­
matic, I discovered I hadn't brought 
out two signals-ARMED and 
TRIGD (triggered). I added the 
output pads, reran the place-and­
route software, and got the signals. 
I used up 92% of the logic modules 
and 63 of the 69 110 pins available. 

On day 24, I assembled the proto­
type circuit. The prototype board 
was complete, except for an empty 
socket where the FPGA belongs. I 
created the fuse file for program­
ming a chip, which took only a few 
minutes. Normally, you'd have the 
unit that you use to program the 
chip connected to your computer. 
When you're ready to program a 
device, you just put it in the pro­
grammer and run the software. I 
didn't have a device programmer, 

EDN·SPECIAL PROJECT 

so I went to Actel to program my 
first chip. I didn't measure the time 
required to program a part, but I 
estimate it takes about 10 minutes. 

I plugged the part in the socket 
and powered up the prototype. I 
brought my power supplies and 
function generator with me to Actel 
and borrowed a scope. The circuit 
showed signs of life, but I couldn't 
get a good trigger from the dis­
play-trigger signal (DISP _TRIG). 
Gradually I came to the conclusion 
that the problem was the scope and 
not DSIP _TRIG. I asked for an­
other scope and found that the cir­
cuit could perform all the basic op­
erations. I don't know whether I 
was more surprised by my first 
FPGA design working, or that I 
handwired the prototype correctly. 

I went back to my office for fur­
ther testing, where I discovered a 
bug. As I turned the optical rotary 
encoder to adjust horizontal trigger 
position or trigger level, it occasion­
ally jumped, rather than scrolling 
smoothly. The problem happened 
perhaps once in a hundred incre­
ments. The cause was a simple mis­
take: I had not synchronized the 

(b) 

signal coming from the rotary en­
coder before using it in the circuit. 

The rotary-encoder decode logic 
sets the count-up or -down signal 
correctly and then enables the 
counter for one clock cycle each 
time both rotary-encoder inputs are 
low. As the initial circuit was de­
signed, the count-enable signal was 
set up for a random length of time 
before the clock. Most of the time 
the counter counted, sometimes it 
didn't, and other times it jumped 
because part of the count logic had 
sufficient setup time, and part of it 
didn't. 

I ran the problem in simulation 
and it behaved just like the real 
thing. As I reduced the setup time 
below 5 nsec, jumps occurred on 
some count transitions. As setup 
time dropped below 2.5 nsec, the 
circuit just didn't count. 

Adding a flip-flop to synchronize 
the signal solved the problem. If I 
were concerned about metastabil­
ity, I would have added a second 
flip-flop. The effects of metastabil­
ity in this application were not cata­
strophic and should be v.ery infre­
quent with the long clock cycles. 

Fig 6-The record-playback circuit provides 2.5-mV resolution on a ± 5V signal. The two scape photos here show the vohage range 
and resolution. In (a) you can see the circuit has captured an 8V p-p, 500-Hz triangle waveform when I switched out an affenuator 
on the fundion generator. The waveform Is being played back at twice the record speed (1 msec/dlv and 2V/dlv). The same waveform 
in (b) is being played back with the osdHoscope seHlngs changed to 20 mV/dlv and 0.5 msec/dlv. 



Migrating to FPGAs: Any Designer Can Do It 

Incidentally, I did not incorpo­
rate any debounce circuits for the 
switches because I previously con­
cluded they were not necessary for 
this design. When switching the 
clock frequency, I assumed a reset 
was necessary. 

Days 25 to 28 
I added the flip-flop required to 

synchronize the encoder inputs to 
the schematic, then placed and 
routed the design. On this place­
and-route run, all I/O pins were 
fixed. I resimulated all FPGA func­
tions with special attention to make 
sure the bug was fixed. I also veri­
fied all other functions to make sure 
the place-and-route changes did not 
adversely affect other functions. 
Simulation indicated the FPGA 
should fully function at 12.5 MHz. 

I spent the remainder of the day 
working over the analog portion of 
the circuit to get the best perform­
ance I could. 

I went back to Actel to program 

EDN·SPECIAL PROJECT 

a new chip. The problem was 
solved; the circuit now appears to 
work properly. 

I spent more time on the analog. 
Digital is either right or it's 
wrong-analog can always get bet­
ter. By the end of the day I decided 
I had done all I could for the analog 
and decided to take the weekend off. 

By Sunday afternoon I couldn't 
stay away, so I spent an hour using 
the circuit to capture signals. I 
found a bug. The circuit was sup­
posed to capture signals with 25% 
pretrigger data and 75% post trig­
ger data. About half the time it 
worked correctly, and the other half 
of the time it captured signals with 
75% pretrigger data. I couldn't be­
lieve I didn't notice this problem 
earlier. 

I was sure the error must be in 
how I computed the memory-trig­
ger match signal (&MEM_TM), but 
it took me a while to see the prob­
lem. A simple logic error. The cases 
I tested earlier in simulation all 
worked properly. I added new test 
cases, and the bug showed up in 
simulation. I fixed the error by add-

(b) 

ing an XOR gate and reverifying 
the circuit in simulation. 

I carefully tested the hardware 
one more time to make sure I 
couldn't find any more bugs. I went 
through the steps of placing, rout­
ing, and verifying that all simula­
tions ran correctly. This time I sent 
my fuse files for programming the 
FPGA to Actel by modem. They 
programmed the part and mailed it 
back. 

Day 29 
The FPGA arrived. I plugged it 

in, and the circuit was fully opera­
tional. The project was finished. 
Figs 5, 6, and 7 show the circuit in 
operation. 

The circuit was designed for re­
cording with a 2-MHz clock rate. 
The clock-speed limit was set by the 
analog circuitry performing conver­
sion. During playback, the circuit 
could run much faster. At 16 MHz, 
all playback functions appeared to 
work properly. Simulation indi­
cated that the circuit was operating 
on the ragged edge at 16 MHz. At 
20 MHz, some of the counters were 

Fig 7-The 32k-word record length provides 197 msec of data at 6- .... sec intervals. The signal in (a) is an acoustk noise amplified 
from a microphone. The upper trace is the full record length. The lower trace shows the data beginning and end markers. The circuit 
captures the signal with 25% pretrigger data. Photo (h), 20 _/div, 0.5V Idiv, shows the same waveform played back at 100 .... sec/div. 
The capture trigger location is visible on the lower trace. 

6·27 

I 



6-28 

occasionally causing errors because 
the ripple carry had insufficient 
setup time, just as simulation indi­
cated. 

Hindsight is 20/20 
The first step in simulation, and 

perhaps the most difficult and im­
portant one, is to make a list of all 
the cases that require testing. 
Simulation can only find problems 
when you look for them. My faulty 
logic for determining when to stop 
the counter to acquire 25% pretrig­
ger data was tested using two 
different start addresses. Both 
of them worked correctly. The 
counter was free running and could 
start on any of its 32,768 values, 
so I didn't think it practical to test 
them all. Had I given more thought 
to the problem, I might have tested 
a few more critical cases to verify 
the logic and find the problem in 
simulation. 

My error in not synchronizing the 
optical encoder inputs was a care-

EDN·SPECIAl PROJECT 

less design oversight. Although the 
problem can be found with simula­
tion-I verified it with simulation 
after I found it-this type of prob­
lem could probably have been 
avoided by taking more care in the 
design process. Anytime you have 
asynchronous signals coming into a 
synchronous system, they demand 
plenty of careful consideration to 
make sure they won't have undesir­
able effects. 

I did not make the same kind of 
careful schematic check I normally 
do before having a circuit built. I 
thought simulation would provide a 
more thorough job finding errors 
than my going over the schematic 
a few more times. I also felt the 
time pressure to finish the project. 

I think simulation did help me 
make a more thorough check of the 
logic than I could have done without 
it. Simulation however, should not 
be a substitute for carefully check­
ing your schematic to identify po­
tential sources of trouble. Once 
you've identified potential problem 
areas, simulation can help you test 
them. 

Although I had hoped to be able 
to report a fully functioning circuit 
on my first silicon, reality turned 

out different. In retrospect, my ex­
perience on the project probably 
points out the strong points of 
FPGAs. I don't know how many 
days or weeks I would have had to 
spend on simulation to find the two 
bugs that slipped through. The 
problems were easy to find in real 
silicon and didn't take much longer 
to fix than when you find them in 
simulation. 

I wouldn't want to push the ap­
proach of finding your mistakes in 
silicon too far. Simulation provides 
a better way to test a design over 
the full operating temperature and 
voltage ranges plus manufacturing 
process variations. I think of finding 
mistakes in silicon as a fall-back po­
sition after you've done the best you 
can in simulation. 

The realities of schedules that 
don't allow weeks to simulate a de­
sign as completely as you'd like may 
force you into a corner if it is vital 
that first silicon be final silicon. I 
used as much time as I had for simu­
lation-about four and a half days, 
which included learning to use the 
software, and then went on to try 
the real device. It would not have 
been worth another week of simula­
tion to find the two problems I 
found in silicon. I'd have a different 
perspective if I'd designed a mis­
take into a mask-programmed gate 
array and spent $10,OGlI and lost a 
few weeks before I found my mis­
take. 

Had I made a design mistake that 
left the FPGA with serious func­
tional problems, I could have used 
the diagnostic probe capability on 
the FPGA. The diagnostic probes 
let you look at any two nodes in the 
FPGA with an oscilloscope or logic 
analyzer. 

I started this project with no ex­
perience designing FPGAs and 
none in digital simulation. I wanted 
to see if designing a circuit using 
an FPGA was really simple enough 
for a designer familiar with 7400-
series TTL design to jump into 
expecting to produce the first cir-



EDN'$PECIAL PROJECT 

HANDS-ON FPGA PROJECT 

cuit in a reasonable amount of time. 
My conclusion based on the prod­

ucts I used on this project is that 
migrating to FPGAs is a step any 
design engineer should be able to 
make. You always have to stretch 
yourself when learning to use new 
tools, but the jump shouldn't con­
sume great quantities of time while 
you come up to speed. In the course 
of this project, I've covered all the 
problems I had that were worth 
mentioning. There weren't many. 
In the end, my biggest problems 
were the normal system design is­
sues of deciding what the circuit 
should do. Once I knew what I 
wanted to do, designing the circuit 
was relatively easy. 

My biggest surprise was how well 
the software worked. I had a few 
problems, but frankly I expected 
more. My dread of simulation 
turned out to be unfounded. I actu­
ally look forward t6 using simula­
tion on my next project. It's more 
enjoyable to find mistakes in simu­
lation than in hardware. 

For this project I chose a circuit 
that would not require high clock 
rates. As a result, I didn't spend 
any time refining the design to 
make it run faster. Had I needed 
the circuit to run faster, I'd have 
needed more time to refine the 
schematic and criticality file, and I'd 
perform more simulation runs. 

!3:!IJ 

Acknowledgment 
I'd like to thank the following compa­

nies for providing products for this pro­
ject: Actel, Analog Devices, Hewlett­
Packard, Linear Technology Corp, and 
Viewlogic. 

Technical Editor Doug Conner is based 
in California. You can reach him at 
(805) 461-9669. 

Reprinted from EON 

Migrating to FPGAs: Any Designer Can Do It 

© 1992 by CAHNERS PUBLISHING COMPANY 

6-29 

I 



6-30 



~c/@II Using Actel Tools 
• 

Using Actel Tools • 

© 1993 Actel Corporation 



High-Level FPGA Design in the Synopsys Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 

Actel's Cadence Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-3 

Instantiating Actel's I/O Buffers in Verilog HDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 

ALS EDIF Reader and Writer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-9 

Mentor Graphics V7 toV8.2 Design Conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-11 

Actel ChipEdit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 -13 

ACTmapTM Design Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-17 

Selecting and Modifying I/O Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-21 

Critical Path Analysis Using the Timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-25 

Multichip Post-Layout Simulation Using ALS and Viewsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-31 

Board Level Post-Layout Simulation Using ALS and QuickSim II. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-33 

Board-Level Simulation Using ALS/OrCAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-35 

External Probe Pin Control for Actel FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-39 

Using Actionprobe@ Diagnostic Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-43 

Using the Actel Debugger as a Functional Tester. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-45 

Moving Actel FPGA Designs from Prototype to Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 -49 

Production Programming for Actel FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-51 



--ffjI//c/@1! High-Level FPGA Design Application 
Note 

• in the Synopsys Environment 

Summary 

Many system designers have abandoned traditional design 
methodologies in favor of a new high-level, top-down approach. 
Instead of designing a system chip by chip by capturing logic 
gates with schematic libraries, designers can describe the entire 
system at the behavioral level. This method of system design 
capture goes beyond functional specification. It can also include 
descriptions of external drive requirements, internal clock rates, 
electrical loading, and required signal arrival times. Today's new 
design methodology consists of mapping an HDL functional 
description into a technology library via synthesis. 

What follows describes how to synthesize an HDL design 
description into an Actel FPGA using the Synopsys Design 
Compiler, FPGA Compiler, or Design Analyzer. Each compiler 
optimizes and maps the HDL behavioral description into an Actel 
ACFM 1, ACT 2, or ACT 3 device family. After satisfactory 
optimization, the compiler can produce an EDIF 2 0 0 file 
containing Actel components. The Actel EDIF netlist program, 
cae2adl, converts the EDIF file to an Actel .adl netlist. After 
successful .adl generation, the Actel Action Logic™ System 
(ALS) software places and routes the design. After place and 
route, the ALS Timer, a static timing analysis tool, verifies the 
design's critical paths. Backannotation of actual routing delays to 
various simulators is also possible but not covered here. Figure 1 
describes the basic design flow. 

HDL Description 

ACT 1 
ACT 2 t-------,/I 

ACT 3 

Synopsys 
Design Compiler 

Actel Technology 
Libraries 

EDIFfile 

1---------------- 1 

I CA~A~ : 
I Program Actel I 
I Design I 
I Kit I 
I I 
I ALS I 
I Place and Route Programs I 
I 
~ _______ ~-------J 

Actel FPGA 

Figure 1. Actel/Synopsys Design Flow 

© 1993 Actel Corporation 

Software Requirements 

This design flow requires the following software tools from 
Synopsys and Actel to generate an Actel FPGA: 

• Synopsys VHDL Compiler or HDL Compiler for Verilog. 
Depending on the design, one of these tools is required to 
compile VHDL or Verilog into internal Synopsys database 
format. 

• Synopsys Design Compiler or FPGA Compiler or Design 
Analyzer. One of these tools is necessary to optimize the input 
from either the VHDL or HDL compiler. All three tools 
provide the same basic optimization and synthesis functions. 

• Actel Synopsys Library. Actel provides libraries for ACT 1, 
ACT 2, and ACT 3 device families. 

• Designer or Designer Advantage, Actel's FPGA software. 
Designer and Designer Advantage accept EDIF input from 
Synopsys. The software lays out the design into an Actel 
FPGA and generates a fuse file for programming a device. 

Design Flow 

The HDL Description 

The design process begins with an HDL description of the design. 
Partitioning the design into several blocks of HDL and optimizing 
them individually achieves the best results. Each block of the 
design should have its own timing constraints and attributes. A 
top level of hierarchy contains instantiations of each partition and 
each I/O and clock buffer. I/O and clock buffers may be omitted 
from the top-level hierarchy when using the Synopsys 3.0 design I 
compiler command "insert_pads". Insert_pads will automatically 
insert I/O and clock buffers in the design. 

Compile Design in Synopsys 

The Synopsys compiler reads the HDL description(s) of each 
design. Figure 2 depicts the steps that are performed in the 
Synopsys environment. As mentioned previously, you should set 
constraints and attributes individually for each partition. Some 
constraints and attributes to consider are max_delay, 
clock_period, max_fanout, and secarrival. Compile each block 
and verify the critical paths with the Synopsys Timing Analysis 
Tool. The delays in the Actel Library are based on the estimated 
post-route delays listed in the Actel FPGA Data Book and Design 
Guide. These timing checks are estimates only. The actual delay 
information is derived from place and route with ALS. Hence, 
you should verify the HDL code only with the Synopsys timing 
analysis tool. After each block is compiled, issue a donCtouch on 
each partition. The donctouch will stop the compiler from 
optimizing across hierarchical boundaries. Nevertheless, the top 
level must be compiled before an EDIF file can be written. As 
mentioned previously, the Synopsys v3.0 "insert_pads" command 
will insert I/O and clock buffers automatically into the top level. 

7-1 



This command is issued prior to optimizing the top-level HDL. If 
the version of Synopsys is not v3.0, I/Os and clocks must be 
manually instantiated in the HDL code. 

~-----------------I 

Design 
Compiler Read in HDL 

Needs 
Improvement 

Figure 2. The Synopsys Design Compiler 

CAUTION 

The Actellibraries have fanout limits attached to each cell. 
However, the Synopsys Design Compiler does not maintain 
these limits across hierarchical boundaries. Hence, be 
aware of how each partition interacts with other blocks. 
For example, a signal in partition A may be confined to the 
ACT 2 fanout limit of 16, but it may also be connected to 
several more macros outside of its partition. The ALS 
software will produce an error message if the fanout 
exceeds the limit of24. 

7-2 

The compiler writes an EDIF file for Actel translation once the 
entire design is compiled. Because EDIF has many "flavors," 
Actel requires specific switches in the Synopsys environment to 
produce Actel-compatible EDIF. Figure 3 lists the EDIF switches 
Actel requires. These switches are placed in the .synopsys file. 

edifout_netlist_only = true 
edifout_no_array = true 
edifout_power_amd _ground_representation cell 
edifout_ground_name = GND 
edifout_power_name = vee 
edifout_ground_pin_name = Y 
edifout_power_pin_name = Y 
edifout_pertty-print = true 

Figure 3. EDIF Switches in .Synopsys File 

EDIF to Actel Translation 

Synopsys produces an EDIF file named <design_name>.edn. The 
Actel program, cae2adl, included in the Actel Design Kit, 
Designer Advantage or Designer, converts the Synopsys EDIF 
into an Actel ADL netlist. The command is invoked from the 
command line in the directory where the EDIF file resides. The 
syntax for invoking cae2adl is 

cae2adl -edn2adl fam:<value> ednin:< edif file 
name> <design name> 

where 

fam 

edin 

is family, which will be ACT 1, ACT 2, or 
ACT 3 

is the file to be converted, which must have 
the name <design_name>.edn 

<design_name> is the name of the design, which must be 
the same name as the top level of hierarchy 
that was synthesized. 

Layout of an Actel Device 

Once an Actel .adl netlist is generated, the design is placed and 
routed into an Actel ACT I, ACT 2, or ACT 3 device via the Actel 
ALS tools, Designer Advantage or Designer. For more 
information regarding these tools, refer to individual Actel 
datasheets, Application notes, and User Guides. 



~c/@I! Actel's Cadence Interface 
Application 

Note 
• 

Actel provides a comprehensive package supporting the 
Cadence ™ CAE development tools. This package is the Actel's 
Cadence Design Kit and is available for Sun™ Workstation users. 
This kit provides a complete design environment from design 
capture to post-layout simulation. 

The design kit's flexibility allows for different design entry 
methods. One method is to describe the design with a Verilog 
behavioral or gate-level description and to use Synopsys synthesis 
tools to compile the Verilog HDL code and optimize it into an 
Actel FPGA. Another method is to use the Cadence Design 
FrameWork schematic capture tool, Composer, to draw the 
schematic for the design. A synthesized design may also be 
imported to Composer through the VERILOG IN translator from 
the Design FrameWork. 

Tool Requirements: 

• Sun 4 Workstation 

• Cadence Verilog XL simulator 

• Synopsys Design Analyzer, Design Compiler, or FPGA 
Compiler to provide the synthesis and mapping functions 

• Synopsys HDL Compiler 

Cadence Design FrameWork (only if schematic capture is 
used) 

• Actel Designer Advantage tools 

Verilog/Synopsys Design Flow 

The basic steps to create a design using the 
Verilog/Synopsys/ALS design flow, as illustrated in Figure 1, are 
as follows: 

1. The starting point for the design process is to describe the 
design in behavioral or gate level Verilog HDL language or 
both. Describing the design behaviorally allows the design to 
be technology independent. The behavioral description can be 
mapped into an Actel library using the Synopsys synthesis 
tools. 

© 1993 Actel Corporation 

2. The Verilog design file generated in the previous step is used 
to synthesize the design through the Design Analyzer provided 
by Synopsys. The appropriate library (ACTTM 1, ACT 2, or 
ACT 3) must be specified in the .synopsys file before reading 
the design into the Synopsys tools. After all constraints and 
optimization considerations have been obtained, a Verilog and 
EDIF 2 0 0 netlist must be generated from the Synopsys tools. 

3. The Verilog netlist generated from the Synopsys tools contains 
a gate-level description of the design and may be used to 
perform functional simulation using the Verilog simulator. 

4. The EDIF netlist generated by the Synopsys tools is used by 
the Actel EDIF reader program to translate the design from 
EDIF format to an Actel netlist. This program is called 
edn2adl and is included in the Designer Advantage software 
provided by Actel. 

5. After an Actel netlist is generated, the design is mapped into 
an Actel device. Designer Advantage software performs the 
necessary functions. These functions include automatic pin 
assignment, placement and routing, and fuse file generation 
for programming. 

6. The timing of the design may be checked using the Actel static 
timing Analyzer-the TIMER. This tool serves as a 
complement to the simulation process. 

7. In addition to timing analysis, post-layout simulation is 
performed to verify the design. The backannotation of delays 
may be done for specific environments: Commercial, 
Industrial, or Military. The Verilog simulator is consequently 
invoked using the intrinsic module and routing delays. This I 
allows the post-layout simulation to verify the design 
functionality within the device application environment. 

8. The device is ready to be programmed. 

7-3 



Cadence/Synopsys Design Environment Actel Synopsys 
Library 

Design Entry 

Actel Verilog 
Library 

Veri log Gate-Level or 
Behavioral Description 

Actel Netlist Creation 

I/O Assignment 
(optional) 

Design 
Layout 

Functional 
I---~ Simulation 

Static Timing 
Check 

Post-Layout 
Simulation 

Final 
Working 
Device 

Figure 1. Verilog/Synopsys Design Flow 

Composer Design Flow 

In the design flow shown in Figure 2, the Composer schematic 
capture tool within the Design Frame Work is used as the design 
entry tool. Also, the Verilog simulator in this flow is invoked 
through the Design Frame Work. 

The basic steps to create a design using Composer/ALS design 
flow, as illustrated in Figure 2, are as follows: 

1. This design path begins by capturing the design with 
Composer from the Design FrameWork environment and 
either ACT 1, ACT 2, or ACT 3 library. (Also, a synthesized 
design may be imported to Composer using the VERILOG IN 
translator from the Design Frame Work. In this case, a 
gate-level description of the design needs to be input to the 
VERILOG IN function.) Once the design is captured with 
Composer, a Verilog and an EDIF netlist must be generated 
from the Design Frame Work. 

7-4 

2. The Verilog netlist generated from the previous step contains a 
gate-level description of the design and may be used to 
perform simulation using the Verilog simulator. 

3. The EDIF netlist generated from the Design FrameWork is 
used by the Actel EDIF reader program to translate the design 
from EDIF format to an Actel netlist. This program is called 
edn2adl and is included in the Designer Advantage software 
provided by Actel. 

4. After an Actel netlist is generated, the design is mapped into 
an Actel device. Designer Advantage software performs the 
necessary functions. These functions include automatic pin 
assignment, placement and routing, and fuse file generation 
for programming. 

5. The timing of the design may be checked using the Actel static 
timing Analyzer-the TIMER. This tool serves as a 
complement to the simulation process. 



Actel's Cadence Interface 

6. In addition to timing analysis, post-layout simulation is 
performed to verify the design. The backannotation of delays 
may be done for specific environments: Commercial, 
Industrial, or Military. The Verilog simulator is consequently 
invoked using the intrinsic module and routing delays. This 

allows the post-layout simulation to verify the design 
functionality within the device application environment. 

7. The device is ready to be programmed. 

Design FrameWork Environment 

Design Entry Functional 
I----------_~ Simulation 

Post-Layout 
Simulation 

Actel 
Composer 

Library 

COMPOSER 
Schematic Capture 

Actel Netlist Creation 

Actel Action Logic™ System Environment 

Device 
Selection 

1/0 Assignment 
(optional) 

Design 
Layout 

Figure 2. Composer Design Flow 

Static Timing 
Check 

Final 
Working 
Device 

7-5 

I 



7-6 



Instantiating Actel's Application 
Note 

1/0 Buffers in Verilog HDL 

Introduction 

Actel supports design environments where Verilog HDL language 
is used to describe the design. This method of design entry allows 
for a high-level behavioral description of the design without any 
gate-level specifications. This HDL description, once compiled 
and synthesized with Synopsys and the Actel library, is mapped 
into an Actel field programmable gate array (FPGA). During the 
synthesis process, designs are mapped into Actel library macros, 
including the I/O buffers. Synopsys 3.0 provides this I/O mapping 
capability. Previous versions of Synopsys did not perform 
automatic I/O buffer instantiation. What follows briefly describes 
methods of Actel I/O buffer instantiation in a Verilog HDL 
design. 

Instantiating I/O Buffers 

With Synopsys 3.0, there is no need to instantiate I/O buffers in a 
gate-level format in the HDL design file. The exceptions to this 
rule are the tristate and bidirectional I/O buffers, which must be 
instantiated in a gate-level format in the HDL design file. To 
perform automatic I/O buffer mapping with the design_analyzer 
or the dc_shell command line, the following switches must be set 
prior to optimization: 

set_port is_pad all inputs() 
set port is pad all_outputs() 
set_pad_type all_inputs() 
set_pad_type all_outputs() 
set pad type -clock CLK 
insert_pads 

Note: CLK is an example signal name. 

These switches will cause the Synopsys tools to map each port 
specified to an Actel I/O input buffer. The output ports are 
mapped to I/O output buffers. If there is a clock function in the 
HDL design file, it will be mapped to a CLKBUF. After each 
switch is set, messages appear showing the corresponding switch 
function being implemented for the applicable I/O ports, as 
shown in the example below: 

Performing set port is pad on port 'inl'. 
Performing set=port-is=pad on port 'outl'. 
Performing set_pad_type on port 'inl'. 
Performing set_pad_type on port 'outl'. 

© 1993 Actel Corporation 

If a version of Synopsys released before version 3.0 is being used 
or if a tristate or bidirectional I/O function needs to be 
implemented, the I/O buffers must be instantiated in a gate-level 
format in a Verilog HDL design file. The syntax for gate-level 
Actel I/O buffer instantiation in a Veri log HDL design file is 
shown in the example below: 

module top(clear,clock,enable,outx); 
input clear, clock, enable; 
output [4:0] outx; 

reg [4:0] outx 0; 
reg clear i,clock i,enable_i; 

count UO (clear_i,clock i,enable i,outx 0); 

CLKBUF Ul (.PAD(clock), .Y(clock i)); 
INBUF U2 (.PAD(clear), .Y(clear_i)); 
INBUF U3 (.PAD(enable), .Y(enable i)); 
OBHS U4 (.D(outx 0[4]), .PAD(outx[4])); 
OBHS U5 (.D(outx=o[3]), .PAD(outx[3])); 
OBHS U6 (.D(outx_o[2]), .PAD(outx[2])); 
OBHS U7 (.D(outx_o[l]), .PAD(outx[l])); 
OBHS U8 (.D(outx_o[O]), .PAD(outx[O])); 
endmodule 

In this example, the module "top" represents the highest level of 
hierarchy that instantiates the main behavioral Verilog HDL 
design module "count". In addition, the I/O buffers are described 
in a gate-level format. 

The list of ports specified in the module "top" represent the Actel 
I/O pin names. These I/O pin names ( clear, clock, enable, outx) 
are connected to the PADs on the I/O buffers. The items on the 
list of ports specified in the count module have a one-to-one 
correspondence to the PAD pins. The syntax of the Verilog HDL 
code instantiating the Actel I/O buffers is shown in Figure 1. 

INBUF U2 (.PAD(clear), .Y(clear i»; 

t t ~ t t -
Input Instance Pin Net Pin 
buffer name separator name name 

U2 

PAD r'V7I "'" y 
----------.~~~--~.~------clear cleaU 

Figure 1. Actel I/O Buffer with 
Verilog HDL Code Instantiation 

7-7 

I 



7-8 



ALS EDIF Application 
Note 

Reader and Writer 

The diversity of CAE systems and tools without common 
standards has created many difficulties in transferring data among 
dissimilar design systems. The search for a solution to these 
problems led to the development of the Electronic Design 
Interchange Format (EDIF), a standard interchange format for 
electronic design data. The benefits of adopting EDIF are wide 
ranging. Among its many benefits, EDIF enables a wide choice of 
ASIC vendors by maintaining compatibility with a variety of 
device and CAE tools. The Actel system offers EDIF read and 
write capabilities to ensure compatibility with EDIF-based design 
tools. 

ALS EDIF Reader 

The Actel edn2adl EDIF reader translates an EDIF 2 0 0 netlist 
file into an ALS-compatible netlist file. The EDIF reader 
translates the EDIF source into an ADL netlist file. The program 
also creates an External Name Map (ENM) file that contains all 
original names renamed during translation from the original 
schematic. Properties in the EDIF source may be selectively 
imported into the ADL file. The usage statement for the edn2adl 
program follows: 

edn2adl [FAM: {ACT1 ACT2 ACT3} ] 

[ EDNIN : <EdifFile> ] 

[ EDNINfiavor : {generic wv mentor or} ] 

[ADL : <AdIFile> ] 

[AAL : <AaIFile> ] 

[ ENM : <EnmFile> ] 

[ EDNINcfg : <ConfigFile> ] 

[ LlBoverRide : T ] 

[ NObadOrigName : T ] 

[ GNDnetname : <GlobaIGroundNetName> ] 

[ VCCnetname : <GlobaIPowerNetName> ] 

[ GNDnetProp : <GroundNetProperty> [ : <value> ]] 

[ VCCnetProp : <PowerNetProperty> [ : <value> ]] 

[EDNINprops : <prop1 > [ + <prop2> ... ]] 

[ BUSformat : %s<%d> ] 

<design name> 

The program switches control the treatment and characteristics of 
the input and output files. What follows are detailed descriptions 
of some of these switches. 

© 1993 Actel Corporation 

EDNINfiavor : {generic wv mentor or} 

Some CAE vendors create EDIF output files with unique 
"flavors"-nonstandard formats that specify some of the 
properties or characteristics of the netlist. This switch selects one 
of several different flavors supported by Actel. edn2adl reads 
generic EDIF files as well as EDIF files with Viewlogic®, Mentor 
Graphics®, and OrCADTM flavors. 

ENM : <EnmFile> 

The edn2adl reader changes the names of certain objects such as 
cells, instances, nets, and ports. The ENM file records a mapping 
of the original names of such objects. These objects have the 
ENM property with the original name as its value. 

NObadOrigName : T 

If the EDIF source contains a rename clause, the default action 
will be to import the original name into ALS. For example, 

(rename SLASH_X "IX") 

will result in "IX" being used in the ADL file as long as the netlist 
program permits it, perhaps with warnings. To ensure that all 
names imported into ALS are legal, set NObadOrigName to the 
value "T". The EDIF name will be used if the original name is not 
legal in ALS. In this case, "SLASH_X" will be generated and an 
entry will be recorded in the ENM file that can be used to map 
this back to "IX". But if the rename clause was 

(rename BANG_X "!X") 

the original name "!X" would get imported since it is legal in 
ALS, and there will be no entry made in the ENM file. EDIF 
names beginning with a nonalphabetic character are escaped with 
a '&'. For instance, 

(rename &1234 "1234") 

will generate "1234" with or without any setting of the 
NObadOrigName variable. 

Since the name domains are mixed when this option is used, 
collisions may occur. Assuming the correctness of the EDIF 
netIist in such situations, a new unique name is generated and an 
entry made in the ENM file. So if there were two netlist objects 
with the following names in the same scope, 

(rename SLASH_X "IX") 

(rename SX "SLASH_X") 

the first object would get named "SLASH_X" since its original 
name is not legal in ALS. The original name of the second object 
is legal, but its name was used for the first one. So the second 
object is assigned a unique name (say "SLASH_X_") and this 
mapping is recorded in the ENM file. 

7-9 

I 



GNDnetname : <GlobaIGroundNetName> 
VCCnetname : <GlobaIPowerNetName> 

The value of these variables, if specified, indicates the global 
name of ground and power nets. For example in the case of 
Viewlogic, use 

GNDnetName:GND 

VCCnetName: VDD 

When a net with these names is encountered, both GLOBAL and 
POWER properties will be attached. The net names used to match 
the given values are controlled by the NObadOrigName variable 
in the presence of rename clauses. 

ALS EDIF Writer 

The adl2edn EDIF writer translates Actel netlists into EDIF 2 0 0 
format. The usage statement of adl2edn is shown below. The 
various options in this command allow for different traversal 
algorithms, power and ground representations, and use of a set of 
preferences from a configuration file. 

als -adl2edn [TYPE: {hier flat lib} 1 

7-10 

[ POWERstyle : {cell net port portVerbose} 1 
[ EDNOUTadl : <adUile> { + <adUile2> ... } 1 
[ EDNOUT : <ediUile> 1 
[ EDNOUTflavor : {generic wv synps} 1 
[ EDNOUTcfg : <config_file> 1 
[ EDNOUTprops : <proph { + <prop2> .... } 1 
[ REPLACEname : T 1 
[GNDnetname : <newName> 1 
[ VCCnetname : <newName> 1 
[GNDnetProps : <nameh = <vaI1> { + 
<name2> = <vaI2> ... } 1 
[VCCnetProps : <name1 > = <val1 > { + <name2> 
= <vaI2> ... } 1 
[ EDIFOUTcriticality : T 1 
[ NOportDirection : T 1 
<Design> 

As shown above, specify the name of design as the last argument 
following any of the optional switches. The program switches 
control the treatment and characteristics of the input and output 
files. What follows are detailed descriptions of some of these 
switches. 

TYPE: {hier flat lib} 

This switch determines the netlist type for the output EDIF file. 
The netlist can either be hierarchical or flattened. The lib type 
output file is a hierarchical netlist including definitions for Actel 
ADLIB library components. 

EDNOUTflavor : {generic wv synps} 

The adl2edn writer generates generic EDIF files as well as EDIF 
files that can be read by Viewlogic and Synopsys systems. By 
default, this switch selects the generic EDIF file. 

EDIFOUTcriticality: T 

Nets with the CRT property are translated to the EDIF criticality 
construct using the relations in Table 1. 

Table 1. Criticality Mapping 

CRT Value 

U or L 

M or H 

F 

EDIF Criticality 

-10 

10 

20 



Mentor Graphics V7 to 
VB.2 Design Conversion 

Application 
Brief 

Introduction 

Converting Mentor Graphics® designs is a topic of increasing 
concern as more V7 ASIC customers move to VS.2. To make the 
conversion, one uses the VS.2 conversion tools to migrate V7 
designs into the V8.2 world. 

What follows is a summary of the conversion of an Actel version 
2.11 (or earlier) design compatible with Mentor Graphics V7 to 
an Actel version 2.2 design compatible with Mentor Graphics 
VS.2. 

However, be aware that Actel's support for Mentor Graphic's V7 
was for the DN3000, DN3500, DN4000, and DN4500 platforms, 
and that Actel currently supports only HP700 and Sun 4 (or fully 
compatible) Workstations for Mentor Graphics V8.2. 

The conversion program from Mentor Graphics is compatible 
with DN workstations only. It reads the ALS 2.2 libraries and map 
files, which are first installed on the Sun workstation and copied 
to the DN workstation. After the conversion is completed on the 
DN workstation, the design must be transferred back to the Sun 
environment to recompile with ALS 2.2. 

Follow these steps to complete the process: 

1. Prepare the design for conversion. 

2. Remove the "dollar sign" from the V7 design. 

3. Convert the design. 

4. Update symbols and nets. 

Preparation 

Use the following procedure to prepare each design for 
conversion to Mentor Graphics V8: 

1. Install ALS 2.2 software on the Sun Workstation and add 
$ALSDIR, the Actel environment variable, to the path. More 
information on ALSDIR is found in the CAE Guide: 
Sun/Mentor Graphicsfor ALS 2.2, Chapter 3. 

2. Transfer the Actel Libraries and map files from the Sun to DN 
workstation and set $ALSDIR. The library files are in the 
$ALSDIR/lib/me/parts directory, and the map files are in the 
$ALSDIR/des_arch directory. 

3. Install Mentor Graphics V8 software on the DN and Sun 
workstations. Make sure that gen_lib is included in the 
software. 

4. On the DN workstation, set all paths and environment 
variables for V7 and V8. Refer to the CAE Guide: Sun/Mentor 
for ALS 2.2, Chapter 3. 

5. On the HP700 or Sun workstation, set all paths and 
environment variables to V8. Refer to the CAE Guide: 
Sun/Mentor Graphicsfor ALS 2.2, Chapter 3. 

© 1993 Actel Corporation 

6. Create the MGC_LOC_MAP file (Mentor Graphics Location 
Map file), which should include the correct soft and hard links 
to the working directories for both ALS 2.2 and Mentor 
Graphics V8. A sample copy of the MGC_LOC_MAP file is 
included in the CAE Guide: Sun/Mentor Graphicsfor ALS 2.2, 
Chapter 3. 

7. Verify that the V7 design is free of errors and that every block 
is expanded. Then delete extra versions of the design using 
"dlv ... I" unless otherwise desired. 

8. Verify that $MGC_ WD is set to 'pwd' (project working 
directory) . 

9. Check to see if the V7 design has references to the old Actel 
library. 

Remove Dollar Sign 

The "remove_dollar" program from Mentor Graphics removes 
dollar signs ($) from the Mentor V7 design files. The dollar sign 
($) has a special meaning for Location Map Variables in Mentor 
Graphics V8. The dollar sign references must be removed before 
converting from V7 to VS. the "remove_dollar -help" command 
gives more information on this, as does the Mentor Graphics 
document, "Transition Guide for V8 Capture Products." 

If the "remove_dollar" command is not available on your system, 
follow these steps: 

1. From one level above the design directory (not in the design 
directory), type the V7 command: 

$MGC _ HOMElunrlsdllistref <design_name>. 

References should be pointing to the old ALS library path. 

2. cd to the design directory and list references by typing: Is * . ref 

3. Remove files that have the following extension: * .erel_ *. 
These files refer to the flattened design. 

4. To remove directories associated with the flattened designs, 
type: rm -r * .erel_ *\$* .bak. At this stage, the directory should 
contain all ALS files in addition to the sheet and symbol files 
generated with Mentor Graphics V7. 

5. Make sure that $MGC_ WD is still set to 'pwd', otherwise 
type: setenv MGC _ WD 'pwd' 

6. To change references from the old Actel library to the new 
Actellibrary, type: 

chref <design_name> 'Iuserlalsllib/x' 'Iuserlals/liblmelparts' 

where x = alOOO for ACT 1 library or x = 1200 for ACT 2 
library. 

7. To verify whether the design is referencing to the new library, 
type: listref <design_name> 

7-11 

I 



Conversion 

After preparing the design and removing dollar signs from the 
design files, the conversion program can be executed. The 
conversion program is called cvCcomp. This VS program is 
located in $MGC_HOME/bin on the DN workstations only. To 
run the conversion program, type: 

cvt _comp <design_name> -preview -convert -nodelete -nomodel 
-map <map yath> 

Where: 

• preview checks the conversions needed and produces a list of 
parts within the design that are to be converted. 

• convert selects both symbols and schematics to be converted. 

• node/ete keeps V7 intact during the conversion process until 
conversion is complete. 

• nomodel means no behavioral models exist (i.e., VHDL). 

• map <map yath> specifies an ACT 1, ACT 2, or ACT 3 
family map file for referencing new VS symbols, and 
<map yath> =$ALSDIRldes _ archlactx _map .Jile. 

After a successful conversion, the program issues the following 
message: 

conversion complete, 0 errors. 

7-12 

Now the conversion is complete. During the conversion process, 
the convert command creates the VS schematic and symbol files 
with updated references. If the conversion fails, all files referring 
to the VS design must be deleted before running convert a second 
time. 

To verify that all references are updated, type the VS command: 

$MGC_HOMElbinllistre! <design_name> 

Updating Symbols and Nets 
(V7.X to VS.X and VS.1 to V8.2) 

There is some cleanup necessary of the VS schematics due to the 
changes in the basepoints of the symbols from V7 to VS. All Actel 
symbols must be selected individually or in groups and then 
updated to properly route the schematic nets. To update the 
symbols, invoke Design Architect (DA) with the design and from 
the popup menu, select: 

edit> select> area> instance 
edit> update> instance 

Now the nets are connected to the symbols properly but are not 
straight. The nets must be moved manually to make them 
orthogonal. The basepoint is not the same for all parts. 



Actel ChipEdit 
Application 

Note 

One of the advantages of Actel's FPGA design approach is the 
automation of each development step. This "push button" 
approach used by Actel's development software tools is best 
exemplified by the automatic Layout program. The Layout 
program performs automatic pin assignment and placement and 
routing. This approach saves hours of development time, shortens 
the learning periods, and avoids tedious manual placement and 
routing sessions. 

However, in applications where extracting maximum 
performance from the device for certain critical paths is 
important, manual pin assignment and module placement may be 
the better approach. Actel provides ChipEdit, a graphical tool for 
manual pin assignment and module placement, to provide a 
complete solution for these applications. 

Using the graphical user interface provided by ChipEdit, you can 
assign or move pins or logic modules quickly and safely from the 
Designer Advantage environment. Figure I shows the ChipEdit 
graphical user interface. 

Menu Bar 

Graphic 
Display 

Area 

The user interface includes a Graphical Display Area, a Message 
Bar, a Status Bar, an Object List Box, and a Context Window. 
Each of these features is now described briefly. 

Graphical Display Area 

The graphical display area shows the physical layout of the 
design in an Actel device (Figure 2). All modules are identified by 
both color and symbol. Different Actel families have different 
modules available. 

A module that contains a macro is filled with the color that 
identifies the module type, while a centered black symbol 
identifies the macro type. When a module is empty and available 
for use, it is unfilled and its symbol appears in the color that 
identifies the module type. If a macro takes up more than one 
module, a solid line appears between the two modules containing 
the macro. 

Message Bar 

The message bar displays one-line help messages. 

Object 
List Box 

Selected 
Macro 

Graphic 
View of 
Macro 

Context 
Window 

Figure 1. ChipEdit Window 

© 1993 Actel Corporation 
7-13 

I 



Menu Bar 

Graphical 
Display 

Area 

Unfilled 
Module 

Connected 
Modules 

Filled 
Module 

Figure 2. Graphical Display Area 

Type Macro 
Module/Macro Instance Name 

Library/Macro 
Type 

Row Column 

Figure 3. Status Bar 

Status Bar 

If the pointer is located over a module, the status bar displays 
information about the module, such as its row and column. If the 
module is not filled, only the module's type will be displayed in 
the status bar. If the module is filled, the status bar provides 
information about the module type and macro placed inside the 
module. Figure 3 displays the status bar. 

Object List Box 

The Object List Box displays objects by their text names. Macros 
may be displayed by their instance names, I/O macros by their net 
names, and I/O modules by their pin names. The display may also 
be filtered. 

While there is an Object List Box inside the ChipEdit window, 
multiple Object List windows can be opened outside the Chip Edit 
window environment. 

Context Window 

Located in the bottom right comer of the ChipEdit window, the 
Context window shows the location of the current zoom area 
within the chip design (see Figure 4). 

7-14 

In the Context window, the entire chip design is represented by a 
large rectangle, while the current position within the entire design 
is represented by a smaller rectangle called the "you are here" 
box. The view can be zoomed into a specific area of the design to 
view and edit macros, yet the position within the entire chip 
design can be located by referring to the Context window. 

When the ChipEdit window is first opened, the Context window 
shows a one-to-one relationship. After zooming into a specific 
area of the chip and manually placing modules, the position 
within the overall design may be located by referring to the "you 
are here" box in the Context window. The position on the chip 
may also be altered by manipulating this "you are here" box. 

Moving and Placing Macros 

Macros can be moved or placed, individually or as a group, from 
the Graphical Display Area or the Object List Box. From the 
Graphical Display Area, simply by using the mouse, you can 
point to any macro and drag the macro to its new position. From 
the Object List Box, you can select any macro and move it to its 
destination by using the Edit menu. You can also have multiple 
ChipEdit windows open to view different perspectives of the 



same design and to move a macro, or group of macros, from one 
ChipEdit window to another. 

ChipEdit is a complement to the ALS software and its automatic 
Layout programs. It not only provides a graphical view of the 

Graphical 
Display Area 

Actel ChipEdit 

Actel chip but also allows the editing of the pins and placement of 
logic modules. For applications where certain critical paths must 
be optimized for speed, ChipEdit is the ideal solution. 

Entire Chip 
Design 

"You Are 
Here" Box 

Figure 4. Context Window 

7-15 

I 



7-16 



TM 
ACTmap 
Design Flow 

d!Mc/@1! 
• 

Introduction 

Since the introduction of the Programmable Logic Device (PLD) 
in the late 1970s, logic designers have been presented with a 
series of different design methodologies. Designs may be 
described in Boolean equation or state machine format, then 
compiled to generate fuse files for device programming. Boolean 
equations, written in the form of sum of products, map readily 
into the low-complexity, AND/OR array of PLDs. PLD synthesis 
tools are readily available to support these low-density devices. 

Field Programmable Gate Arrays (FPGAs) are high-density 
programmable logic devices with a gate array-like architecture. 
Actel FPGAs have a flexible architecture that allows high gate 
utilization with automatic place and route for fast time-to-market. 
Experienced PLD designers who wish to use FPGAs while 
maintaining a PLD design methodology are supported by FPGA 
synthesis tools. The most important requirement of the FPGA 
synthesis tools is the efficient selection of architecture-specific 
macros from a general logic description. The need for such 
synthesis tools is critical to device performance and utilization. 
This application brief describes the ACTmap logic synthesis tools 
available from Actel. 

Scope 

ACTmap software tools allow the quick and easy implementation 
of logic in Actel FPGAs using popular PLD design tools. They 
accept behavioral inputs such as PALASM® and ABEUM PLD 
description languages. It also accepts EDIF format descriptions 
generated from synthesis tools. Any combination of these 
previously mentioned input formats as well as library-based 
schematics may be used to describe designs. ACTmap optimizes 
designs for speed or area based on the design constraints. Once 
the design is optimized, its netlist is processed by the Action 
Logic® System (ALS) for layout. The design may be verified 
with post-layout delays before device programming. Figure 1 
shows how ACTmap fits into the design flow. 

© 1993 Actel Corporation 

CAE Environment 

CAE Design Tools 

generate netlist 

Layout/Timing 

Application 
Note 

mapping 

ALS 2.2 

Figure 1. Scope of ACTmap 

Design Flow 

Actel FPGAs may be derived directly from PALASM-format 
source files or from ABEUM, CUPUM, or LOG/lCTM -based 
descriptions. The design can be a combination of textual 
descriptions and schematics. Figure 2 shows a top-level design 
that combines PALASM-format descriptions with schematics. 
ACTmap transforms the equations or netlists or both into an 
optimized Actel-formatted design file. ACTmap uses an Actel­
specific algorithm to find the best mapping for the particular ACT 
family device. The design can be mapped as individual blocks or 
as a complete design. ACTmap also accepts EDIF-format files 
generated from synthesis tools. Designs may be optimized to 
implement the highest performance or smallest area. 
Actel-specific, multiplexer-based algorithms map the initial 
design to fit the logic module architecture for optimum results. 
The final implementation is brought into ALS for layout and 
device programming. Figure 3 shows the design flow using 
ACTmap and ALS to configure Actel FPGAs. 

7·17 

I 



7-18 

o 
CK----------------------i) o ....... ------ Optimize a nested 

schematic with ACTmap, 
then merge it with the 
rest of your design. 

x 

R 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

BLOCK1 

\\ BLOCK1 

CK 

X 

o I 

I 
I 

I 

I 

I 

I 
I 

I BLOCK2 

00 

Merge Actel symbols 
and hierarchical 
schematics with blocks, 
selecting the best entry 
mode for each portion 
of your design. 

" ,F-------« 
~_4_4~------------~ A I----~'", V-----«-----' 

e---------------~ R 

, 
\ 

CHIP BLOCK2 USER , 
\ 

" CKAR 00 01 

, 
\ 

\ 

ACTmap supports all', -----.... ~ 
PALASM2 operators \, \ 
and syntax for , 
painless conversion \ 

EOUATIONS 
00: = A· 100 
01: = A + 00 

OO.RSTF = R 
01.RSTF = R 

of your existing files. '-/ 
ACTmap supports 
standard PLD 
types plus a user­
definable generic. 

A PALASM2 source file 
can be created with a 
text editor or generated 
from ABEL, CUPL, or 
LOG/IC. 

Figure 2. Top-Level Design 



ACTmapTM Design Flow 

I 

Design Description 
Synthesis CAE Tools 

, 
f'...._/ 

PALASM 

" , 
ACT map 

-'"-

" '-... ..-/ 

... 

Netlist Optimization 
CAE Tools 

1 

ADL! 
EDIF 

-

.. --

.. 

.. ... 

Optimized Netlist 
Opt/Edo 

-
-,..-

r-...... ..-/ 

ADL! 
EDIF 

,Ir , -

ALS 
Delay Backannotation 

--

Schematic Entry 
CAE Tools 

Sch. Generation 

Netlist to Sim. DB 

" 

CAE Simulation 
Tools 

... 

To ensure backannotation, some CAE system requires the 
netlist be generated by the CAE tools. 

Figure 3. Design Flow 

, 

7-19 

I 



7-20 



---Dtc/@!I 
• 

Selecting and Modifying 
I/O Assignments 

Application 
Note 

Introduction 

Effectively selecting I/O assignments is critical to the success of 
an Actel field programmable gate array (FPGA) design. Although 
manual I/O assignment is optional in the design flow for the 
Action Logic® System (ALS), the importance of obtaining an 
effective assignment to the overall flow should not be 
underestimated. The placement and routing of a design may fail if 
the pin placements are not optimized for the design and ACT 
family device. Its overall perfonnance is largely detennined by 
the I/O selections as well. Poorly placed designs often require 
longer routing tracks, which slow the maximum operational 
frequency. 

System designers know that I/O assignments have a great impact 
on schedules and deadlines as well. The I/O assignments for all 
ASICs must be chosen before printed circuit board (PCB) layouts 
can be completed. Aggressive schedules may require that the 
PCBs are designed and ordered before the electronic circuits have 
been tested and debugged. Completing the I/O assignments and 
the PCB layout becomes one of the gating items for on-time 
system delivery. 

The ACT FPGA design flow includes several different methods of 
selecting I/O placements. The flexibility of ALS enables many 
design methods to lead to successfully completed designs. One of 
its benefits is that there is no exact "right" or "wrong" way to use 
the system. However, there are recommended methods that will 
increase the probability of getting optimal I/O assignments and 
fast, routable designs. 

I/O Assignment Methods 

ALS allows I/O assignments to be chosen after a design has been 
converted into an Actel netlist and its device type and family have 
been selected. There are three options available for assigning I/Os 
at this point. Each offers benefits that may apply to different 
design methodologies and system requirements. The I/O. 
assignment options and their benefits are: 

Automatic Assignment 

No manual assignment is made for an I/O signal. ALS 
automatically selects the best pin location depending on 
characteristics of the design such as criticality assignments, 
device type and family, and overall design topology. 

Manual, Fixed Pin Assignment 

Pin numbers are manually assigned to I/O signals and are fixed in 
place. ALS will not move I/O assignments that are fixed. Manual, 
fixed assignments allow the maximum control over the design 
flow since the I/O assignments remain fixed regardless of design 
changes. 

© 1993 Actei Corporation 

Manual, Unfixed Pin Assignment 

Pin numbers are manually assigned to I/O signals but are not 
fixed to the I/O location. Since they are not fixed, the I/O 
assignments are used by ALS as suggested locations-they may 
be moved to other locations by the software. This method allows 
some input to the desired I/O configuration but gives ALS the 
flexibility to optimize the configuration further. 

Any combination of these three methods may be used for the I/O 
signals of a design. Designs may have all pins manually assigned 
or automatically assigned, or have a percentage of each type. 
How these methods are used depends on the requirements of the 
each project. 

Suggested Design Flow 

Since the three methods of detennining I/O assignments for an 
ACT family FPGA may be used in any combination, many 
methods are commonly used to create quality pin placements. 
The best method for a design depends on many factors such as 
perfonnance specifications, design changes, and scheduling 
constraints. 

Generally, the most effective method for pin assignment is to use 
automatic assignment for 100% of the I/O signals. ALS has been 
designed to optimize the placement and routing especially if it is 
given the flexibility to automatically assign all of the I/O 
placements. ALS is able to select, evaluate, and optimize many 
different I/O configurations specifically to the device architecture. 
If as few as 10% of the pin assignments are inefficiently assigned 
manually, the quality of the placement and routing may be 
compromised. Manual assignments should be minimized as much I 
as possible. To obtain a 100% automatic assignment, skip the Pin 
Edit program in ALS and go directly to the Layout programs. The 
final pin assignments are stored in the ASCII file, 
<design name>.pin, located in the design directory. 

If some of the I/Os require manual selection, use unfixed 
assignments as much as possible. This allows ALS the flexibility 
to modify some of the assignments as needed. In general, 
maintain the percentage of manual assignments, fixed and 
unfixed, to as Iowa level as possible. 

The Most Effective Fast Design Flow 

I/O assignment does not have to be a gating item to the overall 
system schedule. A near-optimal automatic assignment may be 
obtained from ALS before the circuit design is completely tested 
and debugged. As long as the number and function of the I/O 
signals are finalized, ALS can be used to assign all the pins before 
the details of the FPGA design are complete. Use the following 

7-21 



method to get a quick start on the PCB layout and speed 
schedules for fast turnarounds: 

1. Begin by entering the design as completely as possible, 
ignoring small details that may need to be modified later. It is 
important to include all the major functions that will be in the 
FPGA circuit. The objective is to obtain a netlist that 
approximates the final design topology. The circuit does not 
need to be functionally correct at this point but must have the 
same major functional blocks (adders, counters, and so on) 
and approximately the same number of logic modules as the 
final design. 

2. Detennine the exact number of input, output, and bidirectional 
pins for the FPGA and include them in the netlist. Select the 
appropriate ACTTM family device for performance level, logic 
module capacity, and I/O count. 

3. Skip ALS's Pin Edit step. 

4. Run the Layout programs in ALS. Ignore any warnings from 
the Validate program that are due to the unfinished state of the 
design. Run the Layout programs with no clock balancing and 
incremental placement turned off. 

The Layout programs will create a 100% automatic I/O 
assignment specific to the design topology. This is done before all 
the functional bugs have been discovered and resolved. Minor 
functional changes that may be made later will have little effect 
on the quality and effectiveness of the pin placements. The PCB 
layout can be completed with the confidence that these pin 
assignments will require no modifications in the future. 

After the design is complete, use the Pin Edit program to read the 
automatic I/O assignments and fix them permanently. Once they 
have been fixed, ALS will always use the pin placements initially 
created by the Layout programs. The Layout programs will not 
modify any placements that have been fixed. 

This method is of value even if the I/Os will be manually 
assigned. The results of 100% automatic assignment by the 
Layout programs can be used as a template for an effective 
manual I/O assignment. It is easy to use the existing placements 
as a guide and make small modifications as required. 

Manual Assignments 

If any or all of the I/O assignments must be determined manually, 
a broader knowledge of Actel FPGA architecture is required. This 
databook contains pertinent information regarding different 
architectures of the ACT families. The structure of the logic 
modules and I/O modules, routing tracks, antifuses, and other 
architectural details are covered in detail. With this source of 
information, it is possible to manually assign I/O signals with the 
specific details of the device in mind. 

During the process of assigning I/Os for the device, keep these 
guidelines in mind to increase routability and performance: 

1. Try to force signal paths, especially large data buses, to flow 
horizontally across the die since there are more horizontal than 
vertical routing resources. In most cases, a large data bus 
requires many interconnections as it traverses the circuit. The 

7-22 

greater number of horizontal routing tracks handles these 
interconnections to reduce routing congestion. The horizontal 
and vertical orientation of the die is the same as shown in the 
package pin assignment and mechanical detail drawings in the 
Actel FPGA Data Book and Design Guide. 

2. Count the number of levels of logic between I/Os to determine 
placement. For example, I/Os separated by one gate should be 
placed closer than I/Os separated by a long shift register. In 
general, the architecture of ACT devices allows signals to be 
routed across two vertical rows and over one-third of the 
columns of the device without using a long routing track. For 
an A1225 device with 13 rows and 46 columns, two I/O 
signals should not be placed on opposite sides of the device 
unless there are at least two horizontal or three vertical levels 
of logic between them. 

3. Use the top and bottom I/O pins for slow or local signals or 
both. The fact that there are fewer vertical routing resources 
will not harm the performance of these signals. 

4. Use the global clock buffers. Each of these pins is connected 
to a dedicated, low-slew distribution network optimized for 
high fanout signals. 

5. Refer to the information in the PLI (PLacement Information) 
and RTI (RouTing Information) files as feedback for I/O 
assignment iterations. Each of these files indicates potential 
problem areas of the design that may be due to the I/O 
assignment. The PLI and RTI files report specific problems 
with the placement and routing of the device respectively. 
Detennine from this information whether reassigning some 
I/Os will remove these problems. 

Modifying Existing I/O Assignments 

Unfortunately, it is not always possible to allow ALS to assign 
most or all of the I/O placements. In addition, the placements may 
have to be finalized before optimization by ALS for design 
routability and perfonnance considerations. In any case, a variety 
of factors may result in a nonoptimal I/O assignment being 
created and used for a design. This may cause the initial 
placement and routing to fail or degrade the performance level 
unacceptably. If this occurs, there are several actions that can 
improve the placement, routing, and performance of the design. 

Recognizing Poor I/O placements 

It is important to recognize when placement, routing, or timing 
problems of an Actel FPGA design are caused by poor I/O 
assignments. ALS will indicate potential problem areas in several 
different ways. For example, the <design_name>.VLD file, 
created by the validate program, contains several messages and 
statistics that may indicate I/O placement problems. If more than 
33% of the I/O pin assignments are fixed, a warning message is 
issued during the routability check. The same routability check 
will fail if a critical path (M or F) must use a long routing track. 

The outputs of the place and route programs are the 
<design_name>.PLI and <design_name>.RTI files respectively. 
Both files contain information to help understand the cause of 



possible placement and routing problems. The PLI file lists every 
net that requires the use of a long track for routing. There are a 
limited number of long vertical tracks (LVTs) and long horizontal 
tracks (LHTs) in each device. If an input or output pin is directly 
connected to a long track, the I/O placement can probably be 
improved. 

Improving Routability and Performance 

If the I/O placements for a design are fixed and causing 
placement, routing, or performance problems, there are several 
ways to modify the design and its implementation into an Actel 
FPGA. Try the following steps to increase the routability and 
performance of the design: 

• Use criticality assignments but don't exceed the maximum 
number of critical nets for the device. Determine the speed 
critical and uncritical paths in the design and specify them in 
the criticality file, <design_name>.CRT. The criticality 
assignments help the place and route software to make critical 
nets faster and improve the overall performance. Be careful 
not to exceed the maximum number of critical nets for each 
device as specified in the ALS User's Guide. 

• Do not use clock balancing if possible. If there are place and 
route problems, clock balancing may reduce routability and 
actually increase delay times. Reduce the clock balancing 
strength to the lowest level that will satisfy the clock skew 
requirements of the design. 

• Reduce high fanout nets between I/O modules. Routing 
congestion between I/Os is especially critical to the placement 
and routing success. For low critical nets especially, use 
buffers to reduce fanout to a few loads. 

• Watch the overall fanout statistics of the design. The validate 
program reports the average fanout for the design in the VLD 
file. A high average fanout (greater than 3.5 loads) will usually 
be harder to place and route. If possible, reduce the overall 
fanout by buffering high fanout nets. In addition, reduce the 
use of high fan-in macros to less than 25% of the total logic 
module count. High fan-in macros such as the DFM8A and 
CM8 have up to eight inputs per module. Using a large 
percentage of these macros may cause unsolvable routing 
congestion problems. 

Selecting and Modifying 1/0 Assignments 

• Be careful of designs with high I/O utilization (greater than 
80%) and low logic module utilization (less than 50%). Since 
most of the I/O modules but a low percentage of the logic 
modules are used, many long routing tracks may be required. 
This will deteriorate the routability and performance of the 
design. Remember that high logic module utilizations (greater 
than 90% and up to 100%) are common, so increase the 
utilization percentage accordingly or change to a smaller 
device. 

• Check the PLI file for the list of long routing tracks and buffer 
them appropriately if they are high fanout nets. 

Socketing Option 

In a few cases, the previous suggestions may not solve problems 
caused by a poor I/O placement. A hardware solution may be 
necessary. There are commercially available IC sockets that re­
map the pinout of the device to any chosen configuration. If such 
a socket is available, ALS may be used to reselect the I/O 
placements for the design without any constraints. The 
probability of a successful place and route with higher 
performance can be greatly increased this way. 

Summary 

The most effective design methodology for Actel FPGAs includes 
100% automatic I/O assignment by ALS. The software is 
designed to optimize I/O assignments especially if it is given a 
large degree of freedom from manually fixed placements. If 
manual assignments are necessary, a broader background of the 
FPGA architecture is necessary to achieve similar results. If 
manual selections are necessary, use the suggestions from this 
application note to select the placements as well as possible. If the 
placements of the I/Os are fixed and they appear to be hampering 
the routability and performance of the design, there are still 
several modifications that may be made that can improve the I 
probability for success. 

7-23 



7-24 



Critical Path Analysis 
Using the Timer 

Application 
Note 

Introduction 

The critical paths of Actel designs detennine the maximum 
perfonnance of the device in a system. These critical paths must 
meet system specifications to function properly. A worst-case 
timing analysis of the critical paths ensures that the device will 
work reliably in production. Critical paths are design dependent; 
they can be combinational paths from input pads to output pads, 
sequential paths from flip-flops to other flip-flops, clock to output 
pad paths, setup times and hold times of the field programmable 
gate array (FPGA) relative to other devices on board, or any 
combination of these paths. 

The Actel Timer is a static timing analysis tool used to verify 
device timing. The Timer is used interactively or with command 
files to automate the timing analysis process. The Timer generates 
delay reports, including derating factors, for different operating 
conditions due to variations in temperature, voltage, and device 
process. Voltage and temperature ranges for commercial, 
industrial, and military devices are included in the menu 
selection. 

This applications brief describes how to analyze critical path 
delays of Actel's FPGAs using the Actel Timer. It illustrates 
strategies to detennine the propagation delays of combinational 
and sequential paths. It also explains the concept of net delays 
and how the Actel Timer reports them. 

Net Delays in the Actel Timer 

The Timer reports propagation delays between a Startset and 
Endset of pins in the design. The Startset contains the start pins 
and the Endset contains the end pins of the paths under 
investigation. The Timer lists propagation delays from the input 
pins of a macro in the Startset to the input pins of a macro in the 
Endset, including the net delays. These net delays are calculated 
from layout and fanout infonnation. Keep in mind that the Timer 
reports timing from input pins to input pins so that all net delays 
are automatically included. Figure I shows that delay DELl 

DELO DEL1 

UO U1 

y 

includes the delays of the gate Ul as well as the net delay arriving 
at gate U2. Also note that the Timer can reference the output 
(PAD) pin of output buffers to include the propagation delay to 
the actual package pin. The output pins of output buffers are the 
only non-input pins that the Timer can reference for timing 
analysis. DEL3 in Figure 1 shows the propagation delay from the 
D pin to the pad pin of the output buffer 

Combinational Paths 

As mentioned earlier, critical paths are design dependent. They 
can consist strictly of combinational logic. In many cases, the 
combinational paths are paths from input pads to output pads. The 
cumulative propagation delays of all elements in the critical paths 
can be detennined using the Timer. The following examples of 
combinational paths do not involve asynchronous feedback. 

Internal Combinational Paths 

To analyze this type of critical path, first set up a Startset and an 
Endset. The Startset contains all input pins that will initiate the 
changes through the critical paths. The Endset contains all input 
pins of macros at the end of the combinational paths. Based on 
the specified Startset and Endset, the Timer will report delays in 
all paths between these two sets. 

Figure 2 shows examples of internal combinational paths. In this 
circuit, A and B pins of gate UO as well as A and B pins of gate 
Ul are specified to be start pins. The D pins of U5 and U6 are 
specified to be end pins. The Timer reports delays in all paths 
between the start pins and end pins. The delay breakdown of each 
path and the fanout of each element in the path are also reported. 

Input Pad to Output Pad Combinational Paths 

Combinational paths from input pads to output pads are special 
paths where the start pins are input pads and end pins are output 
pads (see Figure 3). As previously stated, the output pins of 
output buffers are the only non-input pins that may be specified in 
the Timer. The Timer references the PAD pins of the input buffers 
as start pins and the PAD pins of the output buffers as end pins. 

DEL2 _I'" DEL3 _I 

U2 U3 

Figure 1. Net Delays 

© 1993 Actel Corporation 
7-25 

I 



An example of this type of path is a decoder, where inputs of the 
decoder come on chip via input pads and outputs of the decoder 
exit via output pads. The Timer automatically puts all input pads 
in a set named Inpad and it also puts all output pads in a set 
named Outpad. Use Inpad and Outpad as the current working sets 
to analyze the timing of these paths. Use the breakdown in delay 
elements that make up the path for delay optimization. The fanout 
of each element and the type of macro is listed. 

Sequential Paths 

The design's critical paths can also consist of sequential paths. 
Sequential paths are paths that include sequential elements such 
as flip-flops and transparent latches. Sequential paths must be 
broken into segments for timing analysis. They are input pads to 
clocked macros, clocked macros to clocked macros, and clock 
pads to output pads. In most synchronous designs, one of these 
three segments will determine the maximum operating frequency 
of the device. 

I ... DEL1 DEL2 

I'" 
DEL4 

Input Pads to Clocked Macros Paths 

The input pads to clocked macros paths are data signals that come 
onchip via the Actel FPGA input pads, propagate through the 
logic, and arrive at the gated inputs of other clocked macros. 
These data signals have to be stable some period of time before 
the clock edge arrives at the clocked macros. This period of time 
is the intrinsic setup time of the clocked macros, which is 
specified in the data sheet. The Timer presents these data paths, 
including the setup time of the clocked macros, in the longest to 
shortest order. Figure 4 shows several typical data paths. As 
previously stated, the Timer includes all input pads in a set named 
Inpad and all gated inputs of clock macros (all inputs of flip-flops 
or transparent latches except clock inputs) are included in a set 
named Gated. Simply change the current working Startset and 
Endset to be Inpad and Gated respectively and list the 
propagation delays for these paths. The clocked macros' setup 
times are automatically included in these paths. 

DEL3 

~I'" 
DEL5 ~I 

Figure 2. Internal Combinational Paths 

I'" 
DEL1 

~I'" 
DEL2 

~I'" 
DEL3 

~I'" 
DEL4 ~I 

y D 

y 

DEL5 DEL6 ~I'" DEL? ~I 

Figure 3. Pad to Pad Combinational Paths 

7-26 



Critical Path Analysis Using the Timer 

DEl1 DEl2 

y 
)-----------1D 01----

elK 

Figure 4. Input Pads to Clocked Macros Paths 

Clocked Macro to Clocked Macro Paths 

The paths between clocked macros and clocked macros are 
sometimes the design's critical paths (see Figure 5). These paths 
begin at the clocked inputs (CLK or G) of the clocked macros and 
terminate at the gated inputs of the clocked macros. In cases like 
counters or state machines, these paths actually feed from the 
outputs back to the inputs after propagating through several levels 
of logic. Similarly, the Timer includes the setup times of the 
clocked macros so that the maximum frequency can be easily 
determined. 

The Timer facilitates the timing analysis of these paths by saving 
all clock pins in a set named Clock and saving all gated pins in a 
set named Gated. In this example, all CLK pins are saved in the 
Startset Clock and all data and enable pins of sequential-type 
macros (flip-flops and latches) are saved in the Endset Gated. Use 
these sets to investigate all paths between clocked macros easily. 
Again, the clocked macro's setup times are included in the report. 

DEl1 DEl2 

D 0 1-------; 

elK 

Clock Pad to Output Pads Paths 

The clock pad to output pads paths are slightly different in the 
source and destinations. These paths begin at the external clock 
pin and terminate at the output pads. These paths go through the 
clock pad, pass through the clock macros, and exit the device via 
the output pads. In many cases where the output pads are parts of 
a bus, there will be a small output skew between these output 
pads. Therefore, use the slowest output pad as the limiting path. 
To analyze the clock pad to output pads paths, create a Startset 
containing the clock pad and use the default set Gated as the 
Endset. Figure 6 shows some paths starting at the clock pad and 
ending at the output pads. The Gated set is automatically loaded 
by the Timer as the working Endset. For these paths, simply list 
all paths between the sets and take the slowest path into 
consideration. In many pipe lined designs, the clock pad to output 
pads paths tum out to be the longest paths and are the design's 
critical paths. 

DEl3 

>-------ID 01----

elK 

Figure 5. Clocked Macros to Clocked Macros Paths 

7-27 

I 



DEl1 DEl2 _I'" DEl3 -'1 

Q I---------l 

elK 

Figure 6. Clock Pad to Output Pads Paths 

elK elK elK 

I'" 
DEl1 

-'1 

I'" 
DEl2 

-'1 

I'" 
DEl3 

-'1 

Figure 7. Skew Time 

Setup and hold times and skew time are also important. Be aware 
of these characteristics to ensure that the device works reliably in 
production. The device setup time is the time that data signals 
must be stable before the clock transition. The device hold time is 
the time that data signals must be valid until after the clock 
transition. It is important to understand that the device setup and 
hold times are not the flip-flop setup and hold times given in the 
datasheet. The device setup and hold times are design dependent, 
and they must be characterized to guarantee that the Actel FPGA 
will work in sync with other devices on board. 

Device Setup and Hold Time 

The device setup time can be easily determined by comparing the 
input pads to gated macros data paths with the clock pad delay. 
The difference in propagation delays between these two paths is 
the device setup time. It is possible that this delay is a negative 
number. The setup time is the minimum required time that data 
have to be stable before the transition of the clock signal; in this 
way, data can be stable long before the transition of the clock 

7-28 

signal. The hold time can be determined similarly by comparing 
the data paths with the clock pad delay. 

Skew Time 

Skew time is important in synchronous designs. The skew time is 
the difference in arrival time of clock signals at the clock inputs of 
commonly clocked macros. Ideally, the skew time must be as 
close to 0 ns as possible. A good example is a serial shift register. 
If the clock skew is such that the clock edge arrives late, wrong 
data will be shifted in the register. The skew time is especially 
important in designs using a normal input pad for clock purposes. 
A normal input pad is not buffered internally like a clock pad. The 
input pad used for a clock signal may introduce additional delays 
tn the paths and result in a larger skew time. Using the input pad 
for clock signals may result in a skew time of more than 2.5 ns, 
which is the maximum skew time of the clock network. This skew 
time must be added to the critical path timing to ensure that the 
design will work reliably. 



The skew time may be detennined by comparing the longest 
clock path to the shortest clock path. The difference in delay of 
these two paths is the skew time. List all paths between the clock 
pad and all clock inputs of clocked macros and calculate the 
difference between the delays to the clock inputs of adjacent 
clocked macros. This skew time should be added to the overall 
design's critical path for the result to be valid. 

Critical Path Analysis Using the Timer 

7·29 

I 



7-30 



Multichip Post-Layout Application 
Note 

Simulation Using ALS and Viewsim 

System designs are typically divided into functional modules that 
are implemented by several Actel devices. To check the 
functionality of the system, it is very important to simulate all of 
the Actel devices together. The Actel Action Logic® System 
(ALS) is capable of multichip simulation with many common 
simulators. Here is an example of multichip post-layout 
simulation using Workview®Niewsim® 4.1 with ALS 2.2 on 
aPe. 

This example requires the use of the Workview-Viewfile utility to 
set the project directory and to switch to different projects. The 
top-level system design schematic is mltchip, which contains two 
components, chip! and chip2. These components represent two 
different Actel devices in the system. There are three sub­
directories, chipl, chip2, and mltchip, in the c:\designs directory. 
Each of these subdirectories has sch, sym, and wir sub­
directories. The chip 1 and chip2 directories must contain all ALS 
generated design files required for post-layout, backannotated 
timing simulation. Figure 1 represents the directory structure for 
this design. Note that the names written in normal text represent 
file names and those in bold text represent directory names. This 
example contains only single-sheet schematics for each design. 
Similar procedures apply to multi sheet schematic designs as well. 

chip1 

• sch -t chip1.1 
sym -t chip1.1 
wir -t chip1.1 
viewdraw.ini 
ALS design files 

c:\designs 

chip2 

·h . sc -t chlp2.1 
sym -t chip2.1 
wir -t chip2.1 
viewdraw.ini 
ALS design files 

mltchip 

sth -t mltchip1.1 
sym -t chip1.1, chip2.1 
wir 
viewdraw.ini 
ALS design files 

Figure 1. Required Directory Structure for Multichip 
Simulation Using Viewsim 

© 1993 Actel Corporation 

Use the following procedure for multichip simulation of Actel 
designs: 

1. Go to the c:\designs\Chipl directory. Its sch and wir sub­
directories must have all schematic and wir files for chip1. 
Run the following two commands from this directory: 

del2vl chipl 

vsm chip1 -w -d chip1.dtb 

The del2vl program creates chip1.vsm and chip1.dtb files in 
the c:\designs\Chip 1 directory. The vsm program creates a 
flattened wir file chip 1.1 in the same directory. At this point, 
there is a nonflattened wir file in c:\designs\Chip1\wir and a 
flattened wir file in c:\designs\chip 1. 

2. Repeat step 1 for chip2 by running the following commands 
from the c:\designs\Chip2 directory: 

del2vl chip2 

vsm chip2 -w -d chip2.dtb 

3. Copy each flattened wir file (chip1.l from c:\designs\Chipl 
and chip2.l from c:\designs\chip2) to c:\designs\mltchip\wir 
directory. 

4. Select Export->Wirelist->Viewsim from the menu of the 
mltchip View draw schematic window. This will place 
mltchip.vsm and mltchip.1 files into the c:\designs\mltchip 
and c:\designs\mltchip\wir directories. Both of these files 
contain backannotated delay infonnation. At this point, open a 
viewwave window to observe signal waveforms for the design. 

5. (Optional) Copy the schematic files chipl.1 and chip2.1 from I 
c:\designs\Chip l\Sch and c:\designs\Chip2\Sch to 
c:\designs\mltchip\Sch. Then each schematic can be observed 
with backannotated simulation values from mltchip schematic. 

WARNING 

To run multichip simulation again for the same design, first 
remove the design schematic files (chip].] and chip2.1) from 
c:\designs\mltchip\sch directory. Then follow the procedure 
from step 4. Otherwise, Export->Wirelist->Viewsim (step 4) 
will create non flattened vsm and wir files for chip] and chip2, 
which will not contain backannotated delays. 

7-31 



7-32 



Board Level Post-Layout Application 
Note 

Simulation Using ALS and QuickSim II 

Introduction 

System designs are typically divided into functional modules, 
which are implemented by several Actel devices. To check the 
functionality of the system, it is very important to simulate all of 
the Actel devices together. The Actel Action Logic® System 
(ALS) includes board-level, multichip simulation capability using 
Mentor Graphics® software for Actel devices. 

The software requirements are identical for chip-level and 
board-level simulations. The requirements are Mentor Graphics' 
Design Architect (DA), Design Viewpoint Editor (DVE), 
QuickSim II, and Actel's ALS software. Note that ALS version 
2.2 supports Mentor Graphics VS.2 on Sun and HP700 platforms. 

Create the Design 

Consider the board-level design, board, which contains the 
chip-level components chip} and chip2. Each design is composed 
of a symbol and a schematic. The board schematic includes both 
chip} and chip2 symbols, which are ACFM 1 and ACT 2 family 
designs respectively. The following procedure is shown in 
Figure 1. 

partin port out 

+ chip2_sym + 

ACT 1 

1 

1 

1 

1---1 

1 

1---1 ACT 2 

Figure 1. Board Schematic Sheet 

1. Create the chip} design, including all I/O pads and ports. 
Execute check sheet and save the design. 

Open a symbol sheet to create a symbol for chip} with its I/O 
pins. Add a model property with the name, als _technology, and a 
property value, act} or act2. Execute check sheet and save as 
chip 1. If the message 

WARNING 

Property "als_technology" on the symbol is not on the 
interface. 

© 1993 Actel Corporation 

appears, make no modifications to the design. This warning 
message does not indicate any problems with the symbol and 
will no longer appear after the symbol is saved. Verify by 
rerunning check sheet after saving the symbol. 

2. Run mgc2adl on the design to generate the Actel netlist by 
typing the ALS command 

mgc2adl fam:<family name> chip 1 

where <family name> = act} or act2. 

3. Use ALS to layout and extract post-layout delays for the 
device. Backannotate these delays to QuickSim II by typing 
the ALS command 

del2mgc chip 1 

This step creates the back annotation file, chip}.bao. 

4. Repeat steps 1 through 4 for the chip2 design. 

5. In Design Architect, create the schematic sheet, board. From 
the popup menu, select 

Instance> Choose Symbol 

Use the Navigator to select and place chip} on the schematic 
sheet. Repeat this procedure for chip2. Connect the symbols 
and add Portins and Portouts to the schematic. Execute check 
sheet and save changes. Open a new symbol sheet and create 
the board symbol. Execute check sheet and save the changes 
to disk. 

DVE Configuration 

Next, configure the Design Viewpoint Editor (DVE) to setup the 
design with backannotated post-layout delays. 

1. From the board directory, invoke DVE for the design as 
follows: 

dve <viewpoint file name> 

If <viewpoint file name> is not specified, DVE uses the 
default viewpoint file, default. 

2. Select File> Open> Sheet from the menus. Enter the board 
level schematic name, board. 

3. Select the chip} and chip2 symbols and execute Report > 
Object > Long. An Object window opens and lists the path 
contexts for the symbols, including references and property 
information. Verify that the path contexts are of the form 

... /l$I , ... /l$2, etc. 

Remember the path contexts for future reference. Close the 
Object window. 

4. Verify that the Design Configuration window is open. If it is 
not active, select File > Open > Viewpoint. Verify that the 
board viewpoint is selected. 

7-33 

I 



5. From the pop-up menu, select Add > Primitive to open an 
ADD PRIMITIVE window. The primitive name is model with 
values of ACT 1 and ACT 2. The primative type is string. 

6. Select File> Back Annotation> Import from the pull-down 
menu to open an IMPORT BACK ANNOTATION window. In 
the ASCII BA field, enter the path to the chipl.bao file. In the 
import context field, add the path context of chipl. Save the 
results. Repeat these steps for chip2. 

7. Use the Design Viewpoint window to find a numbered list of 
connected, backannotated objects. Objects are listed by 
number from highest to lowest priority. 

7-34 

8. To activate the backannotation objects, use the pull-down 
menu to select 

File> Back Annotation> Connect 

9. Save the viewpoint information and exit DVE. 

10. Invoke QuickSim II with backannotated delays by entering 
the command 

quicksim. -tim max <viewpoint file name> 

The board-level design is ready for simulation with post­
layout, backannotated delays from ALS. 



Board-Level Simulation 
Using ALS/OrCAD 

Application 
Note 

Introduction 

Board-level designs typically include Actel devices generated 
with Actellibrary modules along with other vendors' devices. It is 
important to simulate and verify the function of the entire 
board-level design before it is assembled. What follows is a 
simple example of board-level simulation using OrCADTM 386+ 
with the Actel Action Logic@ System (ALS) version 2.2 on a Pc. 

Using Board-Level Simulation 

This example uses TTL 74xx library cells and Actel ACFM 
library cells. It includes two Actel ACT 1 family devices, chip 1 
and chip2, that have been created in the \ORCAD\CHIPl and 
\ORCAD\CHIP2 directories. Refer to Actel's OrCAD CAE Guide 
for specific configuration and setup information. The board-level 
design is called "board". It contains the chipl and chip2 devices 
and several TTL 74xx components as shown in Figure 1. 

In the chipl and chip2 designs, both user-created sheetpath parts 
and sheet symbol parts can be used as building blocks of the top 
level design as shown in Figure 2. 

IN1 OUT1 NET1 

IN2 OUT2 
NET2 

IN3 OUT3 
NET3 

In INn OUTn 
NETn 

CHIP1 

NETE 

7404 

NETO 

7400 

NET1 INA 01 
NET2 

INB 02 
NET3 

INC 051 

NETO 
INO 

CHIP2 

Use the following procedure to create and simulate the board 
level schematic board: 

1. Use the Design Management Tool to create a design called 
"board". Use the ACT 1 template as a source to copy onto the 
board using the Design Management Tool. The new directory 
is \ORCAD\BOARD. The directory tree is shown in Figure 3. 

2. Copy all the schematic files (typically *.sch) in 
\ORCAD\CHIPl and \ORCAD\CHIP2 to \ORCAD\BOARD. 

3. Copy \ORCADESP\SD1\LIBRARy\TTL.LIB to directory 
\ALS\LIB\OR\ACT1. The TTL.LIB library is provided by 
OrCAD as an installation option. To use other libraries, copy 
the corresponding .LIB files to the \ALS\LIB\OR\ACTl 
directory. 

4. Create the user library part symbols for chipl and chip2 using 
the Edit Library menu and include these parts in USER.LIB 
(or any other unique name). Make sure the sheetpath points to 
the schematic of the Actel device. In the example, the 
sheetpaths are CHIP1.SCH and CHIP2.SCH. Refer to the 
Action Logic System CAE Guide: PC OrCAD Interface for a 
procedure to create new user library parts. 

OUn 

NET1 
A 

NET2 
B 0 

NETD 
NET3 

C E 
NETE 

TTLBLOCK 

7408 

Figure 1. Schematic of Board 

© 1993 Actel Corporation 
7-35 

I 



5. Verify that the configured library list in Schematic Design 
Tools includes the appropriate Actel library, any user-created 
libraries, and any other libraries (ex. TTL.LIB) to be used in 
the board design. 

6. Create the schematics for the design. After the schematics are 
created, run the Cleanup Schematic, Annotate Schematic, and 
Check Electrical Rules programs. 

7. Next, run To Digital Simulation to enter the simulation 
window. Verify that the local configuration of To Digital 
Simulation has the correct configurations for INET as 
specified in the CAE Guide. 

8. To simulate the board, it is necessary to add the appropriate 
simulation models to the OrCAD simulation database. For this 
example, the Add Device Model program adds simulation 
models for Actel ACT 1 family and TTL 74xx devices. The 
TTL.DSF file must be copied to the \ALS\LIB\OR\ACTl 
directory. 

Please note: 

• For each board design, verify that the correct Actel device 
family library has been configured for netlisting and 
simulation. For example, substitute "ACT 2" for "ACT I" in 
the procedure for board level designs using ACT 2 devices. 

• The local configuration for INET must include all component 
libraries represented in the board-level schematic. Otherwise, 
the simulation window issues the error message. 

<component> in <library>.LIB not found. Delete Device or 
EXIT Simulator? 

• For ALS version 2.2, only functional simulation is available 
for board-level simulations and only chip-level designs may 
have post-layout delays backannotated for simulation. 

~ Sheetpath Part 

r-------, 

INBUF OUTBUF 

INBUF CELL1 OUTBUF 

CELL2 

Can be a sheet symbol part 

INBUF OUTBUF 

INBUF CELLX OUTBUF 

Figure 2. Schematic of Board 

7-36 



\CHIP1 
CELL1 
CELL2 

CELLX 

\ORCAD 

\CHIP2 
CELLA1 
CELLA2 

CELLAY 

Figure 3. Directory Structure 

Board-Level Simulation Using ALS/OrCAD 

\BOARD 
CELL1.SCH 
CELL2.SCH 

CELLX.SCH 
CELLA1.SCH 
CELLA2.SCH 

CELLAY.SCH 
TTLBLOCK.SCH 

7-37 

I 



7-38 



External Probe Pin Control 
for Actel FPGAs 

Application 
Note 

Introduction 

Each ACT™ device includes built-in probe circuits to observe and 
analyze any internal signals in a design. The probe circuits 
temporarily route signals from any two internal nodes to two 
special function pins on the device, PRA and PRE. These circuits 
are accessed and controlled in three ways: with the Actel 
Debugger software, the Actionprobes@, and user-created external 
control. The Actel Debugger and Actionprobe require an 
Activator programmer to enable the probe circuits. To use the 
probes without an Activator, you must create external probe 
control signals that emulate the Activator. 

ACT Device Probe Circuits 

The ACT devices have three special function input pins to control 
the probe circuits: serial data in (SDI), data clock (DCLK), and 
mode selection (MODE). Internally, the devices are arranged into 
arrays of logic modules of various numbers of rows and columns 
as shown in Table 1. 

Table 1. ACT Device Cell Arrays 

Device Rows Columns 

A1280 18 (RO-R17) 82 (CO-C81) 

A1240 14 (RO-R13) 62 (CO-C61) 

A1225 13 (RO-R12) 46 (CO-C45) 

A1020 14 (RO-R13) 44 (CO-C43) 

A1010 8 (RO-R7) 44 (CO-C43) 

The logic module arrays are surrounded by two sets of shift 
registers for the two probes plus a MODE register to determine 
the operating state of the device. Note that the MODE shift 
register is independent of and not related to the MODE pin. 
Figure 1 is a simplified representation of an ACT logic array. 

MODE REGISTER 

C1 REGISTER 

C2 REGISTER ~ 
R R 
1 2 

R R = r-1 R 
E E 
G G 
I I 
S S 
T T 
E E 
R (0,0) C = c-1 R 

OTHER REGISTERS 

Figure 1. Shift Registers for ACT Devices 

© 1993 Actel Corporation 
7-39 

I 



LOAD 
COUNTER 

(ACT 2 ONLY) 

N 
ZEROS 

MODE (ACT 2 
REGISTER ONLY) 

LONG 
REGISTER 

C,R 
ADDRESS 

STOP 
BIT 

(ACT 2 
ONLY) PROBING 

NEXT 
LOAD 

I I I I 

MODE .-J u 
DCLK ~ Lrl Lrl ~ 

SOl ==>C =x= =>C >C ==>< __ 
Figure 2. Timing Sequence 

If the probes are to be used, avoid assigning input or bidirectional 
I/O macros to the PRA and PRB pins. Do not assign any user I/O 
signals to the sm and DCLK pins. In addition, do not program 
the security fuses because they will disable the probe circuits. 

External Probe Circuit Control 

To activate the probe circuits, set the MODE pin to logic high. 
Then enter the address of the desired logic module at the SDI pin 
along with the appropriate mode control pattern. The desired 
signals will be temporarily routed to the PRA or PRB pins. Use 
the following procedure to externally control the internal probe 
circuits: 

1. Connect Vpp and V sv (ACT 2 only) to Vee. 

2. Connect VKS to GND (ACT 2 only). 

3. Set the MODE pin to logic 0 upon power up. 

4. Find the X,Y array location of the desired signals 

5. Set the MODE pin to logic 1. 

6. Load the pattern in Figure 2 with the sm and DCLK pins. 

7. Observe the waveform(s) at the probe pin(s). 

8. Repeat steps 3 through 7 for other signals to be probed. 

MODE should be pulsed to logic 0 before other signal locations 
are loaded into the probe circuits. Pulsing MODE also initializes 
the test/programming circuits. The chip returns to normal 
operation when MODE returns to zero. DCLK is a falling edge 
triggered clock for ACT I devices, rising edge triggered for 
ACT 2 devices. 

Table 2 describes the shift patterns for the probe circuits 
addresses. The waveforms in Figure 2 show the timing sequence 
for the probe control signals, MODE, sm, and DCLK. 
Addressing for the row and column locations is active high; 
unselected rows and columns have logic 0 input addresses. 
Specify timing at a maximum of 10 MHz for DCLK, with IOns 
for setup and hold times for the SOl signal. Allow a minimum of 
30 ns for the desired signal to arrive at the PRA or PRB pin, valid 

7-40 

after the last address clock edge. The row and column addresses 
(X,Y coordinates) are located in the <design name>.loc design 
file. 

Table 2. Probe Circuit Shift Patterns 

Register Bits Comments 

Counter 10 Bits ACT 2 only 

Mode Register 21 Bits (ACT 2) See Table 3 
7 Bits (ACT 1) See Table 4 

Filler Zeros n Bits See Table 4, ACT 2 only 

R2 r Bits BiCO ... BiCr-1 

C2 c Bits See C2 order for chip 

R1 r Bits Bit_O ... Bit_r-1 

C1 c Bits See C1 order for chip 
Rl, Cl = Row/Column coordinates for Probe_A 
R2, C2 = Row/Column coordinates for Probe_B 

Table 3. ACT 1 Mode Register Shift Patterns 

Probe Mode Mode Register Pattern 
(M6 ... MO) 

Select probe A (PRA) 

Select probe B (PRB) 

Select probe A and probe B 
(PRA and PRB) 

1001001 

1001010 

1001011 

Table 4. ACT 2 Mode Register Shift Patterns 

Probe Mode 

Probe A 

Probe B 

Probe A & B 

Mode Register Pattern 
(M20 ... MO) 

000000110001111100000 

000000101001111100000 

000000111001111100000 



Table 5. ACT 2 Device Counter Pattern 

Device 

A1280 

A1240 

A1225 

Filler (n) 

443 

361 

308 

Counter 
Pattern 

0011011111 

1111000001 

1101011010 

Clocks/Load 

675 

541 

458 

Note that the row and column addresses for ACT 2 devices must 
be entered in the order specified by Tables 6, 7, and 8. ACT 1 
device addresses are entered in sequential order 

Table 6. A1280 C Register Order 

Register Bit Order 

C2 

C1 

< 80, 81,78,79,77,76, 74, 75, 73, 72, 70, 71, 
69,68,66,67,65,64,62,63,61,60,58,59, 
57,56,54,55,53,52,50,51,49,48,46,47, 
45,44,42,43,41,40,38,39,37,36,34,35, 
33,32,30,31,29,28,26,27,25,24,22,23, 
21,20,18,19,17,16,14,15,13,12,10,11,9, 
8,6,7,5,4,2,3,1,0> 

< 1, 0, 2, 3, 5, 4, 6, 7, 9, 8,10,11,13,12,14, 
15,17,16,18,19,21,20,22,23,25,24,26, 
27,29,28,30,31,33,32,34,35,37,36,38, 
39,41,40,42,43,45,44,46,47,49,48,50, 
51,53,52,54,55,57,56,58,59,61,60,62, 
63,65,64,66,67,69,68,70,71,73,72,74, 
75,77,76,78,79,80,81> 

Table 7. A1240 C Register Order 

Register Bit Order 

< 60,61,58,59,57,56,54,55,53,52,50,51, 
49,48,46,47,45,44,42,43,41,40,38,39, 

C2 37,36,34,35,33,32,30,31,29,28,26,27, 
25,24,22,23,21,20,18,19,17,16,14,15, 
13,12,10,11,9,8,6,7,5,4,2,3,1,0> 

< 1, 0, 2, 3, 5, 4, 6, 7, 9, 8,10,11,13,12,14, 
15,17,16,18,19,21,20,22,23,25,24,26, 

C1 27,29,28,30,31,33,32,34,35,37,36,38, 
39,41,40,42,43,45,44,46,47,49,48,50, 
51,53,52,54,55,57,56,58,59,60,61> 

External Probe Pin Control for Actel FPGAs 

Table 8. A 1225 C Register Order 

Register 

C2 

C1 

Bit Order 

< 44, 45, 42, 43, 41,40,38,39,37,36,34,35, 
33,32,30,31,29,28,26,27,25,24,22,23, 
21,20,18,19,17,16,14,15,13,12,10,11,9, 
8,6,7,5,4,2,3,1,0> 

< 1, 0, 2, 3, 5, 4, 6, 7, 9,8,10,11,13,12,14, 
15, 17, 16, 18, 19, 21,20, 22, 23, 25, 24, 26, 
27,29,28,30,31,33,32,34,35,37,36,38, 
39,41,40,42,43,44,45> 

Example: The bit stream shown in Figure 3 probes the outputs of 
an AND gate with instance name U1 and an OR gate with 
instance name U2 in an A1240 device. 

First, the coordinates must be determined. The following data is 
from the <design_name>.loc file. Note that X corresponds to 
column address, and Y to row address. 

USE; U1; 

XY: 59%5. 

USE; U2; 

XY: 58%10. 

Since two locations will be probed, PRA and PRB are both used. 
PRA probes the output of the AND gate (UI), and PRB probes 
the output of the OR gate (U2). The Rand C registers are 
assigned as follows: 

R1 = 5, CI = 59 

R2 = 10, C2 = 58 

Use Table 6 to determine the data for the Cl and C2 registers. For 
example, when C2 is 58, a one is placed in the third location of 
the C2 register, and the remaining locations are zeros. 

7-41 

I 



FILLER 

11240 COUNTER 1 PROBE A and B ZEROS R2 = 10 C2 = 58 

1111000001 000000111001111100000 (5410'S) 00000000001000 (0 0 1, 59 O'S) 

I R1 = 5 C1 = 59 STOP BIT 

00000100000000 (59 O'S, 1 0 0) STOP BIT = ZERO 

SHIFT IN THIS BIT FIRST 

Figure 3. Example Shift Pattern 

7-42 



Using Actionprobe® 
Diagnostic Tools 

Application 
Note 

Introduction 

Actel's probe pin circuitry permits external monitoring of ACFM 
device internal signals after device programming. This unique 
diagnostic feature allows 100 percent observability of a device. 
Observability reduces the time required for design verification 
and test vector generation; it also facilitates system 
troubleshooting. One hundred percent observability of all internal 
device signals is unique to Actel field programmable gate arrays 
(FPGAs); this feature is not available in conventional masked 
gate arrays or programmable logic devices. 

Two dedicated probe pins, PRA and PRB, provide this 
observability on ACT family devices. Actel's Actionprobe® 
software and Actionprobe diagnostics hardware permit the 
connection of any two signal nodes on the device to the probe 
pins. Signal node assignments may be changed freely under 
software control. 

Setup 

The Actionprobe hardware for the Activator® 2 and 2S 
programmer consists of a diagnostic pod that connects to the 
programmer by cable. The pod is connected to dedicated test 
points in the target system using several flying lead connections. 
The Activator 2 programmer supports up to four Actionprobe 
diagnostic pods. The device is verified and debugged in the target 
board as it receives real-time stimuli from the system. 

The Activator Programmer drives the control signals SDI, DCLK, 
and MODE by a flat ribbon cable. The MODE pin determines 
whether the device is in debug mode. SDI receives the serial 
addresses of the internal nodes from the Activator. DCLK clocks 
the serial address into the device. When the device is being 
debugged in-circuit, SOl, DCLK, and MODE may be terminated 
to ground through a resistor greater than IOkQ. Probe pins may 
be connected directly to a logic analyzer or oscilloscope. 

In-Circuit Probing 

Changing the signal nodes is done simply by changing node 
names with the Debugger software. The newly assigned signals 
are connected automatically to the probe pins. The internal signal 

© 1993 Actei Corporation 

passes through an inverting buffer before reaching the probe pin. 
Use the Debug/lCP command from the APS 2 menu to initialize 
this function. 

Probe Calibration 

The probe circuitry does not introduce any additional loading to 
the design, so the AC characteristic of the observed internal nodes 
remains unchanged. And, because probe propagation delay is 
independent of layout, probe delay remains unchanged for all 
points in the device. 

The skew of the probe pins can be measured, then used to 
calibrate the accurate measurement of propagation delay. When 
both probe pins are assigned to the same point on the device, the 
measured delay difference is the skew of the probe pins. This 
skew is subtracted from subsequent delay measurements in the 
circuit. In Figure 1, for example, both PRA and PRB are 
connected electrically to node NetO. The delay difference is the 
skew, calculated as 

tSK = tpRA - tpRB 

Using the Debugger software, the slower probe (PRA) is assigned 
to node Net3. Figure 2 shows this configuration. In this example, 
actual propagation delay is the measured delay between the 
output of GO and the output of G3, minus the probe skew time. 
Actual delay is calculated as: 

tpD = tpRA - tpRB - tSK 

Note: Because of the difference in propagation delay between 
rising and falling signals, both probe pin signals must be I 
either rising or falling when they are used to calibrate 
delay measurements. 

Pin Assignment for Dedicated I/O Pins 

During device verification, dedicated pins SDI, DCLK, PRA, and 
PRB are used as special I/O pins. These pins should be assigned 
to uncritical user-defined I/O signals so that the design is 
functional without them. After device verification, programming 
the security fuses disables the probe pins to prevent unauthorized 
device probing. 

7-43 



G3 

PRA 

PAS 

Figure 1. Measuring Skew of Probe Pins 

7-44 

G3 

PAA 

PAS 

Figure 2. Calibrating for Accurate Propagation Delay 
Measurement 



Using the Actel Debugger 
as a Functional Tester 

Application 
Note 

Introduction 

Actel's Activator® programming and diagnostics unit, together 
with the Debugger software, provide powerful tools to 
functionally test an ACTTM device. Device debugging begins after 
design configuration and device programming. Debugging is 
performed with the device inserted in the Activator programming 
module. 

A Debugger functional test allows the observation of any internal 
node or external pin of the device. Device inputs are defined with 
Debugger menu commands, with a command file, or with a 
combination of the two. Command files and test vectors are 
created with an ASCII text editor, then loaded into the Debugger. 

UD-I---I 
UO 

U1 
PO 

P1------i 
U2 

P1 

U3 P2 

U4 P3 

P4-1----l 
U5 P4 

U6 

UD 

User-defined macros may be created in a command file, then 
executed in the Debugger. 

This application note shows Debugger commands for a sample 
design. The sample design is Actel's TA269 (TTL 74269), an 
eight-bit binary loadable up/down counter with count enable. 
Figure I shows the sample design; Table 1 shows the truth table 
for the part; and Figure 2 shows a typical Debug command 
sequence. PO through P7 are parallel load inputs; QO through Q7 
are counter inputs; CLK is the counter clock; and UD is the 
up/down counter selector. Internal nodes (nets) should be labeled 
during design capture for easy reference during debugging. 

U13 

QO 
QO QOUTO 

Q1 
Q1 QOUT1 

Q2 
Q2 QOUT2 

Q3 
Q3 QOUT3 

Q4 
Q4 QOUT4 

Q5 
P5-1---I P5 TT269 Q5 QOUT5 

ps-I----l U7 
P6 Q6 

Q6 
QOUT6 

P7-1----I U8 
P7 Q7 

Q7 
QOUll 

ClK-I----I ClK TC 
TC TCOUT 

CEP-I----l 

CET-I----l PE 

PE-I---I U12 

Figure 1. Debugger Sample Design with TA269 Soft Macro 

© 1993 Actel Corporation 
7-45 

I 



~c/@// 

Table 1. TA269 Truth Table Assigning Test Vectors 

PE CEP 

0 X 

0 X 

X 

0 

0 

7-46 

Inputs Outputs The default input radix for all text vectors is decimal. To specify a 
binary, hex, or octal radix, add a Ob, Oh, or 00 prefix, respectively, 
to the vector (for example, OblOlO or Oh7e). Outputs are in binary 
format. To interactively define input test vectors, use the 
Debugger menu. As an alternative, use input command files to 
define test vectors. To view outputs and internal nodes, print them 
to the screen display or to an output file. 

CET 

X 

X 

1 

X 

0 

0 

UD P[7:0] ClK 0[7:0] TC 

X 0 i 0 

X FF i FF 0 

X X i Hold 

X 1 i Hold 

X i Increment 

0 X i Decrement 

L INPUTI INPUT2 INPUT3 INPUT4 INPUTS CLOCKIN 

H INPUTS INPUT6 INPUT7 

TABADD INPUT2 INPUTS CLOCKIN ~~-- Set up list of signals 
to observe 

TABADD OUTPUT 1 OUTPUT2 OUTPUT3 

STEP ~~.-------------____________________ ___ 
Apply stimulus; 
allow time for 
response 

H CLOCKIN 

STEP 

L CLOCKIN 

H INPUT2 

STEP Revise input stimulus 

H CLOCKIN 

STEP 

PRINT ~~~----------------------- Print values of signals in 
tab list to pc screen 

INPUT2=O 

INPUT5=1 

CLOCKIN=O 

OUTPUTl=l 

OUTPUT2=1 

OUTPUT3=O 

Figure 2. Typical Debug Command Sequence 



Defining User Macros 

You may save time by creating user-defined macros for the 
Debugger. These macros may contain a series of basic Debug 
commands or may nest any combination of basic commands and 
user-defined macros. 

Using the Actel Debugger as a Functional Tester 

The sample macro in part A of Figure 3, clklO, provides 10 
clock pulses to the pin eLK and prints the value of internal vector 
Q to a specified output file after each clock pulse. The out file 
command specifies the output file. 

Part B of Figure 3 shows a nested macro, elk 100, that executes 
the elk 1 0 macro 10 times, providing 100 clocks to the eLK pin. 

define (clklO) (repeat 10 (1 CLK) (step) (h CLK) (step) (fprint Q» 

define (clklOO) (repeat 10 (clklO» 

Figure 3. Sample Command Macros 

Creating a Command File (TA2 69 . cmd) 

The command file (see Figure 4) applies test vectors to the 
TA2 6 9 counter. It redirects results to an output file, 
T A2 6 9 . 0 u t, and compares the output vector Q of the counter to 
an existing results file, TA2 6 9. cmp. The following notes 
correspond to each line in the command file. 

Lines I and 2: The vector command defines eight parallel load 
input bits as vector P and counter output as vector Q. 

Line 3: The tabadd command defines the internal or external 
nodes to be displayed or printed when the print or fprint 
command is executed. 

Lines 4, 5, and 6: The infile, out file, and compfile 
commands define input and output files. The infile command 
opens a file containing input test vectors. The outfile 
command contains the output results. The compfile command 
contains the data to be compared against the current device status. 
Use the full path name of the file, and enclose it in quotation 
marks. 

Line 

1 

2 

3 

5 

(vector 

(vector 

(tabadd 

(infile 

(outfile 

P PO PI P2 P3 P4 P5 P6 P7 ) 

Q QO Ql Q2 Q3 Q4 Q5 Q6 Q7 ) 

PE CEP CET US P CLK Q TC) 

"/designs/ta269/ta269.pat") 

"/designs/ta269/ta269.out") 

6 (compfile "/designs/ta269/ta269.cmp") 

Line 7: The define commands create user-defined macros. In 
this example, the elk 1 0 macro provides 10 clock pulses to the 
eLK input, fprint prints all nodes in the tabadd command to 
a file defined by out file, and fcomp compares the status of 
vector Q to the file specified by compfile. 

Lines 8, 9, and 10: Defines three user macros, up, down, and 
load. 

Loading a Command File 

The loadfile command loads a defined command file into the 
Debugger. Select set up loadfile from the Debugger 
menu, then enter the full path name of the command file. For 
example: 

/design/TS269/TA269.cmd 

Executing User-Defined Macros • 

To execute any previously defined macros, type the macro at the 
command line while in the Debugger. 

(define (clkl0) (repeat 10 (1 CLK) (step) (h CLK) (step) (fprint) (fcomp Q))) 

(define (up) (1 CEP CET) (h PE UD) (step) (clkl0)) 

9 (define (down) (h PE) (1 CEP CET UD) (step) (clkl0)) 

10 (define (load) (1 PE CLK) (step) (fassign P) (h CLK) (step)) 

Figure 4. Debug Command File (TA2 6 9. cmd) 

7-47 



Running the Sample Command File Input Pattern File (TA269 .pat) 

In the following example, APS 2 assigns input test vectors from ObOOOOOOOO 
an input pattern file named TIQ 6 9 . pa t and writes output results Ob10000000 

to a file named TA2 6 9 . au t. The command file (TA2 69 . cmd) Ob01000000 

compares the counter's output vector Q to an existing results file Ob11000000 

(TA2 69. cmp). Output Compare File (TA269. cmp) 

Output Results File (TA269 .out) Ob10000000 
Ob01000000 

S p C C U p c Q T Ob11000000 
T E E E D L C Ob00100000 
E P T K Ob10100000 
P Ob01100000 

00005: 1 0 0 00000000 1 10000000 0 Ob11100000 
00007: 1 0 0 1 00000000 1 01000000 0 ObOO010000 
00009: 1 0 0 1 00000000 1 11000000 0 Ob10010000 
00011 : 1 0 0 00000000 00100000 0 Ob01010000 
00013: 1 0 0 00000000 10100000 0 ObOOOOOOOO 
00015: 1 0 0 00000000 01100000 0 Ob11111111 
00017: 1 0 0 00000000 11100000 0 Ob01111111 
00019: 1 0 0 00000000 00010000 0 Ob10111111 
00021: 1 0 0 00000000 1 10010000 0 ObOO111111 
00023: 1 0 0 1 00000000 1 01010000 0 Ob11011111 
00028: 1 0 0 0 10000000 1 00000000 1 ObOO011111 
00030: 1 0 0 0 10000000 1 11111111 0 Ob11101111 
00032: 1 0 0 10000000 1 01111111 0 Ob11000000 
00034: 1 0 0 10000000 1 10111111 0 Ob00100000 
00036: 1 0 0 0 10000000 1 00111111 0 Ob10100000 
00038: 1 0 0 0 10000000 1 11011111 0 Ob01100000 
00040: 1 0 0 0 10000000 1 01011111 0 Ob11100000 
00042: 1 0 0 0 10000000 1 10011111 0 ObOO010000 
00044: 1 0 0 0 10000000 1 00011111 0 Ob10010000 
00046: 1 0 0 0 10000000 1 11101111 0 Ob01010000 
00051: 1 0 0 1 01000000 11000000 0 Ob11010000 
00053: 1 0 0 1 01000000 00100000 0 ObOO110000 
00055: 1 0 0 1 01000000 1 10100000 0 ObOl000000 
00057: 1 0 0 1 01000000 1 01100000 0 Ob10000000 
00059: 1 0 0 1 01000000 1 11100000 0 ObOOOOOOOO 
00061: 1 0 0 1 01000000 1 00010000 0 Ob11111111 
00063: 1 0 0 1 01000000 1 10010000 0 ObOl111111 
00065: 1 0 0 1 01000000 1 01010000 0 Ob10111111 
00067: 1 0 0 1 01000000 1 11010000 0 ObOOl11111 
00074: 1 0 0 0 01000000 01000000 0 Ob11011111 
00076: 1 0 0 0 11000000 1 10000000 0 Ob01011111 
00078: 1 0 0 0 11000000 1 00000000 1 Ob10011111 
00080: 1 0 0 0 11000000 1 11111111 0 
00082: 1 0 0 0 11000000 1 01111111 0 
00084: 1 0 0 0 11000000 1 10111111 0 
00086: 1 0 0 0 11000000 1 00111111 0 
00088: 1 0 0 0 11000000 1 11011111 0 
00090: 1 0 0 0 11000000 1 01011111 0 
00092: 1 0 0 11000000 10011111 0 

7-48 



~c/@Il 
• 

Moving Actel FPGA Designs 
from Prototype to Production 

Application 
Note 

Introduction 

Requirements for system designs often change as a project moves 
from concept to prototype to production. Prototype designs and 
systems may not be required to conform to specifications that are 
necessary in the final production release. A system is usually 
developed faster and less expensively when the constraints for the 
prototype are relaxed. For example, prototype designs frequently 
employ "cut and jumper" techniques to quickly modify the 
connections between devices on a printed circuit board (PCB). 
While these modifications are effective and useful for debugging 
and verifying designs, they are unacceptable for the final product. 
The final product is only produced after incorporafing the 
required changes discovered during the prototyping stages. 

Several features are built int0 ACTTM devices and the Action 
Logic@ System (ALS) software to provide the flexibility and ease 
of use that enable quick prototyping and transition to production. 
With these features, early prototypes can be quickly developed 
and modified to speed engineering schedules. Last minute 
changes can be made without excessive delay. Then, final 
production versions of ACT designs are produced without 
requiring additional, "schedule killing" development cycles. 

Prototype Development 

Ideally, system designs can be tested and debugged before PCBs 
are completed for production release. However, PCBs are often 
finalized and released to production well before the rest of a 
project is finished. This requires the pin assignments for 
programmable devices with user-defined I/O pins to be complete 
before the rest of the design. Since the pin assignments for all 
field programmable gat arrays (FPGAs) largely determine their 
performance and routability, it is critical that the pin assignments 
be as close to ideal as possible even if the rest of the design is not 
complete. 

Fortunately, ALS and ACT devices accommodate this type of 
scheduling requirement. To finalize the pin assignments early in 
the development cycle, first complete as much of the internal 
design (schematic) as possible. Then, let ALS automatically 
assign the locations of the I/Os. ALS considers the topology of 
each design to place I/Os in optimum locations. Therefore, 
approximate the design description (schematics and equations) as 
close to its final form for the best results. Refer to "How to Select 
I/O Assignments" in this databook for more information. 

After a design has been fully placed and routed, timing analysis 
with the ALS Timer and backannotated simulation verifies the 
functionality and performance of the device. At this point, the pin 
assignments and PCB layout are complete. Small, last-minute 
design changes could lead to major problems if they resulted in 
reduced performance or required time-consuming modifications. 
ALS addresses this issue by including a feature that preserves the 

© 1993 Actel Corporation 

timing and performance of a design if small changes are required. 
If a design has satisfactory performance but less than 5 percent of 
its netlist must be modified, then the Incremental Placement 
option of ALS saves the timing of the rest of the design while re­
placing the modified portions. When this is done, another timing 
analysis of the design is often unnecessary, saving many hours of 
verifying and debugging. 

Moving to Production 

ACT devices are available in a wide variety of die sizes, package 
types, and performance grades. For maximum flexibility, 
prototype designs may be developed in device configurations 
different from the production device. All the "hooks" are 
incorporated into the design flow seamlessly to enable convenient 
changes from prototype to production. For example, designs may 
be prototyped in one package, then put into production in another 
package effortlessly. Suppose a military project requires ceramic 
pin grid array (CPGA) packages in the final product. In this case, 
prototypes may be initially developed in cheaper, plastic quad flat 
pack (PQFP) packages. When the design is complete, the ALS 
repackager can automatically transfer a design to another package 
type. The timing characteristics for the design are completely 
transferred to the new package without needing further timing 
analysis. 

If a design is transferred to a package type with fewer I/O pins, 
there may not be a one-to-one correspondence between the I/Os 
of the two packages. The Action Facts service provides I/O 
cross-reference guides for equivalent die locations to help solve 
this problem. For example, if an AI280 design is transferred from • 
a PG176 package (140 I/Os) to a PQ160 package (125 I/Os), 
some of the I/O pins may not map to bonded die locations of the 
new device. In this case, ALS cannot automatically repackage the 
design. However, the cross-reference guides can be used to 
accurately transfer most of the I/O pins to equivalent locations. 
Also, use the cross reference guides to prevent any repackaging 
problems before layout by choosing commonly bonded die 
locations for all possible packages. 

Another feature of the ACT devices involves the use of different 
speed grades. Each family of ACT devices is available in different 
speed grades to meet various performance requirements. Initial 
designs may incorporate cheaper, standard speed grade devices. 
Development may proceed even if the FPGA speed is inadequate 
for the particular application. In this case, simply slow the system 
clock speed until the device performance is adequate. If the 
standard grade performance is within 25% of the system 
requirement, then choose the appropriate speed grade to satisfy 
the needs for increased performance. 

7-49 



Summary 

These are only some of the ways that ALS and ACT devices 
enable a smooth transition from prototype to production. With 
these tools, PCB procurement becomes less of a scheduling 
concern. Last minute design changes don't require complete 
timing analyses to be redone. Package and speed grade options 
allow a cheaper, faster development cycle without the usual 
hassles. Throughout the ALS design flow, many other convenient 
features enable similar time savings and ease of development. 
Refer to the ALS User's Guide for a complete description of ALS 
programs and capabilities. 

7-50 



~c/@I! 
• 

Production Programming 
for Actel FPGAs 

Application 
Note 

Introduction 

Actel offers several programming options for the ACTTM families 
of field programmable gate arrays (FPGAs). The Activator® 2 
desktop programmer supports all ACT device families. Up to four 
devices may be programmed simultaneously with the Activator 2. 
The Activator 2S is a single device desktop programmer with 
capabilities similar to the Activator 2. These Actel programmers 
support functional testing and in-circuit debugging with the APS 
2 programming software and Actionprobe ® diagnostic pod. The 
Actel programming hardware and software are compatible with 
386/486 PC, Sun™, and HP700® workstations. In addition, Actel 
supports third-party programmers such as the UniSite from 
Data I/O. 

In the early development stages of an Actel FPGA design, single 
devices are typically programmed at an engineer's desk or in the 
prototyping laboratory. The Activator 2S is ideally suited for this 
application with its single module adapter, compact size, and 
reduced cost. In most cases, the same computer workstation is 
used to develop, simulate, program, and debug the prototype 
devices. As the project moves from the engineering development 
to production phase, the device programming quantities may 
increase dramatically. The Activator 2 programmers are better 
suited for this application. The change in programming quantity 
requires the development of independent programming stations to 
meet this demand. To build reliable, stand-alone programming 
stations, several hardware and software issues must be adequately 
addressed. 

Production Programming Work Area 

Creating and using a dedicated programming work area is the 
most effective way to program Actel FPGAs in production-level 
quantities. Since Actel FPGAs are CMOS devices, appropriate 
measures are necessary to ensure that programming problems are 
minimized. Even though all Actel devices have built-in ESD 
protection, proper handling procedures are still required. All 
personnel in the programming work area should be properly 
equipped with antistatic clothing and wrist straps. In general, use 
standard CMOS device handling procedures for Actel devices. 

The Activator programmers should be placed in a clean, 
well-ventilated location. Since each Activator contains an internal 
power supply, avoid exposure to heat sources such as direct 
sunlight or heating vents. Allow adequate ventilation on all sides 
of the unit including the bottom. 

Hardware Requirements 

The Activator 2 programmers may be connected to the SCSI port 
of 386/486 PC, Sun, and HP700 workstations. For Sun and 
HP700 workstations, use the built-in SCSI port; a SCSI card is 
included with Activator 2 programmers connected to PCs and 

© 1993 Actel Corporation 

Apollo workstations. For these two types of computers, the 
Activator 2 will only operate with the supplied SCSI card. Other 
types of SCSI cards cannot be used to program Actel devices. 
Refer to the appropriate APS 2 User's Guide for more 
information regarding RAM and hard disk requirements. 

Activator 2 programmers may program up to four identical 
devices simultaneously. Each programmer has four adapter ports, 
which accept adapter modules for all available ACT device 
packages. There are different adapter modules for each package 
of each ACT family. Thus, there are different programming 
modules for ACT I, ACT 2, and ACT 3 devices in the 84PLCC 
package. 

Software and Design Requirements 

The aps2 programming software facilitates communication 
between the Activator 2 and the host computer. This software is 
included with every Actel software system. The APS 2 User's 
Guide contains complete instructions for its installation and 
operation. 

Many files are created for each design throughout the Action 
Logic® System design flow. Only two of these files are required 
for programming devices with the Activator 2 programmer 
and aps2 programming software, <design name>.def and 
<design name>.fus. To archive or transfer the design to another 
host computer for programming purposes only, only the .def and 
.fus files are required. No other ALS programs may be executed 
without the balance of the design files. In a similar situation, 
design files updated from previous versions of ALS using the 
"a)s -update" command may only be used for programming • 
devices. All other ALS functions are disabled by this program. To 
update design files for other ALS functions, use the 
"a)s -convert" program. 

Daisy Chained Activator 2 Programming 

In general, it is most convenient and effective to use a dedicated 
host computer to control each Activator 2 programmer. For 
386/486 PCs, this is currently the only possible setup: one PC is 
dedicated to each programmer. However, it is possible to daisy 
chain more than one Activator 2 programmer to the SCSI bus of a 
single workstation. Only workstations that have operating 
systems with independent, multi-tasking windows (for example, 
X-Windows) can control more than one programmer on the SCSI 
bus. By default, the Activator 2 is configured for the "one 
computer/one programmer" setup. If it is necessary to connect 
more than one programmer to the SCSI bus, an internal resistor 
pack must be removed and the aps2 software installation must be 
modified. For more information regarding this procedure, refer to 
the Action Facts document, "Daisy Chained Activator 2 
Programming. " 

7-51 



7-52 



Designing with Actel Devices 

Designing with Actel Devices 

© 1993 Actel Corporation 



Introduction to FPGA System Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-1 

An FPGA Family Optimized for High Densities and Reduced Routing Delays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-5 

Estimating Actel FPGA Device Capacity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-9 

Estimating Capacity and Performance for ACT 2 FPGA Designs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-11 

The Hidden Cost of Reprogrammability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-25 

Actel Logic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-27 

Binning Circuit of Actel FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-31 

Global Clock Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-35 

Using Dedicated Clock and Clear for ACT 3 Registered I/O Macros ........... . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-39 

Designing for Combinability with the ACT 2 and ACT 3 Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-41 

Fast On and Off Chip Delays with ACT 2 110 Latches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-45 

Three-Stating ACT Device 110 Pins for Board Level Testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-49 

Predicting the Power Dissipation of Actel FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-51 

Board Level Considerations for Actel FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-57 

A Power-On Reset (POR) Circuit for Actel Devices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-65 

Simultaneously Switching Output Limits for Actel FPGAs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8-67 



I ntroduction to 
FPGA System Design 

Introduction 

Field programmable gate arrays (FPGAs) are powerful devices 
for implementing complex digital systems. FPGAs are best used 
with an understanding of the key differences between FPGAs and 
previous logic technologies (like PLDs or SSI/MSI). 
Understanding these differences and using design techniques 
appropriate for FPGAs result in 50 percent to 100 percent 
improvement in speed and density compared to design styles that 
treat FPGAs and PLDs or SSI/MSI equally. This application note 
identifies the key architectural differences between FPGAs, 
PLDs, and SSI/MSI, explain design methodologies that result 
from understanding these differences, and give some simple 
examples illustrating these techniques in real applications. 

FPGAs Compared to PLDs 

PLDs are array-oriented devices that typically have an AND-OR 
structure with wide input AND gates feeding a narrower OR gate. 
A register is typically available at the output of each OR. This 
architecture is termed "logic rich" because there are typically 
many more logic gates than register gates. The ratio can be as 
much as 5 to 1 logic to register type. PLDs pay a significant speed 
penalty when multiple levels of logic are required because of the 
large delay through the wider logic module. Speeds tend to be 
more predictable in PLDs because of the larger "speed quanta." 

FPGAs, on the other hand, are register rich, with a logic to 
register ratio closer to 2 to 1. (This ratio is equivalent to the 
traditional gate array usage ratio and tends to be related to the fact 
that high density designs [more than lK gates] need more 
registers than the traditional "glue" oriented low density [less 
than lK gates] applications.) FPGA logic structures are optimized 
for functions narrower than PLDs. FPGAs have a smaller speed 
quanta than PLDs, so logic functions can be incremented in 
complexity while incrementing the delay only a little each time. 
Additionally, signals that need to be fast can be sourced near the 
bottom of the logic tree, minimizing the number of logic levels 
required, while slow signals can be sourced at the top of the logic 
tree, where more logic levels are required. 

FPGAs Compared to SSI/MSI 

SSI/MSI building blocks are created by optimiZing the number of 
pins on popular functions to fit in the small packages available. 
Logic functions are typically constructed of a few hundred 
popular building blocks like counters, multiplexers, shift 
registers, and comparators. The typical design is optimized to 
reduce package count, and "tricks" have evolved to make the 
most use of a device. For example, simple state machines are 
constructed from counters and decoders with ar;>ropriate pins 
tied to one or zero. This technique minimizes package count 
compared to a package-intensive gate-for-gate u",sign. The 

© 1993 Actel Corporation 

interconnections in these designs are done on the PC board, 
causing insignificant timing delays. 

FPGAs have logic building blocks closer in function to SSI than 
MSI, so SSI-oriented FPGA designs are generally more efficient. 
MSI designs, which utilize common tricks (like the counter 
decoder based state machine mentioned above), do not make 
efficient use of the FPGA architecture, since MSI building blocks 
were not developed with FPGA architectures in mind. Even 
though most FPGA soft macro libraries contain popular MSI 
functions (like decoders and counters), you should refrain from 
using the popular MSI-oriented design tricks, since they will 
result in inefficient FPGA designs. 

FPGA Design Techniques 

Understanding the main differences between FPGAs, PLDs, and 
SSI/MSI devices is the first step towards creating efficient FPGA 
designs. The next step is to understand efficient FPGA design 
techniques. Techniques will be described by grouping them as 
state machine, data path, and random logic functions. 

State Machine Oriented Techniques 

The traditional PLD design techniques for implementing state 
machines are geared toward the logic rich and register lean 
architecture of the standard PLD. A small number of state 
registers are used (usually the theoretical minimum), since 
registers are scarce. This requires a larger amount of 
combinatorial logic to decode the state, but PLDs usually are able 
to provide enough combinatorial logic to do this effectively. 
Using this technique for FPGAs would not be an efficient use of 
FPGA strengths-numerous registers and fast narrow logic gates. 
A bit-per-state approach to state machine design, where each state 
uses a separate register instead of encoding states in multiple 
registers, results in faster and more efficient state machines in II!' 
FPGAs. In many cases, speed improves by 50 percent to 100 ~ 
percent compared to the PLD-oriented methodology of an 
encoded state machine. 

In PLD-oriented designs, logic is typically used to develop 
outputs from state machines. Usually this requires an additional 
level of logic after the state register and adds delay. In FPGAs, 
this level of logic can be eliminated in many cases by combining 
the logic in front of the state bits in which an output is active. For 
example, if the CE output from a state machine needs to be active 
in states 3 and 5, the logic feeding state bits 3 and 5 can be ORed 
together and registered to create the CE output without incurring 
a logic delay after the register. Since the logic in front of state bits 
is simple, usually no additional delay or logic resources are 
required in front of the new register. 

Another popular state machine design technique for PLDs uses 
counters to generate a sequence of wait states. For example, a 
state machine may need to wait for 16 cycles until a data transfer 

8-1 



can begin. A four-bit counter can be used to generate the required 
state sequence. This is fairly efficient in PLO architectures 
because of the logic rich and register lean characteristics of the 
count function. It is not as good a fit for FPGAs, however. In 
FPGAs, registers are rich and a shift register is more efficient and 
faster than a counter. A normal shift register will require one 
register per wait state. If very large delays are required, a 
feedback shift register can be used that implements only one state 
less than a counter, but requires much less logic and is 
significantly faster. 

Another useful state machine design technique for FPGAs is state 
splitting. Sometimes the overall performance of a state machine is 
limited by a few complex states that require additional levels of 
logic from all the other levels. If these states could be simplified, 
the overall speed of the machine could be significantly increased. 
These states can be simplified by "splitting" the complex state 
into two or more simple states. This may require an additional 
clock period to complete the function associated with the original 
state, but this time may be insignificant compared to the time 
gained by speeding up the entire machine. 

A common state machine design technique with MSI uses a 
loadable counter to implement a state machine. Load inputs are 
tied to a jump address (sometimes logic is used if more than one 
jump address is needed). The counter either counts (to advance to 
the next state) or loads (to jump to a different state). This is 
efficient in MSI since it requires only a couple of packages to 
implement a simple state machine. While this design technique 
reduces MSI package count, it results in inefficient logic usage 
for FPGAs. The bit-per-state technique is much more efficient 
and easier to design when using FPGAs. 

Another common inefficient FPGA design technique uses a 
single large state machine instead of multiple communicating 
small state machines. In MSI, sometimes a single microcoded 
state machine controls a complex data path. This works well since 
large registered PROMs are available to implement a design in a 
small number of packages. These designs are complicated, 
however, because each state could have several activities 
occurring simultaneously, and the interactions between each 
activity need to be checked in every state. In FPGAs, multiple 
communicating state machines are easier to design, since most of 
the communication is local, and only a few activities need to be 
communicated between different state machines. The distributed 
machines tend to have much simpler logic requirements that also 
fit better with the FPGAs register rich, small logic building block 
characteristics. This approach is also better for FPGA routing 
because the routing resource requirements are more spread out. 
Thus, less congestion will occur, making routing more efficient. 

Data Path-Oriented Techniques 

One of the big strengths of FPGAs is in implementing data path 
functions efficiently and at very high speed. The register rich 
architecture combined with the ability to implement multiplexers 
efficiently make FPGAs ideal devices for implementing data path 
functions. 

8-2 

FPGAs' register rich architecture allows complex functions to be 
pipelined easily to improve performance. Pipeline adders, 
multipliers, and other complex data functions can improve 
performance considerably over non-pipelined versions. Since 
registers are readily available at the output of logic, this important 
technique requires virtually no extra resources. Even functions 
that wouldn't normally be considered candidates for pipelining 
should be considered. For example, pipe lining can be used in 
counting, comparing, and code translation when latency isn't an 
issue. Typically, any portion ofthe data path where latency can be 
introduced is a candidate for pipelining. 

Some data path functions are less efficient to implement in 
FPGAs than others, and you should use the more efficient 
functions as much as possible. As discussed previously, shift 
registers and feedback shift registers are easily implemented in 
FPGAs and should be considered for untraditional applications 
such as address generation for FIFO or buffer memories, 
positioning in waveform generation, or high-speed event timing 
or counting. 

If counters that are only loaded occasionally are required, 
prescaling techniques can be used to improve operating 
frequency. However, these techniques also result in slower load 
capability. Applications that need to generate long address 
sequences-for example, memory access--can use this load 
latency counter very effectively and operate at a higher speed than 
a nonlatency version. 

Nonlatency counters have better performance than MSI 
equivalents when they are designed using look ahead techniques. 
These techniques do not impose any additional constraints on the 
application like the load latency counter, but they take advantage 
of the register rich nature of FPGAs in implementing counter 
functions. For example, in a 16-bit down counter, each register 
should "roll over" after the counter reaches all zeros. Instead of 
detecting the all zero case by placing combinatorial logic after the 
counter registers, logic can be placed in front of a register to 
detect the case when the counter contains a one and is counting 
down. The register will then be active on the same cycle in which 
the counter contains all zeros, saving the combinatorial delay 
associated with the all zero detection. Vendor-supplied soft 
macros should use this technique to provide users with the fastest 
possible nonlatency counters. 

Adders are other common data path elements commonly used in 
FPGAs. When pipelining isn't possible, the carry select technique 
is fastest for implementing combinatorial adders. This technique 
uses additional logic to produce the two possible results of an 
addition operation. One result assumes the carry in to a particular 
bit is active and the other assumes that the carry in to a particular 
bit is inactive. The actual carry is developed in parallel and is used 
as the input to a multiplexer that selects the actual result. This 
utilizes the multiplexer capability of FPGAs to its fullest and 
implements adders in the smallest number of levels of delay 
possible. This technique can be generalized to other complex data 
path functions and shows that logic can be paralleled to 
effectively increase performance. More logic modules are 
required over serial approaches, but for speed critical paths it is an 
excellent technique. 



FPGAs can be very efficient at implementing small multiport 
memories, for example, in algorithms that require scratch pad 
data storage. Since each register input and output is 
simultaneously accessible, unlike accessible memories where 
only single values can be accessed, algorithms that need to access 
several variables simultaneously can be implemented in a single 
cycle. If this is the critical portion of a complex algorithm, 
performance can be increased dramatically over more serial 
approaches. 

Random Logic Oriented Techniques 

Many of the techniques mentioned so far also apply to random 
logic oriented functions. Using parallel logic, feeding the critical 
path near the end of a logic tree to use the minimum number of 
logic levels, using registers to predecode and pipeline, and using 
shift registers instead of counters are all useful techniques for 
optimizing random logic designs. 

Management of fanout is perhaps the most important aspect of 
implementing high-speed random logic designs. As fanout 
increases, interconnect delays also increase, slowing 
performance. Keeping fanout low will almost always result in 
better performance. The two best techniques for managing fanout 
are buffering and duplicating logic. 

Buffering a design is simply the process of adding buffers to 
reduce the fanout of a large net. Typically, the additional delay of 
a buffer is less than the additional delay associated with a heavily 
loaded net. Thus, buffering results in a faster signal overall. 
Buffering is also useful when a logic signal is needed at two 
different levels of a logic tree. The signal closest to the output of 
the logic tree can arrive later than the signal going into the higher 
level of the tree. A buffer can be used to isolate the portion of the 
signal that can arrive later and ensure that the critical signal is as 
fast as possible. Buffering is also useful if a signal has a local 
component and a component that needs to travel to a more distant 
portion of the device. The buffer can isolate the local portion of 
the signal from the more distant portion so that the local portion 
does not suffer any speed degradation because of the possible 
long routing delay for the long interconnect. 

Introduction to FPGA System Design 

Since a buffer uses the same logic module as any other logic 
function, in some cases it is more effective to duplicate logic 
instead of buffering. For example, a three-input OR gate that 
drives a fanout of eight could be duplicated so that each output 
only drives a fanout of four. (If a particular destination is critical, 
the load could be split unevenly with the critical signal given the 
lower fanout.) The inputs to the OR gate now drive one extra load, 
but the additional delay associated with a single extra load is in 
almost all cases less than the speedup associated with the logic 
duplication. This technique is particularly effective when high 
fanout registers are duplicated, since registers are an abundant 
resource in FPGAs. 

Many of the SSI-oriented tricks designers use for random logic 
translate directly into FPGA devices because of the similarity of 
the basic building blocks. You must keep in mind that routing 
resources are limited inside FPGAs, whereas routing resources in 
SSI designs on PC boards are virtually inexhaustible. Sections of 
logic that use too many different clock sources and high fan-in 
may overly constrain routing. For example, it is usually more 
efficient to use a synchronous clock source with synchronous 
enables instead of a large number of individual clock signals to 
load individually selected data bits into registers because 
synchronous enable signals have more routing flexibility than 
clock signals. 

Since FPGAs are most efficient at implementing logic at the input 
of registers, a good rule of thumb in implementing random logic 
is to use logic at the input of registers instead of the outputs 
wherever possible. For example, multiplexing a signal prior to a 
register is more efficient than multiplexing the signal after the 
register. 

Conclusion 

This section has shown several design techniques that should help 
you use FPGAs more efficiently. You should learn and use these 
techniques to improve the efficiency of your FPGA designs. 

8-3 



8-4 



An FPGA Family Optimized 
for High Densities and 
Reduced Routing Delays 

Reprinted from PROCEEDINGS OF THE IEEE 1990 CUSTOM INTEGRATED 
CIRCUITS CONFERENCE, Boston, Massachusetts, May 13-16, 1990 

An FPGA Family Optimized for High Densities and Reduced Routing Delay 

Mike Ahrens, Abbas El Gamal, Doug Galbraith, Jonathan Greene, Sinan Kaptanoglu 
K.R. Dharmarajan, Lynn Hutchings, Sifuei Ku, Phil McGibney, John McGowan, Amer Samie 

Kitty Shaw, Norma Stiawalt, Telle Whitney, Tom Wong, Wayne Wong, Bortay Wu 

Actel Corporation 
955 E. Arques Ave. 

Sunnyvale, California 94086 

ABSTRACT: The Act-2 family of CMOS Field­
Programmable Gate Arrays uses an electrically programmable 
"antifuse" and new architectural and circuit features to obtain 
higher logic densities while increasing speed and routability. 
Improvements include: two new logic modules, novella and 
clock driver circuitry, and more flexible and faster routing 
paths. New addressing circuitry shonens programming time 
and speeds complete testing for shons, opens and stuck-at 
faults. Fully automatic placement and complete routing are 
retained. Special software tools used for architectural 
exploration and layout generation are noted. 

1. Introduction. 

Previous papers described an architecture for field­
programmable gate arrays (FPGAs) [I], and its 
implementation in the Act-I FPGA circuits [2]. These 
demonstrate that user programmability can be obtained 
without sacrificing the application flexibility of a channeled 
gate array architecture. 

This paper describes new architectural features, circuit 
techniques and software that approximately double system 
speeds, and are capable of extending the architecture to logic 
densities of 8,000 gates in 1.2 micron technology and to 
approximately 16,000 gates for 0.8 micron. (Note that these 
gate counts are based on the capacity of an equivalent mask­
programmed gate array. Other measures would yield higher 
values.) The circuits employ a one-time electrically 
programmable "antifuse" offering small area and capacitance, 
and low resistance once programmed [3]. 

As before, the architecture consists of rows of logic 
modules separated by horizontal channels. This organization 
is similar to that of a channeled gate array, except that 
instead of an area for custom metallization the channels 
contain wiring segments of various lengths which can be 
connected by antifuses. 

A key goal was to insure complete automatic placement 
and routing with acceptable routing delays. This is facilitated 
by the inherent flexibility of the channeled architecture and 
the integration of large numbers of antifuses (700,000 or 
more) on a single chip. 

2. Logic Module 

The choice of the logic module is critical to an rPGA 
architecture. The module must be simple enough to pe.mit a 
compact and high-speed circuit layout. Yet it must also be 
flexible enough to accommodate the most frequently used 
logic functions (macros) with several choices of routing. Our 
approach is to evaluate many candidate modules against 
macro usage statistics from actual applications. (The 
philosophy is similar to that used to define the instruction set 
of a RISC microprocessor. It has also recently been applied 
to BiCMOS gate arrays [4].) To assist in this task, a program 
has been developed that can enumerate all macros 
accommodated by a given module in minutes [5]. 

The Act-I family uses one general-purpose module, 
which implements all combinational functions of 2 inputs, 
many of 3 or 4 inputs, and others ranging up to 8 inputs [I]. 
Any sequential macro can be configured from one or more 
modules using appropriate feedback routings. 

At higher logic densities, the law of averages makes 
designs begin to adhere more closely to typical macro usage 
statistics (see, e.g., [4]). This motivates the use of a mix of 
two new modules, each of which is most efficient for a 
different set of macros. The "C-module" is a modified 
version of the . Act-I module reoptimized to better 
accommodate high-fan-in combinational macros, e.g. wider 
AND gates, though with some loss in ability to accommodate 
sequential functions. The S-module, on the other hand, is 
optimized for configuring sequential macros. It can 
accommodate a latch or flip-flop and/or many combinational 
macros of one to seven inputs. Both transparent-high and 
-low latches and rising- and falling-edge-triggered flip-flops 
are possible. 

The two-module scheme can reduce the number of 
modules required for a block of logic by up to a factor of 3. 
On average, logic density per module is increased by over 
50%. Funhermore, because the density is increased, the 
number of routed nets in a typical critical path is reduced. 
This significantly improves speed. Fig. I shows how a 
typical critical path in a state machine can be implemented to 
take advantage of the wide fan-in of the C-module, and the 
capabilities of the S-module. The delay paths include only 
two routed nets. Performance data is summarized in Table I. 

Since the fan-in of each module is no larger than that of 
a typical gate-array macro, the two-module scheme maintains 

31.5.1 
IEEE 1990 CUSTOM INTEGRATED CIRCUITS CONFERENCE CH2860·5/90/0000·0166 © 1990 IEEE 

© 1993 Actel Corporation 

Article 
Reprint 

8-5 

I 



8-6 

the generality of a "fine-grained" architecture. Significantly 
larger and more specialized modules would risk a sharp loss 
of efficiency for applications that deviate from typical usage 
statistics. Using a larger module, or more types of modules, 
also adds constraints to the placement and routing problem, 
making automatic solution more difficult and ultimately 
increasing net delay. 

3. Input/Output 

Of particular importance to system performance is the 
delay between the time a clock signal changes at an input 
pad and when data appears on an output pad, referred to as 
Tclk-Q' (Memory bus interface applications are a good 
example). The goal is to gain maximum speed without 
sacrificing ftexibility. 

This is accomplished by providing a dedicated 
transparent-high latch in each output path. If desired, the 
dedicated latch can be combined with a transparent-low latch 
configured from a logic module to form a rising edge­
triggered ftip-ftop. (Note that the net connecting the two 
latches is not in the critical path, so Tclk-Q is not increased 
relative to having a dedicated ftip-ftop in each 10.) If ftow­
through operation is desired, the output latch gate is simply 
tied off to make the latch transparent. 

To limit set-up time requirements, a dedicated 
transparent-low latch is provided on each input path. The 
polarities of the input and output latches are chosen so they 
can be combined with each other, and possibly with other 
internal latches or ftip-ftops, to form a path that is 
functionally equivalent to a chain of rising-edge ftip-ftops. 
(See Fig. 2.). 

Chips with many simultaneously switching outputs 
require some form of slew rate control to avoid noise 
problems; several alternatives are possible. Sequencing the 
operation of several parallel drivers limits the slope of the 
current ramp when driving a passive load, but large di/dt can 
occur in bus contention situations when the contending driver 
suddenly shuts off. Feedback remedies this problem, but can 
still allow large di/dt in asynchronous systems where the 
logic state changes before a transition is complete. Instead a 
current mirror circuit was used to limit the drive current. 

Figure 1: part of a state machine implemented 
in four C-modules and one S-module. 

This results in lower di/dt noise in worst case situations, a 
simple way to implement programmable slew rate, and 90% 
power efficiency. The output buffer meets the 4mA HCT 
buss driver specification for AC, and the 6mA specification 
in steady state when the current limit shuts off. ESD 
protection is >2000V. 

Connections between the array and the 10 pads are 
made via special 10 modules interspersed with the logic 
modules. The 10 module has inputs for data, slew control, 
tristate, and separate gates for the input and output latches. 
The gate inputs are not restricted to a dedicated clock signal, 
but may each be driven from any pad or internal net. 

4. Clock Distribution 

Clock distribution is a problem in most large chips. lit 
an FPGA, where the load capacitance may be changed or 
redistributed to suit each application, it is a greater challenge. 

Special distribution networks are provided to deliver 
high-fanout clock signals to the inputs of any logic or 10 
module with minimal skew. Each network may be driven 
directly fl)m an input pad for high speed, or from user­
defined internal logic. High speed and low power are 
obtained by a distributed driver with 90% power efficiency. 

Skew is further reduced by automatic placement 
algorithms that balance the loading on each branch of the 
distribution tree. 

All clock inputs may also be routed in the normal way 
instead, allowing many local asynchronous clock signals if 
desired. 

<6 
5-7 
8 

<5 
ad): 15-20 

Table 1: Performance Estimates. 
(1.2 micron CMOS, typical process, S volts, 25 C). 

A. Desired behavior: 

B. Using latches and rising-edge-triggered flip-flops: 

EJ-EJ-EJ--EJ-~ 
, 10 module , lOIic~ -- 10 alsulea 

C. Using latehes and falling-edge-triggered flip-flops: 

'10 module '- lOP: modules / 

Legend: 
RFP = rising-edge D flip-flop. I'FP = falling-edge D flip-flop. 
TIlL = transparent-high latch. 1U.= transparent-low latch. 

Figure 2: 10 clocking-three eqtiivalent implementations. 

31.5.2 



An FPGA Family Optimized for High Densities and Reduced Routing Delays 

S. Routing Architecture 
Each routing channel contains horizontal tracks divided 

into segments of various lengths [1]. Surprisingly, the 
restriction to segments of predefined length does not greatly 
increase the number of tracks beyond what would be required 
in the unrestricted ~ase of mask-programmed channels [6]. 

In an efficient architecture it is inevitable that some 
nets' routings will be slower than others. The use of a low 
resistance switch, such as the antifuse, helps to narrow the 
resulting delay distribution. Further improvements have been 
obtained by a reduction in the maximum number of antifuses 
in the worst delay paths, as follows. 

In the vertical direction, most nets are routed using a 
short dedicated segment connected to the module's output 
driver through an "isolation" transistor (Fig. 3). (The 
transistor isolates the module circuitry from programming 
voltages present on the segments). In this case, there are only 
two antifuses plus the isolation device in the fath from the 
buffer to each input (input A in the figure). Though this 
favorable routing can be assured for speed critical nets, 
generally some 5-10% of the other nets must be placed with 
an input in some channel beyond the span of the dedicated 

uncommitted vertical segment ............. 

horizontal segment in a __ 
channel above the span --G!I---~I---
of the dedicated vertical 
segment 

/programmed anti-fuse 

-~.-----~----

dedicated 
vertical 

_ segment 

Figure 3: Act.! Routing 

uncommitted vertical segment 
,/ 

driver 

isolation 
device 

dedicated 
vertical 

_ segment 

Figure 4: Act-2 Routing 

segment (input B, Fig. 3). In the past, this required use of an 
uncommitted vertical segment and 4 anti fuses. 

Alteration of the order in which antifuses are 
programmed and a robust driver circuit permit limited 
programming of antifuses on the node connecting the driver 
to the isolation device, without risk of device breakdown [7]. 
This allows direct connection of the driver to any of several 
uncommitted vertical segments, as shown in Fig. 4. Since the 
additional antifuse presents little more resistance than that of 
the bypassed isolation device, the delay of these nets is not 
much greater than those using dedicated segments. Prediction 
of delays prior to placement (when it is not yet known which 
nets require uncommitted segments) becomes more accurate 
as well. 

Segmented channels represent an unusual layout 
chal\enge. They are as dense and large as a memory array, 
yet not repetitive. (A carefully chosen but irregular mix of 
segment lengths is provided for good routability.) For this 
reason, a layout generation program was developed that 
assembles the channels and modules automatically from the 
same database used by the routing software. This permits 
rapid layout of a family of arrays of various sizes by simply 
rerunning the generator with the appropriate input files. 

6. Placement and Routing Software 
Several new complexities are added to the placement 

optimization problem. Macros must be placed in modules of 
the appropriate type (C or S). Macros hooked to a clock 
network should be distributed so as to balance the load on 
the network's branches. There should not be excess demand 
for uncommitted vertical segments within the same column. 
Speed critical nets should be routed using only short 
horizontal segments and dedicated vertical segments. 

Nevertheless, new algorithms make it possible to satisfy 
all these constraints. Nearly all designs with module 
utilization under 85%, and most designs with utilization 
under 95%, route without manual intervention. Table 2 
summarizes results for several applications. Time for 
complete placement and routing is about 45-60 minutes on a 
68030-based workstation. 

7. Programming and Testing 
The time required to program an antifuse falls 

exponentially with the applied voltage. To keep 
programming time under 5-10 minutes for a chip with nearly 
a million antifuses, new circuit designs were developed that 
eliminate the threshold voltage drop along the path from the 
chip's supply pad to the antifuse being programmed. 

Changes have also been made in the addressing circuits. 
The pass transistor scheme described in [1] is appropriate for 
cases where there are many short segments in a track. 

Two adjacent horizontal segments in the same track may be con­
nected end-to-end by an antifuse 10 form a longer segment [II. For 
good routability it is necessary 10 route some small percentage of 
the nets in this way [61. which adds an antifuse 10 the path. How­
ever, speed critical nets are routed without this additional antifuse. 

31.5.3 

8-7 

I 



8-8 

However in larger chips the number of horizontal segments 
per unit area decreases to the point that it is possible to 
address each individual segment directly using only a small 
proportion of area for the addressing circuitry [7]. The 
reduction in the number of pass devices in the programming 
path improves the programming current and lowers the 
resistance of programmed antifuses, improving perfonnance. 
The pass transistor scheme is still used in the vertical 
direction where tracks are highly segmented. 

Direct addressing also reduces the time required to test 
for breakdown of defective unselected antifuses during 
programming. A complete test for unintended connections 
between any two segments can be done after the conclusion 
of programming (despite the fact that it is not possible to 
uniquely address each individual antifuse once programming 
commences). The number of vectors required is only 
logarithmic in the number of nets. Previously, the test for 
shorts required one or more vectors after each antifuse is 
programmed. 

Proper closure of a programmed antifuse is con finned 
by the passage of the programming current. Note that this 
complete testing for shorts and opens, combined with 
exhaustive testing of each logic and 10 module prior to 
programming, is more thorough than even a so-called "100% 
stuck-at fault coverage" test done on a conventional gate 
array. 

Once programming and testing are complete, no increase 
in resistance of a programmed antifuse or false programming 
of an unprogrammed antifuse have been observed in 1.8 
million accelerated burn-in device-hours [8]. 

8. Other Circuit Improvements 

The Act-l and Act-2 architectures allow user selection 
of any internal logic signal for presentation at a "probe" pad. 
This allows real-time external observation of each net as the 
chip operates in a system (similar to an in-circuit emulator 
for a microprocessor). Use of a sense amp circuit greatly 
increases the speed of the in-circuit probe path. 

Another challenge is to keep the gates of thousands of 
isolation devices pumped to a high voltage during nonnal 

99.4 
98.1 
97.1 
97.0 
94.5 
92.7 
87.3 
86.8 
86.7 

93.2 
92.6 

Table 2: Place and Route Examples. 

operation. A rapid, high-power pump operates when the chip 
turns on. It is then shut down when the desired voltage is 
reached and a low-power sustainer pump takes over. The 
required standby current is under 300uA. 

Acknowledgements 

The authors acknowledge contributions - by: Rick 
Wilkenson (layout); Sam Beal, Andy Haines, Dennis 
McCarty, Bob Osann (applications); Gregg Bakker, Steve 
Chiang, Shafy Eltoukhy, Esmat Hamdy, John McCollum, 
(technology); Sanko Lan, Justin Reyneri (logic) and Jeff 
Schlageter for his support. Sample designs were contributed 
by Texas Instruments, Data General, many Actel customers, 
and the EE 218 class at Stanford University. 

References 

[1] A. EI Gamal, J. Greene, J. Reyneri, E. Rogoyski, K. EI­
Ayat, and A. Mohsen. "An Architecture for Electrically 
Configurable Gate Arrays." IEEE J. Solid-State Circuits, 
Vol. 24, No.2, April, 1989, pp. 394-398. 

[2] K. EI Ayat, et. al. "A CMOS Electrically Configurable 
Gate Array." IEEE J. Solid-State Circuits, Vol. 24, No.3, 
June, 1989, pp. 752-762. 

[3] E- Hamdy, et. al. "Dielectric Based Antifuse for Logic 
and Memory ICs." IEDM Tech. Digest, San Francisco, 
CA, 1988, pp. 786-789. 

[4] A. EI Gamal, J. Kouloheris, D. How, M. Morf. 
"BiNMOS: A Basic Cell for BiCMOS Sea-of-Gates." 
Proc. IEEE 1989 Custom Integrated Circuits Conf., page 
8.3.1. 

[5] S. Lan, 1. Reyneri, J. Greene, A. EI Gamal. "An 
Automatic Function Generator for Field Programmable 
Gate Arrays." In preparation. 

[6] J. Greene, V. Roychowdhury, S. Kaptanoglu, A. EI 
Gamal. "Segmented Channel Routing." Submitted for 
publication. 

[7] A. EI Gamal, J. Greene, J. Reyneri. "Programmable 
Interconnect Architecture." US Patent 4,873,549. 

4:30 
4.57 
3.99 
4.78 
3.37 
4.34 
3.83 
5.25 
4.33 

[8] S. Chiang, R. Wang, 1. Chen, K. Hayes, 
1. McCollum, E. Hamdy, C. Hu. 
"Oxide-Nitride-Oxide Antifuse 
Reliability." Int'l Reliability Physics 
Symp., March 1990. 

Examples routed in possible implementations of the architecture with 1232 (a-j) and 
649 (k-m) logic modules. The notation "(xN)" means the block was replicated N 
times. 

31.5.4 



Estimating Actel FPGA 
Device Capacity 

Application 
Note 

Introduction 

Estimating the logic capacity of a field programmable gate array 
(FPGA) can be confusing and tedious for engineers because 
vendors count gates differently. The simple question is, "Will my 
design fit into this device?" For some vendors, the answer may be 
more complicated than might be expected. Fortunately, Actel 
FPGA device capacities are calculated using the most common 
method in the ASIC industry. This application note explains how 
to calculate Actel device capacities and how to determine logic 
resources for a particular application. 

Capacity Estimation 

Gate array capacities are commonly determined by the number of 
equivalent two-input NAND gates in a device and the percentage 
of usable gates rather than by the number of PLD equivalent 
gates. It should be noted that a gate array equivalent gate is a two­
input NAND gate but a PLD equivalent gate is a more arbitrary 
value assigned to the device by the manufacturer. 1 The measure 
of usable gates is the percentage of total gates in a device that 
may be used in a typical design before exhausting its routing 
resources. Since Actel device sizes are based on typical gate array 
equivalents, gate array designers should already be familiar with 
the density estimation of an Actel FPGA. 

Actel determines the gate capacities of its FPGAs by comparing 
actual designs and library macros with the same logic 
implemented on a masked gate array. The ACFM family 
architecture consists of an ar.1Y of logic modules with the rows 
and columns separated by routing tracks. It is more complex than 
a gate array, but the Actellogic module is much simpler than the 
basic element of most competing FPGA and PLD architectures. 
Furthermore, it offers a flexible interconnect technology and no 
fixed AND-OR planes. Because the gate counts for masked gate 
array designs can be determined easily, Actel uses the masked 
arrays as a convenient standard to characterize its devices in gate 
array equivalents. Based on comparisons with masked gate arrays 
and on analyses of actual designs, Actel logic module 
characteristics can be summarized by the following relationships. 
For the ACT I family, 

logic modules = (ff * 2) + (gates/3.2) 

and for the ACT 2 family, 

logic modules = (ff) + (gates/3.4) 

(1) 

(2) 

where ff equals the number of flip-flops. Equation 1 states that 
the number of ACT 1 modules needed to implement a design is 
equal to twice the number of flip-flops plus the number of gates 
divided by 3.2. Equation 2 states that the number of ACT 2 
modules needed to implement a design is equal to the number of 
flip-flops plus the number of gates divided by 3.4. These 

© 1993 Actei Corporation 

relationships determine the capacity requirements for a specific 
design. The gate density factors were obtained by performing 
density tests on a number of randomly selected customer designs. 
Table 1 lists the capacities of different device types and their 
corresponding gate array equivalent gates, PLD equivalent gates, 
and logic modules. The ACT I family consists only of 
combinatorial modules, while ACT 2 and ACT 3 families consist 
of both sequential and combinatorial modules. Details of these 
modules are available in the Actel FPGA Data Book and Design 
Guide. Furthermore, using PREP benchmark measurements 
clearly shows that Actel capacity estimates are the most accurate 
of any manufacturer, and that the capacity of Actel devices varies 
the least among benchmarks, making it easy to determine the 
device required to implement a particular application.2 

ACT 3 devices require fewer logic modules than do ACT 2 
devices to implement designs because ACT 3 logic resources are 
enhanced. The ACT 3 S-module implements a more 
comprehensive combinatorial function than the ACT 2 version, 
and each ACT 3 I/O module contains input and output flip-flops. 
These features increase the gate density of the ACT 3 family. 

Utilization 

The utilization of any device depends on the connectivity of every 
logic module. For example, connecting a two-input NAND gate 
with an S-module will give high utilization since only three 
signals need to be successfully routed. In contrast, connecting a 
four-input multiplexer with an S-module might decrease the 
utilization since seven signals must be routed successfully. 

Summary 

The device sizes of the Actel FPGA are based on typical gate 
array equivalents. The tools and techniques used for Acte} FPGAs 
are the same as those used in traditional ASIC gate array design. 
A conservative utilization factor for Acte! FPGAs with automatic 
layout tools would be approximately 80% of total gates, although 
higher utilizations are frequently achieved. It is easy to determine 
the device requirements for implementing a specific design 
because the capacity of Actel devices varies the least among 
common benchmarks. 

References 

1. Dennis McCarty, "Interpreting FPLD Gate-Density Data High 
Performance Systems," 1990 Programmable Logic Design 
Guide, pp 14-20. 

2. "PREP PLD Benchmark Suite #1, Version 1.2," 
Programmable Electronics Performance Corporation, 
March 28, 1993. 

8-9 

I 



Table 1. Device types with the corresponding capacities of logic modules. 

Capacity Logic Modules 

Device Gate Array PLD/LCA Equivalent 
Equivalent Gates Gates S-Modules C-Modules 

A1010A/A1010B 1200 300 N/A 295 

A 1 020AI A 1 020B 2000 6000 N/A 547 

A 1225/A 1225A 2500 6250 231 220 

A 1240/A 1240A 4000 10,000 348 336 

A1280/A1280A 8000 20,000 624 608 

A1415 1500 3750 104 96 

A1425 2500 6250 160 150 

A1440 4000 10,000 288 276 

A1460 6000 15,000 432 416 

A14100 10,000 25,000 697 680 

8-10 



~c/@I! 
• 

Estimating Capacity and 
Performance for ACT 2 
FPGA Designs 

Application 
Note 

Introduction 

If you are unfamiliar with field programmable gate arrays 
(FPGAs) you are initially faced with one of two tasks: integrating 
an existing discrete logic or PAL-based design or starting a new 
design. Before proceeding with a functional implementation, you 
must assess how much logic will fit into an FPGA and at what 
speed it will perform. In addition, you must make these 
determinations without having a detailed knowledge of the FPGA 
architecture. This section will address both of these issues 
specifically for Actel's ACT™ 2 family of FPGAs. 

The high performance of ACT 2 FPGAs may be seen in macros 
from the soft macro library. An A1225A-2 runs a 16-bit loadable 
counter at 105 MHz, and the A1240A-2 implements eight of these 
counters at between 66 and 75 MHz (performance is stated at 
worst-case commercial operating conditions). A 16-bit 
Accumulator mns at 39 MHz. 

Architecture Overview 

Fortunately, it is easy to understand the basics of the ACT 2 
architecture. The ACT 2 family of FPGA devices comprises rows 
of logic modules separated by horizontal routing tracks 
containing metal segments. Routing tracks (metal segments) also 
run vertically over the logic modules and the horizontal routing 
tracks. The vertical segments can connect to the inputs and 
outputs of the logic modules. Connections between logic modules 
are made by programming two antifuses: one at the intersection 
of a vertical segment connected to the output of a module and the 
other at the intersection of the horizontal segment and a vertical 
segment connected to the input of another module. Most 
connections are made in this fashion, although other special 
connections are possible. The ACT 2 data sheet contains a 
complete description of the routing architecture. 

Logic Modules 

There are two types of logic modules in the array: the 
combinatorial or C-module and the sequential or S-module. There 
are approximately an equal number of each type of module in an 
ACT 2 device. 

Macro Library 

Designs bascd on discrete logic (TTL or CMOS SSI/MSI) are 
easy to translate into Actel FPGAs. Most common digital 
functions are provided in the design library as either hard or soft 
macros. Hard macros utilize either one or two logic ~odules. 
Both C-module and S-module hard macros exist in the macro 
library in more than 100 logic variations. Soft macros are 
predesigned schematics containing many hard macros. A list of 
Actel hard and soft macros for the ACT 2 family can be found in 
the ACT Family Macro Library Guide. 

Some soft macros, like the TA161, preserve the look and function 

© 1993 Actel Corporation 

of standard 74 series TTL logic. These macros retain the suffix of 
their SSI cousins, but have the TA prefix in place of the 74. Other 
macros, like the CNT4B, are standard digital functions needed in 
many designs. These macros frequently provide more 
functionality than what is offered in a standard TTL digital data 
book. Soft macros may be duplicated and modified, enabling you 
to create custom macros to suit individual needs. The Actel hard 
macro list contains Boolean functions of two, three, four, and five 
inputs, with most inputs available in either active high or active 
low versions. Similarly, active high output or active low output 
versions can be found. 

Estimating Device Capacity 

A few simple analysis steps determine the required FPGA device 
capacity when converting an existing circuit board logic into 
FPGAs. 

Discrete Logic Replacement 

An estimation of the size of an existing TTL or CMOS design 
may be determined by using the design's parts list. The data book 
lists the number of Acte! logic modules needed to build each of 
the soft macros. Multiplying the number of logic modules needed 
by the quantity of any part used will give the total number of logic 
modules required for anyone function. Consider the following 
parts list from a TTL design. First, select an Actel equivalent 
macro for each item on the parts list and note the number of 
S-modules and C-modules required. Then multiply by the 
quantity of macros used, and sum the products to get the total 
number of S-modules and C-modules required. 

The total logic module count for this sample design is 150 
C-modules and 134 S-modules. From the data book, we can see 
that the Al225 has 231 S-modules and 220 C-modules. 
Therefore, this design should occupy only 63 percent of the I­
A1225, of leaving capacity for an additional 20 percent to 
30 percent of logic. Extra logic modules may be needed to reduce 
internal fanout, so you may want to add one logic module for 
each signal with a fanout greater than eight. Determining fanout 
in soft macros is covered later. 

PAL Logic Replacement 

Estimating the number of logic modules needed to replace an 
existing PAL is also very straightforward. Figures 1 and 2 show 
an example of typical PAL files converted to Actellogic modules. 
These two equations are typical PAL functions: address decoding 
and state machine control. Timing information is included for 
~ater use. Figure 1 is a wide-registered AND function decoding 16 
mputs and using only five logic modules, or one percent of the 
smallest ACT 2 part. Figure 2 shows this AND function enlarged 
to include the decoding of 24 input signals. Sixty-four signals 
may be decoded and registered in this way using only 21 logic 
modules and two levels of logic. 

8-11 



Table 1. Converting Sample Designs from TTL to Actel Macros 

Per Macro Total 

No. Part no. Description Quantity Actel Macro S-module C-module S-module C-module 

74LS161 4-bit counter 3 TAl61 4 10 12 30 

2 74F151 8:1 multiplexer 4 TAl51 0 5 0 20 

3 74LS684 
8-bit mag 

2 
MCMPC8 

0 
36 0 72 

comparator 

4 74 LS377 8-bit register 6 TA377 8 0 48 0 

5 74F166 8-bit shift register 8 SREG8A 8 0 64 0 

6 74LS74 Dual D flip-flop 9 DFPC 

7 74F113 Dual JK flip-flop 4 JKFIB 

8 74F04 Inverter 2 n/a 

9 74F32 Quad OR gate 2 OR2 

10 74F08 Quad AND gate AND2 

Figure 3 is a familiar three-product term AND/OR array using 
only four logic modules to implement a typical state machine 
equation. Figure 4 shows the product and sum terms expanded 
further. In the PAL equation examples, note how easily the 
number of either product or sum terms can be expanded. A small 
incremental change in both delay and size is added each time the 
array is enlarged. This is in sharp contrast to the large step 
function increase in delay and size when a second PAL array must 
be used to implement a particular equation. 

PAL equation conversion shows the flexibility of the Actel logic 
module, implementing a variety of different combinatorial and 
sequential functions in few modules without wasting dedicated 
resources. With ACT 2 devices, the cost of using a sequential 
function is equal to the cost of using a combinatorial function. 
Any logic module can be used for either type of function. In 
contrast, PALs are rich in AND/OR gating but lacking in 
registers. Encoding states in a PAL requires using the least 
number of flip-flops possible, while with Actel, you are free to 
use any combination of flip-flops and logic. Both examples in 
Figures I and 2 make use of the multiplexed inputs of the S­
module. This four-input mUltiplexer feeds a dedicated flip-flop, 
allowing both combinatorial logic and registering to be done in a 
single module. This also improves speed by eliminating the 
routing delays to the flip-flop. 

Gate Array Replacement 

Gate array designers should have no trouble estimating density in 
an Actel FPGA, since device sizes are based on typical gate array 
equivalents. Each logic module in the ACT 2 family roughly 
equals six two-input NAND gate equivalents. The tools and 
techniques used for Actel are the same as those used in traditional 
ASIC gate array designs. A conservative utilization factor for 
ACT 2 parts would be 80 percent of total gates, although higher 
utilizations are frequently achieved. 

8-12 

0 18 0 

0 8 0 

0 0 0 0 

0 0 8 

0 0 4 

Determining Intrachip Timing 

Actel FPGA designers should keep these factors in mind: the 
target internal clock frequency and the operating temperature, 
voltage, and speed grade. These factors are used to determine 
average fanout and levels of delay allowed. 

Scaling 

The operating conditions are used to determine the proper delay 
scaling required. Data book delays are provided at worst-case 
commercial conditions (TA = 70°C, Vee = 4.75 V, and worst­
case processing). Derating multipliers and interpolation graphs 
are provided to scale or derate the data book delays to worst-case 
industrial or military values. CMOS devices, such as those 
manufactured by Actel, are affected by both temperature and 
voltage. In addition, device speed will vary because of process 
variations. Actel devices are 100 percent tested to ensure that the 
process variations are within the maximum specification. The 
interpolation graphs are useful when the device will be operated 
at nonstandard conditions, such as Vee = 4.6 V and TA = 65°C. 

Speed Grades 

Actel offers different speed-grade versions of each part. The 
faster parts have a suffix of -lor -2 added to the part number, 
before the package type. The -1 parts are 15 percent faster 
and the -2 parts are 25 percent faster than standard speed 
devices. Speed-grade selection is based on factory testing of delay 
chains programmed into the device during factory screening. 

Understanding Routing Delays 

Unlike most FPGAs, the timing and delay information in Actel's 
data book includes routing delays. Each delay parameter is listed 
for a fanout matrix. This allows accurate prediction of the 
performance of any circuit in an Actel FPGA. 



Dividing the clock period by the logic module delay determines 
the average number of logic modules that can be placed between 
any two flip-flops. Repeating this for several different fanouts 
gives a good guide to use. 

Consider the A1225A-2 running with a 30 MHz clock, over 
commercial operating conditions. Table 2 gives a guideline to use 
in creating the schematic. First a maximum number of six 
modules can be traversed in 33 ns. For a complicated 
combinatorial section that needs four levels of logic, the 
maximum fanout should be limited to eight loads. In data path 
portions of the design with only two levels of logic, fanouts 
greater than eight can be acceptable. High signal fanouts should 
be split by duplicating the logic rather than by buffering the 
output as shown in Figure 5. A single buffer and a four input 
AND/OR are both implemented using one logic module. 
Therefore, duplicating the source takes the same amount of 
resources as adding a buffer on the output, but it uses one less 
logic module delay and results in a faster design. 

When determining fanout, it should be noted that many of the 
input pins on Actel's hard and soft macros have a load greater 
than one. An example of this would be a four-bit counter where 
the outputs are fed back to the inputs to determine the next count. 
These feedback paths load down the outputs. The ACT Family 
Macro Library Guide lists this pin loading information for macro 
input. Alternatively, the loading can be manually calculated from 
the schematics that are part of the hard and soft macro libraries. 

Soft macro selection plays a big part in determining the speed of 
an Actel design. Just as in TTL design, building a large counter by 
using several smaller counters with ripple carry outputs will lead 
to a very slow design. Soft macros should be chosen based on 
speed and density requirements, not on pin-for-pin compatibility 
to familiar MSI packages. 

Each soft macro listing includes the number of levels of logic, 
(equivalent to number of gate delays) and the number of logic 
modules required to build each of the macros. This is the best 
information to use when selecting a soft macro. For example, 
consider three four-bit counters: the CNT4A, CNT4B, and 
UDCNT4A. If the counter always counts UP, then the best choice 
based on speed and density is the CNT4B, which uses only 11 
logic modules and four levels of logic. 

Estimating Capacity and Performance for ACT 2 FPGA Designs 

Determining PAL and State Machine Performance 

Figures 1 and 2 used earlier as sample PAL equations also show 
some typical timing calculations. Here, the external setup for 
registering a 16-input decoding function is only 1.8 ns. This could 
be expanded to 64 inputs, which only adds one more level of 
delay of about 4.9 ns. The external setup time for registering 
64 inputs is 6.7 ns. 

Figure 3 shows an internal state machine running at 92 MHz. This 
example can be used to show module delays based on fanout. 
Each of the state equation inputs is assumed to have a 
fanout of four, while the other signals have a fanout of one. 

Figure 4 shows an expanded state machine. Only the added 
signals have an increased delay. If these are static inputs, the rest 
of the circuit will still run at 92 MHz. If these are outputs of 
clocked registers, then the new clock frequency is 66 MHz for 
three levels of logic. 

Note that additional product terms may be added with either no 
increase or only an incremental increase in the delay. This allows 
more flexibility, and makes less impact on changes to existing 
designs. In contrast, once the product terms are used up on a PLD 
output, a change requires traveling through an adjacent array 
term, and the delay jumps to two times the original delay. 

Determining Interchip Timing 

While internal clock frequencies are determined by logic module 
delays, system clock frequencies are determined by how fast 
data may be moved onto and off of the chip. I/O signals are one of 
two types: combinatorial through the chip or clocked onto and off 
of the chip. In the following examples tDLH, the worst-case time 
of driving a CMOS signal high with worst-case commercial 
conditions will be used. 

For combinatorial I/Os, the simple addition of input, internal, and 
output delays will give the total through chip delay as shown in 
Figure 6. The data book gives output delays for driving the 
outputs to both TTL and CMOS levels. For latched I/Os, 
two options are available: using I/O latches or using the internal 
flip-flops and latches. Each has its own advantages. Varying the E. 
loading of the two global clock circuits may also affect the delays 
by a few nanoseconds. Figure 7 shows three different options for 
latching inputs. 

Table 1. Module and Routing delay values for A1225A-2, Commercial Operating Conditions 

Worst-Case Commercial 

Levels of logic allowed @30 MHz 

Fanout = 1 

4.9 

6.7 

Fanout = 2 

5.5 

6.0 

Fanout = 3 

6.1 

5.4 

Fanout = 4 

6.6 

5.0 

Fanout = 8 

8.2 

4.0 

ns 

8-13 



External setup and hold times for the input latches are given in the 
Sequential Timing Characteristics section of the data sheetdata 
sheets. The times listed, tINH and tINSU, relate the G input of the 
I/O latch to the data pad. The delay from the external clock to the 
G input must be included. Figure 7 shows how to calculate the 
setup and hold times for an external clock with one load. When 
one of the two global clocks are used with an input latch, the 
external setup and hold times may be found for a variety of clock 
fanouts. These externally measured times include tINH and tINSU' 
The setup time, tSUEXT' is zero ns, and the hold time, tHEXT' is 7 
ns for a clock network fanout of 32 loads or less. The input 
latches offer zero setup time, which allows for very high system 
clock speeds but a longer hold time. An internal flip-flop or latch 
may be used for shorter hold times with an external input. The 
last example in Figure 7 shows this method. 

Output latch clock-to-q, toHL and tGLH' is shown under the 
Output Module Timing section of the data sheet. Adding the G 
input delay, whether it is the global clock or an independent 
clock, gives the total external clock-to-Q delay. Setup and hold 
times for the output latch are represented in the Sequential 
Timing Information as tOUTH (= 0.0 ns) and tOUTSU (= 0.4 ns). 
The first circuit in Figure 8 shows the timing for an output 
register. 

If an output must be driven by a D flip-flop and not a transparent 
latch, two options are available. One uses the internal S-module 
and an output buffer. The second builds a master/slave D flip-flop 
from one internal latch and one of the output latches. This is 
included in the ACT 2 library as a firm macro, ORH. Timing for 
both cases may be seen in Figure 8, with the master/slave 
flip-flop giving the faster clock-to-out time. 

When fast clock-to-out is needed off chip, one of the global 
clocks can be used exclusively for outputs. This will decrease the 
delay for the clock signal by reducing the fanout. 

8-14 

Estimating System-Level Performance 

System-level performance can be estimated after chip-level 
timing parameters. System-level performance depends on the 
message passing constraints (FPGA to FPGA, FPGA to PAL, or 
TTL to FPGA) imposed by the FPGA. For example, in the 
Actel-to-Actel message transmission in Figure 9, you can expect 
the maximum FPGA-to-FPGA propagation times to be between 
16 and 27 ns, depending on the internal device loading and speed 
grade. 

An Actel-to-PAL transmission is shown in Figure 10. The PALs 
in the circuit are either 15 ns or 25 ns devices. The use of 5 ns 
PALs will reduce Actel-to-PAL transmission times significantly. 

Finally, the Actel-to-TTL transmission example in Figure 11 can 
be run at from 25 to 35 MHz. This high transmission rate is due in 
part to the short setup time of TTL F-series registers. 

Summary 

These techniques will enable you to make tradeoffs between 
density and speed. The same Actel parts may be used for either 
high-speed, medium-density designs, or for low-speed, 
high-density designs. These tradeoffs may also be made within an 
individual design, tailoring the architecture for your needs. 

The information in this section should enable you to predict the 
size and speed of an ACT 2 design. The size of a design may be 
predicted using the soft macro library and by translating PAL 
equations. The speed of a design may be determined by 
controlling the levels of logic, fanout, and the type of I/O modules 
used. 



! 
en 

I.. ·1.. ·1.. ·1.. ·1.. ·1.. ·1 
tlNYL + tlRD1 tpD1 + tRD1 tsu teo tRD1 tDHutDLH 

A27 
A26 
A25 
A24 

A23 
A22 
A21 
A20 

A19 
SEL 
ALE 

CLK 

BGRANT 

* 
* 

/SEL 

A29 

A23 

y 

* 
* 
* 

D 

D 

S-MOD 

ft 

tCKH 

/ALE 

A28 * 
A22 * 

*" /WRT 

/A27 * 
/A21 * 

*" /A31 *" /A30 

A26 * A25 * A24 

A20 * A19 

Figure 1. PAL Implementation with Wide Fan-In 

II 

AD BGRANT 

m 
2!. 
3" 
a 
:i' 
cc 
o 
I» 
"C 
I» 
(") 

~ 
I» 
~ 
Co 
"tI 
CD 

a-
3 
I» 
~ 
(") 
CD 

Q 
» 
Q 
N 
." 
"tI 

" » 
c 
CD en 
cS' 
~ 
en 



A3l y A 

A30 PAD Y B 

A29 PAD Y 

A28 y D 

A27 y A 

A26 PAD B 

A25 y 

A24 y D 

A23 A 

A22 PAD B 

A2l y 

A20 D 

Al9 y A 

Al8 B 

Al7 y 

Al6 y D 

Al5 
Al4 y 

S-MOD 
Al3 

y 

Al2 

All 
AlO y 

A9 y 

A8 
y 

A7 
SEL 

y 

ALE 
WRT y 

Figure 2. Expanding Fan-In to 28 for PAL Implementation 

8-16 



PAD 
eLK 

! 
...... 

II 

I- ~I- ~I- ~I~ ~I~ ~I 
tpD + tRD4 tpD + tRD1 tsu teo tRD3 

so S2 * /S~ * /so * BURST * DRDY 
+ /S3 * /SO * /BURST * /DRDY 
+ S2 * S~ * so * DRDY 

Figure 3. Implementing State Machine 

so 

m 
~ 
3 
a 
:r 
(Q 

0 
I» 
"0 
I» 
~. 
~ 
I» 
:::::I 
Q. 

"C 
(I) 

:::. 
0 

3 
I» 
:::::I 
(') 
(I) 

~ 
» 
0 
-I 
I\) 

." 
"0 
G') 
» 
c 
(I) 
(I) 

cO· 
:::::I 
(I) 



! 
co 

~ 

Sl 

~' S2 
-, y 

BURST 
DRDY 

A 

Sl : ==zay A 

S2 
B~ 

D 
c 

1 so 

DRDY 

DRDY • A 

BURST • Br--'\ S-MOD 

S3 • c 

!? 
E 

I 
RST1 
RST2 

BREQ • A 

BGNT • BI ,\y 

BACK 
c 

Figure 4. Expanded State Machine 



eLK 
RST 

eLK 
RST 

eLK 
RST 

Estimating Capacity and Performance for ACT 2 FPGA Designs 

y 

Slower 

I 

faster 

Figure 5. Redundant Source Versus Buffering 

8-19 



fP 
N o 

SIGl 
SIG2 
SIG3 
SIGN-

~ 
I~ ~I~ ·I~ ·1 

tlNYH + tlRDx tpD + tRDx tDLH 

INBUF 
Y 

LEVELs 
AD OUT 

y 
OF 

y 
LOGIC DELAY 

y 

Figure 6. Simple Combinatorial 1/0 



cp 
~ 

om,": p:D~Er 7 

IOCLK PAD~ Y I 
eLKS F 

DATAIN: PAD~Q. 
eLK>< PAD~ Y G l:BOx.. 

DATUN: "'; C~: Q 7 

CL.x PAD • rE 
eLKS F 

setup Time - t 
SUEXT 

Hold Time - t 
HEXT 

Setup Time - t - t - t 
INSU INYH IRDl 

Hold Time - t + t + t 
INH INYH IRDl 

setup Time - t + t + t - t 
SUD INYH IRDl CKH 

Ho ld Time - t + t - t - t 
HD CKH INYH RDl 

Figure 7. Latching Input Examples 

II 

m 
~ 
3· 
a 
5· 
IC 

o 
m 

"t:J 
m 
2. 
-< 
m 
~ 
Q. 

"'C 
CD 
~ o 
3 
m 
~ 
(") 
CD 

Q 
» 
~ 
I\) 

"T1 
"'C 
G') 
» 
c 
CD en 

cO· 
~ en 



~ 
N 

IOCLK. ----I 

Clock to Output Time - t + t 
CKH GLH 

Setup Time - t 
OUTSU 

Hold Time - t 
OUTH 

Clock to Output Time - t + t 
CKH GLH 

Setup T:1.Yne - t 
OUTSU 

Hold Time - t 
OUTH 

Clock to Output Time 

Setup Time - t 
SUD 

Hold Time - t 
HD 

Figure 8. Registered Output Examples 

t +t +t +t 
CKH co RDl DLH 

~ 



S .tem Cl.ock. 

s .tarn Cl.ock 

Estimating Capacity and Performance for ACT 2 FPGA Designs 

Actel. Device :1;1 Actal. Device *2 

2 ns PCB Del-a 

5 n. Maximum PCB Skew 

F == 1/ (T CK _ Q + PCBDELA Y + PCBSKEW + T SU) 

(F == 1/(19.1 + 2 + 5 + (-2.8) = (1/23.3) ns = 42.9 MHz) 

Figure 9. Actel to Actel Message Transmission 

Actel. Devi.ce *1. 

2 ns PCB Del.a 

5 ns Maximum PCB Skew 

F = 1/ (TCK _ Q + PCBDELAY + PCBSKEW + TSUPAL) 

F = 1/(19.1+2+5+15) = (1/41.1)ns = 24.3 MHz 

Figure 10. Actel to PAL Message Transmission 

TI 20R8-15 

Setup Time - 15 ne 

8-23 

I 



Acte1. Oevi.ce *1. 74F74 

2 na PCB De~a 

Setup Time - 3 na 

s .tem Clock. 5 na Maximum PCB Skew 

F = 1/ (T CK _ Q + PCBDELA Y + PCB SKEW + T SUTTL) 

F = 1/(19.1+2+5+3) (1/29.1) ns 34.4 MHz 

Figure 11. Actel to TIL Message Transmission 

8-24 



The Hidden Cost of 
Reprogrammability 

Application 
Note 

On the surface, reprogrammability may appear to be a no-lose 
feature in a field programmable fate array (FPGA) design 
environment. However, this issue is more complex in the real 
engineering world. Unless reprogrammability is required fo~ the 
system-level design, its purported benefits can be substanttally 
outweighed by hidden costs and pitfalls. This application note 
outlines the areas an engineer must examine before selecting a 
programmable digital logic technology. 

Background 

Programmable logic device (PLD) and enhanced programmable 
logic device (EPLD) designers have evolved a trial and err~r 
design philosophy-they enter a design, compile and program It, 
then "see if it works." If the design doesn't work, they are forced 
to analyze output states based on input states because internal 
signals are not available for analysis. Since the behavior of the 
internal signals cannot be observed, the solutions to design 
problems are difficult to uncover. Each possible solution must be 
entered, compiled, and programmed. Then, the engineer must 
"see if it works" again. For many designs, this cycle may be 
repeated several times. 

For asynchronous designs, reprogramming is even more difficult 
and time consuming, especially because changes may affect the 
functionality of the overall design as well as portions that 
previously worked! An alternative to this approach is to utilize 
incremental logic design: implementing small functional blocks, 
debugging them, and then combining all the blocks. This 
approach also consumes many iterations and still requires much 
educated guessing from the engineer. 

With a reprogrammable PLDIEPLD, an argument can be made 
that this trial and error approach is acceptable because one device 
can be utilized over and over again. However, the hidden cost is 
the time spent debugging, modifying, compiling, and repeating 
the process. Obviously, for a simple 22VlO design, little time is 
involved. But as the design increases in gate count, speed, and 
circuit complexity, the design time goes up exponentially. 
Specifically, a 2000 or 4000 gate design might have many err~rs 
that take weeks to find and debug with a trial and error deSIgn 
approach. Reprogrammability is worth very little if the errors in 
the design cannot be discovered easily. This same phenomenon 
was experienced by the early users of microprocessors and 
microcoded bit slice machines. This predicament drove the 
development of in-circuit emulators (ICE) by the microprocessor 
and development tool suppliers such as Intel and Motorola. Few 
engineers today design microprocessor-based systems without 
utilizing an ICE. 

© 1993 Actel Corporation 

The Real Cost of a Design 

The cost of design time has always affected the engineering 
budget, but in today's competitive marketplace, design time even 
more dramatically affects the product's success and profitability. 
Successful companies such as 3Com and Hewlett-Packard have 
determined that each week of delay translates into a loss of 
$30,000. Even worse, a delayed product might miss the market 
window entirely. Together these costs force engineering 
departments to consider the total cost of the design, including 
time and device costs, in deciding a design process. 

Cost-Effective Design Alternative 

To afford the engineer a more cost-effective total solution, Actel 
has developed an architecture and tools that enable an engineer to 
utilize not only the most cost-effective programmable devices but 
also the most cost-effective design methodology. At first glance, 
Actel does not appear to offer the most cost-effective design 
solution because the Actel devices are one-time programmable. In 
fact, given the design methodology described above, Actel's 
devices might appear to be the most expensive, potentially 
requiring an engineer to program dozens of devices before a 
system design is complete. 

However, Actel's architecture enables engineers to approach logic 
design in an entirely different manner, saving days if not weeks of 
design time as well as reducing the number of devices needed to 
achieve a fully functional design. Historically, addressing the 
logic design problem meant using simulation. While simulation 
enables the observation of an unlimited number of internal 
functions and all timing aspects of a device, it usually requires 
that a new tool and design methodology be learned. To avoid the 
investment in the time and money learning new methods, Acte! 
offers a tool that achieves practically all the advantages of E. 
simulation without a lengthy, expensive learning period. 

Actionprobe® Diagnostic Tools 

Actel's architecture offers a unique feature that supports the 
probing of any internal node in an Acte! device running in system. 
Conceptually, Actel's Actionprobes work just like a 
microprocessor in-circuit emulator, enabling any internal points 
to be examined "on-the-fty" in real time. Architecturally, the 
Actionprobes are controlled and observed by four special probe 
I/O pins on each device. These pins function as user-defined I/Os 
during normal device operation. Note that probes can be utilized 
in conjunction with simulation to catch undefined or ill-defined 
environmental conditions because the chip is now running in 
system at real time. 

8-25 



When the Actionprobes are enabled, two probe pins are used to 
select two internal nodes for observation. These signals are sent to 
the two Actionprobe output pins. There they can be viewed with 
an oscilloscope or logic analyzer. The Actionprobe signals may 
be changed dynamically in circuit, in real time. 

Because the Actionprobe network is overlaid across the entire 
chip, there is no incremental load applied to the point being 
tested. Thus, the use of the Actionprobes does not change the 
dynamic characteristics of the circuit. Also, si~ce the choice. of 
probe signals can be changed at any time, any pIece of the design 
can be debugged in real time without any additional compiling or 
programming. A chip's inputs can be traced through the entire 
device up to the output pins. If desired, after the design is tested 
and released to manufacturing, the probes can be used in circuit 
for the in-system testing of pin continuity as part of the 
manufacturing test process. 

The Actionprobes allow an improved design methodology that is 
quicker, more controllable, and substantially less fru~trating t~an 
the trial and error process. Achieving a working deSIgn reqUires 
very few iterations, saving time and money. In practice, anywhere 
from a few days to weeks can be saved depending on the design 
complexity and problem/solution iteration cycle. ~dditi~nally, 
very few devices are actually used to achieve a workmg deSign. A 
survey of Actel's users have shown that on average fewer than 
five devices are needed to achieve a working design. Designers 
attain working designs sooner, with fewer iterations, and at the 
cost of less than five devices. 

The total cost of designing with Actel FPGAs is substantially 
more cost-effective than with reprogrammable approaches. The 
Actel FPGA approach typically saves one week of design time 
per chip. The cost savings (one week of engineering design yme 
minus the cost of a handful of devices) may be conservatively 
estimated to be several thousand dollars per design. The real cost 
savings can be much greater given considerations such as the 
complexity of the design. The Actel solution will still be more 
cost-effective in the long run even if the number of devices used 
in development becomes large. In production, Actel devices are 
substantially more cost-effective than reprogrammable devices. 

The Real Cost of Reprogrammability 

To understand some of the less obvious costs associated with 
reprogrammable parts, consider the fundamental technology used 
to program them. The programming elements in reprogrammable 
devices are much larger than the Actel anti fuse. The antifuse is 
less than 1.0 micron in diameter, it is a passive device, and it lies 
within the metal routing tracks of the device. No overhead is 
required other than that for the programming and testing circ~itry, 
which is roughly the same amount for all programmable deVIces. 
Other programming elements require substantially more room 
because they are active devices. The larger programming 
elements increase the area overhead required for sufficient 
routing resources and ultimately result in a larger die size, a less 
flexible architecture, or both. As can be seen in Figure 2, because 
of the antifuse advantage, the Actel die sizes are substantially 
smaller and as a result offer a more cost-effective production 
device. 

8-26 

Antifuse SRAM EPROM 
115K 181K 217K 

o 0 0 0 0 0 
o 0 000 0 

0 0 0 0 0 0 
0 0 

0 0 0 0 
0 a 0 0 

a a 0 0 0 a 
a 0 

0 0 0 0 
0 0 0 0 

o 0 a 0 a 0 o 0 000 0 

Acte) Xilinx Altera 
A1240A XC4005 EPM7256 

1 .0 !l process 0.8 !l process 1 .0 !l process 

Figure 1. FPGA Die Sizes 

While the unit cost tradeoffs are obvious, the architecture 
tradeoffs are not. The abundant, virtually free routing resources 
afforded by the antifuse switching element enable logic changes 
to be made with little or no impact on the performance or 
utilization of the device. No other programmable element-based 
architecture offers this flexibility. The smaller antifuse not only 
makes abundant internal routing resources available, but it also 
enables abundant routing resources between I/O and the internal 
device logic. This enables design changes to be made with little or 
no impact on the I/O locations. I/O locations can be finalized and 
the PCB artwork sent out for manufacturing without worrying 
about design changes affecting the pinout of the chip, which 
requires the PCB to be revised prior to manufacturing. Obvi~usly, 
turning a PCB is not only very expensive, but it also reqUires a 
schedule delay. 

The impact of routing resources on I/O locations is directly 
related to the design's gate count, complexity, and speed. The 
higher the performance, complexity, or gate count as a percentage 
of the device's available gates, the worse the problem can be. 
Actel's antifuse-based devices are the most flexible 
programmable devices in this area. The designer is virtual~y 

guaranteed that I/O locations won't change because of logiC 
changes to the design. No other programmable technology can 
make this claim. 

Conclusion 

Reprogrammable architectures appear at first glance to offer the 
most cost-effective design solution, but in reality they are the 
most expensive. Not only are reprogrammable architectures more 
expensive on a per unit basis, they don't offer a probing capability 
that enables users to find and debug errors. Furthermore, they 
don't offer enough routing resources to make design changes 
without I/O changes that could require expensive PCB turns or 
extra nonbudgeted design time. When selecting a programmable 
architecture, design engineers should weigh all these factors and 
their associated costs, as well as the opportunity cost of being late 
to market. Given these, the logical choice is Actel FPGAs for the 
most cost-effective design solution. 



-iMc/@1! Actel Logic Modules 
Application 

Brief 
• 

Introduction 

The Acr™ 1, ACT 2, and ACT 3 families of Actel FPGAs are based on 
channeled array architecture consisting of rows of modules interspersed 
with routing channels. There are two types of modules: logic modules 
and I/O modules. The logic modules are blocks that implement logic 
functions. What follows describes in detail the structure of logic 
modules for the ACT 1, ACT 2, and ACT 3 families. 

M1 

M3 

Figure 1. Logic Module of ACT 1 Devices 

Discussion 

ACT 1 Logic Modules 

A logic module for ACT 1 devices is an eight-input, one-output 
logic circuit that can implement logic functions ( NAND, AND, 
OR, NOR, and so on) in gates of two, three, or four inputs. One 
logic module has three 2-to-l multiplexers with different select 
lines (Figure 1). The select lines of the two multiplexers ( Ml and 
M2 in Figure 1) are individual inputs. The select line of the third 
multiplexer (M3 in Figure 1) is an OR function of the other two 
inputs. One logic module can implement all functions of 
two-input variables, most functions of three-input variables, and 
some functions of four-input variables. Figure 2 shows one of 
several ways to implement a three-input AND gate using one ACT 
1 logic module. ActeI's layout software automatically selects the 
best implementation for each instance of a logical function. All 
latches in the ACT 1 architecture are implemented with one logic 
module, while all flip-flops are implemented with two adjacent 
logic modules in a master/slave configuration. The full ACT 1 
logic module is available for use as the CM8A hard macro. 

© 1993 Actel Corporation 

OUT 

A -+---1 

B --/--------' 

C ----I 

Figure 2. An Example of Implementing a Three-input AND 
Gate Using One ACT 1 Logic Module 

ACT 2 Logic Modules 

Logic modules for ACT 2 devices are classified into two types: 
combinatorial modules (C-modules) and sequential modules 
(S-modules) (Figure 3 and Figure 4). The C-module is an 
enhanced version of the ACT 1 family logic module optimized to 
implement high fan-in combinatorial logic functions. One _ 
C-module consists of a 4-to-l multiplexer with one select line (S 1 • 
in Figure 3) acting as an OR function of the two inputs, Al and 
Bl, and the second select line (SO in Figure 3) acting as an AND 
function of two other inputs, AO and BO. All three-input gates, 
most four-input gates, and some five-input gates can be generated 
with one C-module. The S-module is designed to implement a 
high-speed flip-flop (or latch) with additional combinatorial logic 
in a single module without additional delay. For example, hard 
macro DFM6A fits into one ACT 2 S-module, but it does not fit 
into one ACT 1 logic module. The S-module includes a C-module 
and a sequential element. An S-module can be configured as a 
seven-input combinatorial function plus a D-type flip-flop with 
clear (Figure 4a) or as a seven-input combinatorial function plus a 
latch without clear (Figure 4b). However, one S-module 
implements only a four-input logic function plus a latch with 
clear (Figure 4c). Thus, the combinatorial function used in the 
S-module is not a full implementation of the ACT 2 C-module. 
The S-module can also be configured strictly as a C-module for 
maximum combinatorial logic utilization (Figure 4d). 

8-27 



Hard macro logic functions range from simple SSI gates such as 
AND, OR to more complex functions such as flip-flops with 
4-to-l multiplexed data inputs. Hard macros are implemented in 
the ACT 2 architecture by using one or more C-modules or 
S-modules. For ACT 2 and ACT 3 devices, hard macros are 
divided into two groups: combinable and non-combinable. If a 
combinable macro is driving a register, the Action Logic@ System 
(ALS) will automatically "combine" the combinable hard macro 
and register into one sequential macro (Figure 5). However, some 
hard macros cannot be combined even if they are driving a 
sequential macro. The combinable hard macros are divided into 
two groups: those that can be combined with sequential macros 
DF1, DFIB, DFCIB, DFCID, DLI, DLIB, DLC, and DLCA, 
and those that can be combined with DF1, DFIB, DFCIB, 
DFClD, DLI, and DLIB. Please refer to the ACT Family Macro 
Library Guide for the combinability of each hard macro. The full 
ACT 2 logic module is available for use as the CM8 
(combinatorial) and DFM7 AlB sequential macros. 

000 

001 

010 

011 

y o Q 

a. Up to Seven-input Function Plus Ootype Flip-Flop 
with Clear (ACT 2) 

000 

001 
y o Q 

G CLR 

c. Up to Four-input Function Plus 
Latch with Clear (ACT 2) 

000 

001 

010 

011 

A181 

y OUT 

so 

AO 80 

Figure 3. ACT 2 C-module Implementation 

000 

001 

010 
y D Q 

G 

b. Up to Seven-input Function Plus Latch (ACT 2) 

000 

001 

010 

y OUT 

d. Up to Eight-input Function­
Same as C-module (ACT 2) 

Figure 4. ACT 2 S-Module Implementation 

8-28 



A 
OFI 

B 

ClK---------' 

A 

B 

S 

ClK 

Actel Logic Modules 

Q 

OFM 

Figure 5. Logic Combining 

ACT 3 Logic Modules 

Logic modules of ACT 3 devices are enhanced versions of the 
ACT 2 family logic modules. The C-module is equivalent to the 
ACT 2 family C-module (Figure 6). The S-module contains a full 
implementation of the C-module with eight inputs plus a 
clearable element that can be configured as a latch or aD-type 
flip-flop (Figure 7). A single S-module can implement any 
function implemented by a C-module plus a flip-flop or latch 
with clear. This allows ALS to automatically combine any 
C-module macro driving an S-module macro into the S-module. 
The clock input CLOCK may be connected to one of three clock 
networks, CLKA, CLKB, HCLK or any other internal macro. As 
in the ACT 2 devices, ALS can configure an S-module as a 
C-module. The ACT 3 logic module is available for use as the 
CM8 and DFM8A/B hard macros. 

000 

001 
y 

010 

A1 B1 AO BO 

Figure 6. ACT 3 C-module Diagram 

000 

001 
y 1------\0 Q 

010 

ClK ClR 

A1 B1 AO BO 

Figure 7. ACT 3 S-module Diagram 

8-29 



The following table lists the number of logic modules in all 
ACT 1, ACT 2, and ACT 3 devices. 

A1010 A1020 A1225 A1240 

Logic Modules 295 547 451 684 

S-modules 231 348 

C-modules 220 336 

Summary 
Logic modules of ACT 1 devices are eight-input, one-output 
combinatorial modules. Logic modules of ACT 2 and ACT 3 
devices are classified into S-modules and C-modules. Some of the 
flip-flop functions can be implemented within a single S-module 
without causing extra delay. Each logic function may have many 
versions with different combinations of active-Iow/active-high 
inputs and outputs. 

8-30 

A1280 A1415 A1425 A1440 A1460 A14100 

1232 200 310 564 848 1377 

624 104 160 288 432 697 

608 96 150 276 416 680 



Binning Circuit 
of Actel FPGAs 

Application 
Note 

Introduction 

All Acte! FPGA devices are available in different speed grades to 
meet varying system design requirements. As part of the 
production process, devices are separated, or "binned," into 
groups by their measured performance. The performance of each 
device is measured by a dedicated binning circuit that closely 
characterizes its speed. The Actel binning circuit measures the AC 
performance of a device prior to programming. Since the binning 
circuit shares the same process as the rest of the die, the binning 
circuit speed reflects the speed of the device after programming. 
Actel guarantees the performance of every device for all speed 
grades. Therefore, the following descriptions of ACT™ device 
binning circuits are mostly for informational purpose only. 

ACT 1 Binning Circuit 

The ACT 1 binning circuit consists of one input buffer, n logic 
modules (n = 16 for A1010/AlOlOA/A1010B and n = 28 for 
AI020/AI020A/A1020B), and one output buffer. The binning 
circuit delay is obtained by setting the device to the test mode 
(that is, MODE pin = HIGH), and setting up the appropriate mode 
register bits. Using the SDI pin as the mode register input and 
DCLK as the clock, seven mode register bits are clocked into the 
device in the sequence, 10 1110 1. After this setup process, the 
propagation delay of the binning circuit is measured from the 
input pin BININ to the output pin PRA. Figure 1 shows the delay 
of binning circuit T PDB' Table 1 shows the binning circuit pin 
assignments for ACT 1 family devices. 

BININ 50% 

PRA 

Figure 1. T POB Measurement Waveform 

© 1993 Actel Corporation 

ACT 2 Binning Circuit 

The delay path of the ACT 2 binning circuit includes an input pad 
through an input module, n combinatorial logic modules (n = 16 
for A1280/A1280A, 12 for A 1240/A 1240A, ano 10 for 
A1225/A1225A), an output module, and a pad driver. Binning 
circuit delays are obtained by setting the MODE pin high, then 
shifting data into the internal mode, control, and binning registers 
through the SDI pin for the appropriate mode of operation. To set 
up the binning circuit, several data patterns are shifted into SDI 
with each rising edge of DCLK. The first ten data bits are counter 
bits used to set up the internal counter length. The next 21 bits are 
Mode bits used to set up the mode of operation, and the remaining 
bits are used to fill the registers in the shift register chain. There is 
one stop bit at the end. Then, the binning circuit delay can be 
measured from input pin, BININ, to output pin, BINOUT. Tables 
2 and 3 list the binning circuit pin assignments and the data 
patterns for ACT 2 binning circuits. 

ACT 3 Binning Circuit 

The ACT 2 and ACT 3 binning circuits are identical except for the 
data patterns. Tables 4 and 5 list the binning circuit pin 
assignments and the data patterns for ACT 3 binning circuits. 

8-31 



Table 1. ACT 1 Binning Circuit I/O Pins 

PLCC/JQCC 

44-pin 68-pin 

MODE 34 54 

SOl 36 56 

OCLK 37 57 

BININ 1010 9 12 
1020 7 10 

PRA 38 58 

Table 2. ACT 2 Binning Circuit I/O Pins 

A1280/A1280A 

176 PGA 172 CQFP 

MODE C3 

SOl B14 131 

OCLK B3 171 

BININ N3 44 

BINOUT P2 45 

A 1225/ A 1225A 

100 PGA 100 PQFP 

MODE C2 4 

SOl C8 79 

OCLK C3 2 

BININ K2 28 

BINOUT L2 29 

Table 3. ACT 2 Binning Circuit Data Patterns 

Device 

A 1280/A 1280A 

A 1240/A 1240A 

A 1225/A 1225A 

#Bits 

276 

218 

176 

Counter Bits 

0001101010 

0110010011 

1010101011 

Table 4. ACT 3 Binning Circuit I/O Pins 

CPGA 

84-pin 84-pin 

66 E11 

72 B11 

73 C10 

NA 02 
13 C2 

74 A11 

160 PQFP 144 PQFP 

159 2 

38 110 

2 144 

119 37 

118 38 

84 PLCC 

12 

76 

10 

34 

35 

Mode Bits 

00000101 11000101 00000 

00000101 11000101 00000 

0000 0101 1100 0101 0000 0 

CQFP PQFP 

84-pin 100-pin 

55 92 

61 98 

62 99 

NA 34 
2 32 

63 100 

A1240/A1240A 

132 PGA 84 PLCC 

A1 12 

B12 76 

C3 10 

L3 34 

M2 35 

Shift Register Bits and Stop Bit 

one 1 , followed by 244 Os 

one 1 , followed by 186 Os 

one 1 , followed by 144 Os 

A 1425/ A 1425A A1460/A1460A 

133 CPGA 160 PQFP 208 PQFP 207 CPGA 

MODE E3 9 11 07 

SOl C2 2 2 C3 

OCLK 04 160 208 E4 

BININ K3 38 50 013 

BINOUT L4 39 51 E14 

8-32 



Table 5. ACT 3 Binning Circuit Data Patterns 

Device 

A 1425/ A 1 425A 

A 1460/ A 1 460A 

#Bits 

410 

553 

Counter Bits 

1101100001 

0101101100 

Mode Bits 

00000101 11001101 00000 

00000101 11001101 00000 

Binning Circuit of Actel FPGAs 

Shift Register Bits and Stop Bit 

one 1, followed by 378 Os 

one 1, followed by 521 Os 

8-33 

I 



8-34 



Global Clock Networks 
Application 

Note 

The Actel architecture provides global clock networks that allow 
high fanout drive for flip-flops and latches with minimal skew. 
Table 1 shows the available global networks and their 
characteristics, which are defined as follows. 

• Routed clocks are clock networks which can be used by 
selecting CLKBUF/CLKBIBUF or CLKINT macros or both. 

• Dedicated clocks are clock networks that are directly wired to 
sequential and I/O modules. They contain no programming 
elements in the path from the I/O pad driver to the input of 
S-modules or I/O modules; they provide sub-nanosecond skew 
and guaranteed performance. 

Table 1. Global Clock Attributes 

Input Type Family Number Internal 
Pad Drive 
Name Option 

ClK routed ACT 1 No 

ClKA, routed ACT 2 2 Yes 
ClKB 

ClKA, routed ACT3 2 Yes 
ClKB 

HClK dedicated ACT 3 No 

10ClK dedicated ACT3 No 

10PCl special ACT 3 No 

• A special network refers to a special hard-wired input for I/O 
modules that can only drive preset/clear pins of I/O modules. 

Note that the Internal Drive Option for ACTTM 2 and ACT 3 can 
only be utilized by selecting the CLKINT macro to drive an 
internal clock network. 

ACT 1 Clock Network 

A single clock distribution network is provided on ACT 1 arrays. 
The clock network provides unlimited fanout (the ability to drive 
all logic modules in the array) with minimal delay and skew time. 
Figure 1 illustrates the clock distribution network for an ACT 
1010 array. It is arranged similarly in the ACT 1020 array. 

Macro Note 

ClKBIBUF, Can adjust skew with clock balancing 
ClKBUF 

ClKBIBUF, Use ClKINT for Internal Drive Option 
ClKBUF, 
ClKINT 

ClKBIBUF, Use ClKINT for Internal Drive Option 
ClKBUF, 
ClKINT 

HClKBUF Connected to all S-modules 

10ClKBUF Connected to all 1/0 modules 

10PClBUF Connected to 1/0 module set and reset pins 

OCCCCCOCJOC[]C Oc::lDCCDCCO C 
Distribution 
Track 

© 1993 Actel Corporation 

C 
a 
c 
c 
c 

Row buffer 

[]][DIIIIIIIIIIIIIIIIIIIIMI" " 1111111111 
~~~~~~~~~~~~~~~~~~~vo~er 
(J]J(]J] CIk Input I................... 111 1 •• '"

c
c ImnDlIIl 1111111111111111_111111111111111

~ ~~~~~~~~~~~
C

DCCCCCCCOCDC CCDCODCCD ACT 1 01 0

Figure 1. Clock Distribution Network for an ACT 1010

8-35

II

The network is driven by a specific I/O pin that drives a dedicated
on-chip buffer tree. Each row of logic modules (8 on the A I 0 1 0
and 14 on the A1020) has a dedicated buffered clock track. The
clock distribution network is selected automatically when the
CLKBUF macro is used in the schematic and assigned to its
dedicated package pin. The CLK I/O pin can also be used for
normal I/Os by assigning INBUF, OUTBUF, TRIBUFF, or
BIBUF to the CLK pin location.

Clock Balancing Scheme

Clock balancing equalizes the clock loads on each branch of the
global clock network, thereby minimizing clock skew. Clock
skew can cause setup and hold time problems. The clock
balancing strength sets the level of clock balancing for ACT 1
designs only. It is not used for ACT 2 and ACT 3 designs because
the global clock networks for those families have been designed
for minimal clock skew. The results are design dependent. If more
than 50 percent of the logic modules are driven by the global
clock, the effect is minimal. Also, strong clock balancing may
result in increased delays and reduced routability.

ACT 2 Clock Networks

Two low-skew, high fanout clock distribution networks are
provided in the ACT 2 architecture. Figure 2 illustrates the

From
input
pins

~
CLKBUF

and/or

Internally generated
clock signal

A

implementation of one of two ACT 2 clock networks using
CLKBUF/CLKBIBUF or CLKINT macro or both. ACT 2 devices
offer two identical clock networks. The clock modules are located
in the top row of I/O modules. Clock drivers and a dedicated
horizontal clock track are located in each horizontal routing
channel. The clock input pads may also be used as normal I/Os,
bypassing the clock networks. These networks are referred to as
CLKA and CLKB. Each network has a clock module that selects
the source of the clock signal and may be driven as follows:

• externally from the CLKBUF macro

• externally from the CLKBIBUF macro

• internally from the CLKINT macro

As mentioned above, the macro CLKBUF is used to connect one
of the two external clock pins to a clock network, and the macro
CLKINT is used to connect an internally generated clock signal
to a clock network. Figure 3 illustrates the implementation of
internal clock network using CLKINT macro. In the figure, the
input signals are driven by regular I/O buffers, not CLKBUF or
CLKBIBUF. These input signals drive a user-created Clock
Conditioning Module, which generates the internal clock signal.
This signal is subsequently driven by the CLKINT macro.

..

..
or

-
--CLKA network

Figure 2. One of Two ACT 2 Clock Networks (CLKO)

8-36

From
input
pins

Clock
Conditioning

Module

A

Internally generated
clock signal

y

Figure 3. Implementation of Internal Clock Network Using CLKINT Macro

ACT 3 Clock Networks

The ACT 3 architecture contains four clock networks: two high
performance dedicated clock networks and two general purpose
routed networks. The high performance networks function at up
to 150 MHz. while the general purpose routed networks function
at up to 75 MHz. Figure 4 illustrates the ACT 3 clock networks.

Array Clocks

Dedicated I/O clock • 4 Low-skew clock sources
Dedicated 110 clock
Dedicated array clock
Two routed array clocks
(like ACT 2)

• Can tie dedicated clocks
together for fully synchronous
operation

Figure 4. ACT 3 Clock Networks

Dedicated Clocks

There are two dedicated clock networks: one for the array
registers known as Dedicated Array Clock (HCLK) and one for
the I/O registers known as Dedicated I/O Clock (IOCLK). The
clock networks are accessed by special I/Os. Figure 5 shows the
macros that drive the Dedicated Array and I/O clock networks in
ACT 3.

HCLK is a dedicated hard-wired clock input for sequential
modules. HCLK is directly wired to each S-module and offers
guaranteed clock speeds independent of the number of S-modules
being driven. IOCLK is a dedicated hard-wired clock input for
I/O modules. IOCLK is directly wired to each I/O module and
offers guaranteed clock speeds independent of the number of I/O

Global Clock Networks

~
HCLKBUF

~
IOCLKBUF

Figure 5. Dedicated Array and 1/0 Clock Buffers

modules being driven. These dedicated clock networks support
high performance by providing sub-nanosecond skew and
guaranteed performance. Dedicated clock networks contain no
programming elements in the path from the I/O pad driver to the
input of S-modules or I/O modules.

Routed Clocks

The routed clock networks for ACT 3 have the same
characteristics as the ACT 2 networks as shown in Figure 2 and
Figure 3. The macros that drive routed clock networks in ACT 1,
ACT 2, and ACT 3 are shown in Figure 6.

~
CLKBUF

A

Figure 6. Dedicated Routed Clock Buffers

CLKA and CLKB are global signals with unlimited fanout. Refer
to ACT 2 clock networks described above for more detail on ACT
3 routed clocks.

Special Hard-wired Preset/Clear Network

10PCL is a dedicated special hard-wired input for I/O modules. It
is directly wired to the Preset and Clear inputs of all I/O registers.
10PCL functions as an I/O when no I/O preset or clear macros are
used. Figure 7 shows the 10PCLBUF macro that drives the
dedicated hard-wired Preset/Clear network. 10PCLBUF can only
be connected to the preset/clear pins of I/O macros.

8-37

I

~
IOPCLBUF

Figure 7. Dedicated Preset/Clear Network Buffer

The routed clocks CLKA and CLKB can also be used to drive
high fanout nets like resets, output enables, or data enables. This
saves logic modules and results in performance increases in some
cases.

Clock Connections for ACT 2 and ACT 3

To minimize loading on the clock networks, only a subset of
module inputs has antifuses on the clock tracks. Therefore, only a
few of the C-module and S-module inputs can be connected to the
clock networks. To further reduce loading on the clock network,
only a subset of the horizontal routing tracks can connect to the

MODULE

CLKO

clock inputs of the S-module. Figure 8 illustrates the connections
to the clock networks.

Creating a User-Defined Clock Distribution
Network

Some applications require many internal clock networks. For
these type of designs or for clock networks with a small number
of loads, it may be better to create a user-defined clock network.
Because this clock network is not a built-in, dedicated circuit, the
skews and delays cannot be guaranteed.

However, by intelligently placing the I/O pins and declaring the
nets associated with the clock network as critical, the automatic
placement of these macros create a network that controls clock
skew and delay. The results can be verified by running a
simulation or using the ALS Timer. It may be necessary to place
and route again to meet timing requirements. To minimize the
skew between paths, try to equalize the loading in each leg of the
clock distribution network.

C1 C2

\ Clock
~C~L~K~1 ______ ~~ __ ~~+-~-+~4++-_______ ;'Tracks

8-38

Antifuses
Deleted

Figure 8. Fuse Deletion on Clock Networks

Normal
Routing
Tracks

Using Dedicated Clock and Clear
for ACT 3 Registered

Application
Note

I/O Macros

Introduction

The ACTTM 3 FPGA family includes several perfonnance and
capacity features that make fast, large, effective designs easier to
develop. Among these new features, the architecture of the ACT 3
I/O modules enables fast on-chip and off-chip data transfer
through the use of built-in register functions. These input/output
macros include built-in registers with asynchronous preset or
clear functions. The ACT 3 architecture also includes special
circuits to drive the clock and preset/clear input pins. These
dedicated circuits are used as global signals for all I/O macros in
an ACT 3 design.

Using the Clock and Asynchronous Control
Inputs

Every registered ACT 3 I/O macro (for example, DECETH,
IREC, and OREPTL) includes an asynchronous preset or clear
input 10PCL. This input asynchronously sets the output of I/O
flip-flops to 0 or 1. The 10PCL pin of a registered I/O macro must
be driven by the dedicated I/O macro, 10PCLBUF. The
10PCLBUF is externally driven in tum by the dedicated 10PCL
package pin as shown in Figure 1.

Similarly, the clock (CLK) inputs of registered I/O macros are
driven by a dedicated circuit. The dedicated I/O clock buffer,
10CLKBUF, is used to drive the clock pin of each I/O macro. The
10CLKBUF is driven in tum by the dedicated external package
pin, 10CLK, as shown in Figure 2. See the package pin
assignment diagrams in the ACT 3 datasheet for specific locations
of the 10PCL and 10CLK package pins.

If no registered I/O macros are used in an ACT 3 design, then the
dedicated 10CLK and IOPCL package pins can be used as
nonnal I/O pins. In that case, these pins can be connected to any
other type of I/O buffer except IOCLKBUF, 10PCLBUF, and
HCLKBUF. For example, undedicated nonnal I/O buffers such as
INBUF and OUTBUF may be connected to these pins. If any
registered I/O macros are used in an ACT 3 design, then the
10CLKBUF and 10PCLBUF macros must be included in the
design, and the pin assignment must include the 10PCL and

© 1993 Actel Corporation

From 10PCl
package

10PClBUF

y

To 10PCl pins of
ACT 3 1/0 Macros

Figure 1. An IOPClBUF Driven by a Dedicated IOPCl
Package Pin

From 10ClK
package

10ClKBUF

y

To ClK pins of
ACT 3 Registered
1/0 Macros

Figure 2. An IOClKBUF Driven by a Dedicated IOClK
Package Pin

10CLK pins. The 10PCL and 10CLK pins must be explicitly
specified because ALS will not automatically create pin
assignments for 10CLKBUF and 10PCLBUF.

In an ACT 3 design, all types of I/O macros can be used in a
single design. For example, I/O macros without registers, I/O
macros with preset, and I/O macros with clear can be used
together in one design. However, 10CLKBUF must drive all the
clock inputs of the registered I/O macros and the 10PCL must
drive all the clear or preset inputs of the registered I/O macros.
CLK and 10PCL pins of registered I/O macros can not be
connected to GND or Vee. All ACT 3 I/O registered buffers share
the same dedicated clock and asynchronous clear or preset
network. Once the built-in dedicated IOCLK and 10PCL
networks are used, all registered I/O macros will be cleared and
preset at the same time by the same signal.

8·39

I

8-40

Designing for Combinability
with the ACT 2 and ACT 3
Architectu res

Application
Note

Introduction

The Action Logic® System (ALS) and ACT™ devices are both
designed to easily optimize the performance and gate density of
Actel field programmable gate array (FPGA) designs. With the
Actel system, projects are easier to finish within schedule and with
satisfactory perfonnance specifications. The ACT 2 and ACT 3
architectures include the "combinability" feature, which enables
the devices to be used efficiently with little or no extra effort. A
basic understanding of the ACT 2 and ACT 3 architectures is
necessary before taking advantage of the combinability feature.
With this background, it is easy to design for combinability.

The ACT 2 and ACT 3 Architectures

The ACT 2 and ACT 3 architectures have two types of modules: a
combinatorial module (C-module), similar to the ACT 1 module,
and a sequential module (S-module), containing a combinatorial
module whose output drives a dedicated flip-flop. The
combinatorial module is identical for ACT 2 and ACT 3 devices
(Figure 1). The ACT 2 sequential module implements the
functions shown in Figure 3 on the next page. The ACT 3
sequential module (Figure 2) implements the entire function of
the C-module plus a sequential element (flip-flop or latch) with
asynchronous clear.

Each library contains many different types of flip-flops with
different features to offer the most flexibility for the device. Some
flip-flops are implemented very efficiently, requiring only a
single S-module. More complex flip-flops may require an
S-module and a C-module.

It is important to be aware of the resources used to implement
different types of logic, including flip-flops. ALS includes
information that classifies flip-flops according to the number and
type of logic module used to implement them. Flip-flops made
from a single S-module are further divided into combinable and
noncombinable flip-flops. Only those flip-flops in the former
category may be used to combine.

Designing for Combinability

Combinable flip-flops and latches are so called because the
combinatorial resource is free to be used to implement the
combinatorial functions in the library. The resource is not used by
the flip-flop itself, leaving it available for combinatorial
functions. If a combinatorial function in the schematic is driving a
single data input to a combinable flip-flop or latch, ALS will put
the combinatorial function and the flip-flop into the same
S-module. When the two functions are combined into one
S-module, there is only one module delay for both macros. Use
this technique of connecting combinable combinatorial macros to
combinable sequential elements for the fastest, most compact
designs.

© 1993 Actel Corporation

The ACT Family Macro Library Guide provides information
about the combinability of each combinatorial function for ACT
devices. Of the 111 combinatorial macros available in the ACT 2
library, 86 are combinable. Some examples of combining are
shown in Figure 4. For ACT 3 devices, all combinatorial macros
that use a single C-module are combinable.

000

001

010

011

A181

y OUT

so

AD 80

Figure 1. ACT 2 C-Module Implementation

000

001
y 1------10 Q

010

ClK ClR

A1 81 AD 80

Figure 2. ACT 3 S-Module Diagram

8-41

I

DOO

D01

D10

D11

y

ClK

D Q

ClR

a. Up to Seven-input Function Plus D-type Flip-Flop
with Clear (ACT 2)

DOD
y D Q

D01

G ClR

GATE ClR

c. Up to Four-input Function Plus
Latch with Clear (ACT 2)

DOO

D01

D10
y

GATE

D Q

G

b. Up to Seven-input Function Plus Latch (ACT 2)

DOD

D01 Y OUT

D10

D11

81 80

d. Up to Eight-Input Function­
Same as C-module (ACT 2)

Figure 3. ACT 2 S-Module Implementation

Following these three rules will ensure that the architecture will
be used effectively most of the time for either flip-flops or
latches:

1. Use combinable flip-flop (or latch) whenever possible if it is
being driven by a combinatorial function.

2. Combinatorial functions driving flip-flops (or latches)
should be combinable whenever possible.

3. If the first two conditions are met, there should be only one
connection between the flip-flop (or latch) and the
combinatorial function.

Remember that all ACT 3 single C-module macros are
combinable. If there is a single load on the outputs.

8-42

Benefits of Combining

Combining a sequential and combinatorial function into a single
function increases the gate capacity of the device, since it makes
more efficient use of the available gates in the S-module. It also
improves the performance of the design because the delay
through the combinatorial function is included with the setup
time for the flip-flop data input. In effect, the combined logic
level has zero propagation delay.

For designs that require pipe lining, the pipeline stages do not
incur additional cost if they can be done using combinable logic.
An example can be found in the conversion of an adder to an
accumulator. Adders may be designed using the ACT 2 and
ACT 3 libraries so that every output is combinable. Converting

Designing for Combinability with the ACT 2 and ACT 3 Architectures

such a design to an accumulator can be done without cost simply
by adding a register to the adder output bus in the schematic as
shown in Figure 5. ALS will automatically combine each output
function with its respective flip-flop in the register into one

I-y------l 0 Q

DF1B
ClK

S-module. The ALS timing analyzer and backannotated
simulations will list the propagation delay of combined functions
as zero.

n-y-----l 0 Q

DFC1D

l-------.j 0 Q

DFC1B
__ ---r, '" ClK

ClR

Figure 4. Examples of Combinable Functions

FADD16
CO

REG16
ClR

ClK

Q[15:0]J--..---
0[15:0]

S [15:0]1--II----L ___ -J

--.-I A [15:0]
B [15:0]

Figure 5. 16·Bit Accumulator

8·43

I

8-44

Fast On and Off Chip Delays
with ACT 2 I/O Latches

Application
Note

Introduction

Using ACTTM 2 devices, latched I/O buffer macros can improve
clock input-to-registered-output performance. Latched I/O
buffer macros also increase the speed of latching signals into the
FPGA. Flip-flops created from these I/O latch macros improve
performance by up to 22 percent compared with traditional
approaches. This application note compares the use of
traditional approaches with the use of I/O latch macros in
ACT 2 designs.

Master

- D 0
0 1 DATA

rl: G

ClK

Master/Slave Flip-Flops

As shown in Figure 1, two level-sensitive latches can be
combined to create a positive edge-sensitive flip-flop.

Where:

Tco = tC02

T su = tCKL - tCOl - tRD 1 > tSU2

tSU2 = minimum setup time for slave

Slave

D2
D Q I-- OUT

r--- G

DATA ______ ~~--
I-ClK

tcLKL

------------~I·==tc=Q1~*----~~---------

OUT
----------------------------~-~-u-,',----~-o--~-------------------

Figure 1. Master/Slave Flip-Flop

The clock- to-output delay of the resulting flip-flop is determined
by the clock-to-output delay of the slave latch. The clock period
low time (tCKL) must be greater than the clock-to-output delay of

the master latch (leOl) plus the net delay from the master latch
output (tRDl) plus the setup time of the slave latch (tSU2).

© 1993 Actel Corporation
8-45

I

Constructing Registered Outputs

You can construct a registered output by combining a flip-flop
macro with an output buffer as depicted in Figure 2. The

clock-to-out delay for an A1225A-2 under worst-case commercial
conditions is 23.1 ns rising or 25.2 ns falling.

Qt-------I

DFI

CLKBUF

I'" tCKH
~I

T co = tCKL + tco + tR01 + tOLH/tOHL = 10.2 + 3.8 + 1.1 + 8.0/10.1 ns = 23.1/25.2 ns (rising/falling)

Figure 2. Conventional Registered Output

I/O Latch Flip-Flops In this case, the clock-to-out delay for an A1225A-2 device under
commercial worst-case conditions is 20.7 or 23.0 ns. In this case,
the loading on the global clock network is assumed to be
256 loads.

You can also constuct a registered output as a master/slave
flip-flop using a logic module latch (DLlB) and a latched output
buffer (OBDLHS) as shown in Figure 3.

r----------, , ,
J------f D Q 1-----....:'--1 D '

'-------~ , ,
DL1B ,

G G , ,
, OBDLHS , L _________ .J

256 loads

tCKH

T co = tCKH + tGLH/tGHL = 11.8 + 8.9/11.2 ns = 20.7/23.0 ns (rising/falling)

Figure 3. Master/Slave Registered Output

8-46

Registered inputs can also be constructed using a logic module
latch (DLl) with a latched input buffer macro (IBDL) as shown in
Figure 4. This is equivalent to the I/O macro, IR. Data can be
latched into the FPGA most efficiently in this configuration.

Fast On and Off Chip Delays with ACT 2 I/O Latches

Because of the unique architecture of the I/O buffer latches in ACT
2, the input latch has zero external setup time. This means that the
data may change just before the rising edge of the clock signal.
Data must be held at the input of the latch for the time tHEXT.

IR MACRO 1------------------,
I I
I
I
I
I

D Q I-----~ D Q I
I
I
I

L __ _ _ ______ ...1

,---------,
CLOCK MODULE I

I
I I L _________ ...J

Figure 4. Master/Slave Registered Input

Dual Clock Approach

Faster clock-to-out can be achieved by utilizing the second global
clock network as an I/O clock. In this configuration, shown in
Figure 5, CLKA drives the synchronous circuitry on the device
and CLKB drives the I/O master/slave latches. Both clock
networks are operating at the same frequency and must be

connected together outside of the devices. In this case, a 19.1 or
21.4 ns clock-to-out delay can be achieved.

ClKBUF

ClKB

CLKA

CLKBUF

Alternately, an INBUF can be used to drive the I/O latch, if fanout
on the INBUF is kept less than four to achieve similar
performance.

r----------,
I I

1-----1 D
I I

Q 1--------1 D

DLlB

G

> many loads

G
I

I OBDlHS I L _________ ..J

32 loads

T co = tCKH + tGLH/tGHL = 10.2 + 8.9/11.2 ns = 19.1/21.4 ns (rising/falling)

Figure 5. Dual Clock Master/Slave Registered Output

8-47

I

Implementation Rules

Actel strongly suggests following these rules when constructing
flip-flops with the I/O latches:

1. Do not put combinatorial macros in the data path between
master and slave latches. Added delay may prevent the
flip-flop from operating properly. For inputs, combinatorial
macros are allowed in the data path between the master and
slave latches only if the logic module latch and the
combinatorial latch are both combinable hard macros.

2. For outputs, do not connect the master latch output to any
loads except the I/O latch D input.

3. Use a latch made from sequential logic modules for the
master stage for outputs on the slave stage for inputs.

8-48

Sequential module latches have better timing characteristics.
They also allow combining to take place, which can improve
the performance of the data being registered. The
transparent-low sequential module latches are DLIB and
DUe.

4. Use net criticality to ensure that the net delay does not
violate the setup requirements of the slave latch (as defined
in Figure 1). Verify the timing conditions after place and
route is complete. Note that an asymmetrical duty cycle on
the clock signal (less than 50% low time) will provide more
tolerance on the allowable net delay between latches.

5. Design to combine. The Action Logic@ System (ALS) will
automatically combine combinatorial logic into the D input
of the DUB latch if the combiner rules are met.

Three-Stating ACT Device Application
Note

I/O Pins for Board Level Testing

Introduction

During board testing and debugging, it is frequently desired or
necessary to place all device I/O pins into a three-state,
high-impedance condition. This isolates the device from other
devices that have common signal paths on a printed circuit board.
The three-state condition also allows board testing for trace
integrity or insertion damage to pins. It is usually more
convenient to simultaneously three-state all I/O pins of a device
with a built-in procedure rather than to create test vectors to force
this condition by circuit function.

All Actel field programmable gate arrays (FPGAs) include a
special operating mode to place all I/O pins in a temporary,
three-state condition. Thus, each ACFM device may be easily
isolated from I/O signal paths of other devices on a circuit board,
enabling a convenient board testing procedure. This capability,
combined with Actionprobe@ diagnostic tools, allows both single
device and system board testing with a power and ease previously
unavailable in programmable devices.

ACT 1 Three-State Procedure

Three-stating an ACT I device is easy using the unique
debugging features of the ACT architecture. Three special pins on
ACT devices are used for this function: MODE, SOl, and DCLK.
To maintain the three-stating feature on ACT I devices, no user­
defined output or bidirectional pins may be assigned to the SDI
and DCLK locations. These pins should remain unassigned or
should be defined as input-only locations. All other user-defined
pins have no restrictions for their function; they may be assigned
as input-only, output-only, or bidirectional pins. These pins can be
temporarily three-stated for testing and debugging.

~
I

DCLK ---+---"

SOl _O--+~+-__ O ____ ~ ___ O ____ ~ ____ O-J

Figure I shows the sequence for three-stating an ACT 1 device.
Seven data bits are clocked into the device using the SDI pin as
data input and DCLK as the clock signal. The MODE pin
distinguishes "test" mode from "normal" mode. The data
sequence is {OOO 1 0 11 }. After clocking the seventh bit, all
user-defined pins are placed in a three-state condition until
MODE is returned to logic low.

ACT 2 and ACT 3 Three-State Procedure

The same special purpose pins are used to three-state ACT 2 and
ACT 3 devices: MODE, SOl, and DCLK. In contrast to the ACT
1 family, there are no restrictions on the assignment of
user-defined functions to these pins. All user-defined pins have no
restrictions for their function; they may be assigned as input-only,
output-only, or bidirectional pins.

Thirty-two data bits are clocked into the device using the SOl pin
as data input and DCLK as the clock signal. The MODE pin
distinguishes "test" mode from "normal" mode. The data
sequence for ACT 2 and ACT 3 devices is determined by the
programmed state of the device. For unprogrammed, blank
devices, the data sequence is

(LSB) 0000000000 0000000000 000000011110 (MSB)

For programmed devices, the data sequence is

(LSB) 0000000000 0000000000 0000000110 00 (MSB)

Load the data beginning with the LSB. After clocking the 32nd
bit, all user-defined pins are placed in a three-state condition until
MODE is returned to logic low. Use the same relative timing for
the MODE, SOl, and DCLK inputs as shown in Figure 1.

i--~---:----:--- V1H

tn
~+-----r-----~-----r-----~----~-----~------ V1H

MODE
o

Notes:
I. 0 V ::; vIL ::; 0.5 V; 3.0 v::; vIR::; vee
2. Test mode configuration is a low frequency « 1.0 MHz) operation.
3. All setup and hold conditions (In. tS

) ~ 250 ns.

Figure 1. ACT 1 Device Three-State Timing Diagram

© 1993 Actel Corporation
8-49

I

8-50

---tU!c/@1!
•

Predicting the Power Dissipation
of Actel FPGAs

Application
Note

Introduction

Calculating the power dissipation of field programmable gate
arrays (FPGAs) is similar to using the calculations for other
CMOS ASIC devices, such as gate arrays and standard cells. The
power dissipation depends on such factors as utilization, average
operating frequency, and load conditions. In contrast, most PALs
and PLDs have a fixed power consumption.

This application note discusses power dissipation and the concept
of equivalent power capacitance. The general approach to
calculating power in an ACT™ device will be described using
equivalent power capacitance values for ACT devices. This
general equation is useful if internal switching frequencies can be
accurately determined. Since this is often difficult to do, a set of
approximation curves based on average frequency rules of thumb
are provided. The graphs provide an upper limit estimate for
active power sufficient for most designs.

General Power Equation

P = [ICC standby + Ieeactive] * Vee + IOL * VOL * N +
IOH * (Vee - VOH) * M (1)

Where:

Ieestandby is the current flowing when no inputs or outputs are
changing.

Ieeactive is the current flowing due to CMOS switching.

IOL and IOH are TTL sink/source currents.

VOL and V OH are TTL level output voltages.

N equals the number of outputs driving TTL loads to VOL.

M equals the number of outputs driving TTL loads to VOH.

Determining N and M depends on the design and the system I/O.
An accurate determination of power dissipation comes from two
components, static and active, which are considered separately.

Static Power Component

Actel FPGAs have small static power components that result in
lower power dissipation than PALs or PLDs. By integrating
multiple PALs/PLDs into one FPGA, an even greater reduction in
board-level power dissipation can be achieved.

The power due to standby current is typically a small component
of the overall power. For an ACT 3 device, the standby power is
specified as 5 m Watts, worst case.

The static power dissipated by TTL loads depends on the number
of outputs driving high or low and the DC load current. Again,
this value is typically small. For instance, a 32-bit bus sinking
4 rnA at 0.33 V will generate 42 mWatts with all outputs driving
low and 140 mWatts with all outputs driving high. The actual

© 1993 Actel Corporation

dissipation will average somewhere between as I/Os switch states
with time.

Active Power Component

Power dissipation in CMOS devices is usually dominated by the
active (dynamic) power dissipation. This component is frequency
dependent, a function of the logic and the external I/O. Active
power dissipation results from charging internal chip
capacitances of the interconnect, unprogrammed antifuses,
module inputs, and module outputs, plus external capacitance
because to PC board traces and load device inputs. An additional
component of the active power dissipation is the totem-pole
current in CMOS transistor pairs. The net effect can be associated
with an equivalent capacitance that can be combined with
frequency and voltage to represent active power dissipation.

Equivalent Capacitance

The power dissipated by a CMOS circuit can be expressed by the
equation:

Power (~Watts) = CEQ * Vee
2 * F

Where:

CEQ is the equivalent capacitance expressed in pF.

Vee is the power supply in volts.

F is the switching frequency in MHz.

(2)

Equivalent capacitance is calculated by measuring Ieeactive at a
specified frequency and voltage for each circuit component of
interest. Measurements have been made over a range of
frequencies at a fixed value of Vee. Equivalent capacitance is
frequency independent so that the results may be used over a wide
range of operating conditions. The results for ACT 1, ACT 2, and
ACT 3 devices are given in Table 1.

Table 1. CEQ Values for ACT FPGAs

ACT 1 ACT 2 ACT 3

Modules 6.3 7.7 8.2

Input Buffers 16.0 18.0 1.5

Output Buffers 25.0 25.0 2.3

Clock Buffer Loads 5.3 2.5 N/A

110 Clock Buffer Loads N/A N/A 0.4

Dedicated Array Clock N/A N/A 0.5
Buffer Loads

Routed Array Clock N/A N/A 0.5 +
Buffer Loads fixedl

device

8-51

I

Finding the active power dissipated from the complete design
requires solving Equation 2 for each component type. This
requires the switching frequency of each part of the logic. The
exact equation is a piecewise linear summation over all
components as shown in Equation 3. For ACT 1 and ACT 2
devices:

Power = [(m * CEQ * fm)modules + (n * CEQ * fn)Inputs +
(p * (CI'Q + CL)* fp)Outputs + (q * CEQ * fq)ciUoads]

*~ m
Where:

m Number of logic modules switching at frequency fm

n Number of input buffers switching at frequency fn

p Number of output buffers switching at frequency fp

q Number of clock loads on the global clock network

fm Average logic module switching rate in MHz

fn Average input buffer switching rate in MHz

fp Average output buffer switching rate in MHz

fq Frequency of global clock

CL = Output load capacitance

For ACT 3 devices:

Power (jlW) = [(m x 8.2 x f l) + (n x 1.5 x f2) +
(p x (2.3 + Cd x f3) + (q x 0.5 x f4) + «rl + 0.5 r2) x fs) +
(s x 0.4 x f6)] xV ee2 (2)

Where:

m Number of logic modules switching at fl

n Number of input buffers switching at f2

p Number of output buffers switching at f3

q Number of clock loads on the dedicated array clock
network

A1415: q = 104

A1425: q = 160

AI440: q =288

A1460: q =432

A14100: q =697

rl Fixed capacitance due to routed array clock network

A1415: rl = 60

A1425: rl =75

A1440: rl = 105

A1460: rl = 145

A14100: rl = 195

r2 Number of clock loads on the routed array clock
network

8-52

Number of clock loads on the dedicated I/O clock
network

A1415:

A1425:

A1440:

A1460:

A14100:

s = 80

s = 100

s = 140

s = 168

s = 228

Average logic module switching rate in MHz

f2 Average input buffer switching rate in MHz

f3 Average output buffer switching rate in MHz

f4 Average dedicated array clock rate in MHz

fs Average routed array clock rate in MHz

f6 Average dedicated I/O clock rate in MHz

CL = Output load capacitance in pF

Since all of the modules or inputs or outputs do not switch at the
same frequency, a weighted average can be used. For example, a
design consisting of 100 modules switching at 10 MHz and
200 modules switching at 5 MHz would have a weighted average
frequency of:

fave = [(100 * 10) + (200 * 5)]/(100 + 200) = 6.67 MHz

Determining Average Frequency

Determining the exact average frequency for a design requires a
detailed understanding of the data input values to the circuit.
Logic simulation can provide insight into average frequency,
although simulation is limited by the percentage of real-time
stimulus that can be applied. Fortunately, studies based on large
numbers of ASIC designs have been made to determine rules of
thumb for average switching frequency in logic circuits. These
rules are meant to represent worst-case scenarios, hence their use
for predicting the upper limits of power dissipation is generally
acceptable. The rules given in Tables 2 and 3 for ACT I and
ACT 2 devices. Table 3 gives the rules for ACT 3 devices. Using
these rules, we can develop power estimates.

Table 2. Rules for Determining Average Frequency
for ACT 1

1. Module Utilization = 90%

2. Average Module Frequency = F/10

3. 1/3 of liDs are Inputs

4. Average Input Frequency = F/5

5. 2/3 of liDs are Outputs

6. Average Output Frequency = F/10

7. Clock Net Loading = 45%

8. Clock Net Frequency = F

Table 3. Rules for Determining Average Frequency
for ACT 2

1.

2.

3.

4.

5.

6.

Module Utilization = 80% of combinatorial modules

Average Module Frequency = F/10

1/3 of 1I0s are Inputs

Average Input Frequency = F/5

2/3 of II0s are Outputs

Average Output Frequency = F/10

7. Clock Net 1 loading = 40% of sequential modules

8. Clock Net 1 Frequency = F

9. Clock Net 2 loading = 40% of sequential modules

10. Clock Net 2 Frequency = F/2

Table 4. Rules for Determining Average Frequency
for ACT 3

1. logic Modules (m) = 80% of modules

2. Average module switching rate (f1) = F/10

3. Inputs switching (n) = # II0s used/12

4. Average input switching rate (f2) =F

5. Outputs switching (p) = # II0s used/15

6. Output loading (el) = 35

7. Average output switching rate (f3) = F/2

8. Dedicated array clock loads (q) = fixed by device

9. Average dedicated array switching = F
rate (f4)

10. Routed array fixed capacitance (r1) = fixed by device

11. Routed array clock loads (r2) = 40% of sequen-
tial modules

12. Average routed array switching = F/2
rate (f5)

13. I/O clock loads (s) = # II0s used

14. Average 1/0 switching rate (f6) = F

Predicting the Power Dissipation of Actel FPGAs

Average Frequency Example

While some portions of a logic design switch at the system
frequency, F, most of the logic switches at a reduced (or divided)
frequency. Consider a 16-bit synchronous counter with a system
input clock equal to F as shown in Figure 1.

Figure 1. 16-Bit Synchronous Counter

Where:

The QO output is switching at F/2 (or 1/21),

The Ql output is switching at F/4 (or 1/22),

The Q15 output is switching at F/65536 (or 1/216).

The average frequency is:

Fave = 1/16 * 0/21 + 1/22 + 1/216) == F/16

Thus, the average frequency of an n-bit synchronous counter
switching at F MHz is F/n.

Estimated Power

The rules in Tables 2 and 3 are applied to ACT 1 and ACT 2
devices. The resulting power components are detailed in Tables 5
and 6, and the total device power is shown in Figures 2 and 3. The
graphs provide a simple guideline for estimating power. The
tables may be interpolated when your application has different
resource utilizations or frequencies. Table 4 details the rules
applied to ACT 3 devices.

8-53

I

~c/@jj

Table 5. Power Components for ACT 1 (Watts)

F (MHz) Module Power Input Power Output Power Clock Power Total Power
(watts)

A1010

0.005 0.002 0.009 0.019 0.035

2 0.010 0.004 0.017 0.038 0.069

5 0.025 0.009 0.043 0.096 0.173

10 0.051 0.018 0.085 0.192 0.347

15 0.076 0.027 0.128 0.289 0.520

20 0.101 0.036 0.171 0.385 0.693

25 0.126 0.046 0.213 0.481 0.866

A1020

0.009 0.002 0.010 0.035 0.057

2 0.019 0.004 0.021 0.071 0.114

5 0.047 0.011 0.052 0.176 0.286

10 0.094 0.022 0.103 0.353 0.572

15 0.141 0.033 0.155 0.529 0.858

20 0.188 0.044 0.207 0.705 1.144

25 0.235 0.055 0.258 0.882 1.430

Table 6. Power Components for ACT 2 (Watts)

F (MHz) Module Power Input Power Output Power Clock Power Total Power
(watts)

A1280

0.011 0.013 0.021 0.027 0.072

2 0.023 0.025 0.042 0.054 0.144

5 0.057 0.063 0.105 0.136 0.360

10 0.113 0.125 0.210 0.272 0.720

20 0.227 0.250 0.419 0.544 1.440

30 0.340 0.375 0.629 0.815 2.159

40 0.453 0.500 0.839 1.087 2.879

A1240

1 0.006 0.009 0.016 0.015 0.046

2 0.013 0.019 0.031 0.030 0.092

5 0.032 0.046 0.078 0.074 0.231

10 0.064 0.093 0156 0.149 0.461

20 0.127 0.186 0.311 0.298 0.923

30 0.191 0.279 0.467 0.447 1.384

40 0.255 0.372 0.623 0.596 1.845

A1225

1 0.004 0.007 0.012 0.009 0.033

2 0.008 0.015 0.025 0.019 0.066

5 0.020 0.037 0.062 0.047 0.166
10 0.040 0.074 0.124 0.094 0.332

20 0.080 0.148 0.249 0.187 0.664

30 0.120 0.222 0.373 0.281 0.996

40 0.160 0.297 0.497 0.375 1.329

50 0.200 0.371 0.621 0.468 1.661

8-54

Predicting the Power Dissipation of Actel FPGAs

1.0
/v V V

V
/ /

/ /
/ /

A1020 / /
/

~ /
// ~VA1010

/V /~

/V
V VI'
V

/ /

Watt

0.1
/ /

/ IL
/ /

/
/

/

1.0 10.0 100.0

MHz

Figure 2. ACT 1 Power Estimates

1.0

/ /
V Y

/ / /
V

/

A1280// /
/ /

/ / V
//

/ /" A1240

/
I' /~ V

/ L/ //
'I A1225

/ /
I' /

/ V
/ /

/ /

I Watt

0.1
/ / /

/ L /
/ V
//

V/
V

1.0 10.0 100.0

MHz

Figure 3. ACT 2 Power Estimates of Total Power (watts)

8-55

8-56

~c/@I/
•

Board Level Considerations
for Actel FPGAs

Application
Note

Introduction

Simulating and debugging individual components is the first step
towards verifying a system design. In some cases, the devices no
longer behave as expected after they are integrated. Many factors,
such as power, airflow, and transmission lines can introduce
undesirable results in a system and ultimately impair system
performance. This application note will explain how many of
these factors should be treated when integrating ACT™ family
field programmable gate arrays (FPGAs) in board-level designs.

Power Up

Actel FPGAs are nonvolatile and therefore require no external
configuration circuitry on power up. However, at power up it does
take a finite amount of time for the device to become stable and
operate normally. For aVeC slew rate of -30 nsN, it takes
approximately 250 f.lS for the device to become fully operational.
Power up time varies with temperature, where cold is worst case.
At power up, the state of all flip-flops is undefined. Refer to A
Power On Reset Circuit for Actel Devices for more information.

Operating Environment

ACT family FPGAs must not be operated outside of the
recommended operating conditions as described in the Absolute
Maximum Ratings section of the ACT data sheets. Exposure to
maximum rated conditions for prolonged periods may result in
irreparable damage to the device.

As can be seen in the timing derating section of the ACT
datasheets, variations in voltage, temperature, and process will
affect device performance. You must take care to design systems
so that the effects of these variables, from best to worst case, will
not cause timing problems during interchip communications.

Thermal Considerations

An often overlooked test case examines ambient temperature
effects on FPGA performance. The Action Logic® System reports
timing as derated by thermal junction temperature. This is the
temperature found at the junction of the die and the package
casing. Additional derating must be applied for ambient to
junction temperature effects (9ja). The value for 9ja will vary
from package to package. The units for 9ja are °C/W. This
implies that the power dissipation must first be calculated to
determine the value for 9ja. (Please refer to the Power Dissipation
section of the ACT datasheets.) Once 9ja is calculated, this
temperature should be added at the junction to case temperature
(9jc). This is the temperature value to be used for the temperature
derating portion of the timing analysis. Because 9ja is a function
of ambient temperature, the use of a fan can decrease the 9ja

© 1993 Actel Corporation

value. This can be seen by observing the difference between the
9ja value in still air and at 300 ft./min., as shown in the Package
Thermal Characteristic section of the datasheets.

Ground Bounce and Switching Characteristics

Actel defines simultaneously switching outputs (SSO) as any
outputs that transition in phase within a 10 ns window. The
resultant ground bounce produced is a function of the number of
outputs switching simultaneously and the capacitive loading of
the outputs.

Table 1 shows the recommended SSO limit for ACT 1 and ACT 2
FPGAs. To measure worst-case ground bounce, the I/Os are
placed adjacently and are driving a 50 pF load. The observed
ground bounce is less than I V, with a pulse width of less than
2 ns.

Exceeding the recommended limits results in a larger ground
bounce. However, the width of the ground bounce pulse prevents
it from being recognized by most discrete digital receivers. Refer
to the specifications of the external receivers for verification. 1

Should you have the need to switch more signals than
recommended, the SSOs should be distributed evenly around
device. This will reduce the amount of mutual inductance
produced between adjacent I/Os and thus reduce the ground
bounce.

Table 1. Recommended 550 Limits for Actel FPGAs

Maximum

Device Package Recommended
SSOs

(50 pF load)

A101 OAlA1 020A 44 PLCC 16

Ai 01 OAlA1 020A 68 PLCC 24

A1020A 84 PLCC 32

Ai 01 OAlA1 020A 84PGA 32

A101 OAlA1 020A 100 PQFP 32

A1280 PG176, PQ160 64

A1240 PG132, PQ144 48

A1240/A1225 84 PLCC 32

A1225 100 PGA, PQFP 32

Buffers may also be inserted in the path before the output buffer.
This will reduce the possibility of adjacent signals switching
within 10 ns of each other. The ALS Timer should be used to
verify the delays.

8-57

I

Power and Ground Pins

Actel FPGAs are designed with ample power and ground pins on
the device resulting in minimal ground bounce characteristics
during I/O switching. A ground pin is provided for approximately
every eight I/Os (please refer to package drawings found in the
Actel FPGA Data Book and Design Guide for further detail).
Unused I/Os cannot be programmed to act as ground pins.

Table 2 describes the function of each of the power and ground
pins found on the devices.

Table 2. Power and Ground Pin Functions

Vee Device operating power.

Vpp Device programming Voltage. Should be tied to
Vee during normal operation.

VSV Super voltage supply. VSV = Vpp +3. VSV provides
a precise lower limit on the voltage that is applied
to a fuse during programming. During normal oper­
ation VSV = Vee·

VKS VKS provides voltage supply for keepers (keepers
maintain floating tracks at Vpp/2 during program­
ming and prevent them from leaking down to
GND). During programming, VKS = Vpp/2. During
normal operation, VKS = GND.

GND Supplies GND to the array (all channels).

Slew Rate

ACT 1 and ACT 2 outputs operate at high slew rate only. Figures
1, 2, and 3 illustrate the slew rate characteristics for high slew rate
outputs, both loaded and unloaded, for an A1280 PG 176 device.

LOAD

INBUF

Figure 1. The Test Circuit

8-58

Device I/O

The I/Os on each Actel FPGA are nonrestrictive. Any pin shown
as an I/O in the pin description list can be assigned to be either
input, output, bidirectional, or tri-state. ACT 2 FPGAs add latch
capabilities to each of these options. Actel FPGAs do not
incorporate any type of internal pullup on the I/Os. Inputs must
not be left floating, since this may cause irreparable damage to
the device. Any unused I/Os will be configured as active low
outputs by the Action Logic System. The sink and source
capabilities of individual outputs for ACT 1 and ACT 2 FPGAs
have been extrapolated from V-I curves and are shown in Table 3.
The V-I curves for ACT 1 and ACT 2 are shown in Figures 4
through 9.

Table 3. Worst-Case Sink and Source Current for Actel
FPGAs

TTL

CMOS

ACT 1

8 rnA

4 rnA

ACT 2

10 rnA

6 rnA

I/Os may be tied together externally to increase drive capability.
The outputs must switch within 4 ns of each other, thus they
should be placed as close to each other as possible. (Please refer
to device die bonding diagrams for pad locations.) The switching
times can be verified with the ALS Timer.

Decoupling Capacitors

Actel recommends the use of decoupling capacitors with all
FPGA devices. We suggest a minimum of one capacitor per side,
located next to power and ground. A 0.1 J.lF monolithic ceramic
type is sufficient.

References

1. David Shear, "EON's Advanced CMOS Logic
Ground-Bounce Tests," EDN, March 2, 1989, p. 88.

Board Level Considerations for Actel FPGAs

~

............ \ L

1.5 V

"""'""'--
~ , ~L

~
Input ~ - ~ J! V \ ./ No

" N ~ I--""'"'" XI 1\.-;/
./ V ~ ~ / '/\ l~

Load 1.0 V/Oiv

- - -' ./ '-' - -

-5.520 ns 3.480 ns 13.480 ns

2 ns/Oiv

Figure 2. No Load Versus Load-Fast Slew

II

8-59

8-60

1.0 V/Div 1-----'~+_-I--+_IJ___=_-~~-IoI___:JIIIC_'~+_::otJ1"C_-""""':_______. """"--_+_--_t_--_l

-10.600 ns 39.400 ns

10 ns/Div

A = "No Capacitive Load" (-25 pF jig + 9 pF scope)
8 = 82 pF
C = 200 pF
o = 300 pF
E = 560 pF

Figure 3. Capacitive Loading Versus Slew

89.400 ns

Typical Values VOL
(Not Guaranteed)

Board Level Considerations for Actel FPGAs

rnA
14

12

10

8

6

4

2

o
o

o

-2

-4

-6

-8

-10

-12

-14

/
/

/
/

/
/'

/
50 100 150 200 250

rnVolts

Vee'" 4.75 V, 25°C, Typical Process

Figure 4. A1020A Typical Sink Current

Typical Values VOH
(Not Guaranteed)

300 350

rnA

J
!

j
/

/
_I

I
o 2 3 4 5

Volts

Vee = 4.75 V, 25°C, Typical Process

Figure 5. A 1 020A Typical Source Current

8-61

11

8-62

14

12

10

8

6

4

2

o

mA

/

Worst-Case Values VOL
(Not Guaranteed)

/"
/"

/"
/"

/

/"

o 100 200 300 400 500

o
-2

-4

-6

-8

-10

-12

-14

mVolts

Vee = 4.75 V, 75°C, Worst-Case Process

mA

Figure 6. A1020A Worst-Case Sink Current

Worst-Case Values VOH
(Not Guaranteed)

.f
1

/
J

I
.f

!
o 2 3 4

Volts

Vee = 4.75 V, 75°C, Worst-Case Process

Figure 7. A1020A Worst-Case Source Current

5

VOH (V)

VOL (rnV)

Board Level Considerations for Actel FPGAs

4.5
0, ~

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

VOH versus IOH Over Temperature
at VDD = 4.5 V

~.

.~~

--------~ -...,

-2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12

IOH (rnA)

Figure 8. A1280 Typical Source Current

VOL versus IOl Over Temperature
at VDO = 4.5 V

0.45 r---------------------,
0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

o ~-----------------------~

---25°C
--0- 75°C
-·-130°C

---25°C
--o-75°C
-·-130°C

2 3 4 5 6 7 8 9 10 11 12

IOL (rnA)

Figure 9. A1280 Typical Sink Current

8-63

I

8-64

--!Mc/@I!
•

A Power-On Reset (PaR)
Circuit for Actel Devices

Application
Brief

The state of a system at startup is an important consideration in
designing a circuit. It is usually desirable to provide an input
signal at startup to reset synchronous circuitry. Otherwise, the
system may initially operate in an unpredictable fashion because
flip-flops are not designed to power-on in any particular state.
Figure 1 shows a typical power-on reset (PaR) circuit where the
series resistor, RI, is omitted for TTL circuits.

'omit for TTL

Figure 1. Power-On Reset Circuit

This resistor is necessary with CMOS implementations to prevent
damage to the device when power is removed from the circuit.
Otherwise, the capacitor will try to power the system via the
CMOS input gate protection circuit. A Schmitt trigger (40106,
74LS14) may have its advantages in making the RESET signal
switch off cleanly. The hysteresis symbol shown in Figure 1
indicates an inverter with a Schmitt trigger input such as the
CMOS 40106 hex inverter. The following sections describe the
power-up conditions of an Actel device and a recommended paR
circuit.

Behavior of ACT™ 1 FPGA Inputs

During power-on, the +5 V logic supply rail of a system typically
rises from 0 to +5 V in SO ms or less. Because regulator outputs
are usually current limited during this transition, the rise time is
more or less linear, with a slope in the range of 0.1 V /ms to S
V /ms. Each ACT 1 FPGA has a universal pad driver design that
may be configured as an input, output, three-state output, or
bidirectional input/output. This configuration of the pad driver is
accomplished by programming antifuses in the pad driver
circuitry.

As the +S V logic supply rail passes through the region from
approximately +2.2 V through +2.S V, pad drivers that have been

© 1993 Actel Corporation

programmed as inputs may behave temporarily as outputs that are
in the logical 'I' state. Thus, these input pins will temporarily
source current (approximately 8 to 10 rnA, if not otherwise
limited) into whatever driver is connected to them. They will be
sourcing this current from the +S V logic rail, which at this time is
at +2.2 to +2.S V. This duration is a function of the power rail rise
time. For +5 V rails that come up quickly, at S V/ms, the duration
of the behavior will be approximately 60 !lS. For supply rails that
rise slowly, at 0.1 V /ms, the duration of the current sourcing
behavior will be 3 ms. In the former case, the Actel input can
deliver as much as 0.6 f.lC to the circuit that drives it; in the latter
case, the charge is as much as 30 Il-c. For many driver circuits,
this amount of charge is insignificant; however, for others it may
be unacceptable.

Inserting a series resistance of sufficient size in the Actel input
line can limit the effect of this behavior. In the case of the paR
circuit in Figure 2, the series resistance must be chosen to keep
11 V ::; 1 V. This guarantees that the paR remains at a logic '0'
following the irregularity when the logic supply rail is at
approximately 2.S V, where 11 V /l1t = i/C is the voltage rise time of
the capacitor. The capacitor is charged through a resistor to the
S V logic supply rail, and the diode across the resistor is used to
discharge the capacitor at power-off. For a power rail rise time of
0.1 V /ms, the duration of this behavior will be approximately
3 ms. This means that for a paR capacitance of 0.1 f.lF, the
current out of the Actel device input must be limited to

i = Cl1v / I1t = (0.1 f.lF * 1 V) / 3 ms = 33 f.lA

which can be achieved using a resistance of 2.24 V /33 rnA
= 68 kQ.

1N5711

0.11lF

+5 V

POR

Ground

ACT 1
Device

Figure 2. Power-On Reset (POR) Circuit with
Current-Limiting Resistor

8-65

I -

Furthermore, for drivers that cannot accept a source of current at
their outputs or for a multiple-source data bus, it is strongly
recommended that the bus driver(s) be three-stated during POR.

Summary

Use these methods for avoiding POR problems. The transistors
for these devices are turned on at approximately 0.7 V, their
threshold voltage, while the circuit is functionally operational at a
voltage level of approximately 3.3 V. The global routed clocks in
Actel devices can also be used as resets for synchronous circuits
when connected to either CLEAR or PRESET inputs of
synchronous macros for the ACT 1 family, and the CLEAR input
for ACT 2 and ACT 3 families.

8-66

--ffiIIc/@1!
•

Simultaneously Switching
Output Limits for Actel FPGAs

Application
Note

Introduction

For high perfonnance field programmable gate arrays (FPGAs)
with many I/Os, the allowable number of Simultaneously
Switching Outputs (SSOs) for each device is an important issue
for system designers. The limits for SSOs depend on factors such
as package type and die size. Use the following guidelines to help
ensure reliable system designs.

System Noise and Transients

Noise generated by off-chip drivers is a major concern in FPGA
design for high-performance systems. Noise is closely related to
interconnections and increases as a function of fast rise times,
large total chip currents and die dimensions, and small spacing
between components on-chip and onboard. As clock frequencies
and die dimensions increase, signal wavelengths become
comparable to wire lengths, thereby making better antennas.
Reduction in the spacing between circuits leads to an increase in
the capacitive, inductive, and resistive couplings. The voltage (IR)
drop across the power lines becomes more significant as the
current densities increase and the feature size decreases. With
larger amounts of current switching, the inductive noise
associated with the power lines also increases. These current
transients may generate large potential drops because of the
inductance of the power distribution network and is referred to as
simultaneous switching (dI) noise.

When several circuits switch simultaneously, the current supplied
by the power lines can change at a very fast rate and the inductive
voltage drop along the line can cause the power supply level to
fall. This voltage drop is proportional to the switching speed, the
number of drivers switching simultaneously, and the effective
inductance of the power lines. This effect can be summarized by
Faraday's Law, which states that any change in the magnetic flux
will be confronted by an opposition, a self induced EMF,
determined by the rate of change in the total magnetic flux,
represented by this equation:

EMF = dll>/dt = LdI/dt

© 1993 Actel Corporation

This reduction in the supply level diminishes the current drive of
a circuit, increases the delay, and may lead to the spurious
switching of the receiver.

ssa Recommendations

Actel defines SSOs as any outputs that transition in phase within
a 10-ns window. The output current of these drivers is shown in
the Actel FPGA Data Book and Design Guide. The amplitude and
duration of the ground bounce is a function of the number of
outputs switching simultaneously and the capacitive loading of
the outputs.

Table 1 shows the recommended SSO limits for the Actel FPGA
family. These may vary because the amount of ground bounce
that an application can tolerate is difficult to determine.
Worst-case conditions are simulated by placing the I/Os adjacent
to each other while driving 20 pF, 35 pF, and 50 pF loads. The
observed ground bounce is less than 1.5 V, with a pulse width of
less than 2.0 ns. This is within the acceptable limits of the
dynamic threshold of 74F, 74LS, and ACT families. Results from
the EON Special Report on Ground Bounce Tests by David
Shear l show a plot of the ground bounce pulse amplitude versus
pulse width duration (ns) for different logic families. This article
shows that as the input pulse width gets shorter, the voltage must
be higher to affect the output of the device. Exceeding the
recommended limits may result in larger ground bounce. The
output drivers should be placed separately if more outputs must
be switched simultaneously. This arrangement reduces the mutual
inductance produced between adjacent I/Os resulting in a lower
ground bounce. If necessary, buffers may also be inserted in the
path before the output buffer. This will reduce the probability of
adjacent drivers switching within 10 ns of each other.

References

1. David Shear, "EON Special Report on Ground Bounce Tests,"
EDN, Apri115, 1993, p. 120-134,.

8-67

I

Table 1. Recommended SSO Limits for Actel FPGAs

Maximum Recommended SSOs for Loads
Device Package

20 pf 35 pf 50 pf

A 101 OA/A 1 020A 44 PLCC 40 22 16

A 101 OA/1 020A 68 PLCC 60 34 24

A1020A 84 PLCC 80 45 32

A 101 OA/1 020A 84 PGA 80 45 32

A1010A/A1020A 100 PQFP 80 45 32

A1280 PG 176, PO 160 160 90 64

A1240 PG 132, PO 144 120 68 48

A 1240/A 1225 84 PLCC 80 45 32

A1225 100 PGA, POFP 80 45 32

A1425 84 PLCC

--

8-68

~c/@I/
•

© 1993 Actel Corporation

Application Examples and
Design Techniques

Application Examples and Design Techniques

Hints and Tips for Better Actel Designs I . 9-1

Hints and Tips for Better Actel Designs II . 9-3

A TTL Designer's Guide to FPGA Design . 9-5

JTAG Implementation in ACT 2 Devices. 9-11

Designing Adders and Accumulators with the ACT 2 Architecture . 9-29

Fast Adder Design Techniques. 9-35

Designing Counters with the ACT 2 Architecture. 9-37

Implementing Load Latency Fast Counters with ACT 2 FPGAs . 9-43

Bit-Per-State Decoded State Machine for FPGAs. 9-51

Implementing State Machines Using Shift Registers. 9-55

Designing with Pseudo-Random Number Generators. 9-59

Implementing Three-State and Bidirectional Buses with Multiplexers in Actel FPGAs . 9-61

Oscillators for Actel FPGAs . 9-65

Page Mode DRAM Controller . 9-67

Designing a DRAM Controller Using Language-Based Synthesis. 9-69

Four-Channel DMA Controller. 9-81

A High-Performance Networking Interface Using Actel FPGAs. 9-85

A High-Performance Synchronous Memory Interface Using Actel FPGAs . 9-91

Synchronous Dividers in Actel FPGAs . 9-97

A Stepper Motor Controller in an Actel FPGA ... " 9-101

A Pulse Stretching Circuit for Actel FPGAs ... " 9-105

Using FPGAs for Digital PLL Applications .. " 9-107

Hints and Tips for
Better Actel Designs I

Application
Note

Actel field programmable gate array (FPGA) designs benefit
from the same digital design techniques that are effective for
other types of devices in a digital system. PLD, TTL, and FPGA­
based designs use many of the same methods to implement
common functions. However, there are many architectural
differences between these device types that require distinct
techniques for optimum results. Use the following techniques to
improve the performance of Actel FPGA designs. These hints and
tips provide a wide range of ideas to be considered during the
design flow. In most cases, more information is available in the
ALS User's Guide.

Reducing Unnecessary Logic

The macro library for each ACTTM family contains a wide variety
of hard combinatorial macros with many combinations of
inverted (bubbled) input and output pins. For example, there are
five different four-input NAND gates, having zero to four inverted
inputs. Use each of these hard macro types as necessary to
eliminate the use of inverters. This practice reduces the logic
module count and increases speed and efficiency by removing
unnecessary logic levels.

Using De Morgan's Law

Apply De Morgan's law to reduce combinatorial logic
expressions to their least complex form. Reducing the logic
equations reduces logic module use and complexity. In many
cases, lower fan-in macros may be used as a result of simpler
logic equations. The overall routability usually increases as a
result of simplifying the design's implementation.

Pipelined Design

For highest performance throughput, use pipelined design
techniques if possible. Pipe lined designs may use more logic
modules to implement a function, but they will have higher
performance. If high performance is required and the device
capacity is sufficient, use pipelining instead of serial data
processing.

Balancing Logic Levels

Balance the number of logic levels between registers in a register­
to-register design. For a data bus that traverses ten logic levels
and three registers, separate the number of logic levels between

© 1993 Actel Corporation

registers as equally as possible. For example, put three logic
levels between the first and second registers, three between the
second and third registers, and four between the third and fourth
registers. Balancing the logic levels enables the highest overall
system clock frequency.

Using Synchronous Enable Signals

The hard macro library contains many flip-flops and latches with
synchronous clock enable inputs. The input of these macros
enables and disables the clock or gate pin. Using this input is
more reliable and efficient than "gating" the clock signal. The
enable input has definite setup and hold times that are easy to
calculate and control. In contrast, determining and managing the
relative arrival times of the clock signal and a gated enable signal
can be difficult and tedious. The use of the enable inputs removes
the costly need for extra "clock gate" logic modules.

Designing with the DFM8 and CM8 Macros

For ACT I designs, the CM8A macro represents the complete
function of a logic module. For ACT 2 and ACT 3 designs, the
CM8 macro represents the complete function of the
combinatorial module (C-module). The DFM7A and DFM7B
represent the complete sequential module (S-module) for ACT 2
designs and the DFM8A and DFM8B are the S-module macros
for ACT 3. Use these macros to implement functions not available
in the existing hard macro libraries. See the Actel Family Macro
Library Guide for a complete description of the macros.

Using Look Ahead Techniques

Actel FPGAs benefit from design techniques such as look ahead
generation. Good examples of the use of this technique to
improve a design are the adders in the soft macro library. Carry
look ahead generators are used to greatly increase the maximum
operating throughput of these functions.

Using S- and C-Modules for Sequential Macros

For ACT 2 and ACT 3 devices, both S- and C-modules are
utilized to implement flip-flops and latches. These devices
contain approximately equal numbers of each type of module.
Designs that are flip-flop intensive may use a disproportionately
large number of S-modules, which may decrease the chance for
success of the placement and routing tools.

9-1

I

9-2

Hints and Tips for
Better Actel Designs II

Application
Note

Generally, Actel Field Programmable Gate Array (FPGA) designs
benefit from the same digital design techniques effective for other
types of devices in a digital system. PLD, TTL, and FPGA-based
designs share many methods of implementing common functions.
However, there are many architectural differences between these
device types that require distinct techniques for optimum results.
Use the following techniques to improve the perfonnance of
Actel FPGA designs. These hints and tips provide a wide range of
ideas to consider during the design flow. In most cases, more
infonnation is available in the ALS User's Guide.

1. 1/0 Pin Assignment
The overall perfonnance of the design is largely influenced
by the I/O pin placement. Well-placed I/O pins usually lead to
a successful layout of the logic modules. If possible, use
automatic assignment for all I/O pins. Usually, designs with
automatically assigned I/O pins have higher perfonnance than
those with manual assignments. For more infonnation on I/O
assignment, refer to Chapter 7 in the Actel User's Guide,
Release 2.2.

2. Criticality
A common mistake made in assigning criticality to the nets in
a design is to layout the device with no criticality assignment
initially and then to iteratively assign criticality to nets that do
not meet timing requirements. A better approach is to
detennine the critical paths in the design initially. The Timer
may be used with pre-layout delays to assist in finding the
critical paths. Finally, add the critical nets to the criticality
file.

3. Incremental Placement
The Incremental Placement option in Layout allows minor
modifications to a design with minimal or no impact on the
timing of the device. Depending on the selected incremental
placement strength, place will attempt to preserve the original
placement of common portions of a design.

4. Global Clock Network
Low-skew, high fanout clock networks are provided in the
Actel architecture. These dedicated networks exist in all Actel
devices. The clock networks are used by selecting the clock
macros, such as CLKBUF or CLKINT, from the library.
Global clocks guarantee the minimal skew possible for high
fanout signals. Global clock networks use independent short
routing channels that prevent ALS from placing clock signals
on long vertical or horizontal tracks, which may cause
excessive delay and skew. In general, it is highly
recommended to use global clock networks to drive high
fanout signals such as enable and reset lines, also.

5. Delay Verification
Actel provides two efficient techniques to measure tImmg
delays-the ALS Timer and backannotation to a simulator.

© 1993 Actel Corporation

The Timer and back annotation provide a simple way of
finding the expected delays on the chip, the maximum
operating frequency of the chip, and the internal device
delays. Both have the capability of operating with worst-case
conditions as well as typical and best-case conditions. The
Timer identifies point-to-point delays within the device.
Simulation with backannotated delays verifies the
functionality of a circuit in addition to its speed.

6. Combinable ACT 2 and ACT 3 Macros
The ACTTM 2 and ACT 3 device architectures are based on
two types of logic modules, the C-module and the S-module.
These architectures allow the combination of gates with
certain flip-flops and latches, which allow the implementation
of a logic function with fewer modules and shorter
propagation delay. If there is a combinatorial gate solely
connected to one of these flip-flops or latches, the ALS
software will merge the two macros in a single S-module.
Consult Table 3-2 in the ALS User's Guide for a list of
combinable macros.

7. 90% Full Chip Versus 90% Empty Chip
Ordinarily, it might be hard to understand that the operating
frequency of a 90% utilized device can be better than a 90%
empty chip. Placement and routing in a 90% empty chip
might give better results than a 90% utilized chip due to the
extra logic resources and routing tracks available. However,
even though a 90% empty chip underutilizes the device,
signals might be routed onto long horizontal or vertical
tracks. Some signals may even be unroutable. In a 90% empty
chip, the placement software may disperse the macros
throughout the chip depending on the I/O placement, creating
long distances in between them. In this case, the software will
be forced to use long vertical or horizontal tracks or may fail
to complete. Therefore, it is recommended that test circuits
occupying less than 10 to 15% of the chip should not be used
to predict the operating frequency of the chip. Instead, the test _
circuit should use at least 50% of the chip. _

8. Fanout Management
ALS automatically calculates the fanout for every net in a
design. The built-in fanout limitations guarantee more
efficient design routability and better timing perfonnance.
ALS reports warning and error fanout messages as follows.

- Fanout errors are reported when any net (except global
clock networks) exceeds the limit of 24 loads or when a
critical net exceeds its limit. The fanout limitations and net
loading restrictions are listed in Table 1.

Critical net fanout limits are more restrictive in order to
achieve the speed requirements for the nets. As fanout
increases, the average delay on the net increases.

9-3

9-4

Fanout warnings are reported when an ordinary net exceeds
the recommended limit of 10 or when a critical net exceeds
its recommended limit. The recommended limit of lOis a
warning only. If many nets in a design have fanout of 10 or
greater, routability is negatively affected. If a large number
of nets in the design have a high overall fanout, such as 10,
many long routing tracks will be used, which may preclude
other net connections. Fanout warnings need only be
corrected if a large number of nets exceed a fanout of 10. If
nets are noncritical, a fanout of 10 or greater is acceptable.

Table 1. Net Loading Restrictions

Net Criticality

F (Fast)

M (Medium)

default

Fanout Warning
Limit

net loads> 3

net loads> 8

net loads> 10

Fanout Error
Limit

net loads> 6

net loads > 12

net loads > 24

In general for best routability performance, the average fanout on
a net should be about three loads. This is not a required value but
it is recommended to keep the fanout low for best results.

A TTL Designer's
Guide to FPGA Design

Application
Note

Actel field programmable gate arrays (FPGAs) offer many
advantages over traditional technologies such as TIL. FPGAs
integrate large amounts of logic into one device, increasing
reliability and reducing board space and power. For example, a
single AI280 FPGA holds the equivalent of 165 MSI TIL
devices (assuming 70 gates per MSI device). Designs require
smaller, simpler printed circuit boards (PCBs), since most of the
design's connections are made inside the FPGA by the 100
percent automatic place and route software. This beats costly
PCB design and fabrication.

It's Easy to Start

You may be familier with TIL components and see some of the
advantages of Actel FPGAs, yet not realize how easy it is to begin
using them. You don't have to know anything about the internal
workings of the FPGA. In fact, the schematic entry and
simulation process is the same as it is with TIL.

Actel Library

Actel provides a library with the system for popular schematic
design tools. The library contains both hard macros and soft
macros. Hard macros are similar to SSI components. They form
the basic functional building blocks, such as gates and flip-flops.
Many Actel hard macros are identical in function to TIL parts
though they have different names. The Actel FPGA Data Book
and Design Guide contains a cross-reference guide showing the
names of hard macro components that match functionally to TIL
components.

© 1993 Actel Corporation

Soft macros are more complex functions built from a number of
hard macros. They include counters, decoders, and adders of
various sizes. Some of the soft macros in the library have
identical functions to MSI TIL parts. These may be identified by
names that begin with TA instead of 74. The rest of the name
matches that of the TTL name. Other soft macros offer generic
logic functions.

Creating Custom Soft Macros

All soft macros are easily copied and modified, and there is no
limit to the number of custom soft macros you can add to the
library. Should you need a TTL function for which there is no
near equivalent in the library, it is easy to build it from scratch.
Simply copy the schematic as shown in the TTL databook using
components such as gates and flip-flops from the Actel hard
macro library.

Also, make use of logic enhancers such as ACT'x'press™ and
ABEe

M

FPGA. Logic enhancers may be used to optimize
individual soft macros for area or speed. As you gain familiarity
with the Actel hard macros, you will find instances where you can
create a more efficient design than that found in the TTL
databook. For example, if the book shows an AND gate driving an
OR gate, you may find a single hard macro containing both the
AND and OR functions. Using such multifunction macros is
efficient because you get better, faster logic from a macro.
Compare the 74AS16l counter schematic from a TTL databook
with the TA161 from the Actellibrary in Figure 1.

9-5

I

co
0,

EN

EN

LD

CLK

CLR

--

--

--

GO - A~

T Bt:Y-

~

A

~~ ~ "Xl Y

~ T A. G3

B j)XOR Y
~ND2" Y

...... G4 T A.._ GS

B
ND3A Y

B))XOR Y
-/

C

A. T A.._ G7
B~6

B j)XOR Y
C ~D'"

Y

D f-.-./

A
B G8

'::~y A
G9

C
I-:-..J I Bt::)y

~

Figure 1. TA161 Counter

1 _ A -- r::----
h FO Q ----- OA t
l", DFMB

CLK

CyR

B 1 - r::---- -Fl. Q --- -- OB

it::::!. DFMB

CLK
CLR

C 1 _ -- ~
h F2 Q --- OC

leo DFMB

CLK
CLR

D 1 _
-- ~

b F3 Q - -- D

lco DFMB

CLK

T
- co --

Three-State Design

Many TTL parts have three-state outputs allowing them to be
connected to a common bus. Three-state functions don't work
well with ASICs or FPGAs because they tend to be slow and

A [0]

S [0] -----l

Discrete Technology Implementation

A TTL Designer's Guide to FPGA Design

inefficient. You don't have to give up using buses in your designs.
Simply implement them using multiplexers as shown in Figure 2.
Multiplexers are efficient on Actel parts. For example, you can
create an eight-bit bus with four possible drivers using less than
3 percent of an AlOlO, Actel's smallest part.

C [0]

D [0]

A [0]

S [0]

C [0]

D [0]

Actel FPGA Implementation

Figure 2. Least Significant Bit of a Bus with Four Possible Drivers

Design Tips

If you use a soft macro, but don't need all the outputs, you don't
need to modify the macro. The Actel software contains a program
that will automatically eliminate any unused modules before the
design is placed and routed.

If you use a soft macro or a hard macro that has inputs you don't
need, the situation is different. The software won't allow inputs to
be left unconnected, so simply tie unused inputs to Vee or GND.

TA161

ClR

lD

ENT
RCO

ENP

ClK

A OA

S OS

C OC

D OD

A better solution is to select a hard macro that only has inputs you
need or to modify the soft macro to eliminate the unused function.

For example, the TA161 counter has a load function and four data
inputs. Rather than tying off these pins, a better solution is to make
a copy of the counter and modify it as shown in Figure 3. This will
allow the wiring resources on the chip to be used for things other
than power and ground connections.

NEW161

k ClR

RCO i---
r--- ENT

r--- ENP

r---~ClK

OA i---

OS f---

OC i---

OD f---

Figure 3. A Library Symbol and a Modified Symbol

9-7

I

Simple State Machine Design Techniques

A common TIL design technique is the use of a Jump/Reset
counter (74161) to generate a delay sequence. The counter is
loaded with a fixed value, then counted until the terminal value is
reached. This results in a fixed delay depending on the loaded
value. Figure 4 illustrates this technique with a loaded value of
seven, which results in a delay of eight. This is a popular
technique in TIL because the function is implemented in a single
package and the value is easy to change by modifying the load
value.

Most FPGA libraries include a 74161 soft macro, which
designers often use the same way they would when designing
with TIL. This technique, however, results in an inefficient
function when using FPGAs. For example, the 74161 requires
22 logic modules and three levels of logic delay in the ACT™ 2
family. Alternately, you could use a simple shift register to
generate a delay that requires only N modules (for a delay of
N states) and requires only a single level of logic. The amount of
interconnect is much reduced, also requiring about two
connections in the 74161 and only about 2N for the shift register.
The FPGA implementation of this delay function is shown in
Figure 5.

The approach to more complex state machine designs with TTL
also rely on simple functions like counters, decoders, and random
logic. One common example is a counter with a decoder on the
output. The counter is used to hold the state information and is
sequenced by the control inputs. Jumps can be made to different
values based on input conditions, and counting can be activated to
advance the state machine or make it hold in the existing state. An
example of a state machine implemented using this technique is
given in Figure 6 along with the state diagram. The state machine
starts in the reset state and advances when S is high. When it
reaches state 3 it makes a transition to state 5 and 7 depending on
the input signal L. When it reaches state 10, the state machine
waits until the G signal is active and then advances to state 12,
when it is reset. Notice the use of the load inputs to determine the

9-8

transition to state 5 or 7, and the use of the decoder outputs to
detect states 10 and 12. This ad hoc approach is not easily
mechanized and requires experience and trial and error to get
correct results. The TIL implementation is a good one since it
uses common functions and a small number of packages. If
implemented in the Actel ACT 2 FPGA, the module count is over
30 and five levels of delay are required.

A better technique for implementing state machines in FPGAs
uses a shift register instead of a counter and decoder. Each state is
represented by a register and the active state register will contain
a logic one with the other states containing a logic zero. A
decoder is not needed, since the states are distinct and thus
already decoded. Figure 7 shows the resulting FPGA design. It
requires only 13 logic modules and one level of logic delay.

Conclusion

These examples illustrate that, to take the best advantage of the
capabilities of FPGAs, designers need to rethink some of the
common design techniques used with TTL devices.

RESET --INI ----
eLK --

()
;.-

1
GND

TAl6l

CLR

LD
RCO

ENT

ENP

CLK

A QA -
B QB -
C QC f--

D QD f--

Figure 4. Eight Clock Delay Using 74161

- OUT -

A TTL Designer's Guide to FPGA Design

IN - In Q D Q D Q D Q-- OFC1B DFC1B DFC1B DFC1B

CLK - CLK ,-- CLK ,--~CLK - >CLK - CLR CLR CLR CLR

I r r r -

LD Q D Q D Q D Q -- OUT

DFCl.B DFC1B DFC1B DFC1B

'---~CLK '---~CLK '---~CLK - >CLK
CLR CLR CLR CLR

RESET = I I I r - - -
Figure 5. Eight Clock Delay Using FPGA

/s

TA161

CLR

I
S

LD
RCO t-

I
ENT

ENP
CL K.. CLK

L A OA -
_B OB

f: OC

00

~c

Figure 6. State Machine Using TTL Technique

9-9

S

/S_--I...-./ Q2

L

RESET

Q9

2

Figure 7. FPGA State Machine

9-10

JTAG Implementation
in ACT 2 Devices

Application
Note

Introduction

JTAG (Joint Test Action Group) is a test approach used to debug
various problems caused during manufacturing. It requires
special functions built into a device. This paper defines the steps
in implementing JTAG in Actel's ACT™ 2 devices and includes
the cost in logic resources and performance. This application note
describes the basic information needed to implement JTAG;
however, the designer should refer to the IEEE Std. 1149.1 to
ensure compliance. This note also considers alternate test
approaches significantly less costly than JTAG.

JTAG Implementation

JTAG consists of two major functions, the scan cells and the TAP
(Test Access Port) controller that controls the shifting and loading
of the scan cells. There are three types of scan cells: the basic I/O
scan register, the instruction register, and the bypass register. The
block diagram for the complete JTAG structure is shown in
Figure 1. The TAP controller drives the control signals for the
shifting and loading data in the bypass register, instruction
registers, and I/O scan registers. The instruction register contains
information that defines the current test type for the I/O scan
registers, and both the instruction register and TAP controller
supply information to the MUX SELECT DECODE to determine
the source for TDO. The different types of tests supported by
JTAG are shown in Table 1. Implementation for the EXTEST,
SAMPLE/PRELOAD, INTEST, BYPASS, and RUNBIST will be
considered in the following sections. For a complete description
of optional JTAG functions and test types, please refer to the
IEEE Std. 1149.1.

Table 1. JTAG Test Types

BYPASS

SAMPLE/PRELOAD

EXTEST

INTEST

RUNBIST

mCODE

USER CODE

Mandatory

Mandatory

Mandatory

Optional

Optional

Optional

Optional

Implementing the Basic I/O Scan Register

The basic scan structures are shown in Figures 2, 3, 4, and 5. The
signal SHIFTDR is used to select between system data and scan
data. The signal CLOCKDR is used to capture the data selected
by the SHIFTDR signal. The UPDATEDR signal controls the
clock to a flip-flop used to isolate the output pin from data being
shifted through the device. The configurations shown in Figure 2
will support only the SAMPLE/pRELOAD and the EXTEST

© 1993 Actel Corporation

routines. To support the INTEST and RUNBIST, the input scan
cell must be configured as shown in Figure 6. Also, the input scan
portion in the bidirectional scan cell of Figure 5 must be replaced
with the structure in Figure 6. Note that when this is done the
decoded MODE values will no longer be common.

Implementing Instruction Register Cells

Instruction registers are used to encode the current instruction.
These values are decoded and used to create the MODE signal
that defines the functions in the JTAG scan macros. The number
of instruction registers required is defined by several factors. The
first is the number of test types that must be performed and are
used to encode the MODE signals. The second is to control the
multiplexer select signals used to define the source for the TDO
signal shown in Figure 1. The implementation for an instruction
register is shown in Figure 7. The value for the MODE signal is
shown in Figures 3, 4, 5, and 6 to support the various test types.

The DATA input is used to load optional test information into the
instruction scan register. JTAG requires that the DATA input on
the least significant bit of the instruction register (that is, closest
to TDO) be set to a logical one and that the second least
significant bit be set to a logical zero. Optional status data can be
input to any additional instruction registers.

The TRST _ and RESET_lines are used to force the value of the
instruction registers to the default test type. These signals can be
used to SET or RESET the instruction bits. The RESET only
circuit as shown in Figure 7 is merely for convenience. The
instruction mCODE is the default instruction if it is
implemented. If the IDCODE test is not implemented, then the
BYPASS test is the default test type. The instruction bits to define
the BYPASS test should all be logical ones. Therefore, the flip­
flops should all be SET for this test case.

Information from the instruction register is passed to the TDO
output whenever the TAP controller signal SHIFTIR is active
(high).

Bypass Register

The bypass register is a required element for JTAG
implementation. This register is used to bypass the normal I/O
scan cells to shorten test time. Implementation for the bypass
register is shown in Figure 8. The long scan chains are bypassed
by storing the current information present on TDI and passing it
to TDO selected by the multiplexer values as shown in Figure 1.
Once again, the instruction register must be set to all ones to
define the BYPASS function.

Implementing the TAP Controller

The TAP controller is the state machine that creates the various
signals controlling the activity of the scan registers. The Actel
implementation for the TAP controller is shown in Figures 9 and
10. The TAP controller implements the state diagram described in
the IEEE Std. 1149.1. The state machine is updated on the rising

9-11

I

edge ofTCK and the registered control signals are updated on the
falling edge of TCK. The TMS signal is used to define branching
in the state machine.

Architectural Considerations

When implementing JTAG in an Actel ACT 2 device, the
following should be considered:

Since the scan chains are basically shift registers, the
designer must guarantee that there are no hold time
violations caused by clock skew. The easiest way to prevent
this is to use a global clock buffer (CLKINT) to drive the
CLOCKDR signal. Otherwise, a buffer tree must be
constructed and careful timing analysis performed.

All I/O scan chains should be tied together after pin
assignment has been made and preliminary place and routes
have been done. Tying together 1I0s that are physically close
together reduces routing requirements. The same is true for
the UPDATEDR, MODE, and SHIFTDR signals. Typically
these signals will be buffered before the actual I/O scan cells.
Any given buffer should only drive the UPDATEDR and
SHIFTDR signals on I/Os close together (in groups of 4 to 8
pins). To determine which 1I0s are close together, please
refer to bonding diagrams and pin cross-reference charts
available from Actel Technical Support.

Actel's tool set contains a function that eliminates all modules
that do not drive a sink. These recommended steps will cause this
to happen and will skew the total required logic resources. To
prevent this from occurring, the PRESERVE option described in
the ALS User's Guide should be used on all nets without sinks
(this can be done in the JTAG soft macros).

Estimating Cost of JTAG Implementation

While there are benefits to using JTAG to implement system-level
tests, there are also significant costs in both logic resources and
performance. The following sections define the cost.

Impact on Density of Device

Internal resources are required to implement JTAG. Some of the
required resources, like the TAP controller and the bypass
register, are fixed. The other elements required for implementing
JTAG are on a per bit basis. Table 2 describes the resources
required for both sequential and combinatorial modules to
implement JTAG. Since significant loading can occur on the I/O
scan chains that will require buffering, Table 3 shows the number
of loads on a per bit basis for the TAP controller signals.

An example is given in Appendix 1 with an overhead of about 33
percent of total device resources for a heavily utilized 1280. The
actual amount of resources required will vary depending on the
number and type of I/O in a given application.

9-12

Table 2. Logic Module Resources Required to
Implement JTAG

seq comb total

TAP Controller 8 19 27

Bypass Register 0

Instructions
Register 2 1 3 per bit

Inputs 0 1 per input**

Outputs 2 3 per output

Tristates 4 2 6 per tristate

Bidirectional 5 2 7 per bidirectional**
** Supports EXTEST, BYPASS, and SAMPLE/PRELOAD only.

Table 3. Input Loading on JTAG Scan Macros

Input SHIFT CLOCK UPDATE MODE DR DR DR

Bypass
Register 0 0

Instructions
Register 0 0 0 0

Inputs 0 0

Outputs

Tristates 2 2 2 2

Bidirectional 3 3 2

Impact on Performance

JTAG implementations can also affect performance. As shown in
Figure 2, the input scan cell puts an additional load on the normal
system circuitry. The additional load will typically add some
delay (less than one nanosecond) to the system signal. Outputs
are much more heavily impacted because of the need to place a 2
to 1 multiplexer between system output data and the output pin
shown in Figures 3, 4, and 5. The multiplexer can add delay of 5
to IOns depending on routing and speed grades. The additional
multiplexer of Figure 6 will also affect performance on inputs
similar to its effect on outputs.

Impact on 1/0 and Clock Resources

JTAG implementation also requires I/O dedication. The TAP
controller requires a minimum of five I/O resources. The I/Os are
as follows:

TCK - Test Clock Input

TMS - Test Mode Select

TDI - Test Data Input

TDO - Test Data Output

TRST - Optional Test Reset Input

A global clock resource is also used for the CLOCKDR signal,
leaving only one for system level logic.

Alternatives to JTAG

The purpose of JTAG is to ease the testing and debugging of
manufacturing problems at the board level. Different test
approaches exist that use significantly fewer logic and I/O
resources than JTAG and could be used when either is a problem.
The following sections describe various test structures that aid
board-level tests that have significantly lower logic requirements.

Using Actel Built-in Test Structures

One of the functions built into Actel devices is a feature called the
Actionprobe@ diagnostics. This function provides 100 percent
observability of internal nets by serially addressing various points
in the array. Internal nets are addressed by driving address
information and a qualifying clock on the sm and DCLK pins.
Internal activity can then be observed on the PRA and PRB pins.
This function can be used to verify device connection to a board
by first addressing an internal net associated with the I/O (for
example, NETA in Figure 11), then stimulating an external pad,
and finally observing the effect on an external probe pin.
Equivalently, NETD could be selected, and then activity on inputs
INl, IN2, and IN3 could be observed. This test method requires
no dedicated logic to implement. Control of the Actionprobes is
described in the ALS User's Guide.

Use of the Actionprobes can be extended to all pins, including
outputs, by changing the selection of the output cells. If
bidirectional outputs are chosen rather than standard outputs, a
new path is created back into the array that can be observed with
the Actionprobes. Since the outputs will continue to drive during
the test (unless disabled), the tester must temporarily back-drive
the pin to a specified state for observation on the probe pins.
Back-driving can be avoided by adding tristate circuitry to the
outputs under test and disabling the outputs for the test. Since the
input portion is not tied to any internal resources, the PRESERVE
option (described in the ALS User's Manual) must be used to
prevent the software from eliminating the nonfunctional input
net. Once again, no additional logic is required to implement this
test method.

In addition to the Actionprobe diagnostics, a special function to
tristate all I/Os is also built into all Act 2 devices. For a complete
description of this test feature, please contact Actel Technical
Support.

Non-JTAG Test Structures

The following sections describe test structures that can be
designed into the part to aid in board-level tests. The test
structures described use significantly fewer logic resources than
JTAG and also can reduce the impact on performance.

I/O Mapping

This built-in test method simply maps inputs directly to outputs
with a multiplexer at the output selecting between normal system
data or input test data. An example is shown in Figure 12. The test
is done by first asserting the TEST pin. The inputs can then be
toggled and their function observed on the outputs. If the number
of inputs exceeds the number of outputs, then simple
combinatorial functions can be added to map many inputs to a

JTAG Implementation in ACT 2 Devices

single output. The OR gates in Figure 12 are examples of this. If
the number of outputs exceeds the number of inputs, then a single
input can be tied to multiple outputs. Bidirectional pins can be
mapped as inputs or outputs, but not both.

I/O mapping also requires architectural considerations in
mapping inputs to outputs and should only be done once pin
assignment is complete. Inputs should be mapped to outputs that
are close together to minimize routing and performance
problems. The impact of this test method is basically one pin for
test and one multiplexer for each output in addition to the delay
associated with the multiplexer.

Input Only Test Structure

Typically, a functional test to toggle outputs can be generated
with a subset of functional patterns. The difficulty is creating test
vectors that can trace faults to specific inputs. The input only test
method adds logic to inputs apart from normal chip function. This
test method requires all of the inputs and bidirectional pins to be
tied together through an OR/AND structure as shown in Figure
13. The test is performed by asserting the test pin and driving all
inputs low. Each input is then toggled and observed on the output
pin labeled 07 in Figure 13. When bidirectional pins are used as
inputs, the test must guarantee that the bidirectional pins are in
the tristate condition during the test. If this cannot be guaranteed,
additional test logic must be built in as shown in Figure 14 for the
bidirectional pins. The cost of this test method is

summation k

k = 1,2,3

n = inputs

m = bidirectional pins

This test can be further extended by making every output
bidirectional and using the TEST pin to disable the driver during
the test as shown in Figure 14. No functional test patterns are then
required. To estimate costs, the total I/O should be considered in
the summation. This test method would require about 4 percent of
a 1280 with all pins utilized.

When implementing this test method, pins should be tied into the I
OR/AND test array only after pin assignment. All pins that drive
a unique OR/AND module should be closely associated on the
chip.

Conclusion

JTAG is an effective test method to aid in verifying and
debugging board-level problems. When implementing JTAG in
Actel ACT 2 parts, the resources required as well as the impact on
performance should be considered. Architectural considerations
should be made to minimize the impact on performance and
routing. Where the impact to logical resources or pins is
unacceptable, the designer should consider optional test methods
that can also help in the testing and debugging process.

9-13

Appendix 1
Example of JTAG Resource Requirements

1) Device and Test Description

Device 1280

Tests EXTEST,
BYPASS,
SAMPLE/PRELOAD

Inputs 45

Outputs 35

Tristate 10

Bidirectional 32

Use a CLKBUF to drive the ClockDR signal.

2) Loads on additional signals

NUMBER OF
LOADS BUFFERS REQUIRED

SHIFTDR 197 22

UPDATEDR 119 12

MODE 119 12

3) Total logic module resources required

seq comb seq comb

TAP Controller 8 19 x 1 8 19

Bypass Register 0 x 1 0

Instructions
Register 2 1 x2 4 2

Inputs 1 0 x 45 45 0

Outputs 2 x 35 70 35

Tristates 4 2 x10 40 20

Bidirectional 5 2 x 32 160 64

Miscellaneous
Buffers 0 46

Total 228 186

Cost of example is 414/1232 logic modules = 33 percent of
available logic resources.

9-14

TCK
TAP I - TAP CONTROL SIGNALS

TMS

_ TRST
CONTROL I

I INSTRUCTION

I REGISTERS

I

INSTRUCTION

~

DECODE I MODE I

MODE BITS I
I

I I/O SCAN

I REGISTERS

I BYPASS

I - TDI REGISTER - I

!
c.n

Figure 1. JTAG Block Diagram

II

BITS

r-

'-

I DO I'" 151. so

01.1

021 MX'!Y

I
03

TDO

SELECT

DECODE

TDO_ -
c..
;!
G')

3"
~

CD
3
CD
::::I a ,r
::l

5'
> o
-I
I\)

C
CD
< r;'
CD
III

!
(J)

~
~
c::::J

Figure 2. Basic Boundary Scan Cell for an Input Pin

~,

DATA FROM
SYSTEM LOGIC

FROM PREVIOUS CELL

•

TO NEXT CELL

Figure 3. Basic Boundary Scan Cell for an Output Pin

MODE

SAMPLE/PRELOAD 0

ALL OTHERS 1

Co.

~
C)

3"
"t:S
(j)
3
CI>
~ a o·
::::J
s·
l>
o
-I
I\)

~
<
~.
C/J

!
co

S~~~~~E :O~~~. • nr

DATA FROM
SYSTEM LOGIC

FROM PREVIOUS CEL

~
@t
c::::::::J

TO NEXT CELL

D AD

TEST MODE

SAMPLE/PRELOAD 0

ALL OTHERS 1

Figure 4. Boundary Scan Cell at a Three-State Output

!
CD

S~~~~~E :a~~~. • ~r

DATA FROM
SYSTEM LOGIC

FROM PREVIOUS CELL

III

TO NEXT CELL

Figure 5, Boundary Scan Cell at Bidirectional Pin

TO SYSTEM LOGIC

TEST MODE

SAMPLE/PRELOAD 0

ALL OTHERS l

c..
-I
>
G')

3'
"C
CD
3
(1)

3-a
0'
::l

:i'
>
~
I\)

i
< n'
(1)
III

<0
~ o

~
Cit
~

SHIFTDR

• PAD~_Y ________ ~.'-______ r-______________ -.

A

A-S

Y
01 •

B

B

.--------~CLK
FROM PREVIOUS CELL

TO SYSTEM LOGIC

CLOCKDR

TO NEXT CELL
TEST MODE

EXTEST a

SAMPLE/PRELOAD a

INTEST 1

RUNBIST 1

Figure 6. Modified Input Cell That Supports All Test Types

SHIFTIR

DATA A

B

FROM PREVIOUS CELL

CD

~

II

TO NEXT CELL y
QI. •

• I>CLK
CLOCKIR QI •

INSTRUCTION BIT
• UPDATEIR i>CLK

TRST A
y

RESET B

Figure 7, Instruction Register Implementation

c..

~
G)

3"
"C
CD
3
CD
;a
a o·
:::s
s·
»
~
I\)

~
0'
CD
III

co
N
N

~ ;-
c:::::::J

:

SHIFTDR AOY
_ B L.:::J~' =---------100 •

FROM TDI 1 ~ TO
TDO

CLOCKDR

Figure 8. Bypass Register Implementation

A~

:~Y
A_

TMS ~
~y

I A_ my A

~Y ~~Y

[
~Yey

1 -;

I~Y

A

B~ V

: 1, _, A~

Bl
C AOl.B Y

A

~~
A

~Y C Y
D y02D

A

'~
A

C A01C Y ~Y

TRST "
TCK

CD
N
w

Figure 9. TAP Controller State Machine

11.1

~ DFP1B

CLK

NA~
W ~ I CL-K

NB ;l-"r=-- 0
DFP1B

It- CLK
L---

&r 4

0 .. ::16

0

CLK

~Y

....,D

." ~

....,B

....,C

T CK

c..

~
G)

3"
"'C
CD
3
CD
::l

~ o·
::1

:i"
l> o
-I
N

C
CD
< n·
CD
III

----0 " SHIFTIR
OF"Cl.B

CLK

~. T
B~y

----0 C NAND4 - /
D~ OFC1B

RESET

- - CLK

A T =3=0 Y

4~ ~ SHIFTDR
DF"C1B

o

A CLK
Bt_ CLR

~OR4A Y T ~~ DI

TRST -0--0 ENABLE
DFC1B

~
CLK

T ~Y
" .~

A

C

"
~

, B

C~Y
D~

UPDATEDR

E

4~
C: OR4C

y
CLOCKIR

Dr-

A ,
B1--

A....-- Y

Bl::r-
C OR4B

4~

TCK

CLOCKDR

l\.
B
~Y

-.£ ~ D

UPDATEIR

Figure 10. Implementation of TAP Control Signals

9-24

INl PAD y

IN2 PAD y

IN3 PAD y

CLK PAD y

CD
N
U1 ..

NETA

NETB y NETD

NETC .--------...,~c LK

ICLK

Figure 11. Example Circuit for Use of Actionprobes

QI D •

c..

~
G")

3"
~
CD
3
CD
::::J a o·
::::J

:i"
l> o
-I
I'll

C
CD
< c:;.
CD
UI

co
N
en ~

@t
.J:t:.:.::>".l. '~.:>fVl ~

AJ

- ~

NET1 - BJ _. - ..
-~ --~

c::::::J

.....
NORMAL CHIP FUNCTION

_ NET2 A - I1 PAD",%'ie~ y NETl. IN1 -- BJ _. y D "
Ta

8PAD 02 ---
PAD: ~"lE y NET2

V~ - I2 IN2

~

- PA~ jEy

J - I3 NET3 IN3 01 r---
PAD~ ,,~ Y NET4 02

:~Y
I4 IN4 -- PAD~ _ NET3

D~UT~AD 03 --
Dr: y NETS 03

I -IS INS

IQI -- PAD~ e~ Y - It; NET6 IN6 04 .. - PAD~ 'i"iE Y NET? 0 I7 IN7 -
PAD; ~,,'E Y NETS 06

:~Y
- Ie INS

NET4

D OU'TI!!I8PAD
- PA~ K ~ y - 04 __ - I9 NET9 IN9 07

v ~ - PAD~ ~,,~ Y
NET10 I10 IN10 - PAD~ ~,,~ Y
NET11 I11 IN11

A~
- PAD~ ~,,~ Y

NET12
NETS

D OUTI!!I8PAD OS __
- I12 IN12 -- BJ _. y
- .lI

IQI -
.....

NET6 ~Y D OUT&AD ----
V ~

0 .. _

V

A

11_' y

D OUTI!I8PAD 07 __

V BV""

NET? A

- NETS B - NET9 CJOR/ Y -

: NET10 :t: NETl.1.

NET1.2

Figure 12. Example of the 1/0 Mapping Test Method

cp
N

..

-

PAD~,...."". Y

PA~Y
PA~~ Y

_Nat:;.
PAD~ r-..... Y

PADI'i:7t Y

'4¥.."r
PAD~ ,.....".

~
PAD~""""" Y

~
PAD~ Y

~
PADf'i:'7t ,.....",

~
PAD~ "" Y

~
PAD~,.....",. Y

~
PAD~ Y

~

PADn
e

;;.:: y
IQIv

1'-1

NORMAL CHIP FUNCTION

IN1

IN2

IN3 01
~ __ ~D~

IN4 02
D,...."",. ~AD

~TDIQI
INS 03

D,....."",. ~AD

~

IN6 04

IN7 OS

D "
TIS

8PAD
~ __ ~D~~

~TalQl
--

INS 06 V \QI
D,.....",. ~AD

IN9 07

IN10

IN11

IN12

A~

B M",,)Y D~AD • I
~ OUTaur

----------i

~ L
~< B 0"3 ~ 0.' < r C

~Y ~ OR4

Figure 13. Input-Only Test Implementation

~

~
G")

3"
"'C
CD
3
CD
::I a o·
::I

:i"
l>

~
N

o
~ c:;.
CD
III

co
N
C»

~ c:
I::::::=J

PAD y

D PAD FUNCTIONAL OUTPUT ONLY

TEST ONLY INPUT

FUNCTIONAL ENABLE
B

PAD BIDIRECTIONAL PIN

FUNCTIONAL INPUT

TEST STRUCTURE
B

INPUTS ONLY

y

FUNTIONAL INPUTS
PAD

Figure 14. Handling of Outputs and Bidirectional Pins for Input-Only Test

Designing Adders and Accumulators
with the ACT 2 Architecture

Introduction

Many designers implement adders using carry-propagation
techniques. The multiplexer-based ACTTM 2 combinatorial
module (C-module) allows you to use the more efficient carry­
select design. This method partitions the add functions into
blocks that perform two additions simultaneously on a number of
bits of the two operands.

The two additions are the same except that one assumes a carry-in
and one assumes no carry-in. The two sums are input to 2 to 1
multiplexers, one for each bit pair. The carry line from the low
bits to the high bits is used to select the appropriate sum for each
block.

The ACT 2 architecture lends itself well to implementing adders
of various sizes using the carry-select technique. A sample design
for a 16-bit adder, as shown in Figure 1, will be used to illustrate
adder design.

Balancing Sum and Carry Levels

To obtain optimal performance from a carry-select adder, design
it so that the number of levels of logic required for the carry chain
equals as closely as possible the number for the largest sum
block. When they have the same number of levels, the sum bits
arrive simultaneously at the data pins and the select pins of the
output multiplexing stage.

© 1993 Actel Corporation

To balance the levels of logic modules for the sum blocks with the
carry, is to partition the sum blocks by considering the logic levels
required for the sums and the levels for the carry between sums.
The size of the partitions varies with width of the data. The ACT 2
library contains some powerful hard macros used to shorten the
levels of logic required for generating sums and carries. The
description of the sample design will illustrate the use of the
macros.

Sample Design

For the 16-bit adder, the optimal organization is to perform two
2-bit additions on the four least significant bits with the remaining
higher order bits broken into four sections of three bits each.

In the top-level schematic the addition logic of the two least
significant bits is visible. The other additions are performed in
lower levels of the design hierarchy described in the next section.

Carry Logic

The ACT 2 library includes two 2-level carry hard macros. One
macro generates a carry for the two-bit pairs assuming the carry­
in is true; the other assumes it is false. The latter macro may be
seen at the bottom of Figure 1 making the carry for the two least
significant bits.

9-29

I

9-30

!Hi--:: :::
~.1.00

-

~--
A12 ~ ••• ~

~~
I=E~~ ... r-

~:::::

A[15:0]

B[15:0] -

• '1 .n

~
815

• '1 ."
~

...

II

==tr?P. ... ,

• <.

I
J .::-.~' ---=tI

~i!-+---: -~
1J.S=J!-+-' ---~

Figure 1. 16·Bit Adder Schematic

8[15:0]

Designing Adders and Accumulators with the ACT 2 Architecture

The carry macro output drives the select line for the 2 to I
multiplexers for sum bits two and three. It also drives the select
line on the cascade multiplexer. The cascade multiplexer is a
special ACT 2 hard macro that can propagate two levels of carry.
The macro is depicted in Figure 2 and has five inputs. The top
multiplexer inputs select the most significant sum or carry. The
three lower inputs drive logic that implements a simplified form
of a 2 to I multiplexer.

c-------------l
O-------------l

B-------,

A
S

Figure 2. Cascade Multiplexer Macro

y

A fully implemented 2 to I cascade multiplexer does not map into
the ACT 2 module efficiently, but the full functionality is not
required in a carry-select adder. There is a simplified version of
the cascade multiplexer that maps into a C-module or combines
with a flip-flop in a sequential module (S-module).

The simple version has logic driving the select for the upper level
multiplexer consisting of only a two-input OR driving one input
of a two-input AND. The two OR gate inputs are driven by the
carry output from the next lower sum block assuming no carry-in
and by the carry-in from the rest of the lower bits of the adder.
The remaining AND input is the carry from the sum block, which
assumes a carry-in.

The logic is correct for a carry-select adder because, if the
assume-no-carry-in input is true (meaning that a carry was
generated within that sum block), then the assume-carry-in is
always true (since it equals the false plus one). This completes the
AND function.

If the carry from the lower bits is true (meaning a carry is
propagated to the sum block), then we complete the AND if the
assume-carry is true.

Three-Bit Carry Select Adder

The schematic for the three-bit adder block appears in Figure 3.
The adder requires thirteen logic modules to generate the three
sum and carry pairs. All the output paths are two levels of logic or
less.

The two carries for the three bits come from two-level carry hard
macros driving a three-bit majority macro.

All the sums are generated from exclusive OR or NOR gates. The
Actel library contains several two-module adder macros with
both a sum and a carry output. These macros may be used as part
of a sum depending on how well they fit into the overall adder
soft macro structure.

9-31

I

CD
W
N

Cl ~
co

S02

Al SOl

Bl

AO
SOO

BO

A2 Cl

B2

S12

Sll

S10

Figure 3. Three-Bit Adder Block

Designing Adders and Accumulators with the ACT 2 Architecture

Making an Adder into an Accumulator

All the sum and carry outputs of the adder macro can be
combined into a single ACT 2 S-module. This feature means that
if the data inputs of a 16-bit register are schematically connected
to an adder's outputs, the ALS software will automatically put the
adder output macros (2 to 1 multiplexers or cascade multiplexers)
into their respective flip-flop in the register.

FADD16

CO P-

The registered-output adder will suffer no degradation in
performance from combining because the delay through the
combinatorial part of the S-module is less than that of an
uncombined macro. Tying the register output back into the inputs
will make the circuit into an accumulator. A sample design for an
accumulator made from an adder and a register may be seen in
Figure 4.

REG16
-<: CLR
- t>CLK

Q [15:0] - --- -D [15:0]
S [15:0] --

- A[15:0]

~ B [15:0]

Figure 4. 16-Bit Accumulator

Sample Design Results

The sample design uses 82 ACT 2 modules. The slowest path in a
function is usually the one with the most levels of logic. In this
case, it is the carry chain, which has four levels of logic. As
mentioned previously, all other paths have fanouts of three or less.

The modules in the chain have fanouts of three, four, seven, and
four. Criticality may be used to optimize the path performance.
Criticality works best when fanout is low. When the fanout of a
speed-sensitive net exceeds seven, performance can usually be
improved most by adding redundant logic. For fanouts of less
than seven, adding a redundant module may bring no
improvement. Using redundant logic for fanouts of seven should
be considered on an individual basis. Adding a redundant module
to the carry path would change its fanouts to three, five, three, and
four. The expense of one module may be justified by the
performance improvement from lowering the fanout.

It is also possible to improve performance by pipe lining an adder.
Since all of the combinatorial functions used in the adder can be
combined (if the function's output drives a flip-flop, ALS will put
both in a single S-module), designers may pipe the adder at the
points that provide the best performance at no cost in additional
modules.

Other Adder Macros

The carry select architecture can be extended to adders of any
size. Adders of 8 to 15 bits may be designed using the technique
in three levels of logic. Adders from 16 to 24 bits can be done in
four levels.

When adapting the adder design to other operand sizes, remember
to repartition the sum block sizes to match the logic levels of I
sums and carries. •

9-33

9-34

Fast Adder Application
Note

Design Techniques

Introduction

The VAD series of very fast adders in the Actel soft macro library
uses several techniques to create optimally designed macros for
the Actel FPGA architecture. The VADC32C very fast 32-bit
adder macro uses variations of the VADC16C very fast 16-bit
adder macro as a building block. This configuration yields very
high performance for 32-bit system designs. What follows
illustrates these adder design techniques as applied to the
VADC32C macro. Refer to the application note regarding general
adder and accumulator design, "Designing Adders and
Accumulators with the ACTTM 2 Architecture", for more
information. These techniques apply to ACT 2 and ACT 3
designs.

The carry propagation technique (ripple carry addition) for use in
serial addition networks is defined as,

Sj = Aj EEl Bj EEl Cj

where Sj is the sum bit, Ai and Bj are the ith bits of each operand,
and Cj is the carry to the ith stage; the carry to the next stage is
defined as,

Cj+ 1 = AjBj + Cj(Aj + Bj)

Therefore, adding two n-bit operands takes at most n-l carry
delays and one sum delay. This delay becomes large for adders
with n > 4 and significantly reduces operating speeds.

A much faster algorithm for adding n-bit operands uses the
combinational sum technique. This is a multiplexer-based design
that partitions the add functions into blocks that perform two
additions simultaneously. The two additions are the same except
that one assumes a carry in while the other assumes no carry in.
The two sums are input to 2: 1 multiplexers and the carry in of this
addition controls the output of the multiplexer. The adders
provide high performance, requiring only four logic module
delays from input to output.

Design

The VADC16C macro uses the carry look ahead technique to
generate the carry out of the 16-bit addition while performing the
summation of the operand twice. One addition assumes a carry in
and the other assumes no carry in. Both additions are performed
simultaneously. Both sums are input to a multiplexer, and the true
carry in controls the output of the multiplexer-the sum of the
operands. This initial addition is performed with a total of three
logic module delays.

Cascading two 16-bit very fast adders is the simplest way to
design a 32-bit adder. But this technique involves three additional
logic delays, which is unacceptable for a very fast adder. A novel
implementation of the VADC 16C soft macro extends the width of
the inputs to 32 bits with only one additional logic delay.

© 1993 Actel Corporation

The design is split into two blocks, as shown in Figure 1. The first
block is macro VADCI6CN, which performs addition on the first
16 bits and generates a carry out. Actually, two carry outs are
generated. One assumes a carry in, and the other assumes no
carry in; the true carry in controls the multiplexer so that the true
carry out is at the output of the carry out multiplexer. Similarly,
two sums are generated for the 16-bit addition. One assumes a
carry in, and the other assumes no carry in. The control input of
the multiplexer is connected to the true carry in, thereby steering
the correct sum to the output of the sum multiplexer. This macro
is the same as soft macro VADCI6C, except that it has several
carry outs to allow for fanouts. These additional logic modules
reduce possible loading effects to maintain high operating speeds.

jvADC16Cl'

CIN - C:IN co co
COB COB

A(15:0] A[15.0}

COC --COC

B(15:0) B[15.0}

COD COD

S(15.0} 9(15: 0)

COB __ --------tOB

COC= __ ----tcOC

COD __ --------~OD

S[31.16} 1-11 ___ 9(31:16]

A(31:16) _ [31.16J

B (31: 16) [31.16}

COUTI---_COUT

Figure 1. Block Diagram of Soft Macro VADC32C
(Very Fast 32-bit Adder with Carryin)

The second block is macro VADC 16X, is further split into five
lower levels of logic blocks: VADCI6XC, VADCI6XL,
VADC16XM, VADCI6XU, and VADCI6MX. VADC16XC
generates the carry look ahead for the upper 16 bits of the 32-bit
adder. Two carry outs are generated. One assumes that there is a
carry in, and the other assumes no carry in from the addition of
the first 16 bits. This result is input to a 2: 1 multiplexer with the
actual carry from the lower 16 bits controlling the output of this
multiplexer-the carry out of the 32-bit addition. VADC16XL
performs two additions for bits 16 to 24. One assumes a carry in
and the other assumes no carry in. Similarly, VADC16XM
performs two additions for bits 25 to 28, and VADC16XU
performs two additions for bits 29 to 31. The sums generated by
these blocks are input to the 2:1 multiplexer block VADCI6MX.
The carry out of the 16th bit is applied to the control of this

9-35

I

multiplexer, yielding the true sum at the output of the multiplexer
block. This technique has a total of four logic delays, which is
eight times less than the traditional ripple carry addition
technique, which results in 32 logic module delays.

This adder design results in a 32-bit addition requiring a total of
only four logic module delays and approximately 250 logic
modules. It is useful for applications that require very fast
additions in Actel FPGA devices.

9·36

Designing Counters
with the ACT 2 Architecture

Perhaps the most common digital logic function is the
synchronous binary counter. Regardless of the technology
employed to implement counters, they are found in every type of
application. Designers familiar with counter design using discrete
logic can predict the performance of the counter by reading a
datasheet. When using field programmable gate arrays (FPGAs),
there is more to consider. The following describes some of the
considerations for designing or modifying a counter in the ACTTM
2 soft macro library.

Performance Factors

The advantages of using FPGAs instead of discrete devices are
well known. To maximize the benefits of high integration and low
power, it is important for the designer to understand how to best
implement the counter. The performance of the counter is
variable, so it is important to use the optimal design. Four criteria
influence performance of logic in FPGA designs, in descending
order of importance:

Levels of logic. The fewer the number of combinatorial logic
levels between flip-flops, the faster the counter frequency.

Fanout. Propagation delays in FPGAs are sensitive to fanout.
Limiting fanout on individual nets improves performance.

Fan-in. Fan-in measures the number of nets connected to a
logic module's inputs. Library functions with heavy fan-in
efficiently utilize the logic of the module; they aren't a
problem when used sparingly. Too many high fan-in macros,
though, can congest routing and reduce performance.

Number of modules. Fewer logic modules allow them to be
placed closer to each other. Shorter distances between
modules speed the connection paths.

While each of these considerations is important in itself, it must
be remembered that they are interrelated; an improvement in one
may cause a degradation in another, for example, limiting the
number of logic levels tends to increase fan-in. A balance must be
found among them so that none becomes a drag on performance.

Before proceeding to a detailed description of a sample design, it
would be useful to review some fundamentals of the ACT 2
architecture. In the design of a counter or any soft macro, device
architecture should always be considered to obtain the best
results.

© 1993 Actel Corporation

Two Types of Modules

The ACT 2 architecture features two types of modules.
Combinatorial modules (C-modules) are used to implement any
combinatorial function in the ACT 2 library. Sequential modules
(S-modules) can be used for either sequential functions (for
example, flip-flops) or combinatorial functions or both. When the
S-module is used to implement both a sequential and a
combinatorial function (for example, a gate followed by a flip­
flop), it is being used in the most efficient way.

The module types exist in roughly equal numbers on ACT 2
devices. The Place and Route software will automatically select
the appropriate module for each library component in the
schematic. It is up to the designer to understand how to select
components from the library to take best advantage of the logic in
the modules.

As the sample design will show, you can construct a IO-bit
counter with only one level of combinatorial logic between
flip-flops, and a 16-bit counter with only two combinatorial
levels. If some counter outputs may be active-low or if additional
modules are used for redundant logic (for example, some bits
have both an active-high and an active-low output), then larger
counters may be designed without additional logic levels using
five-input gates. Such decisions should consider the implications
for module count and fanout as detailed below.

Sample Design

The sample design for a 16-bit synchronous loadable binary
counter with a count enable will illustrate some of the
considerations for using counters in ACT 2 FPGA designs. The
functional description for the counter appears in Table I.

Table 1. Counter Function

RST lD CE

o X X

o
o

X

o

ClK

X

~
X

~

Q

o
o
Q

Q + 1

9-37

I

Using the Modules

The counter design makes extensive use (bits 0 through 5) of a 4
to 1 multiplexer driving a flip-flop as depicted in Figure 1. Both
the multiplexer and the flip-flop will be combined into a single
S-module by the ALS software. The select lines on the
multiplexer are operated by the load control (Sl) and by the
counter enable and carry from the lower order bits (SO). The
multiplexer data inputs are used for data to be loaded, held, or
incremented.

C-modules are used as AND-EXORs and for ANDs to qualify the

LO

count function. The AND function is also used to bring the count
enable (CE) to the multiplexer by means of the select line in bits
Q3 and above. Using both the select inputs as well as the data
inputs to AND lower order bits allows for more paralleling, which
results in fewer levels of logic.

For the bits Q6 through Q15, an S-module macro with both a 4 to
I multiplexer and an OR gate driving one select line is used to
allow for more parallel propagation of the lower bits. Figure 2
shows the implementation of the most significant bit of the
counter.

03 ____ ..------... y

01 ~----------,

9-38

02

::~~
05 ~ AX1<}-'y'--____ .-::~

05 __ - __ ---1

014
013 ____ ..-----_

012 __ --~__'

011

Q10

09

QS ----"'----'

Q7

QON

Q6

Q5 __ --~__'

04

y

Q3 ____ ..r-----... y

05
t-___ _. 05

Figure 1. Counter Bit Q5

y

r=---"O"I;s---;:::===::t~ Q 1-----1. Q15

rr=i~15 ~3
CLK __ ----~

~FM6C
a

Q2 P-----------~
Q1

Figure 2. Counter Bit Q15

The S-module OR gate is used as a two-input NAND with active­
low inputs that are, in tum, driven by NAND gates to propagate
the lower bits and the count enable. The active-low output of the
built-in two-input gate (OR used as a NAND) is adjusted for by
shifting the position of the multiplexer data inputs.

Most four-input gates are implemented with a single C-module,
but a four-input NAND with no bubbled inputs requires two
modules. The limitation is avoided by using a NAND with a
bubbled input. The count enable is active low, so it may be used to
drive a bubbled input on a gate. Active-low counter bits are used
to drive other bubbled gate inputs.

Levels of Logic

As may be seen in the complete counter schematic (Figure 3), two
bits (QO and Q6) use inverters. The QO inversion toggles the
flip-flop. A toggle flip-flop could have been used instead of a D
flip-flop, but it could not have been combined with the
multiplexer into a single S-module. Moreover, the inverter output
is available as a resource to share the fanout load with the flip­
flop and to allow the use of bubbled inputs on gates whenever it is
desirable.

It could be argued that the use of the inverted output to drive gates
causes the lower level bits to use two levels of combinatorial
logic when it is not necessary. For a design of ten bits or less, the
point would be valid because no path requires more than one
combinatorial level. In the example design, however, two levels
are already required by the upper bits and the improvement in
fanout from the use of the inverter output at no additional cost in
module count makes the practice worthwhile.

Designing Counters with the ACT 2 Architecture

Limiting Fanout with Redundant Logic

The paths in the design most likely to limit performance are those
with the largest number of logic levels and the highest fanout. In
general, when fanout exceeds 9 on a critical path, redundant logic
is often called for. For lower fanouts, the decision to use
redundant logic might be a problem and must be balanced by
considering both the cost in additional logic modules as well as
the fanout to the outputs driving the redundant logic.

In the sample design, two redundant modules were added to
illustrate the concept. One is the XNOR gate whose output is the
inversion of Ql. The other is the four-input NAND gate that
propagates flip-flop outputs. No fanout in the design exceeds
seven, and the worst-case path is the redundant gate whose inputs
are driven pins with fanouts of seven, six, six, and five, and whose
output fanout is four. A total of 48 modules were used in the
design.

Chip-Level DeSign Considerations

The trade-offs involved in soft macros such as the counter
example cannot be evaluated outside the context of the overall
design. Decisions such as whether to use redundant logic or high
fan-in modules must consider the entire design. For example, if
all the modules are already being used, redundant logic may not
be an option. If the design has a significant number of high fan-in
macros, additional high fan-in macros in a counter may cause
routing congestion.

The ALS tools such as the Validator and Automatic Place and
Route can rapidly provide answers to questions about design
capacity and routability.

9-39

I

CD

II~ ~
0

02_ BL ____ '-r ON~ ~ 'I
ONO ~:

Y DO 01 B __ _ oSlo sO
Q4 _ C AX1 __

ONO

ON~
04

07

~:

!1----4----. 03

ONO __ ,---!>"---'

07. C .~ ~

Q1~

ON~~

::~' :: · 11 I d
:: ~ gAS i it

~06

03

04~
QN234

02

00 OOBDB O~ B

OS C

os !t----I---I.- OS

Figure 3. 16-Bit Counter Schematic

co
~

013~ A ~ 01.

0" ".-.. " F" 51' o~
0» 0 "'~"~'

011~A Y
B 0:1 012

QS3=rA
Q~O B y

C AND4
Q8

09 D

;,

I S~OrM7A

~ I erR

.0 ~'! H~ ~13 :~:.:! 0H--°13

~CLK

L
B" t i ~ o.:H'1 i 6L:H-O»

~CLK

~
Fl.1- ~

/~~~~i§~~~~~ I I _011
QNg~~ Qr-r--

~DrM7A

:::=i8" ::~i" i ri-;iC:H-O>O
G17 ON23.1 a

LD

1

:~: :
011 CANDCY A

012 D B

~1S"

Figure 3. 16-Bit Counter Schematic (Continued)

II

])-y O?~' • ~~""
a

T

B~

Q1~

i
III

cQ'
::::J
S·
co
o
o c:
::::J
CD
U;
::e s: -:::r
CD
:t:o
Q
I\)

~
(')
::::J'
;:
a c:
CiJ

9-42

--!Mc/@I!
•

Implementing Load Latency
Fast Counters with ACT 2
FPGAs

Application
Note

Introduction

Counters are one of the most important functions designed into
field programmable gate arrays (FPGAs) and are frequently used
as a benchmark to compare different technologies and products.
The performance of a particular FPGA implementation is a
function of the amount of logic used. Faster implementations use
more logic and slower implementations use less. This application
note will show a technique for making the highest possible
performance counters in the ACT™ 2 family using a toggle
prediction method to enhance performance.

An important realization in designing high performance counters
is that the least significant bits (LSBs) of the counter change the
most frequently and higher order bits change much less often.
This fact can be used to optimize counter performance by
ensuring that the least significant bits enter the logic trees at the
lowest (fastest) level. Higher order bits can enter further up the
tree since they have a longer time to propagate through the logic.
Consider the design of a 6-bit counter using this technique. The
counter will be loadable with asynchronous clear. It will also be a
down counter, suitable for timing or address generation in a
typical digital design. An up counter is an easy modification to
the design, but conceptually they are similar.

Least Significant Bit

The counter must have a least significant bit that can toggle at the
highest possible rate. In the ACT 2 family, the sequential logic
module allows a 4-input multiplexer with gated select lines and a
D-type flip-flop to be implemented in a single level of logic (see
Figures 1 and 2). These logic modules can be used to construct a
least significant bit with clear, load, and count enable as shown in
Figure 3.

Data can be loaded into the register when the load enable (LD)
signal is high, selecting the Dl or D3 input on the multiplexer.
The count enable signal (CNT) is used to toggle QO when
counting is enabled. If LD is disabled, the multiplexer input is
either DO or D2, depending on the state of QO. If QO is a zero and
CNT is a one, the register will be loaded with a zero (NOT CNT)
from the DO input. Thus QO toggles if CNT is a one. If CNT is a
zero, QO will hold, not toggle, since the DO/D2 inputs will not be
zero and one respectively. Thus, the least significant bit needs
only a single level of logic to operate. Since the next most
significant bit will only toggle when SO is zero (implementing a
down counter), there is one extra clock cycle to develop the
signals for Ql 's next state.

Figure 4 shows the implementation of Ql using the DFM7 A
macro. It is similar to the LSB except that Q 1 can be inverted to
develop the toggle signal. Notice that this signal is selected only
when QO and ICNT are low. This keeps the slower IQl signal
from participating in the logic function until it has settled,

© 1993 Actel Corporation

ensuring fully synchronous operation. This technique will be the
cornerstone of the most significant bits (MSBs), where slower
signals are gated until there is sufficient time to settle and they are
needed to compute the toggle of the associated counter bit.

Figure 5 shows the entire 2-bit prescaler (CNR2P) for fast
counters. Added to QO and Ql are three registers to source CNT,
ICNT, and LD. These will be used to reduce fanout in the faster
counter implementation.

Figure 1. ACT 2 Family Sequential Logic Module

000

001
yl-----~O Q

010

ClK ClR

A1 B1 AD BO

Figure 2. ACT 3 Sequential Logic Module

9-43

I

t.
-'="

CNT QO
PO

G~ ~ • '-----=1

~~L •• I--_____ ----I

Figure 3. Counter Bit QO

Ql
--,;;- 1 -Pl

CNT _ .::r==ry LI<

CLK CLR

CLR

Figure 4. Counter Bit Q1

PO

CL
CL

QO

Ql

PJ • • 11
1

1 R

COUNT

~N
_CNT

eLK

! =r~CNTN eLK

LOAD • D
- LD

eLK

Figure 5. CNT2P Macro

t

Most Significant Bit

A 4-bit macro for the MSBs is shown in Figure 6. It uses the LSB
from the CNT2P macro connected to CTO (on SOA) and CNT (on
SOB) to enable the multiplexer inputs used for toggling similar to
the CNT2P macro. In addition, the next LSB is connected to cn
(on B ofAXBI) and the counter bits in the macro (QO-Q2) are
used to gate the input to the XOR (see Q3 for example), which
determines whether the register bit holds or inverts. A ripple carry
input (RCI) is also used to allow results from previous stages to
participate. This technique allows MSBs at least four clock cycles
(since the LSBs transition from 00 to 00 in four clock cycles
worst case) to develop the input to the associated bits in the
counter. A 6-bit counter is shown in Figure 7.

Delay

Minimum Clock
Input Period

00 Delay

01 Delay

02-5 Delay

Datasheet Parameter(s)

tpD1 + tRDB + tSUD = 3.8 + 4.4 + 0.4 =
2[tpD1 + tRDS] + tSUD = 2[3.8 + 4.4] + 0.4 =

4[tpD1 + tRDS] + tsuD = 4[3.8 + 4.4] + 0.4 =

Implementing Load Latency Fast Counters with ACT 2 FPGAs

The limiting frequency for the 6-bit counter is based on the
longest clock-to-clock delay in the design. There are four
possibly limiting delays in the design: the minimum clock input
period of the device, a single-level delay from QO to QO-5, a two­
level delay from QI to QI-5, and a three-level delay from Q2 to
Q2-5. Estimates for each delay are given below for an AI225A-2,
over worst-case commercial conditions.

An I8-bit counter implemented with these macros is given in
Figure 8. The limiting frequency for the counter is determined
similarly to the 6-bit example, and the delays are given below for
an AI225A-2.

Value

9.4 ns

8.6 ns

16.8 ns

33.2 ns

Requirement

Must be < = 1 Clock Cycle

Must be < = 1 Clock Cycle

Must be < = 2 Clock Cycles

Must be < = 4 Clock Cycles

Thus, maximum frequency is limited by the internal clock rate of 105 MHz.

Delay Datasheet Parameter(s) Value Requirement

Minimum Clock tA = 9.4 ns
Input Period

Must be < = I Clock Cycle

QODelay tpDl + tRD8 + tSUD = 3.8 + 4.4 + 0.4 8.6 ns

QI Delay 2[tpD1 + tROS] + tsuo = 2[3.8 + 4.4] + 0.4 = 16.8 ns

Q2-5 Delay StpD1 + 2tRD1 + 3tRD8 + tsuD = 5(3.8) + 2(1.1) + 3(4.4) + 0.4 = 34.8 ns

Must be < = 1 Clock Cycle

Must be < = 2 Clock Cycles

Must be < = 4 Clock Cycles

Thus, maximum frequency is limited by the internal clock rate of 105 MHz.

The Maximum operating frequency of the 18-bit counter for other ACT 2 devices is shown below.

Use the corrensponding parameters from the ACT 3 datasheet to calculate the maximum frequency for ACT 3 devices.

A1280A-2 A1240A-2 Conclusion

Maximum Clock Delay 11.7 ns 10.5 ns This application note explains a technique for creating very fast
counters in the ACT 2 family showing operating frequencies as

00 Delay 10.9 ns 8.9 ns high as 105 MHz. These techniques will allow FPGAs to be used
01 Delay 21.4 ns 17.4 ns in new applications, which will further increase the popularity of

02-5 Delay 42.9 ns 36.3 ns these key devices.

Maximum Frequency 85 MHz 95 MHz

9-45

I

co
,i:.
Q)

CT1

CI

CT1

CI

QO~

CLK

QO

RG2

CLR

Q1

CLR

CT1

Q2
CI
QO~ Q 1 ~ .. c~ ... ~_~_ P J

CI

CTO
CNT

LD
CLK

RG4

CLR

Q3

QO. ~ Q 1 _ ~D':P- ;fJ)
Q2

RGS
CTO

CLK
CLR

QO

Q1 CI~ Q2 y co

Q3~
NDCOA NDCO

Figure 6. 4-Bit Counter Macro

t

A

Dl

CLK

Implementing Load Latency Fast Counters with ACT 2 FPGAs

D [5: 0]

0[5:0]

LEAR

~ __ --¥-,OAD

GND

CNT 0------,
CLRo-__ --.

Q0r-~._+_~~~.

Qlr-~+_+_~~~.

GND. ______ -<:F

D2
D3
D4
D5

00

Ol

CMl

Figure 7. G-Bit Counter

COUT

02
03
04
05

9-47

I

't
CD

D(17:0] 0(17:0]

--
ESET)(" '"

A_-' lh OAD

V Uk=u-aUNT

LEAR

OAD
CNT

CLR

LK LD

-Ii 0 00

~
~O

A" Y
CPl

A K '"
V

~1

eLK

CNT4'C"" ~

~
NT ---<: NT

GND LR ---<l LR

r 0 '---- 0

TO TO

T1 T1

- LK LK
GNO I co I CO - 02 ___ Po'"""---oo ____. ~2 o 6 __ Fc;----oo~ 0 6

03 __ 1 01____.~3 07 __
r1

01~07

04 ____ P2 02____.04 oa __ r2 02f------oa

05 1I--~ _____ 05 09 __ ~~09

CMl CM2

Figure 8. 18-Bit Counter

CNT4"C'

~
NT

LR

'--- 0

TO

T1
LK

I CO
01~ ___
~

_____ 0

10
01~ ___

P1 01 ____.~11
01~ ____ 2 02 _~12
01311--
~ ____.°13

CM3

rcNT"4C

~
FoNT

FLR
_0

TO

T1
Lr-LK

I C0::'l

014 __ Fo 00

015 __ 1>'1 01

016 ____ ~2 02

017 __ ~

CM4

UT

14

lS
16

17

~

D[17:0] 0[17:0]

~

RESET K" y

A ",-Vy T

I
LOAD

~ ~ ~ ~
- COUNT ~ COUNT OUNT aUNT

~ CLEAR LEAR LEAR LEAR

- OAD LOAD OAD OAD
CNT CNT CNT CNT

CLR :>--- CLR :>--- CLR ::r--- CLR ::r---
eLK LD - eLK LD - eLK LD - eLK LD -
~ - ~ -[F'O 00_ IF'O 00- fF" 00_ IF' 0' I~- r-~- L 1 01_

1 01 -
~ A~ y

CPl cp2 CP3 """CP4
A K y l. l. l.

.....
D1

-eLK

~ r-cN'T4C ~ ~

~
FoNT

~
NT

~
NT

~
NT

GND
~LR LR f:;LR LR

r - D - D - D '--- D

TO TO TO TO

T1 T1 T1 T1

'"'LK lr-LK I.-LK I.-LK
GND I CO I CO I CO I CO

D2 It-~r------ 02 D61t-~ __ 06 D 1 ~It-~-O 00
__ 010

D141t-~

D3 It-P1 01~03 D7 It-P1 01 __ 07 D1 ~lt-P1 01
__ 011

D15 It-P1 01

D4 It- 2 02r------ 04 D~1t- 2 02 __ 08 D1~lt-P2 02
__ 012

D16 It-P2 02

D5 1t-~~05 D91t-~ __ 09 D131t-~
__ 013

D171t-~

CMl CM2 CM3 CM4

<0

10
Figure 9. 18-Bit Counter with Fanout Reduced Design

II

UT

14

15

16

17

3"
"t:J
CD
3
(1)

3-
:j"
co
r­o
II)
Q.

r­
II)

CD
::J
(")

'<
"TI
II)

!e­
O
o
C
::J
CD
UJ
§.
:T
»
~
N
"TI
'tI
G')
»
IA

9-50

Bit-Per-State Decoded
State Machine for FPGAs

Application
Note

Introduction

Signal controllers are one of the most important applications for
Actel field programmable gate arrays (FPGAs). The controller
accepts and interprets digital input signals and generates output
signals in a sequential manner. Applications such as these can be
designed with state machines that generate control output signals
based on a function of the present and previous states of the input
signals.

The traditional methodology for designing state machines has
been to draw a state diagram, map the states into the minimum
number of register bits, and determine the next state function for
each register bit. The minimum number of register bits needed
can be determined by rounding up the natural log of the number
of states. This methodology results in a minimum number of
registers but usually requires wide gating and complicated logic
to encode the next state bit. This scheme is necessary to
implement state machines using programmable logic devices
(PLDs) because of their inherent lack of registers. Because
registers are plentiful in FPGAs, state assignment is more
efficient using bit-per-state methodology.

This application note will discuss techniques for efficiently
implementing state machine using the bit-per-state for Actel
FPGAs.

Sample State Machine

The state diagram of a sample state machine is illustrated in
Figure 1. This state machine is the control section of a four­
channel DMA controller supermacro for Actel FPGAs. The state
machine contains six states, seven inputs and five outputs. Each
circle represents a different state. Each arrow represents a
transition between states. Inputs that cause state transitions are
listed adjacent to the state transition arrows. Control outputs are
labeled along with the states inside the circles. For example, in
state 2, the state machine asserts the ICNTD and ICMREQ
outputs. If the MACK input is low, the state machine remains at
state 2. If the MACK input is high, the state machine goes to
state 3 and asserts the ICE output in the process.

© 1993 Actel Corporation

State Transition Equations

The next step is determining the logic to generate the state
sequence. For bit-per-state implementation, assign each state to a
separate register and write a state transition equation for each
register. The state diagram in Figure 1 shows that state 0 (SO) can
be realized when state 4 (S4) is asserted and the input CaNT is
low or it remains at state 0 if all four inputs A, B, C, and Dare
low. Therefore the transition equation of state 0 can be written as

SO:= IA*!B*IC*ID*SO + ICONT*S4.

Similarly, state 1 (SI) can be achieved when state 0 (SO) is
asserted and anyone of the four inputs A, B, C, or D is high or it
remains at the same state (S 1) if the input PBGNT is low. The
transition equation of state 1 can be derived as

SI := (A+B+C+D)*SO + IPBGNT*S1.

The complete state transition equations for the state machine are
listed in Table 1. Note that state 3 (S3) will go to state 4 (S4)
unconditionally; therefore, the transition equation for state 3 can
be written as S3 := S4.

Table 1. State Machine Transition Equations

SO:= IA*!B*IC*ID*SO + ICONT*S4;

SI := (A+B+C+D)*SO + /PBGNT*SI;

S2:= PBGNT*SI + /MACK*S2;

S3 := MACK*S2 + MACK*S3;

S4:= S3;

S5 := CONT*S4 + /MACK*S5;

Output Equations

Once the state transition equations are determined, the output
equations can be written by encoding the states. In some cases,
the output is only active in one state. Therefore, the output is
simply a function of that state. For example, CE is only active in I
state 3 (S3), so the output equation for CE is simply CE = S3. I

Other output may be active in more than one state. The output
equations can be written simply as a function of those states. For
example, CMREQ is active in state 2 (S2) as well as state 5 (S5).
Therefore, the output equation is

CMREQ =:: S2 + S5.

9-51

Table 2 lists the output equations of the state machine.

Table 2. Output equations

PBREQ= S1;

CLD= S4;

CNTLD=S2;

CMREQ = S2 + S5;

CE = S3;

The state machine can be captured using schematic entry or
automatically mapped using synthesis tools such as
ACT'x'press™.

Figure 2 shows the schematic of the state machine
implementation using the bit-per-state approach in the ACT™ 2
family. The circuit requires seven logic modules and three levels
of logic modules.

MEMORY TRANSFER ACK

CONTINUE

MEMORY TRANSFER ACK

Summary

A summary of the bit-per-state methodology is given below:

1. Draw a state diagram.

2. Assign each state to a separate register.

3. Write a state transition equation for each register.

4. Derive output equations based on active states.

Larger state machines can be implemented using this technique
by distributing control to several smaller state machines and using
a single master machine to coordinate activities between the state
machines. This usually results in higher performance designs. It is
also easier to design and debug simpler and smaller state
machines.

ABCD

PROCESSOR BUS REQUEST

COUNTER LOAD,
CHANNEL MEMORY REQ

...-...-~ COUNT ENABLE

REGISTER LOAD

CHANNEL MEMORY REQ

MEMORY TRANSFER ACK

Figure 1. Four-Channel DMA Controller State Diagram (Control Section)

9-52

A

B-~-.....

c_<x-_

o

Bit-Per-State Decoded State Machine for FPGAs

./CWREO

Figure 2. State Machine Schematic in ACl 2 Family

I

9-53

9-54

Implementing State Machines
Using Shift Registers

Application
Note

Introduction

Shift registers with serially controlled data inputs and parallel
outputs may be used as powerful controlled sequence generators.
As a result, a shift register can be used in high-speed state
machine designs. This application brief shows a simple way to
implement high performance state machines using serial shift
registers.

Shift Register Design

A shift register is made of a series of flip-flops connected so that
the data of one flip-flop is sequentially passed to the next flip­
flop. It passes data from the beginning to the end of a "chain" of
flip-flops. A clock signal synchronously controls this operation.
For this application, a shift register sequentially shifts a single
logic high signal while the rest of the output bits are low. This
function can be implemented by simply connecting the output of
the one flip-flop to the input of the next flip-flop and the output of
the last flip-flop back to the input of the first flip-flop. Table 1
shows the function table of an eight-bit serial shift register. The
width of the shift register is expandable by serially adding more
flip-flops to the last stage. Figure 1, on the next page, shows the
schematic of an eight-bit shift register. Note that the shift register
is designed so that it can be set to a known state with a reset
signal.

State Machine Implementation

The state machine implementation is best illustrated by an
example. The sample state machine has six states with three
output bits. The sequence is organized such that only one output
bit changes state for every clock pulse. Figure 2 shows the state
diagram of the state machine.

A six-state state machine requires a six-bit shift register with one
register per state. Using this shift register determines the state
sequence map of the state machine. The state machine creates the

Table 1. Eight-Bit Shift Register Function Table

RST elK QO Q1 Q2

0 X 1 0 0

l' 0 1 0

l' 0 0

l' 0 0 0

l' 0 0 0

l' 0 0 0

l' 0 0 0

l' 0 0 0

l' 0 0

© 1993 Actel Corporation

Figure 2. State Diagram of State Machine

three output bits based on decoding the outputs of the shift
register. The decoding logic is greatly minimized because there is
only one output bit asserted in any state. Table 2 shows the state
table of the state machine. When the outputs of the state machine
are 001, the shift register outputs are 000010. In this state, Q5,
Q4, Q3, Q2, and QO are all low and Q1 is high. Therefore, the
state machine uses only Q 1 for the decoding logic. The logic for
the state machine outputs is based on the shift register outputs.
OutO is high when Q1 or Q2 or Q3 is high, Out1 is high when Q2
or Q3 or Q4 is high, and Out2 is high when Q3 or Q4 or Q5 is
high. The complete decoding logic equations are the following:

OutO: Q1 + Q2 + Q3

Out1: Q2 + Q3 + Q4

Out2: Q3 + Q4 + Q5

Q3 Q4

0 0

0 0

0 0

1 0

0 1

0 0

0 0

0 0

0 0

Q5 Q6 Q7

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

9-55

I

(0

&,
en

'T1
ce'
e
~
:-"

m
ce'
::r

~
CJ)
::r

== :II
CD

(Q

~
CJ)
()
::r
CD
3
a
ri"

~

07

~~:: l' • 1 ' 1 ' 1 ' 1 ' 1 ' 1

Figure 3 shows the schematic diagram of the state machine using
ACT™ 2 or ACT 3 macros. Note that the decoding logic only
requires one level of logic to implement. Thus, using a shift
register to implement state machines improves performance
significantly.

Table 2. State Table for Example State Machine

Shift Register Outputs

05 04 03 02 01

o 0 0 0 0

o 0 0 0 1

000 0

o
o

o

o

1

o
o

o
o
o

o
o
o

State Machine
Outputs

00 Out2 Out1

o 0

o 0 0

o 0

o
o
o o

OutO

o

1

o
o

Implementing State Machines Using Shift Registers

I

9-57

cp
UI
CXI

."
cO"
t:
;
~

sa
!!l-
CD

:!:
m
n
:::T
:i"
CD
en
n
:::T
CD
3
!!l­
e;" RE~~~: 1- - 1 - 1 - 1 - 1

~

OUTO

OUT1

OUT2

Q5

~c/@I!
•

Designing with Pseudo-Random
Number Generators

Application
Note

Introduction

As counter sizes increase, the amount and complexity of support
logic also increase. With this increase, the maximum operating
speed of the counter decreases. This application note describes an
easy way to build pseudo-random number (PRN) counters using
very few logic resources. These counters produce nonlinear
sequences that can be used in many applications.

In many cases, only a simple modulo counter is required to
generate a stream of clock pulses. Nonlinear counters can also be
used to generate memory addresses. For example, in a FIFO, the
order in which the memory is accessed is irrelevant as long as the
data is stored and retrieved in the same order. This memory
addressing technique could also be used for a ROM look-up table
(LUT). In this case, the LUT data would be stored in ROM in the
PRN sequence using a simple software routine to precalculate the
addresses.

Pseudo-Random Counters

The most popular (and the simplest) PRN counter is the feedback
shift register. Figure 1 shows a shift register of length m bits with
the exclusive-OR (XOR) of the nth bit and the last (mth) bit fed
back to the first bit location.

Figure 1. Feedback Shift Register

The PRN counter goes through a set of states (defined by the set
of bits in the registers after each clock), eventually repeating itself
after K clock pulses. The maximum number of conceivable states
of an m-bit register is K = 2m, that is, the number of binary
combinations of m bits. However, the state of all zeros would get
"stuck" in this circuit, since the XOR would generate a zero at the
input. Thus, the maximum number of unique states is 2m - 1. It
turns out that you can make "maximal-length shift register
sequences" if m and n are chosen correctly. The resultant state

© 1993 Actel Corporation

sequence is pseudo-random. As an example, consider the 4-bit
feedback shift register in Figure 2. Beginning with the state 1111
for the XOR implementation type and 0000 for the
exclusive-NOR (XNOR) type, there are IS distinct states (24 - I),
after which states repeat.

a

74LS95 ~
Din d

Figure 2. A 4-Bit Feedback Shift Register

Feedback Taps

Maximal-length shift registers can be made with XOR/XNOR
feedback from more than two taps (in these cases, you use several
XOR/XNOR gates in the standard parity tree configuration, that
is, the modulo 2 addition of several bits). In fact, for some values
for m, a maximal-length register can only be made with more than
two taps. Table 1 shows a listing of all values of m up to 33 for
which maximal-length registers can be made with just two taps,
that is, feedback from the nth bit and mth (last) bit. A value is
given for n and for cycle length K, in clock cycles. In some cases,
there is more than one possibility for n, and in every case the
value of m - n can be used instead of n; thus the earlier 4-bit
example could have used taps at n = 1 and m = 4.

Since shift register lengths of multiples of eight are common, you
may want to use one of those lengths. In that case, more than two
taps are necessary. There are other cases of shift register lengths I
that require more than two taps. Table 2 shows the taps points for
the multitap point counters. Because of the greater complexity of
the feedback path, the multi tap counters tend to operate slower
than the single tap version. It is sometimes more prudent to use a
counter that is larger than needed just to reduce the number of
taps. For example, if a modulo 250 counter is required, an 8-bit
counter with three tap points could be chosen. But the wiser
choice would be to use a 9-bit (max modulo 511) counter. The
9-bit counter actually uses two less logic modules (see next
section) and has a higher operating speed.

9-59

Table 1. Values for Maximal-Length Registers Made with
Two Taps

Length (m) Tap (n) Maximum Count (K)

2 3

3 2 7

4 3 16

5 3 31

6 5 63

7 6 127

9 5 511

10 7 1,023

11 9 2,047

15 14 32,767

17 14 131,071

18 11 262,143

20 17 1,048,575

21 19 2,097,151

22 21 4,194,304

23 18 8,388,607

25 22 33,554,431

28 25 268,435,455

29 27 536,870,911

31 28 2,147,483,647

33 20 8,589,934,591

Table 2. Tap Points for Multitap Counters

Length (m) Tap (n) Maximum Count (K)

8 3,4,5,7 255

12 1,9,10,11 4,095

13 6,10,11,12 8,191

14 1,11,12,13 16,383

16 10,12,13,15 65,535

24 16,21 ,22,23 16777215

PRN Counter Construction

Constructing a PRN counter requires only two elements-a
loadable shift register bit and a fast XOR/XNOR gate. The Actel
family of field programmable gate arrays (FPGAs) is ideal for
building these types of elements. To construct the loadable shift
register bit, use the DFM (D-type flip-flop with a 2 to 1
multiplexer) shown in Figure 3. Use the DFM6A hard macro with
enable inputs to build the shift registers for cascadable PRN

9-60

counters. The fast XOR/XNOR gate is implemented by one
combinatorial logic module. A PRN counter can be constructed
with these two basic circuits elements. Finally the END pattern
can be chosen to minimize the complexity of the end-of-sequence
(EOS) detection circuit.

FROM PREVIOUS
STAGE

RELOAD DATA

LOAD

A

B

S

Q

TO NEXT
STAGE

Figure 3. Loadable Shift Register Bit

One key feature of the PRN counter is that, as the counter length
increases, the extra bits only add one extra shift register bit
without increasing the feedback delay. For example, a lO-bit
continuous PRN counter will take only 10 shift register bits (one
DFM each) plus a fast XOR (one module). Increasing the length
of the counter to 20 bits requires only an additional 10 shift
register modules. The important point is that the feedback path
still has only one level of logic delay. In other words, this 20-bit
counter has the same feedback delay (maximum operating
frequency) as the lO-bit counter.

PRN Sequence Software

Actel has developed a software utility called PRN_GEN2 for
constructing PRN sequence counters. The software prompts you
for the counter size (in bits), the end-of-sequence (EOS) pattern,
the type of counter (XOR/XNOR), the desired modulo (cycles),
and the pipeline delay of the EOS detect. Then, it provides you
with the proper number to load to achieve the desired modulo and
the tap points needed.

Note: You can have multiple modulos and use a multiplexer
to select them.

Conclusion

PRN counters are easy to design and implement. They are useful
for many types of applications and designs in Actel FPGAs.
For more information about PRN counters and their
implementation in Actel FPGAs, contact Actel Technical Support
at 1-800-262-1060.

References

Paul Horowitz and Winfield Hill, The Art of Electronics,
Cambridge University Press.

Implementing Three-State
and Bidirectional Buses

Application
Note

with Multiplexers in Actel FPGAs

Three-state logic is used in conventional MSI logic devices to
allow buses where multiple drivers are directly connected to one
or more loads. Figure 1 shows a typical bus configuration with
TTL three-state bus drivers and registers. Each driving device has
a control input that places all outputs in a high impedance state
when asserted. (For the register, the control pin is OC; for the bus
driver, there are two control pins, I G and 2G). To prevent data
collisions, only one driver can be active at a time; the other
drivers must be in a high impedance state. The four NAND gates
perform a logic decoding function to ensure that only one driver
is active at a time. If the first bus driver is selected to be active via
SELA and SELB, then the data bits WO to W7 will drive the bus
(BUSO to BUS7). Similarly, the other data bits will be selected
when the respective register is active. The loads on the bus are not
shown in Figure 1.

To make effective use of routing resources for many different
applications, the Actel FPGA implements internal multiple
drivers on a net with multiplexers instead of three-state logic.
Figure 2 depicts the Actel implementation of the three-state bus
discussed above. In this case, a 4 to I multiplexer is used for each
bit of the bus to redirect the desired signal from one of four
sources (W, X, Y, or Z). In addition to replacing the three-state
nature of the MSI devices, the multiplexer eliminates the need for
the LS241 bus drivers (inputs Wand X). The desired source is
selected by the two multiplexer select lines, which eliminate the
need for the decoding logic used in the MSI implementation. For
greater than four sources, the MX8 8 to 1 multiplexer can be used
in a similar fashion.

.,3

.,4

.,0

.,1
Q3

.,3
Q4

.,7

auaIO:",

Figure 1. Three-State Bus Implementation with MSI Logic

© 1993 Actel Corporation
9-61

-.ELIS

aELA

WO ~~. xO
01. BUS(O:?]

~~DY

W1 D2.~.
Xl. 0":" _. Y

02/
03

W2 ~i:C x2
OJ.

TA273 02 MX4 Y'

-< CLR 031
_~CLK
_OJ. OJ. f---

~i:C _02 02 ~ w:a

-03 03 x3
OJ.
02 MIIJ4 Y

_04 04
_05 05 031

_06 06

-07 07 f----
_08 08 f---

~i:c' W4

X4
01.

TA273
02 ... y

-<: CLR 031

CLK
..... -

- 01. 01. ~i:C 02 02
W5 - OJ.

- 03 03
X5

02 y

- 04 04 031

- 05 05 I
- 06 06

- 07 07
w6 D2.~ 08 08 - X6 02:.. y:

~~ ;J I

W7 ~t.1 x7
OJ.
02 y

031

Figure 2. Three-State Bus with Actel FPGA Using Multiplexers

9-62

Implementing Three-State and Bidirectional Buses with Multiplexers in Actel FPGAs

Bidirectional signals can also be replaced readily with
multiplexers in the Actel architecture. Figure 3 shows the
conversion of a popular transceiver to a 2 to I multiplexer.

Figure 4 illustrates the conversion to the multiplexer
implementation of three bidirectional transceivers driving a bus.

The multiplexer circuit assumes that A's driver also drives any inputs
on the A sub-bus, B drives B's inputs, and so on. Two additional sub­
buses can be made available by controlling the select lines accordingly.

A B

Original Circuit

If the bidirectional element is located at the FPGA pad, the
BIBUF macro can be used directly. Figure 5 shows a simple
circuit using the LS245 transceiver with flip-flops driving and
leading the bus. Figure 6 shows the Actel implementation of the
BIBUF macro and the DFM multiplexed flip-flop. Note that when
enable is low the pad drives the B flip-flop and that when enable
is high, A drives both the PAD and B.

Direction

From A driver output

A

B

From B driver output

Converted Circuit

y
To all inputs

Figure 3. Transceiver Conversion to a 2 to 1 Multiplexer

A
Bout

A 1
MX2

y
A in

B

B ~

A
y C out

B in
B

c

A ~
MX2

y
C in

A out
B

----Original Circuit Converted Circuit

Figure 4. Three Bit Transceiver Conversion

9-63

I

9-64

Enable

A LS374

~-------------r------------~Q D

En

----------~~--------------------+-----------------~

A

D
DF1

B LS74

~----------~D Q

Figure 5. Bidirectional Bus with LS245

BIBUF macro

D
Q~----~------~

E
y

A
'-----------------~ B

B

Q

Enable ----------.... ----------------i S DFM

Figure 6. Bidirectional Bus with BIBUF Macro

Crystal Oscillator

Oscillators for
Actel FPGAs

Oscillators are fundamental design circuits used to provide a
reference clock signal essential for digital designs. Crystal
oscillators provide a simple solution for precise, stable, and
calibration-free clocks. An on-chip crystal oscillator can be
implemented with Actel devices using the traditional
configuration shown in Figure 1. This oscillator has been tested
up to 20 MHz and is used in Actel programmers. The 10 MQ
resistor provides a negative feedback path for the inverter, which
makes it behave like a high-gain amplifier. The remaining passive
elements, including the crystal, form a pi network that provides a
180 degree phase inversion. The inverter will lock on to the
parallel resonant frequency of the crystal, thus providing a very
stable output. The RC network also acts as a low-pass filter to
ensure that the crystal operates at the fundamental frequency and
not a harmonic frequency. The capacitor values range from 5 to
30 picofarads and depend on the crystal frequency. Some

Select
1 of 3

options

Application
Note

experimentation is suggested to get an optimal value for a specific
design. Generally, the two capacitors will have the same value,
although the capacitor connected to the input of the inverter can
be varied independently to alter the output frequency by
± 0.1 percent.

A second OUTBUF or CLKBIBUF output buffer is used to
provide a sharper clock signal at full amplitude when used outside
the FPGA. Alternatively, the output buffer can be replaced with
an internal buffer, which will allow a direct connection to internal
macros. For ACTTM 2 and ACT 3 devices, the CLKINT macro can
be used allowing high fanout drive capability of internal macros
with minimal skew.

Fix the placement of the oscillator I/O macros to adjacent
package pins to minimize internal delays. Consult the ALS User
Guide for more information on fixing pins. Also, fixing the I/O
macros near ground pins and far from other high-speed switching
I/O pads minimizes noise effects.

(Note: CLKINT is only available on
ACT 2 and ACT 3 devices.)

}

to internal
flip-flops, latches

INBUF INV OUTBUF
Actel Device

10 MQ

-----101-------'
:::; 20 MHz 1 kQ

5-30 pF ~ 5-30pF ~

Figure 1. Crystal Oscillator Circuit

© 1993 Actel Corporation

to external
loads

9-65

I

RC Oscillator

For applications not requiring the accuracy of a crystal, there is an
RC oscillator that can be used in an Actel device as shown in
Figure 2. As a strong word of caution, this circuit is not
recommended for system clocks, since it is heavily dependent on
resistor and capacitor tolerances, process variation, and
temperature. Some applications for this lower cost oscillator
include LCD backplane and debounce circuits.

The circuit reaches alternate switching thresholds by charging
and discharging the capacitor with resistor R2. The RI resistor
provides a better square wave output by minimizing effects of

Actel Device

R1

input protection diodes of the input buffer. The approximate
formula for output frequency is:

1
frequency == 2.2 R2 C

The formula is most accurate if parameters have the following
limitations:

BUF

Rl > 1OR2

10K >R2 > 1 M

1000 pF > C > 10 JlF

to internal
loads

to external
loads

Figure 2. RC Oscillator

9-66

Page Mode
DRAM Controller

Introduction

The ACFM 2 DRAM controller supermacro allows you to access
up to 16 MB of memory space from two different channels. Using
automatic refresh circuitry and DRAM control logic, it can
operate a 4 MB DRAM in page mode for up to 2,000 transfers
starting from any point in a column. At the conclusion of a paged
transfer, lock-out logic prevents any other access until all standard
refreshes have been done. The supermacro uses just over 13
percent of an AI280. The schematic symbol and architecture of
the DRAM controller are shown in Figure I and Figure 2.

PAGE MODE
DRAM

CONTROLLER

PADDLE

PCNTlE CEND

PAGECY PEND

CRW MRW

PRW CAS

CCY RAS3

PCY RAS2

ClK RAS1

RST RASO

D [24:0]

PA[23:0]

CA [23:0]

MA[10:0]

Figure 1. Schematic Symbol

Operational Overview

Address and Data Buses

Three buses in the controller bring the two channel addresses. A
third bus with the processor data to load the counters for paged
operation. The processor can request a single or paged memory

© 1993 Actel Corporation

transfer by means of address decodes. Peripheral channels can
make memory transfer requests from a Direct Memory Access
(DMA) interface.

Refresh Logic

The two counters (VO, VI) time refresh requests through an
up/down counter (UDC). The VDC serves as an intermediate
counter to pass the requests to the memory arbitration
controller. When the memory is busy for long periods, (during
page accesses, for example) the UDC stores refresh requests by
counting up each time a request is made. When the memory is
free, the UDC can request all the refreshes be made
successively until the refreshes are caught up. Each time a
refresh is complete, the UDC is counts down until it is cleared.

Arbitration State Machine

The arbitration state machine decides which channel has access to
the memory and tells the memory timing control what type of
access to begin. Its outputs are also used to select the source for
the memory address and read/write source.

Memory access requests are prioritized from highest to lowest in
the following order: refresh, processor cycle, page cycle, and
channel cycle. When the memory is idle, the highest priority
request begins a cycle. According to the type of request, the
arbitration logic moves through a sequence of states until the
timing control signals the end of the cycle.

Memory Timing Control

The memory timer issues the signals to control the operation of
the DRAMs. It times the sequence and duration of the signals to
conform to the requirements of the DRAMs and informs the
arbitrator when the cycle is complete.

The timer contains a counter for paged accesses that will operate
paged transfers up to 2,000.

Address Multiplexer

The address multiplexer selects the appropriate address source for I
memory accesses and, under the control of the memory timer, •
drives the DRAMs with the row or column address.

The multiplexer contains a register and a counter for paged
accesses. Both are loaded by the processor. The register contains
the address of the row for the page access and the counter has the
beginning offset within the column. After each page access cycle,
the column counts up by one to supply the address for the next
cycle.

Bank and Read/Write

The two most significant bits of memory address are used for the
bank select. They are selected by multiplexers from the sources
for memory addresses. The multiplexer outputs are then decoded
by the memory timer to drive one of the four RAS lines.

The processor loads a three-bit register with the page bank
address and read/write line prior to initiating a page access.

9-67

9-68

REFRESH
TIMING

AND
CONTROL

MEMORY
ACCESS

R EQUEST

CESSOR PRO
D ATA BUS

PRO CESSOR

C
A

AND
HANNEL
DDRESS

BUSES

MEMORY MEMORY
ACCESS TIMING

ARBITRATION CONTROL
.----- t--- .------

PAGE MODE
ADDRESS MEMORY

AND ADDRESS

TRANSFER MULTIPLEXER
COUNT

Figure 2. Page Mode DRAM Controller Block Diagram

f---

MEMORY
CONTROL

MEMORY
ADDRESS

Designing a DRAM Controller
Using Language-Based Synthesis

Introduction

Why Use HDL?

A new level of abstraction for the design descriptions uses a
combination of synthesis tools and HDL languages. As the trend
toward more complex designs continues, the old ways of design
entry do not accommodate everyone's needs. In the same way that
higher level programming languages replaced assembly
languages, traditional schematic capture and truth tables will be
substituted by HDL design description.

A highly complex and detailed design can mislead you to
overlook important details. Systematically partitioning the design
into different subsystems and expressing the behavior of each
subsystem in a higher level language helps to manage a big and
detailed design. Such a specification is in a soft level, which can
easily be changed, instead of in a hard level, which cannot be
easily changed. This specification is unambiguous and complete
and can hide the details of implementation.

Systems created with high-level constructs can be functionally
simulated. Simulating the design at this level reveals problems
before committing the design to hardware. An efficient HDL
description accompanied by a sufficient test plan and host
simulator that exercises the behavior of the design can minimize
the number of design errors and reduce the time-to-market. Such
a simulated behavioral description can later be synthesized for
detailed gate-level implementations.

A behavioral description is also the best way to document a
design. A well-prepared and documented HDL description can
always describe a design better than a set of schematics with
many gate-level details.

Why Use Verilog?

Some HDL languages, such as Verilog, resemble the C
programming language very closely. Adopting the Verilog HDL­
Synthesis approach can provide many benefits. Verilog HDL
language is readable, elegant, and easy to learn. You only need to
learn one language to create functional models, generate the
design, create simulation vectors, simulate, and perform any other
aspects of logic design. Verilog allows a design to be described in
behavioral or structural terms or a mixture of both.

The detailed implementation of a Verilog code may be left to
various synthesis tools.

Benefits of HDL Designs for the Actel Devices

Using a targeted vendor-specific library, most synthesis tools
such as Synopsys, Cadence, Mentor Graphics®, and Auto Logic,
can generate a gate-level representation of a design described in
Verilog HDL.

Synthesis tools like the Synopsys Design Compiler are designed
to optimize logic into regular conventional architectures. The

© 1993 Actel Corporation

Actel devices, with their highly regular channeled array
architecture, can be used very efficiently with most existing
synthesis tools. Synthesizing a design using ACT™ 1, ACT 2, or
ACT 3 libraries can be optimized with respect to the speed, circuit
size, or other cost functions where that gate utilization and
performance are maximized.

Verilog/Synopsys Design Example

Complex designs are best suited for behavioral descriptions. Such
a design can then be synthesized for the Actel devices using a
synthesis tool such as Synopsys.

A good candidate for the HDL/Synthesis methodology is a
DRAM controller. In such a design, many events, such as reset,
refresh, and memory access, can happen at any time or
simultaneously. Managing these events and arbitrating among
them in a structural level can be mind boggling and error prone.

The following is an example of such a design.

Figure 1 demonstrates a typical design flow using Synopsys and
the Cadence Actel kit. The following are the steps to create a
design for an Actel device.

Step 1-Core Description

Most Verilog logic descriptions begin with a behavioral
description of the core logic. The core logic description is found
in the top level of hierarchy that contains the I/O and clock
buffers.

Example 1 is the core logic captured in Verilog HDL for a DRAM
controller. It controls the refresh, memory access, reset cycles,
and address mapping for 4 MB of dynamic memory. The physical
addressing space of this memory can be programmed to be
mapped in any of 16 possible banks and designated with the top
address bits (A22 to A25). Figure 2 is a block diagram description
of this design.

A typical access from a processor is either I/O or memory. In this I
example, there are three control state machines that implement
the I/O and the memory cycles. Figure 3 is their state diagram
representation.

These state machines are directed with parallel_case Full _case
Synopsys directives. These directives cause all the states to be
evaluated in parallel and create all possible states that are not
covered. The main state machine is gray-coded to achieve the
minimal required logic decoding.

The initial I/O access will set the upper and the lower address
boundaries of the memory bank. Any memory access to this
DRAM should be in this addressing space.

The reset, memory, and refresh cycles are prioritized. A valid
address sent to the memory will start a Read or Write cycle. The
RAS, CAS, address switch, and other handshake lines will be

9-69

generated accordingly. If no other memory access is in progress, a
refresh request will start a CAS cycle before a RAS cycle. If some
other cycle is in progress, it will be latched to be granted at a later
time. A reset always has the highest priority; it resets all the
cycles to their initial states.

Step 2-1/0 Buffers

I/O buffers must be either instantiated in the Veri log code or
automatically inserted by Synopsys. Synopsys V3.0 contains a
command, insert_pads, that automatically inserts INBUF,
OUTBUF, and CLKBUF. If the design must contain BIBUF,
TRIBUF, or any special ACT 3 I/O cell, they must be hand
instantiated in the code. Example 2 shows how to hand instantiate
I/O buffers in the Verilog code. A level of logic, or "top level," is
created to merge the core logic with the I/O buffers.

Step 3-Test Circuit

A Verilog test file needs to be generated to Simulate the design
and verify behavioral level functionality. Example 3 demonstrates
this test circuit.

Step 4-lnvoke the Synopsys Tool

The Synopsys setup file (.Synopsys) needs to be set for
appropriate Actel devices. The EDIF options need to be set
correctly to generate an EDIF netlist appropriate for ALS.
Following is an example of a desirable .synopsys file.

Example of .Synopsys file

search path = { • /userl/ashena/ /projl/3.0synop/
admin/install/ /projl/3.0synop/libraries/syn};
designer = "DESIGNER NAME"; company = "Actel";
target library = /cad2/cad/release/cae/3.0/synop­
sys/2.2/1ib/act2_30.db;
symbol library = /cad2/cad/release/cae/3.0/synop­
sys/2.1001/1ib/act2.sdb; link_library = /cad2/cad/­
release/cae/2.2/synopsys/2.2/1ib/act2_30.db;
edifout_netlist_only = true
edifout no array = true
edifout-po;er and ground representation = cell
edifout-ground na~e = GND
edifout-power ~ame = vee
edifout=ground_pin_name = y
edifout power pin name = x
edifout=pertty_print = true

The Verilog code should be read in the Synopsys environment for
it to synthesize and optimize the behavioral circuit. The
optimization level can be selected to be high, medium, or low.

Synopsys can write out an EDIF file as well as a Verilog structural
level output file. The ALS program EDN2ADL will translate the
generated EDIF file to ADL (Actel Design Language). The ALS
software places and routes the ADL netlist into an Actel field
programmable gate array (FPGA).

Synopsys also generates a gate-level schematic for reference or
debugging.

9·70

Step 5-Simulate the Structural Verilog File

Resimulate the Synopsys generated structural level design to
verify the gate-level functionality. The same test file used in step
3 is also used to further simulate the gate-level DRAM Controller
design. The two simulator results are compared.

Step 6-Generate an Actel Netlist

The Actel program, cae2adl, produces an Actel ADL netlist from
the Synopsys generated EDIF. The program is executed from the
command line with several input switches. The syntax for
invoking cae2adl is:

cae2adl-edn2adl fam:<value> ednin:<ediffile name>
<design name>

Where:

fam

edin

is family, ACT 1, ACT 2, or ACT 3

is the file to be converted, which must have the
name <design name>.eds

<design name> is the name of the design, which must be the
same name as the top level of hierarchy, that
was synthesized

Step 7-Place and Route the Design

The ALS software verifies the integrity of the design, assigns I/O
pin numbers, places, and routes the design, and generates a fuse
file for programming. After place and route, the del2vlog program
backannotates actual delays for simulation.

Step 8-Run Actel Timer

The Actel timer is a static timing verifier. Unlike simulators, the
Timer does not require test vectors. The Timer tool is useful for
verifying internal and external setup and hold time requirements,
clock skew, and maximum frequency.

Step 9-Post-Route Simulation

To perform postlayout simulation, a PLI routine
($als_add_delays) must be added to the stimulus test file. The
syntax for this routine is:

$als_add_delays ("<module>.<instance>",
"<design_name>.del", "2.2", "<design_name>.def)

For more detailed information regarding the
Actel/SynopsysNerilog interface, refer to the Action Logic®
System, Release 2.2, CAE Guide, Sun/Cadence manual part
number 5029047-0.

The DRAM controller core logic is presented in the following
pages.

Designing a DRAM Controller Using Language-Based Synthesis

Example 1. DRAM Controller

1* DRAM CONTROLLER

This state machine controls the memory handshake, refresh, and address decoding for a DRAM *1

'timescale 1 ns I 100 ps

module draml (ras _,cas _,rw _ en,ready _,mux _add,sysclk,add,ads _,reset,rw _,ref,data,m _io);

output ras _,cas _, rw _en, ready _; output [11 :2] mux _add;

input sysclk;

input [25:2] add;

input ads _, rw _, ref, reset, m io;

input [7:0] data;

reg [3:0] low_add; 1* lower address bytes *1

reg [3:0] up_add;

reg [1:0] state;

reg [6:0] cs;

reg [6:0] ns;

1* upper address bytes *1

1* 110 states *1

1* Current State *1

1* Next State *1

reg rw_en, refreq, lat_ads_; wire mux_sel, hit, ref_end, iOJeady_, mJeady_;

parameter sl =7' bl11l11l, s2=7' blOl1111, s3=7' b101111 0, s4=7' bl011100,s5 =7' bl 011 000,
s8=7' b110l0l0,s9=7' blOOlOlO, s1O=7' bOOOllll;

s6=7' bl 010000 ,

1* ASSIGNMENTSr----------------------------------*1

1* SET the memory and refresh handshake signals *1

assign ras_ = cs[O]; assign mux_sel = cs[l]; assign cas_ = cs[2]; assign mJeady_ = cs[3]; assign reLend = !cs[6];

1* RAS address or CAS address *1

assign mux_add = mux_sel? add[1l:2] : add[21:12];

1* Is the address in the boundary? *1

s7=7' bllOl011 ,

assign hit = (add[25:22] >= low _add[3:0}) && (add[25:22] < up _add[3:0)); assign io Jeady_ = !state[l]; 1* End of I/O access *1

assign ready _ = (io Jeady _ & mJeady _);1 * End of 110 or Memory access *1

1* 110 ACCESS TO SET THE UPPER AND LOWER ADDRESS BYTES*I

always @ (posedge sysclk)

if(reset) begin

1* Only a subset ofVerilog Language is supported by Synopsys *1

state = 2' bOO;

II synopsys translate _off

fork

I I synopsys translate_on

up_add [3:0] = #2 4' hO;

low_add [3:0] == #2 4' hO;

I I synopsys translate_off

join

II synopsys translate _on

end

else

case (state) Iisynopsys paralleCcasefulCcase

00: if (!reset & !m_io & !rw _ & !ads_) state = 2' bOl;

01 : begin

9-71

I

Example 1. DRAM Controller (Continued)

end

10 : state = 00;

II synopsys translate_off

fork

II synopsys translate_on

low_add [3:0] = #2 data[3:0];

up_add [3:0] = #2 data[7:4];

II synopsys translate_off

join

II synopsys translate_on

state = 2' b1O;

default: state = 2' bOO;

endcase

1* MEMORY and REFRESH ACCESS *1

always @(posedge sysclk) cs = #3 ns;

always @(ads_ or reset or refreq or cs or rw _ or hit or m _io) begin if (reset) begin

ns=s1 ;

9-72

#2 rw_en = 1;
end else

case (cs)

s1: begin

Iisynopsys paralieCcase fu1l3ase

rw_en = 1;

if (refreq) ns = s7;

1* memory cycle starts *1

s2: begin

s3: ns=s4;

s4: begin

s5 : ns=s6;

s6 : ns=s1;

s7: ns = s8;

s8 : ns = s9;

else if((!ads_1 flat_ads_) & !refreq & m_io) ns=s2;

else ns=s1;

end

if (hit) ns=s3; 1* Address is in the boundary *1

else ns=s1;

end

ns=s5;

if (!rw_) #2 rw_en = 0;

else #2 rw _en = 1;

end

s9 : ns = s10;

s10: ns = s1;

default: ns = s1;

endcase end

Designing a DRAM Controller Using Language-Based Synthesis

Example 1. DRAM Controller (Continued)

always @ (posedge sysclk) if (reset) refreq = 0;

else if (ref & !reLend) refreq = 1;

else (f(reLend) refreq = 0;

always @ (posedge sysclk)

if(reset) lat_ads_ = 1;

endmodule

else if(refreq & !ads_ & m_io) lat_ads_ = 0;

else if (!m Jeady _) lat _ads _ = 1;

Example 2. Top-Level Design

'timescale 1 ns I 100 ps

module topd (pras _,pcas _,prw _ en,pready _,pmux _ add,psysclk,padd, pads _,preset,prw _,pref,pdata,pm _io);

input psysclk;

input [25:2] padd;

input pads _, preset, prw _, pref, pm_io;

input [7:0] pdata; output pras _, pcas _, prw _en, pready_;

output [11 :2] pmux _add;

wire sysclk;

wire ras _, cas _, rw _en, ready_;

wire [11:2] mux_add;

wire [25:2] add; wire ads_, reset, rw _, ref, m_io; wire [7:0] data;

1* Instantiate the Core logic *1

draml ul (ras_, cas_, rw _en, ready_, mux_add, sysclk, add, ads_, reset, rw _,ref, data, m_io);

1* Connect the 110 and Clock buffers *1

CLKBUF UCl (PAD(psysclk), .Y(sysclk));

OUTBUF UOO (.PAD(pras_), D(ras_));

OUTBUF UOI (PAD (pcas_) , D(cas_));

OUTBUF U02 (PAD(prw _en), D(rw _en));

OUTBUF U03 (PAD(pready~, D(ready_));

OUTBUF U05 (PAD(pmux_add[2j), D(mux_add[2J));

OUTBUF U06 (PAD(pmux_add[3j), D(mux_add[3J));

OUTBUF U07 (PAD(pmux_add[4j), D(mux_add[4J));

OUTBUF U08 (PAD(pmux_add[5j), D(mux_add[5J));

OUTBUF U09 (PAD(pmux_add[6j), D(mux_add[6J));

OUTBUF UOIl (.PAD(pmux_add[7j) , D(mux_add[7]));

OUTBUF U012 (PAD(pmux_add[8j), D(mux_add[8j));

OUTBUF UOJ3 (.PAD(pmux_add[9j), D(mux_add[9J));

OUTBUF UOI4 (PAD(pmux_add[lOj), D(mux_add[lOJ));

OUTBUF UOI5 (.PAD(pmux_add[ll]), D(mux_add[Ilj));

INBUF UfO (.PAD(padd[2J), .Y(add[2J));

INBUF UII (.PAD(padd[3j), .Y(add[3J));

INBUF UI2 (PAD(padd[4j), .Y(add[4J));

INBUF Uf3 (.PAD(padd[5j), .Y(add[5J));

INBUF Uf4 (.PAD(padd[6j), .Y(add[6J));

INBUF Uf5 (.PAD(padd[7j), .Y(add[7J));

9-73

I

Example 2. Top-Level Design (Continued)

INBUF UI6 (.PAD(padd[8J), .Y(add[8]));

INBUF UI7 (.PAD(padd[9J), .Y(add[9]));

INBUF UI8 (.PAD(padd[lOJ), .Y(add[lO]));

INBUF UI9 (.PAD(padd[11J), .Y(add[11]));

INBUF U110 (.PAD(padd[12J), .Y(add[12]));

INBUF U111 (.PAD(padd[13J), .Y(add[13]));

INBUF UIl2 (.PAD(padd[14]), .Y(add[14J));

INBUF UIl3 (.PAD(padd[15J), .Y(add[l5J));

INBUF UIl4 (.PAD(padd[16J), .Y(add[16]));

INBUF UIl5 (.PAD(padd[17]), .Y(add[17J));

INBUF UIl6 (.PAD(padd[18J), .Y(add[18J));

INBUF UIl7 (.PAD(padd[l9J), .Y(add[l9]));

INBUF UIl8 (.PAD(padd[20J), .Y(add[20]));

INBUF UIl9 (.PAD(padd[2l]), .Y(add[21J));

INBUF UI20 (.PAD(padd[22]), .Y(add[22J));

INBUF UI21 (.PAD (padd[23J) , .Y(add[23]));

INBUF UI22 (.PAD(padd[24J) , .Y(add[24]));

INBUF UI23 (.PAD(padd[25]), .Y(add[25]));

INBUF UI24 (.PAD(pads_), .Y(ads_));

INBUF UI25 (.PAD(preset), .Y(reset));

INBUF UI26 (.PAD(prej), .Y(rej));

INBUF UI27 (.PAD(prw _), .Y(rw _));

INBUF UI28 (.PAD(pdata[OJ), .Y(data[O]));

INBUF UI29 (.PAD(pdata[l]), .Y(data[l]));

INBUF UI30 (.PAD(pdata[2J), .Y(data[2]));

INBUF UI31 (.PAD(pdata[3J) , .Y(data[3]));

INBUF UI32 (.PAD(pdata[4J), .Y(data[4]));

INBUF UI33 (.PAD(pdata[5]), .Y(data[5]));

INBUF UI34 (.PAD(pdata[6J), .Y(data[6]));

INBUF UI35 (.PAD(pdata[7J), .Y(data[7]));

INBUF UI36 (.PAD(pm_io), .Y(m_io));

endmodule

9-74

Designing a DRAM Controller Using Language-Based Synthesis

Example 3. An Example of Test Design

module test _ d;

reg [25 :2} add; reg sysclk; reg ads _; reg reset; reg rw _; reg ref; reg [7:0} data; reg m _io;

wire ras_,cas_; wire rw _en; wire ready_; wire [11 :2} mux_add; reg [4:0} count; reg mem_all;

integer i;

reg [2:0} state; parameteraO= 3'bOOO, a1=3'b001 ,a2 = 3'b01O, a3=3'b011 , a4= 3'b100, a5=3'b101 ,a6 = 3'b110;

dram1 uO (ras _,cas _,rw _ en ,ready _,mux _ add,sysclk,add,ads _,reset,rw _,ref,dat a,m _io);

initial begin

$gr _waves(" clock%b" ,sysclk," ads" ,ads _," reset%b" ,reset," m _io" ,m _io," state%b" ,uO.state[1 :O}," mem _all" ,mem _all," rw _" ,rw _," low _a
dd%h" ,uO.low _add[3:0},"up _add%h" ,uO.up _add[3:0},"io Jeady_" ,uO.io Jeady_, " hit" ,uO.hit,"ready_" ,ready_," addup%h" ,uO.add[25:2
2} ," ras%b" ,ras _," rowadd%h" ,add[11 :2}," coladd%h" ,add[21 :12}," cas%b", cas _," read _ write%b" ,rw _en, "mux_sel", uO.mux _sel,
"cs", uO.cs, "ns", uO.ns, "state", state, "add", add, "ref', ref, "count", count, "refreq", uO.refreq, "ref_end", uO.ref_end);

end

initial begin

#10; sysclk = 0; count = 0; ref = 0; rw = 1;

add [25:2}= 0; ads_ = 1; mem_all = 0; #10 m io = 0;

#20 reset=1; #60 reset = 0;

@ (posedge sysclk) if (!mem _ all & !reset) begin

fork

join

#2 ads_ = 0;

#2 rw_ = 0;

end

@ (posedge sysclk) #10 ads _ = 1;

wait (!ready _) #2 m _io =1 ;

#2 m_io = 0;

#3 data [7:0} = 8' b00010000;

#4 ads _ =1; #5 rw _ = 1; #30 mem _all = 1; end

always @ (posedge sysclk)begin

if (reset) state = aO;

else

case (state)

aO: if (mem _all) state = a1; a1: begin

#2 ads =0;

#2 add[25:22} = 4' bOOOO;

#2 rw = 0;

#2 state = a2; end

a2 : begin

#2 ads = 1;

#2 state = a3; end

a3 : if (!ready..J #2 state = a4 ;else #2 state = a3;

a4: begin

#2 ads =0;

#2rw =1;

#2 state = a5; end

a5: begin

#2 ads = 1;

#2 state = a6; end

reset=O;

9-75

I

Example 3. An Example of Test Design (Continued)

a6 : if(!ready~ begin

#2 state = aO;

#2 add[21 :02J = add[21 :02J + 1;

end

default: #2 state = aO;

endcase

end

always @(posedge sysclk)

if (reset) #2 ref = 0;

else #2 state = a6;

else if (count = = 5' hOf) #2 ref = 1;

else #2 ref = 0;

always @(ref / count= =0) if (reset) count = 0;

elsefor{i= 0; i<20; i=i+l) count = #70 count + 1;
initial begin

$monitor ($time," %b %b %b %h %h %b %b %b" ,sysclk,add[25 :22J ,ras _,add[11 :2J ,add[21 :12] ,cas _,rw _en,ready _);

end

always forever #30 sysclk = -sysclk;

endmodule

9-76

TOP-LEVEL

HDL

DESIGN DESCRIPTION

SYNOPSYS

GATE-LEVEL

VERILOG FILE

Designing a DRAM Controller Using Language-Based Synthesis

EDIF

FILE

Figure 1. Typical Design Flow Using SynopsYs and Cadence

9-77

I

CD
.!.J
Q)

SYSCLK RESETDATA [7:0] RESET RW_ ADS_

.. ...
• " DATAf7:4]

UP ADD [3:0]

•
I

• •
DATAf3:0]

UP_ADD [3:0]

BOUNDARY ADD LATCH (I/O ACCESS)

1'1--4
--~I ..
~~~T 

4 
ADD [25:22] ~ 

0« 
Oil: « 

• 
MUX_SEL--

-----11'-. 
, , 

ADD [11 :2] MAS CAS 

--... 
... 

ADD [21:12] ------i 

REF_END 

RESET SYSCLK REF ADS_ M_IO 

--.. IO_READY 

ADS_ M_IO RW_ SYSCLK 

• • • • • 
MAIN CONTROLLER 

(MEMORY/REFRESH/RESET) 

MUX_ADD [11 :2] M_READX 

10_READYf-----I 

REF_REO 

RESET 

• 

READY 

Figure 2. Block Diagram Description for a DRAM Controller 

t 



I/O ACCESS 

up_add = data[7:4] 

IOW3ddD = data[3:0] 

Designing a DRAM Controller Using Language-Based Synthesis 

reset = I & 
m_io = I 

reset = I 

reset = h 

ads = I 

MEMORY ACCESS 

Figure 3. Memory Access 

ras 
max add 
= switch 
to CAS 
address 

REFRESH CYCLE 

cas 

cas 
ras 

cas 
ras 

ref end 

9-79 

I 



9-80 



Four-Channel 
DMA Controller 

Introduction 

The ACT™ 2 DMA controller supermacro allows you to connect 
up to four devices to a common memory controller interface. The 
supermacro uses approximately 19 percent of an A1280. The 
schematic symbol and architecture of the DMA controller are 
shown in Figure 1 and Figure 2. Each channel has a 24-bit 
register loaded by the processor with the starting memory 
address. 

FOUR-CHANNEL 
DMA 

CONTROLLER 

PLDA 

PLDB 

PlDC 

PlDD 

PBGNT 

MACK 

ClK 

PD [23:0] 

AREQ 

BREQ 

CREQ 

DREQ 

PBREQ 

MREG 

CA [23:0] 

AMACK 

BMACK 

CMACK 

DMACK 

Figure 1. Schematic Symbol 

© 1993 Actel Corporation 

Cooperation Overview 

When a channel makes a request for a transfer, the controller 
makes a request to the processor to use the system bus. When the 
bus is granted, the address the channel is using (except for the two 
most significant bits, which are used for bank select) is loaded 
into a counter driving the memory controller by using a state 
machine. The state machine also issues a transfer request to the 
memory controller. The completed memory transfer is 
acknowledged to the requesting channel via the state machine, 
which also increments the address in the counter and writes it 
back to the requesting channel's register. 

State Machine Description 

The four-channel memory transfer request lines are prioritized so 
that only one request is recognized at a time. The control of the 
DMA is handled by a state machine submacro containing 
additional logic for prioritization. A state graph of the state 
machine may be seen in Figure 3. 

In state SO, the state machine loops, awaiting a request. A request 
causes a transition to S 1, which issues a processor bus request and 
waits for an acknowledgment. After the bus is granted, the state 
moves to S3 where the counter is loaded and a memory access is 
requested. 

The state machine loops on S3 until the transfer is completed and 
moves to S7 to increment the counter. Going next to S5 to load 
the counter value back into the channel's register, the state 
changes to SO if there are not further requests from the channel. If 
there is another request from it, the machine loops through S4, 
S7, and S5 following the memory transfer, counter increment, and 
register load sequence, as described above. 

9-81 

I 



DATA 
BUS 

9-82 

---r--

~ 

f---

-

- -

f--

'----

-

REGISTER 

REGISTER 

REGISTER 
-

-

REGI3TER 
-

STATE 
MACHINE 
CONTROL 

-
- -- BANK BANK SELECT 

MULTIPLEXOR 

'-----
MEMORY 

ADDRESS ADDRESS 
I--- COUNTER 

I 
MULTIPLEXOR 

Figure 2. DMA Controller Block Design 



MEMORY TRANSFER ACK 

CONTINUE 

MEMORY TRANSFER ACK 

Four-Channel DMA Controller 

ABCD 

r----..- PROCESSOR BUS REQUEST 

COUNTER LOAD, 
CHANNEL MEMORY REQ 

r----..- COUNT ENABLE 

REGISTER LOAD 

CHANNEL MEMORY REQ 

MEMORY TRANSFER ACK 

Figure 3. Four-Channel DMA Macro State Machine Control 

9-83 

I 



9-84 



A High-Performance Networking 
Interface Using Actel FPGAs 

Introduction 

High-speed serial data transmission is quickly becoming the most 
cost-effective method of connecting systems for a variety of 
applications. From workstation and PC connectivity to factory 
automation and automotives, networks have become a pervasive 
part of the modem day computer and communications fabric. The 
standard use for networks is to allow a variety of different 
equipment to effectively communicate but there are non-standard, 
proprietary applications as well, where high bandwidth 
communications is needed. This note will discuss the design of a 
proprietary high-speed network that connects distributed 
processing elements in a document retrieval system. It uses a 
single Actel1425 field programmable gate array (FPGA) running 
at up to 100 MHz. 

Network Architecture 

Reliability and high performance were the goals in this system. It 
was important to have immediate access to a large amount of 
data, usually scanned images of documents. A 100 MHz 
fiber-optic token ring network was chosen to ensure high 
performance and reliability. Network management was key to 
ensuring reliable transmission and managing data flow 
effectively. This suggested a tree architecture with concentrators 
listributed throughout the tree that could manage data 
transmission and ensure reliable connections. The resulting 
network architecture is shown in Figure 1. 

The top of the diagram shows the network concentrators; the 
document processing stations are at the bottom. Disk farms 
containing document archives are distributed throughout the tree. 
Data requested by the processing stations flow from the disks 
through the concentrators and arrive at the requesting station. 
Data transfers between disks are also possible if network traffic is 
determined to be better managed by transferring data between 
disks, thereby keeping data transfers local. 

Although the network architecture is shown as a tree, the data 
actually travels around the network as if it were a ring going from 
station to station until the receiving station takes the data off the 
network. This is illustrated more clearly by looking at a single 
concentrator in the network, as shown in Figure 2. Data from the 
network enters at the top of the diagram and flows down to node 
O. If the data is not destined for node 0, it is sent back up the link 
to the concentrator where it is routed to node 1. This process 
continues until the data arrives at the correct destination, where it 
is removed from the network. The header of the message is 
modified, showing that the data was received, so that when it 
arrives back at the sender the sender knows the data was received 
by the requesting station. 

A node processor is located at the concentrator and is responsible 
for monitoring data flow through the local network. If a 
connection to a node fails because of a station malfunction or a 

© 1993 Actel Corporation 

Figure 1. High-Speed Network Architecture 

Concentrator 

Figure 2. Network Concentrator Interface 

line being removed, the node processor must detect the failure 
and re-route the data around the failing node. For example, if 
node 0 in Figure 2 experienced a network link failure, the 
concentrator would detect the failure and route the incoming data 
to node 1 instead. If node 1 also failed, the data would be routed 
to node 2, and so on. Thus, failing nodes do not effect the 
transmission of data to other nodes. This allows the system to 
continue operating even if some nodes are failing, being serviced, 
or nonexistent. 

9-85 

I 



Concentrator Architecture 

The concentrator architecture is shown in Figure 3. The main 
components are the node processor, its associated memory, the 
optical data links, and the field programmable gate array (FPGA) 
containing the digital logic needed to connect everything. The 
node processor monitors data packets moving through the 
concentrator and detects failing links, traffic jams, or other 
unusual flow patterns that might require data to be transferred 
between disks, diagnostics, and other network management 
functions. It can receive data as a node in its own right, and it 
communicates with other concentrators regularly. 

The optical data links translate the electrical signals from the 
concentrator to optical signals carried by the optical fiber and 
translate optical signals from the fiber into electrical signals used 
by the concentrator. The 100 MHz serial data clock is extracted 
by the main receiving data link and used to synchronize all other 
links, the node processor, and the FPGA. 

The FPGA is used to connect the synchronized inputs and outputs 
of the data links and the node processor. The node processor can 
control data flow between data links and bypass failed links. The 
node processor can also monitor transmissions between links to 
accumulate statistics useful in detecting bad links, network traffic 
flow, and other important items. 

Architecture of the Concentrator FPGA 

The major tasks of the FPGA are to allow the node processor to 
control adding or removing links from the ring (bypassing), 
passing data from one active link to another, and capturing data 
packets for the node processor to use in gathering network 
statistics. The FPGA contains three major operational sections, as 
illustrated in Figure 4; the serial data path, the node processor 
interface, and the status/control section. The serial data path 
connects the serial data from the data links as determined by the 
path control register. A single bit is used with each serial data 
channel to determine if it is bypassed or not. The processor sets 
the desired bits in the path control register to determine 
interconnectivity. 

The status/control section provides the node processor with the 
needed "hooks" to observe packets as they flow through the 
network and to read the contents of various status and control 
registers. A simple state machine manages the flow of data 
between the node processor and the serial network and 
synchronizes the transfer between these sections. A description of 
the major status and control registers follows. 

Control Registers 

The link control register determines which links (if any) are 
bypassed (one bit per serial channel). 

The snoop address register determines which data links output is 
stored in the snoop data register for access by the node processor. 

Status Registers 

The link active register indicates which data links (if any) are 
inactive (no signal is present). This is used to determine if a link 
must be bypassed. 

9-86 

The snoop data register contains the data received from the 
addressed data link. 

The node processor interface allows the node processor access to 
the interconnection control register, status registers, and the 
packet snoop register. It contains a bidirectional data bus, bus 
control logic, address decode logic, and the usual microprocessor 
glue. 

Design of the Concentrator FPGA 

The most challenging portion of the concentrator design is the 
serial data link section. It contains the 100 MHz data path, which 
is usually a speed out of the reach of most FPGAs. As shown in 
Figure 5, the serial data path for an individual bit consists of the 
bypass multiplexer, a shift register bit, and the output register. The 
output of the previous link can be selected as the data source or 
that link can be bypassed by selecting the other multiplexer input. 
The input/output pairs are cascaded together, with the main 
concentrator serial inputs and outputs appearing at the ends of the 
chain. 

Given the register-intensive nature and high operating frequency 
requirement of the application, an FPGA was the natural choice. 
To hit the 100 MHz performance goal, a 10 ns clock to output is 
required on the output register, a 3 ns setup time is required on the 
input register, and an internal data path rate of 100 MHz is 
required. The Actel 1425 meets or exceeds all the requirements 
and has the capacity to implement the serial data path at only a 
fraction of a single device. The timing for the worst-case paths of 
the serial data section in a fully automatically placed and routed 
device is shown at the bottom of Figure 5. All numbers are 
worst-case commercial. 

The status and control section of the design consists of the 
necessary registers and selection circuitry to allow access by the 
node processor. The registers are written into as determined by 
the address supplied by the node processor and read out in a 
similar manner. Of more interest is the snoop data register. It 
needs to be loaded from the selected data link at the 100 MHz 
network rate and read by the node processor before the next word 
is shifted in. These transfers are accomplished within the needed 
100 ns by the node processor, using a block transfer capability. 
The FPGA ensures that the block transfer is accomplished and 
synchronizes the serial data stream from the network with the 
node processor data bus. Figure 6 shows the portion of the design 
where the serial data is stored by the FPGA, transferred to the 
snoop data register, and accessed by the node processor. A small 
state machine controls the transfer of data from the serial register 
to the snoop register and ensures that the processor doesn't miss 
any data. The transfer of data is stopped by the node processor 
after a complete block has been transferred. A new link can then 
be selected for snooping. 

The node processor interface is the most straightforward portion 
of the design and is shown in Figure 7. It contains the processor 
interface, address decode, and control logic sections. The data bus 
is bidirectional and is synchronized with respect to the processor 



Serial In 

A High-Performance Networking Interface Using Actel FPGAs 

RAM 

t n 

-
Node h 

Processor 

-
,r 

100 MHz Clock .. 
~ 

FPGA Serial Data Out Interconnect 
Serial Data In Logic .. 

I 
~ 

1, t 
Optical Link Optical Link 

Fiber I I Fiber 

II II 

Figure 3. Network Concentrator Architecture 

Link 
Control 
Register 

BypassO DO 

Serial 
Shift 

LinkO 

Read 
Mux 

Bypass 
[7:0] 

Bypass1 01 

Serial 
Shift 

Link1 

Snoop 
Address 
Register 

Link 
Active 

Register 

Figure 4. Concentrator FPGA Block Diagram 

EPROM 

h 

" 

+ 
Optical Link 

Fiber 

II 

Bypass7 07 

Serial 
Shift 

Link7 

I 

Snoop 
Data 

Register 

Serial Out 

9-87 

I 



BYPASS 
TE 

SDATA1 

D Q 
D 

D 
ODE 

LlNKOUT 

DFC1B 

ClK 
IOClK 

ClR 
IOClR 

SDATAO Y 
LlNKIN 

IBUF 

- -
--

. . . 
- -
-

-

Figure 5. Concentrator Schematic and Timing Diagram 

clock. The control logic determines which register is read from or 
written to according to the address inputs. Additionally, the 
interface to the snoop register is controlled by this section and 
manages the data transfer between the processor and the FPGA 
during burst mode transfers. When the processor has captured as 
much of the packet as desired, it simply stops reading data and the 
snoop register is allowed to be overwritten by the snoop shift 
register until another transfer is requested. 

Conclusion 

This application note discussed the detailed design of a high­
speed data concentrator using the Actel A1425. Applications like 
this illustrate the types of designs this new generation of FPGAs 
can address, applications that were out of the reach of previous 
FPGA devices. 

9-88 

Snoop 
Data 
Reg 

Control 

Snoop 
Data 
Reg 

Figure 6. Serial Data Storage 

Serial 
Data 



Address 

Control 

Data 

~ Data 
Buffer 

Address 
Decode 

contro~ ~ Snoop Load 
Control Shift Enable 

Xfer Done 
L...-____ ....I 

Figure 7. Node Processor Interface 

A High-Performance Networking Interface Using Actel FPGAs 

I 

9-89 



9-90 



A High-Performance Synchronous 
Memory Interface Using Actel FPGAs 

Introduction 

Synchronous memory interfaces are used in a broad number of 
applications that require high bandwidth access to large amounts 
of data. Graphics subsystems in particular can benefit from the 
use of synchronous memory architectures based on block 
transfers. What follows describes the design of the interface using 
a single Actel 1425 field programmable gate array (FPGA) 
running at up to 100 MHz. 

Object Movement Subsystem 

The graphics subsystem we discuss is the subsystem responsible 
for the rapid movement of a large number of objects within a 
window as illustrated in Figure 1. Any object may be translated by 
an (X,Y) coordinate to another location in the window. Each object 
is represented by an I8-bit word containing two tag bits, an 8-bit 
object number, and an 8-bit color value (objects may have the same 
color). The tag bits define the beginning and end of an object, as 
well as the existence of the object. This allows objects to be 
transferred in blocks even if they have irregular outlines. For 
example, the object in Figure 2 exists on 8 lines (only the first is 
shown) with the first line containing a start word, two object words, 
a non-object word, one more object word, and an end word. 

The entire line can be moved in a contiguous transfer by 
beginning somewhere left of the start word, reading to the end 
word and writing the line out to final memory. During the line 
write the object will be copied beginning with the start word and 
ending with the end word. Only words with the tag bits set to an 
object will be written into. Notice that objects need not contain 
any words on a line if only a start and stop word are present. 

Graphics Subsystem Architecture 

Figure 3 depicts the hardware implementation of the subsystem. 
The processor loads the starting image memory independently 
from the FPGA by taking the FPGA off the bus during the load. 
After the image is loaded, the processor loads the FPGA with a 
series of transfer requests and grants the FPGA access to the 
memory. After the FPGA is done processing the transfer requests 
by copying the starting image memory, to the final image memory 
it interrupts the processor to infonn it that the operations are 
completed. The processor can now access the final image 
memory and detennine the results of the transfers. Notice that 
two separate physical memories are not needed to hold the 
starting and final images; the upper address bit can be used to 
select between starting and final images. 

Architecture of the Subsystem FPGA 

Figure 4 shows the detailed block diagram of the FPGA portion 
of the design. The blocks making up the design are the object 
memory interface, the object stack, the processor interface, and 
the master control section. 

© 1993 Actel Corporation 

D 
o 

Figure 1. Graphics Subsystem Window 

Start No Object End 

+ + + 00000000 

~~~~ 
00000000

t
Object

Figure 2. Object Translation

A major portion of the design is the memory interface that
controls access to the object memory. The memory is organized
as four banks, each of 16K words. This interleaved architecture
allows four-word bursts at the faster output enable rate of the
memory instead of the slower address access rate. This improves
perfonnance considerably in block transfer designs, but does
require more memory devices (four times as many for four-way
interleaved) than a noninterleaved scheme. The address for an
object is thus divided into a 16K word address (14 address bits)
and a 2-bit address withb the block. Addresses are consecutive
within the window on a line basis and wrap around after 256
words. Because both the starting and final image memories are
contained in a single physical memory, the window size is 128 by
256. The more detailed diagram in Figure 5 shows the design of
the interface.

9-91

I

I

Processor
Image Memory

Memory
r-

i .~ h .~

.. ...
Processor address ,

-data
... - ...

buffers ,r I'
FPGA
Object

Processor

Figure 3. Graphics Subsystem Hardware Implementation

... Object
p

Memory

t
I

" Object - ... Memory
Interface

Processor Object
Interface Stack

I I
FPGA

Object ... Memory

Figure 4. FPGA Block Diagram

The upper address bits to the memory are selected from the
source and destination line counters as the object is moved from
one location to another. A 6-bit address counter is used to count
words on a line. A small state machine provides the chip selects
and write-enables to the memory depending on the type of
transfer (read or write) as well as the tag bits associated with the
word. Address outputs are synchronous and are clocked on the
50 MHz system clock. Notice that the WE and CS outputs are
clocked on the 100 MHz I/O clock to generate the needed 2x
cycle control signals.

9-92

The 4-word, I8-bit object stack, shown in Figure 6, holds the data
during read and write bursts. Data is shifted into the stack on a
read and then shifted out on a write. Tag information is used by
the address generation portion of the interface to ensure that only
valid object words are written into memory. Notice that the stack
is organized as a LIFO (last in, first out) stack. This allows the
first and last access of the object line to be unaligned with the four
word interleave of the memory. For example, if the first access of
an object contains only two words, the two words can be shifted
in and then shifted out without needing to randomly access the

A High-Performance Synchronous Memory Interface Using Actel FPGAs

words in the stack. This is a more efficient implementation in an
FPGA architecture. Because of the LIFO nature of the stack, the
data written to memory will be in the reverse order, and the
write-enable signals are reversed to compensate.

The processor interface is shown in Figure 7. It contains a set of
command registers that hold the move coordinates of a series of
transfers. These registers are loaded by the processor on a bus
separate from that of the image data so that object transfers can be
processed concurrently with object translation operations. Status
information to the processor is also available on this bus and is
used by the processor to monitor progress on object transfers. The
interrupt control block will inform the processor when the end
transfer command is processed so that final image data can be
accessed.

The master control section in Figure 8 contains the main state
machine, which processes transfer commands, initializes the
memory interface prior to a line transfer, and manages each object
transfer. It holds starting and ending address pointers and

Memory Memory
Bank Bank

determines when the last line of an object has been transferred by
decrementing the object length counter until it reaches zero. The
master control section is responsible for transferring objects,
while the memory interface is responsible for transferring lines.
The state machine is implemented in a high-level language using
the "one-hot" methodology; it operates at 50 MHz.

Conclusion

This application note described the detailed design of a high­
speed graphics memory interface using the Actel A1425. The
interface operates at 100 MHz with a burst data transfer rate of
900 Mb/s (18-bits every 20 ns). The internal state machine
controlling object transfers runs easily at 50 MHz and contains a
variety of counters, registers, and random logic. The data stack
stores a burst of four 18-bit words between transfers and can be
clocked at over 100 MHz. Applications like this illustrate the
types of designs this new generation of FPGAs can address,
applications that were out of the reach of previous FPGA
devices.

Memory Memory
Bank Bank

.~ J .~ j~ ~ n J~ h ~ j~ • ~ h

'r ,r

" "

t
Object

WEICE Controls

Stack

I
~r-Source

I MuxH
Address

I
Counter

~~ Destination

Figure 5. Interface Design

9-93

9-94

Data 1/0

Object
Data

Object
Data

Object
Data

Object
Data

~-"'Tag

Data In

Object Data

Control
Number Color

8-bits 8-bits

Figure 6. Object Stack

Data Out
Address CS

Status

Figure 7. The Processor Interface

Control and
Address Decode

Interrupt
Control

Tag

2-bits

R/W

A High-Performance Synchronous Memory Interface Using Actel FPGAs

Instruction Instruction

+
~ Line Count I

,
Zero - - Instruction Stac k

State .. Processor Inter
Machine - face .. Interrupt Contro -... Memory Interfa ce

Figure 8. Section of the Master Control

I

9-95

9-96

Synchronous Dividers
in Actel FPGAs

Application
Note

Synchronous dividers are useful in numerous applications, such
as prescalers, timing generators, and multi-phase clocks.
Although ripple dividers use less logic, glitches and potential race
conditions make them hazardous in all but the simplest
applications. Synchronous dividers offer a better solution for
reliable operation.

Figure 1 shows divide-by-two to divide-by-ten synchronous
dividers using combinable Actellogic modules. Using the Actel
ACT 2 and ACT 3 architectures, the combinatorial gates will be
absorbed with the following flip-flop. The flip-flops used do not
have reset pins as dividers and are generally used as astable
devices. The OR-AND gates are used for some of the dividers to
avoid nonconvergent illegal states. To initialize the dividers for

© 1993 Actel Corporation

simulation, the output can be held high and clocked once for each
flip-flop, then released. For example, with the Viewsim™
simulator, the divide-by-three synchronous divider (with output
node F3) would be initialized with the following command file
sequence:

hF3
cycle 2
r F3
cycle 5

The resulting waveforms for each of the dividers are shown in
Figure 2. Note that the duty cycle is 50 percent for all even
dividers and as close to this as possible for the others.

9-97

I

..!.i~Q r2 • 0\ Dr'A

FIN eLK

~ .. ~ om

eLK eLK

:-G

-;-7

-:- 10

Figure 1. Actellmplementation for Synchronous Dividers

9-98

Synchronous Dividers in Actel FPGAs

Figure 2. Synchronous Divider Waveforms

I

9-99

9-100

A Stepper Motor Controller
in an Actel FPGA

Application
Note

Introduction

Stepper motors are electromechanical devices that provide
accurate incremental rotation. Printer paper feeders, floppy
drives, and robotic manipulators are popular stepper motor
applications. The most common stepper motor uses four windings
for a four-phase operation. Rotation is effected by actuating the
phases in a specific sequence. Field programmable gate arrays
(FPGAs) are ideal for integrating the control logic for these
motors with other system control logic to minimize device count
and board size.

Four-Phase Motor Circuit

A typical fo~r-phase motor driving circuit is shown in Figure 1
using an FPGA to generate the sequence logic. The four windings
have a common connection to the motor supply voltage (V s)
which typically ranges from 5 to 30 Volts. Each of the four phases
is driven by a high power NPN transistor, since the FPGA cannot
drive the motor directly. Each motor phase current may range
from 100 rnA to as much as 10 A. The transistor selection
depends on drive current, power dissipation, and gain. The series
resistors should be selected to limit the FPGA current to 8 rnA per
output. Power MOSFET devices can also be used to drive the
stepper motor.

Actel FPGA
1------------1
I I
I Stepper I

Within the Actel FPGA, four inputs are required to fully control
the stepper motor. The clock (eLK) input synchronizes the logic
and determines the speed of rotation. The motor advances one
step per clock period; the angle of rotation of the shaft will
depend on the particular motor (the angle ranges from 1.8 to 90
degrees per step). To determine the clock period, consider that the
stepper motor torque increases as frequency decreases. The
direction (DIR) control input changes the sequence at the outputs
(PHI to PH4) to reverse the motor direction. The enable input
(EN) determines whether the motor is rotating or holding. The
active low reset input (RST) initializes the circuit to ensure that
the correct starting sequence is provided to the outputs.

The basic control sequence of a four-phase motor is achieved by
activating one phase at a time as shown in Figure 2. Figure 3
shows an enhanced sequence that uses an overlap technique with
two phases active at anyone time. The enhanced sequence
provides increased torque but requires twice the current.

Boolean equations using PALASM@2 syntax for the basic control
sequence are shown in Figure 4. The phase equations (PHI to
PH4) are written with a colon and equal sign (:=) to indicate a
registered implementation of the combinatorial equation. Each
phase equation is either enabled (EN), indicating that the motor is
rotating, or disabled (/EN), indicating that the current active

I DIR PH1 t----I-----...J

I EN PH2~"""""---
I Additional
I control
I logic elK

Vee I

~
RST

PH3 1---....-----.

PH41----I---.
I
I
I

~~~~L ____________ j 

Figure 1. Four-Phase Stepper Motor Driving Circuit 

© 1993 Actel Corporation 
9-101 

I 



9-102 

Step Sequence -> 

PH1 1 

PH2 0 

PH3 0 

PH4 
0 

Figure 2. 

Step sequence -> 

PH1 

PH2 0 

PH3 

PH4 
0 

Figure 3. 

CHIP step1 ACT 

elk en dir rs! ph1 ph2 ph3 ph4 

EQUATIONS 

ph1 := Idir * en * (lph1 * Iph2 * Iph3 * ph4) 
+ dir * en * (lph1 * ph2 * Iph3 * Iph4) 
+len*ph1 

ph2 := Idir * en * ( ph1 * Iph2 * Iph3 * /ph4) 
+ dir * en * (lph1 * Iph2 * ph3 * Iph4) 
+ len * ph2 

ph3 := Idir * en * (lph1 * ph2 * Iph3 * Iph4) 
+ dir * en * (lph1 * Iph2 * Iph3 * ph4) 
+ len * ph3 

ph4 := Idir * en * (lph1 * Iph2 * ph3 * Iph4) 
+ dir * en * ( ph1 * Iph2 * Iph3 * Iph4) 
+ len * ph4 

ph1.setf = Irst 
ph2.rstf = Irs! 
ph3.rstf = Irs! 
ph4.rstf = Irs! 

Figure 4. Boolean Equations for Basic 
Stepper Motor Sequence 

0 0 0 1 

1 0 0 0 

0 0 0 

0 0 0 

Basic Stepper Motor Sequence 

1 0 0 1 

0 1 0 

0 0 

0 0 

Enhanced Stepper Motor Sequence 

phase remains on and the motor is locked. The value of the 
direction input (DIR) determines which product term is used to 
sequence clock wise or counterclockwise. The asynchronous 
equations (for example, phl.setf = /rst) initialize the circuit. The 
Boolean equations for the enhanced motor stepper sequence 
shown in Figure 5 are simpler than the basic sequence. By 
inspection of the sequence from Figure 3, phases one and three 
are mere inversions of phases two and four. Therefore, two phase 
equations can be drastically reduced (phI = /ph2, ph3 = /ph4). 
Also, the next sequence for each phase is only dependent on one 
other phase and not all four, thereby reducing the number of terms 
required for the remaining phase two and four equations. Note 
that inverting phases one and three provides the correct initial 
sequence values. 

CHIP step2 ACT 

elk en dir rst ph1 ph2 ph3 ph4 

EQUATIONS 

ph2 := en * Idir * ph4 + en * dir * ph3 + len * ph2 

ph4 := en * Idir * ph1 + en * dir * ph2 + len * ph4 

ph2.rstf = Irst 

ph4.rstf = Irst 

ph1 = Iph2 

ph3 = Iph4 

Figure 5. Boolean Equations for Enhanced 
Stepper Motor Sequence 



The Boolean files were synthesized and optimized for the Actel 
ACTTM 2 family. Modules utilized for the basic and enhanced 
sequences were 14 and 6 modules respectively. Figures 6 and 7 
are the schematic representations of the basic and enhanced 

A Stepper Motor Controller in an Actel FPGA 

sequencing circuits respectively. Note that these schematics do 
not show the output I/O macros (OUTBUF) that are needed to 
connect to the external circuit (that is, outside the FPGA). 

Figure 6. Basic Step,er Motor Sequence Schematic 

Figure 7. Enhanced Stepper Motor Sequence Schematic 

9-103 

I 



The timing diagrams in Figures 8 and 9 show the operation of the 
two stepper motor sequences. Reset, enable, and direction inputs 
are exercised for a clear understanding of full circuit operation. 
Additional logic can be added to control the enable and direction 

inputs. For example, a pre-Ioadable down counter with a zero 
detect output connected to the stepper motor enable input can be 
used to rotate the motor a predetermined number of steps. 

RST 

ClK 

EN 

DIR 

PH1 

PH2 

PH3 

PH4 

RST 

ClK 

EN 

DIR 

PH1 

PH2 

PH3 

PH4 

9-104 

~ 

I ~ __ ~~ 

--~II~------------~ 
____ ~II~--------~I 
----------~II~--------~II~---------

~ 

Figure 8. Basic Stepper Motor Sequence Timing Diagram 

,--------,I 
L 

Figure 9. Enhanced Stepper Motor Sequence Timing Diagram 



A Pulse Stretching Circuit 
for Actel FPGAs 

Application 
Note 

The ability to stretch a pulse is often useful in applications 
requiring specific timing. For example, synchronizing external 
short events to a processor may require pulse stretching to ensure 
signal recognition. One method to accomplish this function is to 
use a "one-shot" RC delay network. However, this technique 
yields wide variations in pulse accuracy due to its dependence on 
resistor and capacitor tolerances and temperature sensitivity. 
Another method is to put a large number of inverters in series to 
create a delay. This technique is most commonly used to meet the 
setup or hold time requirements of a critical circuit. This 
procedure is also not recommended due to the 30 percent 
variation in device processing between best- and worst-case 
specifications. 

For reliable operation, a digital synchronous pulse stretching 
design is ideally suited for accurate timing and close tracking 
with the system clock. The block diagram in Figure 1 shows the 
circuit inputs and outputs. A downcounter provides a variable 
output pulse width (OUT) controlled by the binary preset inputs 
(DO, Dl, D2, D3). The output is triggered by an input pulse (IN). 
The reset signal (RST) initializes the circuit. 

JL STRETCH ~ L IN OUT 
Input pulse "Stretched" 

03 output pulse 

02 

01 
00 

ClK 
RST 

Figure 1. Pulse Stretcher Block Diagram 

The pulse stretcher circuit is described in Boolean format using 
PALASM2 syntax as shown in Figure 2. There are four register 
equations in the design. The left hand side defines the logic 
preceding the D input of a flip-flop (:= indicates a register). Each 
of these equations has two components. The first component 
defines loading of the counter (preset inputs DO through D3 
ANDed with IN). The second component of these equations 
specifies the decrement logic for each bit when there is no input 
pulse present and the count is not zero (that is, ANDed with the 

© 1993 Actel Corporation 

inversion of IN and the inversion of ZERO). The zero flag 
equation is merely the combinatorial decoding of all registers 
equal to zero. The output equation is asserted whenever the count 
is not zero or the input pulse is present. 

CHIP stretch act 

elk rst in dO d1 d2 d3 out 

EQUATIONS 

qO := dO*in + (/qO*/zero)*/in 

q1 := d1*in + (/q1*/qO + q1*qO)*/zero*/in 

q2 := d2*in + (/q2*/q1 */qO + q2*q1 + q2*qO)*/zero*/in 

q3 := d3*in + (/q3*/q2*/q1 */qO + q3*q2 + q3*q1 + q3*qO)*/zero*/in 

zero = (/q3*/q2*/q1 */qO) 

out = /zero + in 

qO.RSTF = /rst 

q1.RSTF = /rst 

q2.RSTF = /rst 

q3.RSTF = /rst 

Figure 2. Pulse Stretcher Boolean Description 

The Boolean description of the circuit was optimized for an 
ACTTM 2 device. The schematic in Figure 3 was generated from 
the output netlist for a visual representation of the actual micro 
implementation. Note the use of the DFMB flip-flops, which 
require a single sequential module in ACT 2 (or ACT 3) and take 
advantage of a built-in multiplexer (inputs A, B, and S) to reduce 
logic. The complete circuit is shown implemented in 14 logic 
modules (the AXIB macros require two modules). 

The output pulse is up to one clock cycle longer than preset inputs I 
because it is ORed with the IN signal. If the OR gate is removed 
from the circuit, the output pulse will have a width exactly equal 
to n clock periods where n is the value of the data inputs. The 
input signal may only be active for one clock edge. If it is active 
for a longer period, the output will remain active for this duration 
in addition to the selected value. To have the output reflect only 
the selected delay if the input is longer than one clock period, 
change the output equation as follows: OUT = /ZERO * /IN. The 
timing diagram in Figure 4 illustrates the output pulse with a 
selected "stretch" value of four. 

9-105 



A,. 

~ 
pY C 

I 

Cf ----k ....... 
LK 

.boo 

I CLR 

~ 

~ 
A,. B""" Y 
~ ~Y 

C.,..,.Y 

Y 
C 

.... ~ 
I j LK 

~ A 
CLR 

~ 

~ 
k ....... 

LK 

~Y 
CLR 

-- I 
I 

tf CLR 

Figure 3. Pulse Stretcher Schematic 

RST 

elK 

03:00 

IN 

OUT 

Figure 4. Timing Diagram for Pulse Stretcher 

9-106 



Using FPGAs for 
Digital PLL Applications 

In addition to purely digital applications, many designs use Field 
Programmable Gate Arrays (FPGAs) for DSP. We'll examine one 
such application, digital PLLs, to show various ways of 
implementing PLL designs using FPGAs. 

Pulse Steal PLL 

In telecommunications applications, it is often desirable to 
generate a digital signal that is locked to an incoming signal and 
is some multiple of its frequency. A drawing of a pulse steal PLL, 
which is a simple way to generate such a signal, is shown in 
Figure 1. Note that the design contains an ordinary oscillator but 
no VCO. Except for the crystal, the entire design will operate in 
an FPGA. 

Note the frequency relationship that holds at points A and B in the 
figure, where 

OSC/(K*M) = Input!N = Comparison Frequency (1) 

The technique is based on selecting a reference oscillator 
frequency slightly higher than OSC. This frequency (OSC+) 
should be chosen so that 

l/Comparison Freq. - (K*M)/(OSC+) = .5 * (l/OSC) (2) 

The right side of equation 2 equals one-half the period of the 
reference oscillator. 

The reference oscillator frequency delta will cause point B (the 
detector flip-flop D input) to begin to precede point A (the 
detector flip-flop clock input) by half a period. When the edge of 
the 0 input is sufficient, the detector will clock true and begin a 
pulse train through the two deglitching flip-flops. The output of 
the second of these clears all three flip-flops and steals a pulse by 
disabling the divide by K output. Stealing the pulse puts point B 
behind A until the reference oscillator delta can move it ahead by 
one period, repeating the cycle. Points A and B are always within 
one-half a cycle of each other. 

The circuit allows the frequency of the output signal to be 
selected simply by adjusting the values of the dividers K and M. 
The lock range of the loop is given by the following: 

Lock Range = ± (OSC+/osc)/lnput (3) 

Jitter-Bounded Digital PLL 

Another technique 1 for generating a wide variety of synchronized 
clock frequencies with low jitter employs an accumulator Digital 
Controlled Oscillator (DCO) and phase and frequency 

© 1993 Actel Corporation 

comparators. The system, shown in Figure 2, can lock to any 
division of a reference frequency (F ref.) as selected by the data 
loaded into frequency divider counters. 

The Successive Approximation Register (SAR) and its controller 
serve as a low-pass filter supplying the DCO with frequency and 
phase correction data. Among the three inputs to the SAR 
controller is the F ref. divided by a factor Q to form F q. 

The other two inputs come from the phase and frequency (zero) 
comparators. The frequency comparator output is the DCO 
frequency divided by P to form F p. When the system is in lock 
the following equation is true: 

F dco = (P/Q) * F ref. (4) 

The heart of the system is the accumulator DCO, which 
determines the ability to lock to a frequency and the amount of 
jitter allowed. The DCO consists of a four-bit accumulator whose 
input is fed by the SAR. The DCO input value is determined from 
the phase and frequency comparison feedback loops. The most 
significant bit of the accumulator output is the DCO output 
signal. It is generated by successively adding the SAR value to 
itself at the high-frequency system clock rate. The frequency 
comparator uses the value of P to divide the DCO frequency. If 
the frequency is out of lock during a period of F ref., the 
comparator asserts greater-than-zero or less-than-zero to the SAR 
controller to modify the value of the register. If the P counter 
output is zero, the DCO has the correct frequency. 

The DCO latch acts as a phase register indicating the phase of the 
DCO with respect to F ref. The DCO phase is calculated by the N 
most significant accumulator output bits. When the DCO is out of 
phase, the jitter, or phase difference, is detected by the phase 
comparator and accumulates with time until it equals one period. 
The feedback loops then cause the SAR register controller to load 
a correcting value into the register or to clear the accumulator 
with a synchronizing pulse. 

The Jitter-Bounded DPLL may be implemented entirely on an I 
ACT™ FPGA. The resource requirements vary with the 
relationships of the system input and output frequencies, but for 
any F ref., system clock, and desired output frequency, the design 
is easily accommodated on an ACT FPGA. 

References 

1. S. Walters and T. Troudet, "Digital Phase-Locked Loop with 
Jitter Bounded," IEEE Transactions on Circuits and 
Systems, Vol 36, No.7, July 1989. 

9-107 



! 
~ 

REFERENCE 
OSCillATOR 

Y 

INPUT 

DIVIDE 
BYK 

ENABLE 

DIVIDE 
BYN 

DIVIDE 
BYM 

STEAL PULSE 

Figure 1. Pulse Steal Pll 

DETECT 

B 
D Q D Q 

A 

OUTPUT 

DEGLITCH 

D Q 
DF1A 
ClK 

~ 

ON 



! 
o 
CD 

Q-REGISTERII----------\ 

REFERENCE -

DIVIDE BY 
QDOWN 

COUNTER 

FREQUENCY ,-' ------' 

LOAD 

DIVIDE BY 
P-REGISTER P DOWN 

COUNTER 
t--

ZERO 
COMPARATOR t---l 

>0 
OR<O 

Fq 

SUCCESSIVE 
APPROXIMATION 

REGISTER 

ACCUMULATOR DIGITAL 
CONTROLLED OSCILLATOR 

FOUR-BIT 
ADDER 

PHASE IK-REGISTER~ K-REGISTER~ A [3:0] 
r-i COMPARATOR LEAD OR LAG CONTROL ~ I I ...-1 B [3:0] 

S [3:0] ~ 
DLe 

~ 

'-------... DCO OUTPUT = MSB 

IJ!I 

SYNC 

Figure 2. Jitter-Bounded Digital PLL 

SYSTEM 
CLOCK 

C 
III 
:i" 

(Q 

"T1 
"'tI 
G> 
l> 
III 

Q 
c 

C§: 
~ 
"'tI 
r­
r-
l> 

"t:S 
~ t=;. 
a o· 
::l 
III 



9-110 



-dMc/@/J Customer Case Histories 
• 

Customer Case Histories ".i 

© 1993 Actel Corporation 



3COM Corporation - Lan Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-1 

Beckworth Enterprises, Inc. - SBUS-to-Printer Channel Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-3 

Interstate Electronics - Parallel Processing Demodulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-5 

Delphi Systems - DSP Speech Compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-7 

GE Medical Systems - Medical Imaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10-9 

Chipcom Co. - State Machine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10-13 



~c/@II 
• 

-=i!fjjl/cl@lJ 

David Kranzler 
Hardware Design Engineer 

© 1993 Actei Corporation 

3COM Corporation 

( lSI ( ) \1 1 R ( \ S I 1 J J S J ( ) R \ 

3Corn Selects Actel FPGAs for 
LAN Logic Integration, Gate Array 
Migration Path 

3Com Corporation, an industry leader in 
local area network systems, faced several chal­
lenges when designing the TP module for its 
popular MultiConnect Modular Multiport 
Repeater platform. The MultiConnect TP 
Module was needed to enable Ethernet net­
work users to communicate over previously 
installed telephone wiring using the IEEE 
lOBASE-T communications protocol stan­
dard. When installed within 3Com's Multi­
Connect Repeater, the TP Module would 
facilitate wiring hub connections for opera­
tion of 100Mbps standard Ethernet on voice­
and data-grade dual twisted pair wiring. 

To design the TP Module efficiently for 
market use, 3Com's engineering department 
had to maximize the number of lOBASE-T 
ports that could be integrated onto a stan­
dard.,sized 3Com module board, 15 of which 
could be accommodated by the MultiConnect 
Repeater chassis. The solution to this logic 
integration challenge was found in Actel's 
ACT 1 family of field programmable gate 
arrays (FPGAs) which ultimately helped lead 
to the module's design success. 

The Design Task: A Need for 
Logic Integration and Migration Path 
The design task fell onto the shoulders of 
David Kranzler, a hardware design engineer 
within 3Com's Network Adapter Division. 
Kranzler recalls that three factors affected the 
design of the product - high system density, 
low production cost and the need for a field­
programmable solution early on in the design 
cycle. 

'We faced various obstacles up front in 
designing the MultiConnect TP Module," 
stated Kranzler. The main problem was how 
to maximize the number of lOBASE-T con­
nections on a four layer board that would fit 
into the MultiConnect chassis. System density 
played a critical role as 3Com aimed to maxi­
mize the number of ports on the module in 
order to optimize the number of users for the 
repeater. Kranzler also pointed out that since 
the lOBASE-T was quickly becoming a stan­
dard, the MultiConnect Module had to be 
designed to fully accommodate the emerging 
spec. Thus, 3Com needed a solution that 
could be reprogrammed if the standard 

changed. Because it was important for 3Com 
to be one of the first to market with its new 
module, it was critical that a means for field 
programming be implemented as quickly as 
possible. In addition, based on potential sales 
volume, it was determined that only the most 
cost-effective mode of high volume produc­
tion could be employed to manufacture the 
new modules. 

Under such constraints, Kranzler knew 
from the beginning that only a masked gate 
array could satisfY the density goals of the 
high-volume design. And because the market 
for the 3Com product was very cost competi­
tive, a gate array would also be required to 
lower the module's production costs. Howev­
er, the initial use of a masked gate array could 
not satisfY all the module's design require­
ments; the field programmability issue still 
remained. 

Because the IOBASE-T standard had not 
been formalized at the time of the module's 
conc'eptualization, there were not a lot of off­
the-shelf parts available to implement the 
standard, Kranzler recalls. 

Acten FPGAs: 
The Answer for Logic and Conversion 
3Com initially looked at a number of different 
options to design the MultiConnect TP Mod­
ule. First, Kranzler considered implementing 
the entire design discretely. Unfortunately, 
given the module's form factor, a discrete 
logic design would have yielded a board with 
only one lOBASE-T port - an unacceptable 
solution. Kranzler next considered designing 
a two-port module with high-density surface 
mount components, using a daughter board 
and the same discrete logic technology. But 
this alternative would have only allowed two 
ports and the cost would have been high. 
Next, the company also considered going to a 
full custom gate array from the onset. This 
solution would have provided the density 
needed within the cost targets but there 
would have been a great deal of risk involved. 
Finally, a field programmable gate array logic 
integration solution was proposed to avoid 
the risk element of gate arrays, the density 
problem of the discrete version and to elimi­
nate the lOBASE-T specification-<:hange 

II 

10-1 



10-2 

Block Diagram - MuitiConnect TP Module 

problem. According to Kranzler, Actel's 
FPGA, with an open migration path to an 
eventual masked array, was the clear choice. 

"I was well aware of Actel's technology 
from the beginning and knew that its FPGAs 
could be used in 3Com's designs at some 
point,» mentioned Kranzler. Actel was well 
suited for the design because of the generic 
gate-array like, granular architecture. Because 
Kranzler knew that these FPGAs would be uti­
lized to almost maximum capacity, this granu­
lar architecture was a plus. In addition, with 
Actel FPGAs, an upgrade path to a gate array 
was available. Because it was proposed from 
the beginning to use FPGAs and then 
upgrade to gate arrays, this proven migration 
path was crucial to 3Com. Finally, because 
Kranzler needed maximum density within a 
minimum amount of space, the choice in 
density available to him through the ACT I 
family suited the specific needs. Ultimately, 
the AlOiO with 1200 gates and the 2oo().gate 
Al020 devices were chosen because they close­
ly matched the amount oflogic-integration 
capacity required. 

According to Kranzler, Viewlogic's View­
Draw schematic software was used to capture 
the three-port 10BASE-T logic design and 
ViewSim to simulate its operation. Mter 
schematic capture, it was confirmed that an 
Actel AlOlO and a Al020 would be needed. 
The choice of two Actel devices allowed the 
3Com designer to cleanly partition the design 
of the MultiConnect TP module: The 120()' 
gate AlOlO was used to integrate the module's 
lOBASE-T logic; the 2oo().gate Al020 accom­
modated the portion of the module needed 
for the Ethernet repeater logic. And because 
Kranzler simulated the design extensively fol­
lowing capture, the design worked the first 
time it was programmed. 

'The Actel devices worked out exception­
ally well. I was not only happy that I could alter 
my design with the FPGAs in the event that 
the 10BASE-T specification changed, but I 
was pleasantly surprised that we were able to 
integrate as much logic as we could into the 
parts;' explained Kranzler. "In fact,» he 
added, "the spare gates on the devices allowed 
us to program logic that was used elsewhere 
on the board as well.» According to Kranzler, 

the Actel devices replaced upwards of 60 TTL 
parts in the register-intensive lOBASE-T mod­
ule design. Given the fact that the module 
had to accommodate three ports, a discrete­
logic implementation would have been 
impossible. 

Programmable Pinouts: 
An Unexpected Benefit 
The programmable nature of Actel's FPGAs 
came in handy, Kranzler recalled, when he 
discovered that the pinout pattern on the 
board did not correspond to the FPGA pinout 
- the board pinout had been shifted over 
inadvertently by one pin during layout. 'Ihis 
situation would normally have been a night­
mare,» he said. "But with the Actel system, I 
was able to easily remedy the problem by reas­
signing the pinouts under Actel's software to 
accommodate the board layout, and then pro­
gram another device.» Thus, Kranzler was 
able to save the hours it would have taken to 
rework the board (not to mention the cost of 
board re-design) by simply programming the 
Actel device to the new pinout in a matter of 
minutes. 

According to Kranzler, the Actel FPGAs 
were utilized to 98 percent of their capacity. 
With this utilization, 3Com was able to inte­
grate the equivalent of three discrete TP 
module logic designs onto a single board. 
The Actel devices routed very intelligently, 
Kranzler remarked, and as a result, he was 
able to achieve his design goals and meet all 
of the system speed requirements. He was also 
pleased with the cost-effectiveness of the Actel 
solution. As a measure, Kranzler took his 
design to two other FPGA companies to see 
how well their products compared with the 
Actel two-chip solution. According to the 
designer, neither company could integrate 
the TP module with a similar dollar's worth 
of chips. Thus, Actel clearly was the lowest 
cost FPGA solution. 

The FPGA-to-Gate Array Migration 
The AIOlO and Al020 parts were used on the 
initial TP Module boards that were shipped. 
But as the volume expanded to over nearly 
1000 modules a month, it was decided, as ini­
tially intended, to convert to a 5()()().usable-

gate, gate array from a popular vendor for fur­
ther cost reductions. According to Kranzler, 
the Actel FPGAs, combined with additional 
logic on the board, mapped into approxi­
mately 3600 gates in the masked gate array, 
more than the stated combined capacity of 
the Actel FPGAs. In fact, according to Kran­
zler, there was almost a I: I mapping ofFPGA 
gates to masked array gates - a testament to 
the Actel architecture. The conversion pro­
cess took approximately one month to imple­
ment and worked out extremely well, 
remarked the 3Com designer. 

"3Com is in a high volume business and 
the anticipation for shipping many modules 
encouraged us to convert to a masked gate 
array,» said Kranzler. There were no timing 
problems in migrating from FPGAs to the 
gate array and the teamwork between Actel 
and the gate array vendor made the process 
even smoother. 3Com currently is shipping 
thousands of modules a month with the gate 
array. 

Actel Rates High with Jeom 
3Com, as a first-time user, was extremely 
happy with Actel's FPGAs and their applica­
tion into the design of the MultiConnect TP 
Module. Actel's FPGAs perfectly fit Kranzler's 
design needs. Kranzler stated that ifhe had a 
design in the future that required the use of 
FPGAs, he would strongly consider using 
Actel parts again. Stated Kranzler, "I still fol­
low the FPGA market and I am well aware of 
the progress Actel has made in terms ofFPGA 
technology. Not only are they offering denser, 
faster parts, but I have noticed that they are 
now aligning with other industry players to 
provide more open solutions for the designer. 
Indeed, the use of standard technology-trans­
parent synthesis tools and high-level design 
languages will be important requirements in 
my next design.» 

Actel Corporation 
955 East Arques Avenue 
Sunnyvale, CA 94086 
408.739.1010 

©Copyright 1991, Actel Corporation 5192102-0 



d!!fjI/cl@l! 

Billy Beckworth, President 
Beckwarth Enterprises Inc. 

© 1993 Actel Corporation 

Beckworth Enterprises, Inc. 

( lSI ( ) \ I I· R ( \ S I· II I S I ( ) R \ 

Actel FPGAs Provide High Capacity 
and Multiple Clocking Network for 
SBus-to-Printer Channel Controller Board 

Beckworth Enterprises Inc. (BEl), a Mesquite, 
TX-based systems design firm had a fairly 
routine design task when it was asked by a 
major customer to provide an SBus interface 
card that would allow a mainframe laser 
printer to interface to Sun Microsystems' 
SPARCstations~ BEl's SBus channel driver was 
developed to allow a SPARCstation to drive a 
laser printer for those applications where cus­
tomers did not already have a mainframe but 
did need the speed and performance of a 
mainframe printer or for printing in remote 
locations using lower cost SPARCstations. 

With a BEl interface board integrated into 
Sun SPARCstations and with appropriate soft­
ware, a mainframe printer would be accessible 
to a host of workstations - rather than a single 
mainframe - and, therefore, would become 
more versatile. But when that same customer 
came back a year later and asked the company 
to provide roughly twice the functionality in 
the same space, an otherwise straightforward 
design became a challenge. 

A Solution that Reduced Board Space 
by 50 Perr:ent JJ&s Needed 
Due to the board size limitations of a single 
slot board for the SPARCstation, Beckworth 
Enterprises' entire design needed to fit on 15 
square inches of board space. This proved to 
be a challenge since Beckworth Enterprises 
had done a similar design with discrete logic 
and used over 30 square inches of board 
space. Although that earlier design involved 
an interface to a PC/AT bus, rather than an 
SBus, the design constraints were roughly the 
same, and the implementation would require 
the same number of devices. 

With the size restrictions for the Sun work­
station, Billy Beckworth, president, realized a 
higher integration solution was needed and 
began to explore higher capacity program­
mable logic that would allow him to cut the 
real estate in half. Additionally, Beckworth 
had design-security concerns for this project, 
as the SBus channel driver is proprietary and 
the company wanted to protect the design. 

Although a custom gate array would have 
satisfied his real-estate concerns, cost restric-

tions prevented the consideration of masked 
devices. Moreover, Beckworth liked the flexi­
bility of programmable logic. Therefore, the 
goal was to select a programmable device that 
was as granular and as close to a gate array 
architecture as possible with all the advan­
tages of desktop programming. Having deter­
mined that programmable logic was the only 
solution, the requirements Beckworth had 
for this design were high capacity, high I/O, 
good speed performance and a solid security 
feature. 

Beckworth researched the various pro­
grammable logic options and determined 
that the smaller programmable logic devices 
had the speed required for the design but did 
not provide the necessary density, I/O or 
security features. Beckworth's choice boiled 
down to a higher capacity solution - a Field­
Programmable Gate Array (FPGA). And with­
in that category, there were only two choices: 
Actel and Xilinx. 

Actel Provides Security Features, 
Granularity Needed 
With an external static-RAM memory to hold 
the device configuration program, asls the 
case with the Xilinx architecture, the risk of 
competitors mapping out the SRAM and 
determining the circuit design were too high. 
"There are a handful of companies that 
design and sell PC/AT interface cards, but a~ 
the only company that makes SBus channel 
drivers," says Beckworth, "we needed to pro­
tect our design. SRAMs, or any memory pro­
gramming element, make it too easy for 
competitors to read the design and quickly 
benefit from our blood, sweat and tears." 

Beckworth chose Actel because the chip 
is completely programmed internally with 
antifuses and provides security elements that 
can be blown to protect the design by prevent­
ing the map from being read. Actet's pro­
gramming element, the PUCE~ antifuse, is 
extremely small-l.8 ~m' - and the only way 
to read the antifuse map would be to view 
minute cross-sections of the chip under an 
electron microscope, a difficult, if not 
impossible, task. 

I 

10-3 



10-4 

Mega Board Data Flow Diagram 

In addition to the security features, 
Beckworth felt that Actel's architecture was a 
higher grained pitch - more granular - and 
would allow a more flexible design approach. 
"Because the Actel design entry methodology 
closely reflects the techniques I use when 
designing with conventional standard logic, ' 
says Beckworth, "I could design the interface 
using the Actel device much the same way I 
would using a discrete logic implementation. 
Therefore, ease-<>f-use was high." 

Boord 1: Two Actel FPGAs Solve 
the Problem 
Using Viewlogic for schematic entry, 
Beckworth implemented his initial design 
using two A1020s, Actel's 2oo().gate FPGAs. 
The BEl interface board design was parti­
tioned in such a way that the two devices rep­
resented distinct functions and shared no 
common circuitry other than power and 
ground. This partitioning proved useful as 
each device had to be driven with separate, 
asynchronous clocks. 

Within one Actel A1020, Beckworth inte­
grated the SBus interface and control and sta­
tus registers for the board and the interface to 
the FIFO memories. The second Al 020 han­
dled all of the logic for the Bus and Tag chan­
nel interface. This latter device required a 5 
MHz clock while the former was driven by a 
25 MHz signal. 

Beckworth maximized the high I/O pro­
vided in the Al 020, using all but one pin on 
the first chip and all but six on the other. 
More important, real estate was also maxi­
mized. The Beckworth design implemented 
in 15 square inches what would normally have 
taken twice that amount using discrete logic. 

But a year later, Beckworth's customer 
requested a modified version of the design. 
The modification called for a Data Products 
parallel input port plus two serial synchron­
ous/asynchronous (USART) I/O ports to be 

combined with the original channel con­
troller logic, with logic provisions to support 
all, onto the same, single SBus card form­
factor. For this "MEGA" board design, it 
became clear to the designers that the 
approach used on the first channel controller 
with multiple A1020s would not fit in the 
same amount of board real estate. A higher 
density solution was needed. 

Al280 Makes MEGA Board Design Possible 
Due to the extremely high levels oflogic inte­
gration that the MEGA board design would 
require to meet the equivalent board size 
specifications - 15 in.' - Beckworth chose to 
use Actel's new A1280, the 8oo().gate device, 
to replace the two Al 020s and to implement 
the additional logic required by the modifica­
tion. The A1280 provided the SBus interface 
and Control Section, 3211 Channel Interface 
and Data Products input port interface all in 
one 176-pin PGA package. This level ofinte­
gration required the requisite drivers and 
receivers for the various interfaces to reside 
on an external interface board and a 76-pin 
cable connecting the two boards. Within the 
A1280, 133 of 140 I/O pins and 700 of 1200 
logic modules were used for the MEGA 
design. 

'The arrival of the A12S0 with its 140 user 
I/Os and SOOO equivalent gates was the key to 
making the design possible at all," says 
Beckworth. In addition, Beckworth added 
that the A12S0's dual clocking networks made 
the device the ideal choice for logic integra­
tion. This feature proved especially useful, 
particularly as the original design required 
two independent clocks. 'The two indepen­
dent clocking networks would not have been 
possible without the A12S0. While I might 
have been able to piece a solution together 
using multiple subnets, that approach is not 
the must elegant solution." 

Two Clocks are Better than One 
Specifically, the two clocking networks 
allowed Beckworth to simultaneously clock 
the A12S0 at 25 MHz for the SBus interface 
and 5 MHz for the Data Products and Bus and 
Tag Channel Interfaces. Separate clocks were 
needed because the complex state machine 
can't be driven as fast as the backplane due to 
the prop delays. 

The wider gate inputs of the A12S0 also 
proved useful to Beckworth. In fact,onlyone­
half of the A12S0's capacity is utilized because 
of the ability to map to the wider inputs and 
the combinatorial nature of the sequential 
and combinatorial blocks. "I tried to make it 
as efficient a state machine as possible," says 
Beckworth. "Basically, I've got two or three 
state machines that operate on the different 
inputs and outputs. That technique makes for 
a very clean design." As important, the larger 
density device offered the performance and 
I/O he needed to meet his size specifications. 

The conversion to the A12S0 from the 
A1020-based design was very easy and integral 
to the success of the new design. "The conver­
sion process was a snap," says Beckworth. "All 
that was required was to take the basic 
[A1020] design and modify it for the addition­
a1logic functions and implement it with an 
AI2S0." Beckworth points out that although 
he could have recompiled the AI020 design 
for the A12S0, it was not the most efficient 
approach to implement the modifications. 
Instead, Beckworth took the AI020 building 
blocks and enhanced them for the A12S0 
architecture. "The nice thing about the Actel 
architecture is that once you've designed with 
one device, the knowledge you've gained 
enables you to shorten your design time of the 
next project." 

Both versions of the interface card using 
the Actel parts were very successful. In addi­
tion to the device benefits, Beckworth was 
pleased with the design support he received 
from Actel and felt the applications engineers 
were very helpful in solving his design prob­
lems. Beckworth plans to use the Actel devices 
in his next revision of the interface card in 
order to guarantee the same level of integra­
tion and performance. 

Actel Corporation 
955 East Arques Avenue 
Sunnyvale, CA 940S6 
4OS.739.101O 

©Copyright 1992, Actel Corporation 



~c/@I! I nterstate Electronics 
• 

-=iffilIcl@i/ 

Interstate Electronics' high-speed parallel 
processing demodulator board 

© 1993 Actel Corporation 

c: l' S I' () :\[ [', R C ,\ S [', H [ S [ () R Y 

Interstate Electronics Opts for 
Actel FPGA's Speed, Density and 
Non-Volatile Technology 

Delivering performance on time often 
requires getting a head start. So when a major 
customer tells you tLat the high-speed modem 
you've just designed and delivered needs to 
be 26 times faster to satisi}' the requirements 
of the next generation product, the time to 
start the upgrade is now. Su(h was the case 
with Interstate Electronics, a defense systems 
contractor located in Anaheim, California. 
Interstate had just reached the final stages of 
development for a 25 megabit per second 
(Mbps) modem for NASA's second Tracking 
Data and Relay Satellite Subsystem (TDRSS) 
ground terminal. Destined to replace the pre­
sent system in White Sands, New Mexico, 
which had been on-line since 1985, the new 
Interstate modem was in its production phase 
when the company received word that NASA 
was preparing a Request For Proposal (RFP) 
on an advanced version of the TDRSS Ground 
Terminal. The modem for this new system 
would require a 650 Mbps data rate - 26 times 
faster than the one Interstate had just com­
pleted. Although the RFP wasn't expected 
until the end of the year, Interstate wanted to 
step up to the challenge and prove the feasi­
bility of meeting such a requirement with a 
modification to its existing digital modem 
design. 

As far as the Interstate system designers 
knew, no one had ever built a digital modem 
that even approached these speeds. "The pro­
ject presented an inuiguing design opportu­
nity for us," said Mike Casteloes, a senior 
engineer assigned to the project. "Moreover, 
because it is highly likely that NASA has plans 
to place a similar modem in space, that facet 
of the project held an even greater interest for 
us," he noted. 

Design Objective: 
A Cost-Effective Approach to 
Higher Speed 
Clearly, winning the project spurred interest 
at Interstate. But first, the company needed to 
solve the modem's speed problem, so it began 
working on a solution at once, Two choices 
presented themselves to Casteloes as he review­
ed the problem of handling a 650 Mbps data 

rate: he could maintain the speed throughout 
the system with high-speed, gallium arsenide 
(GaAs) circuitry, or he could decrease the 
speed in successive stages by converting the 
serial input to a parallel data path, 

"A careful examination of the signal pro­
cessing required to convert the satellite's 
microwave transmission to a digital output 
revealed that the complexity of the system 
would make the GaAs serial solution too 
expensive to implement, "said Casteloes, "We 
opted for the parallel processing solution that 
employed a judicious application of GaAs, 
ASIC and some sort oflower cost parallel 
CMOS logic integration solution such as the 
new high-£omplexity PLDs (Programmable 
Logic Devices) or FPGA (Field Programmable 
Gate Array) technologies." According to the 
Interstate engineer, the combination offered 
a good performance-speed compromise to 
the more expensive a11-GaAs approach. 

The modem system design begins with a 
receiver front-end that converts the micro­
wave input to an Intermediate Frequency (IF) 
range. At this point, the data exists as a digi­
tally phase shifted IF waveform - a sine wave 
that has been modified by a stream of digital 
data so that every state transition causes a 
phase shift in the sine wave, 

The receiver's IF output is then converted 
to baseband (mixed) and sampled using high­
speed analog-to-digital (A/D) converters. The 
resulting serial stream of (}'bit samples is then 
fed to a GaAs demultiplexer circuit that sepa­
rates the 650 megasample-per-second data 
into 32 parallel samples, each six bits wide. 
Splitting the data into parallel samples slows 
the data rate to 20.3 MHz, a rate that easily 
can be handled by less expensive CMOS 
circuitry. 

The next stage of the system required a 
massive array of shift registers to store and 
disuibute the sample data to a bank of four 
60,OO().gate custom gate arrays. "This was a 
critical section of the design," Casteloes 
recalled. 'To convert the sampled analog data 
to logical ones and zeros, we needed to collect 
the data into blocks of 32 consecutive sam­
ples. Otherwise we would never have been 

I 

10-5 



10-6 

650 MHz Receiver Structure Using Parallel Processing 

able to reassemble them accurately. To 
accomplish this we designed an array of32 
shift registers, each one 32 x 3 bits wide. By 
combining their outputs, we could produce 
16 channels, each containing 32 consecutive 
samples, and each running at 40 MHz." 

The Selection: 
Non-Volatile Fuse Map is the Key 
"Designing the circuit was straightforward 
enough, but implementing it posed a prob­
lem with board space," said Casteloes. "It sim­
ply wasn't feasible to implement that many 
shift registers in PALs; it would have taken up 
far too much room. And even if we used any 
one of the higher<omplexity PLOs, it still 
would have required too many devices to 
implement the design." The designer recalls 
that creating another ASIC was also out of the 
question. "We had spent a considerable 
amount of non-recurring engineering (NRE) 
charges with the custom ASIC already. Spend­
ing even more on NRE was immediately dis­
counted," he added. 

FPGAs seemed the only logical choice, 
and Casteloes was already familiar with these 
devices- he had used Actel's FPGAs and 
design tools for an earlier project "We calcu­
lated that our Sample Distribution circuit 
would only require eightA12SOs-less than a 
quarter of the number ofhigh<omplexity 
PLOs that would have been required to imple­
ment the same function," said Casteloes. "As it 
is, the amount ofI/O on our 10/1 X IS/I board 
is substantial," he added. 

Casteloes also looked at the A12S0 because 
of the high speed requirements of the system. 
"Finding an FPGA that can operate with a 40 
MHz system performance is no easy task," he 
said. "We believed we could get that kind of 
performance out of the A12S0 devices 
because of our prior experience with the 
Actel architecture." 

Actel's FPGA was not the only product 
considered. "Although we could have used a 

8 PARALLEL 
RECEIVED 
DATA BITS 

40.6 MHz Data Samples J 
16 Channels 

20.3 MHz Data BitsJ 
16 Channels 

32 Consecutive Samples 

greater number of Xilinx FPGAs because they 
had adequate performance for this particular 
application, the A12S0 device had one major 
advantage - its fuse map used a non-volatile 
technology," Casteloes explained, "which 
guarantees that the device will be mapped 
correctly on each power up." According to 
Casteloes, designing with the static-RAM­
based Xilinx product would have required 
down-loading all fuse map information each 
time the system was powered up. 'With all 
the high-speed digital switching on board," 
Casteloes observed, "I was afraid the slightest 
noise glitch could cause the Xilinx device to 
be configured incorrectly and malfunction, a 
situation that you wouldn't want to tolerate on 
the ground and which couldn't be tolerated 
in a satellite-based system." 

Along with the potential vulnerability of 
the system, programming the fuse map each 
time would require additional circuitry, 
including a PROM to store the fuse map infor­
mation for each unique FPGA design, as well 
as support for diagnostics to test each FPGA 
after power up. "The choice was obvious," said 
Casteloes, "Actel was the clear winner." 

The next stage in the system reassembles 
the 6-bit samples into digital data. Four ASICs 
synchronize the sarrlple data received from 
the FPGAs and reconstruct them into 16 
channels of useable data. The ASICs also pro­
vide timing and phase error estimates. Finally, 
the 16<hannel paraJIel output of the ASICs 
are recombined into eight parallel data bits at 
40 MHz by an additional FPGA. Ultimately, 
the digital data is fed to a GaAs S: 1 multiplex­
er used to convert the parallel data back to a 
serial data stream for retransmission. 

Actel FPGAs are the Right Choice 
Implementing a complex design in a high­
performance, high-density environment is a 
challenge under any circumstances. Develop­
ing a working design quickly can seem insur­
mountable without the aid ofFPGAs. "Even 

though we are just now shipping the first of 
the 25 Mbps systems to NASA, we have already 
proven the 650 Mbps system works, and we 
were able to stay within the circuit board 
space and budget constraints," said Casteloes. 

"IfI had my way I would use Actel FPGAs 
for every high-density design," Casteloes said. 
"Actel's products are easy to work with, offer 
the highest available logic density and perfor­
mance and can be relied upon to satisfY the 
most demanding design requirements. The 
way I look at it, once you have a good design 
environment, stay with it!" 

ActeI Corporation 
955 East Arques Avenue 
Sunnyvale, CA 940S6 
4OS.739.101O 

©Copyrightl991,Aclel(;Qrporation 



Peter Schwartz, CEO 
Delphi Systems 

© 1993 Actel Corporation 

Delphi Systems 

C l' S r () \ I L R (., \ S}· \I I S r () R Y 

Delphi Combines Actel FPGAs 
and DSP Technology for Superior 
Speech Compression 

With the increased use of conventional phone 
lines as a major communications medium, 
many large companies are relying on private 
telephone networks to reduce their commu­
nications costs. In such cases, higher-cost 
leased lines would primarily be used for long 
distance traffic. Although these leased lines 
often carry data, the predominant require­
ment is to carry voice traffic. 

In the UK, British Telecomm (BT) and 
Mercury Communications Ltd. are the typical 
suppliers oflong distance services. A BT 
KiloStream service, normally used to carry 
data with a capacity of 64kbits/ sec, can carry 
only one PCM (Pulse Code Modulated) 
speech channel, while MegaStream at 
2.048Mbits/ sec was developed for higher traf­
fic and is equivalent to 30 KiloStream chan­
nels. Although MegaStream is considerably 
more costly than the KiloStream service, users 
have been willing to pay a premium to gain 
the higher capacity channels. It's to no sur­
prise, therefore, that there have been consid­
erable efforts by several firms to improve the 
channel-handling capabilities ofioweHost 
long distance communications lines. 

At least one company, Delphi Systems 
(Salisbury, Wilts), has pioneered a solution. 
Delphi is using speech compression tech­
niques to enable multiple-£hannel communi­
cations over the single-£hannel KlloStream 
service. In fact, the company's newly devel­
oped Delphi Speech Compression CODEC 
(DSC) provides speech compression suffi­
cient to allow KiloStream to carry up to eight 
toll-qualityvoice channels plus control infor­
mation, or twelve at near toll-quality, poten­
tially reducing costs and offering the 
communications manager more flexibility in 
planning his network. Savings vary according 
to the amount of traffic. As an example, for 
between five and 20 lines, DSC speech com­
pression on a KiloStream service would cost 
around half the MegaStream equivalent in 
the first year, reducing to around 20 percent 
of the cost thereafter. 

The DSC exploits a technique called Code 
Book Excited Linear Prediction (CELP) to 
achieve this compression. A prediction based 

approach, CELP was first detailed by AT&T 
Bell Labs in a 1985 IEEE conference paper, 
where speeds 100 times slower than real time 
on a Cray 1 supercomputer were reported. By 
the late 1980s, the emergence of high perfor­
mance digital signal processors made it possi­
ble to carry out the heavy computation 
needed for CELP in real time. Delphi was 
founded to exploit the market for CELP­
based communication products, particularly 
the private telephone network market. 

Different Product Phases 
Require Flexible Solutions 
According to Peter Schwarz, chief executive 
of Delphi Systems, the product development 
for the DSC was segmented into three distinct 
phases: algorithm development and feasibility 
study, evaluation products and final imple­
mentation. 

The first phase, algorithm development, 
had the twin objectives of creating and effi­
ciently coding the CELP technique and con­
firming the feasibility of running CELP in real 
time. Schwarz recalls that at the time the pro­
ject was initiated, only AT&T's 32 bit floating 
point processor, the DSP32, was available; the 
higher performance DSP32C was due within 
the next six months. Software was initially 
developed on a personal computer and coded 
in Turbo Pascal, with the intention of porting 
to the DSP32C when it became available. 

Initially running 5,000 times slower than 
real time, a subsequent port to a higher-per­
formance PC - a 386 machine with a 387 co­
processor - produced a fifty- fold speed 
improvement. Porting to the DSP32 saw a fur­
ther 80 times improvement, sufficient to both 
prove the technique and provide confidence 
that with the next move, to a DSP32C, real 
time speech compression was viable. 

The second stage was to develop a real 
time system on a PC board to enable potential 
customers to evaluate the CELP technology, 
educating the potential user base on the tech­
nology and providing a revenue stream to 
help fund future developments. The evalua­
tion systems used the first commercially avail­
able DSP32C parts available in the UK and 

10-7 



10-8 

were sold to a number of telecommunications 
and related companies. One commercial 
product was based directly on the PC board: 
a multi<hannel voice logging system for 
emergency services. Compressing speech and 
storing it on hard disks made it possible to 
instantly retrieve and rep:ay random messages 
while continuing to record incoming calls, 
something impossible on previous tape based 
systems. Customer feedback from the evalua­
tion systems was positive and provided valu­
able input to the final design stage. 

Choosing the Logic: Density, Security 
and Flexibility Requirements 
At the beginning of the third phase, the devel­
opmentofthe final product, there was a tech­
nology evaluation of the most appropriate 
form oflogic. The board was to be a compact 
daughter board, placing a severe limit on the 
chip count after the DSP, EPROM and SRAM 
circuitry were added. The technology evalua­
tion criteria included the potential chip 
count, security (both in use and to protect the 
proprietary elements of the product), ease of 
design and cost. Products evaluated included 
a microcontroller, masked gate arrays and 
field programmable gate arrays (FPGAs). The 
microcontroller was ruled out on both chip 
count and lack of security. The masked gate 
array was inflexible, had long turn-around 
times, was expensive with large up-front NRE 
charges and did not suit Delphi's preferred 
incremental development route. FPGAs, 
therefore, became the technology of choice. 

Two FPGA families were evaluated, one 
from Actel Corporation and the other from 
Xilinx Inc. According to Schwarz, "although 
both FPGA approaches had no NRE and 
offered fast system implementation, we quick­
ly concluded that the Actel part was the logi­
cal choice. Indeed, because it used an antifuse 
technology for programming rather than a 
static-RAM plus external EPROM-based tech­
nique, it was nonvolatile and provided a much 
higher level of security - a strong requirement 
for the DSC." The Actel gate array-like archi­
tecture, Schwarz continued, also offered a 
straightforward migration path to a full 
masked gate array as production volumes rose. 
The design tools were available on a PC plat­
form, further minimizing the up-front costs. 

Using Actel FPGAs For Integration 
Once the decision to go to Actel was made, an 
Action Logic" development system was pur­
chased from Gothic Crellon, a UK-based sales 
representative. Schematic capture and simula­
tion from Viewlogic· and place and route 

device programming from Actel were used. 
The challenge to Delphi's design team was 

to create a standard set of modules, integrat­
ing these to create larger functional blocks. 
"As an area was integrated," said Schwarz, "a 
device was programmed and tested in a proto­
type board. At the early stages of develop­
ment, both the EPROM and the DSP could be 
run as emulation systems via the PC with con­
nections to the prototype board." The first 
AI010 (1200-gate) device contained only the 
clock circuitry and the circuits to load code 
from the EPROM to the DSP32C. There was 
no I/O, so the PC tools were used to ensure 
that this part was functioning correctly. 

The step-wise approach allowed the final 
development of the software to take place in 
parallel to the hardware, an approach impos­
sible with a standard gate array. This approach 
provided very tight project control and was 
a major factor in the ultimate success of the 
project. 

Timing Mystery Solved with Actionprobe 
Schwarz points out that at the final iteration 
of the design, an unexpected problem arose. 
"Mter adding the final security circuitry to the 
tested and fully functional design," he 
remarked, "some programmed devices inex­
plicably failed to work correctly." He remem­
bers that a period of careful analysis identified 
the problem as a timing error that had not 
been present previously. Following a design 
change, the Actel system reruns the place and 
route, resulting in a different layout on the 
FPGA. In this case, a timing alteration had 
occurred with a circuit that had not been 
identified as a critical net. Further analysis 
localized the problem. However, even the post 
layout simulation failed to locate the problem 
- the circuit simply did not operate in accor­
dance with the simulation. 

To isolate the problem, Schwarz decided 
to take advantage of a special diagnostic fea­
ture that was developed for Actel FPGAs. 
Called Actionprobe;' the feature exploits the 
antifuse programming circuitry to probe any 
pair ofinternal nodes in an in<ircuitfunc­
tioning device without loading the internal 
nodes or modifYing the circuit operation. 
Coupling Actionprobe to an oscilloscope 
allowed signals from the faulty circuit to be 
displayed. These were directly compared with 
the post layout simulation waveforms, dis­
played on the PC screen. This direct compari­
son reduced the actual time spent in locating 
and probing the timing problem to minutes. 

With the timing problem identified, place 
and route was instructed that this was a critical 

net and the re-layout proved to be 100 percent 
successful. The Actionprobe was used again 
with the relayed chips to measure the timing 
tolerance in the critical nodes. 

Actel FPGAs Are the Right Choice 
The DSC is now in production with six major 
variants. These include versions that operate' 
at either 6,400 bps or 4,800 bps and a dual 
speed switchable version; each of these is avail­
able with or without an echo canceller. In 
each case, the PCB and assembly is identical, 
with the actual variant being produced by 
selecting one of three different FPGAs and 
one of two different EPROMs. 

Manufacturing is contracted out. When 
an order is placed, parts are ordered from 
Gothic Crellon, programmed by them to 
meet the order requirements and passed to a 
subcontractor for board build. Capital tied up 
in stock is kept to a minimum with this just-in­
time approach and the programmed FPGAs 
are produced as needed, The latest version of 
the CODEC now uses double sided surface 
mount technology (SMT) to shrink the board 
from 4" by 3.75" (15 square inches) to 2" by 3" 
(6 square inches), but still uses the same Actel 
FPGA. 

It is fair to say that without the Actel FPGA 
approach not only would Delphi not have the 
same range ofCODECs as are offered today, 
but the product itself might never have 
reached the market. 

~cl@1! 
Actel Corporation 
955 East Arques Avenue 
Sunnyvale, CA 94086 
408.739.1010 

© Copyright 1992, Actel Corporation 



~c/@I! GE Medical Systems 
• 

~~~~CUSTOMER &[iJ~m OOO~l1@)fiJ}f 
__ ~Ac~ICo~rm~n

FebIUaty, 1993

GE Medical Chooses Actel FPGAs for
their Design Flexibility and Ease-of-Use

GE Medical Systems, one of the leading suppliers
of medical imaging equipment, continues to push
the limits of technology through on-going product
development efforts in order to provide customers
with the most advanced real-time imaging systems
available. One of the recent systems from the
Waukesha, Wisconsin-based organization, required
the design of a complex image acquisition and
display board to facilitate the processing of images.
The image acquisition and display board, a VME­
based board residing in a Sun SP ARCServex4,
would need to take the image data from a propri­
etary data detection device, store it into the board's
image memory, process the image and drive a high­
line (1024 x 1024) display monitor. However, this
was not an easy design task because of the signifi­
cant amount of logic to be incorporated on a board
strictly limited by the fixed VME form factor.

Additionally, in the fast paced world of medical
imaging, where systems are constantly being
enhanced and new technologies replace old, limit­
ing the system design time is of the essence. There­
fore, the engineers were working to meet a six
month design time frame for a fully implemented
imaging board.

Oearly, choosing the logic integration vehicle
would be key in maximizing the engineering
team's productivity. Moreover, the solution would
need to meet the dense logic requirement of the
application in the limited space of the 14" x 14", 9U
VME board and all in the short six month time
frame. Mike Juhl, senior design engineer with GE
Medical Systems, initially evaluated several options
before deciding on the one that best met his needs.

One option was to use a completely discrete
solution. However, Juhl immediately rejected this
because he knew the application was heavily logic
intensive and would require a large number of

eJ 1993 Actel Corporation

discrete devices, which would exceed the limited
board space. In fact, if implemented using discretes,
the solution would need at least 600 MSI devices,
translating into 3 VME boards, for implementation.

GATE ARRAY USE DISCOUNTED
A second alternative was to use masked gate arrays,
which could integrate the logic required to accom­
modate the limited board space. However, the
design, implementation and fabrication of a single
gate array can itself be a six month project, and Juhl
needed a completed board in six months. To use
the gate array solution, it would be absolutely
necessary to have first-time-design success. Even a
single design flaw would require a new gate array.
Juhl determined he could not take the risk.

"The decision seemed obvious," Juhl recalled.
"The only viable solution that would meet all of
our requirements would be the flexibility of field
programmable gate arrays (FPGAs). FPGAs would
provide the high capacity required for the applic~­
tion in the board space available, and, because of its
field programmability, the design could be imple­
mented quickly."

The next step was to determine which FPGA
supplier to choose. Juhl knew approximately how
much I/O and flip-flop capacity he would need for
the design implementation. Because he wanted to
partition the design by functionality, he knew that
he would need to use multiple FPGAs, each in the
6,000 to 8,000 gate arena.

After comparing the available solutions, Juhl
concluded that he would be able to get the densest
solution available by using ActeYs A1280, an 8,000
gate device from the ACfI"M 2 family. The A1280
had a usable gate equivalent of 6,400 gates, with

955 E. ArqlSSAvenue &.nnyvcle. CA 94086 408 739-1010

II

10-9

10-10

--------------------__________________________ ~AchNCo~raHOn

120 user I/Os and 998 flip-flops. Additionally, he
had implemented a design using Actel's ACf 1
family in a prior system and was very happy with
their performance.

AN EXTREMELY FLEXIBLE SOLUTION
Another factor that influenced Juhl's selection of
Actel was his previous experience with the ACf 1
family and Action LogicN System for design and
programming. liThe migration from the ACf 1 tools
to the ACf 2 tools was very easy. In fact, the design
process didn't change at all," stated Juhl.

Juhl designed the board using Mentor Graphic's
schematic capture tool, NetEd, and digital simula­
tor, QuickSim, which support Actel's library. These
tools provided support for both funtional and post­
layout timing simulation. "This is a key require­
ment for designers today. Not only does the FPGA
need to work, but eventually the entire board needs
to work. With Actel's devices and tools, in conjunc­
tion with QuickSim, the FPGA can be simulated by
itself and then re-simulated in the complete board
environment," stated Juhl.

FPGA INTENSIVE: USING 10 ACTEL
DEVICES
When Juhl completed the design and implementa­
tion, within his six month window, the image
acquisition and display board required approxi­
mately 75,000 gates of logic. To accommodate the
logic requirement, Juhl used 10 Actel devices: nine
Al280s and one AI020, a 2,000 gate device from
Actel's ACf 1 family. Each of the Actel devices is
partitioned by its functionality in the system.
Functions include VME interface, receiver data
decode and format, image memory data interface,
memory controller, transmitter data format and
video data format.

Using multiple FPGA devices from any other
supplier would have made the placing and routing
of the individual device an extremely difficult and
time-consuming task. Thus, Actel's ability to
perform 100% automatic place and route was a key
advantage for multiple-FPGA designs. "Once the
partitioning of the 10 devices was completed,
programming them was as easy as pressing

10 buttons, walking away and coming back to find
they were 100% placed and routed. This saves
engineering time that can then be applied to other
activities, rather than spending it manually placing
and routing," commented Juhl.

Operation of the board occurs by the image data
coming in from a detector source, via a fiber optic
channel. Working with the Sun host CPU, the VME
interface consisting of one AI2BO device, receives
commands that tell it what format that the data is
coming in. For example, the commands inform the
board of whether the data is encoded and whether it
is coming in at a 768 x 768 or a 1024 x 1024 line rate
format. The receiver data decode and format
devices then process the incoming data, with two
Al280s to process two pixels in parallel, and send
the formatted data to the image memory data
interface. The four Al280s used for the image
memory data interface connect the on-board image
pipe-line to the 64 MByte DRAM buffer, which
stores up to 32 images in a 1024 x 1024 format.

The memory controller is the main control function
on the board arbitrating the storage of received
images with the real-time display of images and the
transfer of images over VME to the host CPU. In
the video display mode, the controller can be
configured to display any sequential set of images
in the buffer in a variable rate video loop. Addition­
ally, the memory controller can be configured to
operate as a simulator for the detector source and
transfer images out over a fiber optic channel at a
30 frame per second rate.

The memory controller was the most challenging
design on the board. However, Juhl hoped that
with the AI2BO and careful design he would be able
to integrate the solution into one device. Due to the
efficiency and flexibility of the Actel PUCE­
antifuse-based architecture, J uhl was able to imple­
ment the memory controller using only one A12BO,
utilized at the extremely high rate of 95%. "This
was the most difficult design in the system and was
efficiently implemented in the Actel AI2BO device,"
stated Juhl.

Because the system perfonnance requirement for
the design was specified at 28 MHz, Juhl did not
have a performance concern with the Actel parts,

955E.ArqumAvenue Su1nyvale.CA 906 408739-101~

GE Medical Systems

__ ~Ac.,Co~rafion

which offered operation to 55 MHz. Juhl added,
"I had no problem obtaining the perfonnance I
needed from the Actel devices."

UNEXPECTED BENEFITS FOR ADDITIONAL
FUNCTIONALITY
In addition to the density, flexibility and perfor­
mance Juhl expected from the Actel devices, he
gained additional functionality not originally
anticipated. "One benefit of the Actel approach was
the ability to put boundaries around the logic by
partitioning functions to each of the FPGAs -I felt
confident that the FPGAs would be able to handle
those functions. I was then able to start placing and
routing the board, even before I had all the detailed
design completed on a couple of the FPGAs."

Juhl also discovered that the Actel devices allowed
him to add functionality late in the design cycle,
typically a monumental task with other program­
mable logic solutions. ''I was pleasantly surprised
that I could add functionality to the Actel devices
late in the design cycle with basically no extra cost.
This happened a couple of times during the design
cycle when we put additional features on the device
and once when we decided to change functionality
after we had fabricated the board."

NEXT GENERATION ALREADY IN
DEVELOPMENT
Juhl was very satisfied with his choice of Actel
FPGAs and continues to use them in his next
generation design. Currently, GE Medical Systems'
next generation of the image acquisition and display
board is in the R&D process. ''In general, the new
design is a bit more complicated, but Actel FPGAs
are easily handling the increased logic complexity.
We will also be able to save even more time in this
second generation by leveraging the design experi­
ence and the macros from the initial design."

Indeed, GE Medical has chosen to stay with the
Actel FPGAs but has changed the mix of the Actel
parts to accommodate the new partitioning of
functions on the board.

Juhl commented, II Again, we are under a tight time
frame for the development of the second generation
board and believe that the Actel devices offer the
functionality that we will need. The devices pro­
vide high available logic density, offer an easy-to­
use device and design tools package that is well
integrated with third party board level design and
simulation tools, and provide the performance
necessary for this logic intensive system."

955E.Arq~A\I9Ilue Sulnyvale.CA 94(116 408739·1010

10-11

I

10-12

~c/@I! Chipcom Co.

© 1993 Actei Corporation

•

Introduction

Article published in the 1993 PLD Conference Proceedings

Real World State Machine Design with FPGA's

Ira D. Hart, Section Manager
Chipcom Co., Southborough, MA

I. 1.3.C

Designing state machine control circuitry for implementation in an FPGA is easier today than
ever before. A designer no longer needs to spend a great deal of time optimizing state machines
with Karnaugh maps and state tables. With the advent of synthesis tools such as those made by
Exemplar or Synopsys, a state machine can be described in an HDL such as ABEL or VHDL
and quickly converted to FPGA gates. The state machines can be synthesized with the constraint
of gate count or speed. They can be represented in your schematic as small behavioral "black
boxes" which can be linked together and simulated. The FPGA and it's associated tools allow a
designer to quickly capture the design and burn it at his or her desk to prove the design
functionally in the lab.

This paper will describe a design example and the trade-offs made for an interface between a
processor, 2 Ethernet controllers and a shared SRAM bank. The design contains 6 state
machines, shift registers, counters and multiplexing circuitry for the data and address busses. It
was implemented in an ACI'EL 1280 FPGA which can fit roughly 8,000 gate array gates and
has 140 user IIOs of which 125 were used in this design

Arbiter Description
A memory arbiter is used in this design to allow the 2 lances and the CPU fair access to a shared
SRAM. The scheme used is first come first serve. If there is contention, the last requester to
have been granted access to SRAM will wait. The arbiter was described in ABEL HDL in a "one
hot" or state per bit encoding scheme. ABEL outputs a .PDS description format which is
basically a Boolean description. This is read in by the Exemplar synthesis tool which will output
Actel ACI'2 gates. The Exemplm: tool spends 5 minutes analyzing the Boolean description and
providing different solution sets. For the Arbiter in this example, Exemplar was setup to
optimize for fastest speed. The Exemplar tool made 9 passes with the best pass occurring on the
first iteration. The resulting arbiter was implemented in 77 ACI'2 modules with a worst case
setup time to the FF of 46.3nS.

Problems with One Hot Encoding
Classroom state machine design techniques usually involve binary encoding for state machines.
For example 4 bits can be used to represent 16 states. Decoding logic for the outputs or next
state then look at the inputs and the previous state to determine what to do at the next clock
edge. Frequently, the decoding logic necessary to decode the transition conditions for changing
to the next state use multiple module levels. This can cause timing problems if the number of
levels are high enough that the propagation delay through the decoding logic causes a setup
violation at the input to the state bit flip flop.

One hot encoding is frequently recommended by FPGA vendors as a way to improve speed and
module count. This is done by increasing the number of flip-flops used to represent the states.
The state transition conditions usually include a very low number of logic levels in the decode

Page 1

10-13

10-14

J. J.3.e

block, making the operating frequency high. Simple combinatorial logic is used to decode the
state bits. For example, a case where an output needs to be low if it is in state 3 and state 4. A
2 input NOR gate can be tied to the Q output of each one hot flip flop.

This output would theoretically remain low in each state and during the transition between
states. In reality though, the output will glitch during the transition due to the simple fact that
the flip flop for state 3 may tum off before the flip flop for state 4. This glitch would cause a
serious problem if the output were controlling an asynchronous input such as a chip select or
output enable of a memory device.

A Better Approach
The problem descibed above was encountered in this Actel 1280 design for the signal
UDTACKl. This signal is the data acknowledge handshake to the board CPU. The CPU runs at
a different clock speed than the arbiter block. It is an asynchcronous signal which needs to
remain glitch free. One option was to synchronize it with the CPU clock but this would of
course have led to a performance hit equal to up approximately two CPU clocks. One approach
is to use an HDL which decodes the inputs and previous states synchronously, to "look ahead"
and provide glitch free transitions of the output on state machine clock changes. This is
accomplish~ in the arbiter example. The disadvantage of this approach is that these outputs
must now decode the inputs and previous states to switch. This can result in the same problems
we had with the encoded state machines, because of the complexity of the logic needed in front
of the flip/flop. An alternative approach is to use a pseudo- 'one hot' technique where more than
one state is active at a time, insuring glitchless transition between states which require it. This
usually will not require any additional logic, since the state flip/flop is simply cleared on exit of
a different state.

UP~
1~

I Sar".l. %D
Contro1

Control. ~.
~

Control. -1-fi-

91:= ... SRAM D=F ~fi
Figure 1 Figure 2

Page 2

Arbiter Abel file
MODULE memarb
title Dual Port Memory Arbiter
Ira D. Hart Copyright CHIPCOM Co. 1992 '
declarations
"InputsCllc2Opin istype 'buffer';
Resetlpin istype 'buffer';
SRAMCSlpin istype 'buffer';
"Outputs
UDTACKlpin istype 'reg, buffer' ; "68k
ADDMUXlpin istype 'reg, buffer'
EDTACKlpin istype 'reg, buffer'
s12pin istype 'reg, buffer' ; "states
sll pin istype 'reg, buffer' ; "states
s10 pin istype 'reg, buffer' ; "states
s9pin istype 'reg, buffer' ; "states
s8pin istype 'reg, buffer' ; "states
s7pin istype 'reg, buffer' ; "states
s6pin istype 'reg, buffer' ; "states
s5pin istype 'reg, buffer' ; "states
s4pin istype 'reg, buffer' ; "states
s3pin istype 'reg, buffer' ; "states
s2pin istype 'reg, buffer' ; "states
slpin istype 'reg, buffer' ; "states

ADDMUX =[ADDMUXl,ADDMUXO];
U68K =[0, °];
Lance =[0, 1];
PP =[1, °];
CC =[1, 1];
High,Low =1,0;
H,L,c,x,z =1,O,.C.,.X.,.Z.; "test vector characters

Qstate=[s 12,s II,s 1 0,s9 ,s8,s7 ,s6,s5,s4,s3,s2,s 1]; "
Idle_U68Kl= AbOOOOOOOOOOOl; "sl
Idle_U68K2= AbOOOOOOOOOO1O; "s2
Idle_Lancel= AbOOOOOOOOOl00; "s3
Idle_Lance2= AbOOOOOOOOl000; "s4
uCyclel= AbOOOOOOOl0000; "s5
uCycle2= AbOOOOOOl00000; "s6
uCycle3= AbOOOOOl000000; "s7
uCycle4= AbOOOOl0000000; "s8
eCyclel= AbOOOl00000000; "s9
eCycle2= AbOOl000000000; "s1O
eCycle3= AbO 1 {)()()()()()()(; "s 11
eCycle4= AblOOOOOOOOOOO; "s12

Page 3

Chipcom Co.

I. 1.3.C

II

10-15

10-16

J. J.3.e

equations .
[UDTACKl,EDTACKl,ADDMUX1,ADDMUXO,memcycl,sI2,sll,sI0,s9,sS,s7,s6,s5,s4,s3,s2,s1
s2,sl].CLK = C1k20;
[ADDMUX1,sI2,sll,slO,s9,sS,s7,s6,s5,s4,s3,s2].RE= !Reset!;
[memcycl,ADDMUXO,EDTACKl,UDTACKl,sl].PR= !Reset!;

state_diagram Qstate

State Idle_U6SK1:
EDTACKl:=!(!EDTACKl & (!EASI # !elIdO»; "Sustain till end of EAS. w/elklO
If (!SRAMCSI) Then uCyelel "68K has fIrst priority.

WithADDMUX :=U68K;
memcycl:=O;
UDTACKl :=1;
Endwith;

Else Idle_U68K2
WithADDMUX := Lance;
memcycl:= 1;
UDTACKl := 1;
Endwith;

State Idle_U68K2:
If (!SRAMCSI) Then uCyelel

WithADDMUX::a;U68K;
memcycl:=O;
UDTACKl :=1;

"6SK has fIrst priority.

EDTACKI:=!(!EDTACKl & !EASI); "Sustain till end ofEAS.
Endwith;

Else If (!EASI & clklO & EDTACKl) Then eCyclel
"Lance has 2nd priority.

WithADDMUX:=Lance;
memcycl:=O;
UDTACKl :=1;
EDTACKl :=1;
Endwith;

Page 4

Arbiter Exemplar Summary File

Exemplar Logic Synthesis System Thu Nov 1913:58:141992
Estimated

Pass Area Delay CPU

1
2
3
4
5
6
7
8
9

(modules) (os)
77 46.3
85 55.2
81 47.1
81 47.1
81 46.3
117 55.2
81 47.1
81 47.1
81 47.1

min:sec
00:30
00:32
00:30
00:31
00:30
01:31

00:31
00:32
00:31

Resource Use Estimate
Design: memarb

Techoology:act2
File: memarb. pds
Area: 77.0

Critical Path: 46.3 os

Device Area Registers i/o

A1225
A1240
A1280

avl/usd /pct avl/usdlpct avl/usdlpct
451/ 77/17% 341/ 0/ 0% 82/24/29%
684/ 77/ 11 % 565/ 0/ 0% 104/24/23%
1232/ 77/ 6% 998/ 0/ 0% 140/24/17%

Delay Summary
Node: Slack Arrival Required Load

rise fall rise fall
S4 : 31.00 15.30 15.30 46.30 46.30 1.60
SI : 32.60 13.70 13.70 46.30 46.30 1.60
S3 : 32.60 13.7013.7046.3046.301.60

Page 5

Chipcom Co.

1.1.3.C

I

10-17

10-18

1.1.3.C

Cell
AND2
AND2A
AND4A
AOIC
A02
A03
A06A
A07
AOIl
AOI2B
AOI4A
BUF
DFCIB

Cell Usage Summary
Uses Cost Total

4 uses(s) 1.00 modules 4.00 modules
2 uses(s) 1.00 modules 2.00 modules
1 uses(s) 1.00 modules 1.00 modules

2 uses(s) 1.00 modules 2.00 modules
3 uses(s) 1.00 modules 3.00 modules
4 uses(s) 1.00 modules 4.00 modules
2 uses(s) 1.00 modules 2.00 modules

2 uses(s) 1.00 modules 2.00 modules
1 uses(s) 1.00 modules 1.00 modules

1 uses(s) 1.00 modules 1.00 modules
1 uses(s) 1.00 modules 1.00 modules
9 uses(s) 1.00 modules 9.00 modules

13 uses(s) 1.00 modules 13.00 modules
Total = 77.00

Number of combinable modules is: 5

Page 6

Technical Support Services

Technical Support Services "~I

© 1993 Actel Corporation

Technical Support Services. 11-1

Technical Support Services

Actel Technical Support

Actel's application engineers have developed many ways to meet
your needs. Our services provide technical assistance to all of our
customers worldwide. Customers can obtain technical assistance
by means of the Technical Support Hotline, the Bulletin Board
Service (BBS), Customer Training, International email, the
technical newsletter, and our fax-back system, Action Facts.

Technical Support Hotline

The Technical Support Hotline
provides technical information on Actel
hardware and software products.
Questions regarding software
authorization, availability, and pricing
are handled through Actel customer
service. All hotline calls are answered

by our Technical Message Center. The center retrieves
information such as the caller's name, the company name, the
phone number, and the caller's question, and then issues a case
number. The center then fowards the information to a queue
where the application engineers receive the data and return the
customer call. Our goal is to return all customer inquiries within
one hour. The hotline's phone hours are from 7:00 a.m. to 5:30
p.m. PST. In addition to answering the Technical Support Hotline
calls, our applications engineers develop other ways of assisting
our customers, such as writing application notes, and user guides,
creating design examples, and evaluating software.

The Technical Support Hotline number is 800-262-1060.

Electronic Bulletin Board Service (BBS)

Actel currently offers information
access and transfer via a 24-hour
worldwide bulletin board. Customers
can download information such as new
soft macros and software bug fixes. In
addition, our applications engineers use

the BBS to help solve design problems. Sometimes a customer's
issue can not be solved by the technical hotline. In these cases,
our applications engineers may request the customer to upload
their design to the BBS. All files uploaded to the Actel BBS are
automatically stored in a private directory. This way the
applications engineers can examine the software first hand and
make the necessary adjustments.

© 1993 Actel Corporation

The telephone number for the BBS is 408-739-6397. To connect
to the BBS by modem, the following equipment and
configuration are required:

• Baud rate of 9600

• Data format: 8 data bits, 1 stop bit, no parity

The following file transfer protocols are supported:

• Xmodem

• Ymodem

• Zmodem

• ASCII

First-time callers need to establish an account. Once connected to
the BBS, the caller is then prompted for his/her name, company,
phone number and so on. After the account is established, the
customer calls the Technical Support Hotline 800-262-1060 and
requests file transfer class. Our Technical Message Center verifies
the name and company and then upgrades the account's security
level.

Customer Training

Actel offers an introductory two-day
course covering all aspects of designing
an Actel FPGA. The class covers a
discussion of the architecture of
ACFM 1, ACT 2 and ACT 3 families
design methodologies, a brief look at
the Viewlogic@ schematic capture and
simulation tools, and a thorough
examination of the Actel FPGA design

software. The course is a mixture of lectures and lab exercises.
Classes are offered to a minimum of three persons at a time.
Customers can register for our training course by calling the
Technical Support Hotline and asking about training class
registration.

Action Facts

The Action Facts system is a 24-hour
fax-back service. Customers can obtain
a list of current software bugs and
workarounds, application notes, design I
hints, package pinouts, and much more
information. Simply call the toll free
number and request that a catalogue be
faxed to your office. Review the
document and call the number again to

request up to five documents per call. The Action Facts Catalogue
is updated bimonthly.

The Action Facts phone number is 800-262-1062.

11-1

Technical Newsletter

•............. ,l4 ...•..... '.; .. :.;.~.· .•• ·.:t.···.:! .•• :.'b.: ..•. B;; .. '·.,.· .•.•.•..•. '
'~" .:. ·:w · $"

•

•

11-2

In spring 1992 Actel started a quarterly
technical newsletter. The newsletter
contains the latest Technical Support
Hotline news, infonnation about new
hardware and software products, the
answers to the most commonly asked
questions, and detailed discussions from
Actel's experts about hardware and
software tools. All customers who have
software maintenance automatically
receive the newsletter.

International E-mail Address

Actel has recently introduced a new

~
method for customers to communicate
with our applications engineers.
Customers can e-mail their technical
questions to our e-mail address and
receive answers back either bye-mail,

fax, or phone call. In addition, customers can quickly e-mail
their design files to receive assistance. The e-mail account is
monitored several times throughout the day, and our goal for
responding is two working days after receiving the message.

Technical support's e-mail address is

tech@actel.com

J4clel
•

